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Introduzione

L’analisi di serie storiche climatiche è un argomento di ricerca che
ha acquisito notevole rilevanza negli ultimi anni, soprattutto a causa
dei forti cambiamenti climatici in atto. In questa tesi studieremo serie
storiche climatiche utilizzando modelli di tipo state space. Questo tipo di
modelli è caratterizzato dalla scomposizione della serie storica osservata
in componenti latenti, raccolte nel vettore degli stati: ogni componente
descrive un aspetto importante della serie osservata, come il trend, una
componente stagionale e una ciclica, la perturbazione dovuta ad un errore
di osservazione autoregressivo.

Per comprendere i cambiamenti climatici è necessario sviluppare un
modello di questo tipo per le serie storiche climatiche, in quanto esso
permette una profonda comprensione del fenomeno grazie ad una precisa
descrizione dello stesso e successivamente una sua previsione. A questo
proposito, il nostro obiettivo non è una previsione puntuale della serie
storica ma la costruzione di scenari probabilistici, che riportino le di-
verse possibilità e le relative probabilità; questo approccio ha potenziali
applicazioni in ambito assicurativo, proponendosi come strumento per la
valutazione dei rischi connessi alla variabilità del clima.

In questa tesi miriamo a descrivere il comportamento congiunto di
serie storiche climatiche con elevata profondità storica ed elevata dimen-
sione trasversale. Questo comporta delle complicazioni modellistiche e
computazionali che proponiamo di risolvere con una strategia a più pas-
si. Innanzitutto utilizziamo un modello strutturale univariato (di facile
stima), quindi analizziamo il comportamento congiunto per mezzo dei
fattori dinamici (mutuati dalla macro-economia) e gestiamo l’aumento
di dimensionalità con la tecnica del collapsing ; infine simuliamo scenari
con il simulation smoothing e calcoliamo la distribuzione di previsione.

Nel Capitolo 1 viene introdotto il modello state space Gaussiano li-
neare. Iniziando con la spiegazione delle componenti latenti e della loro
forma matriciale, la trattazione continua con la derivazione delle ricor-
sioni del filtro di Kalman, che permettono di ricostruire gli stati latenti
condizionatamente alle osservazioni mediante la massimizzazione della
funzione di log-verosimiglianza ottenuta dalla scomposizione degli erro-
ri di predizione. Successivamente vengono presentati gli stati smooth
impiegati poi nel simulation smoothing, che consente di simulare serie
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6 INTRODUZIONE

storiche condizionali alla serie osservata. Una Sezione riguarda i test
di specificazione del modello, essenziali per valutare l’adeguatezza della
stessa. Inoltre, viene introdotta la tecnica di inizializzazione esatta con
lo scopo di inizializzare, appunto, la stima del modello quando non sono
disponibili informazioni sui valori iniziali del filtro.

Il Capitolo 2 riporta le esplorazioni fatte sul modello state space: pri-
ma con simulazioni Monte-Carlo di serie storiche, poi con serie di dati
reali. Le serie storiche simulate vengono generate con diversi modelli,
dal semplice local level a quello completo di tutte le componenti men-
zionate. Anche i dati reali vengono analizzati con modelli differenti: il
primo è quello proposto da Mills [12], per il quale abbiamo scaricato i
dati dell’Hadley Centre for Climate Prediction and Research [2]; questo
lavoro ci permette di confrontare direttamente la specificazione del mo-
dello e i risultati ottenuti. L’altro modello per dati reali è utilizzato per
analizzare la serie storica delle temperature massime registrate nella città
di Bologna, scaricate dal sito dell’European Climate Assessment and Da-
taset [9]; l’obiettivo è quello di replicare il primo passo della procedura
di Li e colleghi [10] e di prendere confidenza con le tecniche introdotte
nel primo Capitolo.

Il Capitolo 3 tratta i modelli a fattori dinamici, e riporta perlopiù
definizioni e metodi per la stima dei parametri. Ci concentriamo sul
metodo a due passi presentato da Doz, Giannone e Reichlin [5], il quale
richiede che il modello a fattori sia messo nella forma state space. Il
Capitolo 4 riporta alcune interessanti esplorazioni con simulazioni di tipo
Monte-Carlo.

Il punto centrale di questa tesi è il Capitolo 5. Dopo una breve in-
troduzione sul metodo di Li e colleghi [10], questo viene modificato e
applicato a serie storiche di dati reali procedendo con i seguenti passi:

1. download delle serie storiche delle temperature massime registrate
in alcune stazioni dell’Emilia-Romagna;

2. analisi di ciascuna di esse separatamente con il modello state space
e salvataggio in memoria di tutti gli errori di predizione;

3. utilizzo del modello a fattori dinamici sulle serie degli errori di
predizione al fine di estrarre informazione residua;

4. simulazione di serie di errori di predizione grazie al simulation
smoothing del modello a fattori dinamici;

5. calcolo, per ogni stazione, di serie storiche di osservazioni simulate
con i parametri stimati al passo 2;

6. ri-stima dei parametri del modello state space per le serie simulate
e calcolo delle previsioni, per ogni stazione separatamente;
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7. media delle previsioni per ottenere la previsione finale di ogni sta-
zione.

Fondamentalmente, iniziamo con il modello state space separatamente
per ogni serie storica osservata, poi analizziamo tutte insieme le serie degli
errori di predizione con il modello a fattori dinamici, dopodichè simuliamo
gli errori di predizione e riprendiamo i parametri di ogni singola stazione
per calcolare le simulazioni delle osservazioni; quindi procediamo per ogni
stazione separatamente fino alle previsioni. Di fatto, in questa tesi, per
ragioni di tempo di calcolo, gli ultimi passaggi vengono applicati solo ad
una stazione, nello specifico quella di Bologna.

I risultati preliminari ottenuti dalle esplorazioni fatte in questa tesi
sono molto promettenti. Abbiamo considerato serie storiche climatiche
con limitata profondità storica e ridotta dimensione trasversale, ma solo
per ragioni computazionali; d’altro canto, ciò ci ha permesso di verificare
e testare rapidamente la specificazione e l’implementazione di ogni pas-
so del metodo. Precedenti test effettuati su base settimanale con serie
storiche significativamente più lunghe (fino a 150 anni) e di dimensione
trasversale notevolmente maggiore (fino a 10.000) confermano la validità
dell’intero approccio.





Introduction

Climatic time series analysis is a research topic which has gained great
relevance in recent years, above all because of the remarkable climatic
changes taking place. In this thesis we will explore climatic time series
using state space models. This kind of models features the decomposi-
tion of the observed series in latent components, stored together in the
state vector: each component portrays a relevant characteristic of the
observed series, like the trend, a seasonal and a cyclical component, the
contamination by an autoregressive observation error.

Developing such a model for climatic time series is necessary in or-
der to understand climatic changes: it allows a deep comprehension of
the phenomenon thanks to an accurate description and afterwards to a
forecast of it. About this, our purpose is not the pointwise prediction of
a time series but the construction of probabilistic scenarios which report
different possibilities and relative probabilities; this approach has poten-
tial applications in insurance area, serving as a tool for evaluating risks
concerning climatic variability.

In this thesis we aim to describe the joint behaviour of climatic
time series featured by high temporal depth and high cross-sectional
dimension. As a consequence, modeling and computational complica-
tions emerge, which we propose to deal with a multi-step strategy. First
of all we fit a structural univariate model (which is easly estimated) to
time series, then we analyse the joint residual information by means of
dynamic factors (as usually done in macro-economic studies) and the in-
crease in dimensionality is managed with the collapsing technique; finally
we simulate scenarios with the simulation smoothing and compute the
forecasting distribution.

Chapter 1 introduces the linear Gaussian state space model. Begin-
ning with explanation of latent components and their matricial form, the
discussion continues with the calculus of the Kalman filter recursions,
that allow to reconstruct the latent states conditionally to the obser-
vations via the maximisation of the log-likelihood function in the pre-
diction error decomposition form. Then smoothed states are presented
and employed in the simulation smoothing, which permits to simulate
time series conditionally to the observed one. A Section concerns the
miss-specification tests of the model: they are essential to evaluate the
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10 INTRODUCTION

adequateness of the model specification. Also, the exact initial technique
is introduced in order to initialise the model estimation when no hints of
the initial filter values are available.

Chapter 2 reports explorations with the state space model: firstly on
Monte-Carlo simulations of time series, then with real time series. The
simulated time series are generated with different models, from the sim-
ple local level to the one with all the mentioned components. Also real
data go throught different models: the first is Mills’ one [12], for which
we download the time series of monthly global temperatures from the
database of the Hadley Centre for Climate Prediction and Research [2];
this work allows us to directly compare model specification and results.
The other model for real data fits the maximum temperature time series
recorded in the city of Bologna and downloaded from the site of Euro-
pean Climate Assessment and Dataset [9]; the purpose is to replicate the
first step of Li et al.’s [10] procedure and to gain confidence with the
techniques introduced in the first Chapter.

Chapter 3 presents a review of the dynamic factor models, mostly
reporting definitions and parameters estimation methods. We highlight
the two-step method presented by Doz, Giannone and Reichlin [5], which
requires the factor model to be cast in the state space form. Chapter 4
reports some interesting numeric explorations on Monte-Carlo simula-
tions.

Is Chapter 5 the highlight of this thesis. After a brief introduction
about Li et al.’s [10] method, we modify and apply it to real data time
series with the following steps:

1. download of maximum temperatures time series of some stations
in Emilia Romagna (Italy);

2. analysis of each of them separately with the state space model and
storage of all the prediction errors;

3. fitting the dynamic factor model to the prediction errors series in
order to extract residual information;

4. simulating prediction errors series thanks to simulation smoothing
in the dynamic factor model;

5. with parameters estimated at step 2 for each observed time series,
computing simulated observations time series for each station;

6. re-estimation of state space model parameters according to simu-
lated series and computing forecasts, for each station separately;

7. averaging forecasts to obtain the station final forecast.

Basically, we start with the state space model for each observed time
series separately, then we fit the dinamic factor model to the prediction
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errors series all together, after that we simulate prediction errors and
come back to each station parameters in order to compute the simulated
observations; hence we proceed for each station separately till the fore-
casts. Actually, in this thesis and for computational time reasons, the
last steps are applyed to one station only, and specifically to the station
of Bologna.

The preliminary results from the explorations performed in this thesis
are very promising. We considered climatic time series of limited depth
and limited cross-sectional dimension only for computational reasons and
to readily verify and test the proper specification and implementation of
all the modeling steps. Very preliminary tests performed on a weekly
basis for much longer time series (up to 150 years) with a significantly
larger cross-sectional dimension (up to 10.000) confirm the viability of
the entire approach.





Chapter 1

Linear Gaussian state space
model

In this Chapter we introduce a structural model for observed time
series with latent components. We will employ filtering and smooth-
ing techniques to estimate model parameters and to perform simulation.
Most of the material is taken from the text by Durbin and Koopman [6],
to which we refer for further information.

1.1 Introduction

A time series is a set of observations y1, . . . , yT ordered in time. The
univariate linear Gaussian state space model for representing a time series
can be written in the form

yt = Ztαt + εt, εt ∼ N
(
0, σ2

ε

)
αt+1 = Ttαt +Rtηt, ηt ∼ N (0, Q)

α1 ∼ N (a1, P1)

(1.1)

where yt, t = 1, . . . , T are called observations and αt is an unobserved
m× 1 vector called state vector. The first equation of (1.1) is called ob-
servation equation and the second is called state equation. The matrices
Zt, Tt and Rt are assumed to be known and in this thesis are assumed
constant in time (so we could remove subscript t); also the vector a1

and the matrix P1 are assumed to be known, while the scalar σ2
ε and

the matrix Q are to be estimated. The disturbances terms εt and ηt are
assumed serially independent and independent of each other at all time
points. In the table below they are given the dimensions of elements of
the state space model at each time point.

Scalars Vectors Matrices
yt αt m× 1 T m×m
εt Z 1×m R m× r
σ2
ε ηt r × 1 Q r × r

13



14 CHAPTER 1. LINEAR GAUSSIAN STATE SPACE MODEL

1.2 Latent components

The observed time series yt could be decomposed into a set of unob-
served components in the additive model

yt = µt + γt + ct + ϕt + εt (1.2)

where µt is a slowly varying component called trend, γt is a periodic
component of fixed period called seasonal, ct is a periodic component of
fixed period generally greater than γt’s called cycle and ϕt is a stationary
autoregressive component of order p, AR(p); each of these components
represents a different feature of the evolution of the series. The distur-
bance εt has constant variance σ2

ε , introduced before.
In the next Sections we describe in detail each component and finally

we will assemble the system matrices.

1.2.1 Trend component

Trend is assumed to be generated by a first-order autoregressive model
with a slope term generated by a random walk:

µt+1 = µt + νt + ξt, ξt ∼ N
(
0, σ2

ξ

)
;

νt+1 = νt + ζt, ζt ∼ N
(
0, σ2

ζ

)
.

1.2.2 Seasonal component

We suppose there are s ’months’ (or ’weeks’ or ’days’) per ’year’
and express the seasonal component in the trigonometric form of quasi-
random walk model

γt =

bs/2c∑
j=1

γj,t (1.3)

where bac is the largest integer ≤ a and

γj,t+1 = γj,t cosλj + γ∗j,t sinλj + ωj,t, ωj,t ∼ N
(
0, σ2

ω

)
, j = 1, . . . , bs/2c

γ∗j,t+1 = −γj,t sinλj + γ∗j,t cosλj + ω∗j,t, ω∗j,t ∼ N
(
0, σ2

ω

)
in which ωj,t and ω∗j,t terms are independent N (0, σ2

ω) variables and λj =
2πj/s are fixed frequencies. The γ∗j,t+1 component simply allows the
seasonal to be modelled as a stochastic combination of sine and cosine
waves and its interpretation is not particularly important. Instead, it
is remarkable that if the stochastic terms are zero then the values of γt
defined by (1.3) are periodic with period s by taking

γj,t = γ̄j cosλjt+ γ̄∗j sinλjt

γ∗j,t = −γ̄j sinλjt+ γ̄∗j cosλjt
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which satisfy the deterministic part of previous recursions for γj,t+1 and
γ∗j,t+1. Moreover, those recursions provide in turn a recursion for

γt =

s/2∑
j=1

(
γ̄j cosλjt+ γ̄∗j sinλjt

)
with λj defined as before, which is periodic with period s. As a conse-
quence of all, it results that each set of s seasonal components defined as
in (1.3) sums to zero when the stochastic terms ωj,t and ω∗j,t are zero.

Moreover, we should remark that in a model with a trend component
the stochastic terms of the seasonal components have to be setted to
zero, in order to allow a good estimation of the model itself.

1.2.3 Cycle component

Also the cycle component is modelled by a trigonometric model:

ct+1 = ρ (ct cosλc + c∗t sinλc) + ω̄t, ω̄t ∼ N
(
0, σ2

ω̄

)
c∗t+1 = ρ (−ct sinλc + c∗t cosλc) + ω̄∗t , ω̄∗t ∼ N

(
0, σ2

ω̄

)
where ω̄t and ω̄∗t terms are independent N (0, σ2

ω̄) variables, 0 < ρ ≤ 1
is the damping factor of the cycle and 0 ≤ λc ≤ π is the frequency in
radians, so that the period of the cycle is 2π/λc. The damping factor and
the frequency are unknown parameters of the model to be estimated. If
ρ = 1 the cycle results to be non-stationary, while if |ρ| < 1 the cycle is
a stationary process.

1.2.4 AR component

Generally, an autoregressive process of order p can be written as

ϕt =

p∑
j=1

θjϕt−j + τt, τt ∼ N
(
0, σ2

ϕ

)
.

In matricial form, it results
ϕt
ϕt−1

...
ϕt−p+1

 =


θ1 θ2 . . . θp
1 0

. . .
...

1 0



ϕt−1

ϕt−2
...

ϕt−p

+


1
0
...
0

 τt

where we call the matrix Tϕ. Stationarity is ensured if Tϕ spectral radius
is less than 1. Finally, in our model θj coefficients, for j = 1, . . . , p, are
parameters to be estimated.



16 CHAPTER 1. LINEAR GAUSSIAN STATE SPACE MODEL

1.2.5 Assembling system matrices

To represent the model in the state space form, we shall specify vec-
tors and matrices presented in Section (1.1). Two features are to be taken
into account: most of them depend on the seasonality s that could be
an even or an odd number, and the AR order p may vary in the natural
numbers range; since differences occur we have to distinguish cases.

Some elements of vectors and matrices do not change according to
the cases, so we present them explicitly while we specify the differences
later. We have

αt =
(
µt νt γ1,t γ

∗
1,t . . . γs∗,t γ

∗
s∗,t ct c

∗
t ϕt ϕt−1 . . . ϕt−p+1

)
,

Z = (1 0 1 0 . . . 1 0 1 0 1 0 . . . 0) ,

ηt =
(
ξt ζt ω1,t ω

∗
1,t . . . ωs∗,t ω

∗
s∗,t ω̄t ω̄

∗
t τt

)
where s∗ = bs/2c, so s∗ = (s− 1) /2 if s is odd, s∗ = s/2 if s is even;

T = diag (Tµ Tγ Tc Tϕ) , R = diag (Rµ Rγ Rc Rϕ) ,

Q = diag (Qµ Qγ Qc Qϕ)

with

Tµ =

(
1 1
0 1

)
, Tc = ρ

(
cosλc sinλc
− sinλc cosλc

)
Rµ = I2, Rγ = Is−1, Rc = I2

Qµ = diag
(
σ2
ξ σ

2
ζ

)
, Qγ = σ2

ωIs−1, Qc = σ2
ω̄I2, Qϕ = σ2

ϕ.

We remind that σ2
ω = 0 so Qγ = 0s−1, because of what we said at the

end of Section 1.2.2.
We now analyse differences in the cases announced above. According

to parity of s, if it is odd we have

Tγ = diag (C1 . . . Cs∗) with Cj =

(
cosλj sinλj
− sinλj cosλj

)
, λj =

2πj

s

while if s is even the matrix becomes

Tγ = diag (C1 . . . Cs∗−1 − 1) ;

moreover, when s = s/2 it results λs/2 = π, thus

γs/2,t+1 = γs/2,t cosπ = −γs/2,t
γ∗s/2,t+1 = γ∗j,t cos π = −γ∗s/2,t

which are redundant. As a consequence, γ∗s∗,t and ω∗s∗,t are left out of αt
and ηt respectively, and so the corresponding 0 in vector Z.
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Changes about the AR component depend on the value of p as it
determines sizes of matrices:

Tϕ ∈ Rp×p

Rϕ = (1 0 . . . 0)′ ∈ Rp×1

where Tϕ has already been presented in the previous Section.

In all cases, we remark that σ2
ε , matrix Q, ρ, λc and θj, j = 1, . . . , p

are parameters to be estimated.

1.3 Kalman filter

As the model is completely specified, it is simple setting arbitrary
values for parameters and drawing a sample of observations using model
(1.1) recursions. According to these observations, the model is obviously
correctly specified. The problem is that usually we only have observations
data and our aim is to fit the model to data. The Kalman filter recursions
allow us to estimate mean and variance of αt given y1, . . . , yt−1.

1.3.1 Basic result in multivariate regression theory

Deriving Kalman filter recursions requires we present an important
lemma of multivariate regression theory. Because of the variety of ap-
plication contexts, we present here its general proof before exploring all
its consequences. Moreover this form of presentation exposes the intrin-
sically simple nature of the mathematical theory underlying the state
space approach to time series analysis.

Lemma 1. Let x and y be jointly normally distributed random vectors
with

E

(
x
y

)
=

(
µx
µy

)
, V ar

(
x
y

)
=

(
Σxx Σxy

Σ′xy Σyy

)
where Σyy is assumed to be a nonsingular matrix.

Then the conditional distribution of x given y is normal with mean
vector

E (x|y) = µx + ΣxyΣ
−1
yy (y − µy) (1.4)

and variance matrix

V ar (x|y) = Σxx − ΣxyΣ
−1
yy Σ′xy. (1.5)

Proof. Let z = x−ΣxyΣ
−1
yy (y − µy). Since the transformation from (x, y)

to (y, z) is linear and (x, y) is normally distributed by hypothesis, the
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joint distribution of y and z is normal. We have

E (z) = µx,

V ar (z) = E
[
(z − µx) (z − µx)′

]
= Σxx − ΣxyΣ

−1
yy Σ′xy,

Cov (y, z) = E
[
y (z − µx)′

]
= E

[
y (x− µx)′ − y (y − µy)′Σ−1

yy Σ′xy
]

= 0.

Using the result that if two vectors are normal and uncorrelated they are
independent, Cov (y, z) = 0 implies that z is distributed independently
of y. Since the distribution of z does not depend on y, its conditional
distribution given y is the same as its unconditional distribution, that is,
it is normal with mean vector µx and variance matrix Σxx −ΣxyΣ−1

yy Σ′xy
which is the same as the thesis. By definition of z, it follows that the
conditional distribution of x given y is normal with mean vector and
variance matrix as in the thesis.

1.3.2 Derivation of the Kalman filter

In this section, we derive Kalman filter for model (1.1) for the case
where the initial state α1 is N (a1, P1) and a1, P1 are known. First of
all, let denote y1, . . . , yt by Yt. Our object is to obtain the conditional
distributions of αt and αt+1 given Yt for t = 1, . . . , T . Let

at|t = E (αt|Yt) , Pt|t = V ar (αt|Yt) ,
at+1 = E (αt+1|Yt) , Pt+1 = (αt+1|Yt) .

Since all distributions are normal, it follows from the Lemma that condi-
tional distributions of subsets of variables given other subsets of variables
are also normal; the distributions of αt given Yt and αt+1 given Yt are
therefore given by N

(
at|t, Pt|t

)
and N (at+1, Pt+1). We proceed induc-

tively calculating at|t, at+1, Pt|t and Pt+1 from at and Pt recursively for
t = 1, . . . , T .

Let define the one-step ahead prediction error of yt given Yt−1

vt = yt − E (yt|Yt−1) = yt − E (Zαt + εt|Yt−1) = yt − Zat.

When Yt−1 and vt are fixed, then Yt is fixed, and viceversa; thusE (αt|Yt) =
E (αt|Yt−1, vt). Moreover

E (vt|Yt−1) = E (yt − Zαt|Yt−1) = E (Zαt + εt − Zat|Yt−1) = 0

implies E (vt) = 0 and Cov (yj, vt) = E
[
yjE (vt|Yt−1)′

]
= 0 for j =

1, . . . , t− 1. Also,

at|t = E (αt|Yt) = E (αt|Yt−1, vt)
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and
at+1 = E (αt+1|Yt) = E (αt+1|Yt−1, vt) .

Now we apply the Lemma to the conditional joint distribution of αt
and vt given Yt−1, taking x and y in the Lemma as αt and vt here. We
obtain

at|t = E (αt|Yt−1) + Cov (αt, vt) [V ar (vt)]
−1 vt

where Cov and V ar are covariance and variance conditional to Yt−1.
Here, E (αt|Yt−1) = at by definition of at and

Cov (αt, vt) = E
[
αt (Zαt + εt − Zat)′ |Yt−1

]
= E

[
αt (αt − at)′ Z ′|Yt−1

]
= PtZ

′

by definition of Pt. Let define the one-step ahead prediction error vari-
ance

Ft = V ar (vt|Yt−1) = V ar (Zαt + εt − Zat|Yt−1) = ZPtZ
′ + σ2

ε

Then
at|t = at + PtZ

′F−1
t vt. (1.6)

By (1.5) of the Lemma, we have

Pt|t = V ar (αt|Yt) = V ar (αt|Yt−1, vt)

= V ar (αt|Yt−1)− Cov (αt, vt) [V ar (vt)]
−1Cov (αt, vt)

′

= Pt − PtZ ′F−1
t ZPt. (1.7)

We assume that Ft is non-singular; this assumption is usually valid in
well-formulated models. Relations (1.6) and (1.7) are sometimes referred
to as the updating step of the Kalman filter.

We now derive recursions for at+1 and Pt+1. Since αt+1 = Tαt +Rηt,
we have

at+1 = E (Tαt +Rηt|Yt)
= TE (αt|Yt) , (1.8)

Pt+1 = V ar (Tαt +Rηt|Yt)
= T V ar (αt|Yt)T ′ +RQR′ (1.9)

for t = 1, . . . , T . Substituting (1.6) into (1.8) gives

at+1 = Tat|t

= Tat +Ktvt (1.10)

for t = 1, . . . , T , where
Kt = TPtZ

′F−1
t (1.11)
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is reffered to as the Kalman gain. Finally, substituting from (1.7) and
(1.11) in (1.9) gives

Pt+1 = TPt (T −KtZ)′ +RQR′ (1.12)

for t = 1, . . . , T . Relations (1.10) and (1.12) are sometimes called the
prediction step of the Kalman filter.

For convenience we now collect together the filtering equations:

vt = yt − Zat, Ft = ZPtZ
′ + σ2

ε ,

at|t = at + PtZ
′F−1
t vt, Pt|t = Pt − PtZ ′F−1

t ZPt,

at+1 = Tat +Ktvt, Pt+1 = TPt (T −KtZ)′ +RQR′,

(1.13)

for t = 1, . . . , T , where Kt = TPtZ
′F−1
t , and a1, P1 are mean vector and

variance matrix of the initial state vector α1 and are supposed known.
Indeed, once at|t and Pt|t are computed, it suffices to adopt the relations

at+1 = Tat|t, Pt+1 = TPt|tT
′ +RQR′

for predicting the state vector αt+1.

1.4 Maximum log-likelihood criterium

The maximum log-likelihood criterium joined with Kalman recursions
allow us to estimate model parameters having observations y1, . . . , yT .

Since
p (y1, . . . , yt) = p (Yt−1) p (yt|Yt−1)

for t = 2, . . . , T , the joint density of y1, . . . , yT can be expressed as

p (y1, . . . , yT ) =
T∏
t=1

p (yt|Yt−1)

where p (y1|Y0) = p (y1). By definition, the likelihood is L = p (y1, . . . , yt),
so the log-likelihood may be written as

logL =
T∑
t=1

log p (yt|Yt−1)

with the previous notation when t = 1. In model (1.1), we have E (yt|Yt−1) =
Zat, vt = yt−Zat and Ft = V ar (yt|Yt−1), thus p (yt|Yt−1) = N (Zat, Ft).
As a consequence,

logL = −T
2

log (2π)− 1

2

∑(
logFt +

v2
t

Ft

)
.

We remark that vt and Ft are computed with Kalman filter recursions,
thus they depend inherently on the model parameters σ2

ε , Q, ρ, λc and
θj for j = 1, . . . , p. Maximising logL an estimation of these parameters
is obtained.
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1.5 Model miss-specification tests

Let standardising the one-step ahead prediction error defining

et =
vt√
Ft
, t = 1, . . . T,

which are obviously ∼ N (0, 1) and serially independent. We can check
the following properties.

� Normality
The first four moments of the standardised prediction errors are
given by

m1 =
1

T

T∑
t=1

et,

mq =
1

T

T∑
t=1

(et −m1)q , q = 2, 3, 4.

Skewness and kurtosis are defined respectively as

S =
m3√
m3

2

, K =
m4

m2
2

,

and when the model assumptions are valid it can be shown that

S ∼ N
(

0,
6

T

)
, K ∼ N

(
3,

24

T

)
.

An analysis of quantiles can be used to verify the null hypotesis of
distribution.

� Heteroscedasticity
A simple test for heteroscedasticity is obtained by comparing the
sum of squares of two exclusive subsets of the sample. Let define

H (h) =

∑T
t=T−h+1 e

2
t∑h

t=1 e
2
t

;

thus, for an arbitrary h, H (h) is Fh,h-distributed under null hy-
pothesis of homoscedasticity. Again, analysis of quantiles allows
accepting or rejecting the assumption.

� Serial correlation
Let cj be the j-th correlogram value

cj =
1

Tm2

T∑
t=j+1

(et −m1) (et−j −m1)
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for 1 ≤ j ≤ T . Under the null hypothesis of uncorrelation, the
correlogram of the prediction errors should reveal serial correlation
insignificant, that is |cj| ≤ 1/

√
T ∀j. Moreover, Ljung and Box

[11] have proven that the Box-Ljung statistic

Q (k) = T (T + 2)
k∑
j=1

c2
j

T − j

is χ2
k-distributed (that is a χ2-distribution with k degrees of free-

dom).

Finally, we may also check the t-statistics, which are obtained dividing
the estimated parameters by approximated estimation errors; such ap-
proximation is achieved taking the diagonal of the inverse matrix of the
Hessian matrix computed with the maximisation of the log-likelihood
function. Generally, a t-statistic is highly significant if its value is higher
than 3.

1.6 State smoothing

We now derive the conditional distribution of αt given the entire se-
ries y1, . . . , yT for t = 1, . . . , T ; we calculate the conditional mean vector
α̂t = E (αt|YT ) and the conditional variance matrix Vt = V ar (αt|YT ),
respectively referred to as smoothed state vector and smoothed state vari-
ance matrix; the whole operation is called state smoothing. We construct
recursion for α̂t and Vt on the assumption that α1 ∼ N (a1, P1) where
a1 and P1 are known, we shall also use the Lemma presented in Section
1.3.1.

1.6.1 Preliminary definitions

Before deriving state smoothing recursions, we need introduce some
new elements. Let define the state estimation error as

xt = αt − at with V ar (xt) = Pt.

It follows immediately from the Kalman filter relations and the definition
of xt that

vt = yt − Zat
= Zαt + εt − Zat
= Zxt + εt (1.14)
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and

xt+1 = αt+1 − at+1

= Tαt +Rηt − Tat −Ktvt

= Txt +Rηt −KtZxt − ktεt
= Ltxt +Rηt −Ktεt (1.15)

where Kt = TPtZ
′F−1
t and Lt = T −KtZ.

By definition of the one-step ahead prediction error vt = yt−E (yt|Yt−1),
vt is the part of yt that cannot be predicted from the past, thus the vt’s
are sometimes referred to as innovations. Finally, let denote the vector
(v′t, . . . , v

′
T )′ by vt:T and note also that YT is fixed when Yt−1 and vt:T are

fixed.

1.6.2 Smoothed state vector

To calculate α̂t we apply the Lemma to the conditional joint distri-
butions of αt and vt:T given Yt−1, taking x and y of the Lemma as αt and
vt:T here. Using the fact that vt, . . . , vT are independent of Yt−1 and of
each other, we therefore have from (1.4)

α̂t = E (αt|Yn) = E (αt|Yt−1, vt:T )

= at +
T∑
j=t

Cov (αt, vj)F
−1
j vj (1.16)

since E (αt|Yt−1) = at for t = 1, . . . , T , where Cov refers to covariance in
the conditional distribution given Yt−1 and Fj = V ar (vj|Yt−1). It follows
from (1.14) that

Cov (αt, vj) = E
(
αtv

′
j|Yt−1

)
= E

[
αt (Zxj + εj)

′ |Yt−1

]
= E

(
αtx

′
j|Yt−1

)
Z ′ (1.17)

for j = t, . . . , T . Moreover,

E (αtx
′
t|Yt−1) = E [αt (αt − at) |Yt−1] = Pt

E
(
αtx

′
t+1|Yt−1

)
= E

[
αt (Ltxt +Rηt −Ktεt)

′ |Yt−1

]
= PtL

′
t

E
(
αtx

′
t+2|Yt−1

)
= PtL

′
tL
′
t+1

...

E (αtx
′
T |Yt−1) = PtL

′
t · · ·L′T−1

(1.18)

using (1.15) repetedly for t+1, t+2, . . .. Note that we interpret L′t · · ·L′T−1

as Im when t = T and as L′T−1 when t = T − 1.
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Substituting into (1.16) gives

α̂T = aT + PTZ
′F−1
T vT

α̂T−1 = aT−1 + PT−1Z
′F−1
T−1vT−1 + PT−1L

′
T−1Z

′F−1
T vT

α̂t = at + PtZ
′F−1
t vt + PtL

′
tZ
′F−1
t+1vt+1 + · · ·+ PtL

′
t · · ·L′T−1Z

′F−1
T vT

for t = T − 2, T − 3, . . . , 1. We can therefore express the smoothed state
vector as

α̂t = at + Ptrt−1

where

rT−1 = Z ′F−1
T vT

rT−2 = Z ′F−1
T−1vT−1 + L′T−1Z

′F−1
T vT

rt−1 = Z ′F−1
t vt + L′tZ

′F−1
t+1vt+1 + · · ·+ L′t · · ·L′T−1Z

′F−1
T vT (1.19)

for t = T−2, T−3, . . . , 1. The vector rt−1 is a weighted sum of innovations
vj occurring after time t− 1, that is for j = t, . . . , T ; the value at time t
is

rt = Z ′F−1
t+1vt+1 + L′t+1Z

′F−1
t+2vt+2 + · · ·+ L′t+1 · · ·L′T−1Z

′F−1
T vT (1.20)

and rT = 0 since no innovations are available after time T . Substituting
from (1.20) into (1.19) we obtain the backwards recursion

rt−1 = Z ′F−1
t vt + L′trt, t = T, . . . , 1

with rT = 0.
Collecting these results together gives the recursions for state smooth-

ing:
α̂t = at + Ptrt−1, rt−1 = Z ′F−1

t vt + L′trt (1.21)

for t = T, . . . , 1 with rT = 0.

1.6.3 Smoothed state variance matrix

We now derive a recursion for calculating Vt. Applying the Lemma
as at the beginning of previous Section, we obtain from (1.5)

Vt = V ar (αt|YT ) = V ar (αt|Yt−1, vt:T )

= Pt −
T∑
j=t

Cov (αt, vj)F
−1
j Cov (αt, vj)

′ (1.22)

where Cov (αt, vj) and Fj are as in (1.16). Using (1.17) and (1.18) we
obtain immediately

Vt = Pt − PtZ ′F−1
t ZPt − PtL′tZ ′F−1

t+1ZLtPt − · · ·
− PtL′t · · ·L′T−1Z

′F−1
T ZLT−1 · · ·LtPt

= Pt − PtNt−1Pt
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where
Nt−1 = Z ′F−1

t Z − L′tZ ′F−1
t+1ZLt + · · ·

+ L′t · · ·L′T−1Z
′F−1
T ZLT−1 · · ·Lt.

(1.23)

We note that here L′t · · ·L′T−1 is interpreted as in the previous Section.
Moreover, we have at time t

Nt = Z ′F−1
t+1Z − L′t+1Z

′F−1
t+2ZLt+1 + · · ·

+ L′t+1 · · ·L′T−1Z
′F−1
T ZLT−1 · · ·Lt+1.

(1.24)

Substituting (1.24) into (1.23), we obtain the backwards recursion

Nt−1 = Z ′F−1
t Z + L′tNtLt, t = T, . . . , 1.

Noting from (1.24) that NT−1 = Z ′F−1
T Z, we deduce that this recursion

is initialised with NT = 0.
Collecting these results together, we find that Vt can be computed

with the recursions

Nt−1 = Z ′F−1
t Z + L′tNtLt, Vt = Pt − PtNt−1Pt

for t = T, . . . , 1 with NT = 0. Moreover, since vt+1, . . . , vT are indepen-
dent, it follows from (1.20) and (1.24) that Nt = V ar (rt).

1.7 Simulation smoothing

It is simple to draw samples generated by the linear Gaussian state
space model (1.1): we first draw random samples ε+ and η+ of the dis-
turbance vectors and then we generate observations y+ using the model
recursions. We now show how to draw samples of disturbance vectors
and state vector conditional on the observed time series y1, . . . , yT ; this
operation is called simulation smoothing. The difference between simu-
lating a sample unconditionally and simulating a sample conditionally to
the linear Gaussian state space model is that the conditional sample is
closer to the smoothed state α̂t computed from the observations vector,
while the unconditional sample has nothing in common with it.

Let show how to draw a conditional sample α̃. We draw T ran-
dom disturbance vectors w+

t = (εt, η
′
t)
′, independent of each other, from

a distribution N (0, ϕt) with ϕt = diag (σ2
ε , Q). Then we generate an

unconditional sample α+ of the state vector using model (1.1) as a re-
cursion initialised by α+

1 ∼ N (a1, P1) with α and w replaced by α+

and w+ respectively. Next we compute α̂ = E (α|y1, . . . , yT ) and α̂+ =
E
(
α|y+

1 , . . . , y
+
T

)
by the Kalman filter and smoothing recursions. The

required draw of α̃ is given by the expression

α̃ = α+ − α̂+ + α̂.
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1.8 Initialisation

In previous Sections we have considered the operations of filtering and
smoothing for the model (1.1) under the assumption that α1 ∼ N (a1, P1)
where a1 and P1 are known; in most applications, however, the situation
is different. Process of starting up the series when initial state is unknown
is called initialisation.

We consider the following model for α1:

α1 = a+ Aδ +R0 η0, η0 ∼ N (0, Q0)

where a is a m × 1 zero vector (in general, it is known and usually is
treated as a zero vector), δ is a q × 1 unknown vector, and the m × q
matrix A and the m× (m− q) matrix R0 are selection matrices so that
A′R0 = 0; the idea is to separate out α1 into a constant part a, a non-
stationary part Aδ and a stationary part R0η0. We assume that δ is a
vector of random normal variables with infinite variances:

δ ∼ N (0, κIq)

where we let κ → ∞; a vector with such a distribution is said to be
diffuse and then the entire procedure is called diffuse initialisation. We
begin by considering the initial conditions

a1 = E (α1) = a

P1 = V ar (α1) = κP∞ + P∗

where P∞ = AA′ and P∗ = R0Q0R
′
0; by definition of A, P∞ is a m ×

m diagonal matrix. Consequently, modifications to Kalman filter are
required.

A simple approximate technique is to replace κ by an arbitrary large
number. However, this device is suitable for exploratory work but not
recommended for general use since it can lead to large rounding errors.
We therefore develop an exact treatment: we expand matrix products as
power series in κ−1, taking only the first two or three terms as required,
and then we let κ → ∞ to obtain the dominant term; the word exact
emphasize the difference with the other approximating method.

1.8.1 Exact initial Kalman filter

Analogously to the decomposition of the initial matrix P1, the mean
square error matrix Pt may be decomposed as

Pt = κP∞,t + P∗,t +O
(
κ−1
)
, t = 2, . . . , T

where P∞,t and P∗,t do not depend on κ. Since Ft = ZPtZ
′ + σ2

ε and
Mt = PtZ

′, this decomposition leads to the similar ones

Ft = κF∞,t + F∗,t +O
(
κ−1
)
, Mt = κM∞,t +M∗,t +O

(
κ−1
)
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where

F∞,t = ZP∞,tZ
′, M∞,t = P∞,tZ

′,

F∗,t = ZP∗,tZ
′ + σ2

ε , M∗,t = P∗,tZ
′,

for t = 1, . . . , T . It is important to note that a zero matrix M∞,t (whether
P∞,t is a zero matrix or not) implies that F∞,t = 0. As in Section 1.3.2
about Kalman filter, we assume that Ft is non-singular. The derivation
of the exact initial Kalman filter is based on the expansion for F−1

t =
[κF∞,t + F∗,t +O (κ−1)]

−1
as a power series in κ−1, that is

F−1
t = F

(0)
t + κ−1F

(1)
t + κ−2F

(2)
t +O

(
κ−3
)

for large κ. Since Ip = FtF
−1
t , we have

Ip =
(
κF∞,t + F∗,t + κ−1Fa,t + κ−2Fb,t + · · ·

)
×
(
F

(0)
t + κ−1F

(1)
t + κ−2F

(2)
t + · · ·

)
and comparing the two sides the following equations are obtained for
F

(0)
t , F

(1)
t and F

(2)
t , while further terms are not required:

F∞,tF
(0)
t = 0

F∗,tF
(0)
t + F∞,tF

(1)
t = Ip

Fa,tF
(0)
t + F∗,tF

(1)
t + F∞,tF

(2)
t = 0

(1.25)

We shall consider only the cases where F∞,t is non-singular or F∞,t = 0,
because this limitation gives a complete solution for the case of univariate
series; moreover, F∞,t non-singular is the most common case, thus we deal
only with this one here.

We have from (1.25)

F
(0)
t = 0, F

(1)
t = F−1

∞,t, F
(2)
t = −F−1

∞,tF∗,tF
−1
∞,t.

Since the matrices Kt = TMtF
−1
t and Lt = T − KtZ depend on the

inverse matrix F−1
t , they also can be expressed as power series in κ−1:

Kt = T
[
κM∞,t +M∗,t +O

(
κ−1
)] [

κ−1F
(1)
t + κ−2F

(2)
t + · · ·

]
so

Kt = K
(0)
t + κ−1K

(1)
t +O

(
κ−2
)
, Lt = L

(0)
t + κ−1L

(1)
t +O

(
κ−2
)

where

K
(0)
t = TM∞,tF

(1)
t , L

(0)
t = T −K(0)

t Z,

K
(1)
t = TM∗,tF

(1)
t + TM∞,tF

(2)
t , L

(1)
t = −K(1)

t Z.
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Referring to the recursion (1.10) for at+1 starting with t = 1, we have
that

at = a
(0)
t + κ−1a

(1)
t +O

(
κ−2
)

where a
(0)
1 = a and a

(1)
1 = 0. As a consequence vt has the form

vt = v
(0)
t + κ−1v

(1)
t +O

(
κ−2
)

where v
(0)
t = yt − Za(0)

t and v
(1)
t = −Za(1)

t . Therefore,

at+1 = Tat +Ktvt

= T
[
a

(0)
t + κ−1a

(1)
t +O

(
κ−2
)]

+
[
K

(0)
t + κ−1K

(1)
t +O

(
κ−2
)] [

v
(0)
t + κ−1v

(1)
t +O

(
κ−2
)]

which becomes as κ→∞

a
(0)
t+1 = Ta

(0)
t +K

(0)
t v

(0)
t , t = 1, . . . , T. (1.26)

The updating equation (1.12) for Pt+1 becomes

Pt+1 = TPtL
′
t +RQR′

= T
[
κP∞,t + P∗,t +O

(
κ−1
)] [

L
(0)
t + κ−1L

(1)
t +O

(
κ−2
)]′

+RQR′.

Consequently, letting κ→∞ gives the following updates:

P∞,t+1 = TP∞,tL
(0)
t
′

P∗,t+1 = TP∞,tL
(1)
t
′ + TP∗,tL

(0)
t
′ +RQR′

(1.27)

for t = 1, . . . , T . Actually, the matrix Pt+1 also depends on terms in κ−1,
κ−2, ecc. but these terms are not taken into account in the updating
equations. Recursions (1.26) and (1.27) constitute the exact Kalman
filter.

1.8.2 Transition to the usual Kalman filter

It can be shown that for non-degenerate models there exists a value
d of t such that

P∞,t 6= 0 for t ≤ d

P∞,t = 0 for t > d

Thus, when t > d we have Pt = P∗,t + O (κ−1) and letting κ → ∞ we

can use the usual Kalman filter (1.13) starting with ad+1 = a
(0)
d+1 and

Pd+1 = P∗,d+1.
If such a value of t does not exist the model is called degenerate, since

a series of observations that does not even contain enough information
to estimate the initial conditions is obviously useless.
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1.8.3 Exact initial state smoothing

To obtain the recursions for the smoothing state vector equation α̂t =
at +Ptrt−1 given in (1.21) for t = d, . . . , 1, we return to the recursion for
rt−1, that is

rt−1 = Z ′F−1
t vt + L′trt, t = T, . . . , 1

with rT = 0. Since rt−1 depends on F−1
t and Lt, which can both be

expressed as power series in κ−1, it may be written

rt−1 = r
(0)
t−1 + κ−1r

(1)
t−1 +O

(
κ−2
)
, t = d, . . . , 1.

Comparing the two expressions for rt−1 it results, for F∞,t non-singular,
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L
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(1)
t + · · ·

)′ (
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(1)
t + · · ·

)
leading to the recursions
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(0)
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(0)
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(0)
0
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(1)
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t v
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(0)
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(1)
t + L

(1)
t
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(0)
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for t = d, . . . , 1 with r
(0)
d = rd and r

(1)
t = 0.

Thus, the smoothed state vector is

α̂t = at + Ptrt−1

= at +
[
κP∞,t + P∗,t +O

(
κ−1
)] [

r
(0)
t−1 + κ−1r

(1)
t−1 +O

(
κ−2
)]

= at + κP∞,t

(
r

(0)
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(1)
t−1

)
+ P∗,t

(
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(0)
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)
+O

(
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)

= at + κP∞,tr
(0)
t−1 + P∗,tr

(0)
t−1 + P∞,tr

(1)
t−1 +O

(
κ−1
)

where at = a
(0)
t +κ−1a

(1)
t + · · · . It is clear that it must be P∞,tr

(0)
t−1 = 0 for

all t because this expression makes sense, but this is true by definition of
d as κ→∞. So, letting κ→∞, we finally obtain

α̂t = a
(0)
t + P∗,tr

(0)
t−1 + P∞,tr

(1)
t−1, t = d, . . . , 1

with r
(0)
d = rd and r

(1)
t = 0.





Chapter 2

Numeric explorations

We built many different models in order to gain confidence with
Kalman filter and log-likelihood maximisation aiming to reconstruct un-
observed components of data. We started up drawing samples of data
with Monte-Carlo simulation and adding components step by step; then
we downloaded public data and fit models to them. In this second stage,
we referred to a paper by Mills [12] and repeated his explorations.

2.1 Monte-Carlo analysis

We began with the local level model, a one-dimensional model with
trend component denoted by αt and idiosyncratic term εt:

yt = αt + εt, εt ∼ N
(
0, σ2

ε

)
αt = αt−1 + ηt, ηt ∼ N

(
0, σ2

η

)
.

Although his very simple form, this model allows analysis of real problem
thus it is not just an artificial special case (as highlighted by Durbin and
Koopman [6]). We set initial conditions and parameters of the model as
in the table below, then we generated a time series using model recursions
in a Monte-Carlo simulation.

Parameters Set values Estimated values t-statistics
T 100 / /
a1 0 / /
P1 10 / /
σ2
ε 8 6.9 4.71
σ2
η 3 2.5 2.36

Thanks to model specification, all recursions were really simple: Kalman
filter, state smoothing and simulation smoothing ones. Estimate emerged
to be really good, as we may deduce from t-statistics in the table above
and graphs in Figure 2.1. Thanks to this simple model we actually took
confidence with the ’estimate philosophy’.

31
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(a) Monte-Carlo simulation of observations
and related states

(b) Estimation and smoothing results

Figure 2.1: Local level model simulation and estimate.

Afterwards, we developed an univariate model with trend, slope, sea-
sonal and cycle components and idiosyncratic term:

yt = µt +

bs/2c∑
j=1

γj,t + ct + εt, εt ∼ N
(
0, σ2

ε

)
(2.1)

where

µt+1 = µt + νt + ξt, ξt ∼ N
(
0, σ2

ξ

)
νt+1 = νt + ζt, ζt ∼ N

(
0, σ2

ζ

)
γj,t+1 = γj,t cosλj + γ∗j,t sinλj + ωj,t, ωj,t ∼ N

(
0, σ2

ω

)
γ∗j,t+1 = −γj,t sinλj + γ∗j,t cosλj + ω∗j,t, ω∗j,t ∼ N

(
0, σ2

ω

)
ct+1 = ρ (ct cosλc + c∗t sinλc) + ω̄t, ω̄t ∼ N

(
0, σ2

ω̄

)
c∗t+1 = ρ (−ct sinλc + c∗t cosλc) + ω̄∗t , ω̄∗t ∼ N

(
0, σ2

ω̄

)
.

(2.2)

An overview of the work done on this model will be now provided; then
details will be specified and graphs showed, since further models followed
precisely from this. For the univariate model, as in the previous one, we
set initial conditions and parameters besides of model dimensions, then
we drew a sample of data and we estimated parameters using Kalman fil-
ter recursions and log-likelihood maximisation. We compared simulated
components and estimated ones; we tested the results with quantiles anal-
ysis of skewness, kurtosis, homoscedasticity and serial correlation, as well
as t-statistics. We computed state smoothing and simulation smoothing.

We now give some details. In the following tables, we reported all
model dimensions, settings and parameters with estimates.

Dimensions Set values Initial conds Set values

T 1000 a1 (0 0 . . . 0)′ [m× 1 vect]
s 12 P1 Im
m s+ 3 = 15



2.1. MONTE-CARLO ANALYSIS 33

Parameters Set values Estimated values t-statistics
σ2
ε 0.16 0.1496 8.38
σ2
ξ 0.16 0.1743 3.11
σ2
ζ 0.25 0.2108 10.7
σ2
ω 0 3.3e-6 16.7
σ2
ω̄ 0.02 0.0274 11.8
λc 0.5 0.5014 256

Seasonality was fixed at s = 12, with the purpose of repeating Li et al.’s
[10] and Petrova et al.’s [13] works; that means we considered monthly
data and consequentely state vector lenght was 15. Observation error
variance of seasonal component was fixed at 0 when generating observa-
tions but it was not when parameters shall be estimated, in other words
it was a parameter to be estimated indeed. Cycle damping factor ρ was
set at value 1 and did not required estimation. It should be clear that
autoregressive component was not included yet. With the aim of max-
imising log-likelihood, MatLab function fminunc (f-min-unconditional)
was employed: instead of maximising logL, we minimised − logL, and
initial point was set arbitrarily as a vector of ones. To ensure positiv-
ity of estimated parameters, we introduced exponential link functions:
σ2
• = ex• , where x• were the parameters estimated with fminunc; also,
λc = exλ and xλ was actually estimated.

The drawn sample is showed in Figure 2.2 with a focus in order to
appreciate latent components decomposition.

(a) Whole data sample (b) Focus

Figure 2.2: Univariate model: Monte-Carlo simulation of observations
and related latent components.

Concerning results, we refer to Figure 2.3. We could observe that the
estimated seasonal component does not seem to be deterministic; we may
blame estimation of its observation error variance for this, although we
believed more likely it might be a matter of learning: we hypothesized the
model needs some iterations of Kalman filter recursions to gain the right
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deterministic seasonal pattern. Other component estimation is really
good.

(a) Whole data sample

(b) Focus

Figure 2.3: Univariate model: comparison between simulated and esti-
mated components.

According to Figure 2.4, we remark that smoothed components are
indeed smoother than the simply-estimated ones, as asserted in Chapter
1: those ones result a middle between simulated and estimated compo-
nents, in particular seasonal smoothed component seems to be determin-
istic, even if with little lower magnitude than the simulated component.

Simulation smoothing also works as expected: unconditional sample
is far from simulated observations while the conditional drawn one is
consistent with them, as shown in Figure 2.5.

Models presented so far referred to Sections 1.1 to 1.7 of Chapter 1
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(a) Whole data sample

(b) Focus

Figure 2.4: Univariate model: state smoothing, comparison between sim-
ulated, estimated and smoothed components.

(without autoregressive component). We concluded Monte-Carlo analy-
sis referring to Section 1.8: we introduced the exact initial recursions to
both the Kalman filter and the state smoothing. Obviously, in this case
initial mean vector a1 and initial variance matrix P1 were no more known
parameters of the auxiliary functions we implemented, as they were in
previous models. It is remarkable that d, number of needed iterations to
initialise the Kalman filter, is approximately equal to s, the seasonality;
intuitively, it makes sense: the model requires about a whole seasonality
to learn the seasonal pattern. In our Monte-Carlo simulation, d results
being 15. We also remark that estimated components vectors and ma-
trices lack of elements at first d-th indices because of exact initialisation
technique, as it can be seen in Figures 2.6 and 2.7; moreover, graphs show
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(a) Whole data sample

(b) Focus

Figure 2.5: Univariate model: simulation smoothing, comparison be-
tween unconditional and conditional drawn samples.

that some iterations over the “exact ones” are still needed to obtain a
good components estimation.

2.2 Models on real data: Mills’ model

In order to test our model specification, we tried to replicate Mills’
work [12]. In that paper the author has monthly global temperature data
from 1850 to 2007 and sets a model with trend, deterministic seasonal,
cycle and autoregressive components and an idiosyncratic term, exactly
like the model with latent components explained in Section 1.2 except
for the slope component which Mills does not include. New elements
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(a) Whole data sample

(b) Focus

Figure 2.6: Univariate model with exact initial technique: comparison
between simulated and estimated components.

comparing with our previous models presented so far are AR component
and cycle damping factor ρ as a parameter to be estimated; the AR
component is second-ordered with parameters θ1 and θ2 implemented as
zeros of the Tϕ matrix characteristic polynomial. One of the reasons why
we referred to that work is the great similarity between our and Mills’
model specifications, expecially regarding seasonal and cycle components.

Commonalities between models presented in this and next Sections
are the great number of explorations required to fit models to data, which
include adding and removing components, and the tough dependency of
the estimate goodness from the initial point set for the fminunc MatLab
function. Moreover, in order to increase computing efficiency we imple-
mented, for each model, two different versions of the auxiliary function
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(a) Whole data sample

(b) Focus

Figure 2.7: Univariate model with exact initial technique: state smooth-
ing, comparison between simulated, estimated and smoothed compo-
nents.

employed in log-likelihood maximisation: one of them computes vectors
and matrices to calculate − logL without saving values, and this is the
target function of fminunc, while the other saves computed values to
allow model miss-specification tests and components plotting; the first is
evaluated hundreds of times, the latter just one. For these models on real
data, we limited numeric explorations to parameters estimate, without
proceeding to state smoothing and simulation smoothing.

To replicate Mills’ work, we firstly downloaded the same data the
author used, which are available from the Hadley Centre for Climate
Prediction and Research [2] (see Figure 2.8 for a plot). Then we started
up building a model with trend, deterministic seasonal and cycle com-
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Figure 2.8: Mills’ data: monthly average global temperatures in years
1850-2007 scaled of average computed from years 1960-1990 data.

ponents and idiosyncratic term, like the univariate model of previous
Section (see equations (2.1) and (2.2)) but excluding slope component.
Further changes to that model were different link function for λc, so that
cycle period was forced to be major of s = 12, and introduction of ρ as
a parameter required to be in (0, 1) interval; explicitly, we set

λc =
2π

s+ exλ
and ρ =

exρ

1 + exρ

where xλ and xρ were the actual parameters of the model. In log-
likelihood maximisation we used Mills’ estimated parameters as initial
point. The biggest challenge regarding implementation has been initial-
isation of exact initial procedure: matrix P∞,1 took trend and seasonal
components, while matrix P∗,1 was related to cycle component and re-
quired some extra calculations. As explained in Section 1.8, by definition
P∗,1 = R0Q0R

′
0 where R0 is a selection matrix for non-stationary compo-

nents of the model and Q0 is the variance matrix of state vector. Since
αt+1 = Tαt + Rηt, in order to compute Q0 we had to solve the equation
Q0 = TQ0T

′ + RQR′ where T , Q and R are model matrices specified
in Section 1.2.5. As illustrated in Durbin and Koopman [6], it can be
shown that a solution to above equation can be obtained solving the lin-
ear equation (Im2 − T ⊗ T ) vec (Q0) = vec (RR′) for Q0, where vec (M)
is the stacked columns of matrix M and T ⊗ T is the Kronecker product
of matrices T , that is

T ⊗ T =


t11T . . . t1mT
t21T . . . t2mT

...
. . .

...
tm1T . . . tmmT


with tij denoting the (i, j) element of matrix T. Obviously, this calcula-
tion bothers only part of matrices related to non-stationary components,
specifically cycle component; consequently, instead of T , Q and R we
considered Tc, Qc and Rc and computed Q0,c.
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Now results deserve some attention: referring to Figure 2.9, trend
component does not seem as smooth as in Mills’ work, as it has lots
of little fluctuations; seasonal component does not seem deterministic
at all, it has big variations in magnitude that decrease gradually and
stabilise just near the end of the sample data; cycle component seems
to be very noisy. Aiming to smooth trend estimation and improve cycle
estimation, we added a slope component but the result was worst cycle
estimation, which was under-estimated in magnitude, and insignificant
values for slope, that we soon excluded.

Then we added a second-order autoregressive component and esti-
mation was very closer to Mills’ result (as could be seen in Figure 2.10),
although trend still showed unexpected fluctuations and seasonal pattern
shown by Mills was reached just at the end of the data sample, like in the
previous model specification. On the other hand, cycle component and
AR component plus idiosyncratic term were reconstructed perfectly. It
is remarkable that second-order AR was actually a first-order component
because parameter θ2 was estimated indistinguishable from zero; thus
we explored the case with AR component of first order and results were
exactly the same. From the implementation point of view, autoregres-
sive component is stationary therefore it contribute to P∗,1 matrix with
analogous calculations to previously presented ones for cycle component.

The fact that Mills analyses autoregressive component together with
idiosyncratic term led us to reflect on the reason behind this choice;
as a result we introduced in our model an idiosyncratic autoregressive
term instead of an autoregressive component plus an independent and
identically normally distributed idiosyncratic term:

yt = µt +

bs/2c∑
j=1

γj,t + ct + ϕt (2.3)

where

µt+1 = µt + νt + ξt, ξt ∼ N
(
0, σ2

ξ

)
γj,t+1 = γj,t cosλj + γ∗j,t sinλj

γ∗j,t+1 = −γj,t sinλj + γ∗j,t cosλj

ct+1 = ρ (ct cosλc + c∗t sinλc) + ω̄t, ω̄t ∼ N
(
0, σ2

ω̄

)
c∗t+1 = ρ (−ct sinλc + c∗t cosλc) + ω̄∗t , ω̄∗t ∼ N

(
0, σ2

ω̄

)
ϕt+1 = θϕt + τt, τt ∼ N

(
0, σ2

ϕ

)
.

Obviously, we expected observation error variance of AR term, σ2
ϕ, to

assimilate observation error variance of idiosyncratic term σ2
ε , and this

happened, as proved by data in the following table.

AR comp. + idiosyncratic AR idiosyncratic
σ2
ϕ 0.005124 σ2

ϕ 0.010528
σ2
ε 0.005850
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(a) Our trend estimate (b) Mills’ trend estimate

(c) Our seasonal estimate

(d) Our seasonal estimate, focus (e) Mills’ seasonal estimate, pattern

(f) Our cycle estimate (g) Mills’ cycle estimate

Figure 2.9: Mills’ model without AR component: comparison between
our components estimate and Mills’ one.
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(a) Our trend estimate

(b) Our seasonal estimate

(c) Our cycle estimate (d) Mills’ cycle estimate

(e) Our AR plus idiosyncratic estimate (f) Mills’ AR plus idiosyncratic estimate

Figure 2.10: Mills’ model with AR component: comparison between our
components estimate and Mills’ one.
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Other components were estimated like before, particularly seasonal one
still decreases in magnitude along the process, but we became confindent
with the idea it was just a matter of model training, as introduced in the
previous Section for univariate model.

Mills’ results were then replicated quite accurately and we gained
decent confidence with monthly data and models, thus we went over.

2.3 Models on real data: Bologna station

We downloaded daily maximum temperature data for the city of
Bologna from the site of European Climate Assessment and Dataset [9].
Since the time serie was very long, we left choice to set number of years
to be taken into account when collecting data, later we have had explo-
rations varying also this parameter.

Aiming to fit the last model presented above to these new data, we
aggregated them on a monthly basis: all data referred to the same so-
lar month have been merged in their maximum. We also scaled data
with respect to their average value, in order to obtain results as close as
possible to Mills’ ones. In Figure 2.11 manipulated data are plotted.

(a) 150 years data sample

(b) Focus

Figure 2.11: Bologna station data: monthly maximum temperatures in
years 1814-1963 scaled of their average value.
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About estimate, Figure 2.12 shows results even better than Mills’
model ones expecially for seasonal component, which is nearly deter-
ministic since first iterations. Obvious difference concerns the scale of
estimated components but this is due to difference in data scale itself.

Figure 2.12: Monthly model for Bologna data: estimated components.

Afterwards, we turned our attention to weekly data models. For this
purpose data manipulation was required: we firstly excluded data relative
to February 29th, then we aggregated data on a weekly basis taking the
maximum; since the number of weeks in a year is not an integer, we
excluded also December 31st data. Resulting sample is plotted in Figure
2.13.

Remembering previous reasonings about AR component in monthly
data models, we wondered what autoregressivity order we should set
in a weekly data model, thinking fourth and eighth the most plausible;
we concluded implementing model with parametric AR order, with the
purpose of testing and choosing the best one. Moreover, since number
of AR parameters increased remarkably, we applyed a step function to
reduce it: thus the first parameter is called θ1 and refers to the first step
behind in the past, while others (3 or 7 according to the set AR order)
are all indicated as θ2. As a further condition on θ1 and θ2 was required
to ensure AR component stationarity, we decided to employ fmincon (f-
min-conditional) MatLab function in log-likelihood maximisation to be
able to constraint more easily model parameters, which consequently did
not need link functions any more. We tested different initial points (firstly
set with estimated monthly parameters values), fourth and eighth order
of autoregressivity and even different length of data sample. Comparing
log-likelihood values, the model suggested AR(8) to be the best choice
and gave good (in the sense of t-statistics) parameters estimate which was
consistent with Mills’ monthly one. Estimated components are shown in
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(a) 50 years data sample

(b) Focus

Figure 2.13: Bologna station data: weekly maximum temperatures in
years 1814-1863 scaled of their average value.

Figure 2.14, while Figure 2.15 compare observations and signal, that is
the sum of estimated components except for idiosyncratic term, in other
words the reconstructed signal of observation without noise.

Figure 2.14: Weekly model for Bologna data: estimated components.
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(a) 50 years data sample

(b) Focus

Figure 2.15: Bologna station data: comparison between observations and
signal.

We lacked of reporting miss-specification tests results for previous
models, but now we should illustrate them to conclude our analysis. Fig-
ure 2.16 displays a plot of the standardised one-step ahead prediction
error, e in Chapter 1 notation; we could observe that the cloud of points
is well-distributed and only very few of them lays out of the highlighted
region, which means e validates the hypothesis of normality. This hy-
pothesis is also confirmed by the QQ-plot in Figure 2.17: comparing
quantiles of e and of a standand normal we could deduce their great sim-
ilarity in distribution. QQ-plot indicates other features of the standard-
ised prediction error, too: firstly, the simmetry in distribution, which is
also supported by the Skewness value of 0.001998, verifing distributional
hypothesis presented in Section 1.5; secondly, a probability excess on the
tails, supported by the Kurtosis value of 3.35, which slightly rejects the
distributional hypotesis. Other specification tests are available. A p-
value of 0.1095 allows accepting the hypothesis of homoscedasticity of e
and a p-value of 0.0982 in Box-Ljung test confirms what claimed by cor-
relogram of e, shown in Figure 2.18: values are mostly within the region
of non-significance and, above all, no residual correlation is detected.

We were satisfied of obtained results, so we considered appropriate to
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Figure 2.16: Weekly model for Bologna data: standardised one-step
ahead prediction error.

Figure 2.17: Weekly model for Bologna data: QQ-plot of standardised
prediction error versus standard normal.

Figure 2.18: Weekly model for Bologna data: correlogram for standard-
ised prediction error.

proceed with the next step of our work.





Chapter 3

Dynamic factor models

Thanks to the state space model we are able to compute prediction
errors for each time series downloaded from the dataset [9], then we won-
der if there may be residual information in such errors and how to extract
it. Factor analysis is a dimension reduction technique summarising the
sources of variation among variables; typically, a few factors are sufficient
to explain correlations among high-dimensional panel of time series. As
previous models, parameters estimation would be required, therefore we
will present different methods and discuss the best one for our purpose.
The second chapter in Doz and Fuleky [3] is referred for material and
further information.

3.1 Factor models

As introduced, in a factor model correlations among N variables,
x1, . . . , xN , for which T observations are available, are assumed to be
entirely due to a few, r < N , latent unobservable variables, called factors.
The link between observable variables and factors is assumed to be linear,
thus observations could be decomposed as

xt = Λft + et

where xt denotes the observed N × 1 vector of time series at time t, Λ
is an N × r loading matrix of full column rank (otherwise fewer factors
would suffice), ft is the r×1 vector of common latent factors and et is the
N × 1 idiosyncratic vector. It is remarkable that each observation in xt
is thus decomposed into the sum of two mutually orthogonal unobserved
components: the common component and the idiosyncratic component;
while the factors drive the correlation between observations belonging to
different time series at any time lag 1 ≤ t ≤ T , the idiosyncratic term
arises from features that are specific to an individual time series. As in
most of the factor models literature, we consider stationary variables,

49
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particularly we assume stationarity of ft and et processes. Further as-
sumptions on unobserved component result in factor models of different
types.

3.1.1 Exact factor models

Exact factor models assume idiosyncratic terms not to be correlated
at any leads and lags, that is es and et are mutually orthogonal for
all vectorial components and any s and t. Consequently, all correlation
among observations is solely due to the common factors and, analytically,
the covariance matrix of et is diagonal. Moreover, all the components of
ft and et are assumed to be white noises, for all t.

So far static factor models were presented, but there exist also dy-
namic factor models which involve s time lags of the factors in the ob-
servation equation of xt:

xt = Λ0ft + Λ1ft−1 + . . .+ Λsft−s + et.

In this kind of models, ft and et are allowed to be autocorrelated dynamic
processes involving iid errors. The dimension of ft is therefore denoted
by q, which is called number of dynamic factors. The dynamic model
admits a static representation

xt = ΛFt + et

where Ft =
(
f ′t , f

′
t−1, . . . , f

′
t−s
)′

is a r = q (s+ 1) dimensional vector of
static factors and Λ = (Λ0,Λ1, . . . ,Λs) is a N × r matrix of loading
coefficients.

Exact dynamic factor models are usually employed with small cross-
sectional dimension of the dataset, N � T .

3.1.2 Approximate factor models

Exact factor models rely on a very strict assumption of no cross-
correlation among idiosyncratic components. In contrast, approximate
factor models allow the idiosyncratic components to be mildly cross-
correlated; moreover, cross-sectional dimension N is allowed to go to
infinity.

Let xNt = (x1t, . . . , xNt)
′ denote the vector containing the t-th obser-

vation of the first N variables as N →∞, and let ΣN = cov
(
xNt
)

be the
covariance matrix of xNt . Denoting by λ1 (A) ≥ λ2 (A) ≥ . . . ≥ λn (A)
the ordered eigenvalues of any symmetric matrix A with size n× n, the
assumptions underlying approximate factor models are the following:

� supN λr (ΣN) =∞

� supN λr+1 (ΣN) <∞
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� infN λN (ΣN) > 0

Respectively, these assumptions mean that the r largest eigenvalues of
ΣN are diverging while the remaining eigenvalues are bounded, and ΣN

does not approach to singularity. Under these assumptions, Chamberlain
and Rothschild [1] proved there exists a unique decomposition

ΣN = ΛNΛ′N + ΨN

where ΛN is a sequence of nested N × r matrices with rank r and
λ1 (ΛNΛ′N)→∞, ∀i = 1, . . . , r, and λ1 (ΨN) <∞.

Alternatively, xNt can be decomposed using a pair of mutually orthog-
onal random vector process ft and eNt :

xNt = ΛNft + eNt

where unique identification of the model is ensured by imposing cov (ft) =
Ir and cov

(
eNt
)

= Ψ.
Similarly to exact dynamic factor models, approximate dynamic fac-

tor models rely on an equation linking the observable series to several
lags of the common factors, whose static representation is

xNt = ΛNFt + eNt .

(For semplicity, in the following we will drop the sub- and superscript N
in ΛN , xNt and eNt , assuming that in the exact factor models the number
of series taken under account is finite, while in approximate factor models
N →∞.)

3.2 Estimation methods

According to the type of factor model and the cross-sectional dimen-
sion of the time series panel, different methods are available in order to
estimate the model. Consistency has been demonstrated for all methods.

3.2.1 Maximum likelihood estimate of small factor
models

The static exact factor model is generally estimated by maximum like-
lihood criterium under the assumption that (ft) and (et) are two orthogo-
nal iid Gaussian processes. Unique identification of the model requires to
impose some restrictions: first of all, since idiosyncratic components are
set to be mutually orthogonal processes, their variance matrix V ar (et)
should be diagonal; secondly, the variance of the factors is set to be the
identity matrix, V ar (ft) = Ir.
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For small values of N the number of parameters is small, therefore
estimates can be obtained throught any numerical optimization proce-
dure. Given the parameter estimates Λ̂ and Ψ̂, factors may be computed
with the formula

f̂t =
(

Λ̂′Ψ̂−1Λ̂
)−1

Λ̂′Ψ̂−1xt

which is the FGLS (Feasible Generalised Least Squares) estimator of ft.

A dynamic exact factor model could also be estimated by maxi-
mum likelihood criterium under the assumption of Gaussian (ft, et). In
this case, factors are assumed to follow a vector autoregressive process,
VAR(p), and the model can be easly cast in state space form using the
companion form; more precisely, let consider the model

xt = Λ0ft + Λ1ft−1 + . . .+ Λsft−s + et

ft = Φ1ft−1 + . . .+ Φpft−p + ut

where the coefficient matrices Φj, j = 1, . . . , p capture the dynamics of
the factors. A commonly used identification restriction sets the variance
of the innovations to the identity matrix, that is cov (ut) = Ir, and addi-
tional restrictions are imposed on the factor loadings. The model written
in state space form allows likelihood to be computed with the Kalman
filter recursions; then, with parameter estimates θ̂, the Kalman smoother
provides an approximation of ft using information from all observations:

f̂t|T = E
(
ft|x1, . . . , xT , θ̂

)
.

3.2.2 Principal component analysis of large approx-
imate factor models

Chamberlain and Rothschild [1] suggested to use principal component
analysis (PCA) to estimate approximate static factor models. Assuming
that the number of factors r is known, PCA allows to simultaneously es-
timate the factors and the loading coefficients by solving the least squares
problem

min
Λ,F

1

NT

N∑
i=1

T∑
t=1

(xit − λift)2

where xit is the i-th component of xt and λi is the i-th row of Λ.

With the purpose of avoiding indeterminancy of factors and loadings,
the following normalisation condition is imposed (when T > N):

Λ̂′Λ̂

N
= Ir.
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3.2.3 Two-step estimation of large approximate fac-
tor models

Doz, Giannone and Reichlin [5] proposed a two-step estimator that
takes into account the dynamics of the factors. They consider an approx-
imate dynamic factor model with VAR factors, and they allow idiosyn-
cratic terms to be autocorrelated even if do not specify their dynamics:

xt = Λft + et

ft = Φ1ft−1 + . . .+ Φpft−p + ut

As said before, this model could easily be cast in state space form.
The first step of the estimation procedure starts obtaining prelimi-

nary estimators of loadings Λ̂ and factors f̂t by PCA. Particularly, let
denote by dj and vj the j-th eigenvalue and relative unitary eigenvec-
tor respectively of the empirical covariance matrix of data, and define
D = diag(d1, . . . , dr) and V = (v1, . . . , vr); then Λ̂ = V D1/2 and f̂t =
D1/2V ′xt. Afterwards the idiosyncratic terms are estimated by êt =
xt− Λ̂f̂t and their variance is estimated by the associated empirical vari-
ance Ψ̂. The estimated factors f̂t are used in a VAR model to obtain the
estimates Φ̂j for j = 1, . . . , p; it is proved that maximum likelihood and
ordinary least squares (OLS) give exactly the same results, therefore the
latter estimate is chosen and coefficients Φ̂j are analytically known.

In the second step the model is cast in state space form with the vari-
ance of the common shocks set to identity matrix, that is cov (ut) = Ir,

and cov (et) defined in diagonal shape as Ψ = diag
(
ψ̂11 . . . ψ̂nn

)
. Using

the parameter estimates Λ̂, Ψ̂ and Φ̂j, j = 1, . . . , p obtained in the first
step of the procedure, one step of the Kalman smoother is then applied to

the data; result is a new estimate of the factor f̂t|T = E
(
ft|x1, . . . , xT , θ̂

)
,

where θ̂ is a vector containing the first step estimates of all parameters.
It is remarkable that assumptions imposed so far allow good esti-

mation of the factors despite of multiplication by an orthogonal matrix,
which means that factors are reconstructed unless the signs and a per-
mutation of themself.

Summing up, in the first step parameters and factors are estimated
throught PCA, then dynamics of the factors are estimated throught OLS
from these preliminary estimates of the factors; thus numerical opti-
mization is not required so far. In the second step common factors are
re-estimated throught Kalman recursions, that have been discussed thor-
oughtly in previous Chapters.

Proof of the estimation consistency is central issue of the paper [5]; we
will now summarise the results obtained by the authors and refer to their
work for further information and proofs. Firstly, under the assumptions
presented for approximate factor models, principal components give con-
sistent estimators of the span of the common factors, and of associated
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factor loadings, when both the cross-section and the sample size go to
infinity. Under the same assumptions, the consistency of the autoregres-
sive parameters estimates is also proven. Consequentely, authors could
conclude that estimators obtained with the whole two-step procedure are
consistent with the true common factors.

3.2.4 Quasi-maximum likelihood estimation of large
approximate factor models

Doz, Giannone and Reichlin [4] also proposed to estimate a large
approximate dynamic factor model by quasi-maximum likelihood (QML).
As in the paper [5] discussed above, the quasi-likelihood is based on the
assumption of mutually orthogonal iid Gaussian idiosyncratic terms and
a Gaussian VAR model for the factors. The corresponding log-likelihood
can be obtained from Kalman filter recursions for given values of the
parameters, and the authors apply an EM algorithm to compute the
maximum likelihood estimator.

The EM algorithm alternates an (E)xpectation step relying on a
pass of the Kalman smoother for the current parameters values and a
(M)aximisation step relying on multivariate regression; practically, iter-
ations of the algorithm are equivalent to successive applications of the
two-step procedure. As a consequence, calculations are feasible even
when N is large thanks to the low computational cost of each iteration.

3.3 Collapsing technique

When the common factors ft and the idiosyncratic terms et are Gaus-
sian, the likelihood function of the dynamic factor model xt = Λft + et
can be easily evaluated by applying Kalman filter recursions, once the
model is cast in state space form; and when they are not Gaussian, the
Gaussian likelihood is treated as a quasi-likelihood. As a consequence,
the Gaussian likelihood function may be numerically maximised in order
to obtain maximum likelihood or quasi-maximum likelihood parameter
estimates.

However, the high-dimensional panel of time series and the resulting
large number of parameters could make such an approach infeasible: most
of the computational problems are related to the inversion of the matrix
Ft, which requires more and more computing time and, over all, com-
promises numerical precision. In the paper [8] Jungbacker and Koopman
propose a solution to this problem splitting the observed time series into
a low-dimensional vector series and a high-dimensional vector series, and
proving that it suffices applying the Kalman filter to the low-dimensional
set to obtain the evaluation of the likelihood function.
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Let define x∗t = Axt for any non-singular N × N matrix A and t =
1, . . . , T . Suppose matrix A is partitioned as

A =

(
AL

AH

)
where AL and AH are respectively m × N and (N −m) × N matrices,
and 0 < m ≤ p is the rank of matrix Λ. Then

x∗t =

(
xLt
xHt

)
with xLt = ALxt and xHt = AHxt

where the observation vectors have dimensions m × 1 and (N −m) × 1
respectively.

The aim is to choose matrix A such that xLt and xHt are not correlated
with each other and only xLt depends on ft. More specifically, the model
for x∗t will be of the form

xLt = ALΛft + eLt

xHt = eHt
(3.1)

where eLt = ALet and eHt = AHet. Moreover, we have that

E
(
eLt
)

= 0, E
(
eHt
)

= 0,

V ar
(
eLt
)

= ΣL, V ar
(
eHt
)

= ΣH , E
(
eHt e

L
t
′) = 0

for t = 1, . . . , T , where ΣL = ALΣeA
L′ and ΣH = AHΣeA

H ′.
A suitable matrix A needs to fulfil the following assumptions:

� A is full rank

� AHΣeA
L′ = 0

� Row
(
AH
)

= Col (Λ)⊥

The first assumption prevents any loss of information as a result of the
transformation Axt, the second ensures that eLt and eHt are uncorrelated,
and the last implies that the latter equation in (3.1) does not depend
on ft. These assumptions define a closed form for AL, which could be
written as

AL = Λ̃′Σ−1
e

where the columns of the N × m matrix Λ̃ form a basis for the col-
umn space of Λ. When Λ is of full column rank and p = m, a typical
decomposition is

Λ̃ = Λ
(
Λ′Σ−1

e Λ
)−1

.



56 CHAPTER 3. DYNAMIC FACTOR MODELS

Remarkably, a closed-form expression for AH is generally not avail-
able, but the authors proved that matrix AH and, consequentely, xHt are
not required for any of the computations we are interested in.

Finally, the Kalman filter and smoothing could be applyed to the
low-dimensional model

xLt = ALΛft + eLt

with E
(
eLt
)

= 0, V ar
(
eLt
)

= ΣL and t = 1, . . . , T , obtaining identi-
cal results and considerably shorter computing times of the case with
recursions applied to the high-dimensional complete model.



Chapter 4

Numeric explorations

In Chapter 2 we implemented what discussed in previous Chapter 1.
Analogously, we are now going to present numeric explorations referred
to dynamic factor models just introduced in Chapter 3.

As previously, we will simulate data with Monte-Carlo generation to
fit the model and acquire parameters sensitivity; nevertheless we refer to
the next Chapter for the handing of real data time series.

4.1 Monte-Carlo analysis

We downloaded codes directly from Giannone’s web site [7]: he and
his collegues wrote a main script, a function sim-mod to simulate model
and a function dynFA to estimate factors using PCA, 2-step method and
QML.

From their codes, we developed our own modifing and adding fea-
tures. All main scripts are structured as follow: setting of the model
parameters, model simulation, parameter value estimation, assessment
of the goodness-of-fit, running of misspecification tests, and graph draw-
ing. We looked at the model

xt = Λft + et, et ∼ N (0,Ψ)

ft = Φ1ft−1 + . . .+ Φpft−p + ut, ut ∼ N (0, Q)

where xt is a row vector of lenght N , Λ is a N × r matrix, ft is r× 1 and
Φj is r × r for all j = 1, . . . , p. Actually, we store observations xt in a
matrix X with size T ×N and factors ft in a T × r matrix F .

In all explorations we set N = 100 and T = 1000, and we gradually
archived generality about matrices Φj, j = 1, . . . , p, starting from p = 1
and Φ1 = αI and reaching p < 7 and Φj of general shape.

About model simulation, it is remarkable that requiring cov(ft) = I
implies calculations to compute Q, so that

I = ΦIΦ′ +Q

57
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although 2-step method assumes cov(ut) = I; on the other hand, the
hypothesis of cov(ft) = I is essential to prevent indeterminancy of esti-
mated factors.

Regarding factors estimate with dynFA function, we applied collapsing
technique to reduce computations each time Kalman filter was employed.

In order to evaluate goodness of estimation, we considered trace statis-
tics as in paper [4]. Let indicate F the storage matrix of simulated factors
and F̂ the storage matrix of estimated factors with one of the methods
named before, then we compute the statistic

tr

(
F ′F̂

(
F̂ ′F̂

)−1

F̂ ′F

)
tr (F ′F )

.

The trace statistic is smaller than 1 and tends to 1 if the empirical canon-
ical correlations between the true factors and their estimates tend to 1;
the closer the statistic is to 1, better the approximation of the factors.

Moreover, we compared vectors and matrices of the model with their
estimates plotting values.

We could now analyse in detail some model specifications, which differ
mostly for the value of p and the shape of the matrices Φj, j = 1, . . . , p.
In all models, we consider r = 3 common factors.

4.1.1 Starting model

First of all, we tested the case with p = 1 and Φ1 = αI, where
0 < α < 1 ensures stationarity; we set α = 0.9. Results are presented
below.

In this simple case, we compared running time of dynFA function with
and without the collapsing technique:

time (s)
w/o collapsing 35.22
w/ collapsing 3.82

It is clear that collapsing reduces calculation time of several times. More-
over, it is interesting to underline that the QML method is the more
lenghty, while PCA and 2-step methods are quite immediate.

Results obtained with and without collapsing were identical, but ac-
tually we report the first ones. Trace statistics were really good:

PCA 2-step QML
0.9942 0.9958 0.9959

Obviously they increase along the different methods, as each method is
more accurate that the previous one.
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Hence we compared simulated and estimated vectors and matrices
of the model, starting from factors. As said in Section 3.2.3, factors
and matrices may be reconstructed despite of signs and permutation;
computing correlation between each simulated factor and each estimated
factor gave us the right matching of them. Results of matched estimations
are shown in Figure 4.1. It is remarkable that estimates with different
methods are really close among them, even when they are not so close
to the simulated factor, and that more complex method gives better
estimate. This is quite obvious, and the similarity among estimates is
also clearly explained as each method is an improving of the previous
and all of them start from the PCA.

(a) 1st simulated factor and 3rd estimated
factor

(b) Focus

(c) 2nd sim. factor and 1st est. factor (d) 3rd sim. factor and 2nd est. factor

Figure 4.1: Comparison among simulated factors and estimated ones,
matched according to correlations.

Simulated matrix of loading Λ and its estimated Λ̂ suffered the same
mis-matching of the factors along their columns, but after matching es-
timate was really good, as it could be seen in Figure 4.2. Comparing
to factors estimate, in this case different methods gave indistinguishable
results.
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(a) 1st simulated column of Λ and 3rd es-
timated column of Λ̂

(b) 2nd sim. column and 1st est. column (c) 3rd sim. column and 2nd est. column

Figure 4.2: Comparison among simulated column of Λ and estimated
ones, matched according to correlations.

Proceeding with order, it was the turn of comparing Ψ and its esti-
mates Ψ̂. All matrices are diagonal and Figure 4.3 compares the diago-
nals.

The estimation of α was also great:

estimated values
set value 2-step QML

0.900 0.888 0.894

As introduced at the beginning of this Section 4.1, matrix Q had to
be computed in order to ensure that cov(ft) = I. In this simple case
with p = 1 and Φ1 = αI, we had

I = αIα +Q

⇒ Q = (1− α2)I

where 1 − α2 = 0.19 as we chose α = 0.9. Model estimation gave as a
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Figure 4.3: Comparison among diagonal of simulated Ψ and its estimates.

result

Q̂ =

 0.184 −0.004 0.002
−0.004 0.219 0.007
0.002 0.007 0.239


which is a good estimation of Q = diag(0.19, 0.19, 0.19).

Summing up, in this case estimation worked very well and all vectors
and matrices had been recostructed accurately.

4.1.2 More complex model

When p is greater than 1, the model becomes more challenging and so
estimation. Particularly, we need to arrange the factors in the companion
form. For semplicity we chose p = 2, hence the model is

xt = Λft + et, et ∼ N (0,Ψ)

ft = Φ1ft−1 + Φ2ft−2 + ut, ut ∼ N (0, Q) .

Let define

Ft =

(
ft
ft−1

)
and Φ =

(
Φ1 Φ2

I 0

)
then the model may be written in the form

xt = Λft + et, et ∼ N (0,Ψ)

Ft = ΦFt−1 + ut, ut ∼ N (0, Q)

adding necessary zeros in vectors and matrices in order to match dimen-
sions.
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The biggest difference comparing with codes of previous model is
about the model simulation and particularly about the matrix Q. Another
difference regards the employed methods: since QML tried to compute
inverse of singular matrices, we dropped this method out, and this choice
is supported from the knowledge that for very greater dimension of the
problem the 2-step method is more suitable.

In order to derive an expression for Q, we want to impose E (ftf
′
t) =

cov(ft) = I. Since ftf
′
t = (Φ1ft−1 + Φ2ft−2 + ut) (Φ1ft−1 + Φ2ft−2 + ut)

and all variables are assumed to be stationary in covariance,

I = Φ1IΦ′1 + Φ2IΦ′2 + Φ1E
(
ft−1f

′
t−2

)
Φ′2 + Φ2E

(
ft−2f

′
t−1

)
Φ′1 +Q.

Applying the expected value to ftf
′
t−1 = Φ1ft−1f

′
t−1 +Φ2ft−2f

′
t−1 +utf

′
t−1

and assuming symmetry of Ψ1 = E
(
ftf
′
t−1

)
, we have

Ψ1 = Φ1I + Φ2Ψ1 ⇒ Ψ1 = (I − Φ2)−1 Φ1

and then

Q = I − Φ1Φ′1 − Φ2Φ′2 −K −K ′ with K = Φ1 (I − Φ2)−1 Φ1Φ′2.

With this model specification and parameters set as before when not
specified, results are still very good. Particularly, computation time is
1.8822s and trace statistics for PCA and 2-step method are 0.9943 and
0.9954 respectively. About Φ matrix, we set values of Φ1 and Φ2 ”ran-
domly but not too much”: we focused on the diagonal and assigned
small values to other elements, assuring that spectral radius of Φ keeps
less than 1. Simulated and estimated matrices follow:

Q =

 0.809 −0.183 −0.157
−0.183 0.671 −0.284
−0.157 −0.284 0.561

 , Q̂ =

 0.564 −0.277 −0.166
−0.277 0.626 −0.120
−0.166 −0.120 0.874

 .

It is evident that rows and columns of Q̂ compared to Q suffer same
permutation of columns of factors and Λ̂; nevertheless, estimate is good.
Also estimation of Φ̂ is good despite of permutation, as it could be seen:

Φ1 =

0.320 0.160 0.080
0.080 0.400 0.160
0.080 0.240 0.480

 , Φ̂1 =

 0.450 0.202 0.190
0.155 0.460 0.040
−0.027 0.075 0.229


Φ2 =

0.080 0.064 0.008
0.056 0.160 0.032
0.008 0.016 0.160

 , Φ̂2 =

0.166 0.006 0.051
0.047 0.147 0.046
0.152 0.041 0.126

 .

Graphs are really similar to previous case ones, so we avoid reporting
them to not bore reader.
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4.1.3 Autoregressive model of order p=6

We considered p = 6 and unconstrained autoregressive coefficients Φ.
Analogously to before, the model is

xt = Λft + et, et ∼ N (0,Ψ)

ft = Φ1ft−1 + Φ2ft−2 + . . .+ Φpft−p + ut, ut ∼ N (0, Q)

For semplicity, we considered matrices Φ2 = Φ3 = . . . = Φp, as we did in
Section 2.3 for the autoregressive term. Hence, defining

Ft =


ft
ft−1

...
ft−p+1

 and Φ =


Φ1 Φ2 . . . Φ2

I 0
. . .

...
I 0

 ,

the model could be written as

xt = Λft + et, et ∼ N (0,Ψ)

Ft = ΦFt−1 + ut, ut ∼ N (0, Q) .

Computing of Q for ensure cov(ft) = I is analogous to previous model,
but we should explicit it. From recursion for ft it follows

ftf
′
t = (Φ1ft−1 + Φ2ft−2 + . . .+ Φ2ft−p + ut) ·
· (Φ1ft−1 + Φ2ft−2 + . . .+ Φ2ft−p + ut) .

Applying the expected value, deriving Q and indicating Ψj = E (ftft−j),
we obtain

Q = I − [ Φ1Φ′1 + (p− 1) Φ2Φ′2 + Φ1Ψ1Φ′2 + Φ2Ψ′1Φ′1+

+ (p− 2) Φ2Ψ1Φ′2 + (p− 2) Φ′2Ψ′1Φ2 + Φ1Ψ2Φ′2 + Φ2Ψ′2Φ′1+

+ (p− 3) Φ2Ψ2Φ′2 + (p− 3) Φ′2Ψ′2Φ2 + Φ1Ψ3Φ′2 + Φ2Ψ′3Φ′1+

+ . . . +

+ Φ2Ψp−2Φ′2 + Φ′2Ψ′p−2Φ2 + Φ1Ψp−1Φ′2 + Φ2Ψ′p−1Φ′1 ] .

It is obvious that the value of p determines the length of this sum, and
consequentely the number of Ψj terms needed; let now compute these
terms in the case of our interest: p = 6.

Ψ1 = E (ftft−1) = E
(
Φ1ft−1f

′
t−1 + Φ2ft−2f

′
t−1 + . . .+ Φ2ft−pf

′
t−1 + utf

′
t−1

)
=

= Φ1 + Φ2Ψ1 + Φ2Ψ2 + . . .+ Φ2Ψ5,

Ψ2 = E (ftft−2) = E
(
Φ1ft−1f

′
t−2 + Φ2ft−2f

′
t−2 + . . .+ Φ2ft−pf

′
t−2 + utf

′
t−2

)
=

= Φ1Ψ1 + Φ2 + Φ2Ψ1 + Φ2Ψ2 + . . .+ Φ2Ψ4,

Ψ3 = E (ftft−3) = E
(
Φ1ft−1f

′
t−3 + Φ2ft−2f

′
t−3 + . . .+ Φ2ft−pf

′
t−3 + utf

′
t−3

)
=

= Φ1Ψ2 + Φ2Ψ1 + Φ2 + Φ2Ψ1 + Φ2Ψ2 + . . .+ Φ2Ψ3,

Ψ4 = E (ftft−4) = Φ1Ψ3 + Φ2Ψ2 + Φ2Ψ1 + Φ2 + Φ2Ψ1 + Φ2Ψ2,

Ψ5 = E (ftft−5) = Φ1Ψ4 + Φ2Ψ3 + Φ2Ψ2 + Φ2Ψ1 + Φ2 + Φ2Ψ1.
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Clearly, a linear system with variables Ψj, j = 1, . . . , 5 has to be solved
in order to obtain expressions to substitute in above equation for Q.

The results from the estimation exercise are very good. We do not
show them because the computation times, the summary statistics, and
the goodness-of-fit are very similar to the ones shown for previous model
specifications.



Chapter 5

From observations to
forecasting

In this chapter we will finally put together all the work done so far in
order to fit models to real data and achive the goal of forecasting. We will
follow the procedure presented by Li et al. in [10], that consists of three
steps employing univariate state-space model, dynamic factor model and
simulation smoothing.

5.1 Three-step forecasting method

Li et al. [10] proposed a forecasting exercise consisting of three stages:

Step 1: analysis, modelling and prediction of the variable of interest,
in our case maximum temperature in different stations, using a
univariate state-space model;

Step 2: joint analysis of the prediction errors from Step 1 using a mul-
tivariate state-space model like the dynamic factor model;

Step 3: simulation of the prediction errors series from Step 1 condition-
ally to the data simulated with the dynamic factor model in Step
2. The simulated errors series can be transformed to an ensemble
time series of the temperature which can be forecasted using the
univariate model of Step 1 with the parameters re-estimated. The
sample average of these ensemble forecasts is the final forecast.

We anticipate that we took into account weekly time series coming from
different stations in the region of Emilia Romagna (Italy).

5.1.1 Step 1: univariate state space model

The weekly time series recorded by each station is decomposed using
the model given by

yt = µt + γt + ct + ϕt
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where the latent components are trend µt, seasonal γt and cyclical ct
components and autoregressive disturbances φt. It is the kind of decom-
position presented in equation (1.2) of Section 1.2 and perfected with
equation (2.3) in Section 2.2. Parameters of each component were dis-
cussed in Chapters 1 and 2, and so the maximum likelihood estimation
using Kalman filter recursions, which compute the one-step ahead pre-
diction errors

vt = yt − E (yt|Yt−1) .

It is remarkable that vt is computed from yt with an invertible transforma-
tion, that is the Kalman filter recursions, which we will invert explicitly
in Step 3 (Section 5.1.3).

5.1.2 Step 2: dynamic factor model

Repeating Step 1 for all the stations, N prediction errors time series
are obtained: a joint analysis of them allow exctracting residual infor-
mation. Defining xt the vector of those prediction errors at time t, the
dynamic factor model (DFM) is given by

xt = Λft + et

ft = Φ1ft−1 + . . .+ Φpft−p + ut

where ft is the vector of factors, Λ the factor loading matrix, et and
ut are disturbances, and Φ1, . . . ,Φp autoregressive coefficient matrices.
Again, model discussion was addressed in Chapters 3 and 4, along with
the two-step method by Doz et al. [5] for parameters estimation.

Then, the simulation smoother by Durbin and Koopman [6] permits
sampling a set of M simulated prediction errors series vit, i = 1, . . . ,M
conditionally to the estimated series vt. For simulation smoother expla-
nation we refer to Section 1.7, of which we recall the highlights:

1. first of all, a series of prediction errors and relative factors is gen-
erated unconditionally via the function sim-mod implemented in
Section 4.1.3;

2. Kalman filter and state smoothing recursions are applied to the
series of unconditional factors;

3. a conditional sample of factors f it is obtained by the algebraic sum
of the estimated factors, unconditional factors and smoothed un-
conditional factors;

4. finally, a conditional sample of prediction errors is computed thanks
to the equation vit = Λ̂f it + eit, where eit is randomly sampled
with variance matrix Ψ̂ and hatted matrices resulted from two-
step method by Doz et al. [5] for parameters estimation in the
DFM.
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5.1.3 Step 3: forecasting via simulation and estima-
tion

Based on the set of simulated series vit, a set of artificial time series
yit could be constructed via the inverse trasformation hinted in Step 1.
This sequence of M time series yit, i = 1, . . . ,M is denoted by ensemble
time series and in fact is the result from an interaction between the
univariate state-space model and the DFM. Now we will illustrate the
transformation and, for this purpose, let us forget momentarily the index
i. Since vt = yt − Zat, obviously we have

yt = vt + Zat.

The following recursions allow to compute all the needed elements to
extract yt supposing vt to be known:

Ft = ZPtZ
′

Kt = TPtZ
′F−1
t

at+1 = Tat +Ktvt

Pt+1 = TPt (T −KtZ)′ +RQR′

where vector Z and matrix R are known from model specification, while
matrices Q, T , a1 and P1 are fixed equal to the estimated values from
Step 1.

Hence, for each ensemble time series, forecasts ŷiT+h, h = 1, . . . , H
are computed iterating Kalman filter recursions. Before computing the
forecast values, the parameter values of the univariate model are re-
estimated from the simulated time series. To clarify this point, let us go
step by step:

1. for each ensemble time series yit, a new estimation of the univariate
state-space model parameters is performed;

2. re-estimated parameters are employed to compute the model ma-
trices, in particular ait, P

i
t for t = 1, . . . , T and T i;

3. Kalman filter recursions are iterated over last index t = T obtaining
forecasts, precisely

aT+h = T iaT+h−1

yiT+h = ZaT+h

for h = 1, . . . , H.

The idea behind our approach, which is inspired by Li et al., is that
while generating M conditional series of observation is necessary to catch
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variability of data itself, in a similar way re-estimation of parameters
allow to seize their own statistical uncertainty.

The final forecast from this three-step procedure is simply obtained
averaging

ŷT+h =
1

M

M∑
i=1

yiT+h

for h = 1, . . . , H. Actually, under our assumptions of normality, the
distribution of the final forecast is easly computed with the standard
deviation of the ensemble forecasts.

5.2 Forecasts in Emilia-Romagna

We downloaded daily maximum temperature data from the site of
European Climate Assessment and Dataset [9] and, as introduced before,
we accounted data recorded in some stations sited in Emilia-Romagna.
We selected N = 20 stations which are more or less evenly distributed
over the territory of the region, some on the plain, others on the hills, as
shown in the following table and Figure 5.1.

station altitude temperatures
min mean max

Bagno di Romagna 500 1.3 21.0 37.3
Bardi 625 1.2 20.2 35.2

Bettola 329 1.8 20.5 35.5
Bologna 54 3.2 22.8 38.9

Castelnovo ne’Monti 750 -0.2 18.3 34.5
Cesena 44 2.9 22.5 38.5

Civitella di Romagna 219 2.0 21.4 38.0
Faenza 35 1.3 21.0 37.3
Forĺı 34 3.2 22.7 38.5
Imola 47 3.2 24.1 42.7

Mirandola 9 2.2 22.9 39.9
Modena 34 3.1 22.7 39.3

Monghidoro 841 -0.3 18.9 34.2
Montefiorino 797 0.7 20.7 36.3

Piacenza 61 2.7 22.3 37.5
Ravenna 4 2.7 22.2 37.2

Reggio Emilia 56 3.8 22.9 38.3
Rimini 6 3.5 21.8 38.4
Vignola 125 2.9 22.8 39.0
Volano 1 3.9 22.4 38.5

In each time series we selected data from 01/01/2006 to 31/12/2014,
and we manipulated them analogously to what we done in Section 2.3:
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Figure 5.1: Selected stations in Emilia Romagna.

data relative to February 29th and December 31st were excluded and
remaining data were aggregated on a weekly basis computing the max-
imum; in fact, any aggregated data is the maximum of maximum tem-
peratures recorded in a week. Some statistics of the manipulated data
are provided in the table above and Figure 5.2 is referred for an example
of resulted time series.

Figure 5.2: Manipulated time series of the station of Bologna.

Hence the univariate state-space model was fitted to each time series
on data from 01/01/2006 to 31/12/2013 with kind of analysis employed
for station of Bologna in Section 2.3; data relative to year 2014 were
preserved for testing the forecast ability at the end of the three-step
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procedure. Results of components estimation are shown in Figures 5.3,
5.4 and 5.5. As could be seen in ghaphs, trend components are quite
different among the different stations, while seasonal components are
pretty similar to each other; about cycle components, two main patterns
are observed: the one with 3 valleys and the one with 5 valleys, which
corresponds to frequency parameter λc with values about 0.50 and 0.87
respectively. Obviously, each estimated component of each station starts
with a null seasonality because of the parameters exact initialisation.

(a) Bagno di R. (b) Bardi (c) Bettola (d) Bologna

(e) Castelnovo (f) Cesena (g) Civitella di R. (h) Faenza

(i) Forĺı (j) Imola (k) Mirandola (l) Modena

(m) Monghidoro (n) Montefiorino (o) Piacenza (p) Ravenna

(q) Reggio Emilia (r) Rimini (s) Vignola (t) Volano

Figure 5.3: Trend component estimates from the univariate model.
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(a) Bagno di R. (b) Bardi (c) Bettola (d) Bologna

(e) Castelnovo (f) Cesena (g) Civitella di R. (h) Faenza

(i) Forĺı (j) Imola (k) Mirandola (l) Modena

(m) Monghidoro (n) Montefiorino (o) Piacenza (p) Ravenna

(q) Reggio Emilia (r) Rimini (s) Vignola (t) Volano

Figure 5.4: Seasonal component estimates from the univariate model.

We stored all the prediction error series computed with univariate
model in a single matrix, in alphabetical order according to stations
names and removed of the initial null values, and feed it to the function
dynFA presented in Chapter 4 and modified in order to apply the two-
step method presented by Doz et al. [5]. Estimated factors are plotted
in Figure 5.6.

A look at the estimated matrix Φ̂ suggests a low persistence of fac-
tors as confirmed by the spectrum of the autoregressive matrix in the
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(a) Bagno di R. (b) Bardi (c) Bettola (d) Bologna

(e) Castelnovo (f) Cesena (g) Civitella di R. (h) Faenza

(i) Forĺı (j) Imola (k) Mirandola (l) Modena

(m) Monghidoro (n) Montefiorino (o) Piacenza (p) Ravenna

(q) Reggio Emilia (r) Rimini (s) Vignola (t) Volano

Figure 5.5: Cycle component estimates from the univariate model.

companion form:

Φ̂1 =

−0.008 0.055 0.024
−0.093 −0.168 0.084
−0.102 −0.019 −0.118

 , Φ̂2 =

−0.070 0.023 0.053
−0.022 −0.042 0.049
0.047 0.005 −0.059

 .

As a consequence the value of p may be not so relevant; nevertheless,
aiming to confirm this intuition and choose the best value for p, we
analysed the prediction errors obtained with the Kalman filter recursions
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(a) 1st factor (b) 2nd factor (c) 3rd factor

Figure 5.6: Estimated common factors of prediction errors time series.

in the second step of factors estimation procedure. In other words, we
performed a miss-specification test by analysing the correlation structure
of the prediction errors of the factor model estimated from the prediction
errors of the univariate time series. No residual correlation is visible, as
could be verified in Figure 5.7 for the station of Bologna. Consequentely,
we set p = 4.

Figure 5.7: Auto-correlogram for prediction errors of prediction errors of
Bologna time series.

With matrices of the DFM just estimated, we managed to sample a
set of M = 50 simulated prediction error series thanks to the simulation
smoother of Durbin and Koopman [6] and then compute from them the
set of ensemble time series. This last computation required parameters of
the univariate model for each observed time series, that is for each station;
moreover, according to the three-step procedure of Li et al. [10], in this
third stage parameters of the univariate model had to be re-estimated for
each simulated time series of each station. Hence, because of computing
complexity, we will show final results for the station of Bologna only.
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We remark that parameters re-estimation implies again a maximisa-
tion of log-likelihood and consequentely an exact initial procedure, which
causes the ’loss’ of d data, where d = 52 for our model; in the first step
of Li et al.’s method we already lost data regarding the whole year 2006,
and likewise it would happen now (for year 2007). In our exploration,
with just a few years of available data, it would be unpleasant. We solved
this problem initialising the optimization with the previously estimated
parameters. In other words, instead of employing the exact initial proce-
dure with data from 2007 to 2013 ’wasting’ data of year 2007, we set a1

and P1 of the univariate model equal to their estimated value computed
with data from 2006 to 2013 at the beginning of all this exploration.

Re-estimated parameters have been used in Kalman filter recursions
to obtain ensemble forecasts, whose distribution was computed in order
to conclude the forecasting procedure. Aiming to one-year ahead predic-
tions, we set H = 52; furthermore, as hinted in Section 5.1.3, since we
assumed the normality hypothesis when possible, the named distribution
is univocally determined by mean and standard deviation of data. Obser-
vations of year 2014 were finally taken into account in order to evaluate
forecasting goodness. In Figure 5.8 the blue line is the observed time
series while the red one requires some explanation:

� from year 2007 to the whole 2013, the red line is computed averag-
ing the ensemble time series yit for i = 1, . . . ,M , consequentely it
is the mean of conditional samples of observed time series;

� in year 2014, the red line is computed averaging predictions of the
ensemble time series, that are yiT+h for i = 1, . . . ,M , in other words
it is the forecast itself and it is clearly out-of-sample with respect
to the data which were accounted for analysis and simulation.

It is remarkable that the maximum data for year 2014 (approximately
34◦ C) is lower than maximum data of previous years (approximately 38◦

C), nevertheless our model managed to predict it quite well.
In Figure 5.9 the same series of Figure 5.8 are shown with same

colours, but for year 2014 only. The red line plots computed forecasts
and the black dotted line signs 1.96 times the standard deviation of data:
this means that the 95% of observed data should be within this threshold.
It seems so, taking into account possible statistical fluctuations.
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Figure 5.8: Simulations and forecasts (red line) for the station of Bologna
compared to observations (blue line).

Figure 5.9: Forecasts (red line) for the station of Bologna compared to
observations (blue line), and the 1.96-times standard deviation region
(black dotted lines)





Conclusions

Time series had been the center of our studies, both generated with
Monte-Carlo simulations and live recorded. We initially took confidence
with the state space model, particularly with the state vector and latent
components; afterwards it was the turn of the dynamic factor model (that
can be cast itself in a state space model form), with factors, loadings and
autoregressive order of the factors.

The whole procedure of analysis and forecasting of the climatic time
series goes throught the state space model, then the dynamic factor model
and after that comes back: once factors had been estimated, they are
simulated, permitting simulation of prediction errors and therefore of
observations; holding simulated observations, forecasting is computed.

The results we obtained are promising. They demonstrate the feasi-
bility of the model presented by Li et al. [10]. Our exploration involved
just a climatic parameter (the maximum temperature) and a few data (a
weekly basis on 8 years and 20 stations) but we very preliminarily tested
the whole approach on much longer time series (150 years on a weekly
basis) with a richer cross-sectional data (up to 10.000 nodes) finding
feasible computational times and very promising estimation results.

As a summary, in Chapter 1 we presented the state space model: the
decomposition in latent components, the Kalman filter recursions, the
simulation smoothing, the miss-specification tests and the exact initiali-
sation; and in Chapter 2 we applied these techniques in order to analyse
some time series obtained both with Monte-Carlo simulation and live
recorded. Similarly, in Chapter 3 we introduced dynamic factor models
and particularly the two-step estimation method by Doz, Giannone and
Reichlin [5], which we employed in Chapter 4 to estimate model param-
eters of some Monte-Carlo simulated series. Finally, in Chapter 5 we
applied a sort of Li et al.’s [10] forecasting method to time series of max-
imum temperatures recorded in Emilia-Romagna (Italy): throught state
space and dynamic factor models, the analysis of such time series and
the simulation smoothing technique by Durbin and Koopman [6] allowed
us to compute forecasts.
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