
Alma Mater Studiorum · Università di Bologna

SCUOLA DI SCIENZE

Corso di Laurea Magistrale in Informatica

Classification and clustering of

video fingerprints:

preliminary results

Relatore:
Chiar.mo Prof.
Danilo Montesi

Correlatore:
Ph.D. Flavio Bertini

Correlatore:
Ph.D. Rahimeh Rouhi

Presentata da:
Lorenzo Massimiliani

Sessione III
Anno Accademico 2019-2020

Contents

Introduction vii

1 State of the art 1

1.1 Sensor Pattern Noise . 2

1.2 Residual noises and fingerprints . 3

1.3 Video denoising filters . 4

1.4 Source camera identification using videos 5

2 Video classification and clustering methods 11

2.1 Path to extract noises and calculate fingerprints 11

2.2 Peak-to-Correlation-Energy based classification algorithm 12

2.3 Convolutional Neural Network classification 14

2.3.1 Using the single noise . 16

2.3.2 Using the entire video . 16

2.3.3 Using a combination of neural networks 17

2.4 Combined Peak-to-Correlation-Energy based classification algorithm

and Convolutional Neural Network classification 18

2.5 Clustering . 18

2.5.1 Clustering with known number of cameras 19

2.5.2 Clustering with unknown number of cameras 20

2.6 Evaluation Measures . 20

3 Noise extraction and fingerprint calculation 23

3.1 Dataset . 23

3.2 Pre-processing . 26

3.2.1 Rotation of videos to match pixels 26

i

ii CONTENTS

3.2.2 Resizing of all the videos to the same resolution 27

3.2.3 Extraction of frames . 27

3.2.4 Exclusion of some frames . 28

3.2.5 Noise extraction . 30

3.2.6 Counter the problem of video stabilization 31

3.2.7 Noise normalization . 34

3.3 Fingerprint calculation . 35

4 Experimental results 39

4.1 Results on Vision’s native dataset 39

4.2 Results on Vision’s YouTube dataset 40

4.3 Results on Vision’s WhatsApp dataset 41

4.4 Results on Smart Data dataset . 42

4.5 Comparison with other studies . 43

Conclusions 45

A Source code for classification 47

A.1 Classification with Peak to Correlation Energy 47

A.2 Classification with Convolutional Neural Network 50

A.3 Classification with Peak to Correlation Energy plus Convolutional

Neural Network . 52

B Code for pre-processing operations 55

B.1 Video rotation and resizing . 55

B.2 Extraction of key frames from a video 57

B.3 Removal of saturated and dark frames 57

B.4 Noise extraction . 58

B.5 Removal of highly stabilized frames 59

B.6 Noise normalization . 60

B.7 Fingerprint calculation . 61

Bibliografia 63

List of Figures

2.1 Path of video classification through CNN 17

2.2 Path of video classification through three CNNs 17

2.3 Path of video classification through PCE and CNN 18

3.1 Rotations required to align videos to a single orientation 26

3.2 The different types of frames . 28

3.3 Example of a dark and saturated image 29

3.4 Comparison of residual noises using BM3D and V-BM4D 30

3.5 Comparison between unstabilized and stabilized video 32

3.6 Shift that maximizes the correlation between two images 35

3.7 Shift that maximizes the correlation between two images with frame 36

3.8 Fingerprint calculation . 36

iii

List of Tables

2.1 GoogleNet network architecturee 14

3.1 Characteristics of Vision dataset smartphones 25

3.2 Comparison considering different frame resizing 27

3.3 Comparison considering different types of frames 29

3.4 Comparison considering elimination of dark and saturated frames . 30

3.5 Composition of the dataset used to compare BM3D and V-BM4D . 31

3.6 Comparison between different noise extraction techniques 31

3.7 Comparison of different thresholds to eliminate stabilized frames . . 33

3.8 Comparison of different methods to manage video stabilization . . . 33

3.9 Comparison between the use and non-use of normalization. 34

3.10 Comparison of different techniques for calculating fingerprints . . . 37

4.1 Classification on Vision’s native dataset 39

4.2 Clustering on Vision’s native dataset 40

4.3 Classification on Vision’s YouTube dataset 40

4.4 Clustering on Vision’s YouTube dataset 40

4.5 Classification on Vision’s WhatsApp dataset 41

4.6 Clustering on Vision’s WhatsApp dataset 41

4.7 Characteristics of Smart Video dataset smartphones 42

4.8 Classification on Smart Data dataset 43

v

Introduction

In this period everyone certainly has at least one smartphone and probably has a

tablet or some other device with a camera. Many photos and videos are produced

and uploaded to the Internet every day. Even though this is a small part of the

total, a large amount of them is illegal. For example, their content may depict

illegal acts such as assault or child abuse.

Once digital content has been distributed online, it is often difficult to re-associate

the photo or video to the device that produced it or to the user who initially

shared it. In the event that the material is illegal, the user who disseminates it

has, naturally, an interest in ensuring that it is not possible to trace the source.

To counter the spread of illegal content, there is a branch of studies called “source

camera identification”, which aims to reconnect a photo or video to the device

that developed it. Unfortunately, it is not possible to rely on file metadata, such

as content creation date and GPS location, as they are easily editable. The idea

behind source camera identification is that each camera, having imperfections that

make it unique, gives a digital fingerprint to the content it produces. The noise of

a digital content, which represents a variation of intensity that cannot be found

in the recorded content, contains the fingerprint along with some random factors.

The noises, which are extracted through denoising algorithms, can be used directly

to identify the device that produced the content, or they can be used to estimate

the fingerprint.

This thesis works in the source camera identification of video content. Two

datasets are considered: one called Vision, which is considered the reference dataset

vii

viii INTRODUCTION

in this area and one made available by the University of Bologna 1. The Vision

dataset also contains videos that have been uploaded and downloaded on social

networks. Working on these contents simulates a real scenario, where the available

items are uploaded online and therefore are subject to compression.

The work carried out in this thesis was to extract the noises on those datasets, and

calculate the fingerprints, comparing different approaches present in the state of

the art. The approach that was chosen has yielded the best results through a classi-

fication algorithm. Once the noises were extracted and the fingerprints calculated,

classification and clustering techniques were applied. Some of them worked directly

on the noises extracted, others on the estimates of the fingerprints. Two classifi-

cation techniques have been developed one through convolutional neural network

and another using a function called Peak-to-correlation energy (PCE). Clustering

algorithms have been applied, already developed to work in this area, one that

considers a known number of classes and another that considers an unknown num-

ber. The project was developed on the MATLAB computing environment, using

a license made available by the University of Bologna.

The thesis is organized in the following way:

Chapter 1

The first chapter explains the state of the art of the studies carried out in the area

of camera identification. We will discuss what kind of fingerprint a camera leaves

on the content it records. Algorithms able to isolate these fingerprints from images

will be presented. The source camera identification techniques of the images and

the results obtained will be shown. Finally, the last sub-chapter will refer to

videos and explain the differences between videos and images in the source camera

identification process.

1http://smartdata.cs.unibo.it/datasets#videos

INTRODUCTION ix

Chapter 2

The second chapter will examine the classification and clustering techniques used to

address the problem of camera identification. The first one includes the application

of a neural convolutional network, the use of an algorithm based on the PCE

function and a combined approach of both. Subsequently, there will be a clustering

technique with a known cluster number and one with an unknown cluster number.

Chapter 3

This chapter will present the database used for the experiments and all the pre-

processing operations performed. These operations are necessary to obtain, start-

ing from the videos, the noises and the estimates of the fingerprints that will be

the input elements of the classification and clustering. Among these we find the

extraction of frames, the extraction of noises, the problem management of video

stabilization and the calculation of the fingerprint. In the state of the art there are

different approaches to deal with these pre-processing operations. In this chapter

they are described and compared using a classification algorithm.

Chapter 4

The fourth chapter presents the results of classification and clustering on the

dataset presented in the previous chapter, through some performance measures

described. Of course, the pre-processing operations, for the results described in

this chapter, are those that have shown the best performance. We will also see

the results obtained on datasets composed of videos uploaded to social networks

and on a dataset collected by the University of Bologna. Finally, the results will

be compared and commented on.

Chapter 5

The last chapter will report the conclusions of the project done in this thesis. We

will also discuss possible developments starting from this work.

x INTRODUCTION

Chapter 1

State of the art

Source camera identification is a kind of process that identifies image or video

source. The first goal of this process was to determine the model of the camera,

later the goal became to identify the specific camera. The second goal is more

ambitious, because it renounces to exploit the specific features that a camera

model provides to the content it record, considering only those relating to the

model instance. The work carried out in this thesis arises precisely in the latter

context, in which source camera identification refers to the identification of the

specific camera that has captured an image or a video.

This research area has interesting relevance in a digital forensic analysis context.

It is difficult to establish the origin of content spread on the internet, especially if

it is illegal, and those who share it have an interest in hiding their identity. For

the purpose of a forensic investigation it may be useful to understand whether two

videos uploaded to a social network from two different accounts have been recorded

by the same camera. It is interesting to be able to address this problem, considering

only the shared content, omitting all other factors, such as file metadata or social

account data.

The next sub-chapter will talk about which elements can be considered to identify

the source camera.

1

2 1. State of the art

1.1 Sensor Pattern Noise

Most of the studies in this field deal with the research of the source camera of

the photographs. For videos, there are additional difficulties that complicate this

operation. For simplicity we will start by considering only the case of the pho-

tographs.

Source camera identification is based exclusively on the image itself without any

information about file generation equipment. In addition to the metadata, which

cannot be considered, the camera leaves other information about the content it

acquires. In fact, in each photo we can find imperfections called noises. Especially

the Sensor Pattern Noise (SPN), mainly due to camera imperfections, makes a

device recognizable [1]. The SPN contains the Fixed Pattern Noise (FPN) [2] and

the Photo-Response Non-Uniformity (PRNU) noise.

The FPN is an uncertainty due to some manufacturing defects of the camera in

one or more sensors, such as CCD (charged coupled device) and CMOS (comple-

mentary metal oxide semiconductor). This noise has the drawback of being easily

removable from an image by subtracting a black photo from it. This is due to

the fact that this noise is the same for each image and, therefore, by making this

subtraction the noise disappears [3].

The PRNU was found to be more useful for the purpose of SCI [4]. In fact, it does

not depend on manufacturing defects, but on the difference in sensitivity of each

pixel subjected to light. This also makes it much more difficult to discard of the

PRNU from a photo. This pattern noise is always present due to the device and

is proven to be unique per sensor [5].

Once extracted from videos or images, it can act as a fingerprint for a particular

camera and can be used to verify the existence of that pattern in other images.

Other studies have considered accelerometers [6], gyroscopes [7], magnetometers

[8] and microphones and speakers [9] as sensors on which to identify a fingerprint.

1.2 Residual noises and fingerprints 3

1.2 Residual noises and fingerprints

There are several algorithms used to remove noise from images, from state of the

art. They were thought for the purpose of cleaning images and not within the scope

of source camera identification. But with a little trick it is possible to exploit them

for that purpose.

We can consider an image composed in this way:

I = I(o) + K ∗ I(o) + Θ

where I(o) is the image without noise, K ∗ I(o) is the PRNU and Θ is a generic

noise term which considers other noisy contributions, such as quantization noise

and dark current. We can get the residual noise of an image by calculating the

difference between that image and the same image that has had the noise removed.

RN = I − d(I)

The letter ’d’ indicates any denoising algorithm.

A camera fingerprint can also be estimated at this point. Having more photographs

available, the image obtained as an average of the residual noises can be considered

as an approximate fingerprint.

F =
1

n

n∑
i=1

RNi

In this way, we can consider the fingerprint (F) as the signature of a camera

on a video or photo it produces. The idea is that adding more residual noises

can eliminate some of the random noise. Of course, this is an estimate and the

more photographs will be considered the more the estimated fingerprint should be

similar to the real one.

4 1. State of the art

1.3 Video denoising filters

Once it has been determined how to proceed to calculate residual noise and fin-

gerprints, it is necessary to consider what kind of denoising algorithms exist and

how they work.

The Block-matching and 3D filtering (BM3D) algorithm [10] is the current state

of the art for image denoising. Most of the denoising algorithms, which were used

prior to the BM3D output, were based on computing the noise as approximated by

a linear combination of few basic elements. Instead, the BM3D algorithm is based

on non-linear combinations, in particular, on an enhanced sparse representation

in transform domain.

The improvement is given by the idea of grouping fragments of the 2D image (called

blocks) in 3D data arrays (called groups). This is done through three stages: 3D

transformation of a group, shrinkage of the transformation spectrum and inverse

3D transformation. The second stage applies a filter through a shrinking trans-

formation (collaborative filter) to 3D blocks. In the last stage, the filtered blocks

are then returned to their original positions and aggregated in the final estimate

of the image.

There is also a version of this algorithm called Block-Matching and 4D filtering

(BM4D), which has the difference of grouping 3D rather than 2D groups [11]. By

applying this algorithm, better image denoising is achieved.

We can consider a video, recorded in any format, as a sequence of frames. Each

frame is similar to a photograph, but there is a difference. After a video is recorded,

a compression process takes place, which has the aim of reducing the memory space

occupied by the file. For example, if we consider a 4k video lasting one minute

recorded at 30 frames per second, and considering that a 4k photo occupies 10

MB, the entire video, if it were to be stored as a sequence of photographs, would

occupy 18 GB. This explains the need for a compression process, which causes a

loss of detail [12] (lossy compression).

Most compression algorithms have three types of frames: I-frame (Intra-coded pic-

ture), P-frame (Predicted picture) and B-frame (Bidirectional predicted picture).

An I-frame is a complete image, and can be decompressed without any other infor-

1.4 Source camera identification using videos 5

mation. P-frame and B-frame instead, contain only information on how the image

evolves with respect to the following and previous frames. These frames contain

little information compared to an I-frame and allow us to save a lot of space when

storing a video.

A widely used algorithm for video denoising is video block-matching and 3D filter-

ing (V-BM3D) [13], which is a video adaptation of BM3D. V-BM3D in addition

to aggregating similar groups together at the frame level, as it happens in BM3D,

also aggregates taking into consideration the temporal evolution of the frames.

Considering the time axis, the algorithm gives very good denoising results. The

similarities along the time axis tend to be much more pronounced than those

within the same frame. A limitation of this method is that it is unable to distin-

guish between local and temporal similarity.

An algorithm that overcomes this limitation is block-matching and 4D filtering (V-

BM4D) [14]. In fact, it separately exploits the temporal and spatial redundancy

of the video sequence. Hence, groups in V-BM4D are 4-D stacks of 3-D volumes,

and the collaborative filtering is then performed via a separable 4-D spatiotem-

poral transform. Hence, groups in V-BM4D are 4-D stacks, and the collaborative

filtering is performed via a separable 4-D spatiotemporal transform. Three types

of similarity are considered: local similarity within the same frame, temporal sim-

ilarity, and local and temporal similarity within volumes. These features make

V-BM4D a more performing denoising algorithm than V-BM3D.

Of course, the main task of these algorithms is to clean the images from noise, not

to extract noises for the purpose of source camera identification. For this second

purpose, it is not clear which is the best algorithm at the state of the art. For this

reason, research on this point has been done on the thesis work.

1.4 Source camera identification using videos

We will now see the techniques and approaches used in the literature to deal

with camera identification considering photographs. The most used approaches

for camera identification are two categories of techniques: classification and clus-

6 1. State of the art

tering. Although both are part of the learning arena, there are some differences.

Classification consists in building a model that is able to associate an element with

a class. This occurs through two phases: the first of training and the second of

testing. Clustering does not include a training phase and is part of unsupervised

learning and consists in associating objects in groups. Usually, the results obtained

through classification techniques are better than those obtained through cluster-

ing. Some clustering techniques provide for the distribution on a fixed number of

clusters known by the algorithm, while other techniques do not know this value a

priori and obtain it during execution.

In the past, some works have extracted the features considered useful, more or

less manually, and used an algorithm for the classification. For example, estab-

lishing some similarity measures such as features and applying a kNN classifier

algorithm [15]. A study was also carried out that considers statistical data from

the wavelet domain as features and applies SVM classifiers [16]. The problem with

these solutions is that the use of features extraction based on some aspects, how-

ever accurate, meant that some information was not considered. The growth of

hardware and software has allowed the birth of deep learning techniques, thanks

to which the manual extraction of the features is no longer necessary. Some works

use clustering directly on extracted noise [17].

After the success of neural networks obtained in various fields, such as text and im-

age classification, information extraction, machine translation, and speech recog-

nition, they have also been used in the field of camera identification. For example,

some works have used convolutional neural networks, often used when working

with images, in order to classify photographs residual noises [18].

Several studies use a function, called Peak to Correlation Energy (PCE) [19], which

compares the correlation between two PRNU patterns. PCE defines a measure of

cross-correlation between 2D data arrays, which in this case are represented by

residual noises or fingerprints. This function measures the correlation considering

the possible presence of a shift that would maximize the result. This aspect is

optimal as, often, the imprinted pattern of the fingerprint of the same camera on

two different photographs is not completely aligned.

1.4 Source camera identification using videos 7

One study [20] uses a clustering algorithm called Hybrid Markov Clustering (HAL)

capable of dividing images by associating them with a social profile. This method

combines hierarchical and Markov clustering algorithms and does not require a

priori knowledge of the number of cameras in the dataset.

Camera identification through videos can take place in two ways: by extracting

the noises frame by frame, with a denoising algorithm for images, or by extracting

the noises through a video denoising algorithm. The first way allows us to object

3D objects [21] in which the third dimension represents the temporal succession

of the frames, while the second way a collection of 2D noises. The two elements

are similar, the difference is that through a video denoising algorithm the time

dimension is also exploited to obtain a better noise reduction.

A major problem when working with video is the possible presence of video stabi-

lization. It is an algorithm used to improve video quality by removing involuntary

video shaking due to hand movement during recording. Nowadays, practically all

smartphones have this feature turned on by default. This is done by applying

geometric transformations to frames, such as translation, scale, rotation [22]. This

causes a misalignment between individual pixels between frames, making sure that

a camera pixel does not always cover the same position between frames.

Several works have been done in this field in order to reduce this problem. At-

tempts have been made to calculate the fingerprints by realigning the frames,

trying to eliminate the effect of video stabilization. For example, aligning mis-

aligned frames using an inverse affine transformation [23].

One element that can be exploited is the fact that typically the first frame of a

video sequence is not subject to stabilization. Starting from this observation, all

the other potentially stabilized frames can be corrected by comparing them with

the first frame of the video [24]. It is also possible not to assume that the first

frame is stabilized (for example the video could be cut) and in that case the frame,

whose noise is more similar to all the others, can be considered as the reference

frame. The comparison between the frames is done considering a correlation func-

tion, for example, Peak-to-Correlation Energy ratio (PCE). The PCE function

measures the correlation between two noises and allows us to identify how much

8 1. State of the art

is the shift needed to maximize the correlation. Applying it between each noise

and the reference noise, it is possible to estimate the geometric transformation

that maximizes the correlation, and which is approximately the one to apply to

reduce the effect of video stabilization. Another possible solution is to eliminate

the noises that are found to have a low correlation with most of the noises present

in the video. This approach could eliminate, for example, noises from frames that

were recorded during a major camera movement.

Another problem is the rotation at which the videos were recorded. For example,

having to estimate a fingerprint of a device having two videos available, it is neces-

sary to be able to recognize the rotation at which they were shot. Otherwise, the

camera pixels do not affect the same coordinate in the two videos. To align the

videos, a fingerprint can be independently calculated for each video and using a

correlation algorithm the rotation that maximizes the value can be determined. Or

another solution is to represent the fingerprint so that it does not vary according

to the rotation [25].

As regards classification and clustering, once the above problems have been solved,

the same approaches used for source camera identification using images can be ap-

plied. For each video it is possible to calculate an approximate fingerprint and

apply the same techniques applied to the images on the individual residual noises.

Another possibility is to build a neural network able to individually classify each

noise of a video [26]. Once a classifier of this kind has been built, the classification

of the individual noises of which it is composed could be considered as video clas-

sification. The most predicted class on all noises can be considered as the model

prediction on the video.

The data sets, on which the problem of camera identification is addressed, are

sometimes composed of native images and videos, namely files directly recorded

and saved on the device. But most of the time, files uploaded to social networks

are examined, to simulate a context of digital forensics, where resources are up-

loaded to the web. The images and videos uploaded to social networks undergo

a compression process that decreases the quality and consequently makes it more

1.4 Source camera identification using videos 9

difficult to identify the device fingerprint. For this reason, many studies concern

content uploaded to social media, such as YouTube [27], WhatsApp and Facebook.

10 1. State of the art

Chapter 2

Video classification and clustering

methods

This chapter addresses the classification and clustering techniques applied in this

thesis project, which revolves around the source camera identification area. Having

available a dataset of videos recorded by cameras of different smartphones, the goal

will be to associate videos from the same smartphone to the same class.

Both techniques, classification and clustering, are machine learning methods, with

some differences. As regards the classification, it is necessary to divide the dataset

into training set and test set. The first training phase will refer to the training

set, which will be used to train a model so that it is able to classify the test set.

Clustering does not involve an initial training phase, and the dataset is clustered

by distance on a multidimensional data plane.

2.1 Path to extract noises and calculate finger-

prints

Actually, the videos will not really be the object on which learning will be done.

In fact, as described in the previous chapter, to address the problem of source

camera identification, reference will be made to the noises extracted from the

videos and fingerprints. This is the path that allows us to obtain residual noises

11

12 2. Video classification and clustering methods

and fingerprints.

1. Resize all videos in the dataset to the same resolution

This step is necessary to ensure that all videos in the dataset have the same

resolution so that they are comparable to each other.

2. Video rotation

If for the same device there are videos recorded in both landscape and por-

trait mode, you need to rotate them so to make sure that the pixels match

between the videos.

3. Frame extraction

In this way a set of frames is obtained from a video. Denoising algorithms

work on objects of this type.

4. Noise extraction

The noise can be extracted directly on all frames or only on some.

5. Fingerprint calculation

You can estimate the fingerprint of the device that recorded a video by

considering the noises extracted. The simplest solution to calculate the fin-

gerprint is to average pixel by pixel of the residual noise.

2.2 Peak-to-Correlation-Energy based classifica-

tion algorithm

Peak-to-Correlation-Energy (PCE) is a function that measures cross-correla-

tion between 2D data arrays. To determine the PCE value of two matrices w1 and

w2 of size m x n it is first necessary to calculate their correlation. The correlation

c(m, n) can be expressed as the inverse 2D Fourier Transform (FT) of the conjugate

product in the frequency domain.

c(m,n) = FT−1{W1(k, l)W
∗
2 (k, l)}

2.2 Peak-to-Correlation-Energy based classification algorithm 13

W1 and W2 represent the 2D Fourier Transform of w1 and w2 respectively. the

output is a correlation plane and will have a point (ipeak, jpeak) where the correla-

tion will be maximum. At this point it is possible to calculate the PCE function

as follows:

PCE =
c(ipeak, jpeak)2∑

i,j c(i, j)
2

In practice, the PCE function compares the point where the plane c has its peak

with the remaining points. The greater the difference, i.e. the higher its peak, the

higher the value of the PCE function will be. Otherwise, the flatter the c plane,

the lower the PCE value will be. The point (ipeak, jpeak) can be considered as

the shift that allows the maximum correlation between the w1 and w2 matrices.

From the point of view of noises, this function is useful as it searches for a pattern

between the two matrices.

Starting from the idea that the pattern between two estimated fingerprints of two

videos recorded by the same device are similar, it is easy to build a classifier.

Having available videos in the training set, it is possible to calculate a single

fingerprint for each class. Fingerprinting between multiple videos can be done in

the same way as calculating a video fingerprint. However, the next chapter of the

thesis will deal with this aspect in detail.

At this point you will have a fingerprint for each class in the training set and a

fingerprint for each video in the test set. Let’s consider F test the fingerprint we

want to classify and F1 ... Fk the fingerprints we have in the training set. The

class predicted by the model will be the one that:

max(i)PCE(Ftest, Fi)

I built a function in MATLAB that behaves in this way and allows to classify all

the elements of the test set.

14 2. Video classification and clustering methods

2.3 Convolutional Neural Network classification

A convolutional neural network (CNN) is a neural network often used in image

classification. In the field of machine learning, a neural network is a computational

model composed of neurons and inspired by a biological neural network. The

advantage these models offer is the ability to classify non-linear patterns that

humans would not be able to recognize. A CNN is characterized by the presence

of convolutional layers that perform a very important job as they extract features

from images through the use of filters. Since it is usually better to use many

elements to train a neural network, it is reasonable to consider noises, rather than

fingerprints, as a dataset. There are many CNN networks already built for the

purpose of classifying images, so we have chosen to use one of them rather than

building one from scratch. After trying several of them, the one that gave the best

results, in terms of classification, is GoogLeNet [29].

type output size depth params

convolution 112x112x64 1 2.7K

max pool 56x56x64 0

convolution 56x56x192 2 112K

max pool 28x28x192 0

inception (3a) 28x28x256 2 159K

inception (3b) 28x28x480 2 380K

max pool 14x14x480 0

inception (4a) 14x14x512 2 364K

inception (4b) 14x14x512 2 437K

inception (4c) 14x14x512 2 463K

inception (4d) 14x14x528 2 580K

inception (4e) 14x14x832 2 840K

max pool 7x7x832 0

inception (5a) 7x7x832 2 1072K

inception (5b) 7x7x1024 2 1388K

avg pool 1x1x1024 0

dropout(40%) 1x1x1024 0

linear 1x1x1000 1 1000K

softmax 1x1x1000 0

Table 2.1: GoogleNet network architecture

2.3 Convolutional Neural Network classification 15

The levels shown in table 2.1 have the following characteristics:

• Convolutionary layer:

A convolutionary layer applies one or more filters to an input matrix. A filter

is usually a small matrix that flows to cover all the input. The scalar product

between the filter and the input window covered by the filter is output. Once

the calculation is done, the filter scrolls by a number of steps determined by

a parameter and the scalar product is repeated until all the input has been

covered.

• Pooling layer:

The pooling layer reduces the size of the input. A window is scrolled on the

input and the maximum value in the window (in the case of max pooling),

or the average value (in the case of average pooling), is produced in output.

• Inception module:

Inception Modules are used to reduce computational complexity and to have

deeper networks. In practice, it allows us to operate convolutions with filters

of different sizes by ordering them so that they work at the same level. Once

these filters are applied, a max pooling operation can be performed and

finally the outputs are concatenated.

• Dropout:

Dropout is a technique that reduces the effect of over fitting and is practiced

by randomly deleting a certain percentage of connections between neurons.

• Linear layer:

Linear layer contains a number of neurons equal to the classes of the dataset.

• Softmax layer:

The final layer is the softmax layer. It uses the softmax function which

outputs a probability distribution that the input drop into each of the classes.

16 2. Video classification and clustering methods

2.3.1 Using the single noise

The network foresees as input images of the size 224-by-224. Noises are usually

larger in size. There are two ways to match the dataset with CNN. It is possible

to resize the images to the size required by the network. Or, on the contrary,

modify the network so that it accepts images of different sizes. The first solution,

unfortunately, makes the images lose information as they have to be resized to a

smaller size. So, the second approach was chosen. To adapt the network to the

input data I added a convolutional layer on top of the network.This layer has been

constructed so as to accept the size of the input images and produce an output

of the size expected from the layer below. In this way, however, a resizing of the

input takes place, but it takes place within the network and all the pixels of the

images can be exploited.

Another problem is that the input noises are in grayscale, while the network ex-

pects RGB images. The added layer also solves this aspect, since it is composed

of three filters. In this way, it produces an output matrix of three channels.

2.3.2 Using the entire video

Once you have built a model that can classify a video noise, it is easy to build a

model for the entire video. A video can be considered composed of several noises.

V = N1 + N2 + ... + Nm

During the classification of a noise Nk, the penultimate layer of the CNN produces

a probability vector Ȳk, which represents the assumed probability from the model

that the noise drops into each class. By adding together the probability vectors,

class by class, we get a final vector and the class with the highest value is the class

assigned by the model to the video.

Of course it is expected that the classification of videos with respect to the clas-

sification of single noise will give better results. This is because considering more

elements could reduce the errors. The longer the video, the more information you

will have and the better the classification. The heterogeneity of the video must

2.3 Convolutional Neural Network classification 17

Figure 2.1: Path of video classification through CNN

also be considered. If the video is static, the first frame will be similar to the last

one and the same will be true for noises. So, in the latter case, if the first noise is

classified it is likely that the whole video will be classified badly.

2.3.3 Using a combination of neural networks

Another possibility is the use of a combination of neural networks to classify a

video. We can train other neural networks as we did in the previous section.

In this case we have chosen to use GoogleNet and two other networks: VGG16

and SqueezeNet. The training of the networks takes place in the usual way. For

classification, each of the networks will output a vector, which represents the prob-

ability that the video falls into each of the classes. By adding class by class of the

three carriers, the class with the greatest weight will be the prediction of the three

CNN system. Using three neural networks could correct mistakes made by a single

network. This improvement could be achieved by creating a single larger neural

network, but the complexity would greatly increase.

Figure 2.2: Path of video classification through three CNN

18 2. Video classification and clustering methods

2.4 Combined Peak-to-Correlation-Energy based

classification algorithm and Convolutional Neu-

ral Network classification

A third classification method can be obtained by combining CNN and PCE classi-

fications. Being two methods that use different techniques for classification, their

combination could combine the advantages of both. The input of the CNN classifi-

cation is noises, while the PCE classification uses fingerprints. This third method,

of course, uses both.

To create this classifier it is sufficient to train the two classifiers separately. To

classify a video V, it is necessary to extract the noises R1 ... Rm and calculate the

fingerprint F. Both models will classify the input elements separately and produce

two probability vectors. At this point, the two vectors can be added class by class

and the class with the highest value can be considered the prediction of this new

model.

Figure 2.3: Path of video classification through PCE and CNN

2.5 Clustering

Clustering is a data analysis technique that is based on dividing data into homo-

geneous groups. By homogeneous group we mean a set of elements that resemble

each other, i.e. that are not far away in a multidimensional space. The belonging

2.5 Clustering 19

of an element to a set depends on its proximity to the set itself. In this technique,

the choice of the metric, that is how the distance between the data is calculated,

has an crucial importance. A relevant difference between the various clustering

techniques is whether the number of clusters into which you want to divide the

data is known. If so, the number of clusters which equals the number of classes in

the dataset provides an important aid to the algorithm. Otherwise the algorithm

must be able to estimate how many classes there are in the dataset. In this case it

will be necessary to indicate some more parameters, such as the distance and the

number of data needed to create a new cluster.

2.5.1 Clustering with known number of cameras

The clustering algorithm with a known number of cameras used is k-medoids. This

method is implemented in MATLAB’s default library and, therefore, it was not

necessary to re-implement it. K-medoids is similar to k-means, whose goal is to

divide the observations into k subsets so that the sum of the distances between the

observations and the center of the cluster to which they are assigned is as small as

possible. The difference is that k-medoids use observations (medoids) as cluster

centers.

There are several algorithms to implement k-medoids. The one used by MATLAB

is called Partitioning Around Medoids (PAM).

The algorithm goes like this:

1. Randomly select k observations as medoids.

2. Assign the closest medoid to each data point.

3. In each cluster, each point o is tested as a potential medoid by checking if

the sum of the distances within the cluster is reduced by using o as a medoid.

If so, o replaces the old Medoid.

4. Repeat step 2,3 until there are no changes in the medoids.

20 2. Video classification and clustering methods

As for the calculation of the distance between two noises, a MATLAB function

called “crosscorr” was used. This function uses Fourier transform to calculate the

correlation between two variables.

2.5.2 Clustering with unknown number of cameras

As for clustering with an unknown number of cameras, a method called “Hybrid

Markov Clustering” (HAL) was used. It was proposed in a doctoral thesis awarded

in Bologna. This method groups fingerprints based on the combination of Hier-

archical and Markov clustering algorithms and on a threshold that is generated

based on the results. The problem with hierarchical clustering is that assigning

data to a cluster cannot be undone. If it is not correct, the error is propagated in

subsequent iterations. HAL method which uses a hybrid approach overcomes this

limitation.

The algorithm follows these steps:

1. At first, each observation is considered a cluster.

2. The dataset is partitioned into small batches.

3. A correlation matrix is calculated for each batch.

4. Cluster Markov is applied to each correlation matrix. The new clusters are

selected and the threshold for joining the clusters is defined.

5. Hierarchical clustering takes place and at the end of the process similar

observations are merged into the same cluster.

6. Repeat 2,3,4,5 until there are no changes in the clusters.

2.6 Evaluation Measures

There are several evaluation measures of classification and clustering models. The

following were used in this project: precision(2.1), recall(2.2), F1-score(2.3), True

Negative Rate(2.4) and False Positive Rate(2.5). In a multiclass classification,

2.6 Evaluation Measures 21

these measures can be defined for each class. Before proceeding with these defini-

tions it is necessary to define other measures.

• True Positive (TP) of class k: It refers to the number of predictions where

the classifier correctly predicts data of class k as being part of class k.

• True Negative (TN) of class k: It refers to the number of predictions where

the classifier correctly predicts data of class not k as not being part of class

k.

• False Positive (FP) of class k: It refers to the number of predictions where

the classifier incorrectly predicts data of class not k as being part of class k.

• False Negative (FN) of class k: It refers to the number of predictions where

the classifier incorrectly predicts data of class k as not being part of class k.

Through these formulas it is possible to define precision(2.1), recall(2.2), F1-

score(2.3), True Negative Rate(2.4) and False Positive Rate(2.5).

Again the formulas are defined for each class.

Precision =
TP

(TP + FP)
(2.1)

Recall =
TP

(TP + FN)
(2.2)

F1 = 2× Precision×Recall

(Precision + Recall)
(2.3)

TNR =
TN

(TN + FP)
(2.4)

FPR =
FP

(FP + TN)
(2.5)

22 2. Video classification and clustering methods

Once the values for each class have been calculated, there are two ways to obtain

the average values for the entire classification. We can consider the average over

all observations (micro average) or the average over the classes (macro average).

The micro average is basically a weighted average on the number of observations

for each class. Having a lot of data available, it is usually preferable to consider the

macro average. For this reason, in this project we have chosen to refer to macro

average.

We define the Random Index (RI) as follows:

RI =
TP + TN

(TP + FP + TN + TP)
(2.6)

For two random classes we can define RI as the mean of RI of those two classes.

We can define the adjusted rand index (ARI):

ARI =
RI −RI

1−RI
(2.7)

And defining as |C| the number of the obtained classes, ĉi denotes the number of

observations with the dominant class label in the cluster ci, and |ci| is the total

number of observations in ci. In this way we can define purity:

Purity =

∑|C|
i=1

|ĉi|
|ci|

|C|
(2.8)

Chapter 3

Noise extraction and fingerprint

calculation

This chapter describes the operations carried out in the thesis project on a dataset

to extract the noises and to estimate the fingerprints. These operations are nec-

essary to obtain the objects that will be classified. In particular, we will refer to

a specific video dataset, called “Vision dataset”, considered the reference in the

area of source camera identification.

In previous works, in the field of camera source identification, there are various

solutions to obtain noises and fingerprints. Most of these solutions, however, refer

to photographs, and therefore can only partially be used for videos. In this the-

sis work several state of the art solutions were evaluated in order to obtain the

approach that gave the best results in terms of classification. To compare two alter-

native solutions, it was decided to evaluate both approaches with the PCE-based

classification and, of course, to choose the one that gave the best results.

3.1 Dataset

The project of this thesis took two datasets into consideration: Vision Dataset

[28], a dataset regarded as the standard in this field and Smart video, a dataset

collected by the University of Bologna. The Vision dataset is made up of both

23

24 3. Noise extraction and fingerprint calculation

photographs and videos, although we will only consider videos. The videos of

the Vision dataset are present in three formats: native, uploaded to WhatsApp

and uploaded to YouTube. Native videos correspond to how videos are stored on

smartphone after being recorded. The other two formats are obtained through

the upload and subsequent download of the same videos on two social platforms.

Uploading videos to social networks involves compressions that decrease the quality

of the video. The presence of this kind of videos is motivated by simulating a more

common scenario where the videos, from which we want to derive the origin, are

downloaded from social networks. All videos were recorded with a rear camera,

each video has a duration of approximately one minute and there is a total of 646

videos for each group (native, WhatsApp and YouTube).

To compare the different methods, it was decided to use only the Vision dataset

composed of native videos. It was decided to divide the dataset into training set

and test set, with a 70-30 ratio.

In the next chapter the results of the datasets composed of the videos uploaded

on social networks and Smart Video will be shown.

The basic steps to extract residual noises and calculate fingerprints from a dataset

are as follows:

1. Rotation of videos to match pixels.

2. Resizing of all the videos to the same resolution.

3. Extraction of frames

4. Exclusion of some frames.

5. Noise extraction.

6. Countering the problem of video stabilization.

7. Noise normalization.

8. Calculation of the estimated fingerprints.

3.1 Dataset 25

ID Brand Model Native resolution WhatsApp resolution YouTube resolution Number of videos

1 Apple iPad 2 1280x720 848x480 1280x720 22

2 Apple iPad mini 1920x1080 848x480 1920x1080 13

3 Apple iPhone 4 1280x720 848x480 1920x1080 19

4 Apple iPhone 4S 1920x1080 800x480 1920x1080 19

5 Apple iPhone 4S 1920x1080 848x480 800x480 18

6 Apple iPhone 5 1920x1080 848x480 1920x1080 17

7 Apple iPhone 5 1920x1080 848x480 1920x1080 18

8 Apple iPhone 5c 1920x1080 848x480 1280x720 37

9 Apple iPhone 5c 1920x1080 848x480 1280x720 19

10 Apple iPhone 5c 1920x1080 848x480 1280x720 15

11 Apple iPhone 6 1920x1080 848x480 1920x1080 19

12 Apple iPhone 6 1920x1080 848x480 1920x1080 19

13 Apple iPhone 6 Plus 1920x1080 848x480 1920x1080 16

14 Asus Zenfone 2 Laser 640x480 848x480 1280x720 19

15 Huawei Ascend G6-U10 1280x720 848x480 1920x1080 18

16 Huawei Honor 5C 1920x1080 848x480 1920x1080 19

17 Huawei P8 GRA-L09 1920x1080 848x480 1920x1080 10

18 Huawei P9 EVA-L09 1920x1080 848x480 1920x1080 13

19 Huawei P9 Lite VNS-L31 1920x1080 848x480 1920x1080 19

20 Lenovo Lenovo P70-A 1280x720 848x480 1920x1080 16

21 LG electronics D290 800x480 848x480 1920x1080 11

22 Microsoft Lumia 640 LTE 1920x1080 848x480 1920x1080 16

23 ePlus A3000 1920x1080 640x480 1280x720 19

24 ePlus A3003 1920x1080 848x480 640x480 19

25 Samsung Galaxy S III 1280x720 848x480 1920x1080 19

26 Samsung Galaxy S III 1280x720 848x480 1920x1080 16

27 Samsung Galaxy S3 1920x1080 848x480 1280x720 19

28 Samsung Galaxy S4 1920x1080 848x480 1920x1080 19

29 Samsung Galaxy S5 1920x1080 848x480 1920x1080 29

30 Samsung Galaxy Tab 3 1280x720 848x480 1920x1080 19

31 Samsung Galaxy Tab A 1280x720 848x480 1920x1080 19

32 Samsung Galaxy Trend Plus 1280x720 848x480 1920x1080 19

33 Sony Xperia Z1 Compact 1920x1080 848x480 1920x1080 19

34 Wiko Ridge 4G 1920x1080 848x480 1280x720 32

35 Xiaomi Redmi Note 3 1920x1080 848x480 1280x720 16

Table 3.1: Characteristics of Vision dataset smartphones

26 3. Noise extraction and fingerprint calculation

3.2 Pre-processing

3.2.1 Rotation of videos to match pixels

A problem in the Vision dataset, and which could be present in any dataset,

concerns the orientation of the video recording. The fingerprint is dependent on

the orientation of the video, and therefore it is necessary to correct their rotation,

in case the videos are recorded with different orientations.

As it can be seen in the image below, a video can be recorded in four different

orientations. Taking the top of the smartphone as a reference point, it is necessary

to rotate it so that the top of the smartphone is in the same direction in all videos.

Of course, it is not fundamental to have all the videos in the dataset aligned to

the same orientation, but only those coming from the same smartphone must have

this requisite. In this way, the fingerprints extracted from videos of the same

smartphone will be comparable.

Figure 3.1: Rotations required to align videos to a single orientation.

Figure 3.1 shows the rotation required to align the videos in the four possible sce-

narios. There are several ways to identify the orientation in which a video was

recorded. Having two videos V1 and V2 it is possible to extract the fingerprint

from both and see with which rotation the two fingerprints have a higher corre-

lation (using for example the PCE function). Actually, in the Vision dataset the

orientation of each video is indicated, and this information was used to evaluate

3.2 Pre-processing 27

the method. In all cases, the rotation that maximizes the correlation was that

indicated in the dataset. Although the orientation was indicated for each video,

we chose to find a method that solves this problem without using this information

to consider a more general case. Another possibility to solve this problem is to

represent the fingerprints in such a way that they are independent of rotation [30].

3.2.2 Resizing of all the videos to the same resolution

Another operation required to make the videos comparable is resizing to the same

resolution. In the vision dataset there are videos recorded with different resolu-

tions, but the videos coming from the same smartphone have the same resolution.

Considering the native dataset there are 4 different resolutions: 1280x720 (HD),

1920x1080 (Full HD), 640x480 and 800x480. A test was carried out to see how the

classification results change when resizing all videos to a single resolution.

Resolution Precision Recall F1 TNR FPR ARI Purity

640x480 0.640 0.639 0.605 0.989 0.010 0.401 0.639

800x480 0.663 0.667 0.628 0.989 0.010 0.428 0.662

HD 0.719 0.741 0.698 0.991 0.008 0.508 0.715

Full HD 0.807 0.824 0.791 0.994 0.006 0.656 0.808

Table 3.2: Comparison considering different frame resizing

As expected, the results showed that scaling to a higher resolution leads to better

classification.

3.2.3 Extraction of frames

A video is made up of a sequence of frames. Although frames may resemble

photographs there are some important differences. In fact, some types of frames

correspond to photographs, but others, which are the majority, contain little in-

formation on how the video evolves. In this way, a compression that drastically

reduces the memory weight of the video occurs.

Most compression algorithms have three types of frames:

28 3. Noise extraction and fingerprint calculation

• I-frame (Intra-coded picture):

An I-frame is a complete image, and can be decompressed without any other

information.

• P-frame (Predicted picture):

A P-frame holds only the changes in the image from the previous frame. To

be decompressed in image it needs the precedent frame.

• B-frame (Bidirectional predicted picture)

A P-frame holds the changes in the image from both the previous frame and

the following frame. To be decompressed in image, it needs the precedent

frame and the following frame.

In an I-frame, also called key frame, there is no compression, while in the other

two, there is compression.

Figure 3.2: The different types of frames

In the figure 3.2, Pac Man images better show the difference between frames. The

P-frame contains only the information on the balls, the Pac Man image comes from

the previous frame. In The B-frame the image comes from the previous frame and

the new ball comes from the next frame.

A program, called FFMpeg, was used to extract the frames. A one-minute video

from the Vision dataset consists of approximately 1500 frames. Of these frames,

8% are I-frames, 66% B-frames and 26% P-frames.

3.2.4 Exclusion of some frames

Considering thousands of frames per video can be very expensive, especially for

the subsequent noise extraction step. For this reason, one may wonder whether

3.2 Pre-processing 29

it is possible to give up on some frames. The first consideration to be made is to

observe whether we can limit ourselves to considering I-frames. This is because

the decompression of P-frames and B-frames uses the data coming from the key-

frames and, therefore, the decompressed images closely resemble those obtainable

from the key-frames. Furthermore, I-frames are much less present than other types

of frames, about one in thirty, and limiting ourselves to considering them would

allow us to greatly reduce the computational calculation.

Frames considered: Precision Recall F1 TNR FPR ARI Purity

I-frames 0.807 0.824 0.791 0.994 0.006 0.656 0.808

I-frames, P-frames 0.807 0.824 0.791 0.994 0.006 0.656 0.808

I-frames, P-frames, B-frames 0.807 0.824 0.791 0.994 0.006 0.656 0.808

Table 3.3: Comparison considering different types of frames

The table shows the same results for all configurations. This can lead us to limit

ourselves to key-frames only. To extract the key-frames, the FFMpeg program has

always been used with a specific flag to indicate the type of frame to extract.

Furthermore, saturated and dark images are not useful for calculating the fin-

gerprint and can be eliminated. The value of each pixel in a grayscale image is

between 0 and 255, where 0 represents black and 255 represents white. A satu-

rated image can be defined as an image that has a given percentage of k pixels

with at least a value above a threshold. The choice of threshold and number of

pixels determines how strict we are in judging a saturated an image as saturated.

Similarly, we can define a dark image.

Figure 3.3: Example of a saturated and dark image

Using a part of the training set as a training set we determined the parameters

30 3. Noise extraction and fingerprint calculation

that allowed to consider the frames saturated or dark and to eliminate them. The

best result was obtained by eliminating the frames that have 81% of the pixels

below 41 and those that have 25% of the pixels above 249.

Method Precision Recall F1 TNR FPR ARI Purity

Without elimination of saturated and dark frames 0.773 0.785 0.752 0.993 0.006 0.573 0.773

Elimination of saturated and dark frames 0.807 0.824 0.791 0.994 0.006 0.656 0.808

Table 3.4: Comparison considering elimination of dark and saturated frames

3.2.5 Noise extraction

The reference algorithm for the extraction of image noises is BM3D in the field of

source camera identification. This algorithm can also be applied to single video

frames as well as to photographs. Working with videos, we also have other algo-

rithms such as V-BM4D which also exploit the temporal dimension of the frames

in the noise extraction.

Figure 3.4: Comparison of residual noises using BM3D and V-BM4D

Since the extraction time with the V-BM4D algorithm is very long, in the order of

tens of hours for a one-minute video, in order to make the comparison between the

two extraction techniques, it was decided to use another dataset on the residual

noises extracted with V-BM4D which were already available. The extraction of

3.2 Pre-processing 31

noises on that dataset was carried out in another thesis work of the University of

Bologna. The dataset is a part of the one collected by the University of Bologna.

ID Brand Model Video Resolution Number of videos

1 Huawei P9 Lite Huawei VNS-L31 1920x1080 20

2 LG Nexus 5 1920x1080 20

3 LG Nexus 5 1920x1080 20

4 motorola moto g2 1280x720 20

5 Apple iPhone SE 3840x2160 20

Table 3.5: Composition of the dataset used to compare BM3D and V-BM4D

The table below shows the comparison results. While the results can be compro-

mised by a rather small data set, they are clear enough. This comparison prompted

us to use BM3D extraction also in the case of the Vision dataset.

Noise extraction method Precision Recall F1 TNR FPR ARI Purity

V-BM4D 0.766 0.760 0.753 0.941 0.058 0.449 0.760

BM3D 0.920 0.926 0.909 0.981 0.018 0.813 0.920

Table 3.6: Comparison between different noise extraction techniques

3.2.6 Counter the problem of video stabilization

About half of the devices in the vision dataset, 16 out of 35, have video stabi-

lization. This effect correcting the flickering of the shot means it is not always

the same pixel of the camera that captures the same portion of the image in the

succession of frames. So, this makes it harder to find the device fingerprint in the

residual noise.

32 3. Noise extraction and fingerprint calculation

Figure 3.5: Comparison between unstabilized(a) and stabilized(b) video

Figure 3.5 shows that in the absence of stabilization, the coordinates of the pixels

in the images remain the same, while with stabilization they can change, through

transformations such as translation, scale and rotation.

There are three ways to overcome this obstacle:

• Ignoring video stabilization and proceeding as if it was not there. The fin-

gerprint calculation is done as a simple average of the residual noises.

• Recognizing and eliminating the frames the most subject to video stabiliza-

tion. The fingerprint is the sum of the remaining noises.

• Making geometric transformations to the frames in order to try to cancel the

effect of stabilization. The fingerprint occurs as the sum of the noises after

they have undergone the transformations.

To recognize the frames most subject to the effect of video stabilization, it is

possible to evaluate the correlation between the noise of the first frame of a video

and the following ones. Low correlation may indicate strong stabilization. The first

frame is taken as a reference as it is not subject to stabilization: if the video was

cut and the first frame was not available, the frame that has the highest correlation

with all the others could be taken as a reference. In order to do this I wrote a

program that simply calculates the correlation between noises and considers a noise

in the fingerprint calculation only if the correlation reaches a certain k value.

3.2 Pre-processing 33

Deleting frames with PCE below Precision Recall F1 TNR FPR ARI Purity

0 (no frames deleted) 0.598 0.637 0.588 0.989 0.01 0.45 0.668

5 0.692 0.721 0.676 0.99 0.009 0.508 0.703

10 0.807 0.824 0.791 0.994 0.006 0.656 0.808

20 0.779 0.807 0.763 0.993 0.006 0.604 0.779

30 0.715 0.744 0.694 0.991 0.008 0.531 0.720

Table 3.7: Comparison of different thresholds to eliminate stabilized frames

Similarly, we can determine what geometric transformations are needed to maxi-

mize correlation and then apply them to try to eliminate the effect of video corre-

lation.

As a correlation function we have chosen to use the PCE function. To follow the

third approach, a program available on GitHub [31] and described in a paper was

used. That program allows us to calculate the fingerprint by performing geometric

operations such as shifts, rotations and scaling on residual noises.

The following table presents the results of the three methods listed above. The

second method eliminates the frames that have a PCE value (calculated with the

first frame) lower than 10, as it was the best threshold. The third method corrects

the video stabilization by making geometric transformations.

Method Precision Recall F1 TNR FPR ARI Purity

Ignore video stabilization 0.655 0.701 0.647 0.989 0.011 0.421 0.655

Elimination of more stabilized frames 0.807 0.824 0.791 0.994 0.006 0.656 0.808

Correct the stabilization 0.688 0.736 0.672 0.990 0.009 0.464 0.680

Table 3.8: Comparison of different methods to manage video stabilization

The table shows that the second way, that is the one which consists in eliminat-

ing the frames more subject to stabilization, produces the best results. Applying

geometric transformations probably alters frames too much and goes beyond cor-

recting video stabilization.

34 3. Noise extraction and fingerprint calculation

3.2.7 Noise normalization

The extracted residual noises have a brightness dependent on the frame from which

they are extracted. As brightness we can consider the average value of the intensity

of the pixels in an image. The different brightness between the noises can be used

as a characteristic on which the classification takes place. However, this feature

is determined more by the brightness of the video than by the fingerprint of the

device that recorded the video. What has been done to eliminate this factor is to

apply a normalization to the noises.

Given a noise R, we define a pixel of coordinates (x, y) as R (x, y). Given that

the intensity of a pixel is in a range between 0 and 255, the average value is 127.5.

Furthermore, we consider AVG the average of the intensity of all pixels of N. We

can apply this formula on each pixel of the normalized noise N’:

N ′(x, y) = 127, 5 + (N(x, y)− AV G) (3.1)

Applying this formula to all noises in the dataset, they will have the same average

intensity. In this way, the difference in brightness will no longer be considered a

characteristic on which the classification takes place. Whereas, the aspect on which

the classification must take place, determined by the fingerprints of the cameras,

i.e. the difference in intensity between the pixels of the noises, is maintained.

Now let’s see how the classification changes by performing the noise normalization.

Normalization Precision Recall F1 TNR FPR ARI Purity

no 0.771 0.792 0.76 0.993 0.006 0.612 0.779

yes 0.807 0.824 0.791 0.994 0.006 0.656 0.808

Table 3.9: Comparison between the use and non-use of normalization.

As we can see, normalization allows for slightly better results.

3.3 Fingerprint calculation 35

3.3 Fingerprint calculation

To estimate the fingerprint of a series of photographs, it is sufficient to make the

average, pixel by pixel, of the residual noise of the photographs. To do it in a video

there are a few more possibilities. We can proceed as in the case of photographs,

but also with more sophisticated approaches.

Using the PCE function it is possible to determine the shift that maximizes the

correlation between two images.

Figure 3.6: Shift that maximizes the correlation between two images

In the same way it is possible to determine the shift that maximizes the correla-

tion between two noises. By doing this, we can try to correct the effect of video

stabilization. The problem with this operation is that by shifting a noise, a part

of it will not fit into the image frame, as seen in image 3.6. It is possible to solve

this problem by adding a black frame around each noise, which will allow us to

perform shifts while keeping the noise within the frame.

36 3. Noise extraction and fingerprint calculation

Figure 3.7: Shifting to the right does not take the image out of the frame

Three different ways of calculating video fingerprints were evaluated:

• fingerprint calculation as an average of the noises (a).

• fingerprint calculation as an average of the shifted noises to correct the video

stabilization (b).

• fingerprint calculation as the average of the shifted noises, with the addition

of a frame (c).

Figure 3.8: Different methods of calculating the estimated fingerprints

3.3 Fingerprint calculation 37

fingerprint calculation method Precision Recall F1 TNR FPR ARI Purity

Method a 0.807 0.824 0.791 0.994 0.006 0.656 0.808

Method b 0.763 0.78 0.74 0.992 0.007 0.555 0.761

Method c 0.801 0.815 0.782 0.994 0.006 0.642 0.801

Table 3.10: Comparison of different techniques for calculating fingerprints

The results show that using the simple average to calculate the fingerprint is the

best solution.

38 3. Noise extraction and fingerprint calculation

Chapter 4

Experimental results

This chapter shows the classification and clustering results in the context of source

camera identification. Two datasets were used: Vision dataset, the dataset consid-

ered the reference in this area, and Smart Video dataset, collected by the University

of Bologna. In reality, the Vision dataset consists of native videos and videos up-

loaded to YouTube and WhatsApp.

The pre-processing procedures seen in chapter 3 will be applied to each dataset.

The classification and clustering techniques are presented in chapter 2.

4.1 Results on Vision’s native dataset

This dataset was the one taken as a reference in the choice of pre-processing

operations to be performed on the videos before classification and clustering. The

tables below show the results of classification and clustering with the techniques

described in the previous chapters.

Considering Precision Recall F1 TNR FPR ARI Purity

PCE 0.807 0.824 0.791 0.994 0.006 0.656 0.808

CNN 0.817 0.831 0.810 0.994 0.005 0.671 0.813

Combination of three CNN 0.866 0.880 0.864 0.996 0.003 0.740 0.866

PCE + CNN 0.879 0.896 0.876 0.996 0.003 0.771 0.877

Table 4.1: Classification on Vision’s native dataset

39

40 4. Experimental results

The results in Table 4.1 are similar for the first two classification techniques, while

they are better using the two methods combined.

Considering Precision Recall F1 TNR FPR ARI Purity

k-medoids 0.266 0.705 0.386 0.972 0.028 0.358 0.407

HAL 0.541 0.496 0.517 0.987 0.013 0.503 0.536

Table 4.2: Clustering on Vision’s native dataset

As it can be seen, the results obtained with the classification techniques are better

than those obtained with clustering techniques. This can be explained by the fact

that the classification includes a training phase, while clustering does not.

4.2 Results on Vision’s YouTube dataset

It is also interesting to consider datasets composed of videos uploaded on social

networks. In this case Vision’s YouTube dataset is made up of the same videos

from the native dataset with the difference that these videos have been uploaded,

and subsequently downloaded, from YouTube. Following these steps, the videos

undergo compression operations that significantly reduce resolution and quality.

Considering Precision Recall F1 TNR FPR ARI Purity

PCE 0.492 0.520 0.455 0.985 0.014 0.306 0.548

CNN 0.645 0.676 0.637 0.989 0.01 0.467 0.682

PCE + CNN 0.671 0.694 0.658 0.991 0.009 0.509 0.695

Table 4.3: Classification on Vision’s YouTube dataset

Considering Precision Recall F1 TNR FPR ARI Purity

k-medoids 0.052 0.331 0.081 0.794 0.202 0.085 0.094

HAL 0.168 0.151 0.159 0.955 0.45 0.136 0.167

Table 4.4: Clustering on Vision’s YouTube dataset

4.3 Results on Vision’s WhatsApp dataset 41

By performing the classification and clustering techniques on the same videos, but

uploaded to a social network, the performance drops significantly. In particular,

the results of clustering have significantly deteriorated.

4.3 Results on Vision’s WhatsApp dataset

In this case the dataset is made up of videos uploaded and downloaded from

WhatsApp.

Considering Precision Recall F1 TNR FPR ARI Purity

PCE 0.513 0.557 0.493 0.985 0.014 0.328 0.543

CNN 0.534 0.618 0.530 0.986 0.013 0.317 0.567

PCE + CNN 0.548 0.629 0.545 0.987 0.012 0.360 0.590

Table 4.5: Classification on Vision’s WhatsApp dataset

Considering Precision Recall F1 TNR FPR ARI Purity

k-medoids 0.070 0.457 0.131 0.824 0.176 0.075 0.141

HAL 0.230 0.111 0.150 0.964 0.036 0.140 0.172

Table 4.6: Clustering on Vision’s WhatsApp dataset

In this case, the performance is even worse than the YouTube dataset, as the

compression carried out on WhatsApp is even stronger.

42 4. Experimental results

4.4 Results on Smart Data dataset

The dataset in question consists of about 520 videos, recorded by some students of

the University of Bologna who collaborated in the creation of the dataset. Videos

were recorded from 13 devices. For each device there are 20 videos recorded with

the rear camera and 20 with the front camera. All videos are native, i.e. they have

not been uploaded to social platforms.

ID Brand Model Front Camera Rear Camera

1 Samsung Galaxy Core Prime 640x480 1280x720

2 Huawei VNS-L31 1280x720 1920x1080

3 LG Nexus 5x 1920x1080 1920x1080

4 LG Nexus 5 1280x720 1920x1080

5 OnePlus OnePlus 3 1920x1080 1920x1080

6 LG X screen 1920x1080 1920x1080

7 LG Nexus 5 1280x720 1920x1080

8 Apple iPhone 7 1920x1080 3840x2160

9 Nokia 635 absent 1280x720

10 One Plus One Plus 3 1920x1080 1920x1080

11 motorola moto g2 1280x720 1280x720

12 Apple iPhone SE 1280x720 3840x2160

13 meizu mx4 1920x1080 3840x2176

Table 4.7: Characteristics of Smart Video dataset smartphones

4.5 Comparison with other studies 43

Only videos recorded with the rear camera were considered in the tests.

Considering Precision Recall F1 TNR FPR ARI Purity

PCE 0.884 0.904 0.889 0.990 0.009 0.753 0.884

CNN 0.926 0.935 0.927 0.993 0.006 0.843 0.926

PCE + CNN 0.938 0.946 0.939 0.994 0.005 0.864 0.938

Table 4.8: Classification on Smart Data dataset

The performance on this dataset is in line with the Vision native dataset, consid-

ering the different number of devices.

4.5 Comparison with other studies

In the field of source camera identification there are several studies done on pho-

tographs and a few carried out on videos. Almost all of the studies on videos are

concerned with showing the correlation between the fingerprints extracted from

two videos rather than classifying the videos of an entire dataset. In December

2020, a paper was published proposing the use of a neural network for the classifi-

cation of the videos of the Vision dataset[32]. The study has some similarities with

the work done in this thesis: in both works the neural network classifies the single

frames of the videos, and the most predicted class for frames is the prediction

of the video. But there are also some imported differences: the paper classifies

the frames directly, while our work classifies the noise extracted from the frames.

Furthermore, the paper does not consider some aspects such as video stabilization

or the choice of which frames to use.

In order to make a comparison between the two methods, I repeated the classifica-

tion under the conditions described in the article. Taking the native Vision dataset

as a reference, considering only 28 devices out of 35 available and maintaining a

training-test split of 55-45. The method proposed by the paper shows an accuracy

of 66.5%, while the classification method by CNN proposed in this thesis has an

accuracy of 82.3%. Probably, the greatest difference is given by the classification

44 4. Experimental results

made on the noises extracted from the frames rather than directly on the frames.

However, this comparison justifies the effectiveness of the model proposed in this

thesis.

Conclusions

This thesis focused on the field of video source camera identification. In particular,

classification and clustering techniques are proposed in order to group videos from

the same device into the same class. This association occurs thanks to the fact

that each device leaves its own fingerprint in the contents it records, in the form

of noise. The noise represents that part of the image that does not depend on the

photographed or recorded object, but on the fingerprint and some other random

factors as well. Once we have extracted noises from the videos (typically a noise

for each frame of the video), we can try to estimate the fingerprint of the device

starting from the noises and trying to eliminate the random component that does

not depend on the fingerprint.

A significant part of the work is dedicated to finding the best way to extract

the noises from each video and calculate the fingerprint. To do this, the various

approaches present at the state of the art are evaluated through a classification

algorithm and the one that gave the best results is chosen.

Once the noises and the fingerprints are obtained, the classification and cluster-

ing algorithms can be applied. As regards the classification, three techniques are

proposed. One is based on a correlation function between images, called Peak

to Correlation Energy (PCE). The correlation between the video test fingerprint

and the training video fingerprint is calculated and the class showing the highest

value will be the predicted class. Another classification technique is based on the

convolutional neural network. The network is trained on the noises of the training

set videos. To predict the class of a video it is necessary to predict the class of

all the noises that make up the video. The most predicted class will correspond

45

46 Conclusions

to the class attributed to the video. A similar technique was presented in a paper

in December 2020 and the one proposed in this thesis shows better results. The

latest classification technique combines classification with CNN and with PCE and

is found to be the one that produces the best results.

Two clustering techniques are applied, one that does not know the number of

classes present and another that knows them. The first technique was proposed in

a doctoral thesis of the University of Bologna in the field of source camera identi-

fication of photographs, and has therefore been adapted to work on videos. The

second is an algorithm natively present on the MATLAB platform. Classification

results are better than clustering probably because clustering does not include a

training phase.

Two datasets are used: Vision, the dataset considered the reference in this field of

study, and Smart Data, a dataset collected by the University of Bologna. Vision

also includes videos uploaded to two social platforms: You-

Tube and WhatsApp. The videos uploaded to social networks are compressed and

therefore lose information, but this aspect can help us simulate a real scenario of

digital forensics in which the videos are downloaded from the web.

This work could be expanded by building a classification system that combines

videos and photographs. In this way both multimedia contents would be exploited,

and it would certainly be interesting from a forensic point of view. Having more

computational power available, it would also be possible to build more complex

neural networks that would probably give better results.

Appendix A

Source code for classification

In this appendix we find the codes, written in MATLAB language, used for clas-

sification by PCE, with the convolutional network and with both approaches.

A.1 Classification with Peak to Correlation En-

ergy

The first function calculates the PCE correlation between two fingerprints. The

function takes as input two fingerprints, x and y, calculates the correlation ma-

trix between the two, and passes the matrix to the library function PCE which

determines the correlation PCE. The returned value y will be the numeric value

expressing the PCE correlation.

1 function y = PCEVALUE(x , z)

2 C = c r o s s c o r r (x , z) ;

3 de t e c t i on = PCE(C) ;

4 y = de t e c t i on .PCE;

5 end

The Fingerprint Comparison function uses the PCEVALUE function to compare a

47

48 A Source code for classification

test fingerprint with all other training fingerprints. Each time a correlation is com-

puted it is added to the FingCom array and is eventually restored after changing

the absolute values of the correlation with the relative values of each pair relative

to the others.

1 function FingCom = FingerprintComparison (t ra in , t e s t)

2 t e s t img = imread (s t r c a t (t e s t)) ;

3

4 FingCom = [] ;

5 f i l e s = dir (t r a i n) ;

6 d i rF l ag s = [f i l e s . i s d i r] ;

7 subFolders = f i l e s (d i rF l ag s) ;

8

9 for k=3: length (subFolders)

10 f i l e s 2 = dir (s t r c a t (t ra in , subFolders (k) . name)) ;

11 t ra in img = s t r c a t (t ra in , ” ” , subFolders (k) . name , ”\” ,
f i l e s 2 (3) . name) ;

12 t ra in img = imread (t ra in img) ;

13

14 y = PCEVALUE(tra in img , t e s t img) ;

15 FingCom = [FingCom y] ;

16 end

17

18 to t = sum (FingCom) ;

19 FingCom = arrayfun (@(x) (x/ to t) ∗100 , FingCom) ;

20

21 end

Finally, the PCE classification function that iterates over all the videos in the test

set and saves the predicted class and the correct class in an array for each one.

A.1 Classification with Peak to Correlation Energy 49

1 function [y va l , y pred] = PCE c l a s s i f i c a t i o n (t ra in , t e s t)

2 y va l = [] ;

3 y pred = [] ;

4

5 f i l e s = dir (t e s t) ;

6 d i rF l ag s = [f i l e s . i s d i r] ;

7 subFolders = f i l e s (d i rF l ag s) ;

8

9 for k = 3 : length (subFolders)

10

11 path2 = s t r c a t (t e s t , subFolders (k) . name , ”\”) ;

12 f i l e s 2 = dir (path2) ;

13 d i rF lag s2 = [f i l e s 2 . i s d i r] ;

14 subFolders2 = f i l e s 2 (d i rF l ag s2) ;

15

16 for kk = 3 : length (subFolders2)

17

18 t e s t 2 = s t r c a t (t e s t , subFolders (k) . name ,”\” ,

subFolders2 (kk) . name , ”\ f i n g e r p r i n t . png ”) ;
19 FingCom = con f r on toF inge rp r in t (t ra in , t e s t 2) ;

20

21 [, p r ed i c t ed] = max(FingCom) ;

22

23 y va l = [y val , str2num(subFolders (k) . name)] ;

24 y pred = [y pred , p r ed i c t ed] ;

25 end

26 end

27 end

50 A Source code for classification

A.2 Classification with Convolutional Neural Net-

work

The following code allows us to train the convolutional neural network with the

noises extracted from the videos. In this way, a model is built that can predict

which device a single noise belongs to.

1 imds = imageDatastore (’D:\ Dataset Native \ t r a i n \ ’ , ’
I n c ludeSub fo ld e r s ’ , true , ’ LabelSource ’ , ’ fo ldernames ’ , ’

F i l eExten s i on s ’ , ’ . t i f f ’) ;

2 imds t e s t = imageDatastore (’D:\ Dataset Native \ t e s t \ ’ , ’
I n c ludeSub fo ld e r s ’ , true , ’ LabelSource ’ , ’ fo ldernames ’ , ’

F i l eExten s i on s ’ , ’ . t i f f ’) ;

3

4 augimdsTrain = augmentedImageDatastore ([1080 1920] , imds) ;

5 augimdsVal idat ion = augmentedImageDatastore ([1080 1920] ,

imds t e s t) ;

6

7 miniBatchSize = 2 ;

8 valFrequency = f loor (numel (augimdsTrain . F i l e s) /miniBatchSize) ;

9

10 opt ions = tra in ingOpt ions (’ sgdm ’ , . . .

11 ’ ExecutionEnvironment ’ , ’ gpu ’ , . . .

12 ’ MiniBatchSize ’ , miniBatchSize , . . .

13 ’MaxEpochs ’ ,30 , . . .

14 ’ I n i t i a lL ea rnRat e ’ ,3 e−4, . . .

15 ’ S hu f f l e ’ , ’ every−epoch ’ , . . .

16 ’ Val idat ionData ’ , augimdsVal idation , . . .

17 ’ Val idat ionFrequency ’ , valFrequency , . . .

18 ’ Verbose ’ , f a l s e , . . .

19 ’ s h u f f l e ’ , ’ every−epoch ’ , . . .

20 ’ P lo t s ’ , ’ t r a in ing−prog r e s s ’ , . . .

21 ’ CheckpointPath ’ , ’D:\ CheckPoint\ ’) ;

22

Classification with PCE plus CNN 51

23

24 TrainedNetVis ionDataset = trainNetwork (augimdsTrain , lgraph 2 ,

opt ions) ;

Once we have built a classifier for individual noises it is easier to build one for the

entire video. Function CNN video classification does that: it takes as input the

directory containing the noises of a video and the already trained CNN network.

Following the prediction of the model, for each noise a vector is produced which

represents the probability that the noise is part of each of the classes of the dataset.

We add up the vectors of each noise and we obtain the probability that the video

is part of each class.

1 function y pred = CNN v id eo c l a s s i f i c a t i on (t e s t path ,

TrainedNetNoise)

2

3 F i l e s=dir (path) ;

4 nElements = length (F i l e s) ;

5

6 imds va l = imageDatastore (t e s t path , ’ I n c ludeSub fo ld e r s ’ ,

true , ’ LabelSource ’ , ’ fo ldernames ’ , ’ F i l eExten s i on s ’ , ’ . png

’) ;

7 imds va l = augmentedImageDatastore ([1080 1920] , imds va l) ;

8 y pred = pr ed i c t (TrainedNetNoise , imds va l) ;

9

10 y pred = (sum (y pred (1 : nElements , :))) ;

11 to t = sum (y pred) ;

12 S = arrayfun (@(x) (x/ to t) ∗100 , y pred) ;

13

14 end

52 A Source code for classification

A.3 Classification with Peak to Correlation En-

ergy plus Convolutional Neural Network

Once built a classifier that uses the PCE function and one that uses a neural net-

work, it is enough have to join them to build a third one. It is needed to take

the vector of predictions produced by the first method and add it to the vector

obtained by the second method and normalize it. In this way the two predictions

are considered equally.

1 function [y va l , y pred] = PCEplusCNN class i f i cat ion (t ra in ,

f i n g e r p r i n t t e s t , n o i s e t e s t)

2 y va l = [] ;

3 y pred = [] ;

4

5 f i l e s = dir (t e s t) ;

6 d i rF l ag s = [f i l e s . i s d i r] ;

7 subFolders = f i l e s (d i rF l ag s) ;

8

9 for k = 3 : length (subFolders)

10

11 path2 = s t r c a t (t e s t , subFolders (k) . name , ”\”) ;

12 f i l e s 2 = dir (path2) ;

13 d i rF lag s2 = [f i l e s 2 . i s d i r] ;

14 subFolders2 = f i l e s 2 (d i rF l ag s2) ;

15

16 for kk = 3 : length (subFolders2)

17

18 t e s t 2 = s t r c a t (f i n g e r p r i n t t e s t , subFolders (k) . name

,”\” , subFolders2 (kk) . name , ”\ f i n g e r p r i n t . png ”) ;
19 t e s t 3 = s t r c a t (n o i s e t e s t , subFolders (k) . name , ”\” ,

subFolders2 (kk) . name , ”\”) ;

20

Classification with PCE plus CNN 53

21 ResultsPCE = PCE c l a s s i f i c a t i o n (t ra in , t e s t 2) ;

22 ResultsCNN = CNN v id eo c l a s s i f i c a t i on (te s t3 ,

TrainedNetNoise) ;

23

24 for k=1: s ize (ResultsPCE , 2)

25 x = (ResultsPCE (k)+ResultsCNN(k)) ;

26 Resu l t s = [Results , x] ;

27 end

28

29 to t = sum (Resu l t s) ;

30 Resu l t s = arrayfun (@(x) (x/ to t) ∗100 , Resu l t s) ;

31 [M, I] = max(Resu l t s) ;

32

33 [, p r ed i c t ed] = max(FingCom) ;

34 y va l = [y val , str2num(subFolders (k) . name)] ;

35 y pred = [y pred , p r ed i c t ed] ;

36

37 end

38 end

39 end

54 A Source code for classification

Appendix B

Code for pre-processing

operations

This appendix presents the code used to extract noises from videos and calculate

fingerprints.

B.1 Video rotation and resizing

The code below is needed to rotate the videos in order to have the same orienta-

tion. This is necessary as the fingerprint is dependent on the video orientation and

you cannot compare fingerprints from videos with different orientations. In the

Vision dataset there is a file called Orientations.csv which contains the orientation

at which each video was recorded. The following program reads this information

and applies reverse rotation to return a video to its default orientation. Another

operation that the code does is to resize each video to a fixed size (full HD).

1 o r i e n t a t i o n s = readtab l e (’ Or i en ta t i on s . csv ’) ;

2 path = ”V i s i o n no i s e s \” ;
3 f i l e s = dir (path) ;

4 d i rF l ag s = [f i l e s . i s d i r] ;

5 subFolders = f i l e s (d i rF l ag s) ;

55

56 B Source code for classification

6

7 for k = 3 : length (subFolders)

8

9 path2 = s t r c a t (path , subFolders (k) . name , ”\”) ;
10 f i l e s 2 = dir (path2) ;

11 d i rF lag s2 = [f i l e s 2 . i s d i r] ;

12 subFolders2 = f i l e s 2 (d i rF l ag s2) ;

13

14 for kk = 3 : length (subFolders2)

15

16 name = subFolders2 (kk) . name ;

17 u = (t (strcmp (o r i e n t a t i o n s . FileName , name) , :)) ;

18 ro t = (u . Rotation) ;

19

20 i f (ro t ˜=0)

21 path3 = s t r c a t (path2 , subFolders2 (kk) . name , ”\”) ;
22 f i l e s 3 = dir (path3) ;

23 d i rF lag s3 = [f i l e s 3 . i s d i r] ;

24

25 path4 = s t r c a t (path3 , ”\key−frames \”) ;
26 f i l e s 4 = dir (path4) ;

27

28 for kkk=3: length (f i l e s 4)

29 path5 = s t r c a t (path4 , f i l e s 4 (kkk) . name) ;

30 I = imread (path5) ;

31 I = imrotate (I , r o t) ;

32 I = imr e s i z e (I , [1920 1080]) ;

33 imwrite (I , path5) ;

34 end

35 end

36 end

37 end

B.2 Extraction of key frames from a video 57

B.2 Extraction of key frames from a video

The following cmd command uses the FFmpeg library to extract keyframes from

a video.

1 f fmpeg −sk ip f rame nokey − i ” v ideo .mp3” −vsync 0 −f rame pts

t rue ” frame−%02d . png”

B.3 Removal of saturated and dark frames

The ImageIsNotDarkOrSaturated function is used to determine if an image is

saturated, dark or not according to some given parameters. If the image has a

percentage greater than perc1 of pixels below an underbound threshold or a per-

centage greater than perc2 of pixels above the overbound threshold, the image is

considered dark and saturated, respectively. The function therefore allows us to

determine which frames can be eliminated as they are not useful for classifications,

because they are compromised by too high or too low brightness of the image.

1 function ok = ImageIsNotDarkOrSaturated (img , underbound , perc1 ,

overbound , perc2)

2 img = imread (img) ;

3 img = rgb2gray (img) ;

4 Dark = 0 ;

5 White = 0 ;

6 X = s ize (img , 1) ;

7 Y = s ize (img , 2) ;

8 t o t p i x e l = X∗Y;

9

10 for x=1:X

11 for y=1:Y

12 % reve r s e

13 i f (img (x , y) > underbound)

58 B Source code for classification

14 Dark = Dark + 1 ;

15 end

16 i f (img (x , y) < overbound)

17 White = White + 1 ;

18 end

19 end

20 end

21

22 v1 = (perc1 /100) ;

23 v2 = (perc2 /100) ;

24 LIMIT1 = t o t p i x e l ∗v1 ;

25 LIMIT2 = t o t p i x e l ∗v2 ;

26

27 i f (LIMIT1 > Dark && LIMIT2 > White)

28 ok = 1 ;

29 else

30 ok = 0 ;

31 end

32

33 end

B.4 Noise extraction

The noise extraction function extracts the noises from a series of frames given in

input. Inside the code, the BM3D function is called which returns the image with

the noise removed. To get the noise, it is enough to calculate the difference be-

tween the original image and the clean image.

1 function No i s e ex t r a c t i on (input , output , output2 , v ideo)

2

3 S = dir (f u l l f i l e (input , ’ ∗ . png ’)) ;

4

B.5 Removal of highly stabilized frames 59

5 for k = 1 : numel (S)

6 F = f u l l f i l e (input , S (k) . name) ;

7 IMG = imread (F) ;

8 IMG = rgb2gray (IMG) ;

9

10 [A, y e s t] = BM3D(1 ,IMG,4 , ’ p r o f i l e ’ , ’ l c ’) ;

11 rn = im2double (IMG)−y e s t ;

12 rn = mat2gray (rn) ;

13

14 A = NoiseExtractFromImage (IMG, 2) ;

15

16 imwrite (rn , s t r c a t (output , ’ \ ’ , e r a s e (video , ”mp4”) , S (k) .

name)) ;

17 imwrite (A, s t r c a t (output2 , ’ \ ’ , e r a s e (video , ”mp4”) , e r a s e

(S(k) . name , ’ t i f f ’) , ’ . jpg ’)) ;

18 end

19

20 end

B.5 Removal of highly stabilized frames

The Elimination stabilized frames function only saves those frames that have a

correlation (measured by the PCE function) greater than 10 respect to the first

frame (considered the reference as the first frame of a video is not usually subject

to stabilization). The value of 10 was chosen as it was found to be the best thresh-

old for eliminating a frame in terms of the classification results. Furthermore, if

the video is cut, we can consider as a reference not the first frame, but the frame

that shows a higher correlation with all the others.

60 B Source code for classification

1 function E l im i n a t i o n s t ab i l i z e d f r ame s (frames , no i s e s , output)

2

3 addpath (genpath (’ CameraFingerprint ’)) ;

4 n frames = s ize (frames , 3) ;

5

6 %cons ide r ing the f i r s t frame as r e f e r ence

7 r e f e r en c e f r ame = frames (1) ;

8 r e f e r e n c e n o i s e = no i s e s (1) ;

9 imwrite (r e f e r e n c e n o i s e , s t r c a t (output , ”\ frame1 . t i f f ”))

10

11 for k=2: n frames

12

13 C = c r o s s c o r r ((r e f n o i s e .∗ double (frames (k))) , n o i s e s (k)) ;

14 de t e c t i on = PCE(C, s ize (r e f e r e n c e n o i s e)−1) ;

15 PCEvalue= de t e c t i on .PCE;

16

17 i f (PCEvalue>10)

18 imwrite (n o i s e s (k) , s t r c a t (output , ”\ frame ” , num2str(k) ,

” . t i f f ”))

19 end

20

21 end

B.6 Noise normalization

The Image Normalization function receives an image as input and returns the

same normalized. This is done by calculating the average of the pixel intensity

and updating the value of each pixel in relation to the average.

B.7 Fingerprint calculation 61

1 function img = ImgNormalization (img)

2

3 dim1 = s ize (img , 1) ;

4 dim2 = s ize (img , 2) ;

5 avg = sum(img , ’ Al l ’) /(dim1∗dim2) ;

6

7 for k=1:dim1

8 for kk=1:dim2

9 img (k , kk) = (255/2) +(img (k , kk) − avg) ;

10 end

11 end

12 end

B.7 Fingerprint calculation

The GetFingerprint function takes as input a directory of noises and saves the

fingerprint in the folder defined by the second parameter. This is done by reading

all the noises and updating the fingerprint as an average of them.

1 function GetFingerpr int (input , output)

2

3 f i l e s 2 = dir (input2) ;

4

5 C = zeros (1920 ,1080) ;

6

7 for k=3: length (f i l e s 2)

8

9 img = imread (s t r c a t (input2 , f i l e s 2 (k) . name)) ;

10 img = imre s i z e (img , [480 848]) ;

11 I = im2double (img) ;

12 C = C + (I /(length (f i l e s 2)−2)) ;

62 B Source code for classification

13

14 end

15

16 mkdir (output) ;

17 imwrite (C, s t r c a t (output , ”\ f i n g e r p r i n t . t i f f ”)) ;

18

19 end

Bibliography

[1] Luka, J., Fridrich, J., & Goljan, M. (2006). Digital Camera Identification

From Sensor Pattern Noise. IEEE Transactions on Information Forensics and

Security, 1(2), 205-214. https://doi.org/10.1109/tifs.2006.873602

[2] El Gamal, A., Fowler, B. A., Min, H., & Liu, X. (1998). Modeling and estima-

tion of FPN components in CMOS image sensors. Solid State Sensor Arrays:

Development and Applications II. https://doi.org/10.1117/12.304560

[3] Holst GC., Lomheim TS. (2007). CMOS/CCD Sensors and Camera Systems.

Bellingham, Wash.; The International Society for Optical Engineering 2007;

JCD Publishing

[4] Dierickx B. (2015). Imperfections of high-performance image sensors. Confer-

ence: Lorenz WorkshopAt: Leiden (NL)Volume: Artefacts in X-Ray Tomog-

raphy.

[5] Goljan, M., Fridrich, J., & Filler, T. s. (2009). Large scale test of

sensor fingerprint camera identification. Media Forensics and Security.

https://doi.org/10.1117/12.805701

[6] Dey, S., Roy, N., Xu, W., Choudhury, R. R., & Nelakuditi, S. (2014).

AccelPrint: Imperfections of Accelerometers Make Smartphones Trackable.

Proceedings 2014 Network and Distributed System Security Symposium.

https://doi.org/10.14722/ndss.2014.23059

[7] Willers, O., Huth, C., Guajardo, J., & Seidel, H. (2016). MEMS

Gyroscopes as Physical Unclonable Functions. Proceedings of the 2016

63

64 BIBLIOGRAPHY

ACM SIGSAC Conference on Computer and Communications Security.

https://doi.org/10.1145/2976749.2978295

[8] Jin, R., Shi, L., Zeng, K., Pande, A., & Mohapatra, P. (2016). Mag-

Pairing: Pairing Smartphones in Close Proximity Using Magnetometers.

IEEE Transactions on Information Forensics and Security, 11(6), 1306-1320.

https://doi.org/10.1109/tifs.2015.2505626

[9] Das, A., Borisov, N., & Caesar, M. (2014). Do You Hear What I Hear? Pro-

ceedings of the 2014 ACM SIGSAC Conference on Computer and Communi-

cations Security, 1-2. https://doi.org/10.1145/2660267.2660325

[10] Dabov, K., Foi, A., Katkovnik, V., & Egiazarian, K. (2007). Im-

age Denoising by Sparse 3-D Transform-Domain Collaborative Fil-

tering. IEEE Transactions on Image Processing, 16(8), 2080-2095.

https://doi.org/10.1109/tip.2007.901238

[11] Maggioni, M., Katkovnik, V., Egiazarian, K., & Foi, A. (2013). Non-

local Transform-Domain Filter for Volumetric Data Denoising and Re-

construction. IEEE Transactions on Image Processing, 22(1), 119-133.

https://doi.org/10.1109/tip.2012.2210725

[12] Abomhara, M., Zakaria, O., Khalifa, O. O., Zaidan, A. A., & Zaidan, B.

B. (2010). Enhancing Selective Encryption for H.264/AVC Using Advanced

Encryption Standard. International Journal of Computer and Electrical En-

gineering, 223-229. https://doi.org/10.7763/ijcee.2010.v2.141

[13] Dabov K, Foi A, Egiazarian K. (2007). Video denoising by sparse 3D

transform-domain collaborative filtering. In EUSIPCO.

[14] Maggioni, M., Boracchi, G., Foi, A., & Egiazarian, K. (2012). Video Denois-

ing, Deblocking, and Enhancement Through Separable 4-D Nonlocal Spa-

tiotemporal Transforms. IEEE Transactions on Image Processing, 21(9), 3952-

3966. https://doi.org/10.1109/tip.2012.2199324

BIBLIOGRAPHY 65

[15] Celiktutan, O., Sankur, B., & Avcibas, I. (2008). Blind Identification of Source

Cell-Phone Model. IEEE Transactions on Information Forensics and Security,

3(3), 553-566. https://doi.org/10.1109/tifs.2008.926993

[16] Kharrazi, M., Sencar, H. T., & Memon, N. (2004). Blind source camera

identification. 2004 International Conference on Image Processing, ICIP ’04.

https://doi.org/10.1109/icip.2004.1418853

[17] Rouhi, R., Bertini, F., Montesi, D., Lin, X., Quan, Y., & Li, C.-T. (2019).

Hybrid Clustering of Shared Images on Social Networks for Digital Forensics.

IEEE Access, 7, 87288-87302. https://doi.org/10.1109/access.2019.2925102

[18] Freire-Obregón, D., Narducci, F., Barra, S., & Castrillón-Santana, M. (2019).

Deep learning for source camera identification on mobile devices. Pattern

Recognition Letters, 126, 86-91. https://doi.org/10.1016/j.patrec.2018.01.005

[19] Vijaya Kumar, B. V. K., & Hassebrook, L. (1990). Performance

measures for correlation filters. Applied Optics, 29(20), 2997.

https://doi.org/10.1364/ao.29.002997

[20] Rouhi, R. (2020) Classification and Clustering of Shared Images on Social

Networks and User Profile Linking, [Dissertation thesis], Alma Mater Stu-

diorum Universitá di Bologna. Dottorato di ricerca in Computer science and

engineering, 32 Ciclo. DOI 10.6092/unibo/amsdottorato/9403.

[21] Valguarnera, E. (2019). Estrazione del Pattern Noise da video per un processo

di identificazione di una fotocamera sorgente. [Laurea magistrale], Universitá

di Bologna, Corso di Studio in Informatica [LM-DM270]

[22] Grundmann, M. Kwatra, V. Essa, I. (2018). Cascaded camera motion esti-

mation, rolling shutter detection, and camera shake detection for video sta-

bilization. uS Patent 9,888,180

[23] Taspinar, S., Mohanty, M., & Memon, N. (2016). Source camera attribution

using stabilized video. 2016 IEEE International Workshop on Information

Forensics and Security (WIFS). https://doi.org/10.1109/wifs.2016.7823918

66 BIBLIOGRAPHY

[24] Mandelli, S., Bestagini, P., Verdoliva, L., & Tubaro, S. (2020).

Facing Device Attribution Problem for Stabilized Video Sequences.

IEEE Transactions on Information Forensics and Security, 15, 14-27.

https://doi.org/10.1109/tifs.2019.2918644

[25] Lin, X., & Li, C.-T. (2018). Rotation-invariant Binary Representation of Sen-

sor Pattern Noise for Source-Oriented Image and Video Clustering. 2018 15th

IEEE International Conference on Advanced Video and Signal Based Surveil-

lance (AVSS), 1. https://doi.org/10.1109/avss.2018.8639161

[26] Timmerman, D., Bennabhaktula, S., Alegre, E., & Azzopardi, G. (2020).

Video Camera Identification from Sensor Pattern Noise with a Constrained

ConvNet. arXiv:2012.06277v1

[27] van Houten, W., & Geradts, Z. (2009). Source video camera identification for

multiply compressed videos originating from YouTube. Digital Investigation,

6(1-2), 48-60. https://doi.org/10.1016/j.diin.2009.05.003.

[28] Shullani, D., Fontani, M., Iuliani, M., Shaya, O. A., & Piva, A. (2017). VI-

SION: a video and image dataset for source identification. EURASIP Journal

on Information Security, 2017(1). https://doi.org/10.1186/s13635-017-0067-2

[29] Szegedy, C., Wei Liu, Yangqing Jia, Sermanet, P., Reed, S., Anguelov, D.,

Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convo-

lutions. 2015 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 1. https://doi.org/10.1109/cvpr.2015.7298594

[30] Lin, X., & Li, C.-T. (2018). Rotation-invariant Binary Representation of Sen-

sor Pattern Noise for Source-Oriented Image and Video Clustering. 2018 15th

IEEE International Conference on Advanced Video and Signal Based Surveil-

lance (AVSS). https://doi.org/10.1109/avss.2018.8639161

[31] https://github.com/polimi-ispl/TIFS2019-stabilized-video-attribution

BIBLIOGRAPHY 67

[32] Timmerman, D., Bennabhaktula, S., Alegre, E., & Azzopardi, G. (2020).

Video Camera Identification from Sensor Pattern Noise with a Constrained

ConvNet.

Acknowledgements

I want to thank my supervisor, Professor Danilo Montesi, and my co-supervisors,

Ph.D. Flavio Bertini and Ph.D. Rahimeh Rouhi, for the support they showed me

during the thesis work and for making themselves available.

Without my parents’ moral support, I could have never gotten this far. I must

thank them for everything.

I thank my girlfriend Francesca for always making me smile, even in the darkest

moments.

And finally, I thank my best friends Alessio, Andrea B. Andrea C., Andrea N. and

Simone. Thanks for always being there.

