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Abstract

Automotive dampers involve complex flow physics that cannot be fully described by
analytical models derived from first principles. Therefore, the development of a mathe-
matical model based on semi-empirical laws that accurately describe the influence of each
of the many design features would greatly help the design and optimization of automo-
tive dampers.This thesis aims to develop a computationally efficient mathematical model
capable to predicting damper performance with reasonable accuracy.

Lumped parameter mathematical models were developed and implemented using the
MATLAB and Simulink environments.In order to solve for the structural dynamics of the
shim stack, a force method based analytical model was developed. In order to solve for
the internal flow field, fluid structure interaction simulations were necessitated due to the
inherent coupling of fluid and structural dynamics.

Fluid-Structure Interaction (FSI) simulations were attempted using an open source
setup consisting of OpenFOAM and CalculiX coupled by the preCICE coupling library.
Coupled simulations on a trial simplified geometry produced physically consistent results.
FSI simulations could not be performed on the real geometry due to lack of time and
computational resources. The discharge coefficients were modelled as a linear function on
the basis of CFD simulations perfomed on outputs from the force method model.

In order to validate the MATLAB mathematical model, experiments were carried out
on a test automotive damper on a suspension dynamometer. The model showed good
agreement in with experimental data at low bleed valve openings. The model accuracy
was observed decrease for larger bleed valve openings due to unavailability of accurate
model coefficients.
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Pgini
Initial pressure of the gas chamber

Psurf Pressure at the surface of the shim valve

UB Rising speed

VL Volume of liquid

Vp Velocity of the main piston

Vgp Velocity of the gas piston

xp Displacement of the main piston

xgp Displacement of the gas piston

yshim Shim deflection

Re Reynolds number

E Bulk modulus of the damper oil

xv



1
Introduction

Automotive dampers, or shock-absorbers as they are commonly referred to as, are found
in all automobiles; from tiny three-wheeled ”tuk-tuks” to purpose built race cars. From
the earliest versions of the leaf spring suspension setup used on horse-drawn carriages
in the mid-nineteenth century (C. Dixon [4]) to modern electronically controlled road-
adaptive suspension setups, dampers have been crucial in ensuring safety and comfort.
The stringency of this requirement is ever increasing with the rapid pace of development
of internal combustion engines, leading to higher attainable speeds.

Dampers that perform well put a smile on the driver’s face. This statement is as valid
for a road-going average person looking to transport their family in comfort as it is to a
Formula 1 or WRC driver looking to extract all the performance their vehicle is capable
of providing. For an engineer, developing a damper optimal to a particular application is
technically challenging and equally rewarding, more so if the damper in question plays a
role in obtaining a successful result in competition.

In addition to the technical challenges, the design, development and production of
dampers is an economically lucrative business. The estimated production numbers for
automotive dampers worldwide is 50–100 million units per year with total retail value in
excess of US $1 billion per annum (C. Dixon [4]). Hence, there is great value for manu-
facturers in decreasing development costs; especially considering that for the most part,
damper internals are developed and tuned ”by feel” of experienced technicians and driver-
s/riders. The internal mechanism which produces the damping force is very complex and
involves a strong interaction of the damper oil and flexible valves. These interactions
are difficult to be characterised experimentally. Hence, until recently, not many attempts
were made to produce simple models to mimic the complex internal fluid flow. With
the recent advent of Fluid Structure Interaction (FSI) simulations, it is now possible to
investigate the complex internal phenomena without the penalty of outrageous cost or
equipment. Furthermore, automotive dampers experience a wide range of excitation ve-
locities, ranging from 1 mm/s to 1 m/s for a competition off-road vehicle. It is not feasible
to develop experimental setups to mimic such extreme velocities. Therefore, development
of simple models that can predict damper behaviour with reasonable accuracy while being
capable of running on a personal computer in a matter of minutes is hence a very welcome
tool for damper manufacturers.

In addition to predicting damper performance without the need of producing a phys-
ical part, mathematical models and numerical simulations allow the study of the basic
fluid and structural dynamic phenomena that take place inside dampers. This knowl-
edge is essential for development of new and innovative valve designs. Also, quantifying
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1.1. AUTOMOTIVE DAMPERS

parameters related to the internal phenomena allows for development of dampers for a
specified damping behaviour - an iterative, time consuming and costly process when done
by experimental trial and error.

The scope of a mathematical model for dampers goes beyond just the design and
development of the dampers themselves. The development of automobiles in general has
greatly benefited from mathematical models and simulation tools. Much like the isolated
case of dampers, vehicle performance and dynamic behaviour can be determined before
designing a single part. To do so, however, requires a robust mathematical model for
damper behaviour. This problem is more prominent in recent times with autonomous
mobility considered as the future of transport. Autonomous driving is achieved using
electronic feedback control systems relying on vehicle dynamic models that need to be
computed in real-time with on-board processors. In order to develop safe autonomous
vehicles, it is necessary for the vehicle dynamics to be modelled with a high degree of
accuracy. Such a high fidelity vehicle dynamic model relies heavily on the fidelity of the
damper model itself, creating a demand for accurate but computationally minimal models
for damper dynamics.

1.1 Automotive dampers

The purpose of automotive dampers is to dissipate energy of the sprung and unsprung
masses in the vertical direction. Vertical motion in automobiles is a result of body heave,
pitch and roll and wheel hop (C. Dixon [4]). The most commonly used type of damper
in production automobiles is the passive telescopic type, owing to its simple design and
low manufacturing and maintenance costs. The telescopic damper consists of a hydraulic
cylinder containing a piston through which fluid is forced to flow through restricted outlets
and valve systems, generating hydraulic resistance and consequently converting kinetic
energy into thermal energy [5]. A cut-section of a typical automotive damper is shown
below in Fig.1.1
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1.1. AUTOMOTIVE DAMPERS

Figure 1.1: Cut section view of a typical automotive damper

As the oil flows through orifices, it experiences a pressure loss due to throttling. This
differential pressure is directly proportional to the damping force experienced by the
piston (Satpute et al. [6]). In order to tune the damping force, shim valves are commonly
used in automotive dampers. Shim valves are essentially elastic thin plates that cover
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the orifices made in the piston. At low piston speeds, the deflection in the shim valve
is low, and consequently a high damping force is obtained. As piston speeds increase,
fluid pressure forces the shim to deflect further, producing a progressively larger flow area
and controlled progression of the shocks damping force [7]. This model can be further
extended by incorporating multiple shims stacked together, called shim stacks, to obtain
a high level of control on the damping characteristics at every piston velocity.

It can now be appreciated that a high-fidelity numerical model of the transient be-
haviour of shim stacks and the consequent flow field is absolutely necessary in order to
obtain accurate numerical models for the damping characteristics of automotive dampers.

To this end, multiple lumped parameter models have been proposed. One of the earli-
est works was a nonlinear parametric model by Reybrouck [8]. The mathematical model
was expanded with the inclusion of a shim stack structural model by Talbott and Starkey
[1]. Talbott’s work was expanded upon by multiple researchers, such as Rhoades [9].
Talbott’s model is mathematically simple, computationally inexpensive and has proven
to be accurate by Rhoades [9] and Talbott and Starkey [1]. However, this model being a
non-linear algebraic system, does not provide information of the transient processes in a
damper. Skačkauskas et al. [2] proposed a dynamic model based on a coupled system of
ODEs capable of modelling damper dynamics such as hysteresis. This model along with
Talbott’s model were major references for the formulation of the mathematical model in
this thesis work.

All the models described above utilise constant model coefficients. The physics of
dampers, however, are complicated in nature and in order to accurately model internal
flow phenomenon, it is necessary to study both the fluid dynamics of the oil flow as well
as the structural dynamics of shim valves. Such a work was performed by Nilsson [10] by
performing Fluid-Structure Interaction (FSI) simulations on a spring-loaded check valve
using the ANSYS multiphysics software package [11]. The goal of this thesis is to extend
the application to more structurally complex shim stacks and in addition, to use open
source software to do so. FSI simulations will afford a look into the intricacies of damper
physics that are difficult to be modelled analytically and impractical to measure exper-
imentally, thus enhancing the capabilities of analytical models with the implementation
of dynamic model coefficients.

1.2 Thesis Objectives

The following were set as objectives for this thesis work:

• Study of the fundamental physics behind damper operation and performance

• Review existing mathematical models relating to damper physics

• Implementation of a mathematical model using the MATLAB and Simulink envi-
ronment

• Perform experiments with a test damper to study correlation with the mathematical
model
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1.3 Thesis outline

This study is divided into nine chapters starting with the introduction, each of which
focuses on a particular theme:

Chapter 2 : The fundamental physics of an automotive damper are presented in this
chapter.

Chapter 3 : This chapter details the mathematical models required to model damper
physics.

Chapter 4 : The details of the implementation of a lumped parameter model using
MATLAB and Simulink is provided in this chapter.

Chapter 5 : This section provides an overview of numerical simulations to model struc-
tural, fluid and combined fluid-structural interaction dynamics.

Chapter 6 : This chapter provides complete detail of the solvers and setup for the
fluid-structure interaction simulations carried out.

Chapter 7 : The experimental setup and data acquisition method are provided in this
chapter.

Chapter 8 : The experimental results are presented and the validity of the lumped
parameter model is evaluated against experimental data.

Chapter 9 : The conclusions and recommendations for future work, based on the results
obtained during this thesis will be detailed in this chapter.
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2
Damper Physics

Typical mono-tube automotive dampers provide damping forces that are highly dependent
on the interactions between the damper oil and orifices built into the piston. During the
rebound stroke, the oil above the piston is forced to flow downwards through a system
of orifices and the oil experiences a pressure drop. Similarly, during the compression
stroke, oil below the piston is made to flow upwards (Reybrouck [8]). The damping force
provided by the damper is strongly related to the pressure differential between the top
and bottom surfaces on the piston and the oil flow rate through the orifices. The oil flow
rate, however, is dependent on piston velocity, which in turn is dictated by the damping
force. Hence, it is of paramount importance to study the flow of oil through orifices in
order to develop methods to accurately evaluate the steady and transient pressure field
within the damper.

2.1 Valving

2.1.1 Valve Types

Commonly found types of valves in automotive dampers include - disc valves, rod valves,
spool valves and shim valves (C. Dixon [4]). Schematics of these basic valves are illustrated
in figures 2.1, 2.2, 2.3 and 2.4.

Figure 2.1: Disc valve Figure 2.2: Rod valve
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Figure 2.3: Spool valve Figure 2.4: Shim valve

Disc valves

These valves consist of a simple disc with a coil spring. The valve is closed until an
opening pressure difference is reached. The flow area is the disc circumference times the
lift height. The valve behaviour can be tailored by varying the spring preload and spring
stiffness. Practically, it is difficult to implement a progressive dynamic and disc valves
are instead used as blow-off valves with a constant pressure characteristic (C. Dixon [4]).

Rod valves

In order to obtain a progressive pressure drop utilising a disc-type valve, a small circum-
ference is mandatory, giving rise to the rod valve. Utilising the smallest hole permissible
by manufacturing limits, a grater valve life and hence, a more progressive dynamic can be
achieved. To increase the lift even further, a tapered rod may be used. Tapering solves
the problem of achieving less effective flow area due to the exit area being equal to the
hole area (C. Dixon [4]).

Spool valves

Spool Valves The spool or bobbin valve offers higher flexibility in pressure characteristics
by designing the exit hole with a suitable profile to provide flow area varying with spool
position. For example, a linear flow rate vs. pressure difference dynamic can be obtained
by designing the flow area to increase with the square root of the opening length (C. Dixon
[4]).

Shim valves

Shim valves or packs of shims are used with varying diameters because the damping
characteristics can be changed and tailored easily. This is crucial for racing dampers.
Shim stacks consist of up to 6 shims of decreasing diameters. Valve opening heights are
fractions of millimeters, rendering the flow path to be quasi-bidimensional (C. Dixon [4]).

2.1.2 Valve Performance

Apart from the valve area-pressure relationship and the pressure-flow rate relationship,the
following parameters are vital in assessing valve performance (C. Dixon [4]):
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• Steady state pressure-flow rate

• Friction and hysteresis

• Transient response (flutter, overshoot)

• Temperature sensitivity

• Cavitation

• Wear

• Fatigue

• Consistency in production

• Required manufacturing precision

• Economy of production

2.1.3 Valve Configuration

In a real valve, the variable-area component will be combined with an orifice in parallel to
give some flow even with the valve fully closed. Also, the valve will somehow be limited
in maximum area, or a series orifice will be provided to control the flow at very high
pressures (C. Dixon [4]).

2.1.4 Role of Valve Friction

For an ideal valve with no mechanical friction, there will be a unique pressure for a given
flow rate, at least under steady flow conditions. For valves with moderate friction, me-
chanical friction does not pose problems and can in fact aid valve operation by preventing
valve overshoot or valve oscillation due to positional instability. With high friction, how-
ever, for a given pressure or flow rate, the valve position is indeterminate within the
friction band, depending strongly on recent operating history, i.e whether pressure was
increasing or decreasing. Hence, valve friction is one of the causes of hysteresis and is
additionally associated with valve wear (C. Dixon [4]).

2.2 Fluid Dynamics of Damper Oils

2.2.1 Damper Oils - An Introduction

Damper oil is generally a light mineral or synthetic oil with reduced change in viscosity
with temperature with typical density of 850 kg/m3–860 kg/m3 and viscosity between
5 mPa s–100 mPa s (Reybrouck [8]). Both the density and viscosity generally depend
strongly on temperature. Viscosity is beneficial for lubrication but is detrimental to
damping. Usage of low viscosity oils, however, is difficult since they are prone to cavitation
due to higher vapour pressure. The compressibility of pure oil is very low 0.05 %/MPa, but
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practically, compressibility is higher due to absorbed gas and bubbles. However, damper
oils can be considered incompressible without significant loss of accuracy in analysis.
Damper oils are expected to function over a broad temperature range from −40 °C–
130 °C. Reduced damping force has been observed at high temperatures, which has been
attributed due to change in both the density and the viscosity of the oil. Although the
temperature rise has a higher effect on viscosity compared to density, the consequences
of the density change are equally important. Oil temperature may also be influenced by
the mounting environment of the damper, eg. presence of radiators, etc (C. Dixon [4]).
A typical damper oil has a molecular weight of 350 kg/kmol and a molecular volume of
approximately 0.676 nm3. The chemical formula is approximately C25H52 (C. Dixon [4]).

2.2.2 Multiphase Considerations

Absorption and Desorption

The amount of gas that can be absorbed in a liquid depends on the chemical affinity
between the gas and the liquid. For non reacting materials, the maximum absorbable
mass of gas mGA can be modelled linearly by Henry’s Law (C. Dixon [4]):

mGA = CGA · VL · PG (2.1)

Where CGA is the gas absorption coefficient, VL is the volume of the liquid and PG
is the partial pressure of the gas above the liquid. The solubility reduces rapidly with
temperature. For air in mineral oil, the absorption coefficient is about 1 kg/(m3 MPa).
On absorption, the resultant mass and volume of the mixture may be determined as:

mL = mL0 +mGA (2.2)

VL = VL0 −
VL0
KL

· P +
CGLV · CGA · V 2

L0

mL0
(2.3)

Where CGLV is the gas absorption volume coefficient and is of the order of 1.0. It
may be observed that the increase of volume due to gas absorption roughly offsets the
reduction of volume due to compressibility of the liquid phase. This is exactly the case
under the following condition:

CGLV =
ρL0

KL · CGA
≈ 1 (2.4)

The time required for absorption is dependent on the area of the liquid surface exposed
to the gas. If the liquid near the gas becomes saturated, agitation of the liquid will pro-
mote absorption by transporting unsaturated fluid to the interface. Absorption reduces
the mass of free gas and has a significant effect on the density and compressibility of an
emulsion. When the pressure is reduced, the solubility limit may fall below the actual
absorbed gas mass. The initial configuration of a supersaturated solution. The surplus
gas may exit the solution, causing cavitation issues. However, there might not be an ener-
getically favourable route for the desorption to occur and the process may be delayed. If a
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few gas molecules form a bubble, the high internal pressure due to surface tension would
be sufficient to cause reabsorption. Desorption depends largely on nucleation points to
provide an energetically favourable route to adequately sized bubbles (C. Dixon [4]) .

Emulsification and Demulsification

Emulsions are combinations of two liquids that do not blend uniformly at the molecular
level, in which one of the liquids is divided into very fine droplets suspended fairly uni-
formly in the other liquid. A mixture of finely dispersed gas bubbles may be regarded as
an emulsion if the size of the bubbles is very small. However, in order to be considered
an emulsion, the gas must not be absorbed by the liquid (C. Dixon [4]). If the volume
of gas greatly exceeds that of the liquid, the emulsion is considered to be a foam/froth.
This is best avoided because the emulsion compressibility inhibits the generation of cham-
ber pressures and a drastic reduction in damping force is observed, especially for short
strokes. Moderate emulsification, however, may be beneficial to ride quality, providing
stroke sensitivity in an effect similar to rubber bushes (C. Dixon [4]). The four principal
sources of bubbles in a damper are - boiling, cavitation, desorption and mechanical agi-
tation. Models to calculate emulsion density, viscosity and bulk modulus are provided in
C. Dixon [4] (Pg. 181). De-emulsification is a slow process due to the slow speed at which
bubbles rise in a liquid. The shape of a rising bubble depends on the ratio of gravity to
surface tension forces. The ratio of forces is represented by the Bond number:

NBo =
(ρG − ρL) · g ·D2

σS
(2.5)

Large bubbles have high ratios of gravity to surface tension forces and are hence
distorted. Small bubbles on the other hand are dominated mostly by surface tension
effects and hence remain quasi-spherical. The distinguishing diameter between large and
small bubbles is given by:

D =

√
4 · σS
ρ · g

(2.6)

In damper flows, slowly rising small bubbles are frequently encountered. In these
types of flows, Re (based on liquid properties) is less than 1. Hence, the bubble may be
analysed as translating through the liquid in a Stokesian regime (C. Dixon [4]):

CD =
24

Re
(2.7)

FD = 3 · π · µ ·D · UB (2.8)

Where the rising speed UB can be approximated using pure buoyancy effect as:

UB = CV
ρL · d ·D2

18 · µ
(2.9)
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Where the velocity coefficient CV is introduced to account for the fact that the bubble
is not solid. In case of gas bubbles, CV = 1.5 and in case of liquid bubbles, it may be
defined in terms of the internal viscosity µs as

CV =
3 · µ+ 3 · µS
2 · µ+ 3 · µS

(2.10)

2.2.3 Compressibility Considerations

Compressibility effects in a damper depend on the degree of emulsification. Dampers fre-
quently exhibit characteristics which can be explained by fluid compressibility, especially
at high stroke frequencies. Compressibility effects result in volume changes of the bulk
fluid in the compression and rebound chambers, but they also affect flow in valves as gas
expands at regions of low static pressure (C. Dixon [4]).
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3
Damper Modelling

Consider the schematic of a generic monotube damper shown below:

Figure 3.1: Schematic of a generic monotube damper. Source: Talbott and Starkey [1]

A damper comprises three main chambers - the compression chamber, the rebound
chamber and the gas chamber. The compression and rebound chambers are separated by
the main piston while the compression and gas chambers are separated by a floating gas
piston. As the piston moves into the compression chamber, the velocity is assumed to be
positive and such a motion is called the compression stroke. On the contrary, as the piston
is withdrawn from the compression chamber, the velocity is considered to be negative
and the motion is termed as the rebound stroke. The principal damping mechanism is
by shearing the hydraulic fluid as it passes through restrictions, thus dissipating energy.
Generally, there are three possible flow paths. The first is through a bleed orifice located
at the end of the rod, which is usually tuned using an adjustable needle. The second
path is through passages built into the piston governed by shim stacks. Shim stacks are
essentially thin discs that deform under fluid loads to control the flow passing through
the piston orifices. The final flow path is possible leakage between the piston seal and
the cylinder wall. The gas chamber serves to keep the hydraulic fluid pressurised to avoid
cavitation effects. Further, with the presence of a floating piston, the motion of the rod is
accounted for. As the rod enters or leaves the cylinder, the gas piston moves to equalise
the resulting volume change.
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3.1 Overview of mathematical models

3.1.1 Damper Oil

Damper oil is generally a light mineral or synthetic oil with reduced change in viscosity
with temperature with typical density of 850 kg/m3–860 kg/m3 and viscosity between
5 mPa s–100 mPa s (Reybrouck [8]). Both the density and viscosity generally depend
strongly on temperature. The compressibility of pure oil is very low 0.05 %/MPa, but
practically, compressibility is higher due to absorbed gas and bubbles. However, damper
oils can be considered incompressible without significant loss of accuracy in analysis. For
the present analysis, compressibility effects were included in the treatment and provision
was made for implementation of the following temperature corrections: A vogel-Tamman-
Fulcher type equation was used to model the dynamic viscosity as:

µ = µ0 · e
E0

R(T−Tη) (3.1)

Where e is the Euler’s number, E0 is the oil molecules’ activation energy and Tη is a
reference temperature at which the reference dynamic viscosity µ0 is defined (Skačkauskas
et al. [2]). A similar correction for density is available, defined as:

ρ =
ρ0

1 + α · (T − Tt)
(3.2)

Where α is the coefficient of volumetric expansion and ρ0 is a reference density defined
at temperature Tt.

3.1.2 Piston Dynamics

The dynamics of the main piston and gas piston are modelled as second order ordinary
differential equations (ODEs) considering the forces acting on them. The equation of
motion for the gas piston is (Skačkauskas et al. [2]):

mgp · agp = (Agp · Pc) − (Agp · Pg) − Ffric · (Vgp − Vp) −mgp · g (3.3)

Where mgp is the mass of the gas piston, agp is the acceleration of the gas piston, Agp
is the area of the gas piston, Vgp is the velocity of the gas piston, Pc is the compression
chamber pressure, Pg is the gas chamber pressure, Vp is the velocity of the main piston,
Ffric is the friction force and g is acceleration due to gravity. Similarly, the motion of the
main piston is modelled as (Skačkauskas et al. [2]):

mp · ap = (Ar · Pr) − (Ac · Pc) − Ffric · Vp −mp · g (3.4)

Where mp is the mass of the main piston, ap is the acceleration of the main piston,
Vp is the velocity of the main piston, Ac and Ap are the areas of the main piston on the
compression and rebound sides respectively, Pc and Pr are the pressures in the compression
and rebound chambers respectively and g is acceleration due to gravity.
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3.1.3 Pressure Dynamics

Gas Chamber

In modelling the gas chamber dynamic, the assumption of an adiabatic process is used
and hence, the ideal gas law is utilised. The pressure dynamic inside the gas chamber
may be expressed by the following ODE (Skačkauskas et al. [2]):

dPg

dt
=

γ · Pg · (−Agp · Vgp)
(Agp ·Hg) − (Agp · xgp)

(3.5)

where γ is the gas adiabatic constant, Pg is the pressure in the gas chamber, Agp is the
area of the gas piston, Vgp is the velocity of the gas piston, Hg is the height of the gas
chamber and xgp is the displacement of the gas piston.

An alternate, simpler model for the pressure in the gas chamber is proposed by Talbott
and Starkey [1]. Considering an isothermal expansion and applicability of the ideal gas
law, the pressure in the gas chamber may be expressed as:

Pg = Pgini ·
Agp ·Hg

Agp ·Hg − Arod · xp
(3.6)

where Pgini
is the initial (filled) pressure in the gas chamber and Arod is the cross sectional

area of the piston rod.

Compression chamber

The pressure dynamic inside the compression chamber is modelled by the following ODE
Skačkauskas et al. [2]:

dPc

dt
=

E · (−Qtot − (Agp · Vgp − Ac · Vp))
(Ac ·Hcini) + (Agp · xgp) − (Ac · xp)

(3.7)

Where E is the oil bulk modulus, Pc is the pressure in the compression chamber, Qtot is
the total oil flow rate through all modelled flow paths, Agp is the area of the gas piston,
Ac is the area of the main piston on the compression side, Vp and Vgp are the velocities of
the main and gas piston respectively, xp and xgp are the displacements of the main and
gas piston respectively and Hcini

is the initial height of the compression chamber.

A simpler model is also proposed by Talbott under the assumption of an incompressible
fluid Talbott and Starkey [1]. For an incompressible fluid, it can shown that

agp = ap ·
Arod

Agp
(3.8)

Considering the equilibrium of forces acting on the gas piston, the pressure in the
compression chamber is obtained as:

Pc = Pg +
mgp · agp
Agp

(3.9)
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Substituting equation 3.8 in the above equation 3.9, we obtain the following simple
expression for pressure in the compression chamber:

Pc = Pg +
Arod ·mgp

A2
gp

· ap (3.10)

Rebound chamber

The pressure dynamic inside the rebound chamber is modelled by the following ODE
(Skačkauskas et al. [2]):

dPr

dt
=

E · (Qtot − (Ar · Vp)
(Ar ·Hrini) + (Ar · xp)

(3.11)

Where E is the oil bulk modulus, Pr is the pressure in the rebound chamber, Qtot is the
total oil flow rate through all modelled flow paths, Ar is the area of the main piston on
the rebound side, Vp is the velocity of the main piston, xp is the displacement of the main
piston and Hrini

is the initial height of the rebound chamber.

3.1.4 Flow Rates

Shim valve flow rate

The flow through the shim valve is modelled considering the equivalence of flow between
piston orifice flow and flow through the area exposed by valve deflection. This enables
a mathematical model of two equations and hence a solution for the unknowns - the
volumetric flow rate and the pressure at the valve surface. The two equivalent flow rate
equations (for the compression stroke) are hence (Talbott and Starkey [1]):

Qvalve =
π

2
·Dv · yshim · CDvalve

·

√
2 · (Psurf − Pr)

ρ
(3.12)

Where Qvalve is the volumetric flow rate through the shim valve, Dv is the diameter of the
largest shim in the stack, yshim is the vertical deflection of the largest shim in the stack,
ρ is the damper oil density, Pr is the rebound chamber pressure, Psurf is the pressure at
the valve surface and CDvalve

is a dynamic discharge coefficient which is to be modelled.
For modelling of flow through during the rebound stroke, the applied pressure difference
is modified to substitute rebound chamber pressure for compression chamber pressure in
eqn 3.12.

The auxiliary equation necessary to obtain a closed system is (Talbott and Starkey
[1]):

Qvalve = Ao · CDorifice
·

√
2 · (Pc − Psurf)

ρ
(3.13)
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Where Qvalve is the volumetric flow rate through the shim valve, Ao is the total area of
the piston orifices, ρ is the damper oil density, Pr is the rebound chamber pressure, Psurf
is the pressure at the valve surface and CDorifice

is a dynamic discharge coefficient which
is to be modelled. For modelling of flow through during the rebound stroke, the applied
pressure difference is modified to substitute compression chamber pressure for rebound
chamber pressure in eqn 3.13.

Bleed orifice flow rate

The flow through the bleed orifice is modelled as a generic orifice flow corrected by
a dynamic discharge coefficient. For the compression stroke, this can be expressed as
(Talbott and Starkey [1]):

Qbleed = Ab · CDbleed
·

√
2 · (Pc − Pr)

ρ
(3.14)

Where Qbleed is the volumetric flow rate through the bleed valve, Ab is the area of
the bleed orifice, ρ is the damper oil density,Pc and Pr are the compression and rebound
chamber pressures and CDbleed

is a dynamic discharge coefficient which is to be modelled.
For modelling of flow through during the rebound stroke, the applied pressure difference
is sign inverted. In order to account for the provision of a variable position needle to
control the flow through the bleed orifice, the effective area is modified using the model
below (Skačkauskas et al. [2]):

Ab =
π

2
·D2

b ·

(
1 −

(
1 − nclicks

2 · nmaxclicks

)2
)

(3.15)

Where Ab refers to the effective area of the bleed orifice, Db is the diameter of the
bleed path, nclicks refers to the current needle position and nmaxclicks refers to the total
available needle travel.

Piston leakage flow

The flow between the piston seal and the cylinder wall is unsuitable to be modelled as
a generic orifice flow due to the length scales involved and hence, it is better modelled
as laminar flow between two parallel plates using the Navier-Stokes equations. For the
compression stroke (Talbott and Starkey [1]):

Qleak =

(
(Pc − Pr) · c3

12 · µ ·Hp
+
Vp · c

2

)
· π ·Dp (3.16)

Where Qleak is the volumetric flow rate between the piston seal and damper wall, Pc
and Pr are the pressures in the compression and rebound chambers respectively, Hp is
the height of the main piston, c is the clearance between the piston seal and the cylinder
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wall, µ is the dynamic viscosity of the oil, Vc is the velocity of the main piston an Dp

is the diameter of the main piston. The imposed pressure difference is inverted for the
rebound stroke.

3.1.5 Shim stack model

Stiffness based model

The following model suggested by Talbott and Starkey [1] was initially considered:

kshim · yshim = ∆Pvalve · Av + ρ · Q
2
valve

Ao
· Cf − Fpreload (3.17)

Where kshim is the shim stiffness, yshim is the shim deflection, δPvalve is the effective
pressure difference across the shim valve, Av is the area of the largest shim in the stack,
ρ is the density of the damper oil, Qvalve is the volumetric flow rate through the shim
valve, A0 is the total area of the piston orifices, Cf is an empirical modifier for the fluid
momentum term and Fpreload is the preload force on the shim stack.

However, this model posed the following difficulties:

• The stiffness kshim is not a material property and is geometry dependent. Hence, it
would need to be determined from numerical simulations or from experiments.

• The constant Cf needs to be determined with bespoke experiments or numerical
analysis and no literature data is available even for an order of magnitude estimate.

Hence, for the final implementation, the force method based model detailed in section
3.1.5 was used.

Force method based model

A force method based model solves the structural dynamic equations for the entire shim
stack for the shim displacements. By doing so, this model negates the need to explicitly
define a stiffness for the sim stack and avoids the use of empirical constants, hence lending
to easy implementation and increased accuracy over the simpler stiffness-based model
proposed above in 3.1.5.
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3.1. OVERVIEW OF MATHEMATICAL MODELS

Consider the shim stack shown in figure 3.2:

Figure 3.2: Schematic of the displacements a generic shim stack. Source: Skačkauskas
et al. [2]

The shim stack is analysed as a statically indeterminate structure under the follow-
ing assumption - the shims contact at their external radii only. This is a reasonable
assumption since during operation, air gaps appear between shims.

The system of three shims may hence be reduced to analysis by the following two load
cases:

1. Distributed load acting on the shim contacting the piston due to fluid flow through
the piston orifices.

2. Concentrated load acting at the external radii of the successive shims as they pose
reaction forces.

In order to model the distributed load due to the fluid, the distributed load is assumed
to be acting along the shim from the external radius upto a defined opening radius.The
following formula proposed by Skačkauskas et al. [2] is used to determine the opening
radius considering an equivalance of area between the piston orifices and an annular shim
with an inner radius as the opening radius and an outer radius as the external radius:

rop =

√
−π · (As − π · a21)

π
(3.18)

Where As is the total cross-sectional area if the piston orifices and a1 is the external
radius of the shim in contact with the piston.
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The modelled system is hence as shown below in fig 3.3:

Figure 3.3: Computational scheme of a shim stack. Source: Talbott and Starkey [1]

This system may be solved using multiple approaches, for instance:

• Modelling shims as cantilever beams to generate equations for displacement, as
performed by Skačkauskas et al. [2].

• Developing a 1D finite element model, as performed by Czop et al. [12].

• Utilising First-Order Shear Deformation Theory (FSDT) along with Rayleigh-Ritz
approximation and Lagrange multipliers method to minimize total potential energy,
as performed by Farjoud et al. [13].

• Using the method of consistent displacements, as performed by Talbott and Starkey
[1]

For this work, the method of consistent displacements was used.Under the aforementioned
assumption of contact at external radii, the principle of superposition may be applied at all
the individual displacements and a system of equations is obtained to ensure consistency
in the displacements. For the demonstrated stack of three shims, this system of equations
is:

y3 = (y3)P + (y3)R23 (3.19)

y2 = (y2)R23 + (y2)R12 = (z3)R23 + (z3)P (3.20)
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3.1. OVERVIEW OF MATHEMATICAL MODELS

y1 = (y1)R12 = (z2)R12 + (z2)R23 (3.21)

Expressions for displacements for an annular plate are obtained using Budynas and Sadegh
[14]. Hence, the system of equations is solved for R12, R23 and y1.

This method was implemented for a generic shim stack using the following MATLAB
functions:

1. The following nomenclature is utilised: a = shim outer radius, b = shim inner
radius, t = thickness, r0 = position of the concentrated load, rop opening radius for
distributed load, r radial position at which displacement is evaluated, w = point
load, q = pressure load and Wi = reaction force between shim i and shim (i+ 1).

2. Function lineload(w,a,b,t,t0,r) which outputs the deflection at any given radial
position due to a concentrated load.

3. Function distload(p,a,b,t,rop,r) which outputs the deflection at any given radial
position due to a distributed load.

4. Function Shim-stack-model() which contains the geometrical details of the shim
stack and solves the system of equations

Furthermore, the following approach was used to ease the implementation:

1. Shims were modelled as struct variables containing their geometrical parameters.

2. The nomenclature for shims was as follows - The shim in contact with the piston
was assigned the index 1.

3. Reaction loads from a shim with a lower index, i.e previous shim were denoted with
the notation ’wp’ and reaction loads from a shim with a higher index, i.e next shim
were denoted with the notation ’wn’.

4. The deflection ’y’ of a given shim corresponds to deflection at the external radius
while the deflection ’z’ corresponds to deflection at the point of contact with the
next shim, i.e the external radius of the next shim.

5. In order to model the effect of a shim stop, a stiffer ’last’ shim is created in the
stack.

The following equations hence define all the displacements that are needed to assemble
the system of equations: The first shim contains the following four displacements:

(y1)P = distload(p, a1, b1, t1, rop, a1) (3.22)

(z1)P = distload(p, a1, b1, t1, rop, a2) (3.23)

(y1)wn = lineload(W1, a1, b1, t1, a2, a1) (3.24)
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(z1)wn = lineload(W1, a1, b1, t1, a2, a2) (3.25)

Similarly, all intermediate shims are characterised by the following four displacements:

(yi)wp = lineload(W (i− 1), ai, bi, ti, ai, a1) (3.26)

(zi)wp = lineload(W (i− 1), ai, bi, ti, ai, a(i+ 1)) (3.27)

(yi)wn = lineload(Wi, ai, bi, ti, a(i+ 1), ai) (3.28)

(zi)wn = lineload(Wi, ai, bi, ti, a(i+ 1), a(i+ 1)) (3.29)

The last shim in the stack is characterised by a single displacement:

(ylast)wp = lineload(W (last− 1), alast, blast, tlast, alast, alast) (3.30)

Having generated expressions for the displacements, the system of equations to ensure
consistency is hence: At the first shim,

y1 = (y1)P + (y1)wn (3.31)

At the second shim, a seperate equation is formed due to the presence of the distributed
load:

(z1)wn + (z1)P = (y2)wn + (y2)P (3.32)

At all intermediate shims after the second,

(z1)wn + (z1)wp = (y2)wn + (y2)wp (3.33)

At the last shim,

(zlast−1)wp + (zlast−1)wp = (ylast)wp (3.34)

The resulting system of equations may then be solved for the array of reaction forces,
W and the deflection at the fist shim, y1.

3.2 Model Coefficients

Given the complexity of flow passages within a damper, the flow quantities computed
using analytical means need to be corrected for by empirical coefficients such as dynamic
discharge coefficients. Modelling of the necessary coefficients necessitates either extensive
experimental data, which is not trivial given the length and time scales of the flow, or data
from numerical simulations. In order to characterise the flow in a satisfactory manner,
a class of numerical simulations called “Fluid Structure Interaction (FSI)” simulations
need to be performed. This is necessary due to the coupling in the structural dynamics
of the highly flexible shim valves and the fluid dynamics of the flow that is governed by
these shim valves.
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4
Implementation of the Mathematical

Model

As detailed above in 3, the core mathematical model consists of three coupled first order
ODEs to solve for pressures, two second order ODEs to solve for piston motions and four
algebraic equations to solve for individual flow rates. However, the algebraic system is
coupled with the pressure ODE system since pressure computations require solving for
the total volumetric flow rate.

4.1 Software for modelling and Simulation

Two models were implemented using the MATLAB and Simulink software environment:

1. Dynamic model using Simulink: This model solved for true transient states
using ODEs 3.7 for compression chamber pressure, 3.5 for gas pressure, 3.11 for
rebound chamber pressure and ODEs 3.1.2 for piston dynamics. This model offered
the highest flexibility of application in addition to modelling transient effects.

2. Simple using MATLAB: This model used simpler models by Talbott and Starkey
[1] to solve for intermediate equilibrium states, viz 3.10 for compression chamber
pressure, 3.6 for gas chamber pressure and implemented the 3.1.5 . This required
the implementation of a nonlinear systems solver based on Newton’s method, as
performed by Rhoades [9].

4.1.1 MATLAB

MATLAB is a language for technical computing. It integrates programming, computation
and post-processing in a single environment. The programming language is similar to
conventional mathematical notation [15].

4.1.2 Simulink

Simulink is a tool provided by MATLAB. It is a block diagram environment for the design
and simulation of models. Beyond simulation, it also supports automatic code generation.
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It includes libraries of ”blocks” to model physical systems [16].

4.2 MATLAB Scripts

4.2.1 MATLAB scripts for the Simulink model

The following scripts were developed in order to implement the damper Simulink model:

• Init -The geometric and functional parameters of the damper are initialised using
this script.

• Shim valve model - This script solves the system of equations for the volumetric
flow rate through the shim valve and pressure at the surface of the shim valve.

• Friction model - Implements a smooth friction model that takes velocity as an
arguement and outputs the friction force.
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4.2.2 MATLAB model

The MATLAB model was implemented as a function with an input frequency as the
arguement. This frequency corresponds to the frequency of the sinusoidal motion imposed
on the piston, thus replicating a suspension dynamometer. All geometrical parameters
and coefficents were initialised by the Init script used for the Simulink model.

4.3 Simulink Model

The Simulink representation of the complete model is shown below in Fig 4.1

Figure 4.1: Simulink model of a generic automotive damper

Details of a few salient blocks are elaborated in the following sections:
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4.3.1 Gas Piston Dynamics

This block implements the ODE for the dynamics of the gas piston described in 3.1.2 on
page 13:

Figure 4.2: Gas Piston Dynamics Block

4.3.2 Pressure blocks

The following block illustrates the Simulink implementation of the ODE pertaining to
pressure dynamics in the compression chamber described in 3.1.3 on page 14:

Figure 4.3: Compression chamber Pressure Dynamics Block

Similar blocks are implemented to model the pressure dynamics in the gas chamber
and in the rebound chamber.
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4.3.3 Flow Rate blocks

Bleed Orifice Flow Rate

The following block computes the volumetric flow rate through the bleed orifice and
implements the algebraic analytical model demonstrated above in 3.1.4 on page 16:

Figure 4.4: Bleed Orifice Volumetric Flow Rate Block
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Piston Seal leakage Flow rate

The following block computes the volumetric flow rate by leakage through the piston seal
and implements the algebraic analytical model demonstrated above in 3.1.4 on page 16:

Figure 4.5: Piston Seal Leakage Volumetric Flow Rate Block
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4.3.4 Damping Force Computation

The following block computes the damping force generated by the damper:

Figure 4.6: Damping Force Computation Block
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5
Numerical Analysis - An

Introduction

Numerical analysis is required to derive values for model coefficients for the lumped
parameter model.

5.1 Overview of Numerical Methods

Engineers have striven from centuries to evaluate variables of engineering interest such as
displacements, forces and pressures for a wide range of problems. Centuries of study have
led to the development of physico-mathematical models that are applicable with accept-
able margins of error over a wide range of commonly encountered problems. However,
these physico-mathematical models do not prove to be readily applicable and provide
closed-form analytical solutions only to the most basic of problems. Hence until recently,
only experimental data was available to model complex phenomena. In the last couple
of decades, with the advent of “cheap” computers, a third discipline of computational
methods have emerged. While the legacy physico-mathematical models are based upon
the continuum assumption, computational methods aim to solve the same systems of par-
tial differential equations using a discretized “grid”. The three principal philosophies of
discretization are the finite element, finite difference and finite volume methods. Without
delving into details that are beyond the scope of this report, the finite element method
is most commonly used for structural problems involving determination of the displace-
ment field (FEA/FEM solvers), and the finite volume method is the popular method of
choice for fluid dynamic problems involving determination of the velocity, pressure and
temperature fields (CFD solvers).

5.2 Finite Element Methods

Finite Element Methods (FEM) is a discretization method used in structural solvers to
solve for a range of variables. A discretization method is used to obtain solutions to
continuous systems of differential equations on a discretized domain, leading to simpler
systems of algebraic equations. This method is mainly employed to solve all classes of
structural problems such as steady-state, transient and eigenvalue problems. While the

29



5.3. COMPUTATIONAL FLUID DYNAMICS

finite element method is primarily used to solve structural mechanics, it is also applicable
for other engineering problems such as heat conduction, electromagnetism and even fluid
dynamics (Rao [17]).

5.3 Computational Fluid Dynamics

CFD (Computational Fluid Dynamics) is a method of analysing flow cases using com-
putational power, mainly using the finite volume method.. Just as in FEM, the basis
for different flows are mathematically modelled as differential equations, which are then
discretised in time and space into algebraic equations which a computer can then solve.
Numerous turbulence models can be applied to the flow field cases to reproduce the cases
as it were in real-life. The versatility of using CFD, makes it a powerful tool in an engi-
neers hand. In recent years, its rise has lead to a decrease in very expensive testing and
faster overall production times (Versteeg and Malalasekera [18]).

5.4 Fluid Structure Interaction

Fluid–structure interaction (FSI) is a class of problems with mutual dependence between
the fluid and structural dynamics. The flow behavior depends on the shape of the struc-
ture and its displacement, and the motion and deformation of the structure depend on
the fluid dynamic forces acting on it. The inherently nonlinear and time-dependent na-
ture of FSI makes it very difficult to use analytical methods in this class of problems.
Only a handful of cases have been studied analytically, where simplifying assumptions
have been invoked to arrive at closed-form solutions of the underlying partial differential
equations (Yuri Bazilevs [19]). While most engineering problems involve fluid-structure
interactions, the coupling is mostly weak.The structural deformation can be assumed to
be negligible with acceptable errors in the solution and hence, it is sufficient to solve
the fluid dynamic problem using a CFD code. In addition, even with the presence of
non-negligible coupling, it is sufficient to model a one-way data transfer in some cases.
For example, the CFD solver solves a time step and sends information to the structural
solver and then both solvers move to the next time step. It is then apparent that the shim
stack is a strongly coupled FSI problem. The deformation of the shim stack is completely
dependent on the pressure field imposed by the fluid and the fluid pressure and velocity
fields are in turn highly dependent on the instantaneous configuration of the shim stack.
It is imperative to solve both the structural dynamics and fluid dynamics in conjunction
with each other. This is done using a two-way data transfer. For every time step, the
CFD and structural solvers iterate in both directions to reach convergence before moving
to the next step.

5.4.1 Classes of FSI solvers

Monolithic Solvers

Monolithic or direct-coupled FSI solvers contain a unique solver to solve both structural
and fluid dynamics. The monolithic approach is based on the fully coupled discretization
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of the governing equations. Both fluid and solid equations are solved in a single matrix
using variants of Newton’s or Picard’s method. Monolithic approaches are more robust
and efficient than the partitioned methods, particularly for unsteady problems (Ha et al.
[20]) (Lozovskiy et al. [21]). One of the popular approaches to deal with the discrep-
ancy between Eulerian and Lagrangian formulations for fluids and solids is the Arbitrary
Lagrangian-Eulerian (ALE) method. In the ALE method, the structure is presented in
Lagrangian coordinates while the fluid flow is considered in an artificial coordinate sys-
tem (Lozovskiy et al. [21]). However, for large domains, the monolithic approach is “in
general computationally challenging, mathematically and economically suboptimal, and
software-wise unmanageable”(Piperno [22]).

Partitioned Solvers

Partitioned solvers contain two individual solvers coupled at the interface of the two
domains. However, the partitioned approach has an advantage of modularity because
the best available solver for each domain is employed. Moreover, they do not require
a matched mesh at the interface (Ha et al. [20]). During each time step, information
is transferred back and forth between the CFD and FEM solvers in coupling iterations
until the coupling step is converged. This is the so called Conventional Serial Staggered
procedure (Piperno [22]):

1. Transfer the motion of the FSI boundary in the structural domain to the fluid
domain

2. Update moving mesh in the fluid domain,

3. Advance in time and compute fluid solution,

4. Convert pressure and fluid stress into structural loads,

5. Advance in time and compute the structural solution.

5.5 Performance of FSI Solvers

5.5.1 Performance of Monolithic Solvers

Lozovskiy et al. [21] analysed the stability and performance of a monolithic FSI finite
element code utilising the Arbitrary Lagrangian-Eulerian method. It was observed that
the constraint on the time step was dictated by requisite accuracy rather than stability.
It was reported that the method could not deal with large structural displacements at
the time of publication, but with the advent of new prolongation methods, the authors
expressed hope that this shortcoming may be resolved in the near future. The number
of grid points was not reported. Ha et al. [20] performed a comparative study between
an in-house monolithic code and ANSYS Multiphysics partitioned code with a similar
number of grid points (≈ 85,000). They found the monolithic solver to converge faster
and that the number of iterations was almost similar regardless of the inlet pressure for
both methods. However, in contrast to the monolithic code, the partitioned code did
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not converge for the case of the highest inlet pressure. The error of the monolithic code
was found to decrease monotonically with iteration, whereas that of the partitioned code
slowly converged after a rapid decrease in the error in the first few iterations. The mono-
lithic code exhibited a clear advantage in terms of CPU hours, by almost three orders of
magnitude.The required system memory was found to be similar for both codes. Further-
more, the convergence behaviour of the monolithic code was found to be independent of
the time step while the convergence behaviour of the partitioned code was found to be
strongly dependent, necessitating smaller time steps. Finally, the partitioned algorithm
had stagnated error when the structure was highly deformed, whereas the residual of the
monolithic method was monotonically reduced during the nonlinear iteration regardless
of the order of deformation . Heil et al. [23] performed similar comparisons within the
open-source OOMPH-LIB framework . The authors found the monolithic solver to be
competitive with segregated solvers even with weak fluid-structure coupling. However,
they stress the need to utilise an efficient preconditioner to handle the large linear systems
that arise during computation. The authors utilised the Elman,Silvester and Wathen’s
LSC Navier-Stokes preconditioner, which produces mesh-independent convergence rates
for transient problems and was proven to work with mesh refinement. Commercially
available monolithic solvers include COMSOL [24] and ADINA [25].

Performance of ADINA

Leventhal [26] performed a FSI simulation of a ball check valve using ADINA. A 2 dimen-
sional axisymmetric mesh was utilised. However, details such as the number of nodes,
turbulence model, and mesh deformation strategy are not provided. While the paper
includes some experimental results, they do not serve to validate the CFD analysis. Ghe-
lardi et al. [27] performed FSI simulations of a cubical fluid cavity with a flexible bottom
using ADINA . They simulated the same problem using bot the monolithic solver and
the partitioned solver available in ADINA and compared the results with prior numeri-
cal analyses. Laplacian smoothing method was used for implementing a dynamic mesh.
They used three CFD meshes, each of 13,824 elements, 46,656 elements and 110,592 ele-
ments respectively. The authors found the monolithic method to output lower oscillations,
which was attributed to the intrinsic stability of the method and the different numerical
discretization of the flow field. The partitioned method, however, proved to be much
more efficient in terms of computational time. The results of the monolithic method were
found to be in good agreement with prior numerical simulations while the authors did
not provide a direct comparison between the results of the partitioned method and the
benchmark studies.

Performance of COMSOL Multiphysics

Ramadan and Saichua [28] performed transient FSI simulations using COMSOL Multi-
physics to simulate a semi submerged axisymmetric buoy. The study included two meshes
of 2,791 and 3,512 nodes each. A moving mesh algorithm was used to impose a dynamic
mesh. The PARADISO linear system solver was employed due to the coarse meshes.
The total simulation time was 10s and the solver was reported to have converged with
auto time-stepping. Although not explicitly reported, since this work is a student thesis,
it may be assumed that the simulations were performed on a personal computer. No
experiments were performed for validation. The numerical results were found to agree in
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trend with analytical predictions. Yeh et al. [29] performed FSI simulations of a bileaflet
mechanical valve. They used four meshes, each of 9,900 elements, 17,300 elements, 21,200
elements and 39,200 elements respectively. The finest mesh is reported to correspond to
Kolmogorov’s length scale, thus permitting a DNS. However, the authors proceeded with
using a k-ω RANS model to model turbulence. While no experimental validation was
performed, the authors reported very good agreement of the results with other numerical
studies of the same problem.

Conclusions - Monolithic Solvers

While monolithic solvers provide a clear and significant performance advantage over par-
titioned solvers, there is no evidence to date of utilising monolithic solvers in meshes of the
order of 100,000 nodes. It must also be noted that most FSI simulations performed with
monolithic solvers comprise aortic valves. The length scales of such bio-medical problems
are of the order of microns to millimeters and hence the flow field can be completely
resolved with a reasonable mesh size. For the scope of the shim-stack dynamic problem,
it is desired to resolve the flow field to a high resolution and hence a 3D mesh of the
order of 500,000 elements at the very least is expected (considering a RANS simulation).
Hence, for this class of problem, it would seem that monolithic solvers do not appear to
be computationally viable at this point in time.

5.5.2 Performance of Partitioned Solvers

As indicated above, partitioned solvers lose out to monolithic solvers in terms of solution
stability and performance. However, at this point of time, it is not computationally fea-
sible to simulate large flow domains with sufficient accuracy/resolution using monolithic
solvers and partitioned solvers have proven to be more viable. Partitioned solvers typ-
ically comprise of a FEA/FEM structural dynamics solver and a FVM fluid dynamics
solver working iteratively with each other. Commercial packages offering this type of
coupling include ANSYS and the pair of ABAQUS and Star CCM+. However, an open
source solutions are now possible using a coupling library called preCICE, developed by
the University of Stuttgart. It is capable of linking multiple open source structural and
fluid dynamic solvers.

Performance of ABAQUS and StarCCM+

Gomes [30] performed a FSI simulation of a 2D geometry consisting of a cylinder and flat
plate and compared the results to numerical benchmarks. Steady state simulations gave
rise to errors within 3 % of the benchmarks, while no comparison was performed for the
transient simulation. Three meshes of 984 elements, 1,372 elements and 2,006 elements
each were used. The simulations with ABAQUS and Star CCM+ ware reported to be
“difficult to accomplish” since the solution was highly dependent on mesh size and time-
step. The author further reported that only one mesh/time-step combination produced
results “free of wiggles”.
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Performance of ANSYS Mechanical and ANSYS Fluent

Nilsson [10] performed FSI simulations of a shock absorber check valve using ANSYS
Mechanical + FLUENT and compared with results from steady-state experiments. Sim-
ulations of a 45° slice of the damper were performed on a personal computer while the
complete geometry was simulated on a cluster. Multiple mesh configurations and tur-
bulence models were tried and the author found negligible differences with turbulence
modelling. Mesh studies were performed for the 45° slice with meshes of 293,000 cells,
312,000 cells, 824,000 cells and 861,000 cells. Correlation with experimental results was
the criteria in mesh selection. Simulation results were found to be in good agreement
with experimental results. Shams et al. [31] performed simulations of a damper valve
using ANSYS. They used the k-ε RNG turbulence model with a fine mesh. The number
of elements was not reported. They found good agreement with experimental results.

CalculiX + OpenFOAM

Risseeuw [32] performed FSI simulations of a flexible flapping wing using a completely
open source solver setup comprising of OpenFOAM for fluid dynamics and CalculiX for
structural dynamics, coupled by the preCICE coupling library. The FSI setup was vali-
dated considering a cylinder-flap geometry and good agreement was found with experi-
mental results. The flexing flapping wing, however, was not validated against experiments
.

Conclusions - Partitioned Solvers

Simulations performed using partitioned solvers are found to be in good agreement with
experimental results. Moreover, these solvers permit large mesh sizes of the order of
1,000,000 cells, hence permitting good spatial resolution even for large flow domains.
Among commercial partitioned solvers, ANSYS appears to be the most popular for FSI
simulations.

34



6
FSI Simulations - Setup

6.1 Geometry

The test damper was required to be recreated digitally in order for the FSI simulations
to be performed. The shims were reconstructed using a CAD program with dimensions
obtained from the manufacturer data sheet and assembled to create both compression and
rebound stack sub-assemblies. The piston was recreated using caliper measurements. The
piston rod was modelled using caliper measurements as well. All the above sub-assemblies
were assembled to form a complete damper assembly as shown in fig 6.1.

Figure 6.1: CAD assembly of the monotube damper
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Since all respective orifices were identical, the model was sliced into 1/8th so as to
reduce the volume to be meshed, thus increasing spatial resolution for the same number
of elements. The sliced geometry is shown in fig 6.2.

Figure 6.2: CAD assembly of the 1/8th section of the monotube damper

6.2 The Solvers

The combination of OpenFOAM + CalculiX coupled with preCICE was opted for con-
sidering their open source distribution and the possibility to implement custom solvers.
Details about the individual solvers may be found below:

6.2.1 OpenFOAM

OpenFOAM (Open-source Field Operation and Manipulation) is an open source Conpu-
tational Fluid Dynamics software [33].It is a collection of free tools that are primarily
but not exclusively used for CFD problems. OpenFOAM consists of multiple solvers that
each function as a stand-alone application (Chourdakis [3]). For the scope of this work,
the following two solvers were used:

• simpleFoam - a steady-state, turbulent solver for incompressible flows utilising the
Semi-Implicit Method for Pressure Linked Equations (SIMPLE) algorithm. [34].

• pimpleFoam - a transient, turbulent solver for incompressible flows using the PIM-
PLE algorithm, a combination of the SIMPLE and the Pressure Implicit with Split-
ting of Operators (PISO) algorithm. [35].

OpenFOAM to linked to the preCICE coupling library via an adapter developed by Chour-
dakis. The adapter connects the solver to preCICE during runtime, allowing preCICE
access to simulation data and to steer the coupled simulation. The adapter is loaded by
the controlDict file of the openFoam case. The adapter supports coupling of OpenFOAM
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for Fluid Structure Interaction (FSI) and Conjugate Heat Transfer (CHT) simulations
(Chourdakis [3]).

6.2.2 CalculiX

CalculiX is an open source package designed to solve finite element problems. The solver
is capable of linear and non-linear calculations. CalculiX was developed by a team of
enthusiasts of MTU Aero Engines (Munich) in their spare time [36].

The package is written mainly in C and Fortran and different solvers are invoked
depending on the type of the problem. The solvers are implemented as C functions. For
the scope of the present work, the dynamic implicit and explicit solvers were used.

An adapter was first developed by Yau [37] to couple CalculiX to preCICE for CHT
applications. The adapter was subsequently extended for FSI applications by Uekermann
et al. [38].

6.2.3 preCICE

preCICE (Precise Code Interaction Coupling Environment) is a coupling library that pro-
vides a ”black-box” approach to coupling simulations that need to exchange information
on shared boundaries.In order to couple two solvers, an additional adapter is required for
each solver (Chourdakis [3]). A visual representation of these interactions is shown in
Fig.6.3 below:

Figure 6.3: An overview of the coupling between a fluid dynamics (CFD) solver and a
structural mechanics (CSM) solver using preCICE. Source: Chourdakis [3]

This enables preCICE access to read and write data at the shared boundaries, as well
as dictate the time step in order to synchronise both solvers.

Coupling Schemes

At shared boundaries involving multi-physics simulations, the values computed from both
solvers need to be in agreement to ensure convergence and numerical stability. preCICE
provides two types of equation coupling (Chourdakis [3]):

• Explicit coupling - Executes a specificed number of iterations sans convergence
checks or solution steering.
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• Implicit coupling - Iteratively solves a fixed-point equation to ensure convergence.
This utilises either an under-relaxation method or a more complex quasi-Newton
method. This is more precise but expensive in terms of computational resources
and time.

In addition, preCICE provides the following coupling schemes for the solvers:

• Serial - The solvers are run alternately and need to wait for each other to use the
most current data.

• Parallel - Both solvers are run simultaneously using data from the previous run of
the solvers.

Either equation coupling may be used with either solver coupling scheme, providing a
possibility of four configurations. The configurations are elaborated visually below in
Figs 6.4 to 6.7. Here, two solvers S1 and S2 map elements between vector spaces X1 and
X2, n denotes the time-step. Acc refers to the post-processing step. After every non-
converged iteration, the latest stored state of the solver, called a checkpoint, is loaded
(Chourdakis [3]). The four coupling schemes may hence be visually represented as:

Figure 6.4: Serial explicit coupling scheme Source: Chourdakis [3]

Figure 6.5: Parallel explicit coupling scheme Source: Chourdakis [3]
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Figure 6.7: Parallel implicit coupling scheme Source: Chourdakis [3]

Figure 6.6: Serial implicit coupling scheme Source: Chourdakis [3]

In addition to the coupling schemes, preCICE also allows for sub-cycling, i.e preCICE
permits one solver to run multiple smaller time steps within every coupling internal.
However, this is not recommended for FSI simulations and may cause instabilities. A
visual representation of sub-cycling is provided below in Fig.6.8

Figure 6.8: Solver sub-cycling scheme Source: Chourdakis [3]

Data Mapping

Multi-physics simulations often involve non-conforming meshes. It is a challenge to map
data between these domains. The mapping not only needs to find the closest correspond-
ing mesh point but also ensure that mass and energy balances are not violated. preCICE
provides two mapping forms:
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• Consistent form - Value at a node is mapped to the corresponding node on the
other mesh. Fields such as velocity and temperature are mapped consistently.

• Conservative form - Ensures that integral values are preserved. Forces are
mapped conservatively.

Figs 6.9 and 6.10 provides a visual representation of consistent and conservative mapping:

Figure 6.9: Consistent mapping scheme in preCICE Source: Chourdakis [3]

Figure 6.10: Conservative mapping scheme in preCICE Source: Chourdakis [3]

The following mapping methods are available (Chourdakis [3]):

• Nearest neighbor - Finds the closest point by Euclidian distance. It does not
require any topological information and is first-order accurate.

• Nearest projection - Projects the target mesh points on the surface elements
of the source mesh and assigns the interpolated values back on the target mesh.
This method is second-order accurate. However, it requires topological information
(surface mesh).

• Radial Basis Function - Constructs an interpolant on the source mesh using
radial basis functions centered at the grid points and evaluates it at the target
mesh. It requires no topological information. Installation of the PETSc library is
necessary.

These mapping methods are available for both consistent and conservative mapping be-
tween meshes.
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6.3 Mesh Convergence Studies

Mesh convergence studies were carried out primarily to analyse the required mesh density
to capture orifice flow with sufficient accuracy. During this analysis, observations were also
made regarding simulation time as a function of mesh size. The details of the simulation
case are provided below:

6.3.1 Geometry

Given the fact that mesh convergence studies were performed to analyse the effect of
mesh density on the flow through the piston orifice, it was decided to perform steady-
state CFD simulations. However, the real piston geometry was unsuitable for this process
due to the fact that the shims would always completely seal the piston orifices and a FSI
simulation would be necessary to model shim deflection and hence obtain flow through
the piston orifices. In order to work around this limitation, an alternate damper geometry
was designed with the shims placed at a distance of 1.5 mm from the piston face, thus
allowing for flow through the piston orifices. This modified configuration may be observed
in Fig 6.11.

Figure 6.11: CAD assembly of the modified configuration with offset shim stacks
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6.3.2 Mesh Generation

Seven meshes were generated on the basis of nodal spacing ranging from 0.2 mm–0.5 mm
in increments of 0.05 mm. Uniform spacing was employed throughout the domain and
tetrahedral volume meshes were generated. Details of the meshes are provided in Table
6.1:

Mesh Name Nodal Spacing (mm) Surface Trias Volume Tetras
MCele20 0.20 382688 6540285
MCele25 0.25 244628 3860820
MCele30 0.30 170738 1932312
MCele35 0.35 125982 1177801
MCele40 0.40 96302 910558
MCele45 0.45 76336 616285
MCele50 0.50 62342 399686

Table 6.1: Details of meshes used for mesh convergence studies

Fig 6.12 shows the MC-ele20 mesh:

Figure 6.12: Details of generated mesh with an element size of 0.2 mm
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6.3.3 Boundary Conditions

The damper was simulated for the case of the piston moving in rebound stroke. Thus,
the end on the compression side of the damper was assigned a pressure of 14 MPa (as
per the initial gas chamber pressure) with a zeroGradient (Dirichlet) boundary condition.
The end on the rebound side of the damper was assigned a velocity inlet condition with
a uniform velocity of 0.000 029 55 m/s with a zeroGradient (Dirichlet). This velocity was
chosen under the assumption of an incompressible damper fluid and typical values for rod
velocity and damping force from damper tests. The applied inlet velocity corresponds to
a rod motion of 20 mm/s with a damping force of 100 N.

6.3.4 Solver Setup

Materials Setup

The damper fluid was modelled with a density of 843 kg/m3 and a kinematic viscosity of
14.443 m2/s.

Turbulence Modelling

The k-ω SST turbulence model was chosen considering the necessity of accurately sim-
ulating near-wall flow at the shim stack.

Solver

The OpenFOAM standard solver simpleFOAM was utilised. The simpleFOAM solver is
an incompressible flow solver working with the SIMPLE algorithm for pressure-velocity
coupling. The solver was run in all cases for 500 iterations.

6.3.5 Convergence Criterion

The principal goal of performing numerical simulations for this work is to obtain models
that describe the flow rate through the piston orifice under various working states of the
piston. Hence, the total flow rate through the piston orifices was considered as primary
convergence criteria for mesh density.
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6.3.6 Results

Volumetric Flow Rate through Piston orifices

The volumetric flow rate obtained by each mesh is detailed in Table 6.2:

Name Tetrahedral Elements Volumetric flow rate (m3/s) Relative Perc. Error
MCele20 6540285 0.0000293596 0
MCele25 3860820 0.0000292805 −0.269418
MCele30 1932312 0.0000290975 −0.892723
MCele35 1177801 0.0000288965 −1.57734
MCele40 910558 0.0000288162 −1.85084
MCele45 616285 0.0000286296 −2.48641
MCele50 399686 0.0000283414 −3.46803

Table 6.2: Mesh convergence - volumetric flow rate results

Simulation time

In order to assess the dependence of simulation time on mesh size, all simulations were
carried out on two computers - one equipped with a 2-core processor and the other
equipped with a 4-core processor. The simulation times required by each machine for
each mesh case is detailed in Table 6.3:

Mesh Name Tetrahedral Elements 2 Core Sim time (s) 4 Core Sim time (s)
MCele20 6540285 12931 4749
MCele25 3860820 8708 2616
MCele30 1932312 3420 1171
MCele35 1177801 1918 658
MCele40 910558 1432 466
MCele45 616285 928 296
MCele50 399686 736 178

Table 6.3: Mesh convergence simulation times - 2 cores and 4 cores

Flow features

All simulations showed very similar flow features as can be observed in Fig. 6.13 to 6.19:
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Figure 6.13: Streamlines for mesh with element length of 0.2 mm

Figure 6.14: Streamlines for mesh with element length of 0.25 mm
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Figure 6.15: Streamlines for mesh with element length of 0.3 mm

Figure 6.16: Streamlines for mesh with element length of 0.35 mm
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Figure 6.17: Streamlines for mesh with element length of 0.4 mm

Figure 6.18: Streamlines for mesh with element length of 0.45 mm
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Figure 6.19: Streamlines for mesh with element length of 0.5 mm

6.3.7 Analysis

The simulation results were analysed according to the following criteria to determine
an optimal mesh density for the final simulations. All the meshes showed very good
agreement with each other on evaluation of the volumetric flow rate through the orifices
and averaged pressure at the inlet. In order to better understand the the smaller variations
in flow fields between the meshes and to quantitatively capture the flow features resulting
from the different meshes, it was decided to consider two additional criteria to gauge
convergence: the ratio of volumetric flow rates between the compression and rebound
orifice and the ratio of averaged pressures at the throats of the compression and rebound
orifices.

Once convergence behaviour was studied, simulation time was used as a measure of the
requisite computational power. During FSI simulations, the fluid solver is called upon
to converge for multiple times for every time step and hence minimising the requisite
computational resources is pivotal to executing practicable FSI simulations. An optimal
mesh size was hence defined considering both the convergence criteria and the required
computational resources per simulation.
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Volumetric Flow Rate

The total volumetric flow rate through the piston orifices were determined and compared
against the imposed volumetric flow rate. Fig 6.20 displays a graph of the percentage
difference in flow rate with mesh density:
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Figure 6.20: Error on imposed volumetric flow rate with mesh density

The maximum error was found to occur at the coarsest mesh as expected and was
approximately 4 %. It is observed that there is no significant gain in accuracy at mesh
densities beyond 4 million elements. The error at 4 million elements is less than 1 %.
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Averaged Inlet Pressure

The imposed boundary condition for pressure at the inlet patch was a zeroGradient
condition and hence it was decided to analyse the trend of averaged inlet pressures for
all the meshes. A significant difference in inlet pressure would point to a big difference
in the evaluated flow field and hence, it was decided to use averaged inlet pressures as
one of the convergence criteria. Fig 6.21 shows a graph of the percentage difference in
pressures with reference to the finest mesh:
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Figure 6.21: Difference in averaged inlet pressure relative to finest mesh with mesh density

The maximum error was found to occur at the coarsest mesh as expected with an
error of 0.3 %. It is observed that for all mesh densities above 2 million elements, the
percentage difference was less than 0.1 %.
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Ratio of Volumetric Flow Rates

The volumteric flow rates through the compression and rebound piston orifices were eval-
uated. Fig 6.22 shows a graph of the ratio of volumteric flow rate through the compression
orifice to that of the rebound orifice with respect to mesh density:
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Figure 6.22: Ratio of Volumetric Flow Rates (C/R) with mesh density

The trend of the ratio displayed some oscillations for mesh sizes upto 2 million elements
but was found to stabilise for mesh sizes of 4 million elements and above. This indicated
possible variation in flow features in the coarser meshes. The stabilisation post 4 million
elements is a good indicator of convergence.
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Ratio of Averaged Pressures

The averaged pressures through the compression and rebound piston orifices were eval-
uated at the piston mid-plane. Fig 6.23 shows a graph of the ratio of pressure at the
mid-plane of the compression orifice to that of the rebound orifice with respect to mesh
density:
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Figure 6.23: Ratio of Averaged Pressures (C/R) with mesh density

The trend of the ratio displayed some oscillations for mesh sizes upto 2 million elements
but was found to stabilise for mesh sizes of 4 million elements and above. This indicated
possible variation in flow features in the coarser meshes. The stabilisation post 4 million
elements is a good indicator of convergence.
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Simulation Time

Find below a graph of CPU time for the mesh convergence trials as a function of the
number of cores:
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Figure 6.24: Simulation time vs. number of cores

The simulation times were found to convergence to a quasi-linear trend for the 4-core
machine while the 2-core machine displayed non-linearity. Since a 4-core machine was
available for all simulations for this work, the choice of mesh density was based on data
only from the 4-core machine.

6.3.8 Conclusions

An optimal mesh density of 4 million elements was determined considering the conver-
gence criteria based on flow properties as well as simulation time. This translates to
a nodal spacing of 0.25 mm. Such a mesh provides acceptable accuracy while affording
practical run-time for convergence.
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6.4 FSI trials using a simple geometry

In order to finalise the solver coupling scheme and relevant parameters and to gauge
computational requirements, FSI simulations were initially carried out with a simple
geometry. The simple geometry consisted of compression and rebound chambers identical
to the real geometry, a simple piston with planar piston faces, a single piston orifice and
a single shim offset 2 mm from the piston face. This simplified geometry is shown in fig
6.25.

Figure 6.25: Geometry used for trial FSI simulations
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6.4.1 Mesh

The fluid mesh for the simple geometry consisted of ≈ 100, 000 tetrahedral elements. An
image of the mesh is provided in fig 6.26.

Figure 6.26: Fluid mesh used for trial FSI simulations

The fluid mesh for the simple geometry consisted of ≈ 4, 000 tetrahedral elements.
An image of the mesh is provided in fig 6.27.

Figure 6.27: Solid mesh used for trial FSI simulations
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6.4.2 Simulation Setup

Boundary Conditions

The following boundary conditions were imposed on the flow domain:

Boundary Velocity Pressure

Inlet fixedValue = 0.05 m/s zeroGradient

Outlet zeroGradient fixedValue = 1.5 × 107 Pa

Solver Parameters

The pimpleFoam solver was used with a time step of 1 × 10−9 s with the following pa-
rameters:

• nOuterCorrectors = 30

• nCorrectors = 3

• nNonOrthogonalCorrectors = 1

• momentumPredictor = true

The forward Euler scheme was used for time stepping. The case was solved for laminar
flow in order to minimise computational time. The simulation was run for 5,500 iterations.

6.4.3 Coupling Setup

Coupling Scheme

The parallel-implicit scheme described in 6.2.3 on page 37 was found to result in a stable
and convergent simulation. Both the serial-explicit and parallel-explicit schemes resulted
in coupling divergence. The serial-implicit scheme was not used since it is inferior in
performance to the parallel-implicit scheme [39].

An absolute convergence measure of 1 × 10−2 was imposed on both forces and de-
flections as convergence criteria. In order to minimise computational time, the nearest-
neighbor mapping scheme was used for data exchange between the domains.

Acceleration Scheme

In order for implicit coupling to be effective, it is necessary to use an acceleration scheme
[40]. The Constant Under-Relaxation, Dynamic Aitken Under-Relaxation and quasi-
Newton Anderson acceleration schemes resulted in coupling divergence. A stable simu-
lation was obtained by using the quasi-Newton generalized Broyden acceleration scheme
with a QR2 filter. The acceleration scheme setup used was:
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1 <acceleration:IQN -IMVJ>
2 <data name="Displacements" mesh="Calculix_Mesh"/>
3 <preconditioner type="residual -sum"/>
4 <filter type="QR2" limit="1e-3"/>
5 <initial -relaxation value="0.1"/>
6 <max -used -iterations value="100"/>
7 <time -windows -reused value="10"/>
8 </acceleration:IQN -IMVJ>

6.4.4 Results

Simulation Convergence

The residual plots for the fluid simulation is shown in Fig. 6.28:
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Figure 6.28: Fluid solver residuals for the trial FSI simulation

CalculiX ensures convergence at every coupling run with internal convergence criteria
[41]. The plot for number of iterations to satisfy the convergence criteria at each time
step for the structural simulation is shown in Fig. 6.29:
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Figure 6.29: Structural solver residuals for the trial FSI simulation

Streamlines and Shim Deflection

Streamlines and the shape of the deformed shim are displayed for the first time iteration
(t= 1 × 10−9 s) and then at an interval of 50 iterations after iteration 3,000 (t= 3 × 10−6 s),
when the fluid-structure coupling is evident.
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(a) Shim deformed shape at t= 1× 10−9 s

(b) Streamlines at t=1× 10−9 s

Figure 6.30: Coupled solution at t=1 × 10−9 s

(a) Shim deformed shape at t=3× 10−6 s

(b) Streamlines at t=3× 10−6 s

Figure 6.31: Coupled solution at t=3 × 10−6 s
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(a) Shim deformed shape at t=3.5× 10−6 s

(b) Streamlines at t=3.5× 10−6 s

Figure 6.32: Coupled solution at t=3.5 × 10−6 s

(a) Shim deformed shape at t=4× 10−6 s

(b) Streamlines at t=4× 10−6 s

Figure 6.33: Coupled solution at t=4 × 10−6 s
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(a) Shim deformed shape at t=4.5× 10−6 s

(b) Streamlines at t=4.5× 10−6 s

Figure 6.34: Coupled solution at t=4.5 × 10−6 s

(a) Shim deformed shape at t=5× 10−6 s

(b) Streamlines at t=5× 10−6 s

Figure 6.35: Coupled solution at t=5 × 10−6 s
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(a) Shim deformed shape at t=5.5× 10−6 s

(b) Streamlines at t=5.5× 10−6 s

Figure 6.36: Coupled solution at t=5.5 × 10−6 s

6.5 FSI Trials on Real Geometry

On attempting to perform FSI simulations on the real damper geometry, the following
observations were made:

• Coupling Scheme: The coupling scheme and parameters for the quasi-Newton
acceleration scheme that were stable for the trial geometry were observed to in-
duce divergence in the coupled simulation. It is hence required to find the optimal
acceleration scheme and tuning parameters.

• CalculiX EXPLICIT Solver: During operations, shims slide over each other in
addition to deflecting and this phenomenon must be simulated in order to obtain
realistic behaviour. If the sliding is not considered,the shim stack would be treated
as a solid block of the same volume and such a structure would provide a greater
stiffness. In order to simulate sliding contact in a numerically stable manner, it is
necessary to utilise the CalculiX EXPLICIT dynamic solver, which, on account of
its conditional stability, limits the simulation time-step. In addition, the definition
of sliding contact pairs at every shim interface greatly increases the time and effort
required for pre-processing the structural case.

• Simulation Time: Due to the use of the explicit dynamics solvers and due to
higher mesh sizes, the simulation time for the real geometry was found to be signif-
icantly higher than that required for the trial geometry.

• Development of a custom OpenFOAM solver: The current simulation setup
employs the transient solver pimpleFoam as the CFD solver. However, for the
current mathematical model, the dynamics of the shim stack are not necessary
and the final equilibrium state would suffice, thus reducing simulation time and
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computational resources. Obtaining such a solution requires the use of a steady-
state CFD solver (simpleFoam, for example). This proved to be an issue since
steady-state OpenFOAM solvers do not support dynamic meshes which is necessary
to impose the motion of the shim stack. Therefore, for this mathematical model, it
would be greatly advantageous to develop a custom steady-state CFD solver capable
to handling dynamic meshing.

Due to a combination of lack of time and computational resources, and the above
mentioned factors, FSI simulations on the real damper geometry could not be performed.

63



7
Experimental Trials

7.1 Trial Damper

A test monotube damper developed for road-going automobile application was used for
experimental validation. A photo of the damper is found in Fig. 7.1:

Figure 7.1: Test automotive monotube damper
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The test damper uses the piston shown below:

(a) Piston - Rebound chamber side (b) Piston - Compression chamber side

Figure 7.2: Main Piston of the test damper

The valving configuration for the test damper was as below:

Shim Stacks
Compression Stack Rebound Stack

Diameter (mm) Thickness (mm) Diameter (mm) Thickness (mm)
38 0.15 34 0.20
38 0.15 34 0.20
38 0.15 34 0.20
38 0.15 34 0.20
38 0.15 34 0.20
38 0.15 32 0.20
36 0.20 30 0.25
36 0.20 26 0.25
34 0.25 23 0.25
30 0.25 20 0.25
26 0.25 18 0.25
21 0.25
18 0.25

Table 7.1: Damper Valving Specification
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7.2 Experimental Setup

The UK4kw suspension dynamometer provided by Umbria Kinetics was used for experi-
mental trials [42]. The dynamometer consists of a 4 kW electric motor driving a crankshaft
and a kinematic chain that translates rotary motion of the crankshaft into alternating lin-
ear motion. This linear motion is transmitted to the lower mounting fixture to which the
damper is anchored. The damping force generated by the damper is measured using load
cells placed in the upper mounting fixture. The displacement and instantaneous velocity
of the system is calculated using an external set of sensors and relayed to an electronic
control unit. The dynamometer is capable of producing damper excitation velocities up
to 2 m/s. A photo of the UK4kw dynamometer with the test damper mounted is shown
in Fig. 7.3:

Figure 7.3: Test damper mounted on the UK4kw suspension dynamometer
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7.3 Data Acquisition Scheme

The data acquired by the on-board sensors can accessed via the proprietary Umbria
Kinetics DynoSoft software. The suspension dynamometer is capable of connecting to
a PC via either a serial port or a USB port using the provided USB/Serial converter.
A schematic of the Umbria Kinetics DynoSoft software graphical user interface is shown
below in Fig. 7.4:

Figure 7.4: Umbria Kinetics DynoSoft software graphical user interface

7.4 Data Points

The damper was tested over the following velocity stencil :

• 20 mm/s

• 50 mm/s

• 75 mm/s

• 100 mm/s

• 150 mm/s

• 200 mm/s

• 250 mm/s

• 300 mm/s
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The damper was tested for the following bleed valve positions:

• Fully closed bleed valve

• 1 click from fully closed position

• 3 clicks from fully closed position

• 5 clicks from fully closed position

• 10 clicks from fully closed position

• 15 clicks from fully closed position

• 20 clicks from fully closed position

• Fully open bleed valve (≈ 40 clicks from fully closed position)

In order to delay cavitation, a critical phenomenon while operating at low bleed valve
openings, the damper was allowed sufficient time to dissipate heat post every run.
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8
Results

8.1 Mathematical Sub-Models

8.1.1 Shim Valve Discharge Coefficient

Steady state CFD simulations were performed using the OpenFOAM solver simpleFoam
in order to evaluate the discharge coefficient in the absence of FSI data. The structural
solver detailed in 3.1.5 was used to obtain the axis-symmetric deformed shape of the shim
stack, which was then reproduced as 3-dimensional geometry and assembled with the rest
of the damper CAD model. The CD was modelled as a linear function of the pressure
differential between the compression and rebound chambers in order to obtain a look-up
table for the discharge coefficient as a function of the pressure differential. The discharge
coefficient was then evaluated as:

CD = QCFD/QIdeal (8.1)

where QIdeal is the ideal flow rate through the orifice, defined as:

QIdeal = Aorifice ·

√
2 · ∆P

ρ
(8.2)

where ∆P is the pressure differential across the compression and rebound chambers, ρ is
damper oil density and Aorifice is the total available orifice flow area.
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Streamlines obtained for a pressure differential of 10 MPa may be found below in Fig.
8.1

Figure 8.1: Streamlines obtained for a 10 MPa pressure differential using Force method
predicted shim deflection

The following look-up tables were hence generated for the compression and rebound
strokes respectively:

Pressure Differential CD
0 MPa 0
10 MPa 0.95

Table 8.1: Discharge coefficent look-up table for compression stroke

Pressure Differential CD
0 MPa 0
10 MPa 0.85

Table 8.2: Discharge coefficent look-up table for rebound stroke
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In addition, the mathematical model was also analysed with a constant CD of 0.7 as
suggested by Talbott and Starkey [1].

8.1.2 Shim Stack Displacement Model

The force method model described in 3.1.5 was used to study the shim deflection behaviour
as function of the applied pressure differential. Typical values of steel were used as
material properties. viz.Young’s modulus (E) = 200 GPa and Poisson’s ratio(ν) of 0.3.
A plot of the obtained result is shown below in Fig. 8.2
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Figure 8.2: Shim deflections of the compression and rebound stack computed using the
Force method vs. applied pressure difference

The shim deflections display a linear trend with respect to the applied pressure differ-
ential. In order to visualise the deflections for pressure differentials of the order 0.1MPa,
the data is plotted on a log-log scale in Fig. 8.3 below:
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Figure 8.3: log-log plot of shim deflections of the compression and rebound stack com-
puted using the Force method vs. applied pressure difference

It is observed that in the general case, the deflections fit exponential functions, i.e
functions of the form y = a · ∆P n, thus lending to be modelled in a convenient manner and
a simple function may be used instead of a time and computational resource consuming
solver. The stacks can be modelled by the same value for the exponent (n) but differing
in the value of the constant (a) as evidenced by the difference in y-intercepts. In this
case, it is observed that n ≈ 1. It is also observed that the rebound shim stack is much
stiffer than the compression shim stack.

However, it was also observed that, due to incompatibility in boundary conditions
between successive plates, nonphysical behaviour was reported by the solver. Consider
the deflected compression shim stack for an applied pressure differential of 10 MPa. Note:
The vertical positions of the shims in Fig. 8.4 is not to scale.
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Figure 8.4: Deflected compression shim stack shape for a pressure differential of 10 MPa
as predicted by the Force method

This nonphysical behaviour arises from the fact that displacement compatibility is en-
forced only at the point of contact of two shims and the fact that boundary conditions are
applied to each shim individually. Hence, the model must be considered for improvement
to be capable of modelling the deflection of the entire stack in a homogeneous manner.

For the purposes of the current mathematical model, however, only the deflection of
the base shim at its outer radius is the extracted parameter and this deflection exhibits a
trend that would appear physical. However, it is recommended to validate the complete
force method model with either well resolved FSI simulations or experiments.

For application in the MATLAB model, it was required to specify a single equivalent
stiffness for each shim stack. According to the deflection trend in Fig. 8.2, a single value
per stack was sufficient to characterise the stack stiffnesses. These values were computed
as:

kstack =
∆P · Afirstshim

ystack
(8.3)

The resultant stiffness values are shown in Table 8.3 below:

Shim Stack Stiffness N/m

Compression Stack 1.778 × 105

Rebound Stack 2.419 × 106

Table 8.3: Equivalent Shim Stack Stiffnesses
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8.2 Experimental Results

The obtained Force-Velocity curves for the test damper are shown below in Fig.8.5:
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Figure 8.5: Experimental Force-Velocity graph

The obtained Displacement-Force curves for the test damper in the case of the bleed
valve being fully shut is shown in Fig. 8.6
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Figure 8.6: Experimental Displacement-Force graph in the case of fully closed bleed valve
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8.3 Simulink Model Results

8.3.1 Model Output

The Simulink model was run for a sinusoidal forcing amplitude of 15 mm at a frequency
of 100 Hz and the results are as shown below:

Figure 8.7: Main piston displacement, velocity, acceleration and velocity-based stroke
detection flag for oscillation at 100 Hz

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
10

-4

Figure 8.8: Shim valve volumetric flow rate vs main piston velocity for oscillation at
100 Hz
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The piston is observed to undergo alternating linear motion as unexpected.

The volumetric flow rate through the shim valves exhibits a linear trend with main
piston velocity as expected.
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Figure 8.9: Force histories for oscillation at 100 Hz

It is observed that the inertia and friction forces are significantly lower than the forces
due to oil pressure on either side of the piston which contribute the majority of the
damping force.

Figure 8.10: Force - Displacement plot for oscillation at 100 Hz
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8.3.2 Comments on Simulink Model Results

The Simulink model was set up to simulate the experimental tests conducted on the test
damper. The mathematical motel, however, did not converge to a solution. The pressure
in the compression chamber was found to increase exponentially while rebound chamber
pressure remained relatively constant. This is contrary to damper physics. As noted
by Talbott, it is the compression chamber pressure that must remain relatively constant
while the damping force is generated due to variations in the rebound chamber pressure
(Talbott and Starkey [1]).

Due to the high degree of coupling within the model, it is not a straight forward
task to isolate the source of the perturbation. In addition, the source may not be an
error in the mathematical model itself, but a singularity with the numerical values of the
parameters or the solution scheme itself. The failure of this model to reach a solution
requires investigation since a transient model such as this one is critical to implement
dynamic model coefficients, study hysteresis or even test hardware-in-loop control.

8.4 MATLAB Model Results

8.4.1 Model Output

The MATLAB model was run for a sinusoidal forcing amplitude of 15 mm at a frequency
of 25 Hz with a completely open bleed valve and the results are as shown below:

The displacement and velocity histories are plotted below in Fig. 8.11 and Fig. 8.12
respectively:
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Figure 8.11: Displacement History for sinusoidal input of 25 Hz
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Figure 8.12: Velocity History for sinusoidal input of 25 Hz

The piston is observed to attain a velocity of approximately 2.5 m/s during its stroke
of 15 mm

Plots of damping force as a function of piston velocity and piston displacement are
displayed below in Fig. 8.13 and Fig. 8.14 respectively:
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Figure 8.13: Damping Force vs. Piston Velocity for a sinusoidal input of 25 Hz

It must be noted that the maximum attainable rebound damping is determined by
the pressure in the gas chamber. As the pressure in the rebound chamber tends to reach
0, cavitation occurs. The operational range of rebound chamber pressure and hence, the
maximum rebound damping is therefore determined by the pressure in the gas chamber.
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Figure 8.14: Damping Force vs. Piston Displacement for a sinusoidal input of 25 Hz

The Force-Velocity and Force-Displacement curves show an expected profile. The
Force-Velocity trend is fairly linear with the knee region around the zero velocity point
caused due to the dominance of bleed orifice flow. In the high speed regions, the flow is
predominantly through the shim valves and a linear trend is resumed. A plot of all the
volumetric flow rates as a function of piston velocity is shown below in Fig. 8.15:
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Figure 8.15: Volumetric Flow Rates vs. Piston Velocity for a sinusoidal input of 25 Hz

The trend of the total flow rate with piston velocity is nearly linear as expected, due
to the large effect of the shim valve flow path. The shim valve flow rate is linear with
piston velocity, as is intended for the tested damper. The bleed flow path shows non-linear
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behaviour, acting heavily around the zero velocity region but quickly reaching asymptotic
behaviour away from the zero velocity region. The behaviour of the piston seal leakage
is observed to be linear as well, as can be expected from equation 3.16.

A plot of all the pressures as a function of piston velocity is shown below in Fig. 8.16:
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Figure 8.16: Pressures vs. Piston Velocity for a sinusoidal input of 25 Hz

It is observed that the compression pressure remains relatively constant throughout
both strokes and it is the changes in rebound pressure that are the primary cause of
pressure differentials across the piston and hence generation of the damping force. A
similar observation was made by Talbott and Starkey [1]. In addition, it is noted that the
pressure at the shim valve surface approximately matches the pressure in the chamber
upstream of the valve.
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8.4.2 Sensitivity Analysis

In order to study the effect of the various model parameters on damper performance,
sensitivity studies were carried out. The studies were performed with a closed bleed
valve in order to minimise sources of error.The MATLAB model was used to simulate the
velocities openings that the physical damper was subjected to, as described in Section 7.4
and the following parameters were varied:

1. Opening Radius - 10 mm–16 mm (refer Fig. 3.3)

2. Initial Gas Chamber Pressure - 10 bar–20 bar

3. Shim Valve Discharge Coefficient - 0.5–1.0

4. Shim Stack Stiffnesses - Factor of 0.5x - 1.5x applied to the stiffness obtained from
the force method

The baseline values for these parameters were as follows:

• Opening radius = 16 mm for both shim stacks

• Initial Gas Chamber Pressure = 14 bar

• Shim Valve Discharge Coefficient = 0.7

• Shim Stack Stiffnesses as determined by the Force method (refer 8.3)

The plot of Damping Force vs. Velocity for the baseline configuration is as shown
below in Fig. 8.17:
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Figure 8.17: Damping Force vs. Velocity plot for the Baseline configuration used for
sensitivity analysis
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Obtained Damping Force vs. Velocity curves are shown below from Fig. 8.18 to 8.21
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Figure 8.18: Damping Force vs. Velocity plots for sensitivity analysis of Opening Radius
for Opening radius = 10 mm–16 mm for both shim stacks

The opening radius is observed to affect damper performance significantly in both
compression and rebound strokes. The damping forces in both compression and rebound
strokes and observed to increase with increasing opening radius.
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Figure 8.19: Damping Force vs. Velocity plots for sensitivity analysis of Initial Gas
Chamber Pressure for Initial Gas Chamber Pressure = 10 bar–20 bar

The initial pressure in the gas chamber is found to have negligible effect on damper
performance, thus the solitary role of the initial pressure in the gas chamber may be
considered as being to avoid cavitation, with negligible spring effect.
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Figure 8.20: Damping Force vs. Velocity plots for sensitivity analysis of Shim Valve
Discharge Coefficient for CD = 0.5–1.0

The discharge coefficient is observed to affect damper performance significantly in
both compression and rebound strokes. The discharge coefficient of both shim stacks in
a damper are rarely equal. Hence, the effects need to be analysed independently for each
stroke. The damping forces in both the compression and rebound strokes are observed to
increase with decreasing discharge coefficients.
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Figure 8.21: Damping Force vs. Velocity plots for sensitivity analysis of Shim Stack
Stiffness for factors of 0.5x - 1.5x applied to the stiffness obtained from the force method

The stiffness of the shim stacks is observed to have the greatest effect among the
tested parameters. The stiffness for both stacks are rarely equal. On the contrary, they
may differ by up to an order of magnitude (refer Table 8.3). The damping forces in both
the compression and rebound strokes are observed to increase with increasing shim stack
stiffness. The effect of stiffness is more apparent that the other parameters for the chosen
ranges of variation.

Discussion of Results from Sensitivity Analysis

• An increase in opening radius reduces the area of the shim exposed to the orifice
flow, thus giving a reduced actuating force for the same upstream pressure. This
reduced force leads to a lower deflection and a greater resistance to flow, resulting
in increased damping force in both the compression and rebound strokes.

• An increase in damping force on decrease of the shim valve discharge coefficient is as
expected, since a valve with a low discharge coefficient provides a greater resistance
to flow, thus allowing a larger pressure differential to develop between the two sides
of the piston.
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• An increase in damping force with an increase in shim stack stiffness is as expected,
since a stiffer stack will exhibit a lower deflection for the same applied pressure
load, thus providing resistance to the flow and enabling the development of a larger
pressure differential across the piston.

8.4.3 Results of Numerical Simulations of the Tests

The MATLAB model was used to simulate the velocities and bleed openings that the
physical damper was subjected to, as described in Section 7.4. A value of 0.5 was chosen
as an estimate of the discharge coefficient of the shim valves for both strokes based on
data obtained in Section 8.4.2. A value of 0.7 was chosen as the discharge coefficient for
the bleed valve, as suggested by Rhoades [9]. The shim stiffnesses used were as reported
in Table 8.3. The results of these simulations are shown below: The damping force vs.
velocity plots for all bleed positions are shown below in Fig. 8.22:
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Figure 8.22: Force - Velocity curves for numerical simulations of the test points

Damping force vs displacement curves for all bleed positions are shown below in Figs.
8.23 to 8.28
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Figure 8.23: Force - Displacement curves for Bleed Fully Closed
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Figure 8.24: Force - Displacement curves for Bleed at 1 click
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Figure 8.25: Force - Displacement curves for Bleed at 5 clicks
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Figure 8.26: Force - Displacement curves for Bleed at 10 clicks
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Figure 8.27: Force - Displacement curves for Bleed at 20 clicks
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Figure 8.28: Force - Displacement curves for Bleed Fully Open
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8.5 Comparison of Experimental Results with
Mathematical Model

The results of the mathematical model were compared with experimental values. The
mathematical model was run with the following values of the salient model coefficients:

Parameter Value
CDvalve

0.5
CDbleed

0.7
Shim Stiffnesses As per Force method (Table. 8.3)

Table 8.4: Model coefficients used in numerical simulations of the tests

8.5.1 Force-Velocity Plots

Figures 8.29 to 8.36 display the comparison of Damping Force vs. Velocity data for all
tested bleed orifice openings:
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Figure 8.29: Comparison of Force - Velocity curves from experiment and the developed
mathematical model for Bleed Fully Closed
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Figure 8.30: Comparison of Force - Velocity curves from experiment and the developed
mathematical model for Bleed at 1 click
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Figure 8.31: Comparison of Force - Velocity curves from experiment and the developed
mathematical model for Bleed at 3 clicks
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Figure 8.32: Comparison of Force - Velocity curves from experiment and the developed
mathematical model for Bleed at 5 clicks
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Figure 8.33: Comparison of Force - Velocity curves from experiment and the developed
mathematical model for Bleed at 10 clicks

92



8.5. COMPARISON OF EXPERIMENTAL RESULTS WITH MATHEMATICAL
MODEL

0 50 100 150 200 250 300

-3000

-2500

-2000

-1500

-1000

-500

0

500

1000

Figure 8.34: Comparison of Force - Velocity curves from experiment and the developed
mathematical model for Bleed at 15 clicks
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Figure 8.35: Comparison of Force - Velocity curves from experiment and the developed
mathematical model for Bleed at 20 clicks
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Figure 8.36: Comparison of Force - Velocity curves from experiment and the developed
mathematical model for Bleed Fully Open

During experimental trials, the gas chamber pressure was measured and compared to
numerical results. The plot for the bleed valve fully closed for a velocity of 20 mm/s are
shown below in Fig. 8.37:
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Figure 8.37: Comparison of Gas Chamber Pressure for Bleed Fully Closed
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It is observed that the model computed pressure is higher than the experimental
value. Also, there exists a difference in the trend of the gas chamber pressure with piston
displacement.

8.5.2 Analysis

The developed mathematical model displays the same trend in force-velocity and force-
displacement plots as the experimental data. This indicates that the physics have been
modelled in a good manner. The difference in values may be attributed to lack of available
data for the model coefficients, particularly discharge coefficients for both the bleed flow
path and the shim flow path.

The model displays good agreement at low bleed valve openings and large discrepancies
at high bleed valve openings, pointing to inaccuracies in the model of the bleed valve flow
path. The area variation of the bleed orifice with the number of clicks as well as the
discharge coefficient for the bleed flow path merit consideration. The model shows the
best agreement with experimental data for the case of a fully closed bleed valve. It is also
observed that good agreement is found at high velocities, suggesting good characterisation
of the shim valve parameters, at least at low bleed valve openings. This suggests that
further investigation is required in the modelling of the bleed and shim flow paths. Further
CFD and FSI simulations are required in order to accurately model the flow through the
shim valves, thus improving the accuracy of the mathematical model.

The comparison of gas chamber pressure data showed no variation with set velocity or
bleed valve position. It must be noted that variations in measured gas chamber pressure
are induced due to changes in temperature internally in the damper, which is a potential
source of discrepancies, given that temperature differences either from standard chemical
conditions nor temperature transients are accounted for in the mathematical model. It is
observed that the mathematical model has a tendency to over-predict the pressure in the
gas chamber, leading to an under-prediction of pressure in the rebound chamber. This
behaviour is responsible for the anomalous positive damping forces at low velocities and
high bleed valve openings as observed in Fig.s 8.36, 8.35, 8.34 and 8.33.
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Conclusions and Recommendations

9.1 Conclusions

A parametric mathematical model was developed using MATLAB to model a generic
monotube automotive damper. This mathematical model was compared to experimental
results. The model displayed a good agreement in physical trend but requires further
study to quantify the model parameters in order to improve the model accuracy. In
the absence of FSI-generated data for the tested damper, constant values were used and
compared against experimental results.

An attempt was made to study the internal flow field and shim valve dynamics using
Fluid-Structure Interaction (FSI) simulations in order to quantify discharge coefficients.
Initial trials of FSI simulations using the OpenFOAM-preCICE-CalculiX combination
showed promising results. This solver combination showed good agreement with exper-
imental results when used to simulate a cylinder-plate geometry. Trials performed on a
single orifice and shim geometry showed expected results. With the inclusion of contact
modelling and with sufficient computational power, FSI simulations could be the optimal
methodology to measure discharge coefficients and to characterise shim stack behaviour,
given the high costs involved in performing experiments for these parameters and the
over-simplification of currently used analytical models.

One of the greatest challenges to improving the mathematical model is the lack of
experimental data of the principal parameters. Since damper development has been
mostly empirical in nature, experiments have sought to measure solely the damping force,
thus denying the insight into the validity and accuracy of the individual sub-models.
Performing experiments that provide data on operational variables will greatly enhance
the accuracy and hence applicability of mathematical models such as the one presented
in this work.
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9.2 Recommendations

Due to paucity of time, further development and improvement in the models could not
be carried out. However, these considerations will remain as recommendations for future
work:

• Detailed FSI simulations - The strong coupling between the flow field and shim
deflection is evident throughout this work and two-way coupled simulations will
provide a much better understanding of the dynamics of this coupling, compared
to one-way coupled analytical models.

• Pressure transducers - The model coefficients have been modelled primarily
in terms of compression and rebound pressures and performing experiments on
dampers instrumented with pressure transducers will enable better modelling of
these coefficients as well as provide insight into the sources of error in the model.

• Transparent dampers - In order to better understand the structural dynamics of
the shim stack, it is recommended to perform experiments with transparent dampers
and high speed cameras. This information may be then used to improve analytical
models.

• Detailed analysis of the bleed flow path - The bleed orifice flow path plays a
crucial role in damper operation. In this work, no simulations were performed on
this flow path. It is recommended to study the flow dynamics of the bleed orifice
to improve the fidelity of the damper model.

• Hysteresis Modelling - Hysteresis plays a very important role in damper per-
formance and hence merits modelling. This would however require implementation
of a transient model with dynamic model coefficients. In addition to analysis hys-
teresis of the damper system as a whole, it is recommended to also investigate the
hysteresis of the shim valves themselves.

• Neural Networks - Neural networks may be used to model complex phenomena
such as compressibility effects based on experimental data, as done by Barethiye
et al. [43]. In addition, neural networks may be used to improve interpolation
between the model data points, resulting in a better resolved model.

• Quarter Car Model Integration - The damper model may be integrated with
a quarter car or motorcycle dynamic model in order to simulate vehicle dynamical
behaviour.
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