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Acronyms

SLAM Simulataneous Localization and Mapping

DBN Dynamic Bayesian Network

KF Kalman Filter

EKF Extended Kalman Filter

UKF Unscented Kalman Filter

PF Particle Filter

FMCW Frequency Modulated Continuos Wave

RADAR RAdio Detection And Ranging

RCS Radar Cross Section

FOV Field of View

MAP Maximum A Posteriori

MMSE Maximum Mean Square Error

ICP Iterative Closest Point

PLICP Point to Line Iterative Closest Point

NDT Normal Distribution Transform

CSM Correlative Scan Matching

DFT Discrete Fourier Transform

FFT Fast Fourier Transform

IFFT Inverse Fast Fourier Transform
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IMU Inertial Measurement Unit

VNA Vector Network Analyzer
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Introduzione

Il concetto di localizzazione e mappatura simultanea (SLAM) nasce in am-
bito robotico dove, tradizionalmente, i robot sono dotati di un sensore laser
e sono in grado di navigare e mappare l’ambiente circostante sconosciuto. Le
tecnologie SLAM ad alta accuratezza, basate su laser e steering meccanico,
forniscono stime della distanza ad alta definizione e fasci diretti molto stretti.
Sfortunatamente, queste tecnologie sono costose e ingombranti non potendo
quindi essere integrate in dispositivi mobili.
Questo lavoro affronta il problema dello SLAM utilizzando la tecnologia radar
a onde millimetriche (mmWave) testando le prestazioni di localizzazione e
mappatura in ambienti interni reali conducendo campagne di misura. Lo
scenario considerato e le tecnologie impiegate sono in linea con l’idea del per-
sonal mobile radar [1],[2],[3],[4] e questo lavoro può essere considerato come
un proof-of-concept per lo sviluppo di questa idea.
Un esempio di radar personale in uno scenario interno è mostrato in Fig. 1.
Secondo la visione di radar personale, un array di antenne a onde millimet-

riche può essere integrato all’interno di dispositivi mobili come smartphone
o tablet, che possono scansionare automaticamente l’ambiente e mapparlo
attraverso un fascio diretto molto stretto e puntamento a guida elettronica.
Queste caratteristiche lo rendono una possibile soluzione per lo SLAM radio
(R-SLAM) ad alta precisione che rappresenta un’alternativa alla tecnologia
laser. Per questi motivi, il radar personale evita lo l’impiego di infrastrutture
ad-hoc per il posizionamento e la mappatura indoor. Inoltre, un vantaggio
dell’utilizzo delle onde millimetriche in confronto ai sistemi lidar o vision-
based, è il loro costo inferiore e la loro capacità di operare in condizioni di
scarsa visibilità, come con fumo o bassa illuminazione. Il radar personale
potrebbe, quindi, trovare applicazione in contesti come la navigazione au-
tonoma nel settore industriale o per guidare le persone attraverso ambienti
sconosciuti e pericolosi ma, anche, come guida per i non vedenti nella loro
vita quotidiana.
Nonostante le considerazioni di cui sopra, l’applicazione dei sensori a onde
millimetriche al contesto SLAM è difficoltosa a causa della loro scarsa risoluzione
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Figure 1: Esempio di uno scenario SLAM dove un dispositivo mobile,
equipaggiato con un array di antenne, scansiona l’ambiente [4]

angolare e delle caratteristiche di riflessione dei materiali a queste frequenze.
Per mostrare la fattibilità delle tecnologie mmWaves per SLAM, questo la-
voro è stato organizzato come segue.
Nel Capitolo 1, viene presentato il problema dello SLAM e alcune strate-
gie classiche per affrontarlo come il filtraggio Bayesiano ma anche approcci
basati sulla teoria dei grafi.
Nel Capitolo 2, viene posta l’attenzione sugli algoritmi di registrazione di
nuvole di punti; essi sono sfruttati allo scopo di stimare la posa relativa tra
due misurazioni di sensori consecutive, consentendo la stima dell’intera trai-
ettoria seguita dal radar mobile.
Nel Capitolo 3 sono riportati i fondamenti della tecnologia radar. In parti-
colare, vengono descritti i principi della tecnologia radar mmWaves su cui si
basa il radar mmWaves IWR1443 di Texas Instrument. Questo dispositivo è
stato utilizzato per raccogliere dati dalle campagne di misura e, successiva-
mente, per valutare le prestazioni degli algoritmi SLAM proposti. In questo
capitolo, viene descritta anche una tecnologia di array di antenne a 300 GHz
adottata presso l’istituto di ricerca CEA-Leti (Grenoble, Francia) per mis-
urazioni in locali indoor. Questo sistema di misura è stato allestito in occa-
sione della collaborazione tra CEA-Leti e l’Università di Bologna nell’ambito
del progetto europeo PRIMELOC (Personal Radars for Radio Imaging and
Infrastructure-less Localization). Il set di dati raccolti presso CEA-Leti viene

vi



anch’esso sfruttato per valutare le prestazioni degli algoritmi SLAM proposti
in questo lavoro.
Nel Capitolo 4 vengono descritti gli algoritmi SLAM proposti. Prima di tutto,
viene presentato un algoritmo SLAM dove la stima della traiettoria è eseguita
in modo incrementale e indipendente dalla fase di mappatura. Ciò significa
che la mappa viene aggiornata a partire dalla traiettoria finale stimata ma
quest’ultima non è influenzata dalla prima. In questo approccio, le pose rela-
tive vengono calcolate tra due scansioni radar consecutive. Successivamente,
viene presentato un algoritmo basato sulla strategia di registrazione delle
immagini con trasformata di Fourier-Mellin. Infine, per superare il problema
dell’accumulo di errori degli approcci incrementali, è stata progettata una
strategia scan-to-map per le applicazioni SLAM. L’idea chiave è sfruttare la
mappa per eseguire il matching fra due scan trovando una traiettoria più
precisa. Qui, la mappatura e la stima della traiettoria vengono eseguite con-
giuntamente e sono influenzate l’una dall’altra.
A questo punto, nel Capitolo 5 viene riportata una descrizione delle cam-
pagne di misura e dei risultati ottenuti. Nello specifico, nella prima sezione,
vengono descritte le campagne di misura effettuate con il radar TI mmWave
a 77 GHz in tre diversi scenari indoor e vengono mostrati di seguito i risultati
ottenuti con le diverse strategie SLAM proposte. Nella seconda sezione di
questo capitolo vengono descritte due campagne di misura realizzate presso
CEA-Leti, con tecnologia a 300 GHz. Quindi, vengono visualizzati i risultati
di SLAM ottenuti con i diversi set di dati.
Infine, nel Capitolo 6, vengono tratte alcune conclusioni e vengono evidenzi-
ate le direzioni future della ricerca.
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Introduction

The concept of simultaneous localization and mapping (SLAM) is born in
the robotic field where, traditionally, robots are equipped with a laser sensor
and they are able to navigate and map an unknown surrounding environ-
ment. High accuracy SLAM technologies, based on laser and mechanical
steering device, provide high-definition distance estimates and very narrow
steering beams. Unfortunately, these technologies are expensive and bulky
and they cannot be integrate into mobile devices.
This work deals with a SLAM problem using a millimeter wave (mmWave)
radar technology where the localization and mapping performance has been
tested in real indoor environments by conducting measurements campaigns.
The considered scenario and the employed technologies are in line with the
idea of the personal mobile radar [1],[2],[3],[4] and this work can also be con-
sidered as a proof-of-concept for the development of this idea.
An example of personal radar in an indoor scenario is shown in Fig. 2.
According to the personal radar vision, a mmWave antenna array can be
integrated inside mobile devices like smartphones or tablets, which can au-
tomatically scan the environment and mapping it with a narrow beam and
electronic-driving steering. These characteristics make it as a possible high
accuracy radio SLAM (R-SLAM) solution that represents an alternative to
laser technology. For these reasons, the personal mobile radar avoids the
exploitation of ad-hoc infrastructures for indoor positioning and mapping.
Moreover, an advantage of using mmWave frequencies instead of lidar or
vision-based systems is their lower cost and their capability to operate in
scarce visibility conditions, as with smoke or poor lighting. For these reasons,
personal mobile radars could find application in contexts such as autonomous
navigation of vehicles in the industry field or to drive people through un-
known and dangerous environments but, also, such as guidance for visually
impaired people in their daily life.
Despite the above considerations, the application of mmWave sensors to the
SLAM context is challenging because of their poor angle resolution and the
reflection characteristics of materials at these frequencies.
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Figure 2: Example of a SLAM scenario where a mobile device, equipped with
an antenna array, scans an environment [4]

To show the feasibility of mmWaves technologies for SLAM, we have orga-
nized this work as follows.
In Chapter 1, we present the SLAM problem and some classical strategies
to tackle it with stochastic filtering approaches, like Bayesian filtering, and
graph-based theory.
In Chapter 2, we put the attention on points clouds registration algorithms;
they are exploited with the purpose to estimate the relative pose between
two consecutive sensor measurements, allowing the estimation of the full tra-
jectory followed by the mobile radar.
In Chapter 3, fundamentals of radar technology are reported. In particu-
lar, we describe the principles of mmWaves radar technology on which the
mmWaves radar IWR1443 of Texas Instrument is based. This device has
been used to collect data in measurement campaigns and, then, to assess
the performance of the proposed SLAM algorithms. In this chapter, we also
describe a 300 GHz antenna array technology adopted at CEA-Leti research
institute (Grenoble, France) for indoor measurements. This measurement
system was set up within a collaboration between CEA-Leti and the Univer-
sity of Bologna in the context of the European project PRIMELOC (Personal
Radars for Radio Imaging and Infrastructure-less Localization). The data set
collected at CEA-Leti is exploited in this work to assess the performance of
the proposed SLAM algorithms.
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In Chapter 4, the proposed SLAM algorithms are described. First of all,
we present a SLAM algorithm where the estimation of the trajectory is per-
formed incrementally and independently of the mapping phase. This means
that the map is updated starting from the final estimated trajectory but the
latter is not influenced by the former. In this approach, the relative poses are
computed between two consecutive radar scans. Successively, an algorithm
based on image registration strategy with the Fourier-Mellin transform is
presented. Finally, to overcome the error accumulation issue of incremental
approaches, a scan-to-map strategy for SLAM applications is designed. The
key idea is to exploit the map to perform the scan matching and to find a
more accurate trajectory. Here, the mapping and trajectory estimation are
performed jointly and they are influenced by each other.
At this point, in Chapter 5 a description of the measurement campaigns and
the results obtained are reported. Specifically, in the first section, the mea-
surement campaigns made with the TI mmWave radar at 77 GHz in three
different indoor scenarios are described. The results obtained with the dif-
ferent proposed SLAM strategies are shown. In the second section of this
chapter, two measurement campaigns made at CEA-Leti, with a 300 GHz
technology are described. Then, the SLAM results obtained with different
datasets are shown.
Finally, in Chapter 6, some conclusions are drawn and future directions of
research are highlighted.
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Chapter 1

SLAM Theory

The goal of the simultaneous localization and mapping (SLAM) problem is
to estimate the mobile node (often referred to as agent or mobile user) tra-
jectory and, simultaneously, the map of the environment where the node is
located without the need of any a priori knowledge.
In the literature, a large variety of solutions to SLAM problem is available
but there is not an approach to fix the problem better than other. The best
solution considers the agent type and sensors on it, the surrounding enviro-
ment and the system performance requirements [5].
In the next sections, different ways to address the SLAM problem are pre-
sented.

1.1 Probabilistic SLAM

As mentioned before, the goal of the SLAM problem is to infer the state
of the environment, where the state is composed of the radar state (i.e., its
position, orientation and velocity) and of a map of the environment. The
state is usually modeled as a random vector because of uncertainties on its
dynamics and on the measurements used for the estimation process. For
these reasons, SLAM problem is described by means of probabilistic tools.
To solve such a problem, different strategies can be adopted [6]: filtering
approaches which model the problem as an online state estimation where
the state consists in the current agent position and the map or smoothing
approaches which estimate the full trajectory of the agent from the full set of
measurements. The latter address to full SLAM problem and typically rely
on least square error minimization techniques
To describe these approaches, the following quantities must be defined :

• xk: the state vector describing the location and orientation of the agent
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at instant k

• uk: the control vector, applied at time k − 1 to drive the mobile node
to a state xk at time k

• zk: the vector of the observations collected by the mobile node at the
instant k

• mk: the vector representing the map of the environment at time k.

It is also necessary to define :

• x1:K = {x1, ...,xK}: the agent’s trajectory

• u1:K = {u1, ...,uK}: the history of control inputs

• z1:K = {z1, ..., zK}: the whole set of measurements

Solving the full SLAM problem consists of estimating the posterior prob-
ability of the agent’s trajectory x1:K and the map m, that is considered
stationary, i.e., mk = m ∀ k, of the environment given all the measurments
plus an arbitrarily initial position x0:

p(x1:K ,m|z1:K ,u1:K ,x0) (1.1)

This probability distribution describes the joint posterior density of the full
map and agent state, given the whole recorded observations and whole con-
trol inputs together with the initial state of the agent.
In many practical settings, we are not interested that at a given time instant
k, we get the full joint posterior distribution of the sequence of states x0:K

instead, the posterior distribution of current state xk given all the past mea-
surment z1:k is sufficient [7]. To compute this distribution, we rely on the
Bayesian filtering theory.

1.2 Filtering Approaches

1.2.1 Bayesian Filter

To introduce Bayesian filtering, a state-space model can be defined by the
use of the following two statistical models:

• Observation model : describes the probability of making an obser-
vation zk given that the agent is at location xk in the map

p(zk|xk,m) (1.2)
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• Transition model : represents the probability that the agent at time
k is in xk given that, at time k − 1, it was in xk and its control input
was uk

p(xk|xk−1,uk) (1.3)

Often in theory and practice, one adopts the following general description of
the state-space model:

xk = g(xk−1,uk) + vk (1.4)

zk = h(xk,m) + nk (1.5)

where g() and h() are in generally non-linear functions and vk and nk are
the process and measurement additive random noise, respectively [7].
Given the probabilistic form of SLAM problem, it requires a well defined
structure under static world assumption for which the current observation zk
is independent of previous states, observations and control inputs depending
only on the current state xk and Markov assumption. In fact, the state
transition is assumed to be a Markov process where the next state xk depends
only on the state xk−1 and the applied control uk and not on the observations
or the map.
Thus, the SLAM algorithm is implemented in a standard two recursive steps:
time-update (prediction) and measurement-update (correction) [9].
The state estimation with Bayesian filter starts by the computation of the
a-priori probability p(x0) = p(x0|z0) and proceeds with the following steps
iteratively:

• Prediction step:

p(xk,m|z1:k−1,u1:k−1,x0)

=

∫
p(xk|xk−1,uk)p(xk−1,m|z1:k−1,u1:k−1,x0)dxk−1

(1.6)

• Correction step:

p(xk,m|z1:k,u1:k−1,x0) =
p(zk|xk,m)p(xk,m|z1:k−1,u1:k,x0)

p(zk|z1:k−1,u1:k)
(1.7)

where the normalizing constant is:

p(zk|z1:k−1,u1:k) =

∫
p(zk|xk,uk)p(xk|z1:k,u1:k)dxk (1.8)

Note that in (1.6), the transition model is exploited to compute predicted
distribution then in (1.7), measurement zk at time k is available and is used
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to modify the predicted prior from the previous time step to obtain posterior
distribution of the state.
Once a posterior of the current state xk is computed, the state estimate x̂k
can be defined using minimum mean square error (MMSE) or maximum a
posteriori (MAP) criteria [7].
According to them, the state estimate are defined by:

x̂MMSE
k =

∫
xkp(xk|z1:k)dxk (1.9)

x̂MAP
k = arg max

xk
p(xk|z1:k) (1.10)

If the posterior distributions are Gaussian, the MAP and MMSE estimates
coincide.
In Fig. 1.1 the recursive Bayesian filter steps are shown:

Figure 1.1: Block diagram of a recursive Bayesian filter [8]

This recursive Bayesian filter is a generic approach for filtering but the com-
putation of the different terms of the posterior probability is difficult and
closed-form analytic solutions are only available for very specific problems,
e.g. for a linear system with Gaussian random variables. The filtering strate-
gies can be exploited in SLAM context to merge data provided by different
types of sensors, for example inertial measurement unit (IMU) or odometry,
to improve the localization and mapping results.
A convenient way to describe this structure is via the dynamic Bayesian
network (DBN), a graphical model that describes a stochastic process as a
directed graph as in Fig. 1.2. Here, the arrows entering in zk represent
the observation model while the two arrows leading xt represent the transi-
tion model. This way is well suited to describe filtering processes and it is
used to tackle the on-line SLAM problem because DBN highlights temporal
structure.
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Figure 1.2: Dynamic Bayesian Network of the SLAM process [13]

1.2.2 Kalman Filter

Kalman filter comes from Bayesian filter and it is used when the observation
model and transition model are linear and both process and measurement
noise are independent Gaussian variables with covariance Qk and Rk respec-
tively.
From Bayesian equations, the models at time k can be rewritten according
to (1.4) and (1.5) to the form [10]:

xk = Fk−1xk−1 + Bkuk + vk (1.11)

zk = Hkxk + nk (1.12)

where F and H are matrices defining the linear functions.
As the classical Bayesian filter, it provides two recursive steps :

• Prediction step: the state at time k, given the observation up to
time k, and covariance matrix Pk|k of vk are computed.

xk|k−1 = Fk−1xk−1|k−1 + Bk−1uk−1

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 + Qk−1

(1.13)

where xk|k−1 indicates the predicted state for time instant k given the
measurements until the previous time step k − 1.

• Correction step: the updated state xk|k and updated covariance Pk|k
are computed.

xk|k = xk|k−1 + Kkỹk
Pk|k = (I−KkHk)Pk|k−1

(1.14)
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where

ỹk = zk −Hkxk|k−1 (1.15)

is the “innovation” term that can be interpreted as the deviation of the
actual measurement from the predicted one and

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k + Rk)

−1 (1.16)

is Kalman gain matrix.

However, if (1.4) and (1.5) deviate from linearity other solutions can be
exploited in SLAM context:

• Extended Kalman Filter (EKF) differs from the general case of Kalman
filter because g() and h() are non-linear functions. The transition and
observation matrices are approximate with first time Taylor expansion
[10]:

Fk =
∂f

∂x

∣∣∣∣
xk−1|k−1,uk

Hk =
∂h

∂x

∣∣∣∣
xk|k−1

(1.17)

However, the first order approximation can introduce errors in the pos-
terior mean and covariance which may lead the performance.

• Unscented Kalman Filter (UKF) is based on a deterministic sampling
technique known as unscented transformation (UT) which uses a set
of 2n+ 1 appropriately chosen weighted points, called sigma-points, to
parametrize the mean and covariance of probability distributions [11]
that undergoes a non linear transformation. The computational cost is
the same as EKF but the performance is superior and accuracy of 3rd
order can be achieved avoiding linearization.
Given an n-dimesional random variable x with mean x̄ and covari-
ance Pxx is approximated with sigma-points to obtain a matrix X with
sigma-vectors Xi with i = 0, ..., 2n+ 1:

X0 = x̄

Xi = x̄ +
(√

(n+ κ)Pxx

)
i

Xi+n = x̄−
(√

(n+ κ)Pxx

)
i

(1.18)
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with the weights :

W0 =
κ

(n+ κ)

Wi =
1

2(n+ κ)

Wi+n =
1

2(n+ κ)

(1.19)

where κ is a scaling parameter and
(√

(n+ κ)Pxx

)
i

is the i-th row of

matrix square root.
Successively, the mean ȳ and covariance Pyy of transformed points are
obtained as follows:

1. The sigma-vectors are propagated through the non-linear fucntion:

Yi = g [Xi] (1.20)

2. The mean and covariance are computed:

ȳ =
2n∑
i=0

WiYi

Pyy =
2n∑
i=0

Wi {Yi − ȳ} {Yi − ȳ}T
(1.21)

The unscented Kalman filter is a straightforward extension of the un-
scented transformation.
In prediction step, after the sigma-points xj have been propagated
through the non-linear transition model

yj = g(xj), j = 1, ..., 2n (1.22)

they are weighted and the predicted mean ȳ and covariance Pyy are
estimated with eq. 1.21.
In the correction step, the predictions are updated thanks to the current
measurement z. Given the predicted mean and covariance estimates, a
new set of sigma-points are computed and they are propagated through
non-linear measurement model:

zj = h(xj), j = 1, ..., 2n (1.23)
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Successively, the empirical mean z̄ and covariance Sz of these trans-
formed points are computed. After the cross-covariance matrix Cxz

Cxz =
2n∑
j=0

Wj (xj − ȳ) (zj − z̄)T (1.24)

and Kalman gain K = CxzS
−1
z have been computed, finally the cor-

rected mean and covariance can be estimated.

1.2.3 Particle Filter

The last filtering approach we present is the particle filter (PF) that relaxes
some assumption of the Kalman filters. In particular, this filter is suited in
situations when the system deviates from the linearity conditions and also
from Gaussian world assumptions [7].
The main idea is to approximate the all posterior probability density func-
tions at time step k, p(xk), with a set of M independent weighted samples
or particles as follows:

p(xk) ≈
M∑
m=1

ωk,mδ(xk,m − xk) (1.25)

where δ is the Dirac function centred in the location of the sample, xm,k
contains samples (i.e., particles) of the unknown state and the ωk,m is called
importance weight and they are normalized.
However, it is difficult or, sometimes, impossible to obtain samples directly
from p(xk). Consequently, it is important to select a different proposal distri-
bution π from which the samples can be easily drawn. This method is called
importance sampling [6] and an example is shown in Fig. 1.3. About this, it
can be considered to be able to evaluate each distribution at given xm and
compute the weight as ωm = p(xm)/π(xm). This method permits to obtain
samples that compensate for the difference between the two distributions. It
is important that in all locations where p is larger than zero also π must be
larger than zero.
The particle filter implements a recursive filter and therefore includes a pre-
diction and a correction step.
An example is the bootstrap filter. At every time instant, it performs the
propagation of the particles, the computation of particles weights and resam-
pling. In the prediction step, the samples are propagated through the motion
model and the particles at xk+1 are generated from the priors p(xk+1|xk). In
the correction step, when a new measurement yk arrives, the weights of the
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Figure 1.3: Importance sampling principle [12]

particles are computed as ω̃k,m = p(yk|xk,m) and then they are normalized.
Then, the point estimate of the unknown states x̂k is also computed. A re-
sampling strategy is used to overcome the problem of particles degradation
due to the increase of the variance of the weights over time, which occurs at
each iteration.

1.3 Graph-Based SLAM

There is an alternative representation to DBN called “graph based” or “net-
work based”. This formulation, unlike DBN, highlights the underlying spa-
tial structure and constructs a graph out of the raw sensor measurement [13].
This graph is called pose graph.
In graph-based SLAM the agent’s poses are modeled by nodes in a graph
and the edge between them represents the spatial constraints, resulting from
observations zk or from odometry measurements uk, between two poses. A
constraint consists in a probability distribution over the relative transfor-
mations between the two poses. As the Fig. 1.4 shows, an edge between
two nodes can be created when the agent moves between two consecutive
poses, for example from xi to xi+1, corresponding to odometry measurement
or when the agent observes the same part of the environment from xi and
xj.
Once the graph is constructed one seek to find the configuration of nodes’
position that is consistent with the measurement constraints solving an error
minimization problem.
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Figure 1.4: A pose graph representation of the SLAM problem [13]

Thus, the problem is decoupled in two tasks as shown in Fig. 1.5: con-
structing the graph from the raw measurements (graph construction or front-
end), determining the most likely configuration of the poses given the edges
of the graph (graph optimization or back-end). The first one is heavily sensor-
dependent, while the second one relies on an abstract representation of the
data which is sensor independent. Front-end and back-end must be inter-
leaved to design a good SLAM system.

Figure 1.5: The interplay between Front-end and Back-end

1.3.1 Front-End

A more detailed explanation of graph construction is described [13] :

1. Whenever the agent moves or rotates more than an arbitrary threshold,
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a new node is added to the graph and it is labeled with the current
sensor observation.

2. The SLAM algorithm can use scan matching between two scans to
determine a transformation. The current scan is matched with the
previously to improve odometry estimate and the corresponding edge
between the two nodes is added. In this step, a covariance estimate of
the relative pose between neighbouring nodes is also required attaching
it to the edges of the graph.

3. An edge is added to the graph also when the agent revisits an already
visited area and the algorithm finds a matching between the current
and past measurement. This step is known as loop detection and these
edges are called loop closure edges because literally close the loop of
the agent’s movement in the graph. Also here, a covariance needs to be
provided from the alignment process. Furthermore, the accumulated
error over the loop is computed. This is crucial information for back-
end.

4. The graph optimization procedure is performed whenever a loop closure
is detected.

1.3.2 Back-End

If the observations are affected by Gaussian noise, the standard optimization
procedure is a least square minimization because optimizing the graph with
this method is equivalent of computing a Gaussian estimation of the posterior
distribution over the agent trajectory.
Let x = (x1, ...,xK)T be a vector in which each element represents the pose
of node i and let zij and Ωij be respectively the mean and the information
matrix from the ith pose to the jth pose. The information matrix is the
inverse of the covariance of the pose and represents the uncertainty of the
measurement. If the information matrix contains large values, it means that
the collected data are informative with small uncertainty. Moreover, this
means that the bigger Ωij, the higher confidence measurement and the more
the edge matters in the optimization process.
Let ẑij(xi,xj) be the prediction of measurements given a configuration of the
nodes xi and xj; this is usually the transformation between two nodes.
Now, we define the error function e(xi,xj, zij) as the difference between the
expected observation ẑij and real observation zij provided by the agent:

eij(xi,xj) = zij − ẑij(xi,xj) (1.26)
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The log-likelihood lij of a measurement zij is proportional to

lij ∝ eij(xi,xj)
TΩijeij(xi,xj) (1.27)

Fig. 1.6 illustrates the functions and the quantities that define an edge of
the graph.

Figure 1.6: Aspects of an edge connecting the vertex xi and the vertex xj
[13]

The goal of the maximum likelihood approach is to find the configuration of
nodes x∗ that minimizes the negative log-likelihood for all observations :

x∗ = arg min
x

F(x) (1.28)

with

F(x) =
∑

(i,j)∈C

eTijΩijeij (1.29)

and where C be the set of pairs of indices for which an observation z exists.
Note that the error of a constraint eij depends only on the relative position
of the connected poses xi and xj. Accordingly, the error F(x) of a particular
configuration of the poses x is invariant under a rigid transformation of all
the poses.
If the initial guess x̃ of the agent’s poses is known, a numerical solution of the
Eq. (1.28) can be obtained using, for example, Gauss-Newton or Levenberg-
Marquardt algorithms.
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1.4 Mapping

The map can be represented in different ways depending on the sensors used,
on the environment’s characteristics and on the estimation algorithm. They
can be subdivided into metric map or semantic map; the main differences be-
tween them is that the first one consists of a symbolic structure that encodes
the geometry of the environment while the second consists of associating se-
mantic concepts to geometric entities in an agent’s surrounding.
Regarding metric maps, in the following, two predominant paradigms are
introduced [5]:

• Landmark-based maps : models the environment as a sparse set of land-
mark; this solution is often preferred in environments where locally
distinguishable features can be identified and especially when sensors
like cameras or laser are used.

• Occupancy grid maps : discretizes the environment in cells and assigns
a probability of occupancy to each cell; this solution is usually used
in conjunction with some less accurate sensor data, for example with
radar, or when no well-defined landmarks are identifiable.

1.4.1 Occupancy Grid Mapping

To address the problem of the occupancy grid mapping update, the Bayesian
filtering theory can be exploited.
Let N be the number of targets detected by the sensor with the measurement
zt = ∪Nk

(
ρkt , φ

k
t

)
at time t where

(
ρkt , φ

k
t

)
are range and bearing angle of kth

target respectively.
The posterior probability p(m|x1:t, z1:t) represents the occupancy probability
of the map m considering all the measurement z1:t and agent pose x1:t up to
time t [14]. If cells mi of the map are independent, the posterior becomes as
follows:

p(m|x1:t, z1:t) =
∏
i

p(mi|x1:t, z1:t) (1.30)

To avoid numerical instability, the log-odd form is used to represent the
probability for each cell as shown in 1.31:

lt,i = log
p(mi|x1:t, z1:t)

1− p(mi|x1:t, z1:t)
(1.31)
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The log-odd probability for each cell, recursively, is updated using Bayes
filter with equation 1.32:

lt,i = lt−1,i + log
p(mi|xt, zt)

1− p(mi|xt, zt)
− l0,i (1.32)

where l0,i is the log-odd at t = 0.
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Chapter 2

Registration Algorithms

In this chapter, we describe the registration problem that allows to estimate
the trajectory of the agent by matching different measurements collected by
sensors during its movement. There are different types of sensors that can be
used to perform SLAM. Opposite to cameras, most of them are range sensors
e.g. radar, lidar, sonar that provide a cloud of points from a detected object.
In this chapter, different registration techniques are proposed to estimate the
relative pose of sensors through i.e. translation and rotation, between differ-
ent point clouds. We will present both local matching methods like iterative
closest point (ICP) or normal distribution transform (NDT) matching and
global methods like correlative scan matching (CSM).
We will also present a Fourier-based method that provides a way to estimate
all rigid parameter transformations, i.e. translation, rotation and scale be-
tween different images. Although it is a method born for image registration,
if we process raw sensor data, it can be used to estimate how the sensor moves
during the motion. In particular, when the radar is considered this method
works on all radar data avoiding the problem of landmarks extraction that
are very difficult with sparse and noisy data.
Finally, we will present the Matlab functions used to estimate the relative
pose between two consecutive sensor’s measurement from scan matching and
to map the environment. They will be used in this thesis for the development
of the proposed SLAM algorithm.

2.1 Registration Problem

Registration is the problem of matching two scans (or points clouds) when
the relative pose difference between the scans is unknown. In the follow-
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ing, scan is referred to a sensors observations and it is denoted by a vector
h = {hi}i=1,...,n where each element hi can represent the coordinate of 2D

points with hi ∈ R2 or 3D space with hi ∈ R3. Moreover, we will refer to
frame the coordinates system used to describe the observations gathered by
the device sensor.
Given two scans, the output of registration is an estimate of the transforma-
tion needed to transform one scan (called current scan) into the correct pose
in the coordinate system, or frame, of the other scan (called reference scan).
In a 2D scenario, a transformation involving a translation and a rotation can
be defined as a function T given by:

T :

(
x
′

y′

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x

y

)
+

(
tx
ty

)
(2.1)

or in compact form by:

T :

(
x
′

y′

)
= R(θ)

(
x

y

)
+ t (2.2)

where t = (tx, ty)
T describes the translation and

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
(2.3)

is the rotational matrix where θ is the rotation between the two different
frames.
The goal of the scan alignment is to recover the parameters t and θ using the
scans taken at two positions.

2.2 ICP: Iterative Closest Point Algorithm

The iterative closest point was introduced in [15]. It is still widely used for
point clouds registration in robotic fields. The ICP algorithm refines the
relative pose between two point sets from scanned surfaces by iteratively
minimizing the sum of squared distances between pairs of closest points.
Let P = {p1, ...,pn} and Q = {q1, ...,qm} be two points clouds that have to
be aligned, and t0 and θ0 an initial guess for the translation and rotation.
The algorithm, at each iteration k, transforms P according to the current
estimates of translation tk and rotation θk.
Let P ′k = {p′1, ...,p′n} be the transformed data set at iteration k with p′i =
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R(θk)pi + tk from (2.1), now the algorithm forms n pairs
(
p′i,qj

)
by associ-

ating each point in P ′k with the closest point in Q.
The goal is to minimize the sum of the squared Euclidean distances until the
convergence:

(tk+1, θk+1) = arg min
(t,θ)

∑
(i,j)

||R (θ) pi + t− qj||2 (2.4)

However, there are some limitations regarding the ICP algorithm. For ex-
ample, it only considers a “point-to-point” registration therefore the nearest
neighbour point does not, in general, correspond to the same point on the
scanned surface in challenging environments. Moreover, if the scan includes
a large number of points, a point-to-point search can lead to high compu-
tational costs and execution time. In the field of lidar sensors where each
data set has many points, this algorithm is well suited but with radars, it is
not true because the data sets are very poor and a direct match can lead to
inaccurate results.

2.2.1 PLICP: Point-to-Line Iterative Closest Point Al-
gorithm

In [16] the authors have proposed an improved ICP algorithm such as iter-
ative closest point (PLICP) for “point-to-line” matching. It can converge
quadratically in a finite number of steps.
Different from the classic ICP algorithm, after the transformed points set P ′k
have been found, for each point p′i the algorithm finds the two closest points
qj1 and qj2 in the data point set Q. Let Ck be a set of tuples 〈i, j1, j2〉 at
step k that represents all the point-to-line correspondences. The goal is to
minimize the sum of the squares of the distances from point i to the line
containing the segment j1 − j2 [16] to obtain the optimal transformation
parameters t and θ:

J (tk+1, θk+1,Ck) =
∑
(i)

(
nTi
[
R (θk+1) pi + tk+1 − qj1

])2
(2.5)

where ni is the normal to the surface at the projected points.

2.3 NDT: Normal Distribution Transform

The normal distributions transform (NDT) can be described as a method for
compactly representing a surface and it was introduced in [17] for registration
of 2D points.
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2.3.1 NDT Grid for Representing Surfaces

The NDT maps a point cloud to a smooth surface representation, described
as a set of local probability density functions, each of which describes the
shape of a section of the surface [18].
First, the space around the agent is subdivided regularly into cells with
constant size. Then, from points xi=1...n in a single cell, a normal distribution
N (µ,Σ) is associated to each cell by calculating the empirical mean (2.6)
and empirical covariance matrix (2.7):

µ =
1

n

n∑
i=1

xi (2.6)

Σ =
1

n

n∑
i=1

(xi − µ)(xi − µ)T (2.7)

where a single point xi is identified with the 2D or 3D coordinates.
Now, the probability of measuring a point in a certain position within each
cell is modeled by a normal distribution.

p(x) ≈ exp

(
−(x− µ)TΣ−1(x− µ)

2

)
(2.8)

It represents a piecewise continuous and differentiable description of the point
cloud in the form of a probability density.
In 2D and 3D cases, the surface orientation and smoothness can be assessed
from the eigenvectors and eigenvalues of the covariance matrix within which
the diagonal elements denote the variance of each variable, and the off-
diagonal elements denote the covariance of the variables. Depending on the
proportions of the variances, a 2D normal distribution can be either point-
shaped or line-shaped while in 3D case can describe a line (one eigenvalue
much larger than the other two), a plane (one eigenvalue much smaller than
the others) or a sphere (all eigenvalues approximately equal).

2.3.2 NDT for Scan Registration

When using NDT for scan registration, the first step is to build the NDT of
reference scan by the technique mentioned in 2.3.1. As the local registration
methods such as those that use NDT or ICP require initial estimates, they
must be initialized by zero or using odometry data or another sensor such as
an inertial unit (IMU). A good initial guess can boost the algorithm conver-
gence. Then, each point of the second scan is mapped into the coordinate
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frame of the first scan using T in 2.1 finding the correspondent normal dis-
tribution.
The flow of NDT scan matching is shown in Fig. 2.1.

Figure 2.1: NDT converts for reference scan and NDT scan matching flow
[19]

.

Let consider the following notation:

• p = (tx, ty, θ): The vector of the transformation parameters, between
reference and current scan, to estimate.

• xi = (xi, yi): The coordinate of ith 2D point of the current scan in its
coordinate frame.

• x
′
i: The point xi mapped into the coordinate frame of the reference

scan according to the parameters p, that is x
′
i = T (xi,p)

• Σi,µi: The covariance matrix and the mean of the corresponding nor-
mal distribution to point x

′
i looked up in the NDT of the reference

scan.

The goal of the NDT scan-matching is to find parameters of p which
maximize the sum of the normal distribution of all points x

′
i = T (xi,p) with

parameters Σi and µi, that is the function:

score(p) =
∑
i

exp

(
−(x

′
i − µi)

TΣ−1
i (x

′
i − µi)

2

)
(2.9)

Since optimization problems normally are described as minimization prob-
lems, Newton’s algorithm can be used to minimize the function −score in p
by iteratively solving linear system [17].
A recent work [20] proposes a new fast points clouds registration algorithm
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that can realize fast and accurate localization and mapping through com-
bination of NDT scan matching and PLICP described in subsection 2.2.1.
First, the NDT registration algorithm between two adjacent point clouds is
applied. Then, PLICP algorithm is adopted to correct the previous rough
registration.

2.4 CSM: Correlative Scan Matching

In contrast to algorithms shown in (2.2) and (2.3), correlative scan matching
(CSM) [21] exploits a global search method which avoids the local search
problem of falling in a local minima failing to identify the global maximum.
This method performs a search over the entire area of transformations with-
out requiring an initial guess.
The principle behind the algorithm is the realization of a look-up rasterized
table that approximates the distribution shape due to noisy sensors mea-
surements as radially-symmetric distribution [21] making the scan matching
easier. The look-up table is built whenever the current scan arrives accord-
ing to the reference scan, in fact, it is considered a scan-to-scan matching
strategy.
When the reference scan is converted into a probability grid, the scan points
{hi}i=1,...,n ∈ R2 are separated into cells with size r. If there are some points
inside the single cell, it is considered occupied assigned to 1 while other cells
are considered free assigned to 0. Now, each cell of the table is smoothed
with a radially-simmetric kernel.
The goal is to estimate the relative pose, corresponding to a vector p =
(tx, ty, θ), of the agent at kth iteration respect to the (k − 1)th iteration.
To achieve the most probable transformation, the best score must be found.
Three solutions are presented in [21]:

1. Brute Force: This method exploits three nested loops, one for each
transformation parameter. Every point of the transformed current scan
is mapped over the rasterized lookup table and the total score is com-
puted as the sum of all mapped cells scores. This algorithm tries all
possible translations and rotations from the selected search window W
around a given pose p0 placed in its center. For example, the angular
step size can be chosen so that the scan point at the maximum range
dmax does not move more than r [22]. Then from the law of cosine:

dmax = max
i=1,...,n

||hi|| (2.10)

δθ = arccos

(
1− r2

2d2
max

)
(2.11)
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Given the linear and angular size of search window W, the integral
number of steps to cover them can be computed. For each iteration
the score is computed as:

score =
n∑
i=1

p0 + (Rδθ(θ)hi + tr) (2.12)

where each scan point hi is transformed according to the combination
of translation and rotation parameters at a given step, around the given
pose p0, by tr and Rδθ(θ). For these reasons the algorithm is slow.

2. Computing 2D Slices: A lot of calculation time can be spared by pre-
generating θ values and iterating over them in the outer-most loop.
This method is faster than brute force because the trigonometric func-
tions are not computed.

3. Multi-Level Resolution: This method constructs two raster look-up ta-
bles with different resolutions. A low-resolution grid is used to discover
the areas that might contain the global maximum then a high-resolution
grid is used to search the global maximum in the restricted area. This
strategy is fast making real-time scan matching possible.

To improve the speed of search over the large search window, the branch
and bound strategy can be used to compute p by considering subsets of
possibilities as nodes in a tree where the root node represents all possible
solutions i.e. search window W [22].

2.4.1 Improved CSM

Since the presented method assigns the same occupancy probability for each
point when constructing a rasterized look-up table, there may be different
kinds of matching relations which lead to a wrongly estimated pose. More-
over, if the data volume provided from the sensor is small and sparse for
example using mmWave radar, the original CSM is not well suited. Con-
sidering the above reasons, an improved CSM method is proposed in [23].
Here, the IMU and odometry are used to merge continuous radar scan in a
“Multi-Scan” to increase density of point clouds but it is not enough to get
a good estimate of the pose. The improvement consists in the exploitation
of the radar cross section (RCS) feature of targets to weight the probability
distribution of each point in reference scan in addition to the realization of
scan-to-map matching algorithm which allows to match current scan with a
local submap of the grid global map.
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More in detail, the authors in [23] also do raw data preprocessing to achieve
better SLAM algorithm accuracy. In this sense, first, they filter out the low
precision points due to measurements of sensor and once the multi-scan is
formed, the outlier points are deleted from the sensor scan. The outliers are
generated by the multiple reflections of signals due to the environment.
The strategy is to iteratively alternate the pose estimation with an update
map phase where the map contributes to compute that pose.
Before performing points clouds matching, the global mapM was constructed
so the environment is subdivided into a grid whose cells are considered inde-
pendent. The first scan of multi-scan, called query scan Q, will be matched
with a local submap called reference scan F , that is, a portion of the global
grid map. In order to do that, the submap size must be computed consider-
ing Q that must be registered using the absolute pose at the previous time
step.
A fundamental step is to compute the look-up table of F with a Gaussian
kernel:

P (F ∗) =
1

σ
√

2π
e−

(d−µ)2

2σ2 R(Mx,y)(t) (2.13)

where d is the space between two adjacent cells F e F ∗ of the grid map, µ and
σ are the expectation and the variance of Gaussian kernel which is used to
calculate the occupancy probability of the cell F ∗ and R(Mx,y)(t) indicates
the RCS value of a given cell in position (x,y) at time t.
At this point, the matching between Q and F is performed. The estimated
pose at time t is obtained by rotating and translating Q over F with the
brute force method of correlative scan matching. Thus, Q is projected over
the rasterized look up table F and the RCS of Q is subtracted from the RCS
of the grid. Finally, the result is summed. The smaller is the final sum, the
best is the pose estimation.
Finally, the map is updated with:

R(Mx,y)(t) =

∑t
k=0

(
1

rx,y(k)
R(Mx,y(k)

)
∑t

k=0

(
1

rx,y(k)

) , 0 ≤ k ≤ t (2.14)

where rx,y(k) is the distance from the sensor to the target at time step k.

2.5 Fourier-Mellin Transform

The Fourier-Mellin transform is an FFT-based method which is used to reg-
ister two different images searching for the optimal match in the frequency
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domain. To recover translation, rotation and scale between two different im-
ages, this method makes use of the Fourier transform properties [24].
Let F1 (ξ, η) and F2 (ξ, η) be the Fourier transform corresponding to images
I1 (x, y) and I2 (x, y).
Now, if two images differ only by a shift (x0, y0) then

I2(x, y) = I1(x− x0, y − y0) (2.15)

and their Fourier transform are related by

F2(ξ, η) = e−j2π(ξx0+ηy0) · F1(ξ, η) (2.16)

The translation parameters can be recovered by calculating cross-power spec-
trum between two images defined as :

F2(ξ, η)F ∗1 (ξ, η)

|F2(ξ, η)F1(ξ, η)|
= ej2π(ξx0+ηy0) (2.17)

where F ∗(ξ, η) is the complex conjugate of the Fourier spectrum F (ξ, η). It
is clear that the inverse Fourier transform of (2.17) is a δ−Dirac function like
δ(x− x0, y − y0) centered in (x0, y0).
If the two images also differ by the rotation angle (θ0), then:

I2(x, y) = I1 (x cos(θ0) + y sin(θ0)− x0,−x sin(θ0) + y cos(θ0)− y0) (2.18)

and their Fourier transforms are related by:

F2(ξ, η) = e−j2π(ξx0+ηy0)·F1(ξ cos(θ0)+η sin(θ0),−ξ sin(θ0)+η cos(θ0)) (2.19)

according to Fourier translation and rotation properties.
Let M1(ξ, η) and M2(ξ, η) be the magnitudes respectively of F1(ξ, η) and
F2(ξ, η) which are related by:

M2(ξ, η) = M1(ξ cos(θ0) + η sin(θ0),−ξ sin(θ0) + η cos(θ0)) (2.20)

Converting the magnitudes from cartesian to polar coordinates allows to rep-
resent rotation as a shift and the relation between them becomes as follows:

M1(ρ, θ) = M2(ρ, θ − θ0) (2.21)

2.6 Matlab SLAM Functions

2.6.1 Pose Estimation

Before explaining other Matlab functions [25], we describe the lidarScan Mat-
lab object. The lidarScan contains data referring to a single sensor mesure-
ment. In particular, it is a scan in the 2D plane with distances measured
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from the sensor to the targets in the environment at specific angles. The
syntax is reported:

scan = lidarScan (ranges, angles)

where ranges and angles are the two vectors of the same length. The pair
formed by the ith element of each vector identifies a point of the scan. Among
the properties, there are the two vectors of equal length, for ranges and for
angles but also there is an associated n-by-2 matrix with the target’s cartesian
coordinates. Finally, also the number of targets in the scan can be provided.
To estimate the relative 2D pose between two sensor scans, Matlab provides
matching functions that are built for lidar applications but, here, we adapt
them for the mmWave radar sensor measurement. The functions are:

• matchScans : finds the relative pose between two consecutive lidarScans
using normal distribution transform described in section 2.3. Among
the properties provided as output by this function, there is the score.
To improve the matching, the initial guess of the relative pose between
current and reference scan can be supplied in input specifying the ‘Ini-
tialPose’ argument. The syntax of this function is shown:

pose = matchScans (currScan, refScan)

• matchScansGrid : finds the relative pose between two consecutive li-
darScans using grid-based search. The function transforms two scans
in probabilistic grids and it finds the relative pose as described in sec-
tion 2.4. The users can set the initial guess of the relative pose between
the two scans specifying in input the ‘InitialPose’ and can indicate the
search windows in meters and also in radians around the initial pose
estimate specifying the ‘TranslationSearchRange’ and the ‘Rotation-
SearchRange’ arguments. These properties increase the speed of the
algorithm. Also, this function outputs the score. The syntax for this
function is also shown:

pose = matchScansGrid (currScan, refScan)

For each mentioned function, the relative pose between the current scan and
reference scan in a vector [x, y, θ] where [x, y] are in meters and θ in radians
while the currScan and the refScan are lidarScan objects.
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2.6.2 Mapping

Matlab provides algorithms in term of occupancy grid map to represent the
sensor workspace. The map updating policy is provided by insertRay Matlab
function depending on the types of the map is used. This function inserts
rays corresponding to sensor observations i.e. above mentioned lidarScan
object, starting from the sensor pose to the position of detected targets in
the environment. The syntax of insertRay is reported:

insertRay (map, pose, scan,maxRange)

where the input arguments represent the occupancy grid map object, the
pose where the measurement is taken, the corresponding lidarScan object
and the maximum range of sensor respectively.
There are two types of occupancy map in the Matlab toolbox:

• binaryOccupancyMap: the probability of cells being occupied is a log-
ical value that can be true (1) for occupied cells or false (0) for free
cells. This type is preferred if one needs to preserve the memory in the
application. The syntax to build a binary occupancy grid map is :

map = binaryOccupancyMap (width, height,mapResolution)

• occupancyMap: it is more detailed than the previous one because the
probability inside the cells can assume all the values included between
0 and 1. The value inside the cell is close to 1 when it is likely an
obstacle is present in that cell. On the other hand, the values close
to 0 indicate probably free cells i.e. an empty cell. For this map, the
syntax is:

map = occupancyMap (width, height,mapResolution)

For both functions, the width and height arguments represent the size of the
map, in meters, and mapResolution indicates the grid discretization resolu-
tion.
For the binary occupancy map, the insertRay function updates the map by
setting true the cell corresponding to the location of scan endpoints that is
where the obstacle is presumed to be. If the ranges of endpoints are higher
than the maxrange input argument, these are considered empty cells. Also,
all the other points along the ray are treated as obstacle-free and the corre-
sponding cells are set to false.
For the occupancy map instead, the update follows the inverse sensor model
for range sensors in Fig. 2.2.
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Figure 2.2: Inverse sensor model [25]

According to the model, grid locations before the range reading are set
as free, the cell where is the sensor reading is set as occupied and all dis-
tances after the reading are not updated. The probability values of occupied
(poccupied) and free (pfree) locations can be customized by the user.
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Chapter 3

Radar Technologies

RADAR whose stands for radio detection and ranging [26] is an electrical
system capable of detecting the presence of an object, namely target, in the
surrounding space using radiofrequency electromagnetic waves. Although
the radars were born to detect objects and determine their distance for mil-
itary applications due to their bulky size and high cost, nowadays thanks to
modern high frequency radar systems, it is possible to exploit them also in
the civilian domain to track, identify, image, and classify targets. For this
reason, the fields of application of these systems are constantly expanding.
Among these applications, there are vehicle tracking and self-driving, colli-
sion avoidance, 2D and 3D mapping of indoor and outdoor environments,
Earth resource and precipitations monitoring.
Nowadays, sensors like lidar and optical camera are widely used in applica-
tions that implement SLAM algorithms because lidar sensors have very high
precision and they are able to accurately model surrounding 3D environment
and optical cameras provide a wealth of detailed information. From this
point of view, the modern low cost and high frequency radars may be not
suitable for this application because due to small and sparse volume of in-
formation and sometimes they may contain some errors because of noise and
multiple paths of the backscattered signal. The reflection of backscattered
radar signals depends on the surface and on the incidence angle β (Fig. 3.1).
At mmWave radar frequencies, the diffuse component of reflected signals are
very low compared to the specular reflection component. In particular, if the
incidence angle β is large, the wave can be mirrored and it may be not de-
tected by the radar if the transmitting antenna is close to receiving antenna.

Due to non-ideal radiation pattern of radar, we may also have the contribu-
tions of “ghost object” i.e. reflections that appear to come from objects that
are not there. As it is intuitive, these problems are more present in indoor
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Figure 3.1: (a)specular reflection, (b)diffuse reflection [14]

environments that have a large number of reflective objects rather than in
outdoor environments.
However, modern mmWave radar sensors may be exploited in challenging
environment conditions and due to their small size, they can be suitable for
portable indoor systems. Propagating radio waves in the environment in the
order of tens GHz, radars can work within certain reliability even with low-
visibility condition due to rain, smoke, fog or for example poor lighting in
contrast to other competitive technologies like Lidar or optical cameras.
Generally, the main elements involved in the Radar detecting process are
transmitter (TX), receiver (RX), antenna and signal processor as shown in
Fig. 3.2.
In this chapter, first, fundamentals of radar systems are presented. Second,
we present a type of mmWaves radar systems used to measurement campaign
makes in this work.

3.1 Principles of Radar

Fig. 3.2 shows the main functional blocks composing a radar. The signal is
generated by the transmitter and it is irradiated in the atmosphere by the an-
tenna. The electromagnetic wave after propagating through the enviroment
is reflected back by the target (when present) and it is processed by receiver
circuits. The backscattered signal in general experiences interference [26]
like noise due to electronic components and environment, electromagnetic
interference from the external signal generated by other users, clutter due
to the reflection due to objects not of interest and, possibly, jamming from
electronic countermeasures systems. The signal processor situated after the
receiver block has the function to detect the signal in the presence of the
above mentioned interference sources.
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Figure 3.2: A schematic view of the TX/RX processing chain of a radar [26]

The radar systems may be different according to the type of signal generated
by the transmitter: Continuous wave (CW) radars continuously transmit
signal in the propagation medium and pulsed wave radars transmit finite du-
ration short impulses to avoid the problem of time overlapping between TX
and RX signals.
Radars can be also classified according to the configuration of antennas in
monostatic or bistatic radar. In a monostatic configuration, there is only one
antenna that serves both the transmitter and receiver. On the other hand,
the radar is said in the bistatic configuration if there are two different anten-
nas, one for the transmitter and one for the receiver, sufficiently separated
and isolated.
Now, we present some equations that describe the radar principles and show
its dependencies on different parameters.
Let PT be the transmitted power and let GT be the transmitter antenna gain,
the power density at distance R is:

ST =
PTGT

4πR2

[
W

m2

]
(3.1)

Equation 3.1 shows how the power decreases with the quadratic value of the
distance between radar and target. The receiving power density from the
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target can be expressed as:

SR =
PTGT

4πR2

σ

4πR2

[
W

m2

]
(3.2)

where σ is radar cross section (RCS) that is a parameter measuring the abil-
ity of a target to reflect electromagnetic waves so that the greater is RCS the
more the object is detectable by the radar. Note that in general, the RCS is
the frequency and angle dependent.
To compute the received power, we need to multiply the receiver power den-
sity by AR = GRλ

2

4π
that is the effective antenna area where λ is the signal

wavelength. Therefore, the received power is:

PR =
PTGTσ

(4πR2)2
AR [W ] (3.3)

Finally, the received power for a monostatic radar can be expressed as:

PR =
PTGTGRσλ

2

(4π)3R4
[W ] (3.4)

From 3.4 which is the well-known radar equation, it is possible to design the
parameters such as PT or λ to achieve desired power value according to the
sensibility of the receiver.

3.1.1 FMCW Radars

Among the family of CW radars, there are frequency modulation continuous
wave (FMCW) radars. These radar systems are able to detect the target
and to estimate target-related parameters like range, angle of arrivals and
velocity [27]. The FMCW technique is based on chirp, a sinusoid signal shown
in Fig. 3.3 whose frequency increases linearly with time. It is characterized
by a bandwidth B, start frequency fc and duration Tc. A convenient way to
represent a chirp is a graph with frequency as a function of time in which
the slope S = B/Tc is highlighted. It represents the rate at which the chirp
ramps up.
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Figure 3.3: Top: Example of a chirp signal; Bottom: Slope as a function of
time [27]

Now, the block diagram of a FMCW radar is reported in Fig. 3.4.

Figure 3.4: A block diagram of a FMCW radar [27]

The synthesizer (1) generates a chirp which is transmitted in the propagation
channel by the TX antenna (2).

sT (t) = A sin (2πfTX(t) · t) (3.5)

where fTX(t) = (fc + St). The chirp is reflected back by the target and it is
received at RX antenna (3).

sR (t) = A sin (2πfRX(t) · (t− τ)) (3.6)
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where fRX(t) = (fc + S (t− τ)). An electronic circuit called “mixer” (4),
combines the TX and RX signals generating an intermediate frequency fIF =
fTX − fRX signal whose frequency allows to calculate the distance of the
target.
The RX chirp is a time-delay version of TX chirp with round-trip delay
defined in 3.7:

τ =
2d

c
(3.7)

where d is the distance to the object and c is the speed of light.
If we consider to have only one target in the field of view (FoV) of the
radar, then the output signals will be a sinusoid A sin(2πfIF t + φo) with
constant intermediate frequency fIF = Sτ = S2d/c (Fig. 3.5) and phase
φo = 2πfIF τ = 4πd/λ. Thus, the distance of the target can be defined as:

d =
fIF c

2S
(3.8)

Figure 3.5: Top: Slope of the TX and RX chirp, τ is the delay of the signal
coming from a target. Bottom: IF frequency related to the detected target
[27]

On the other hand, if we detect some different objects, the received signal will
be composed of different tones. In this case, we will use the Fourier transform
in order to separate different tones in the frequency domain. The ability to
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distinguish between different objects is called range resolution. To improve
this, it is necessary to increase the duration of the observation window Tc of
the chirp until tones are sufficiently separated at the expense of increasing
bandwidth.
Since ∆f = 2S∆d

c
> 1

Tc
⇒ ∆d > c

2B
with B = STc, the range resolution

equation is given by:

dres =
c

2B
(3.9)

We note that it depends only on bandwidth swept by the chirp, the wider
bandwidth the higher range resolution thus smaller targets can be identified.
As above mentioned, FMCW radars allow also to measure the velocity of the
target. In a single target case, two TX chirps separated by Tc are transmitted.
At the receiver, we will obtain two sinusoids with the same IF but different
phases. The different ∆φ can be exploited to measure the target velocity v.
Starting from

∆φ =
4π∆d

λ
(3.10)

with ∆d = vTc, we obtain velocity:

v =
λ∆φ

4πTc
(3.11)

Regarding equation 3.11, we note that it depends on the phase difference.
For this reason, if |∆φ| < π there will be ambiguity in the measurement due
to the phase periodicity 2π. Thus, the maximum target velocity that the
radar can manage is:

vmax =
λ

4Tc
(3.12)

The velocity resolution, defined as the minimum velocity difference percep-
tible of two objects equidistant to radar, can be determined transmitting N
equi-spaced chirps called frame and it is defined as:

vres =
λ

2Ts
(3.13)

where Ts = NTc is frame time. The higher is the frame time, the higher is
the velocity resolution.
The radar can also estimate the angle of arrival (AoA) that is the angle that
the received signal generates with the RX antenna. To estimate it, at least
two RX antennas are required. A possible solution is shown in Fig. 3.6.
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Figure 3.6: AoA estimation with one target [27]

We leverage the phase variation 3.14 at two receiving antennas due to
differential distance between each antenna and target:

∆φ =
2π∆d

λ
(3.14)

with ∆d = d sin(θ). From 3.14, we can estimate the angle of arrival (AoA)
of the object:

θ = sin−1

(
λω

2πd

)
(3.15)

Angle resolution is defined in [27]:

θres =
λ

Nd cos(θ)
(3.16)

The higher is the number of antennas available, the higher will be the achiev-
able resolution.

3.2 The Texas Instruments Radar IWR1443

In this section, we will illustrate the main features of the mmWave TI radar
used for measurement campaigns with the goal to exploit the data obtained
for the performance assessment of the SLAM algorithm developed in this
work.
The board IWR1443 Booster Pack is shown in Fig. 3.7. It is composed of
IWR1443 single-chip that is an ideal sensing solution for low power, self-
monitored, ultra-accurate radar systems in the industrial field [28].
More in details, IWR1443 Booster pack contains mmWave radar transceiver

IWR1443, which is based on the FMCW technology working in a frequency
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Figure 3.7: The mmWave sensing solution - IWR1443 Booster pack

range from 76 to 81 GHz with 4 GHz continuous bandwidth. In addition, the
device is equipped also with 4 receiving antennas and 3 transmitting anten-
nas mounted on PCB as the Radar front-end board with built-in PLL and
A/D converters. Thanks to the time division MIMO technology exploited
by the radar, it allows to consider 1 TX and an array with 12 RX virtual
antennas. Antenna on PCB has an Azimuth FoV which goes from −60◦ to
60◦ with 15◦ of resolution. However, being 3D radar, it has also 30◦ field of
views in an elevation plane with a resolution of 57◦.
This device also includes a DSP subsystem for the signal processing and an
ARM R4F-based radio control system for front-end configuration, control
and calibration.
To configure mmWave radar and connect it with PC, we use the web ap-
plication mmWave Demo Visualizer [29] of the Texas Instrument. Through
this application we can change, in real-time, the configuration of radar pa-
rameters and then visualize and record output data on the PC. Furthermore,
it is possible to configure the radar with 2 TX and 4 RX antennas or with
3 TX and 4 RX antennas. The data will be processed and used as input for
the SLAM algorithm as we will explain in the following chapters.

3.3 300 GHz Measurement Set-Up

In this section, we describe a measurement technology that exploits signals at
300 GHz. Measurements have taken place at CEA-Leti, Grenoble (France),
within a collaboration with the University of Bologna in the European project
PRIMELOC.
The system is configurated as shown in Fig. 3.8. This measurement system is
composed of one transmitting horn antenna and one receiving horn antenna.
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Figure 3.8: CEA-Leti measurement system at 300GHz

Here, the measurements are collected in the frequency domain through a
sweep possible thanks to a Vector Network Analyzer (VNA). The purpose
is to emulate the behaviour of the quasi-monostatic radar by collecting the
data from measurements and subsequently processing them by FFT to char-
acterize the impulse response of the backscattered channel.
The measurement campaigns carried out at CEA-Leti will be described in
more details in the next chapter.
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Chapter 4

Radio SLAM with Radar
Signals: Proposed Algorithms

In this chapter, we will describe the proposed radar-based SLAM algorithms
that exploit radar signals to estimate the agent’s trajectory and map the
surrounding environment. Thanks to above mentioned FMCW radar, raw
data can be extracted and processed to obtain angle-range matrix called
radar images from the measurements acquired during campaigns which can
be used as input of algorithms.
The proposed algorithms will be also tested with data sets of measurement
obtained with radar at 300 GHz. In this case, the data collected through
measurement campaigns provides directly the radar images.

4.1 Radar Images from Raw Data

The raw data processing described in this section is summarized by the block
diagram in Fig. 4.1.

The TI radar provides raw data measurements as matrices containing the
complex baseband samples of the received signal. In particular, for each
frame the data format is a complex matrix where the number of columns
corresponds to the number of virtual antennas and the number of rows cor-
responds to the FFT order (NFFT ) made by radar in its internal data pro-
cessing. Each row index is referred to the reflected signal’s time of arrival,
so the distance from the obstacle to the radar obtained with equation (3.7).
We will indicate each element of the matrix with arn where r = 1, 2, ..., NFFT

and n = 0, 1, ..., Na − 1, with Na the number of virtual antennas.
Before going on, we point out that in this work we consider a 2D case with-
out the Doppler effect but it is possible to create a matrix also with doppler
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Figure 4.1: Radar pre-processing chain: raw radar measurements are trans-
lated into an Angle-Range Matrix thorugh a DFT operation, and, then, a
CLEAN algorithm (two step approach) provides the final clean Radar Image.

information.
Let θ and φ be the azimuth and elevation angle of radar respectively. So,
we consider φ = 0 and we divide θ into M different portions which represent
steering angles in the azimuth plane.
The range-antenna matrix is processed using the Discrete Fourier Transform
(DFT) in the antenna domain to extract the angular information and to
obtain the angle-range matrix. Specifically, the DFT processing is:

emr =
Na−1∑
n=0

arne
−jπn sin θm cosφ (4.1)

where r = 1, 2..., NFFT with NFFT order of FFT internally made by the
radar, θm = −π

2
+ (m−1)π

M
is the angle domain with m = 1, ...,M and Na is

the number of virtual antennas.
In other words, a radar image represents the environment that lies in the
radar’s FoV in the azimuth plane. It is obtained from the reflected signals
from the surrounding environment returning to the different radar virtual
antennas with different angles and intensities.
In particular, the radar image is a M × NFFT angle-range matrix in which
the columns are referred to range samples, with step dr that is the range
resolution of the radar, while the rows are referred to the azimuth angles
from −π/2 to π/2 with step dθ = 1 degree i.e., M = 180. If the environment
presents an obstacle at a given angle-range position, the corresponding cell
in the matrix will contain values significantly different from zero.
Due to side lobes in the antenna radiation pattern and multipath of the
backscattered signal, the angle-range matrix may contain noise and “ghost”
object contributions. They could be a limit for the SLAM algorithm accuracy.
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Moreover, due to the wide main lobe of the antenna, objects close to those
steered by the radar could be considered. For these reasons, in order to obtain
a “clean” and more accurate radar image, we post-process the matrix with
cleaning algorithms with which we try to limit these contributions through
the setting of suitable thresholds between 0 and 1:

• Side lobes threshold : For each angle-range matrix column, we find the
cell containing maximum energy value and we discard all the contribu-
tions coming from the same range that are likely due to side lobes below
the product between this value and the threshold. Fig. 4.2 shows the
cleaning process where the maximum M for the rth column is found
then only the energy contributions higher than M ·Side lobes threshold
are selected (for example in Fig. 4.2 the red values).

Figure 4.2: Example of the cleaning process

• Noise threshold : Considering the entire angle-range matrix, we find the
cell the maximum energy value and we discard all energy contributions
due to noise which are lower than the product between it and the
threshold.

In Fig. 4.3 we show an example of radar image before (Fig. 4.3(a)) and
after (Fig. 4.3(b)) the application of cleaning algorithms Here, the radar is
placed in (ρ, θ) = (0, 0) and all contributions below the thresholds have been
discarded.
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(a) Radar Image
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(b) Clean Radar Image

Figure 4.3: Raw radar image (left) and clean radar image (right) obtained
with Side lobes threshold = 0.5 and Noise threshold = 0.001

4.2 Scan-to-Scan SLAM Algorithm

In this section, we try to estimate the radar trajectory and map with the
Matlab functions, described in section 2.6, provided by the Navigation Tool-
box [25] that are born for the lidar’s applications. The proposed iterative
algorithm is summarized in Fig. 4.4.

Figure 4.4: Scan-to-scan SLAM algorithm: block diagram

For this purpose, for a given radar measurement, we extract the correspond-
ing radar image as described in section 4.1 and we generate a 1-by-M scan
vector to emulate a lidar measurement. First of all, we set a threshold and for
each angle i.e., ith row of the range-angle matrix, we take the first element of
the radar image which overcomes s = scanThreshold ·emax where emax is the
maximum energy value of the considered row, and scanThreshold ∈ [0, 1]
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is a suitable threshold. Each element of the scan vector is identified by rm
that is the range sample corresponding to the column’s index of the identified
element. In case all the elements of the row are zero, rm is set to zero which
means no obstacle detected. The scan vector has the form:

scan = [r1, r2, ..., rm, ..., rM ] (4.2)

So, we have a range vector in which the mth elements corresponds to the
angle θm.
Now, we generate a lidarScan object which can be used with the scan match-
ing and mapping functions presented in sections 2.6.1 and 2.6.2. The li-
darScan object is built starting from range-angle pairs of targets detected by
the radar. An example of a scan vector is shown in Fig. 4.5.
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radar measurement scan

Figure 4.5: An example of radar scan vector plotted in Cartesian coordinates.

The key idea is to find the relative pose [∆x,∆y,∆θ] between consecutive
radar measurements with a scan-to-scan matching strategy at each iteration
and successively to estimate the absolute pose and finally to update the map
with the insertRay function described in section 2.6.2. In addition to the
relative pose, we take into account also the quality of the estimated pose as
quality = score/N where score is a property of Matlab matching functions
and N is the number of points in the current scan measurement.
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The relative pose resulting from the matching is considered only if the scan
at kth step does not differ much from the scan at (k − 1)th step. In this
case, we consider the last estimated pose as an outlier and we force it to be
[∆x,∆y,∆θ] = (0, 0, 0).
Regarding the absolute pose, it is computed in two different ways: first by
adding step by step the estimated relative poses and then also with the
Kalman filter strategy to improve the estimate. For the latter, the state of
the system, x, is represented by the two components of absolute position, by
the two components of speed, by orientation and by the speed of rotation of
the radar. Therefore, the state is identified by a vector:

x = [x, y, ẋ, ẏ, θ, θ̇]T (4.3)

We have considered a linear motion model of the radar at step k with the
constant speed with additive Gaussian noise wk v N (0,Q) with covariance
matrix Q:

xk = Fk−1xk−1 + wk (4.4)

where the deterministic terms of 4.4 are given by:

xk+1 = xk + ẋk ·∆t
yk+1 = yk + ẏk ·∆t
ẋk+1 = ẋk

ẏk+1 = ẏk

θk+1 = θk + θ̇k ·∆t
θ̇k+1 = θ̇k

(4.5)

with ∆t being the time between two consecutive estimates. The state tran-
sition matrix is constant over time then Fk ≡ F. Also Q is constant over
time:

Q =



w0
∆t3

3
0 w0

∆t2

2
0 0 0

0 w0
∆t3

3
0 w0

∆t2

2
0 0

w0
∆t2

2
0 w0∆t 0 0 0

0 w0
∆t2

2
0 w0∆t 0 0

0 0 0 0 wt0
∆t3

3
wt0

∆t2

2

0 0 0 0 wt0
∆t2

2
wt0∆t


where w0 = 0.012 and wt0 = 0.012 are empirical values that depend on the
expected mobility of the radar.
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Let z be the observation vector:

z = [ẋ, ẏ, θ̇]T (4.6)

The observation model with additive Gaussian noise nk v N (0,Rk) with
covariance matrix Rk is identified by :

zk = Hkxk + nk (4.7)

where the observation matrix is constant over time then we can neglect the
temporal index (Hk ≡ H):

H =

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1


Given a prior information about the state (i.e., m0 = 0 and P0 = I), the
algorithms alternate between the following two steps:

• Prediction step :

xk|k−1 = F · xk−1|k−1

Pk|k−1 = F ·Pk−1|k−1 · FT + Q
(4.8)

where P is the state covariance matrix and the notation xk|k−1 indicates
the prediction of the state vector xk made at time instant k − 1 by
considering only the transition model in 4.4. Such a prediction will be
corrected in the correction step once a new measurement is collected
at k.

• Correction step :

xk|k = xk|k−1 + Kk · yk
Pk|k = Pk|k−1 −Kk · Sk ·KT

k

(4.9)

with

yk = z̃k −H · xk|k−1

Sk = H ·Pk|k−1 ·HT + Rk

Kk = Pk|k−1 ·HT · S−1
k

(4.10)

where y is the innovation term, S is the innovation covariance matrix,
K is Kalman gain and R is the covariance matrix of the measurement
noise depending on the quality of estimated relative pose between two
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consecutive measurements:

Rk =

( σr
quality(k)

)2 0 0

0 ( σr
quality(k)

)2 0

0 0 ( σθ
quality(k)

)2


where σr = dr/5 and σθ = dθ/5.
The term z̃, represents the relative translations transformed according
to the orientation estimate:

z̃ = [zx, zy, zθ] (4.11)

where

zx = ∆x · cos(θ) + ∆y · sin(−θ)
zy = ∆y · cos(θ)−∆x · sin(−θ)
zθ = θ

(4.12)

Here, ∆x,∆y,∆θ are the estimated parameters of relative pose between
k and k − 1 step.

After the absolute pose has been determined, the map is updated with the last
measurement. The environment is represented by a grid whose cell contains
the probability of the cell being occupied and it is treated with the Matlab
functions in 2.6.2.
We point out that it is an incremental method and it computes the relative
pose by matching two consecutive images. For these reasons, this class of
algorithms may present an accumulation of errors which propagating may
cause a drift in the estimated trajectory.

4.3 Consecutive Images Registration SLAM

Algorithm

This approach differs from the previous for the strategy to recover the rela-
tive pose between two consecutive radar measurements.
Here, the strategy is to estimate the translation and rotation parameters be-
tween two consecutive radar images directly with Fourier-Mellin transform
described in section 2.5.
For this purpose, we present the block diagram in Fig. 4.6 which describes
the registration algorithms.
We consider two consecutive polar radar images, Ik at the current frame and
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Figure 4.6: Relative pose estimation between two consecutive radar images

Ik−1 at the previous frame. Here, the radar images are of the same size.
First of all, we retrieve the rotation ∆θ of Ik respect to Ik−1. As described in
section 2.5, we apply the 2D-FFT to both current and previous images and
we compute the cross-power spectrum C using equation (2.17). After that,
we process C with an ideal 2D low pass filter with 0.4 empirical bandwidth.
After that, we apply the 2D-IFFT to the absolute value of cross-power spec-
trum and we find the maximum corresponding to the rotation parameter ∆θ.
Now, the translation parameters (∆x,∆y) must be found. For this purpose,
both the rotated current and previous image must be converted into an im-
age in cartesian coordinates and the parameters are computed with the same
steps used for the rotational parameter. This time the low pass filter em-
pirical bandwidth is set to 0.1. The quality of registration is also taken into
account considering the maximum value assumed by cross-correlation peak
in correspondence with the translation parameters.
After we have computed the relative pose, to find the absolute pose and
successively to update the map, the algorithm follows the steps described in
section 4.2 according to the block diagram in Fig. 4.7.
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Figure 4.7: Overview of the SLAM algorithm using radar images

4.4 Scan-to-Map SLAM Algorithm: First Ver-

sion

We now describe a new strategy to solve the SLAM problem partially avoid-
ing the problem of trajectory drifting. The key idea is to exploit the map
which is updated at each iteration to estimate the radar relative pose be-
tween two consecutive measurements. Here, the map is a binary occupancy
grid map. The expected advantage of this strategy is the mitigation of the
drift in case of outlier images, and the possibility to get an absolute position
estimation. The strategy is shown in Fig. 4.8.

Figure 4.8: Scan-to-map SLAM algorithm: block diagram

First, we set an arbitrary threshold and we refer to it with frameThreshold.
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This threshold sets the number of measurements after which the algorithm
starts to match the current scan with the map built up to that point at
each iteration. For this reason, the different results can be obtained with
different values of this threshold even if the data set of measurement is the
same. As long as the number of processed frames is less than the threshold
value, the algorithm behaviour is the same as section 4.2 and the matching
is made between consecutive scan measurement. To compare the map with
the current scan using the Matlab functions, it is necessary to retrieve the
scan vector relative to the map. For this purpose, we have implemented an
ad-hoc function described in the next section 4.4.1.
Once the map scan vector is generated, we use the Matlab function for 2D
scan matching to estimate the relative pose of the radar. Successively, the
absolute pose is found as in 4.2 and the algorithm proceeds as described in
the previous section.

4.4.1 Map Scan Vector Generation

The purpose of this function is to obtain a scan vector starting from a partial
map of the global grid map by accounting for the current estimated position
and orientation of the radar. The function takes in input the binary occu-
pancy map and the absolute pose of radar. The full process is described by
the block diagram in Fig. 4.9.
Let {hi}i=1,...,n be all the points set to 1 by the occupancy map algorithm at
the kth step. Each of these points has spatial coordinates hi = (xi, yi).
The first time that this function is called, the absolute radar pose pA =
[xA, yA, θA] at the previous step k − 1 is known so we shift all the targets
coordinate by the absolute radar position [xA, yA] as follows:

h̃i = hi − [xA, yA] (4.13)

In this way, the previous radar position now corresponds to the origin [xA, yA] =
(0, 0) of the map.
For each translated point, we obtain the polar coordinates (ρ, θ) :

ρi =
√
x̃2
i + ỹ2

i

θi = tan−1

(
ỹ2
i

x̃2
i

) (4.14)

Now, we have two 1-by-n vectors, one for angles measured counter-clockwise
around the positive z-axis, and the second for ranges. We will refer to them
as Angles vector and Ranges vector respectively. Successively, we consider
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Figure 4.9: Scan vector from the map: block diagram

the radar bearing angle θA at previous step k − 1 and we rotate the map by
this angle. In polar coordinates, the rotation is possible by subtracting the
quantity θA from each element θi of Angles vector as shown by the following
equation:

θ̃i = θi − θA (4.15)

After we have roto-traslated the map, we neglect all the elements of the
Angles vector which are outside the angular range [θA − 90◦, θA + 90◦] and
consequently their associated elements in the Ranges vector to obtain a par-
tial map of the global map. This partial map corresponds to the portion of
the global map seen by the radar at that moment.
Now, we need to get a 1-by-M , with M = 180, scan vector from the map
with the same number of elements of the current scan. For this purpose,
we approximate all the elements of the Angles vector to the smallest integer
then for each angle from −90◦ to 90◦, we consider all the associated points
in the Ranges vector and we account for the closest point to radar obtaining
a scan vector with the same length as the current scan.
In Fig. 4.10 we show an example of lidarScan generated starting from the
binary occupancy map as above described:
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Figure 4.10: lidarScan from the occupancy binary map mapped in Cartesian
coordinates

4.5 Scan-to-Map SLAM Algorithm: Second

Version

In this section, we present a different approach for the scan-to-map matching
strategy described in section 4.4. The only difference is in the generation of
the lidarScan objects to be fed to the matching functions of Matlab in order
to compute the relative pose.
To account for more information, instead of processing a scan vector using a
single range value, we consider multiple ranges for each given angle. This is
possible by considering all the cells with energy comprised within a specific
threshold. We will refer to it as scanThreshold.
We show in Fig. 4.11 an example of lidarScan object generated starting from
a radar image in which, for a given angle, we take into account all energy
contributions between max · scanThreshold < e < emax where emax is the
maximum value of energy for that given angle. Following a similar approach
also for the map, we considered more points instead of the single closest point
to the radar as in section 4.4. In particular, given an updated map at kth
time step, we roto-translate it as described in section 4.4.1 then we generate
a lidarScan object starting from all the points that, for a given angle, lie in
the space between the closest point to the radar and a specific threshold set
by the user. We will refer it to as mapThreshold.

49



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
x [m]

-4

-3

-2

-1

0

1

2

y 
[m

]
radar measurement

Figure 4.11: An example of Radar measurement with scanThreshold = 0.7

In Fig. 4.12, we show an example of lidarScan obtained from the updated
binary map.
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Figure 4.12: lidarScan from the occupancy binary map mapped in Cartesian
coordinates with mapThreshold = 0.2 m

With this approach, we do not emulate the lidar’s measurements to ex-
ploit the Matlab pose estimation function but we try to estimate the relative
pose between the current measurement and the current binary map by con-
sidering a cloud of points.
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Chapter 5

Measurement Campaigns and
Results

The goal of this chapter is to describe the different measurement campaigns
made with different radar technologies and successively, to show the results
obtained by the proposed SLAM algorithms. In addition to the results
achieved with the mmWave radar at 77 GHz, we will also show the results
obtained with the 300 GHz radar technology available at CEA-Leti.

5.1 Measurement at 77 GHz with TI mmWave

Radar

For measurement campaigns at 77 GHz, the TI mmWaves radar described
in section 3.2 has been used. It has been fixed over wheeled support and it
has been driven by the user along different trajectories (Fig. 5.1). In partic-
ular, in this section, we will describe different measurement campaigns made
in different indoor scenarios in order to assess the validity of the proposed
SLAM algorithms and to understand which is the most accurate.
For each scenario, first, we will show the results obtained through the SLAM

algorithm described in section 4.2, successively, we will illustrate the results
with the image registration method of section 4.3 and, finally, with the en-
hanced algorithm introduced in section 4.4.
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Figure 5.1: Set-up of 77GHz measurement campaigns with TI Radar

For all the campaigns, the radar has been configured with 2 TX antennas
and 4 RX antennas and the following parameters have been set through the
mmWave Demo Visualizer:

• Frame Rate (fps): 4

• Range Resolution (m): 0.044

• Maximum Unambiguous Range (m): 9.01

• Maximum Radial Velocity (m/s): 1

• Radial Velocity Resolution (m/s): 0.13

For the simulations, a parameter called skipFrame allows to consider only
multiple radar frames. For all scenarios, we set skipFrame=4 which considers
one measurement per second.
Regarding the properties of the signals emitted by the radar, other important
parameters are listed in the following:

• Start Frequency (GHz): 77

• Slope (MHz/µs): 70

• Samples for chirp: 256

• Chirp per Frame: 32
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• Sampling Rate (Msps): 4.88

Samples for chirp is the NFFT parameter mentioned in section 4.1 that rep-
resents the order of the FFT made internally by the radar.
The results will show two estimated trajectories obtained through the ab-
solute pose estimation as described in section 4.2. The red trajectory is
obtained by the sum of relative poses estimated at each iteration while the
blue trajectory with the Kalman filter. The map was updated starting from
the absolute poses estimated with the Kalman filter. For this purpose, the
map properties set in Matlab are:

• mapResolution = 60

• maxRange = 4

This means that the environment is subdivided in 3600 cells per square me-
ters and range values greater than to maxrange are discarded.
We also report the values of the thresholds mentioned for the cleaning algo-
rithms valid for all measurement campaigns if not otherwise specified:

• Side lobes threshold = 0.5

• Noise threshold = 0.001

The threshold for the scan image generation is set to scanThreshold = 0.9; it
is valid for both the scan-to-scan and the first version of scan-to-map SLAM
algorithms.
Finally, we report two setting thresholds for which if the estimated relative
pose is higher than them then the corresponding estimation is considered as
outlier:

• angle outlier threshold = 45◦

• offset outlier threshold = 0.3 [m]

For all the scenarios, first, we will show the results obtained with the scan-
to-scan SLAM algorithm so we will present the improvement with the scan-
to-map strategy introduced to avoid the trajectory drifting problem.

5.1.1 First Scenario

In the first scenario represented in Fig. 5.2, the radar walks along a square
trajectory inside a 4× 4 empty room.
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Figure 5.2: Qualitative trajectory of the radar and map for the first scenario

First, we show the results in Fig. 5.3 obtained with the scan-to-scan
SLAM algorithm and the matchScansGrid function.

Occupancy Grid

-4 -2 0 2 4 6

X [meters]

-6

-5

-4

-3

-2

-1

0

1

2

3

4

Y
 [

m
et

er
s]

Estimated position

Estimated position Kalman

Figure 5.3: Results of the scan-to-scan SLAM algorithm at 77 GHz: 1st
scenario

The trajectory has a drift in the final section. In fact, being a square tra-
jectory the final position should be close to the initial position. This drift is
due to the accumulated error during the pose estimation.
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In Fig. 5.4, we present also the results obtained with the SLAM algorithm
based on the registration between consecutive radar images with the Fourier-
Mellin approach described in section 4.3:
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Figure 5.4: Results of Fourier-Mellin SLAM algorithm at 77 GHz: 1st sce-
nario

Initially, the results show that this registration technique leads to a good
estimation of the trajectory and consequently of the map. However, being
the trajectory estimated incrementally starting from the previous image, this
strategy can fall into the same drift issue for longer paths.
Finally, we show an improvement of the estimated trajectory according to
the first version of the scan-to-map SLAM algorithm presented in section
4.4. The result is achieved with the frameThreshold parameter set to 20.
This strategy allows to partially avoid the drift experienced by the estimated
trajectory because the current scan is matched with the absolute map. The
map is reinforced by previous measurements and it offers a fixed reference
point to the current measurement to which is matched.
In this approach, both the binary occupancy map and the occupancy map
are shown in Fig. 5.5:
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Figure 5.5: Results of 1st version of the scan-to-map SLAM algorithm at 77
GHz: 1st scenario

As expected, Fig. 5.5 shows an improvement of the trajectory due to the
adopted scan-to-map strategy. In particular, the final drift of the trajectory is
avoided resulting in an improvement also for the map. Considering both the
maps, the binary map in Fig. 5.5(a) has less information than the occupancy
grid map in Fig. 5.5(b) and it has some details that are not present in the
other map due to the updating policy adopted by the Matlab’s algorithms.
Successively, the results obtained with the second version of the scan-to-map
SLAM algorithm are shows in Fig. 5.6.
Here, the thresholds are :

• scanThreshold = 0.7

• mapThreshold = 0.2 [m]

• frameThreshold = 20

As for the results shown in Fig. 5.5 also here, there is an improvement of
both the trajectory and the map.
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Figure 5.6: Results of 2nd version of the scan-to-map SLAM algorithm at 77
GHz: 1st scenario

5.1.2 Second Scenario

In the second scenario, the radar walks through a 1 meters wide corridor for
5 meters then it turns a 90◦ degree angle and follows a straight path for the
other 4 meters (Fig. 5.7).

Figure 5.7: Second scenario at 77 GHz

The qualitative trajectory followed by the radar is shown in Fig. 5.8.
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Figure 5.8: Qualitative trajectory of the radar and map for the second sce-
nario

The result with the scan-to-scan matching algorithm with matchScans-
Grid are proposed in Fig. 5.9.
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Figure 5.9: Results of the scan-to-scan SLAM algorithm at 77 GHz: 2nd
scenario

Here, the trajectory deviates from the straight path after 1.5 meters before
turning 90 degrees and follows a straight line for other 4 meters. This be-
haviour is likely caused by a bad measured image which occurs after 1.5
meters and the estimation error is accumulated over the entire trajectory
thus putting in evidence the limits of scan-to-scan approaches. Although the
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trajectory deviates from the expected path, the mapping shows the presence
of side walls at a distance of 1 meter, identifying the movement through
a corridor. Also the trajectory and map with SLAM algorithm based on
Fourier-Mellin are shown:
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Figure 5.10: Results of Fourier-Mellin SLAM algorithm at 77 GHz: 2nd
scenario

Here, the trajectory follows a straight path until the radar makes a turn of
90◦ angle. After this turn, we expect the radar moving again along a straight
line but the trajectory gets a drift that becomes significant bwhen the relative
poses are just accumulated and the Kalman filter is not used. Comparing
the trajectories in Fig. 5.9 and in the Fig. 5.10, it can be seen that in the
first section Fourier-Mellin strategy provides more accurate results than the
scan-to-scan strategy. In fact, the trajectory is straight. On the other hand,
in the second section, the trajectory is less accurate by directly using the
radar images for registration causing also less accurate mapping.
The above mentioned drift issue can in part be mitigated using scan-to-map
approaches, as depicted in Fig. 5.11.
In particular, the estimated trajectory is more accurate than the previous one
and follows the true path. For this scenario, the result has been obtained
with a thresholdFrame set to 5.
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Figure 5.11: Results of 1st version of the scan-to-map SLAM algorithm at
77 GHz: 2nd scenario

Now, we show the results obtained with the second version of the scan-
to-map SLAM algorithm where the frameThreshold parameter is still set to
5 and the others are set as follows:

• scanThreshold = 0.8

• mapThreshold = 0.2 [m]
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Figure 5.12: Results of 2nd version of the scan-to-map SLAM algorithm at
77 GHz: 2nd scenario
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Here, the estimation of the trajectory with Kalman is more accurate than
the case in which the relative poses are recursively added.
Both the binary occupancy map and the occupancy map clearly show that
the radar moved through the above described corridor.

5.1.3 Third Scenario

In the third scenario, the radar follows a 8-like trajectory inside a 10, 5 × 5
meters rectangular room (Fig. 5.13). During the movement, the radar turns
around two highly reflective objects.

Figure 5.13: Third scenario at 77 GHz

The qualitative trajectory followed by the radar is shown in Fig. 5.14.

Figure 5.14: Qualitative trajectory of the radar and map for the third sce-
nario
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Figure 5.15 shows the result obtained with the scan-to-scan matching
strategy with matchScansGrid function.
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Figure 5.15: Results of the scan-to-scan SLAM algorithm at 77 GHz: 3rd
scenario

Due to the complex environment, also for this scenario, some of the measure-
ments are inaccurate leading to a deviation from the real trajectory.
The results obtained using the algorithm based on the Fourier-Mellin trans-
form, presented in section 4.3, are shown in Fig. 5.16.
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Figure 5.16: Results of Fourier-Mellin SLAM algorithm at 77 GHz: 3st sce-
nario

Here, the trajectory does not respect the pre-determined path because
the registration of consecutive images is inaccurate. For this reason, the ab-
solute pose estimation with Kalman is affected by errors leading also to poor
mapping results.
Fig. 5.17 shows the improvement of the SLAM algorithm based on the scan-
to-map strategy. Here, the frameThreshold is set to 20. When the radar
approaches the already visited places, matching the scan with the map per-
mits to avoid the drift of the trajectory.
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Figure 5.17: Results of 1st version of the scan-to-map SLAM algorithm at
77 GHz: 3rd scenario

Also for the last scenario, we show the results obtained with the second
version of the scan-to-map SLAM algorithm reported in Fig. 5.18.
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Figure 5.18: Results of 2nd version of the scan-to-map SLAM algorithm at
77 GHz: 3rd scenario

As in Fig. 5.17, the drift of trajectory estimation has decreased compared
to the results in Fig. 5.15 but the radar final position, in this case, does not
overlap the initial position.
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Regarding the occupancy map for each version of the scan-to-map algorithm,
it is more accurate than the binary occupancy map. In particular, the pres-
ence of the two highly reflective objects can also be noted. Generally, re-
ferring to the scan-to-map strategy, we point out that the results are too
sensitive to the set thresholds, in fact, their variations lead to different re-
sults. However, unlike the scan-to-scan algorithms, this method permits to
avoid the drifting issue because it uses the map built up to that moment and
therefore reinforced by the previous measures. This partially mitigates the
problem of outlier measurements that often occur at 77GHz.

5.2 Measurement at 300 GHz

For the measurement campaign described in this chapter, a measurement
system equipped with two 300 GHz horn antennas has been used, one for
TX and one for RX. In particular, the measurement parameters have the
following features:

• Frequency min (GHz): 235

• Frequency max (GHz): 320

• Frequency step (MHz): 10

• Angular step (◦): 10

• Horn antenna gain (dBi): 20

The frequency step between each measure of 10 MHz allows to have maximum
distance detectable of 15 meters for radar measurement.
Regarding to the map, the properties are:

• mapResolution = 40

• maxRange = 8

The thresholds set for the cleaning algorithms are:

• Side lobes threshold = 0.5

• Noise threshold = 0.01

For all the scenarios, regarding results from scan-to-scan and from the first
version of the scan-to-map algorithm, the scanThreshold is set to 0.9 as in the
77 GHz measurement campaigns. According to the measurement campaigns
above described, we set thresholds to consider outliers a deviation from two
radar poses as:
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• angle outlier threshold = 50[◦]

• offset outlier threshold= 0.5 [m]

For these measurement campaigns all measurements are considered then
skipframe = 1;

5.2.1 First Scenario

In the first scenario, the data set has been collected moving the platform,
where the radar was fixed, straight along to rail placed in the centre of a
10.2× 8.6 meters rectangular room in Fig. 5.19. The radar trajectory is of 2
meters forward with intermediate steps of 0.5 meters during which the radar
scans the environment with mechanical steering from −90◦ to 90◦ with a step
of 10◦ (Fig. 5.20).

Figure 5.19: Real scenario at CEA-Leti
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Figure 5.20: Actual trajectory for the first scenario at 300 GHz at CEA-Leti

First, we present the results obtained with the scan-to-scan SLAM al-
gorithm described in section 4.2 and the matchScansGrid function. In Fig.
5.21 are reported the true trajectory of the radar in cyan, the estimated
trajectory obtained summing the relative pose at each iteration in red and
finally, in blue, the estimated trajectory with Kalman filter is shown:

Figure 5.21: Results of the scan-to-scan SLAM algorithm at 300 GHz: 1st
scenario
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The estimated trajectory perfectly follows the 2 meters actual path but
the limited number of measurements leads to a poor mapping performance.
The trajectory and the map estimated with the first version of the scan-to-
map algorithm described in section 4.4 are shown in Fig. 5.22. Here, the
frameThreshold is set to 2. We also show the occupancy grid map built start-
ing from the absolute estimated pose with Kalman and the measurement of
radar at that position.
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Figure 5.22: Results of 1st version of the scan-to-map SLAM algorithm 300
GHz: 1st scenario

For this scenario, we report also the results obtained with the second ap-
proach presented in section 4.5. As the previous results in Fig. 5.22, the
results reported in Fig. 5.23 are slightly worse than the results from scan-to-
scan algorithm in Fig. 5.21 in particular a little deviation from the real path
at the end of the trajectory is visible. In both cases, the binary occupancy
map makes clear the location of the walls of the room in the radar’s FoV.
In order to achieve these results, we have set thresholds as follows:

• scanThreshold = 0.7

• mapThreshold = 0.4 [m]
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Figure 5.23: Results of 2nd version of the scan-to-map SLAM algorithm 300
GHz: 1st scenario

5.2.2 Second Scenario

In the second scenario, the data set has been collected moving the platform
along an oval circuit in the centre of the same rectangular room considered
for the first scenario. The radar travels 46 different positions where it takes a
scan of the environment. In the straight sections, the radar visits six positions
spaced 0.4 meters from each other. In all the positions the radar scans the
environment with mechanical steering from −90◦ to 90◦ with a step of 10◦.
In Fig. 5.24 the real scenario above described is shown:

Figure 5.24: Actual trajectory for the second scenario at 300 GHz at CEA-
Leti
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In Fig. 5.25, we present the results obtained with the scan-to-scan SLAM
algorithm described in section 4.2 and matchScansGrid.

Figure 5.25: Results of the scan-to-scan SLAM algorithm at 300 GHz: 2nd
scenario

Although this is an incremental method that considers the matching between
consecutive scans, the high frequencies allow to obtain a good estimate of the
translation and rotation parameters partially avoiding the problem of out-
liers frames due to the side lobes effect.
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The results with the algorithm described in section 4.4 are shown in Fig.
5.26. Here, the frameThreshold is set to 5.
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Figure 5.26: Results of 1st version of the scan-to-map algorithm 300 GHz:
2nd scenario

The estimated trajectory faithfully follows the planned path with a slight
shift in the lower part of the trajectory.
Finally, in Fig. 5.27 we show the results obtained with the approach in
section 4.5. Again, the frameThreshold is set to 5. In order to achieve these
results, we have set the thresholds as follows:

• scanThreshold = 0.7

• mapThreshold = 0.4 [m]

The same frameThreshold provides results that are worse than the results
obtained with the first version of the scan-to-map algorithm both in term of
the trajectory and the map.
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Figure 5.27: Results of 2nd version of the scan-to-map SLAM algorithm 300
GHz: 2nd scenario

The data sets of measurements at 300 GHz, unlike those at 77 GHz,
thanks to the high frequencies allow to obtain accurate radar images and
consequently precise trajectory estimates also with scan-to-scan algorithms.
In fact, the results in Fig. 5.21 and Fig. 5.25 at 300 GHz are very accurate.
Here, the outlier measurements that can generate errors in the estimation
of the pose are limited so that the drift problem is also limited. On the
other hand, also the results of the scan-to-map algorithms follow the true
trajectory but with the second version of algorithm, the trajectory is less
accurate probably due to imperfect representation of the map in that area.
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Chapter 6

Conclusions

The purpose of this thesis was to tackle the simultaneous localization and
mapping with millimeter wave technology in indoor scenarios. While SLAM
algorithms were mainly developed for lidar and camera sensors providing
excellent performance, their application to radar-based sensors is more chal-
lenging because of their lower angular resolution and the reflection charac-
teristics of materials at mmWave. However, their use is considered appealing
to complement other technologies in applications where these technologies
may fail.
The use of data from mmWave radar required the introduction of “cleaning”
algorithms to reduce the presence of artefacts in the measurements caused
by the non-ideal radiation pattern. Successively, both incremental (scan-to-
scan) and partial map-based (scan-to-map) trajectory estimation algorithms
were studied in this work.
Analyzing the results obtained from 77 GHz Texas Instrument data, we can
say that the scan-to-scan algorithm proposed in section 4.2 follows the ex-
pected trajectory until a drift occurs. This drift can be generated by the
accumulation of error in pose estimation due to the scan matching function
but also it can be due to noisy sensor’s measurements. Since here the map
is generated starting from the actual poses of the radar if the trajectory as-
sumes a drift also the estimated map presents critical issues.
The strategy in section 4.3 concerns the estimation of the relative pose be-
tween two radar images without the need to go through the scan vector
considering more information about the measurement and exploiting the
Fourier’s transform properties. In this case, the results show that even here
the trajectory can cause a drift as in the first mentioned case. Furthermore,
this strategy makes the algorithm slower from the computational point of
view and less accurate in the presence of complex environments from which
very noisy radar images arise.
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With the scan-to-map approaches described in section 4.4 and 4.5, we man-
aged to mitigate the drift problem of scan-to-scan algorithms in order to
improve also the mapping process. In fact, despite this radar technology is
not well suited for indoor applications, we have obtained an improvement
on the trajectory estimation for all different presented scenarios. While in
the scan-to-scan algorithms the two phases of localization and mapping are
completely disjoint, with scan-to-map the quality of the map considerably
influences the accuracy of the trajectory estimation. In particular, the res-
olution of the map plays a fundamental role for the accuracy of the results.
It is important to underline that the results shown with this approach are
sensitive also to the threshold value used to match the current measurement
with the map as well as on the thresholds involved in the clean algorithms
which preceed the SLAM algorithm. In this direction, future works could
provide an objective criterion for parameter setting. Also the second version
of the scan-to-map SLAM algorithm is sensitive to the thresholds involved.
These results described at 77 GHz depend heavily on the technology used
during the campaigns. In fact, with the Texas Instrument radar, we have
been limited by the number of antennas that has not allowed to obtain a
narrow main lobe and reduced side lobe. In this sense, we have also pre-
sented results obtained through measurement campaigns at 300 GHz. This
technology is certainly more performing. This is due to high frequencies that
allow to obtain more selective main lobe and at the same time the diffu-
sive component of the backscattered signal increases compared to mmWave
which allow to detect the obstacle even with large signal’s incident angles.
From each scenario we were able to obtain satisfactory results in terms of
trajectory estimation and mapping of the real environment.
Comparing the results between the two versions of scan-to-map algorithms,
it can be seen that in the case of the 77GHz measurements the results are
qualitatively similar but slightly worse than the case of the 300 GHz mea-
surements. In particular, the first method obtains a scan vector from the
map which is similar to a lidar measurement while in the second version a
point cloud is used for the map and the matchScansGrid function may not
work properly.
Finally, to improve the trajectory and consequentially the map estimation,
additional data measurements, i.e., from IMU, could be merged with radar
measurements by exploiting the filtering approaches described in chapter 1,
as EKF or UKF. In addition, SLAM can be improved if Doppler information,
gathered from 77 GHz radar, is accounted for. Future works about SLAM
with mmWave radar technology could also address the use of the image pro-
cessing theory, computer vision elements or neural networks theory to further
improve the results.
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