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Introduzione

Questa tesi ha come argomento l’inflazione, e in particolare il modello di

Jarrow & Yildirim, che è quello attualmente utilizzato per la valutazione dei

derivati su inflazione.

Nel Capitolo 1 vengono ricordati i principali risultati riguardanti i modelli

short e forward per i tassi d’interesse; è inoltre analizzato come gestire i rap-

porti tra un mercato “domestico” ed uno “straniero”.

Nel Capitolo 2 è fornita una introduzione generale sull’inflazione; è poi in-

trodotto il modello di Jarrow-Yildirim, e vengono derivate le dinamiche delle

principali componenti del mercato.

Il Capitolo 3 presenta alcuni tra i più importanti derivati sull’inflazione: zero

coupon swap, year-on-year, cap e floor. Servendosi di risultati probabilistici

come il cambio di numeraire, viene calcolato il loro valore, mostrando il pro-

cedimento di valutazione passo passo.

Nel Capitolo 4 è introdotta la calibrazione: viene chiarito in cosa consiste

in questo contesto e come può essere realizzata, spiegando quali dati sono

effettivamente disponibili sul mercato. Sono illustrati due possibili metodi di

ottimizzazione, uno dei quali non standard (di tipo euristico), e sono presen-

tati alcuni esempi concreti di calibrazione realizzati in Matlab.

Il Capitolo 5 si occupa del metodo numerico Monte Carlo: dopo una spie-

gazione generale del suo funzionamento, viene approfondito il modo in cui

esso può essere utilizzato per valutare derivati (sull’inflazione) complessi, per

i quali non si dispone di una formula esplicita per il prezzo.

Infine, nel Capitolo 6 il modello viene arricchito con il rischio di credito, che
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ii INTRODUZIONE

permette di tenere conto di un eventuale fallimento del garante per un con-

tratto. In questo contesto è ricavato il metodo di valutazione di un derivato

nel caso generale, tramite l’introduzione dei defaultable zero-coupon bond.

E’ poi approfondito in particolare un esempio di contratto, ed è spiegato

come calcolarne il prezzo servendosi del Monte Carlo in due diversi modi.

Nelle Appendici sono richiamati alcuni interessanti risultati teorici utilizzati

nella tesi: l’ Appendice A si occupa delle misure martingale e presenta il

Teorema di Girsanov e il cambio di numeraire. L’ Appendice B tratta alcuni

aspetti della teoria delle Equazioni Differenziali Stocastiche: in particolare, è

fornita la soluzione per le EDS lineari, ed è enunciato il teorema di Feynman-

Kač che lega le EDS alle Equazioni alle Derivate Parziali. Infine, nell’ Ap-

pendice C vengono ricavati alcuni utili risultati riguardanti la distribuzione

normale (integrale di un processo normale, attesa di una varibile lognormale,

formula esplicita per E[eX(p eZ −K)+] con p e K costanti e X e Z normali).



Introduction

This thesis deals with inflation theory; in particular, we present the model

of Jarrow & Yildirim, which is nowadays used when pricing inflation deriva-

tives.

In Chapter 1 main results about short and forward interest rate models are

recalled; moreover, it is shown how to deal with the relationships between a

“domestic” market and a “foreign” one.

In Chapter 2 a general introduction about inflation is given; then the Jarrow-

Yildirim model is introduced, and the dynamics of the main components of

the market are derived.

Chapter 3 presents some of the most important inflation-indexed derivatives:

zero coupon swap, year-on-year, cap and floor. Using probability results as

the change of numeraire, their value is computed, explaining the pricing pro-

ceeding step by step. For the pricing of more complex derivatives, the Monte

Carlo method is treated in detail.

Chapter 4 explains what calibration means in this context, and how it can

be performed. Some remark about real market data is given, and concrete

calibration examples in Matlab are presented, after having illustrated a com-

mon method and an heuristic and non standard one.

Finally, Chapter 6 enriches the model with credit risk, which allows to take

into account the possibility of bankruptcy of the counterparty of a contract.

In this context, the general method of pricing is derived, with the introduc-

tion of defaultable zero-coupon bonds. Then, a concrete example of contract

is studied in detail, and its pricing is made in two different ways using Monte

iii
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Carlo.

In the appendixes there are some interesting theoretical results which are

used in the thesis: Appendix A deals with martingale measures and presents

Girsanov’s theorem and the change of numeraire; Appendix B treats some

aspects of the theory of Stochastic Differential Equations: in particular, the

solution for linear EDSs is given, and we enunciate the Feynman-Kač the-

orem, which shows the connection between EDSs and Partial Differential

Equations. Finally, in Appendix C some useful results about normal distri-

bution are derived (integral of a normal process, expectation of a lognormal

variable, explicit formula for E[eX(p eZ −K)+] with p and K constant and

X and Z normally distributed).



Contents

Introduzione i

Introduction iii

1 Models for the market 1

1.1 T-bonds and interest rates . . . . . . . . . . . . . . . . . . . . 1

1.2 Short models . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Forward models . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Foreign market . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Inflation: definition and model 15

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Nominal and real rates and bonds . . . . . . . . . . . . . . . . 17

2.3 Jarrow-Yildirim model . . . . . . . . . . . . . . . . . . . . . . 18

3 Inflation-linked derivatives 25

3.1 Zero-coupon swap . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Year-on-year swap . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 IICap/IIFloor . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Calibration 39

4.1 Data and implementation . . . . . . . . . . . . . . . . . . . . 40

4.2 Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.1 Matlab lsqnonlin . . . . . . . . . . . . . . . . . . . . . 44

4.2.2 Differential evolution . . . . . . . . . . . . . . . . . . . 44

v



vi CONTENTS

4.2.3 Examples and results . . . . . . . . . . . . . . . . . . . 45

5 Monte Carlo method 49

5.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 Example: IICap . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6 Credit risk 59

6.1 Default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.2 Defaultable zero-coupon bonds . . . . . . . . . . . . . . . . . . 61

6.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.3.1 Under risk neutral measure . . . . . . . . . . . . . . . 63

6.3.2 Under forward measures:

Monte Carlo and analytic inflation-indexed caplet for-

mula . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A Preliminary results 77

A.1 Martingale measures . . . . . . . . . . . . . . . . . . . . . . . 77

A.2 Numeraire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

B Stochastic differential equations 85

B.1 Linear SDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

B.2 SDE and PDE . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

C Normal distribution 89

C.1 Integral of a normal process . . . . . . . . . . . . . . . . . . . 89

C.2 Lognormal distribution . . . . . . . . . . . . . . . . . . . . . . 90

C.3 Expectation formula . . . . . . . . . . . . . . . . . . . . . . . 90

Bibliography 93



List of Tables

4.1 Inflation-Indexed Caps . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Inflation-Indexed Floors . . . . . . . . . . . . . . . . . . . . . 46

4.3 Calibration results: lsqnonlin . . . . . . . . . . . . . . . . . . 47

4.4 Calibration results: differential evolution . . . . . . . . . . . . 48

5.1 Confidence levels . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.1 29-04-2011, Price of the contract: risk neutral method . . . . . 73

6.2 29-04-2011, Price of the contract: forward measure method . . 73

6.3 22-02-2011, Price of the contract: risk neutral method . . . . . 75

6.4 22-02-2011, Price of the contract: forward measure method . . 75

vii





Chapter 1

Models for the market

In this chapter some important definitions are recalled, and we present some

results about short and forward models that will be used later on; we will

specifically deal with inflation from Chapter 2. For a general introduction

on martingale measures and changes of numeraire see Appendix A.

1.1 T-bonds and interest rates

In this section we define two fundamental elements of the market: T-bonds

and interest rates.

Definition 1.1 (T-bond). A T-bond, or zero-coupon1 bond with maturity

T, is a contract which guarantees its owner to cash a unit of currency (one

dollar/ one euro. . . ) at the date T. The price of a T-bond at time t is usually

indicated with P (t, T ).

Note that the payoff of P (t, T ) is deterministic: P (T, T )=1 for every T.

P (t, T ) thus represents the amount of currency to be owned at time t in

order to be sure to have one unit at T. An analogous definition holds for the

discount factor D (see def A.3 in Appendix A), but these two instruments

1The expression “zero-coupon” is commonly used for the contracts which do not provide

for intermediate payments.
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2 1. Models for the market

are different: once maturity T is fixed, D(t, T ) is an FW
T -measurable ran-

dom variable, whose value is not known in instants t preceding T; P (t, T ) is

instead FW
t -measurable, in fact it is available on the market at every instant

t, because it represents the price of a contract (which can be sold, so its

quotation is known). In particular, once a martingale measure Q is chosen,

the following relation holds between P and D:

P (t, T ) = EQ[e−
∫ T
t r(s)dsP (T, T )|FW

t ] = EQ[D(t, T )|FW
t ], (1.1)

where r denotes the short interest rate.

In the following we will always assume that T-bonds exist on the market for

every T. If an instant t is fixed, P (t, T ) as a function of T describes the so

called term structure, or bond price curve at time t; we will also assume that

for every fixed t that curve is differentiable, that is P (t, T ) is differentiable

with respect to its second variable.

We now recall the definitions of the two fundamental “types” of interest

rates.

Definition 1.2 (Forward rate). The instantaneous forward rate contracted

in t and with maturity T is the process

f(t, T ) = −∂ logP (t, T )

∂T
. (1.2)

This definition connects bond prices with the forward rate. From this, it

follows that∫ T

s

f(t, u)du = − logP (t, T ) + logP (t, s) = log
P (t, s)

P (t, T )
, so

e−
∫ T
s f(t,u)du =

P (t, T )

P (t, s)
from which

P (t, T ) = P (t, s) exp
{
−
∫ T

s

f(t, u)du
}
∀t ≤ s ≤ T

and if we choose s=t we obtain

P (t, T ) = exp
{
−
∫ T

t

f(t, u)du
}
. (1.3)
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Definition 1.3 (Short rate). The short instantaneous rate at time t is the

process

r(t) = f(t, t).

Thanks to the definitions and results of this section, it is possible to create

a model for the market in different ways, mainly three:

1) giving the short rate dynamics

dr(t) = a(t)dt+ b(t)dW (t) (1.4)

and, using (1.1), deriving T-bond prices (short model);

2) giving the forward dynamics (for every maturity T)

df(t, T ) = α(t, T )dt+ σ(t, T )dW (t) (1.5)

and, using (1.3), deriving T-bond prices (forward model);

3) giving T-bond dynamics (for every maturity T)

dP (t, T ) = P (t, T )m(t, T )dt+ P (t, T )v(t, T )dW (t); (1.6)

in each caseW is a d-dimensional Brownian Motion, v and σ are d-dimensional

row vectors, and every coefficient is a scalar adapted process (with respect

to t). In this context we will always assume the regularity conditions, with

respect to t and T, which are necessary for differentiating with continuity,

deriving under the sign of integral and changing integration order. Under

such hypothesis, the theorem in the following page gives some important

relations among the coefficients2:

2We will indicate as a subscript the variable with respect to which we derive.
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Theorem 1.1.1.

a) If P (t, T ) satisfies (1.6), the dynamics of f is of the type (1.5) with{
α(t, T ) = vT (t, T ) · v(t, T )−mT (t, T )

α(t, T ) = −vT (t, T ).
(1.7)

b) If f(t, T ) satisfies (1.5), the dynamics of r is of the type (1.4) with{
a(t) = fT (t, T )|T=t + α(t, t)

b(t) = σ(t, t).
(1.8)

c) If f(t, T ) satisfies (1.5), the dynamics of P is of the type (1.6) with{
m(t, T ) = r(t)−

∫ T
t
α(t, s)ds+ 1

2
||v(t, T )||2

v(t, T ) = −
∫ T
t
σ(t, s)ds.

(1.9)

In the two following chapters models of type 1) and 2) are analyzed more

accurately.

1.2 Short models

Let us consider a model for the market without risky assets (N=0), that

is in which the “bank account” B is the only security, with dynamics (A.1),

and suppose the dynamics of the short rate r is assigned.

In this context, bonds are seen as derivatives on the interest rate, but that

rate (the underlying) IS NOT a listed security.

In the search for a martingale measure, we note that every measure which

is equivalent to P satisfies the requests, in fact the only asset is B, and

if we discount it (with respect to the numeraire that is itself) we obtain a

process which is identically equal to one, which is trivially a martingale under

every measure; so, instead of giving the dynamics of r with respect to the

measure P, it is expedient to assign it directly under the martingale measure

Q (martingale modeling). Let thus assume that the Q-dynamics of r is

drt = µ(t, rt)dt+ σ(t, rt)dWt. (1.10)
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Note that the form of P (t, T ) in (1.1) corresponds to the one in the Feynman-

Kač formula3. More precisely: if we indicate P (t, T ) with F (t, rt;T ), for (1.1)

we have that

F (t, rt;T ) = EQ[e−
∫ T
t r(s)ds|FW

t ]

so, thanks to the Feynman-Kač formula, (t, r) 7→ F (t, r;T ) is solution of the

system {
A F − aF + ∂tF = 0 for t ∈]0, T [, rt ∈ R
F (T, ·) = 1

with a(s, r) = r and A characteristic operator associated with (1.10), that

is

A =
1

2
σ2(t, r)∂rr + µ(t, r)∂r

which means F (t, rt) solves the term structure equation{
σ2(t,r)

2
∂rrF + µ(t, r)∂rF − rF + ∂tF = 0 for t ∈]0, T [, rt ∈ R

F (T, ·) = 1.
(1.11)

This equation can be easily solved in the case of the so called “affine models”,

which are the ones in which T-bond prices can be written in the form

P (t, T ) = eA(t,T )−B(t,T )r(t) = Ã(t, T )e−B(t,T )r(t). (1.12)

In particular, among these models there are the ones in which µ and σ take

the form

µ(t, r) = α(t)r + β(t), σ(t, r) =
√
γ(t)r + δ(t) (1.13)

with α, β, γ and δ deterministic functions. In these cases, A and B turn out

to be the ones which satisfy{
Bt(t, T ) + α(t)B(t, T )− 1

2
γ(t)B2(t, T ) = −1

B(T, T ) = 0
(1.14)

{
At(t, T ) = β(t)B(t, T )− 1

2
δ(t)B2(t, T )

A(T, T ) = 0.
(1.15)

3See Theorem B.2.1 in Appendix B.
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Among the models of type (1.13) there is the one we will use in the following:

it is the Hull & White model, in which the Q-dynamics of r is of the form

dr(t) = (θ(t)− a(t)r(t))dt+ σ(t)dW (t) (1.16)

with a, σ and θ deterministic functions of time. In particular, if a and σ are

constant, comparing (1.13) and (1.16) we see that (1.14) and (1.15) become{
Bt(t, T )− aB(t, T ) = −1

B(T, T ) = 0
(1.17)

{
At(t, T ) = θ(t)B(t, T )− 1

2
σ2B2(t, T )

A(T, T ) = 0.
(1.18)

so A and B are

B(t, T ) =
1

a
(1− e−a(T−t)) (1.19)

A(t, T ) =

∫ T

t

(1

2
σ2B2(s, T )− θ(s)B(s, T )

)
ds. (1.20)

Now we want that T-bond prices at time 0 P (0, T ) calculated with (1.12)

coincide with real ones P ∗(0, T ); actually, since we know forward rates and

bond prices are in one-to-one correspondence, we perform the fitting be-

tween the theoretical forward rate curve f(0, T ), T > 0 and the observed one

f ∗(0, T ), T > 0 (where f ∗(t, T ) = −∂ logP ∗(t,T )
∂T

). Let us see this more in de-

tail. From the definitions (1.2) and (1.12) of forward rates and affine models,

we have

f(t, T ) = −AT (t, T ) +BT (t, T )r(t) (1.21)

which for t=0 becomes

f(0, T ) = −AT (0, T ) +BT (0, T )r(0);

for (1.19), BT (t, T ) = e−a(T−t), and for (1.20)

AT (t, T ) = 1
2
σ2B2(T, T )− θ(T )B(T, T ) +

∫ T
t

(σ2B(s, T )BT (s, T )− θ(s)BT (s, T ))ds

= σ2

2a2
(1− e−a(T−t))2 −

∫ T
t
θ(s)BT (s, T )ds
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so that (1.21) becomes

f(0, T ) = e−aT r(0) +

∫ T

0

θ(s)BT (s, T )ds− σ2

2a2
(1− e−aT )2

and our problem becomes the search for a function θ which solves

f ∗(0, T ) = e−aT r(0) +

∫ T

0

θ(s)BT (s, T )ds− σ2

2a2
(1− e−aT )2.

If we now decompose f ∗(0, T ) as x(T )− g(T ) with{
ẋ(t) = −ax(t) + θ(t)

x(0) = r(0)
(1.22)

and g(t) = σ2

2
B2(0, t), θ must be

θ(t) = ẋ(t) + ax(t) =
∂f ∗(0, T )

∂T

∣∣∣∣
T=t

+ ġ(t) + a(f ∗(0, t) + g(t)). (1.23)

Substituting (1.23) in (1.18), we have

A(t, T ) =

σ2

2a2

∫ T
t

(1− e−a(T−s))2ds−
∫ T
t

( ∂f∗(0,T )
∂T

∣∣∣
T=s

+ ġ(s) + a(f ∗(0, s) + g(s))
)

1
a
(1− e−a(T−s))ds

= σ2

2a2

{
T − t+ 1

2a
− e−2a(T−t)

2a
− 2

a
+ 2e−a(T−t)

a

}
+ 1

a
f ∗(0, t)(1− e−a(T−t))

−
∫ T
t
f ∗(0, s)e−a(T−s)ds+ 1

a
g(t)(1− e−a(T−t))−

∫ T
t
g(s)e−a(T−s)ds− logP ∗(0, t)(1− e−a(T−t))

+
∫ T
t
a logP ∗(0, s)e−a(T−s)ds−

∫ T
t
g(s)ds+

∫ T
t
g(s)e−a(T−s)ds

= σ2

4a
B2(t, T )(1− e−2at) + f ∗(0, t)B(t, T ) + log P ∗(0,T )

P ∗(0,t)

and putting this expression and (1.18) in (1.12) we finally obtain the price

of a T-bond in the Hull & White model:

P (t, T ) =
P ∗(0, T )

P ∗(0, t)
exp

{
B(t, T )f ∗(0, t)−σ

2

4a
B2(t, T )(1−e−2at)−B(t, T )r(t)

}
.

(1.24)

This is an explicit formula, but it cannot be easily used in practice, because

the prices P ∗(0, T ) are observable only for certain maturities T , while the
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forward rates f ∗ should be obtained through a derivative, which is thus im-

possible in concrete (unless we make an arbitrary interpolation of the bond

prices). For this reason, we derive another expression for P (t, T ) in the Hull

& White model. Let us consider a generic Hull & White interest rate process

r:

dr(t) = (θ(t)− ar(t))dt+ σdW (t) (1.25)

where θ is a deterministic function, and a > 0 and σ are constants. Thus r

is the solution of a linear SDE so, according with (B.7) in Appendix B, its

value is:

r(t) = e−at
(
r(0) +

∫ t

0

easθ(s)ds+

∫ t

0

easσdW (s)
)

= x(t) + φ(t) (1.26)

where

x(t) = e−atσ

∫ t

0

easdW (s) (1.27)

is the stochastic part, and

φ(t) = e−at
(
r(0) +

∫ t

0

easθ(s)ds
)

is the deterministic one, which is still unknown explicitly (because it contains

θ).

So, for t ≤ s, the following holds:

r(s) = φ(s) + e−a(s−t)
(
x(t) + σ

∫ s

t

ea(u−t)dW (u)
)

(1.28)

from which, if we calculate the price of a bond:

P (t, T ) = E
[
e−

∫ T
t r(s)ds|Ft]

= E[e
−

∫ T
t φ(s)ds−x(t)

∫ T
t e−a(s−t)ds−σ

∫ T
t e−a(s−t)

( ∫ s
t e

a(u−t)dWu

)
ds
|Ft

]
= E

[
e
−

∫ T
t φ(s)ds−x(t)

∫ T
t e−a(s−t)ds−σ

∫ T
t

( ∫ T
u ea(u−s)ds

)
dWu |Ft

]
= E

[
eH(T )

]
(1.29)

where H(T ) = −
∫ T
t
φ(s)ds− x(t)B(t, T )− σ

∫ T
t
B(u, T )dW (u), with

B(u, T ) = 1−e−a(T−u)
a

. H is thus made up of a deterministic part plus a
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stochastic integral of a C∞-function, so it is normally distributed, with mean

and variance

µ(t, T ) = −
∫ T

t

φ(s)ds− x(t)B(t, T ), V (t, T ) = σ2

∫ T

t

(B(u, T ))2du

respectively (thanks to the Itô formula). Thus, the price of the bond turns out

to be the expectation of a lognormal variable, whose value is4 eµ(t,T )+
V (t,T )

2 .

If we now put ourselves in a concrete context, the prices of the bonds at time

zero are known: if we call them P ∗(0, T ), the following must hold:

P ∗(0, T ) = P (0, T ) = eµ(0,T )+
V (0,T )

2 = e−
∫ T
0 φ(s)ds+σ2

2

∫ T
0 (B(u,T ))2du

= e−
∫ t
0 φ(s)ds−

∫ T
t φ(s)ds+x(t)B(t,T )−x(t)B(t,T )

·e
σ2

2

( ∫ T
0 B(u,T )2du+

∫ t
0 B(u,t)2du−

∫ t
0 B(u,t)2du+

∫ T
t B(u,T )2du−

∫ T
t B(u,T )2du

)
= P (0, t)P (t, T )ex(t)B(t,T )+σ2

2

( ∫ T
0 B(u,T )2du−

∫ t
0 B(u,t)2du−

∫ T
t B(u,T )2du

)
= P (0, t)P (t, T )ex(t)B(t,T )+σ2

2

∫ t
0 (B(u,T )2−B(u,t)2)du

so

P (t, T ) =
P (0, T )

P (0, t)
e−x(t)B(t,T )+σ2

2

∫ t
0 (B(u,t)2−B(u,T )2)du (1.30)

in which only deterministic and observable addends appear.

Let us now determine the price of an option on a T-bond. We recall that a

Call/Put option on a certain underlying asset Y is a derivative which ensures

its holder the possibility (but not the obligation) of buying/selling Y at a

future time T with a price K which is established at the issuing moment; its

payoff is thus (Y (T )−K)+, and the price is determined as usual with

Call(t, T ) = E[e−
∫ T
t r(s)ds(Y (T )−K)+|Ft].

If the underlying is an S-bond with 0 < T ≤ S, at time t=0 we have

Call(0, T ) = E[e−
∫ T
0 r(s)ds(P (T, S)−K)+]

= E[e−
∫ T
0 φ(s)ds−

∫ T
0 x(s)ds

(
P (0,S)
P (0,T )

e−x(T )B(T,S)+σ2

2

∫ T
0 (B(u,T )2−B(u,S)2)du −K

)+

]

= P (0,S)
P (0,T )

e−
∫ T
0 φ(s)ds+σ2

2

∫ T
0 (B(u,T )2−B(u,S)2)duE[e−

∫ T
0 x(s)ds(e−x(T )B(T,S) − K̄)+]

4See (C.1) in Appendix C.
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where K̄ = K P (0,T )
P (0,S)

e
σ2

2

∫ T
0 (B(u,S)2−B(u,T )2)du.

Now, in order to obviate the fact that φ contains θ, which is not observable on

the market, we can impose the equality between market prices of the bonds

and model ones:

P ∗(0, T ) = P (0, T ) = eµ(0,T )+
V (0,T )

2 = e−
∫ T
0 φ(s)ds+

V (0,T )
2 ⇒∫ T

0

φ(s)ds =
V (0, T )

2
− log(P ∗(0, T )). (1.31)

Substituting this in the expression of the Call and taking in mind that all

bond prices at time 0 must coincide with market ones, we obtain

Call(0, T ) = P ∗(0, S)e−
σ2

2

∫ T
0 B(u,S)2duE[e−

∫ T
0 x(s)ds(e−x(T )B(T,S) − K̄)+]

in which we can see an expectation of the form E[eX(eZ − M)+], where

(X,Z) have a bidimensional Gaussian as joint distribution: thanks to the

computations in Section C.3 of Appendix C, we know the explicit expression

of this type of integral. Let us calculate the moments of the distribution:

E[X] = E[−
∫ T

0
x(s)ds] = E[−

∫ T
0
e−asσ

∫ s
0
eaudW (u)ds]

= −σE[
∫ T

0

∫ T
u
ea(u−s)ds dW (u)] = 0;

E[Z] = E[−x(T )
∫ S
T
e−a(s−T )ds] = E[−e−aTσ

∫ T
0
eaudW (u)

∫ S
T
e−a(s−T )ds] = 0;

var[X] = σ2E[(
∫ T

0

∫ T
u
ea(u−s)ds dW (u))2] = σ2

∫ T
0
B(u, T )2du;

var[Z] = B(T, S)2 var[x(T )] = B(T, S)2 σ2

2
B(0, 2T );

cov[X,Z] = B(T, S)E[
∫ T

0
σea(s−T )dW (s)

∫ T
0

∫ s
0
σea(u−s)dW (u)ds]

= σ2B(T, S)
∫ T

0
ea(u−T )(

∫ T
u
ea(u−s)ds)du = σ2

2
B(T, S)B(0, T )2.

Now we can apply formula (C.6) in Appendix C to compute the expectation,

obtaining

Call(0, T ) = P ∗(0, S)e−
σ2

2

∫ T
0 (B(u,S))2dueE[X]+E[Z]+

var[X]2

2(
e
var[Z]2

2
+cov[X,Z]Φ

(E[Z]−log K̄+cov[X,Z]+var[Z]2√
var[Z]

)
− K̄e−E[Z]Φ

(E[Z]−log K̄+cov[X,Z]√
var[Z]

))
.
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We now note that, if we put h = −σ2

2

∫ T
0

(B(u, S)2−B(u, T )2) du, with a bit

calculation we obtain that

h+ cov[X,Z] + var[Z]√
var[Z]

=

√
var[Z]

2

which also implies

h+ cov[X,Z] + var[Z]
2

= (h+ cov[X,Z] + var[Z]− var[Z]
2

)

√
var[Z]√
var[Z]

= 1
2

√
var[Z]

√
var[Z]− var[Z]

2
= 0.

So our formula finally becomes

Call(0, T ) = P ∗(0, S)Φ(d1)− P ∗(0, T )KΦ(d2), with

d1 = 1
σp

log
( P ∗(0,S)
KP ∗(0,T )

)
+ 1

2
σp, d2 = 1

σp
log
( P ∗(0,S)
KP ∗(0,T )

)
− 1

2
σp,

σp =
√
var[Z] = 1

a
(1− e−a(S−T ))

√
σ2

2a
(1− e−2aT )

where Φ is the standard normal distribution function.

If we consider a Put, the computation is of the same type, so we obtain the

more general formula:

Proposition 1.2.1 (Hull & White zero-coupon bond option). Assu-

ming the interest rate r follows the Hull & White dynamics in (1.16) with

constant a and σ, the price of an option on a zero-coupon bond is

ZBPC(0, T ) = wP ∗(0, S)Φ(wd1)− wP ∗(0, T )KΦ(wd2), with

d1 = 1
σp

log
( P ∗(0,S)
KP ∗(0,T )

)
+ 1

2
σp, d2 = 1

σp
log
( P ∗(0,S)
KP ∗(0,T )

)
− 1

2
σp,

σp = 1
a
(1− e−a(S−T ))

√
σ2

2a
(1− e−2aT )

(1.32)

where w is 1 for a Call, -1 for a Put.
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1.3 Forward models

In these models forward rate dynamics is assigned for every maturity T:

df(t, T ) = α(t, T )dt+ σ(t, T )dWt

f(0, T ) = f ∗(0, T )
(1.33)

where W is a d-dimensional Brownian Motion, and where we have chosen

to put ourselves directly under the martingale measure Q; such models were

introduced by Heath Jarrow and Morton, so that they are referred to as

HJM.

In order to guarantee that (1.1) and (1.3) give the same result, the following

condition must hold:

Theorem 1.3.1 (HJM drift condition). Let us assume f is described by

(1.33) under the martingale measure. Then

α(t, T ) = σ(t, T )

∫ T

t

σ(t, s)′ds ∀t ≤ T (1.34)

where the apex indicates transposition.

Proof. From c) of Theorem 1.1.1, we have

dP (t, T )

P (t, T )
=

[
r(t)−

∫ T

t

α(t, s)ds+
1

2

∣∣∣∣∣∣ ∫ T

t

σr(s)ds
∣∣∣∣∣∣2]dt−∫ T

t

σr(s)ds dW (t).

Under a martingale measure we also know that a T-bond must have the same

value of the bank account on the average, that is

r(t)−
∫ T

t

α(t, s)ds+
1

2

∣∣∣∣∣∣ ∫ T

t

σr(s)ds
∣∣∣∣∣∣2 = r(t)

so that

−
∫ T

t

α(t, s)ds+
1

2

∣∣∣∣∣∣ ∫ T

t

σr(s)ds
∣∣∣∣∣∣2 = 0. (1.35)

Deriving (1.35) with respect to T we obtain the desired relation.
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Condition (1.34) establishes that, once we fix the volatility, the drift coeffi-

cient of the forward rate is automatically defined.

In this context, the Hull & White model takes the form

df(t, T ) = α(t, T )dt+ σe−a(T−t)dWt. (1.36)

1.4 Foreign market

Let us now consider a domestic market and a foreign one with risk-neutral

probability measures Q and Qf and money market accounts B and Bf re-

spectively, and an exchange rate Q, i.e. at time t one unit of foreign currency

corresponds to Q(t) units of domestic currency.

If Xf is a derivative in the foreign market, the no-arbitrage pricing formula

gives us

Xf (t) = Bf (t)Ef
[Xf (T )

Bf (T )

∣∣∣Ft]
whose domestic value is

Q(t)Bf (t)Ef
[Xf (T )

Bf (T )

∣∣∣Ft]. (1.37)

For a domestic investor, Xf is equivalent to the derivative XfQ, so (1.37)

must be equal to

B(t)E
[Xf (T )Q(T )

B(T )

∣∣∣Ft].
This equality at time t = 0 implies

Ef
[Xf (T )Q(0)

Bf (T )

]
= E

[Xf (T )Q(T )

B(T )

]
= E

[dQf

dQ

Xf (T )Q(0)

Bf (T )

]
with

dQf

dQ
=
Q(T )Bf (T )

Q(0)B(T )
. (1.38)

As a consequence, switching from the the measure Qf to Q corresponds to

changing the numeraire from Bf to B/Q, in fact the change-of-numeraire
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formula (A.4) tells that if we want to pass from numeraire Bf to U we must

use
dQU

dQf
=
U(T )Bf (0)

U(0)Bf (T )
=

U(T )

U(0)Bf (T )
(1.39)

so if we take QU = Q and compare (1.39) with (1.38) we obtain

dQ

dQf
=
Q(0)B(T )

Q(T )Bf (T )
=

U(T )

U(0)Bf (T )

which says that it is enough to take

U(t) =
B(t)

Q(t)
.



Chapter 2

Inflation: definition and model

2.1 Introduction

Inflation represents the general rise of the prices of goods in an economy

(in case of decrease, it is called deflation). Its dynamics is complex; an in-

crease in the money in circulation can cause its depreciation and thus prices

escalate. Broadly, inflation tends to rise when the demand for goods and

services exceeds the effective possibility of the economy of furnishing them.

Moreover, its expectation should be bound to the setting of costs and wages,

since an increase in prices reduces the purchasing power; effectively most

legislations give the employees the right of a periodical salary increase as an

inflation compensation.

Seasonal variations of inflation have been observed: for example, it tends to

rise during Christmas period and to drop in January and July due to sales.

We note that this seasonal effects change from one country to another, and

they can be very definite such as in UK or almost non influential as in Italy.

Governments and central banks generally shoot for an annual inflation around

2-3%, which is advantageous for the economy beacause it stimulates con-

sumers to buy goods and services (since prices tend to rise, postponing the

buying would lead to pay more). Moreover, in periods of low inflation inter-

est rates are usually low, so people are stimulated in asking for loans. On

15
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the contrary, deflation is very negative for an economy because consumers

often wait for purchasing since prices tend to decrease.

Inflation is measured as the percentage increase of an index which repre-

sents the price of a certain basket of goods and whose value is determined

by statistical institutes. Several indexes exist: the main ones are the Eu-

ropean HICPxT (Harmonized Index of Consumer Prices excluding Tobacco,

calculated by Eurostat considering all the countries in the monetary union,

weighted by their consumption level), the French FRCPI (given by INSEE),

the English RPI (Retail Price Index, from National Statistics) and the US

CPI (Consumer Price Index, from BLS).

In Italy, Istat produces three indices:

-NIC (Intera Comunità Nazionale), which is the reference parameter for eco-

nomic policy;

-FOI (Famiglie di Operai e Impiegati), which takes into account the families

which depend on a (not agricultural) employee and which is used to periodi-

cally adapt the monetary values;

-IPCA (Indice dei Prezzi al Consumo Armonizzato: it is the italian version

of HICP) which allows a Europe-wide comparison of inflation measure: the

economies of the different members of the European Union must converge,

and this index is used to check the possibility of permanence in the monetary

union.

NIC and FOI are based on the same basket but give different weights to

the goods; IPCA instead follows the comunitary agreement to exclude lotto,

lotteries, forecast competitions and life-insurance services, and refers to the

prices that are really payed by the consumers (for example, it takes sales into

account).

It is common to generically indicate the inflation index with CPI, and we

will do this too.

Finally, we note that the inflation index is computed at regular intervals,

typically monthly, but its present value is never known as its elaboration

requires a certain time; for instance, HICPxT index is published around the
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15th of the following month. More precisely, that publication corresponds to

the so-called “unrevised index”, which is effectively used, but which can be

revised if, on the basis of new data, Eurostat decides it is inaccurate.

2.2 Nominal and real rates and bonds

When we usually speak about interest rates we refer to nominal rates,

which are bound to the variation of the amount of money but not to its

effective purchasing power; real rates instead reckon with the adjustment

due to inflation. For example, in case of a loan, if the agreed interest rate

turns out to be equal to the inflation rate, the real rate received by the

lending of the loan is zero.

Notation 1. In the following we will indicate with the subscripts n or r what

is nominal or real respectively.

The relation between the two rates is Fisher equation

(1 + rr)(1 + i) = (1 + rn)

where i is the inflation rate. Such relation is commonly approximated by

rr = rn − i. (2.1)

Actually, we can consider a foreign-currency analogy, where nominal rates

are the interest rates in the domestic economy, real rates are the ones in the

foreign (real) economy, and the exchange rate is given by the CPI; our model

will follow this interpretation.

A nominal T-bond in T corresponds to a unit of currency, without taking care

of inflation, while the value of a real T-bond is one unit of CPI at maturity;

in line with Notation 1, we indicate with Pn(t, T ) and Pr(t, T ) the prices at

time t of a nominal/real T-bond respectively. We point out that Pr(t, T ) is

expressed in CPI units: it means that, in order to obtain the nominal price

in t of a real T-bond, we have to multiply Pr(t, T ) for the value of the CPI

at time t (and we indicate with PTIPS the quantity we get in such a way).
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Notation 2. We indicate with I(t) the value of the inflation index at time t.

As we told in advance, the index is the price of a basket (which is ex-

pressed in a certain currency, as euros/dollars). In order to refer to inflation,

instead of working with percentage increments of the index, the direct use of

the value of the index is common, and we will follow this line: I(t) will thus

be the CPI value at time t, that is the price in t of the reference basket.

With the new notation we thus have

PTIPS(t, T ) = I(t)Pr(t, T ).

Really, since a certain time is necessary for the determination of the inflation

index, I(t) turns out to be not the CPI in the instant t, but in t− L, where

L denotes the time lag1.

2.3 Jarrow-Yildirim model

The Jarrow-Yildirim model is an HJM model, in which forward rate dyna-

mics are assigned (nominal and real, for every maturity T); let us assume the

probability space associated to the effective economy is (Ω,F , P ), but as like

as in Section 1.3 we will describe the processes directly under the martingale

measure Q. The dynamics of the CPI I is assigned, too. Thus, the basis of

the model are:

dfn(t, T ) = αn(t, T )dt+ σn(t, T )dWn(t), fn(0, T ) = f ∗n(0, T ) (2.2)

dfr(t, T ) = αr(t, T )dt+ σr(t, T )dWr(t), fr(0, T ) = f ∗r (0, T ) (2.3)

dI(t) = I(t)µI(t)dt+ I(t)σI(t)dWI(t), I(0) = I0 > 0 (2.4)

with Wn, Wr and WI Brownian Motions with correlations ρn,r, ρn,I and ρr,I ,

and with σn, σr and σI deterministic functions in L2. For (2.2) the HJM

condition (1.34) must hold. Moreover, for Q being a martingale measure,

1See also the introduction of Chapter 3.
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it is necessary that not only the discounted Pns, but also the discounted

PTIPSs and discounted I(t)Br are martingales with respect to Q; this implies

analogous conditions for (2.3) and (2.4). In fact: let us set ξ(t, T ) = I(t)Pr(t,T )
Bn(t,T )

.

So, according to the Itô formula we have

dξ(t, T ) = − 1

B2
n(t)

I(t)Pr(t, T )dBn(t) +
1

Bn(t)
d(I(t)Pr(t, T )) =

= − 1

Bn(t)
I(t)Pr(t, T )rn(t)dt+

1

Bn(t)
{I(t)dPr(t, T ) + Pr(t, T )dI(t)} =

using (2.4) and c) of Theorem 1.1.1

ξ(t)
[
− rn(t) + rr(t)−

∫ T
t
α(t, s)ds+ 1

2

∣∣∣∣∣∣ ∫ Tt σr(t, s)ds
∣∣∣∣∣∣2 − σI(t)ρr,I ∫ Tt σr(t, s)ds+ µI(t)

]
dt

+ξ(t, T )[−
∫ T
t
σr(t, s)ds dWr(t) + σI(t)dWI(t)].

In order to be a martingale, ξ must have null drift, so if we derive the drift

with respect to T we must obtain zero:

−αr(t, T ) + σr(t, T )

∫ T

t

σr(t, s)ds− σr(t, T )σI(t)ρrI = 0

from which we gain the desired condition for the drift of fr:

αr(t, T ) = σr(t, T )
[ ∫ T

t

σr(t, s)ds− σI(t)ρrI
]
. (2.5)

In an analogous way, setting ζ(t, T ) = I(t)Br(t,T )
Bn(t,T )

, thanks to the Itô formula

we have

dζ(t, T ) = − 1
B2
n(t)

I(t)Br(t, T )dBn(t) + 1
Bn(t)

d(I(t)Br(t, T ))

= − 1
Bn(t)

I(t)Br(t, T )rn(t)dt+ 1
Bn(t)

(I(t)dBr(t, T ) +Br(t, T )dI(t))

= ζ(t, T )[−rn(t) + rr(t) + µI(t)]dt+ ζ(t, T )σI(t)dWI(t).

In order to be a martingale, ζ must have null drift, so deriving the drift with

respect to T we must obtain zero; thus, the desired condition on the drift of

I is

µI = rn(t)− rr(t), (2.6)
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and it corresponds to Fisher equation (2.1).

Using the relations we have found, let us now derive the dynamics of the

different T-bond prices.

For what concerns Pn, joining c) of Theorem 1.1.1 and (1.35) of the proof of

HJM condition, we immediately obtain

dPn(t, T )

Pn(t, T )
= rn(t)dt−

∫ T

t

σn(s)ds dWn(t). (2.7)

For Pr, using c) of Theorem 1.1.1 again, and (2.5), we obtain

dPr(t, T )

Pr(t, T )
=

[
rr(t)−

∫ T

t

αr(t, s)ds+
1

2

(∫ T

t

σr(t, s)ds
)2
]
dt−

∫ T

t

σr(t, s)ds dWr(t)

with∫ T

t

αr(t, s)ds =

∫ T

t

(
σr(t, s)

∫ s

t

σr(t, u)du
)
ds−

∫ T

t

σr(t, s)σI(t)ρrIds.

Let us call A the first addend, and let us integrate by parts:

A =
[( ∫ s

t

σr(t, u)du
)2]s=T

s=t
−
∫ T

t

(∫ s

t

σr(t, u)du σr(t, s)
)
ds

=
(∫ T

t

σr(t, u)du
)2

− A

so

2A =
(∫ T

t

σr(t, u)du
)2

.

Thus

dPr(t,T )
Pr(t,T )

= rr(t)dt− 1
2

( ∫ T
t
σr(t, u)du

)2

dt+
∫ T
t
σr(t, s)σI(t)ρrIds dt

+1
2

( ∫ T
t
σr(t, u)du

)2

dt−
∫ T
t
σr(s)ds dWr(t)

=
[
rr(t) + ρrIσI(t)

∫ T
t
σr(t, s)ds

]
dt−

∫ T
t
σr(s)ds dWr(t).

(2.8)

Finally, keeping in mind that PTIPS(t, T ) = I(t)Pr(t, T ), we have

dPTIPS(t, T ) = I(t)dPr(t, T ) + Pr(t, T )dI(t) + d < I(t), Pr(t, T ) >=
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using (2.8) and (2.6)

= PTIPS(t, T )
[(
rr(t) + σI(t)ρrI

∫ T
t
σr(t, s)ds

)
dt−

∫ T
t
σr(t, s)ds dWr(t)

+(rn(t)− rr(t))dt+ σI(t)dWI(t)− σI(t)ρrI
∫ T
t
σr(t, s)ds dt

]
= PTIPS(t, T )rn(t)dt− PTIPS(t, T )

∫ T
t
σr(t, s)ds dWr(t) + PTIPS(t, T )σI(t)dWI(t).

For sake of clarity, let us sum up the dynamics we obtained up to now.

Proposition 2.3.1. Under the martingale measure Q, we have:

dfn(t) = σn(t, T )
∫ T
t
σn(t, s)ds dt+ σn(t, T )dWn(t)

dfr(t) = σr(t, T )
[ ∫ T

t
σr(t, s)ds− ρrIσI(t)

]
dt+ σr(t, T )dWr(t)

dI(t)
I(t)

= [rn(t)− rr(t)]dt+ σI(t)dWI(t)

dPn(t,T )
Pn(t,T )

= rn(t)dt−
∫ T
t
σn(t, s)ds dWn(t)

dPr(t,T )
Pr(t,T )

=
[
rr(t)dt+ σI(t)ρrI

∫ T
t
σr(t, s)ds

]
dt

−
∫ T
t
σr(t, s)ds dWr(t)

dPTIPS(t,T )
PTIPS(t,T )

= rn(t)dt+ σI(t)dWI(t)−
∫ T
t
σr(t, s)ds dWr(t).

(2.9)

From now on we assume nominal and real volatility to be of the form

σk(t, T ) = σke
−ak(T−t), k ∈ n, r, with σk constant, as in (1.36) (Hull &

White); moreover we assume σI(t) is constant (independent from t).

We thus have

dfn(t, T ) =
(
σne

−an(T−t) ∫ T
t
σne

−an(s−T )ds
)
dt+ σne

−an(T−t)dWn(t)

= σ2
n

an
(−e−2an(T−t) + e−an(T−t))dt+ σne

−an(T−t)dWn(t)

from which, transforming into integral form and imposing the term structure:

fn(t, T ) = f ∗n(0, T )+
σ2
n

an

∫ t

0

(
−e−2an(T−s)+e−an(T−s)

)
ds+σn

∫ t

0

e−an(T−s)dWn(s).
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So, recalling (1.3):

drn(t) = ∂fn(0,T )
∂T

∣∣∣
T=t

dt+ σ2
n

an

∫ t
0

(
− e−2an(t−s)(−2an) + e−an(t−s)(−an)

)
ds dt

+σndWn(t) + σn
∫ t

0
e−an(t−s)(−an)dWn(s) dt

=
{

∂fn(0,T )
∂T

∣∣∣
T=t
− anrn(t)− an

(
− fn(0, t)− σ2

n

an

∫ t
0
e−2an(t−s)ds

)}
dt

+σndWn(t)

and using (1.23), we obtain the nominal short rate dynamics

drn(t) = [θn(t)− anrn(t)]dt+ σndWn(t). (2.10)

For real short rate calculation is analogous:

dfr(t, T ) =
σ2
r

ar
(−e−2ar(T−t)+e−ar(T−t))dt−σre−ar(T−t)ρrIσIdt+σre−ar(T−t)dWn(t)

from which, transforming into integral form and imposing the term structure:

fr(t, T ) = f ∗r (0, T ) + σ2
r

ar

∫ t
0

(
− e−2ar(T−s) + e−ar(T−s)

)
ds

−σrσIρrI
ar

(e−ar(T−t) − e−arT ) + σr
∫ t

0
e−ar(T−s)dWr(s).

So

drr(t) = ∂fr(0,T )
∂T

∣∣∣
T=t

dt+ σ2
r

ar

∫ t
0

(
− e−2ar(t−s)(−2ar) + e−ar(t−s)(−ar)

)
ds dt

−σrσIρrIe−artdt+ σrdWr(t) + σr
∫ t

0
e−ar(t−s)(−ar)dWr(s) dt

= ∂fr(0,T )
∂T

∣∣∣
T=t

dt− arrr(t)dt− ar
(
− fr(0, t)− σ2

r

ar

∫ t
0
e−2ar(t−s)ds

)
dt

−σrσIρrIdt+ σrdWr(t)

from which we deduce the real short rate dynamics

drr(t) = [θr(t)− arrr(t)− σrσIρrI ]dt+ σrdWr(t). (2.11)

Let us sum up the results we found about short rates, adding their extended

expression (which is obtained solving the linear SDEs (2.10) and (2.11))2:

2See (B.7) in Appendix B.
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Proposition 2.3.2. Under the martingale measure Q, we have:

drn(t) = [θn(t)− anrn(t)]dt+ σndWn(t)

rn(t) = rn(s)e−an(t−s) +
∫ t
s
ean(u−t)θn(u)du+

∫ t
s
ean(u−t)σndWn(u)

drr(t) = [θr(t)− arrr(t)− σrσIρrI ]dt+ σrdWr(t)

rr(t) = rr(s)e
−ar(t−s) +

∫ t
s
ear(u−t)(θr(u)− ρrIσrσI)du+

∫ t
s
ear(u−t)σrdWr(u).

(2.12)

Let us now analyze the consequences of the foreign-currency analogy. By

Section 1.4, moving from the real measure Qr to the nominal one Qn cor-

responds to a change of numeraire from Br to Bn/I; it means that moving

back from Qn to Qr corresponds to a change of numeraire from Bn to BrI.

From (2.3.1) we obtain

I(T ) = I(t)e
∫ T
t (rn(s)−rr(s))ds− 1

2
σ2
I (T−t)+σI(WI(T )−WI(t)) (2.13)

so, recalling

dBk(t) = rk(t)Bk(t)dt⇒ Bk(t) = e
∫ t
0 rk(s)ds, k = n, r

we have

Br(t)I(t) = I(0)e
∫ t
0 rn(s)ds− 1

2
σ2
I t+σIWI(t) = Br(0)I(0)e

∫ t
0 rn(s)ds− 1

2
σ2
I t+σIWI(t).

Moreover

d(BrI)(t) = I(t)dBr(t) +Br(t)dI(t) =

I(t)(rr(t)B
r(t)dt) +Br(t)I(t)((rn(t)− rr(t))dt+ σIdWI(t)) =

rn(t)(BrI)(t)dt+ σI(B
rI)(t)dWI(t).

Using the change-of-numeraire formula (A.2.4), we obtain

dWBrI
r (t) = dWBn

r (t)− ρrI
(σI(BrI)(t)

(BrI)(t)
− 0

Bn(t)

)
dt

from which

dWBn

r (t) = dWBrI
r (t) + ρrIσIdt;
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so, the dynamics for rr under Qr is

drr(t) = [θr(t)− arrr(t)]dt+ σrdWr(t) (2.14)

which is exactly of the same form as the one of rn under Q (2.10).



Chapter 3

Inflation-linked derivatives

The market for inflation-linked derivatives has known a strong growth

in the last ten years: in 2001 it almost did not exist, then inflation market

quickly developed in Europe first, and now the US market is very active for

what concerns inflation, too. Among the causes of this rapid development

there probably was the desire for new kinds of structured products, since

the traditional fixed-income ones only allowed small returns, and part of the

investors were reluctant to the idea of taking too many risks.

Inflation-indexed derivatives have the purpose of transferring the inflation

risk, and to deal with real returns instead of nominal ones. As a consequence

of the lag in the index, the covering of the inflation risk is not perfect, but

shifted backwards (generally of three months): it means that instead of refer-

ring to present inflation, derivatives deal with a three-months back inflation,

so that they cover a period which starts three months before the issuing date

and ends three months before maturity.

Inflation-indexed derivatives are numerous and diversified in order to satisfy

the client’s needs; in this chapter we present some of the most well known

derivatives on the inflation rate and we derive their price.

25



26 3. Inflation-linked derivatives

3.1 Zero-coupon swap

A zero-coupon swap (ZCIIS, which stands for zero-coupon inflation-indexed

swap) is a contract in which one of the two parties accepts to pay the inflation

rate at maturity and to receive from the other party a fixed rate K which is

established at the beginning, where both the rates are computed referring to

the nominal value N. If we indicate with M the length of the contract, the

inflation rate is computed as percentage increase of the index between the

dates T0 := 0 and TM of the start and the end of the contract respectively;

note that I(0) is known at the moment of the stipulation of the contract,

while I(TM) is not. The fixed leg is the leg connected with the fixed rate K,

and we will indicate it with the subscript “fix”; the floating leg is the leg

connected with inflation, and we will indicate it just with the subscript “f”.

Their values at maturity are

N [(1 +K)M − 1] and N

[
I(TM)

I(0)
− 1

]

respectively. Let us now focus on the floating leg. Under the martingale

measure Q with numeraire Bn its arbitrage price at time t is given by

ZCIISf (t, TM , I(0), N) = N E

[
e−

∫ TM
t rn(u)du

[
I(TM)

I(0)
− 1

]∣∣∣∣∣Ft

]
. (3.1)

Remembering that PTIPS corresponds to the nominal value of a real bond,

we have:

I(t)Pr(t, T ) = E[e−
∫ TM
t rn(u)duI(T )|Ft] (3.2)

so

ZCIISf (t, TM , I(0), N) = N

[
I(t)

I(0)
Pr(t, TM)− Pn(t, TM)

]
(3.3)

and, in particular, when t = 0,

ZCIISf (0, TM , I(0), N) = N [Pr(0, TM)− Pn(0, TM)]. (3.4)
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The price of the fix leg is simply

ZCIISfix(0, TM , I(0), N) = N E

[
e−

∫ TM
0 rn(u)du((1 +K)M − 1)

∣∣∣∣∣F0

]

= NPn(0, TM)((1 +K)M − 1)

so, if we are the party who pays the fix leg, we finally obtain

ZCIIS(0, TM , I(0), N) = N [Pr(0, TM)− Pn(0, TM)]−NPn(0, TM)[(1 +K)M − 1]

= N [Pr(0, TM)− Pn(0, TM)(1 +K)M ].

It is interesting to note that this price is independent from the model.

If we look for the value of the fix rate K which makes the swap null at time

0, we obtain

K =

(
Pr(0, TM)

Pn(0, TM)

) 1
M

− 1; (3.5)

these values are known on the market for some maturities TM , so that it is

possible to derive the Pr prices:

Pr(0, TM) = Pn(0, TM)(1 +K(TM))M . (3.6)

3.2 Year-on-year swap

An year-on-year swap (YYIIS, which stands for year-on-year inflation-

indexed swap) is a contract for which a set of dates T0 = 0, T1, . . . , TM is

given, and on each subinterval one of the two parties pays the inflation rate

and receives from the other party the fixed rate K, where both the rates

are computed referring to the nominal value N and multiplied for the year

fraction ϕi for the interval [Ti−1, Ti]. This means that the value of the fixed

leg and of the floating one at time Ti are

NϕiK and Nϕi

[
I(Ti)

I(Ti−1)
− 1

]
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respectively; so, indicating with the subscript “f” the inflation-indexed leg,

we have

Y Y IISf (t, Ti−1, Ti, ϕi, N) = NϕiE

[
e−

∫ Ti
t rn(u)du

[
I(Ti)

I(Ti−1)
− 1

]∣∣∣∣∣Ft

]
. (3.7)

If t ≥ Ti−1, (3.7) is completely similar to the floating leg of a ZCIIS, so for

its price see (3.3); if instead t < Ti−1, we can write

Y Y IISf (t, Ti−1, Ti, ϕi, N) = NϕiE
[
e−

∫ Ti−1
t rn(u)duE

[
e
−

∫ Ti
Ti−1

rn(u)du
[ I(Ti)

I(Ti−1)
−1
]∣∣∣FTi−1

]∣∣∣Ft

]
where the inner expectation is ZCIISf (Ti−1, Ti, I(Ti−1), 1) (see (3.1)), so

Y Y IISf (t, Ti−1, Ti, ϕi, N) = NϕiE
[
e−

∫ Ti−1
t rn(u)du[Pr(Ti−1, Ti)− Pn(Ti−1, Ti)]

∣∣∣Ft

]
= NϕiE

[
e−

∫ Ti−1
t rn(u)duPr(Ti−1, Ti)

∣∣∣Ft

]
−NϕiPn(t, Ti)

(3.8)

(in the last passage we used the martingality of discounted Pn(·, Ti)).
Now, in order to calculate the expectation in (3.8), we change the numeraire1

from Bn(·) to Pn(·, Ti−1), so that

Y Y IISf (t, Ti−1, Ti, ϕi, N) = NϕiE
Ti−1
n

[
Pn(t,Ti−1)

Pn(Ti−1,Ti−1)
Pr(Ti−1, Ti)

∣∣∣Ft

]
−NϕiPn(t, Ti)

= NϕiPn(t, Ti−1)E
Ti−1
n [Pr(Ti−1, Ti)|Ft]−NϕiPn(t, Ti)

(3.9)

where E
Ti−1
n indicates the expectation under the forward nominal martin-

gale measure Q
Ti−1
n . In order to calculate this, we recall the Hull & White

dynamics of the real short rate (2.11) under the martingale measure with

numeraire Bn

drr(t) = [θr(t)− ρrIσrσI − arrr(t)]dt+ σr(t)dWr(t)

where Wr is a correlated Brownian Motion with correlation ρnr. From (1.12),

we remember that Pn(t, T ) = Ãn(t, T )e−Bn(t,T )r where Ãn and Bn are the

1See (A.3) in Appendix A
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deterministic functions given by the exponential of (1.20) and by (1.19), so

dPn(t, T ) = (dÃn(t, T ))e−Bn(t,T )rn(t) − Ãn(t, T )e−Bn(t,T )rn(t)d(Bn(t, T )rn(t))

= Pn(t, T )[(. . .)dt−Bn(t, T )σndWn(t)]

where the dots (. . .) are allowed as we are only interested in the diffusion

coefficient in order to apply the change of numeraire2. We thus obtain

dWn(t) = dW Ti−1
n (t)−Bn(t, Ti−1)σndt (3.10)

from which

dWr(t) = ρnrdWn(t) = ρnrdW
Ti−1
n (t)− ρnrσnBn(t, Ti−1)dt

= dW
Ti−1
r (t)− ρnrσnBn(t, Ti−1)dt

and finally

drr(t) = [θr(t)− ρrIσrσI − arrr(t)− ρnrσnσrBn(t, Ti−1)]dt+ σrdW
Ti−1
r (t).

(3.11)

Equation (3.11) is a linear EDS, and analogously to (2.3.2) we have

rr(t) = e−ar(t−t0){ rr(t0) +
∫ t
t0
ear(s−t0)(θr(s)− ρrIσrσI − ρnrσnσrBn(s, Ti−1))ds

+
∫ t
t0
ear(s−t0)σrdW

Ti−1
r (s)};

taking t = Ti−1 and simply t instead of t0, we obtain

rr(Ti−1) = e−ar(Ti−1−t)rr(t) + e−arTi−1
∫ Ti−1

t
ears(θr(s)− ρrIσrσI − ρnrσnσrBn(s, Ti−1))ds

+e−arTi−1
∫ Ti−1

t
earsσrdW

Ti−1
r (s)

(3.12)

2See theorem A.2.4 in Appendix A.
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from which we deduce that r(Ti−1) has a normal distribution, with expecta-

tion (under the martingale measure QTi−1):

ETi−1 [r(Ti−1)|Ft] = e−ar(Ti−1−t)rr(t) + e−arTi−1
∫ Ti−1

t
earsθr(s)ds

−ρrIσrσIe−arTi−1 e
arTi−1−eart

ar
− ρnrσnσre−arTi−1

∫ Ti−1

t
earsBn(s, Ti−1)ds

= e−ar(Ti−1−t)rr(t)− ρrIσrσIBr(t, Ti−1) + e−arTi−1
∫ Ti−1

t
ears
( ∂f∗r(0,T )

∂T

∣∣∣
T=s

+arf
∗
r (0, s) + σ2

r

2ar
(1− e−2ars)

)
ds− ρnrσnσre−arTi−1

∫ Ti−1

t
ears 1−e−an(Ti−1−s)

an
ds.

Let us now focus on the last two addends: they are equal to

e−arTi−1{[f ∗r (0, s)ears]
s=Ti−1

s=t −
∫ Ti−1

t
f ∗r (0, s)are

arsds+
∫ Ti−1

t
f ∗r (0, s)are

arsds

+ σ2
r

2ar

∫ Ti−1

t
(ears − e−ars)ds} − ρnrσnσre−arTi−1 1

an

∫ Ti−1

t
(ears − e−an(Ti−1−s)+ars)ds

= f ∗r (0, Ti−1)− e−ar(Ti−1−t)f ∗r (0, t) + e−arTi−1 σ
2
r

2ar
(earTi−1 − eart + e−arTi−1 − e−art)

−ρnrσnσr 1
an

{
1
ar
− e−ar(Ti−1−t)

ar
− 1

an+ar
+ e−an(Ti−1−t)−ar(Ti−1−t)

an+ar

}
= f ∗r (0, Ti−1) + σ2

r

2a2r
(1 + e−2arTi−1 − 2e−arTi−1)− e−ar(Ti−1−t)f ∗r (0, t)

− σ2
r

2a2r
e−ar(Ti−1−t)(1 + e−2art − 2e−art)

−ρnrσnσr 1
an+ar

{
1−e−ar(Ti−1−t)

ar
+ e−an(Ti−1−t)−ar(Ti−1−t)

an
− e−ar(Ti−1−t)

an

}
so

ETi−1 [r(Ti−1)|Ft] = e−ar(Ti−1−t)rr(t)− ρrIσrσIBr(t, Ti−1) + f ∗r (0, Ti−1)

+ σ2
r

2a2r
(1− e−arTi−1)2 − e−ar(Ti−1−t)

{
f ∗r (0, t) + σ2

r

2a2r
(1− e−art)2

}
−ρnrσnσr

an+ar
[Br(t, Ti−1) + arBn(t, Ti−1)Br(t, Ti−1)−Bn(t, Ti−1)].

(3.13)

From (3.12) we can also derive the variance of r(Ti−1):

varTi−1 [r(Ti−1)|Ft] = e−2arTi−1

∫ Ti−1

t

e2arsσ2
rds =

σ2
r

2ar
(1− e−2ar(Ti−1−t)).

(3.14)

Keeping in mind that Pr(t, T ) = Ãr(t, T )e−Br(t,T )r(t) (1.12) with Ãr and

Br deterministic functions, we obtain that Pr(Ti−1, Ti) is lognormally dis-

tributed, so we are able to calculate its expectation under the martingale
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measure QTi−1 , which was left unexpanded in (3.9):

ETi−1 [Pr(Ti−1, Ti)|Ft] =

∫ +∞

−∞
Ãr(Ti−1, Ti)e

−Br(Ti−1,Ti)xp(x)dx

where p is the density of rTi−1
, and we know that rTi−1

∼ N (m,V ), with

m = ETi−1 [rTi−1
|Ft] and V = ETi−1 [rTi−1

|Ft], so that (omitting the pedices

and arguments of Ã and B in order to simplify the notation)

ETi−1 [Pr(Ti−1, Ti)|Ft] = Ã
∫ +∞
−∞ e−Bx 1√

2πV
e−

(x−m)2

2V dx

= Ãe
B2V

2
−mB 1√

2πV

∫ +∞
−∞ e−

(x−(m−BV ))2

2V dx.

(3.15)

Now, remembering that the integral of the normal density is 1, using the

expressions in (3.13) and (3.14) for m and V , and substituting the explicit

form of Ã derived from (1.24), we obtain that (3.15) is equal to

P ∗r (0,Ti)
P ∗r (0,Ti−1)

exp
{
Br(Ti−1, Ti)f

∗
r (0, Ti−1)− σ2

r

4ar
(1− e−2arTi−1)Br(Ti−1, Ti)

2

+ σ2
r

4ar
(1− e−2aTi−1−t)Br(Ti−1, Ti)

2 −Br(Ti−1, Ti)
[
rr(t)e

−ar(Ti−1−t) + f ∗r (0, Ti−1)

+ σ2
r

2a2r
(1− e−arTi−1)2 − e−ar(Ti−1−t)

(
f ∗r (0, t) + σ2

r

2a2r
(1− e−art)2

)
− ρrIσrσIBr(t, Ti−1)

−ρnrσnσr
an+ar

[Br(t, Ti−1) + arBn(t, Ti−1)Br(t, Ti−1)−Bn(t, Ti−1)]
]}

=

= P ∗r (0,Ti)
P ∗r (0,Ti−1)

exp
{
f ∗r (0, t) 1

ar
(e−ar(Ti−1−t) − e−ar(Ti−t)) + ρrIσrσIBr(Ti−1, Ti)Br(t, Ti−1)

+ρnrσnσr
an+ar

Br(Ti−1, Ti)[Br(t, Ti−1) + arBn(t, Ti−1)Br(t, Ti−1)−Bn(t, Ti−1)]

+ σ2
r

4ar

[
1
a2r

(1 + e−2ar(Ti−Ti−1) − 2e−ar(Ti−Ti−1))(e−2arTi−1 − e−2ar(Ti−1−t))

+ 2
a2r

(1− e−ar(Ti−Ti−1))e−ar(Ti−1−t)(1 + e−2art − 2e−art)

− 2
a2r

(1− e−ar(Ti−Ti−1))(1 + e−2arTi−1 − 2e−arTi−1)
]
− rr(t)

ar
(1− e−ar(Ti−Ti−1))e−ar(Ti−1−t)

}
.

(3.16)

Now we notice that

Pr(t, Ti)

Pr(t, Ti−1)
=

Ãr(t, Ti)

Ãr(t, Ti−1)
e−Br(t,Ti)rr(t)eBr(t,Ti−1)rr(t) (3.17)

with

Ãr(t,Ti)

Ãr(t,Ti−1)
= P ∗r (0,Ti)

P ∗r (0,t)
exp

{
Br(t, Ti)f

∗
r (0, t)− σ2

r

4ar
(1− e−2art)Br(t, Ti)

2
}

· P ∗r (0,t)
P ∗r (0,Ti−1)

exp
{
−Br(t, Ti−1)f ∗r (0, t) + σ2

r

4ar
(1− e−2art)Br(t, Ti−1)2

} (3.18)
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= P ∗r (0,Ti)
P ∗r (0,Ti−1)

exp
{
f ∗r (0, t) 1

ar
(−e−ar(Ti−t) + e−ar(Ti−1−t))

+ σ2
r

4ar
(1− e−2art) 1

a2r
(e−2ar(Ti−1−t) − 2e−ar(Ti−1−t) − e−2ar(Ti−t) + 2e−ar(Ti−t))

}(3.19)

so from (3.16), (3.17) and (3.19) with some calculation we finally obtain

ETi−1 [Pr(Ti−1, Ti)|Ft] =
Pr(t, Ti)

Pr(t, Ti−1)
eC(t,Ti−1,Ti) (3.20)

where

C(t, Ti−1, Ti) = σrBr(Ti−1, Ti)
{
Br(t, Ti−1)(ρrIσI − 1

2
σrBr(t, Ti−1)

+ ρnrσn
an+ar

(1 + arBn(t, Ti−1))− ρnrσn
an+ar

Bn(t, Ti−1)
}
.

(3.21)

Thus we are able to write explicitly the price at time t, for t < Ti−1, of the

floating part of a YYIIS, in fact substituting (3.20) in (3.9) we obtain

Y Y IISf (t, Ti−1, Ti, ϕi, N) = NϕiPn(t, Ti−1)
Pr(t, Ti)

Pr(t, Ti−1)
eC(t,Ti−1,Ti)−NϕiPn(t, Ti).

(3.22)

In this formula, Pr(t,Ti)
Pr(t,Ti−1)

is the forward price of a real bond, that is the

price at time t of a real bond which starts in Ti−1 with maturity Ti, and

it is multiplied by the ”correction factor” eC which disappears if σr = 0.

Summing up, and remembering that for t ≥ Ti−1 (3.3) holds, the value at

time t of the floating part of a YYIIS is

Y Y IISf (t, T , φ,N) = Nϕi(t)
[ I(t)
I(Ti(t)−1)

Pr(t, Ti(t))− Pn(t, Ti(t))
]

+N
∑M

i=i(t)+1 ϕi
[
Pn(t, Ti−1) Pr(t,Ti)

Pr(t,Ti−1)
eC(t,Ti−1,Ti) − Pn(t, Ti)

](3.23)

where T = {T1, . . . , TM}, φ = ϕ1, . . . , ϕM and i(t) = min{i : Ti > t};
for t = 0 (3.23) reduces to

Y Y IISf (0, T , φ,N) =

Nϕ1[Pr(0, T1)− Pn(0, T1)] +N
∑M

i=2 ϕi
[
Pn(0, Ti−1) Pr(0,Ti)

Pr(0,Ti−1)
eC(0,Ti−1,Ti) − Pn(0, Ti)

]
.

(3.24)

If we consider both legs of the YYIIS, we finally obtain

Y Y IIS(0, T , φ,N) = Nϕ1Pr(0, T1) +N
∑M

i=2 ϕi
[
Pn(0, Ti−1) Pr(0,Ti)

Pr(0,Ti−1)
eC(0,Ti−1,Ti)

]
−N(1 +K)

∑M
i=1 ϕiPn(0, Ti).

(3.25)
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To conclude, we give an alternative formulation for (3.24), using the forward

rates: we recall the definition

Definition 3.1 (Forward rate). The simply-compounded forward interest

rate prevailing at time t for the expiry T > t and maturity S > T is

F (t;T, S) =
P (t, T )− P (t, S)

τiP (t, S)
.

Substituting this in (3.24) we thus obtain

Y Y IISf (0, T , φ,N) = N

M∑
i=1

ϕiPn(0, Ti)
[1 + τiFn(0;Ti−1, Ti)

1 + τiFr(0;Ti−1, Ti)
eC(0,Ti−1,Ti)−1

]
.

3.3 IICap/IIFloor

An Inflation-Indexed Caplet/Floorlet (IIC/IIF) is a Call/Put option on

the inflation rate: if the time interval is [Ti−1, Ti], ϕi the correspondent year

fraction, N the nominal value of the contract and k the strike, the payoff is

Nϕi

[
w
( I(Ti)

I(Ti−1)
− 1− k

)]+

(3.26)

where w is 1 for a caplet, -1 for a floorlet. So, setting K = 1 + k, the price

at time t < Ti−1 is

IICpltF lt(t, Ti−1, Ti, ϕi, K,N,w) = NϕiEn

[
e−

∫ Ti
t rn(s)ds

[
w
(

I(Ti)
I(Ti−1)

−K
)]+∣∣∣Ft

]
= NϕiPn(t, Ti)E

Ti
n

[[
w
(

I(Ti)
I(Ti−1)

−K
)]+∣∣∣Ft

]
.

(3.27)

In the Jarrow-Yildirim model the nominal and real rates are normally dis-

tributed (remember the dynamics (2.10) and (2.11) ), and in the previous

section we have seen that this continues to hold if we move to a forward

nominal measure. Moreover, we recall from (2.13) that

I(T ) = I(t)e
∫ T
t (rn(s)−rr(s))ds− 1

2
σ2
I (T−t)+σI(WI(T )−WI(t))
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so the CPI index follows a lognormal distribution3.

Taking Pn(·, Ti) as numeraire (with the same proceeding which lead us to

(3.10) ), we obtain

dWn(t) = dW Ti
n (t)−Bn(t, Ti)σndt (3.28)

from which

dWI(t) = ρnIdWn(t) = ρnIdW
Ti
n (t)− ρnIσnBn(t, Ti)dt

= dW Ti
I (t)− ρnIσnBn(t, Ti)dt

so that

dI(t) = I(t)[rn(t)− rr(t)− ρnIσnσIBn(t, Ti)]dt+ σIdW
Ti
I (t). (3.29)

Taking Ti−1 as “starting point” and calculating at time Ti, we can finally

write

I(Ti)

I(Ti−1)
= e

∫ Ti
Ti−1

(rn(s)−rr(s))ds− 1
2
σ2
I (T−t)−ρnIσnσI

∫ Ti
Ti−1

Bn(s,Ti)ds+σI(W
Ti
I (Ti)−W

Ti
I (Ti−1))

.

The expectation in the second line of (3.27) is thus of the form E[(w(eZ −K))+]

with Z = log I(Ti)
I(Ti−1)

normal variable, so if we knew the expectation and vari-

ance of Z, we could apply formula (C.6) in Appendix C.

With this aim, we recall (3.20):

ETi−1
n [Pr(Ti−1, Ti)|Ft] =

Pr(t, Ti)

Pr(t, Ti−1)
eC(t,Ti−1,Ti) (3.30)

and we note that a change of numeraire on the first member gives

= ETi
n [Pr(Ti−1, Ti)

Pn(Ti−1, Ti−1)

Pn(t, Ti−1)

Pn(t, Ti)

Pn(Ti−1, Ti)
|Ft] =

Pn(t, Ti)

Pn(t, Ti−1)
ETi
n [
Pr(Ti−1, Ti)

Pn(Ti−1, Ti)
|Ft] =

using (3.2)

=
Pn(t, Ti)

Pn(t, Ti−1)
ETi
n

[ I(Ti)

I(Ti−1)

∣∣∣Ft

]
(3.31)

3Remember that the integral of a Gaussian process is Gaussian: see Section C.1 in

Appendix C.
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and equating the second members of (3.30) and (3.31) we obtain

ETi
n

[
eZ |Ft

]
= ETi

n

[ I(Ti)

I(Ti−1)
|Ft

]
=
Pn(t, Ti−1)

Pn(t, Ti)

Pr(t, Ti)

Pr(t, Ti−1)
eC(t,Ti−1,Ti) (3.32)

with C defined in (3.21).

If we now put E[Z] = µ and var[Z] = v2, according to (C.1) in Appendix C,

we have

m = E[eZ ] = eµ+ v2

2 ⇒ µ = logm− v2

2
. (3.33)

We need to calculate v2; for this aim, we use the dynamics under the martin-

gale measure Q, since the change of numeraire only determines a deterministic

addend which does not affect the variance.

v2 = varTin

[
log

I(Ti)

I(Ti−1)
|Ft

]
= varn

[ ∫ Ti

Ti−1

(rn(s)−rr(s))ds+σI(WI(Ti)−WI(Ti−1))|Ft

]
.

Since var[A + B] = var[A] + var[B] + 2Cov[A,B], let us calculate the single

addends. Using the expression of rn in (2.3.2)

varn

[ ∫ Ti

Ti−1

rn(s)ds|Ft

]
= varn

[
σn

∫ Ti

Ti−1

∫ s

t

e−an(s−u)dWn(u)ds|Ft

]
.

We now observe that
∫ Ti
Ti−1

( ∫ s
t
dWu

)
ds =

∫ Ti−1

t

( ∫ Ti
Ti−1

ds
)
dWu+

∫ Ti
Ti−1

( ∫ Ti
u
ds
)
dWu,

so we treat the two parts separately, calling them a) and b) (keeping in mind

that the increment of Brownian Motions over a certain interval [Ti−1, Ti] is

independent from FTi−1
, so the two parts are independent).

a):

varn

[
σn
∫ Ti−1

t

( ∫ Ti
Ti−1

e−an(s−u)ds
)
dWn(u)|Ft

]
= σ2

n

∫ Ti−1

t

( ∫ Ti
Ti−1

e−an(s−u)ds
)2
du

= σ2
n

a2n
(1− e−an(Ti−Ti−1)

)2 ∫ Ti−1

t
e−2an(Ti−u)du

= σ2
n

2a3n
(1− e−an(Ti−Ti−1)

)2
(1− e−2an(Ti−1−t)

)
.

(3.34)

b):

varn

[
σn
∫ Ti
Ti−1

( ∫ Ti
u
e−an(s−u)ds

)
dWn(u)|Ft

]
= σ2

n

∫ Ti
Ti−1

( ∫ Ti
u
e−an(s−u)ds

)2
du

= σ2
n

a2n

∫ Ti
T i−1

(1 + e−2an(Ti−u) − 2e−an(Ti−u))du

= σ2
n

a2n

{
Ti − Ti−1 − e−2an(Ti−Ti−1)

2an
+ 2 e

−an(Ti−Ti−1)

an
− 3

2an

}
.

(3.35)
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Since the dynamics of rr differs from the one of rn only for a deterministic

factor (see (2.3.2)), the calculus for the variance of its integral is exactly the

same, and gives:

varn

[ ∫ Ti
Ti−1

rr(s)ds|Ft

]
= σ2

r

2a3r
(1− e−ar(Ti−Ti−1)

)2
(1− e−2ar(Ti−1−t)

)
+σ2

r

a2r

{
Ti − Ti−1 − e−2ar(Ti−Ti−1)

2ar
+ 2 e

−ar(Ti−Ti−1)

ar
− 3

2ar

}
.

(3.36)

The third (and last) variance we need is

varn

[
σI(WI(Ti)−WI(Ti−1))|Ft

]
= σ2

I (Ti − Ti−1).

Let us now calculate covariances:

Covn

[ ∫ Ti
Ti−1

rn(s)ds,
∫ Ti
Ti−1

rr(s)ds
]

=

σnσrE
[( ∫ Ti

Ti−1

( ∫ s
t
e−an(s−u)dWn(u)

)
ds
)( ∫ Ti

Ti−1

( ∫ s
t
e−ar(s−u)dWr(u)

)
ds
)]
.

Applying again the decomposition in a) and b) of each integral, we have: the

covariance of part a) of each integral

σnσrE
[( ∫ Ti−1

t

( ∫ Ti
Ti−1

e−an(s−u)ds
)
dWn(u)

)( ∫ Ti−1

t

( ∫ Ti
Ti−1

e−ar(s−u)ds
)
dWr(u)

)]
= ρnrσnσr

∫ Ti−1

t

( ∫ Ti
Ti−1

e−an(s−u)ds
∫ Ti
Ti−1

e−ar(s−u)ds
)
du

= ρnrσnσr
anar(an+ar)

(1− e−an(Ti−Ti−1))(1− e−ar(Ti−Ti−1))(1− e−(an+ar)(Ti−1−t));

the covariance of part b) of each integral

σnσrE
[( ∫ Ti

Ti−1

( ∫ Ti
u
e−an(s−u)ds

)
dWn(u)

)( ∫ Ti
Ti−1

( ∫ Ti
u
e−ar(s−u)ds

)
dWr(u)

)]
= ρnrσnσr

∫ Ti
Ti−1

( ∫ Ti
u
e−an(s−u)ds

∫ Ti
u
e−ar(s−u)ds

)
du

= ρnrσnσr
anar

∫ Ti
Ti−1

(1− e−an(Ti−u))(1− e−ar(Ti−u))du

= ρnrσnσr
anar

{
Ti − Ti−1 − 1−e−an(Ti−Ti−1)

an
− 1−e−ar(Ti−Ti−1)

ar
+ 1−e−(an+ar)(Ti−Ti−1)

an+ar

}
;

the cross covariances of parts a) and b) of the two integrals, which is zero;

the covariances between part a) of the integral of r and the inflation addend,
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which is zero for both rates; the covariances between part b) of the integral

of r and the inflation addend

Covn

[
σn
∫ Ti
Ti−1

( ∫ Ti
u
e−an(s−u)ds

)
dWn(u), σI

∫ Ti
Ti−1

dWI(u)
]

= ρnIσnσI
∫ Ti
Ti−1

( ∫ Ti
u
e−an(s−u)ds

)
du = ρnIσnσI

an

{
Ti − Ti−1 − 1−e−an(Ti−Ti−1)

an

}
and the same for rr just changing the pedices from n to r. Summing up:

v2 = v2(t, Ti−1, Ti) =

σ2
n

2a3n
(1− e−an(Ti−Ti−1)

)2
(1− e−2an(Ti−1−t)

)
+ σ2

r

2a3r
(1− e−ar(Ti−Ti−1)

)2
(1− e−2ar(Ti−1−t)

)
+σ2

n

a2n

{
Ti − Ti−1 − e−2an(Ti−Ti−1)

2an
+ 2 e

−an(Ti−Ti−1)

an
− 3

2an

}
+σ2

r

a2r

{
Ti − Ti−1 − e−2ar(Ti−Ti−1)

2ar
+ 2 e

−ar(Ti−Ti−1)

ar
− 3

2ar

}
+σ2

I (Ti − Ti−1)

−2 ρnrσnσr
anar(an+ar)

(1− e−an(Ti−Ti−1))(1− e−ar(Ti−Ti−1))(1− e−(an+ar)(Ti−1−t))

−2ρnrσnσr
anar

{
Ti − Ti−1 − 1−e−an(Ti−Ti−1)

an
− 1−e−ar(Ti−Ti−1)

ar
+ 1−e−(an+ar)(Ti−Ti−1)

an+ar

}
+2ρnIσnσI

an

{
Ti − Ti−1 − 1−e−an(Ti−Ti−1)

an

}
−2ρrIσrσI

ar

{
Ti − Ti−1 − 1−e−ar(Ti−Ti−1)

ar

}
.

(3.37)

Now, since we have the expressions (3.33) and (3.37), we can finally apply

(C.6) obtaining

IICpltF lt(t, Ti−1, Ti, ϕi, K,N,w)

= wNϕiPn(t, Ti)e
µ
(
e
v2

2 Φ
(
wµ−logK+v2√

v2

)
−Ke−µΦ

(
wµ−logK√

v2

))
= wNϕiPn(t, Ti)me

− v
2

2

(
e
v2

2 Φ
(
w

logm−logK+ v2

2√
v2

)
− K

m
e
v2

2 Φ
(
w

logm−logK− v
2

2√
v2

))
= wNϕiPn(t, Ti)

[
Pn(t,Ti−1)
Pn(t,Ti)

Pr(t,Ti)
Pr(t,Ti−1)

eC(t,Ti−1,Ti)Φ
(
w

log
Pn(t,Ti−1)Pr(t,Ti)

KPn(t,Ti)Pr(t,Ti−1)
+C(t,Ti−1,Ti)+

1
2
v2(t,Ti−1,Ti)

v(t,Ti−1,Ti)

)
−KΦ

(
w

log
Pn(t,Ti−1)Pr(t,Ti)

KPn(t,Ti)Pr(t,Ti−1)
+C(t,Ti−1,Ti)− 1

2
v2(t,Ti−1,Ti)

v(t,Ti−1,Ti)

)]
(3.38)

where Φ is the standard normal distribution function.
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Given a set of dates T = {T0, T1, . . . , TM}, an Inflation-Indexed Cap/Floor

(IICap/IIFloor) is a sequence of inflation-indexed caplets/floorlets which are

set on each subinterval [Ti−1, Ti]: it means that its price at time t is the sum

of the discounted prices of the caplets/floorlets, and in particular at t = 0:

IICapF loor(0, T , φ,K,N,w) = N
∑M

i=1 ϕiEn

[
e−

∫ Ti
0 rn(u)du

[
w
(

I(Ti)
I(Ti−1)

−K
)]+∣∣∣Ft

]
= N

∑M
i=1 ϕiPn(0, Ti)E

Ti
n

[[
w
(

I(Ti)
I(Ti−1)

−K
)]+∣∣∣Ft

]
.

(3.39)



Chapter 4

Calibration

The Jarrow-Yildirim model is defined through the eight parameters an,

ar, σn, σr, σI , ρnr, ρnI , ρrI ; until now we have not taken care about their

values, but when dealing with concrete problems as derivative pricing it is

necessary to know them. Calibration is the determination of reasonable val-

ues for the parameters of a model, where “reasonable” means that the prices

obtained with the model fit the real ones of the market as much as possible.

Thus, calibration reduces to a problem of minimization of the distance be-

tween market prices and model ones, where the distance should be defined

in line with one’s aims: the most used is the sum of the squares of the dif-

ferences (least square problem), but it can be modified in order to give more

importance to the precision on some prices than on others, for example mul-

tiplying the differences in the sum for opportune weights.

Calibration presents many difficulties. First of all, the minimization must be

done with all the parameters as variables: in our model, it implies that the

problem is set in R8. Moreover, the function to be minimized has not got

properties which guarantee the existence of only one point of minimum (it is

not convex), so usual numerical methods may fail. Finally, in the inflation

context the available market data are not so many, and this affects the pre-

cision of the results.

In this chapter we highlight the fundamental steps for calibration for the

39
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Jarrow-Yildirim model. Firstly we show what kind of data is really available

and how to use it; then we compare two different methods for the mini-

mization (Matlab lsqnonlin and the heuristic method differential evolution),

showing the results of some experiments.

4.1 Data and implementation

Calibration for the Jarrow-Yildirim model is usually done using market

data both about interest rates and concerning inflation-linked derivatives.

For example, calibration can be done on interest rates caps and floors and

on inflation-indexed caps and floors, and we will focus on this choice.

Interest rates caps and floors are contracts in which at any Ti of a set of dates

T = {T1, . . . , TM} a Call/Put on the simply-compounded spot interest rate

L 1 takes place: its discounted payoff is

M∑
i=1

D(t, Ti)Nϕi(w(L(Ti−1, Ti)−K))+

where K is the strike, N the notional and w is 1 for a cap, -1 for a floor. For

these contracts there exists the pricing formula (Black’s formula)

CapF loor(0, T , φ,K,N, σ1,M , w) = N

M∑
i=1

Pn(0, Ti)ϕiBl(K,F (0;Ti−1, Ti), vi, w)

(4.1)

where F is the one in definition (3.1), vi = σ1,M

√
Ti−1 and

Bl(K,F, v, w) = FwΦ(wd1(K,F, v))−KwΦ(wd2(K,F, v)),

d1(K,F, v) =
log( F

K
)+ v2

2

v
, d2(K,F, v) =

log( F
K

)− v
2

2

v
.

(4.2)

σ1,M is the volatility parameter on the chosen time interval, and it is available

on the market for ATM caps/floors, where “ATM” stands for “at the money”

1We remember that L(t, T ) = 1−P (t,T )
ϕ(t,T )P (t,T ) , where ϕ(t, T ) denotes the year fraction

between t and T .
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and means that the strike K is the one that makes the “corresponding”

interest rate swap fair at time 0:

K = S(0)1,M =
Pn(0, T1)− Pn(0, TM)∑M

i=2 ϕiPn(0, Ti)
. (4.3)

With ATM strikes the price of a cap equals the one of the corresponding floor,

so calibration is made on caps only. Summing up: in order to determine the

market price of interest rate caps (where the plural refers to the fact that

we deal with different maturities) we have to calculate the par strikes K

according to (4.3), and we need to know the market volatilities σ1,M , so that

we can apply formula (4.1). Of course, instead of doing this, we may directly

use the market prices of interest rate caps, if they are available.

For what concerns the model prices we can note that a caplet (one addend

of the sum in cap’s form) can be seen as a put on a bond, so that we can

use the pricing formula for that derivative in the Hull & White model. More

precisely:

Cplt(t, Ti−1, Ti, ϕi, K,N) = E
[
e−

∫ Ti
t rn(s)dsNϕi(L(Ti−1, Ti)−K)+|Ft

]
= NE

[
E
[
e−

∫ Ti−1
t rn(s)dse

−
∫ Ti
Ti−1

rn(s)ds
ϕi(L(Ti−1, Ti)−K)+|FTi−1

]
|Ft

]
= NE

[
e−

∫ Ti−1
t rn(s)dsPn(Ti−1, Ti)ϕi(L(Ti−1, Ti)−K)+|Ft

]
= NE

[
e−

∫ Ti−1
t rn(s)dsPn(Ti−1, Ti)

(
1

P (Ti−1,Ti)
− 1−Kϕi

)+|Ft

]
= NE

[
e−

∫ Ti−1
t rn(s)ds(1− (1 +Kϕi)Pn(Ti−1, Ti))

+|Ft

]
= N(1 +Kϕi)E

[
e−

∫ Ti−1
t rn(s)ds( 1

(1+Kϕi)
− Pn(Ti−1, Ti))

+|Ft

]
(4.4)

We now note that the last expression in (4.4) is the price of a put with

maturity Ti−1 on a Ti-zero-coupon bond with nominal value N ′ = N(1+Kϕi)

and strike K ′ = 1
(1+Kϕi)

:

Cplt(t, Ti−1, Ti, ϕi, K,N) = N ′ZBP (t, Ti−1, Ti, K
′). (4.5)

Thanks to this, the pricing of a caplet/floorlet reduces to the calculus of a
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zero-coupon bond put, and for what concerns interest rates our model is an

Hull & White (see (2.3.2)), so (1.32) holds. Joining that formula with (4.5)

we finally obtain the pricing formula for an interest-rate caplet in our model:

Cplt(t, Ti−1, Ti, ϕi, K,N) = −N ′Pn(t, Ti)Φ(−d′1) +N ′Pn(t, Ti−1)K ′Φ(−d′2)),

with N ′ = N(1 +Kϕi), K ′ = 1
(1+Kϕi)

,

d′1 = 1
σp

log
( Pn(t,Ti)
K′Pn(t,Ti−1)

)
+ 1

2
σp, d′2 = 1

σp
log
( Pn(t,Ti)
K′Pn(t,Ti−1)

)
− 1

2
σp,

σp = 1
an

(1− e−an(Ti−Ti−1))
√

σ2
n

2an
(1− e−2an(Ti−1−t)).

(4.6)

To conclude, the price of a cap is obviously obtained adding its caplets, which

are two each year.

Common tenors for interest rate caps are 3, 4, 5, 6, 7, 8, 9, 10, 15, 20 years.

We point out that nominal bond prices Pn(0, T ) are available on the market

but not for every T , so it could be necessary to interpolate them to the set

of dates of interest.

Let us now move to inflation-indexed caps and floors. Since market prices for

certain tenors are usually available, we only have to apply formula (3.38) in

order to calculate caplet/floorlet prices in our model, and then to sum over

the caplets, which in this case are one each year.

Take care that market prices often do not include the first caplet/floorlet,

since its value is known at the issuing instant; in that case, also model prices

must avoid to sum them. Moreover, since cap/floors with tenor=1 coincide

with first caplets/floorlets, they are not traded either, so in that circumstance

we should not calibrate on them.

Common tenors for inflation-indexed caps/floors are (1, 2, ) 3, 5, 7, 10, 12, 15,

20, 30 years, and common strikes are 0.01, 0.015, 0.02, 0.025, . . . , 0.03.

Remember that Pr(0, T ) values are obtained from the par strikes of zero-

coupon swaps through formula (3.6), and that an interpolation is often nec-

essary in order to have their values for every T in the set of caplet maturities.

To conclude this section we would like to point out that two types of price
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are available on the market, that is “BID” and “ASK”2; a way to deal with

this duality is to consider both prices making a linear combination between

the two (for example with weights (1
2
, 1

2
) if we have no reason to give pre-

dominance to one more than to the other).

4.2 Minimization

As already said, calibration consists in a minimization of the distance

between market and model prices. A first problem is that the parameters

must satisfy some constraints, first of all the fact that the covariance ma-

trix should be positive definite; in order to solve this problem, a change of

variable is suggested. For example, it is possible to make a sort of Cholesky

decomposition of the correlation matrix which works even if the constraint

is not satisfied, using Q-R decomposition3 of the product of the square root

of the eigenvalues for the eigenvectors matrix, and then taking the upper

triangular part of R. The result of this proceeding can be not real, so it is

necessary to get rid of the imaginary part, for example taking the absolute

value of the result (or simply taking the real part, but perhaps it is a too

rough method; another possibility is to take the absolute value but preserv-

ing the sign of the real part). Then, minimization must be done on the new

parameters (without constraints), and finally it will be necessary to come

back to the first ones, taking the transpose of the covariance matrix we have

obtained and multiplying it for the covariance matrix itself.

We now show two possible ways of performing the minimization.

2BID and ASK denote the best price of buying or selling respectively, which means

that for someone who wants to buy the ASK price is the most convenient, while for a

seller the BID one is the best.
3The Q-R decomposition of a matrix A gives Q orthogonal and R upper triangular

such that A=QR.
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4.2.1 Matlab lsqnonlin

The first way is to use function “lsqnonlin” of Matlab optimization tool-

box. It asks as input the vectorial function to be minimized (it provides to

sum the squares of the differences by itself) and the starting point for the

search. Options can be added in order to choose the algorithm and the tol-

erance.

This method meets quite difficulties in dealing with non-convex functions,

since it presents an high risk of finding a local minimum instead of the ab-

solute one. On the other hand, it is easy and quick, so it is possible to run

it many times with different starting points and to choose the best result.

4.2.2 Differential evolution

“Differential evolution” is a method which deals with populations of np

solutions: it means that at each iteration it carries np vectors whose length

is the number of variables on which we are minimizing (eight in our case).

The next population is obtained through random linear combinations: more

precisely, for each new solution three solution indices l1, l2, l3 are generated

(from a uniform distribution), and the corresponding vectors of the previous

population are combined as vl1 +Fvl2−Fvl3 , where F is a weight parameter.

Then another random number is generated from the uniform distribution in

[0,1], and only if it is less than a fixed “crossover” parameter CR the new

solution substitutes the previous one. At this point, if the function to be

minimized turns out to assume a smaller value with the new set of parame-

ters, the new solution is kept, otherwise the old one remains.

In this method, the numerosity of each population and the number of itera-

tions (that is, the number of populations) are to be decided at the beginning.

At the end, the best solution of the last population is chosen.

Such method has the quality of “jumping” randomly, so permitting to ex-

plore different regions and reducing the risk of focussing on a local minimum.

But even if it can quickly identify promising areas of the search space, then
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its convergence is only linear. To reduce this drawback, differential evolution

is frequently coupled with local searches involving a single solution. In this

case, firstly it is to decide when to make the local search; it is possible to

perform it not for every population but only periodically. Then the starting

solutions have to be chosen: for example, we can take the best three ones

in the current population, or the best one and other two ones which are

determined randomly (but also the number three is just an example). At

this point, from each of these solutions a local search is started: a typical

function which is suitable for this aim is Matlab “minsearch”, which is based

on Nelder and Mead algorithm.

4.2.3 Examples and results

In this section we present the results of some calibrations performed on

a set of data with the two different methods; in both cases we minimize the

percentage differences between market and model prices of interest rate caps

and inflation-indexed caps and floors (including the ones with one year as

tenor): if Xk, k ∈ {mk, m}, is the price at time 0 of a derivative on the

market (k = mk) or in the model (k = m), the vector we want to minimize

is Xm−Xmk
Xmk

.

First of all let us sum up the market data.

These are the prices of nominal T-bonds at time 0 for T = 1, 2, . . . , 29:

Pn = (1; 0, 999862; 0, 999329; 0, 998383; 0, 997332; 0, 996128;

0, 994764; 0, 993209; 0, 983567; 0, 972189; 0, 959461;

0, 931639; 0, 901994; 0, 870120; 0, 836433; 0, 803523;

0, 771517; 0, 740070; 0, 709119; 0, 678481; 0, 648315;

0, 568554; 0, 462336; 0, 391743; 0, 342419; 0, 302396;

0, 264317; 0, 229523; 0, 198594).
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The swap rates we use to calculate the real T-bonds for tenors 1, 2, 3, 4, 5, 6, 7, 8,

9, 10, 12, 15, 20, 30 are

K = ( 0, 02285; 0, 02070; 0, 02090; 0, 02120; 0, 02160; 0, 02180; 0, 02190;

0, 02210; 0, 02235; 0, 02250; 0, 02297; 0, 02334; 0, 02372; 0, 02489).

Market volatilities for interest rate caps with tenors (3, 4, 5, 6, 7, 8, 9, 10, 15, 20)

are

σ = (0, 3610; 0, 3481; 0, 3313; 0, 3147; 0, 2997; 0, 2874; 0, 2766; 0, 2670; 0, 2321; 0, 2200).

Finally, market prices for inflation-indexed caps and floors are the following

(T stands for tenor, S for strike):

H
HHHT

S
0.01 0.015 0.02 0.025 0.03

1 0,012825 0,008632 0,005057 0,002448 0,000964

2 0,025500 0,017930 0,011516 0,006690 0,004009

3 0,040197 0,029368 0,020118 0,012947 0,008042

5 0,073879 0,056779 0,041926 0,029948 0,021108

7 0,109447 0,086630 0,066608 0,050092 0,03740

10 0,161572 0,130978 0,103890 0,081139 0,06312

12 0,193569 0,158216 0,126807 0,100263 0,079038

15 0,237421 0,195428 0,157970 0,126126 0,100475

20 0,298752 0,247006 0,200662 0,161126 0,129244

30 0,399418 0,331416 0,269965 0,217097 0,17437

Table 4.1: Inflation-Indexed Caps

H
HHHT

S
0.01 0.015 0.02 0.025 0.03

1 0,000838 0,001557 0,002895 0,005200 0,008628

2 0,004103 0,006232 0,010360 0,0143900 0,021013

3 0,008726 0,011000 0,017330 0,0245000 0,033937

5 0,021154 0,027206 0,035505 0,0466790 0,060989

7 0,034749 0,043229 0,054504 0,069285 0,087891

10 0,056108 0,067824 0,083047 0,102606 0,126898

12 0,069196 0,082725 0,100199 0,122537 0,150194

15 0,086369 0,102058 0,122281 0,148118 0,180148

20 0,110190 0,128503 0,152219 0,182743 0,220920

30 0,144429 0,165697 0,193516 0,229918 0,276462

Table 4.2: Inflation-Indexed Floors

If we use Matlab lsqnonlin with a random starting point, mainly two things
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can happen: it can find the true solution, or the maximum number of itera-

tions is reached (we set it to 501). The positive aspects of this method is

that it is quick, so we can launch it several times and keep the best solution.

Through lsqnonlin options we have chosen levenberg-marquardt method.

With our data and a tolerance of 10−9 some of the possible results are the

following ones (we report the set of parameters, the error in terms of the

mean of the absolute values of the percentage differences, and the number of

iterations):

solution: (an, ar, σn, σr, σI , ρnr, ρnI , ρrI) error iter

(0.0562, 0.1551 , 0.0108, 0.0056, 0.0163, -1.0000, -1.0000, 1.0000) 0.0528 60

(0.0562, 0.1551 , 0.0108, 0.0056, 0.0163, -1.0000, -1.0000, 1.0000) 0.0528 66

(0.1344, 0.1192, 0.0119, 0.0286, 0.0167 , 1.0000 , 1.0000 , 1.0000) 0.0980 501

(0.1367, 0.1047 , 0.0118 , 0.0272 , 0.0164 , 1.0000, 1.0000 , 1.0000 ) 0.1022 501

(0.0561 , 0.1550 , 0.0108, 0.0056 , 0.0163, -1.0000, -1.0000 , 1.0000) 0.0528 57

(0.0562, 0.1550 , 0.0108, 0.0056, 0.0163, -1.0000, -1.0000, 1.0000) 0.0528 51

Table 4.3: Calibration results: lsqnonlin

We note that when 501 iterations are reached the error is big; in the other

cases instead the result is good, in fact it is around 0.05; the tolerance we

have chosen is already very small, so that reducing its value does not give

better solutions.

Differential evolution is a bit less quick than lsqnonlin, but anyway it gives

the result in a few minutes; its greatest quality is that it always reaches a

good solution. Here are some examples of results, obtained with populations

of 150 individuals, 50 iterations, F = 0.6, CR = 0.9, and performing a local

search with minsearch every five iterations:

In the last column we report the maximum number of function evaluations:

we see that it does not affect the validity of the results, which are in fact all

satisfactory, with an error around 0.05 also in this case.

In this context we reported just a few examples, but we can conclude that
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solution: (an, ar, σn, σr, σI , ρnr, ρnI , ρrI) error max eval

(0.0498, 0.2324, 0.0108, 0.0080, 0.0142, -0.8669, -0.9775, 0.8869) 0.0505 200

(0.0521, 0.2357, 0.0109, 0.0070, 0.0850, -0.9964, -0.1515, 0.0675) 0.0506 200

(0.0523, 0.2619, 0.0109, 0.0074, 0.3439, -0.9943, -0.0048, -0.1014) 0.0516 200

(0.0521, 0.2357 , 0.0109, 0.0070, 0.0850, -0.9964, -0.1515, 0.0675) 0.0506 200

(0.0498, 0.2553, 0.0108, 0.0082, 0.0425, -0.8851, -0.1039, -0.3684) 0.0513 200

(0.0499 , 0.2458 , 0.0108, 0.0072, 0.0130, -0.9987, -0.8422, 0.8336) 0.0507 200

(0.0498 , 0.2362, 0.0108, 0.0077, 0.0373, -0.9150, -0.4036, 0.0001) 0.0504 300

(0.0498, 0.2414, 0.0108, 0.0088, 9.2718, -0.8131, -0.0015, -0.5809) 0.0505 500

(0.0498, 0.2273, 0.0108, 0.0078, 0.0339, -0.8755, -0.3861, 0.7799) 0.0506 500

Table 4.4: Calibration results: differential evolution

both methods work well; the second one is more reliable and gives errors

which are a bit lower, while the first one is quicker.



Chapter 5

Monte Carlo method

Not every contract can be priced with an explicit formula as the ones we

obtained in the previous sections; derivatives in fact can have complicated

payoffs so that the expectation of their discounted values cannot be easily

calculated. In those cases a good way to determine the price of the contract

can be to perform Monte Carlo simulation, that is to generate the discounted

payoff, according to its distribution, a high number of times, and then to

make a mean of the obtained values. Of course this method is not exact,

but when the number of simulations goes to infinity it converges to the true

result.

In the following paragraph we briefly give some more explanations about this

method.

5.1 Theory

The Monte Carlo method is a numerical method which allows to calculate

the expected value of a random variable whose distribution is known. It is

based on probabilistic results, in particular on the Law of Large Numbers:

Theorem 5.1.1 (Law on Large Numbers (strong version)). Let (Xn)

be a sequence of i.i.d. random variables with E[X1] < +∞. If we define

49
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Mn =
∑n
i=1Xi
n

, then

Mn −−−−→
n→+∞

E[X1] a.s. (5.1)

This theorem tells that if we are able to generate many realizations

X1, X2, . . . , Xn of the random variable X in an independent way, then we

can almost surely use their mean Mn as an approximation of E[X]; in order

to estimate the error we make using this procedure, we recall the following

result:

Proposition 5.1.2 (Markov inequality). Let X be a real random variable,

λ ∈ R, 1 ≤ p < +∞. Then

P (|X − E[X]| ≥ λ) ≤ var[X]

λ2
. (5.2)

If we apply this proposition with X = Mn (noting that E[Mn] = µ) we

obtain

P (|Mn − µ]| ≥ ε) ≤ var[Mn]

ε2
=

1

n2ε2

n∑
i=1

var[Xi] =
nvar[X1]

n2ε2
=

var[X1]

nε2

(5.3)

where we have used the independence of the generations Xi, i = 1, . . . , n

(thus the variance of their sum is the sum of their variances), and the fact

that they are identically distributed (so the variances are all equal to var[X1]).

Note that the result of the Monte Carlo method are not numbers but random

variables, as the proceeding is based on random generations. Anyway, (5.3)

gives an objective estimation of the probability of finding a result whose

distance from the true one is greater then a certain ε, showing that it depends

on the number of realizations n, on the approximation error ε we have chosen

and on the variance of the generated variable. In line with Theorem 5.1.1,

with n tending to infinity the probability of obtaining a bad result (where

the “badness” is fixed by ε) tends to zero; what is interesting to note is that

if X has a big variance, the upper bound for the probability is greater (this

fact is evident, as a big variance allows the generations to distribute more

widely around the mean).
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An important property of the Monte Carlo method is the independence of the

error from the dimension of the problem. To explain this, we recall another

important asymptotic result:

Theorem 5.1.3 (Central limit theorem). Let (Xn) be a sequence of i.i.d.

random variables with σ2 = var[X1] < +∞. If we define µ = E[X1],

Mn =
∑n
i=1Xi
n

and Yn =
√
n(Mn−µ

σ
), then

Yn
d−−−−→

n→+∞
Z, Z ∼ N (0, 1) (5.4)

where the letter “d” over the arrow of limit indicates convergence in distri-

bution1; in particular

P (Yn ≤ x) −−−−→
n→+∞

Φ(x) ∀x ∈ R (5.5)

where Φ is the standard normal distribution function2.

Since in our case the hypothesis of Theorem 5.1.3 hold, from (5.5) we

derive that (for n→ +∞) we asymptotically have

Q
(√

n
(Mn − µ

σ

)
≤ x

)
≈ Φ(x) ∀x ∈ R

so

Q
(
Mn ∈

[
µ− σx√

n
, µ+

σx√
n

])
≈ p, p = 2Φ(x)− 1. (5.6)

Let us now fix p ∈]0, 1[, which means we establish that we want a probabilistic

error inferior to 1− p; then, which is the error of the solution obtained with

Monte Carlo? If we call ε the distance between Mn, which is our Monte

Carlo result, and the mean µ, which is the true value, from (5.6) we have

Q(Mn ∈ [µ− ε, µ+ ε]) ≈ p, p = 2Φ
(√nε

σ

)
− 1

1A sequence of random variables (Xn) converges “in distribution” (or “in law”) to a

random variable X if the sequence of the corresponding distributions weakly converges to

the distribution of X.

2Φ(x) = 1√
2π

∫ x
−∞ e−

x2

2 dx.
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from which

ε =
σ√
n

Φ−1
(p+ 1

2

)
. (5.7)

This result shows that the error decreases with 1√
n
, and it is independent

from the dimension of the problem.

We can interpret (5.7) in the following way: if we fix a probability p, with

that degree of certainty the true result will stay in the interval[
Mn − z

σ√
n
,Mn + z

σ√
n

]
with z = Φ−1

(p+ 1

2

)
.

The estimate of z is possible thanks to the tables which give the values of

Φ−1 for certain arguments. Here we report the values of z correspondent to

some of the most used confidence levels:

p = 2Φ(z)− 1 z

99% 2.58

98% 2.33

95% 1.96

90% 1.65

Table 5.1: Confidence levels

For example, if we fix p = 99%, the true result will stay in the window[
Mn − 2.58 σ√

n
,Mn + 2.58 σ√

n

]
with probability p = 99%.

Most of times the standard deviation σ of the variables we are generating is

unknown; in those cases, in order to estimate Monte Carlo window, we can

approximate σ with the sample standard deviation

σ̂n =

√∑n
i=1 X(i)2

n
−
(∑n

i=1 X(i)

n

)2

which is known, as the X(i)s are our generations, and the second term under

the square root is M2
n. Thus, we can estimate Monte Carlo window with[

Mn − z
σ̂n√
n
,Mn + z

σ̂n√
n

]
with z = Φ−1

(p+ 1

2

)
.
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One of the few drawbacks of the Monte Carlo method is that it is almost

impossible to have completely independent generations of the random vari-

able: since we need a great number of realizations, we must use a calculator,

which can only work following algorithms, thus giving results which are only

pseudo-random. The error due to the non-independence of the generations

cannot be easily estimated, but if the generator works well the method can

be applied and gives good results anyway.

5.2 Example: IICap

The Monte Carlo method is useful when we want to calculate the value

of a derivative for which an explicit pricing formula is not available. Here

instead we give a short explanation about how Monte Carlo can be imple-

mented for the pricing on an inflation-indexed cap: since we have already

derived the formula for it (in Section 3.3), this chapter has the aim of show-

ing a possible way to apply the method, and the results can be compared

with the exact ones to check the validity of the procedure. Moreover, some

of the calculations we will make have general interest and can be used for

the pricing of other derivatives, too. For a “real” application of the Monte

Carlo method, see the Example in Section 6.3.

As a cap is simply the sum of caplets, we focus on a single caplet. According

to the second line of (3.27), we have to calculate

Nϕi

[
w
( I(Ti)

I(Ti−1)
− 1− k

)]+

, (5.8)

under the forward measure with numeraire Pn(·, Ti). From Section 3.3, we

know that

I(Ti)

I(Ti−1)
= e

∫ Ti
Ti−1

(rn(s)−rr(s))ds− 1
2
σ2
I (T−t)+σI(WI(Ti)−WI(Ti−1))

. (5.9)

To perform Monte Carlo, we can thus simulate (5.8) many times and finally

take the mean. To do this, the processes we have to generate are three:
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∫ Ti
Ti−1

rn(s)ds,
∫ Ti
Ti−1

rr(s)ds and (WI(Ti) − WI(Ti−1)). According to Section

3.3, their joint distribution is a tridimensional normal. In order to calculate

the moments of this distribution, let us remember that if we have a generic

Hull & White interest rate process r

dr(t) = (h(t)− ar(t))dt+ σdW (t)

where h is a deterministic function, and a > 0 and σ are constants, recalling

the computations made in Section 1.2 and in particular equation (1.31), we

know that r(t) = x(t) + φ(t) with∫ T

0

φ(s)ds =
V (T )

2
− log(P ∗(0, T )) (5.10)

with V (T ) = σ2
∫ T

0
(B(u, T ))2du. We note that the explicit dynamics of the

processes are always written with respect to a starting point in an initial

time s (see (2.3.2)); in this context we always take s = 0, because we are

calculating the price of the caplet at time 0, so we are conditioned to F0.

This allows to make only one generation of the processes, directly in the

interval of interest (other choices for s would require us to know the value of

the process at time s, often forcing us to make a first generation from 0 to s,

and then another from s to the instant of interest: see Example in Section

6.3). Now, if we consider the dynamics of rn and rr in (2.3.2), we see that

under the martingale measure Q both rates follow Hull & White dynamics

of the type (1.25), so for k = n, r we have∫ Ti

Ti−1

rk(s)ds =

∫ Ti

Ti−1

(xk(s) + φk(s))ds. (5.11)

Let us now consider the two addends separately. The first one is

∫ Ti
Ti−1

xk(s)ds =
∫ Ti
Ti−1

e−aksσk
∫ s

0
eakudWk(u)ds =

σk
∫ Ti−1

0
eakudWk(u)

∫ Ti
Ti−1

e−aksds+ σk
∫ Ti
Ti−1

e−aks
∫ s
Ti−1

eakudWk(u)ds =

σk
∫ Ti−1

0
eakudWk(u)

∫ Ti
Ti−1

e−aksds+ σk
∫ Ti
Ti−1

eaku
∫ Ti
u
e−aksds dWk(u),
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which has normal distribution with zero mean and variance equal to the va-

riance of the whole
∫ Ti
Ti−1

rk(s)ds, which we have already computed in Section

3.3 and is given in (3.34), (3.35) and (3.36).

The second addend of (5.11) is∫ Ti

Ti−1

φk(s)ds =

∫ Ti

0

φk(s)ds−
∫ Ti−1

0

φk(s)ds.

Accordingly to (5.10) and keeping in mind the definition of B in (1.19) and

adding to it the parameter a as a subscript, for k = n we have∫ Ti
Ti−1

φn(s)ds = Vn(Ti)
2
− log(P ∗n(0, Ti))− Vn(Ti−1)

2
+ log(P ∗n(0, Ti−1)) =

log P ∗n(0,Ti−1)
P ∗n(0,Ti)

+ σ2
n

2

( ∫ Ti
0
B(u, Ti)

2du−
∫ Ti−1

0
B(u, Ti−1)2du

)
=

log P ∗n(0,Ti−1)
P ∗n(0,Ti)

+ σ2
n

2a2n
(Ti − 2Ban(0, Ti) +B2an(0, Ti)− Ti−1 + 2Ban(0, Ti−1)−B2an(0, Ti−1)).

(5.12)

For k = r it is enough to remember Proposition 2.3.2 and note that, taking

s = 0, rr(t) has the form as rn(t) (with all the subscripts r instead of n) plus

the addend −ρrIσrσI
∫ t

0
ear(u−t)du; so

∫ Ti
Ti−1

φr(s)ds will be of the same form

of
∫ Ti
Ti−1

φr(s)ds (with all the subscripts r instead of n), plus the addend

−ρrIσrσI
∫ Ti
Ti−1

∫ s
0
ear(u−s)du ds = −ρrIσrσI

ar

∫ Ti
Ti−1

(1− e−ars)ds

= −ρrIσrσI
ar

(
Ti − Ti−1 − e−arTi−1

ar
(1− e−ar(Ti−Ti−1))

)
= −ρrIσrσI

ar

(
Ti − Ti−1 − e−arTi−1Bar(Ti−1, Ti)

)
.

Summing up3:∫ Ti
Ti−1

φr(s)ds = log P ∗r (0,Ti−1)
P ∗r (0,Ti)

− ρrIσrσI
ar

(
Ti − Ti−1 − e−arTi−1Bar(Ti−1, Ti)

)
+ σ2

r

2a2r
(Ti − 2Bar(0, Ti) +B2ar(0, Ti)− Ti−1 + 2Bar(0, Ti−1)−B2ar(0, Ti−1)).

(5.13)

Let us finally note that

E[
∫ Ti
Ti−1

rk(s)ds] =
∫ Ti
Ti−1

φk(s)ds, k = n, r;

E[σI(WI(Ti)−WI(Ti−1))] = 0.

3Note that Pr(0, Ti−1) and Pr(0, Ti) do not bring any correction term since

Pr(t, T ) = Er
[
e−

∫ T
t
rr(s)ds

∣∣Ft

]
and for the foreign currency analogy the dynamics of rr

under Qr are of the same form of the ones of rn under Q (see (2.14)).
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We thus have the means of the three processes we want to generate, when

they are expressed under the martingale measure Q.

Now, in the same way we did in Section 3.2, the change of numeraire from

Bn to Pn(·, Ti) gives

dWn(t) = dW Ti
n (t)− σnBn(t, Ti)dt

dWr(t) = dW Ti
r (t)− ρnrσnBn(t, Ti)dt

dWI(t) = dW Ti
I (t)− ρnIσnBn(t, Ti)dt

(5.14)

so that the dynamics of rn, rr and WI(Ti)−WI(Ti−1) must be modified with

opportune additive terms in the drift, which lead to additive terms in the

means of our three processes. Precisely:

◦ rn(t) has the additional addend−σ2
n

∫ t
0
e−an(t−u)Bn(u, Ti) du, so

∫ Ti
Ti−1

rn(s) ds

has the additional addend

−σ2
n

∫ Ti
Ti−1

( ∫ t
0
e−an(t−u)Bn(u, Ti)du

)
dt

= −σ2
n

an

∫ Ti
Ti−1

( ∫ t
0
(e−an(t−u) − e−an(Ti+t−2u))du

)
dt

= −σ2
n

an

∫ Ti
Ti−1

(
1
an
− e−an(Ti−t)

2an
− e−ant

an
+ e−an(Ti+t)

2an

)
dt

= −σ2
n

a2n

(
Ti − Ti−1 − 1

2
Bn(Ti−1, Ti)− e−anTi−1Bn(Ti−1, Ti)− e−2anTi

2
Bn(Ti, Ti−1)

)
.

(5.15)

◦ rr(t) has the additional addend−σnσrρnr
∫ t

0
e−ar(t−u)Bn(u, Ti)du, so

∫ Ti
Ti−1

rr(s)ds

has the additional addend

−σnσrρnr
∫ Ti
Ti−1

( ∫ t
0
e−ar(t−u)Bn(u, Ti)du

)
dt

= −σnσrρnr
an

∫ Ti
Ti−1

( ∫ t
0
(e−ar(t−u) − e−ar(t−u)−an(Ti−u))du

)
dt

= −σnσrρnr
an

∫ Ti
Ti−1

(
1
ar
− e−an(Ti−t)

an+ar
− e−art

ar
+ e−art−anTi)

an+ar

)
dt

= −σnσrρnr
an

(
Ti−Ti−1

ar
− 1

an(an+ar)
+ e−an(Ti−Ti−1)

an(an+ar)
+ e−arTi

a2r
− e−arTi−1

a2r

− e−arTi−anTi
ar(an+ar)

+ e−arTi−1−anTi

ar(an+ar)

)
= −σnσrρnr

an

(
Ti−Ti−1

ar
− 1

an+ar
Bn(Ti−1, Ti) + e−arTi−1Br(Ti−1, Ti)(

e−anTi
an+ar

− 1
ar

)
)
.

(5.16)
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◦ WI(Ti)−WI(Ti−1) has the additional addend

−σnσIρnI
∫ Ti

Ti−1

Bn(t, Ti)dt = −σnσIρnI
an

(Ti − Ti−1 −Bn(Ti−1, Ti)). (5.17)

These three deterministic addends only affect the means of the three pro-

cesses so they can be simply added after the generation. This way of working

gives us, with only one generation, the processes both under risk-neutral and

under forward measure (in this context we are interested only in the second

ones).

Let us now consider the variances and covariances of the three processes

we want to generate.

First of all,

var[σI(WI(Ti)−WI(Ti−1))] = σ2
I (Ti − Ti−1).

The variances of the two integrals and the covariances between the three

processes have already been calculated in Section 3.34 and are contained

respectively in the first four lines of formula (3.37):

var
[ ∫ Ti

Ti−1
rk(s)ds

]
=

σ2
k

a2k

{
Ti − Ti−1 − e−2ak(Ti−Ti−1)

2ak
+ 2 e

−ak(Ti−Ti−1)

ak
− 3

2ak

}
+

σ2
k

2a3k
(1− e−ak(Ti−Ti−1)

)2
(1− e−2ak(Ti−1−t)

)
;

(5.18)

and in the last four ones:

cov
[ ∫ Ti

Ti−1
rn(s)ds,

∫ Ti
Ti−1

rr(s)ds
]

=

ρnrσnσr
anar(an+ar)

(1− e−an(Ti−Ti−1))(1− e−ar(Ti−Ti−1))(1− e−(an+ar)(Ti−1−t))

+ρnrσnσr
anar

{
Ti − Ti−1 − 1−e−an(Ti−Ti−1)

an
− 1−e−ar(Ti−Ti−1)

ar
+ 1−e−(an+ar)(Ti−Ti−1)

an+ar

}
;

(5.19)

cov
[ ∫ Ti

Ti−1

rk(s)ds, σI(WI(Ti)−WI(Ti−1))
]

=
ρkIσkσI
ak

{
Ti−Ti−1−

1− e−ak(Ti−Ti−1)

ak

}
.

(5.20)

4Remember that a change of measure does only affect the drifts, so it has no influence

on variances and covariances.
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It is thus possible to generate the three processes, calculate (5.9) and conse-

quently (5.8).

Under the forward measure the discount factor is the nominal T-bond; pre-

cisely, in this case we need Pn(0, Ti), which is known from market data.

Summing up: we can generate the processes
∫ Ti
Ti−1

rn(s)ds,
∫ Ti
Ti−1

rr(s)ds and

WI(Ti)−WI(Ti−1) under the risk-neutral measure as a tridimensional normal

with mean

[log P ∗n(0,Ti−1)
P ∗n(0,Ti)

+ σ2
n

2a2n
(Ti − 2Ban(0, Ti) +B2an(0, Ti)− Ti−1 + 2Ban(0, Ti−1)−B2an(0, Ti−1);

log P ∗r (0,Ti−1)
P ∗r (0,Ti)

− ρrIσrσI
ar

(
Ti − Ti−1 − e−arTi−1Bar(Ti−1, Ti)

)
σ2
r

2a2r
(Ti − 2Bar(0, Ti) +B2ar(0, Ti)− Ti−1 + 2Bar(0, Ti−1)−B2ar(0, Ti−1); 0]

and covariance matrix(
var

[ ∫ Ti
Ti−1

rn(s)ds
]

cov
[ ∫ Ti

Ti−1
rn(s)ds,

∫ Ti
Ti−1

rr(s)ds
]

cov
[ ∫ Ti

Ti−1
rn(s)ds, WI (Ti)−WI (Ti−1)

]
cov

[ ∫ Ti
Ti−1

rn(s)ds,
∫ Ti
Ti−1

rr(s)ds] var
[ ∫ Ti

Ti−1
rr(s)ds

]
cov

[ ∫ Ti
Ti−1

rr(s)ds, WI (Ti)−WI (Ti−1)
]

cov
[ ∫ Ti

Ti−1
rn(s)ds, WI (Ti)−WI (Ti−1)

]
cov

[ ∫ Ti
Ti−1

rr(s)ds, WI (Ti)−WI (Ti−1)
]

var
[
WI (Ti)−WI (Ti−1)

]
)

whose elements are defined in (5.18), (5.19) and (5.20); then, in order to

obtain the values of the processes under the measure with numeraire Pn(·, Ti),
we must add to the three processes the terms in (5.15), (5.16) and (5.17)

respectively. Thus, we can assembly I(Ti)
I(Ti−1)

using its expression in (5.9), and

calculate the payoff in (5.8). Finally, we discount from time Ti to time 0

with Pn(0, Ti), obtaining one price of the caplet; the mean of the results

obtained performing this procedure a great number of times (i.e: making a

lot of generations of the three processes) is Monte Carlo result.



Chapter 6

Credit risk

A very important matter, especially in recent days, is credit risk, that is

the risk associated with the possibility of bankruptcy. More precisely: if a

derivative provides for a payment at a certain time T but before that time

the counterparty defaults, at maturity the payment cannot be effectively per-

formed, so the owner of the contract loses it entirely, or a part of it (actually,

a recovery is often given). It means that the payoff of the derivative, and

consequently its price, depends on the risk of bankruptcy of the counterparty.

6.1 Default

The standard way to model the counterparty risk of bankruptcy is to

introduce the default time τ : it is a stopping time1 which represents the

instant in which the counterparty goes bankrupt.

Default time is introduced because it gives information which is not con-

tained in the usual filtration (Ft) (which only deals with the behaviour of

the underlyings). It means that if we want a filtration which provides for the

whole flow of information, we should introduce

Gt = Ft ∨ σ({τ < u}, u ≤ t) (6.1)

1A random variable τ : Ω → [0,+∞] is a stopping time with respect to the filtration

(Ft) if {τ ≤ t} ∈ Ft ∀t ≥ 0.
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which describes the default-free market variables up to t (filtration Ft)

and tells whether default occurred before t and, in that case, when exactly

(σ-algebra (σ({τ ≤ u}, u ≤ t)).

Thus, taking care of the credit risk of the counterparty, the price at time t

of a derivative with payoff X and maturity T is given by

E[1{τ>T}X|Gt]. (6.2)

In order to calculate this, it is necessary to know how to deal with default

time and the new filtration. The following proposition shows how to express

(6.2) in terms of (Ft) instead of (Gt):

Proposition 6.1.1 (Filtration switching formula). Let X be a G∞-measurable

payoff, and Gt the filtration in (6.1). So the following holds:

E[1{τ>T}X|Gt] =
1{τ>t}

Q[τ > t|Ft]
E[1{τ>T}X|Ft]. (6.3)

Proof. Obviously

E[1{τ>T}X|Gt] = E[1{τ>t}1{τ>T}X|Gt] =

1{τ>t}E[1{τ>T}X|Gt] = 1{τ>t}E[1{τ>T}X|Ft ∨ σ({τ ≤ u}, u ≤ t)].

(6.4)

Now, 1{τ>T}X gives zero if τ < t, so the only useful information about default

contained in σ({τ ≤ u}, u ≤ t) is whether τ ≥ t; thus, (6.4) is equal to

1{τ>t}E[1{τ>T}X|Ft ∨ τ ≥ t]. (6.5)

Moreover, we recall that for any expectation E, random variable Y and event

A

E[Y |A] =
E[Y 1A]

P [A]
,

so that, taking E[·] = E[·|Ft], (6.5) becomes

1{τ>t}

Q[τ > t|Ft]
E[1{τ>t}1{τ>T}X|Ft] =

1{τ>t}

Q[τ > t|Ft]
E[1{τ>T}X|Ft].

A common hypothesis is the independence of τ from all the other com-

ponents of the market, and we will assume it too.
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6.2 Defaultable zero-coupon bonds

Definition 6.1 (Defaultable zero-coupon bonds). A defaultable zero-

coupon bond P d is a contract which gives 1 at maturity T if the issuing

company does not default before T , zero in the other case.

Indicating with τ the default time variable, we give sense to P d(t, T ) only

in the case τ > t. So, the following holds:

P d(t, T ) = E[e−
∫ T
t rn(s)ds1{τ>T}|Gt]

which for t = 0 becomes

P d(0, T ) = E[e−
∫ T
0 rn(s)ds1{τ>T}]

and thanks to the assumption of independence of τ from (Ft)

= E[e−
∫ T
0 rn(s)ds]E[1{τ>T}] = Pn(0, T )Q(τ > T ).

Summing up:

P d(0, T ) = Pn(0, T )Q(τ > T ). (6.6)

In practice, a defaultable zero-coupon bond is a nominal bond multiplied by

a factor, less or equal then one, which takes care of the risk of default of the

issuer.

If we now want the price at time 0 of a defaultable derivative Xd with ma-

turity T and default-free payoff XT , we have

E[e−
∫ T
0 rn(s)dsXT1{τ>T}]

and thanks to the independence of τ from X, r and (Ft)

= E[e−
∫ T
0 rn(s)dsXT ]Q(τ > T ); (6.7)

using (6.6) and indicatig with X0 the price at time 0 of the derivative without

considering the default risk, (6.7) becomes

= X0
P d(0, T )

Pn(0, T )
.
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Summing up:

Xd
0 = X0

P d(0, T )

Pn(0, T )
. (6.8)

More generally, if we want the price at time t, for Proposition 6.1.1 we have

E[e−
∫ T
0 rn(s)dsXT1{τ>T}|Gt] =

1{τ>t}

Q[τ > t|Ft]
E[e−

∫ T
0 rn(s)ds1{τ>T}XT |Ft]

which, thanks to the independence of τ from X, r and (Ft), is equal to

=
1{τ>t}

Q[τ > t]
E[1{τ>T}]E[e−

∫ T
0 rn(s)dsXT |Ft] =

1{τ>t}

Q[τ > t]
Q[τ > T ]Xt =

using (6.6)

1{τ>t}
Pn(0, t)

P d(0, t)

P d(0, T )

Pn(0, T )
Xt.

Summing up:

Xd
t = 1{τ>t}Xt

Pn(0, t)P d(0, T )

Pn(0, T )P d(0, t)
. (6.9)

Note that, in order to obtain these results, we have not assumed a spe-

cific distribution for τ .

If the values of the Spanish T-bonds P d(0, T ) are not available, in order

to compute them it is common to use the Z-spread zs, which is the value to

be added to the yield rate Y for the calculus of the bonds2 and is available

on the market; more precisely, the following holds:

P d(0, T )(1 + Y + zs)T = 1.

2P (0, T )(1 + Y )T = 1.
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6.3 Example

Let us consider a defaultable inflation-linked derivative issued on T0 with

maturity T1 unless an extension event occurs, in which case the maturity is

T2. The counterparty with risk of default is Spain. The underlying is the

Inflation index, with which the “inflation participation” is defined:

IP (T1, T2) =

(
I(T2)− I(T1)

I(T1)

)+

=

(
I(T2)

I(T1)
− 1

)+

.

The contract pays the minimum between:

◦ 1 in T1 if Spain has not defaulted before T1 (and zero in case of early

default);

◦ 1 + IP (T1, T2) in T2 if Spain has not defaulted before T2 (and zero in case

of early default).

In order to price it, in T1 a comparison should be made between 1 and the

value of 1+IP (T1, T2) discounted from T2 to T1 and taking care of the default

risk between T1 and T2: if 1 is the minimum between these two quantities,

the contract ends in T1 and corresponds to a Spanish T1-bond, i.e. a T1-bond

with the risk of Spanish default; in the other case, the extension takes place,

the contract ends in T2 and its price is the one of 1 + IP (T1, T2), calculated

in T0 and considering the risk of Spanish default between T0 and T2.

The present value of the Spanish Z-spread is 0.022.

We will consider a notional value N = 1 (if N 6= 1, it will be enough to

multiply the price for N).

Let us price this contract in two different ways.

6.3.1 Under risk neutral measure

Working under the risk neutral measure, it is possible to generate many

times all the processes of interest (including the discount factors) at time T1

and T2; then, for any generation we can check the extension condition in T1,

and find the price of the derivative opportunely discounting the payoff from

T1 or T2 to T0 and taking a mean over the generations (Monte Carlo).
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The things it is important to take in mind are that:

-since the contract provides for the check of the extension condition being at

time T1, the generation of the processes in T2 should be made taking T1 as a

starting point;

-starting from each of the m1 generations of the processes in T1, m2 genera-

tions of the processes in T2 should be made, and their mean is taken: in this

way, Monte Carlo is performed two times, and the scheme of the generations

appears as a tree with m1 principal branches and mm2
1 secondary ones.

For simplicity, performing a shift in time we will take T0 = 0.

Let us now see the dynamics of the processes we must generate. We need to

know the nominal discount factors from T1 to T0 and from T2 to T1, and the

ratio of the inflation indices

I(T2)/I(T1) = e
∫ T2
T1

(rn(s)−rr(s))ds− 1
2
σ2
I (T2−T1)+σI(WI(T2)−WI(T1)) (6.10)

(see (2.13)).

Splitting r in α (deterministic) and x (stochastic) as (1.26), for t < s we have

(see (1.27) )

x(s) = e−a(s−t)x(t) + σ

∫ s

t

e−a(s−u)dW (u), x(0) = 0 (6.11)

which means that x(s) is normally distributed with mean e−a(s−t)x(t) and

variance

var[x(s)] = σ2

∫ t

s

e−2a(t−u)du = σ2B(2a, t− s)

and this holds both for the nominal and the real case. Working as we did in

Section 1.2 to obtain (1.29) and (1.30), we have that the price at time t1 of

a nominal t2-bond knowing the information up to t ≤ t1 ≤ t2 is:

Pn(t, t1, t2) = E[e−
∫ t2
t1
rn(s)ds|Ft] =

thanks to (1.28)

E

[
e−

∫ t2
t1
φn(s)ds−xn(t)

∫ t2
t1
e−an(s−t)ds−σn

∫ t2
t1
e−an(s−t)(

∫ s
t e

an(u−t)dWn(u))ds|Ft

]



6.3 Example 65

where, keeping in mind the definition of B in (1.19), the last double integral

in the exponent is equal to∫ t2
t1

(
∫ s
t
ean(u−s)dWn(u))ds =

∫ t1
t

(
∫ t2
t1
ean(u−s)ds)dWn(u) +

∫ t2
t1

(
∫ s
t1
ean(u−s)dWn(u))ds

=
∫ t1
t
ea(u−t1)Ban(t1, t2)dWn(u) +

∫ t2
t1
Ban(u, t2)dWn(u)

(6.12)

so that Pn(t, t1, t2) = E[eH(t,t1,t2)|Ft] with H(t, t1, t2) which is normally dis-

tributed with mean

µ(t, t1, t2) = −
∫ t2

t1

φn(s)ds− xn(t)

∫ t2

t1

e−an(s−t)ds (6.13)

and variance V (t, t1, t2) = V1(t, t1, t2) + V2(t, t1, t2) where

V1(t, t1, t2) = var
[
− σn

∫ t1
t
ea(u−t1)Ban(t1, t2)dWn(u)

]
=

σ2
n

∫ t1
t
e2a(u−t1)Ban(t1, t2)2du = σ2

n

a2n

∫ t1
t
e2a(u−t1)(1− e−2an(t2−t1) − 2e−an(t2−t1))du

= σ2
n

a2n
(B2an(t1 − t) + e−2an(t2−t1)B2an(t1 − t)− 2e−an(t2−t1)B2an(t1 − t))

= σ2
n

a2n
(1− e−an(t2−t1))2B2an(t1 − t)

(6.14)

and

V2(t, t1, t2) = var
[
− σn

∫ t2
t1
Bn(u, t2)dWn(u)

]
= σ2

n

∫ t2
t1
Bn(u, t2)2du

= σ2
n

a2n
(t2 − t1 +Bn(2an, t2 − t1)− 2Bn(an, t2 − t1))

(6.15)

(note that the covariance between the two stochastic integrals in (6.12) is

zero). So, according to (C.1) we have

Pn(t, t1, t2) = eµ(t,t1,t2)+
V (t,t1,t2)

2 . (6.16)

In particular,

Pn(t, t, t2) = eµ(t,t,t2)+
V (t,t,t2)

2 = e−
∫ t2
t φn(s)ds−xn(t)

∫ t2
t e−an(s−t)ds+

V2(t,t,t2)
2 =

e−
∫ t1
t φn(s)ds−

∫ t2
t1
φn(s)ds−xn(t)

∫ t1
t e−an(s−t)ds−xn(t)

∫ t2
t1
e−an(s−t)ds

·e+
V2(t,t,t2)

2
+
V2(t,t,t1)

2
−V2(t,t,t1)

2
+
V1(t,t,t1)

2
−V1(t,t,t1)

2
+
V2(t,t1,t2)

2
−V2(t,t1,t2)

2 =

Pn(t, t, t1)Pn(t, t1, t2)e
V2(t,t,t2)

2
−V2(t,t,t1)

2
−V1(t,t,t1)

2
−V2(t,t1,t2)

2
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from which

Pn(t, t1, t2) =
Pn(t, t, t2)

Pn(t, t, t1)
e−

1
2

(V2(t,t,t2)−V2(t,t,t1)−V1(t,t,t1)−V2(t,t1,t2)). (6.17)

Now, if we compare (6.16) and (6.17) and solve with respect to µ, we obtain

µ(t, t1, t2) = log
Pn(t, t, t2)

Pn(t, t, t1)
− 1

2
(V2(t, t, t2)− V2(t, t, t1)). (6.18)

Let us now derive another expression for P (t, t1, t2) which only depends

on x(t1) (which we are able to generate: remember (6.11) and the following

lines of explanation), so that we can know its value and put it in (6.18).

Inserting in (6.13) the expression for the integral of φ in (5.12), substituting

in (6.16) we obtain

Pn(t, t1, t2) = Pn(0,t2)
Pn(0,t1)

e
− σ2n

2a2n
(t2−2Ban (0,t2)+B2an (0,t2)−t1+2Ban (0,t1)−B2an (0,t1))

·e−xn(t)
∫ t2
t1
e−an(s−t)ds+

σ2n
2a2n

(1−e−an(t2−t1))2B2an (t1−t)+
σ2n
2a2n

(t2−t1+Bn(2an,t2−t1)−2Bn(an,t2−t1))
=

setting Ṽa,σ(t) = σ2

a2
(t− 2Ba(0, t) +B2a(0, t))

Pn(0, t2)

Pn(0, t1)
e
−xn(t)e−an(t1−t)Ban (t1,t2)

σ2n
2a2n

(Ṽan,σn (t1)−Ṽan,σn (t2)+Ṽan,σn (t2−t1)+(1−e−an(t2−t1))2B2an (t1−t))
.

In particular, if t = t1 we obtain

Pn(t1, t1, t2) =
Pn(0, t2)

Pn(0, t1)
e
−xn(t)Ban (t1,t2)+

σ2n
2a2n

(Ṽan,σn (t1)−Ṽan,σn (t2)+Ṽan,σn (t2−t1))

(6.19)

which only requires the generation of xn.

With our results, the nominal discount factor e−
∫ t2
t1
rn(s)ds, knowing the infor-

mation up to t, is eH(t,t1,t2), so if we want to generate
∫ t2
t1
rn(s)ds it is enough

to generate −H(t, t1, t2) which is normally distributed with mean µ(t, t1, t2)

in (6.18) (with P in (6.19)) and variance V (t, t1, t2).

By Proposition 2.3.2, for t < s rr(s) contains the extra addend−ρrIσrσI
∫ s
t
ear(u−s)du,

so −
∫ t2
t1
rr(s)ds contains the extra addend

ρrIσrσI
∫ t2
t1

∫ s
t
ear(u−s)du ds = ρrIσrσI

∫ t2
t1
Bar(t, s)ds =

ρrIσrσI
ar

(t2 − t1 − ea(t1−t)Bar(t1, t2)).

(6.20)
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Now we recall that

Pr(t, t1, t2) = Er[e−
∫ t2
t1
rr(s)ds|Ft]

where the superscript r denotes the “real” measure, i.e. the one with nu-

meraire BrI, and exploiting (2.14) and the calculations which lead to (6.20),

this is equal to

= E[e−
∫ t2
t1
rr(s)ds|Ft] e

− ρrIσrσI
ar

(t2−t1−ea(t1−t)Bar (t1,t2)) (6.21)

from which we obtain the analogous to formula (6.18) in the real case: the

mean of −
∫ t2
t1
rr(s)ds knowing the information up to t is

log
Pr(t, t, t2)

Pr(t, t, t1)
−1

2
(V r

2 (t, t, t2)−V r
2 (t, t, t1))+

ρrIσrσI
ar

(t2−t1−ea(t1−t)Bar(t1, t2))

(6.22)

(where V r
2 has the same form of V2 in (6.15) but with all the subscripts r

instead of n).

Now if we apply the formula for the expectation of a lognormal variable to

(6.21), we obtain

Pr(t, t1, t2) = eµr(t,t1,t2)+Vr
2 e−

ρrIσrσI
ar

(t2−t1−ea(t1−t)Bar (t1,t2)) (6.23)

where, as in the nominal case, µr(t, t1, t2) = −
∫ t2
t1
φn(s)ds−xn(t)

∫ t2
t1
e−an(s−t)ds.

In Chapter 5 we have already calculated −
∫ t2
t1
φn(s)ds: substituting in (6.23)

the expression in formula (5.13) we obtain

Pr(t, t1, t2) = Pr(0,t2)
Pr(0,t1)

e
ρrIσrσI

ar

(
t2−t1−e−art1Bar (t1,t2)

)
·e−

σ2r
2a2r

(t2−2Bar (0,t2)+B2ar (0,t2)−t1+2Bar (0,t1)−B2ar (0,t1))− ρrIσrσI
ar

(
t2−t1−ea(t1−t)Bar (t1,t2)

)
which for t = t1 gives

Pr(t1, t1, t2) = Pr(0,t2)
Pr(0,t1)

· e−
σ2r
2a2r

(t2−2Bar (0,t2)+B2ar (0,t2)−t1+2Bar (0,t1)−B2ar (0,t1))

·e
ρrIσrσI

ar

(
t2−t1−e−art1Bar (t1,t2)−t2+t1+Bar (t1,t2)

)
=

Pr(t1, t1, t2) = Pr(0,t2)
Pr(0,t1)

· e−
σ2r
2a2r

(t2−2Bar (0,t2)+B2ar (0,t2)−t1+2Bar (0,t1)−B2ar (0,t1))

·eρrIσrσIBar (t1,t2)Bar (0,t1).

(6.24)
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So, in order to compute the mean of −
∫ T2
T1
rr(s)ds we use expression (6.24) for

calculating Pr(T1, T1, T2) and insert it in (6.22); since the differences between

rn and rr only lay on the drift, the variance of −
∫ T2
T1
rr(s)ds is simply

Vr(t, t1, t2) =
σ2
r

a2
r

(1−e−ar(t2−t1))2B2ar(t1−t)+
σ2
r

a2
r

(t2−t1+Br(2ar, t2−t1)−2Br(ar, t2−t1)).

Finally, we have to generate the Brownian increment WI(t2)−WI(t1), which

is normally distributed with mean zero and variance t2 − t1.

Let us now analyze the covariances between the five processes xn(t2), xr(t2),∫ t2
t1
xn(s)ds,

∫ t2
t1
xr(s)ds andWI(t2)−WI(t1) (we are interested in (t1, t2) = (0, T1)

and (t1, t2) = (T1, T2)), knowing the information up to t1. For this aim, re-

calling (6.11) and (6.12), we have

Cov
[
xk(t2),

∫ t2
t1
xk(u)du

]
= Cov

[
σke

−a(t2−t1)x(t1) + σ
∫ t2
t1
e−a(t2−u)dWk(u), σn

∫ t2
t1
Bak(u, t2)dWk(u)

]
= σ2

k

∫ t2
t1

e−ak(t2−u)−e−2ak(t2−u)

ak
du =

σ2
k

ak

{
1−e−ak(t2−t1)

ak
− 1−e−2ak(t2−t1)

2ak

}
=

σ2
k

2
Bak(t1, t2)2

Cov
[
xn(t2),

∫ t2
t1
xr(u)du

]
= ρnrσnσr

∫ t2
t1
e−an(t2−u) 1−e−ar(t2−u)

ar
du = ρnrσnσr

ar
(Ban(t1, t2)−Ban+ar(t1, t2))

Cov
[
xr(t2),

∫ t2
t1
xn(u)du

]
= ρnrσnσr

an
(Bar(t1, t2)−Ban+ar(t1, t2))

Cov
[ ∫ t2

t1
xn(u)du,

∫ t2
t1
xr(u)du

]
= ρnrσnσr

anar
(t2 − t1 −Ban(t1, t2)−Bar(t1, t2) +Ban+ar(t1, t2))
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Cov
[
xn(t2), xr(t2)

]
= ρnrσnσrBan+ar(t1, t2)

Cov[xk(t2), WI(t2)−WI(t1)] = ρkIσkσIBak(t1, t2), k = n, r

Cov
[ ∫ t2

t1
xk(u)du,WI(t2)−WI(t1)

]
= ρkIσkσI

ak
(t2 − t1 −Bak(t1, t2)).

Let us sum up. In order to price the derivative, we must:

-generate m1 times the five processes xn(T1), xr(T1),
∫ T1

0
xn(s)ds,

∫ T1
0
xr(s)ds

and WI(T1) as a five-dimensional normal (with the mean vector and cova-

riance matrix calculated in this section);

-compute Pn(T1, T2) and Pr(T1, T2) as in (6.19) and (6.24) (m1 values each,

since we use the generations of xn(T1) and xr(T1));

-from each of the m1 previous generations, generate m2 times the five pro-

cesses xn(T2), xr(T2),
∫ T2
T1
xn(s)ds,

∫ T2
T1
xr(s)ds and WI(T2) − WI(T1) as a

five-dimensional normal (with the mean vector and covariance matrix calcu-

lated in this section) and, from these, I(T2)/I(T1) (with formula (6.10)) and

the value in T1 of the payoff in case of extension, i.e.

P sp(0, T2)Pn(0, T1)

P sp(0, T1)Pn(0, T2)
e−

∫ T2
T1

rn(s)ds
(

1 +
(

0,
I(T2)

I(T1)
− 1
)+)

(note that we have also considered the Spanish risk of default between T1

and T2, according to (6.9));

-make a mean of such discounted payoffs over the m2 generations (obtaining

m1 values);

-implement the extension condition: the payoff in T1 of the contract (on

each of the m1 generations) is the minimum between 1 and the mean in the

previous step;

-calculate the m1 prices of the contract discounting from T1 to 0 the payoff

obained in the previous step (and taking into account the Spanish risk of



70 6. Credit risk

default in this interval); i.e.: we multiply the T1-payoff for

P sp(0, T1)

Pn(0, T1)
e−

∫ T1
0 rn(s)ds;

-make a mean over the m1 obtained result (Monte Carlo).

6.3.2 Under forward measures:

Monte Carlo and analytic inflation-indexed caplet

formula

In this section we will find an expression for the price of the contract

which requires the generation of the processes only at time T1, moving un-

der two different forward measures and exploiting the explicit formula for

inflation-indexed caplets.

First of all, let us analyze the extension condition: the contract is estin-

guished at time T1 if (remember (6.9))

1{τ>T1} ≤ 1{τ>T1}
P sp(0,T2)Pn(0,T1)
P sp(0,T1)Pn(0,T2)

E
[
e−

∫ T2
T1

rn(s)ds
(

1 +
(
I(T2)
I(T1)
− 1
)+)
|FT1

]
⇔ 1{τ>T1} ≤ 1{τ>T1}

P sp(0,T2)Pn(0,T1)
P sp(0,T1)Pn(0,T2)

(Pn(T1, T2) + IICplt(T1,T1,T2,ϕ=T2−T1,K=1)
T2−T1 ).

So, indicating with ET the forward measure with numeraire Pn(·, T ), the

price in 0 of the contract is

E
[
e−

∫ T1
0 rn(s)ds1{τ>T1}11{τ>T1}≤1{τ>T1}

Psp(0,T2)Pn(0,T1)
Psp(0,T1)Pn(0,T2)

(
Pn(T1,T2)+

IICplt(T1,T1,T2,ϕ=T2−T1,K=1)
T2−T1

)]
+E
[
e−

∫ T2
0 rn(s)ds1{τ>T2}11{τ>T1}>1{τ>T1}

Psp(0,T2)Pn(0,T1)
Psp(0,T1)Pn(0,T2)

(
Pn(T1,T2)+

IICplt(T1,T1,T2,ϕ=T2−T1,K=1)
T2−T1

)(
1 +

(
I(T2)
I(T1)
− 1
)+)]

= Pn(0, T1)P
sp(0,T1)
Pn(0,T1)

ET1

[
1

1≤P
sp(0,T2)Pn(0,T1)

Psp(0,T1)Pn(0,T2)

(
Pn(T1,T2)+

IICplt(T1,T1,T2,ϕ=T2−T1,K=1)
T2−T1

)]
+Pn(0, T2)P

sp(0,T2)
Pn(0,T2)

ET2

[
1

1>
Psp(0,T2)Pn(0,T1)
Psp(0,T1)Pn(0,T2)

(
Pn(T1,T2)+

IICplt(T1,T1,T2,ϕ=T2−T1,K=1)
T2−T1

)
ET2

[(
1 +

(
I(T2)
I(T1)
− 1
)+)
|FT1

]]
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= P sp(0, T1)ET1

[
1

1≤P
sp(0,T2)Pn(0,T1)

Psp(0,T1)Pn(0,T2)

(
Pn(T1,T2)+

IICplt(T1,T1,T2,ϕ=T2−T1,K=1)
T2−T1

)]
+P sp(0, T2)ET2

[
1

1>
Psp(0,T2)Pn(0,T1)
Psp(0,T1)Pn(0,T2)

(
Pn(T1,T2)+

IICplt(T1,T1,T2,ϕ=T2−T1,K=1)
T2−T1

)(
IICplt(T1,T1,T2,ϕ=T2−T1,K=1)

(T2−T1)Pn(T1,T2)
+ 1
)] (6.25)

where the expression for IICplt is the one in (3.38) with C in (3.21). So

the only things we have to generate are Pn(T1, T2) and Pn(T1, T2) under the

forward measures with numeraire Pn(·, T1) and Pn(·, T1); for this aim, we

can use (6.19) and (6.24) respectively, which only require xn and xr, but we

must take care that their generations must be made under the two forward

measures. From (6.11), under the risk-neutral measure (starting from t = 0)

xk(T1) = σ

∫ T1

0

e−a(T1−u)dWk(u), k = n, r. (6.26)

In order to move under the forward measure with numeraire Pn(·, T ), we

recall (see Section 5.2) we must add to xn(T1) the term

−σ2
n

∫ T1

0

e−an(T1−u)Bn(u, T ) du = −σ
2
n

an
(Ban(0, T1)− e−an(T−T1)B2an(0, T1))

which gives

−σ2
n

an
(Ban(0, T1)−B2an(0, T1)) forT = T1

−σ2
n

an
(Ban(0, T1)− e−an(T2−T1)B2an(0, T1)) forT = T2.

For xr(T1), the additional term is

−σnσrρnr
∫ T1

0

e−ar(T1−u)Bn(u, T )du = −σnσrρnr
an

(
Bar(T1, T2)−e

−an(T−T1)

an + ar
+
e−anT−arT1

an + ar

)
which gives

−σnσrρnr
an

(Bar(T1, T2)−Ban+ar(0, T1)) forT = T1

−σnσrρnr
an

(Bar(T1, T2)− e−an(T2−T1)Ban+ar(0, T1)) forT = T2.

Variances and covariances are not affected by the change of measure, so they

are the same as in the previous section; we thus know mean and covariance
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matrix of the multinormal variable we have to generate in order to gain xn

and xr; from these, we can calculate Pn(T1, T2), Pr(T1, T2) and the whole

expression of the price in (6.25).

6.3.3 Results

In this section we show some examples of results of the two pricing

methods. In line with the terms of the real contract we refer to, we set

T1 = 7 and T2 = 30.

If we use the data corresponding to 29th April 2011, a possible set of parame-

ters obtained through calibration (with differential evolution) is

an = 0.0485, ar = 0.1778, σn = 0.0101, σr = −0.0030, σI = −0.0046

ρnr = −0.0021, ρnI = 0.0001, ρrI = −0.0054

while the values of the bonds we need are

Pn(0, 7) = 0, 803736, Pn(0, 30) = 0, 338797

Pr(0, 7) = 0, 940484, Pr(0, 30) = 0, 709818

and the Spanish Z-spread is 0.022. With these data, applying the two me-

thods described in the previous section, we see that results agree on a price

which is around 33% of the notional. Since both proceedings use the Monte

Carlo method, they give a confidence interval as result; for the first method,

which uses simulation two times, we calculated the interval according to the

outer Monte Carlo.

Some possible results are reported in the next tables. Since the first method

requires a double application of Monte Carlo, if we choose a great number

of internal and external iterations it turns out to be quite slow; keeping that

number not enormous (we mean something like 20000 internal and 50000 ex-

ternal iterations, as in the first following examples) allows to have the result

in few minutes. The speed of the second method instead allows to run it with

a great number of iterations (like 1000000) obtaining the result immediately.

In the tables we also report the number of extensions occurred among Monte
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Carlo simulations. We recall that in the second method the extension con-

dition is checked under two different forward measures, so there are two

different number of extensions.

MC iterations (Int,Ext) 99%-confidence interval “solution” extensions

(20000,50000) [3.317550e-001, 3.328019e-001] 3.322785e-001 50000

(20000,50000) [3.319285e-001, 3.329779e-001] 3.324532e-001 49999

(50000,50000) [3.318032e-001, 3.328532e-001] 3.323282e-001 50000

(20000,100000) [3.320010e-001, 3.327388e-001] 3.323699e-001 100000

(20000,100000) [3.320397e-001, 3.327745e-001] 3.324071e-001 100000

(20000,100000) [3.320417e-001, 3.327868e-001] 3.324143e-001 99998

Table 6.1: 29-04-2011, Price of the contract: risk neutral method

MC iterations 99%-confidence interval “solution” extensions

1000000 [3.322078e-001, 3.327093e-001] 3.324585e-001 (999993, 999981)

1000000 [3.321884e-001, 3.326897e-001] 3.324390e-001 (999991, 999970)

1000000 [3.320696e-001, 3.325705e-001] 3.323201e-001 (999998, 999980)

1000000 [3.322949e-001, 3.327960e-001] 3.325455e-001 (999999, 999980)

1000000 [3.321244e-001, 3.326250e-001] 3.323747e-001 (999995, 999979)

Table 6.2: 29-04-2011, Price of the contract: forward measure method

We can see that the confidence interval of the second method is contained

in the ones obtained with the first method, which is exactly what we hoped,

since for the first method we chose a lower number of iterations, so the in-

terval should be larger; there just could be some negligible imprecision in

some extremes (the supremum of the fourth result with the second method

does not stay in some of the intervals obtained with the first method, but

this does not affect the validity of the result). As we have already antici-

pated, the price of the contract is around 33.2% of the notional (and this

value turns out to be consistent with market requests). Moreover, we note
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that the extension event occurs almost surely (the frequency of early ends

is less then 1 per 50000), and this result is concordant with market expec-

tations, too. Finally, we observe that the number of extensions under the

forward measure with numeraire P (·, T1) is greater then the one under the

forward measure with numeraire P (·, T2) ; the difference between the two

numbers could appear strange, but we must remember that extensions un-

der different measures can have different weights (under one measure there

could be less extensions, but each of them can be more incisive on the result).

If we use the data corresponding to another date, the result can obviously be

different, preserving the consistence between the two methods. For example,

if we use consider the data corresponding to 22nd February 2011, a possible

set of parameters obtained through calibration (with differential evolution)

is

an = 0, 0583, ar = 0, 1467, σn = 0, 0112, σr = 0, 0055, σI = 0, 0255

ρnr = −0, 8926, ρnI = −0, 6302, ρrI = 0, 9124

while the values of the bonds we need are

Pn(0, 7) = 0, 803852, Pn(0, 30) = 0.342517

Pr(0, 7) = 0, 935480, Pr(0, 30) = 0, 716144

and for the Spanish Z-spread we take 0.022 again.

The tables in the next page report some possible results obtained with these

data.
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MC iterations (Int,Ext) 99%-confidence interval “solution” extensions

(20000,50000) [3.406044e-001, 3.415387e-001] 3.410716e-001 50000

(20000,50000) [3.405215e-001, 3.414547e-001] 3.409881e-001 50000

(50000,50000) [3.409114e-001, 3.418549e-001] 3.413831e-001 49999

(20000,100000) [3.409090e-001, 3.415738e-001] 3.412414e-001 99999

(20000,100000) [3.407231e-001, 3.413901e-001] 3.410566e-001 100000

Table 6.3: 22-02-2011, Price of the contract: risk neutral method

MC iterations 99%-confidence interval “solution” extensions

1000000 [3.408049e-001, 3.413915e-001] 3.410982e-001 (999995, 999979)

1000000 [3.408841e-001, 3.414703e-001] 3.411772e-001 (999997, 999983)

1000000 [3.408582e-001, 3.414438e-001] 3.411510e-001 (999993, 999985)

1000000 [3.408325e-001, 3.414175e-001] 3.411250e-001 (999996, 999986)

1000000 [3.408260e-001, 3.414117e-001] 3.411189e-001 (999998, 999987)

Table 6.4: 22-02-2011, Price of the contract: forward measure method

We can see that also in this case the two methods give consistent results, and

that the price of the contract this time is around 34.1%.





Appendix A

Preliminary results

In this Appendix some important definitions and theoretical results are

recalled.

A.1 Martingale measures

Let’s recall the following definition:

Definition A.1 (Exponential martingale). Given a d-dimensional Brow-

nian Motion (Wt)t∈[0,T ] on the probability space (Ω,F , P, (Ft)), and given a

d-dimensional process λ ∈ L2
loc

1, the exponential martingale associated to

λ is the process

Zλ
t = exp

(
−
∫ t

0

λs · dWs −
1

2

∫ t

0

|λs|2ds
)
, t ∈ [0, T ].

If we setXt = −
∫ t

0
λs·dWs− 1

2

∫ t
0
|λs|2ds, we have Zλ

t = eXt , so the application

of the Itô formula gives

dZλ
t = eXtdXt +

1

2
eXtd < X >t= eXt(−λt · dWt −

1

2
|λt|2dt+

1

2
|λt|2dt) =

= −λtZλ
t · dWt.

1A stochastic process ut is in L2
loc[0, T ] if it is progressively measurable with respect to

the filtration (F ) and such that
∫ T
0
|ut|2dt < +∞ a.s.

77
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Note 1. An exponential martingale is a local martingale, and, since it is

positive, it is a supermartingale; so it is a martingale if and only if E[Zλ
T ] = 1.

A sufficient condition for Zλ to be a martingale is the existence of a constant

C such that ∫ T

0

|λt|2dt < C a.s.

The following theorems provide for the instruments which are necessary

for switching from a probability measure to another, modifying the corre-

sponding Brownian Motions.

Theorem A.1.1 (Girsanov’s theorem). Let Zλ be the exponential mar-

tingale associated to the process λ ∈ L2
loc, and let it be a P-martingale2. Let

us define the measure Q
dQ

dP
= Zλ

T .

So the process

W λ
t = Wt +

∫ t

0

λsds, t ∈ [0, T ]

is a Brownian Motion on (Ω,F , Q, (Ft)).

Theorem A.1.2 (Change of drift). Let Q be a probability measure equi-

valent to P. Thus

dQ

dP

∣∣∣∣
FW
t

= Zλ
T , dZλ

t = −Zλ
t λt · dWt, λ ∈ L2

loc.

Moreover, the process W λ defined by

dWt = dW λ
t − λtdt

is a Brownian Motion on (Ω,F , Q, (Ft)).

2A typical condition which ensures Zλ is a strict martingale (under the hypothesis

λ ∈ L2
loc) is the so-called Novikov condition:

E
[

exp
(1

2

∫ T

0

|λs|2ds
)]

<∞

.
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Note 2. Under the hypothesis of Theorem A.1.2, if X is an Itô process of the

form

dXt = µtdt+ σtdWt

under the measure P, its dynamics under the measure Q becomes

dXt = µtdt+ σt(dW
λ
t − λtdt) = (µt − σtλt)dt+ σtdW

λ
t .

We thus observe that the change of measure modifies only the drift of X,

while its diffusion coefficient remains the same.

Definition A.2 (Correlated Brownian Motion). Given a probability

space (Ω,F , P ), a d-dimensional correlated Brownian Motion is a process of

the form

Wt = AW̄t

with W̄ standard d-dimensional Brownian Motion and A non singular d× d
matrix such that, setting ρ = AA∗, that matrix (which is called correlation

matrix) has diagonal elements equal to one:

ρii =
d∑
j=1

(Aij)2 = 1 ∀i = 1, . . . , d.

In this case, each component of W is a one-dimensional Brownian Motion,

and

d < W i,W j >t= ρijdt i, j = 1, . . . , d.

Theorem A.1.3 (Change of drift with correlation). Let Q be a proba-

bility measure equivalent to P. Thus

dQ

dP

∣∣∣∣
FW
t

= ZT , dZt = −Ztλt · dWt, λ ∈ L2
loc.

Moreover, the process W λ defined by

dWt = dW λ
t − ρλtdt

is a Brownian Motion on (Ω,F , Q, (Ft)) with correlation matrix ρ.
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Note 3. Under the hypothesis of Theorem A.1.3, if X is an Itô process of the

form

dXt = µtdt+ σtdWt

under the measure P, its dynamics under the measure Q becomes

dXt = µtdt+ σt(dW
λ
t − ρλtdt) = (µt − σtρλt)dt+ σtdW

λ
t .

We thus observe that also in this case the change of measure entails a cor-

rection only in the drift of X, and not in the diffusion coefficient.

A.2 Numeraire

Given the probability space (Ω,F , P ), let us consider a model for the

market in which there are N risky assets (S1, . . . , SN) and the “bank account”

B with dynamics

dBt = rtBtdt, i.e.

Bt = exp{
∫ t

0
rsds},

(A.1)

where r indicates the interest rate and it is a progressively measurable pro-

cess.

Definition A.3 (Discount factor). The discount factor is the stochastic

process

D(t, T ) =
Bt

BT

= e−
∫ T
t rsds,

which is unknown at time t < T and represents the amount of money to be

possessed at time t in order to obtain one unit at time T.

We now recall the following:

Definition A.4 (Discounting). Given an asset S, it discounted price is

S̃t =
St
Bt

= e−
∫ t
0 rsdsSt.

Let us now define a class of processes which possess the fundamental

features of prices:
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Definition A.5 (Q-price processes). Given the probability space (Ω,F , P )

and the equivalent martingale measure Q, a Q-price process is a stochastic

process U which is positive and such that the discounted prices Ũt = Ut
Bt

are

Q-martingales ∀t < T .

As the name suggests, among these processes there are the ones of the

prices of the risky assets Si, i = 1, . . . , N (for the definition of martingale

measures); processes of this type can be chosen as numeraire as an alternative

to B:

Definition A.6 (Equivalent martingale measure with numeraire U).

Let U be a Q-price process. We thus define equivalent martingale measure

with numeraire U on (Ω,F ) a probability measure QU equivalent to P such

that the processes of the prices of the assets discounted with respect to U

are QU -martingales, that is:

EQU
[
BT
UT
|FW

t

]
= Bt

Ut
∀t < T

EQU
[
SiT
UT
|FW

t

]
=

Sit
Ut
∀i = 1, . . . , N, ∀t < T.

(A.2)

In practice, as we already told, the process U is used as numeraire instead

of B. Thus, analogously to Definition A.3, it is possible to define the new

discount factor

DU(t, T ) =
Ut
UT

.

With this definition and from (A.2) the following risk-neutral pricing formulas

immediately come out:

Bt = EQU [DU(t, T )BT |FW
t ] t ∈ [0, T ]

St = EQU [DU(t, T )ST |FW
t ] t ∈ [0, T ].

Next theorems show how we can switch from a numeraire to another and

how the dynamics of the assets are modified as a consequence of this change.

Theorem A.2.1. Let Q be a martingale measure with numeraire B, and let

U be a Q-price process. We define the probability measure QU on (Ω,F ) as

dQU

dQ
=
UTB0

BTU0

.
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So, for every X ∈ L1(Ω, Q) the following holds:

EQ[D(t, T )X|FW
t ] = EQU [DU(t, T )X|FW

t ] t ∈ [0, T ]. (A.3)

Thus, QU is an equivalent martingale measure with numeraire U , and the

Q-risk-neutral prices of a European derivative X are equivalently given by the

first or the second member of (A.3).

Corollary A.2.2. If U and V are Q-price processes, then

dQV

dQU

∣∣∣∣
FW
t

=
VtU0

UtV0

. (A.4)

It can be useful to know how to deal with the change from a numeraire

to another in the case they are Itô processes. For this purpose, we present

the following lemma which calculates the quotient between two Itô processes:

since for the change of numeraire only the diffusion coefficient is necessary,

we focus on this, and use the dots (. . .) in place of the drifts.

Lemma A.2.3. Let W be a d-dimensional correlated Brownian Motion, and

let σU and σV be two d-dimensional processes in L2
loc; thus, given the Itô

processes U e V

dUt = (. . .)dt+ σU · dWt (A.5)

dVt = (. . .)dt+ σV · dWt, (A.6)

V
U

turns out to be an Itô process of the form

d
Vt
Ut

= (. . .)dt+
Vt
Ut

(σVt
Vt
− σUt
Ut

)
· dWt.

Proof. For Itô’s formula

d
Vt
Ut

=
1

Ut
dVt −

Vt
U2
t

dUt +
1

2

2

U3
t

Vtd〈U,U〉t − 2
1

2

1

U2
t

d〈U, V 〉t

and the last two addends only give drift contribution.
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The following theorem sums up the rule for the change of numeraire we

were looking for:

Theorem A.2.4 (Change of numeraire). Let U and V be two Itô processes

with the dynamics (A.5) and (A.6), and let ρ be the correlation matrix of W.

Thus

dWU
t = dW V

t + ρ
(σVt
Vt
− σUt
Ut

)
dt.
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Appendix B

Stochastic differential equations

A stochastic differential equation (SDE) is an equation of the form

dXt = b(t,Xt)dt+ σ(t,Xt)dWt (B.1)

with b : [0, T ]×RN → RN and σ : [0, T ]×RN → RN×d deterministic functions

named drift and diffusion coefficient respectively, and with W d-dimensional

Brownian Motion, with d≤N, on the space (Ω,F , P, (Ft)).

B.1 Linear SDE

A particular type of SDE are the so called linear ones, in which the coefficients

of (B.1) are linear functions of Xt; it means they are the ones of the form

dXt = (b(t) +B(t))dt+ (σ(t) + Σ(t)Xt)dWt. (B.2)

Among these, the most common ones are the ones in which Σ=0, that is of

the form

dXt = (b(t) +B(t))dt+ σ(t)dWt, (B.3)

coupled with an initial condition

Xt0 = x, (B.4)
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with x ∈ RN , b, B and σ ∈ L∞loc[t0,+∞[ and with values in RN , RN×N and

RN×d respectively.

For this kind of SDEs the form of the solution is explicitly known:

Theorem B.1.1. The solution of the SDE (B.3) with initial condition (B.4)

is of the form

Xt = Φt0(t)
(
x+

∫ t

t0

Φ−1
t0

(s)b(s)ds+

∫ t

t0

Φ−1
t0

(s)σ(s)dWs

)
, (B.5)

where Φt0 is the solution of the Cauchy problem{
Φ′(t) = B(t)φ(t)

Φ(t0) = IN

with IN N-dimensional identity matrix.

If B is constant (independent from time), the solution of the Cauchy

problem turns out to be

Φt0(t) := eB (t−t0), (B.6)

taking in mind that, by definition, the exponential of a matrix A ∈ RN×N is

etA =
∞∑
n=0

tnAn

n!
, t ∈ R.

Thus, if B is constant (B.5) becomes

Xt = eB (t−t0)x+

∫ t

t0

e−B (s−t)b(s)ds+

∫ t

t0

e−B (s−t)σ(s)dWs. (B.7)

B.2 SDE and PDE

Definition B.1 (Characteristic operator). Given the SDE (B.1), the

characteristic operator associated with X is the operator L defined by

Ltf(x) =
1

2

N∑
i j=1

Cij(t, x)∂xixjf(x) +
N∑
i=1

bi(t, x)∂xif(x), (B.8)

where C = σσ∗.
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The following theorem establishes an important link between SDEs and

partial differential equations:

Theorem B.2.1 (Feynman-Kač formula). Let ST be the strip ]0, T [×RN ,

and let a ∈ C (ST ), a > a0, a0 ∈ R, b, C and f ∈ L∞(ST ) ∩ C α(ST ).

Moreover, let u ∈ C 2(ST ) ∩ C (ST ) be the solution to the Cauchy problem{
A u− au+ ∂tu = f in ST

u(T, ·) = φ

with A characteristic operator associated to (B.1). Finally, let us assume

there exist two positive constants M and β such that

|u(t, x)|+ |f(t, x)| ≤Meβ|x|
2

, (t, x) ∈ ST .

Thus

u(t, x) = E
[
e−

∫ T
t a(s,Xs)dsφ(XT )−

∫ T

t

e−
∫ s
t a(r,Xr)drf(s,Xs)ds

]
, (B.9)

where X = X t,x is the solution of the SDE (B.1) with initial value x at the

instant t.

Note that if f = 0 the solution (B.9) reduces to

u(x, t) = E
[
e−

∫ T
t a(s,Xs)dsφ(XT )

]
.
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Appendix C

Normal distribution

Normal distributions frequently recur when dealing with the Jarrow-

Yildirim model; for this reason, it seems useful to point out some results

about them.

C.1 Integral of a normal process

In this section we prove that the integral of a process with Hull & White

dynamics is still normal.

Let Xt be a stochastic process of the form

dXt = (b(t) +BXt)dt+ σ(t)dWt, Xt0 = x.

According to (B.7), this linear EDS has solution

Xt = eB(t−t0)x+

∫ t

t0

e−B(s−t)b(s)ds+

∫ t

t0

e−B(s−t)σ(s)dWs =

∫ t

t0

f(s)ds+

∫ t

t0

g(s)dWs

with f and g deterministic functions, which implies that bothXt and Yt :=
∫ t
t0
g(s)dWs

are stochastic processes (in t) with normal distribution. By Itô formula

d(tYt) = tdYt + Ytdt, which can be written in the integral form

tYt = t0Yt0+

∫ t

t0

sg(s)dWs+

∫ t

t0

Ysds ⇒
∫ t

t0

Ysds = −t0Yt0+
∫ t

t0

(t−s)g(s)dWs

89
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which implies that
∫ t
t0
Ysds is normally distributed. Finally∫ t

t0

Xsds =

∫ t

t0

(∫ s

t0

f(x)dx
)
ds+

∫ t

t0

Ysds

which thus has normal distribution.

C.2 Lognormal distribution

A random variable X is said to be lognormally distributed if it is of the

form X = eZ with Z ∼ N (µ, σ2); in this case, we can split Z in µ + σU

where U ∼ N (0, 1), so that

E[X] = E[eZ ] = E[eµ+σU ] = eµE[eσU ]

with

E[eσU ] =
1√
2π

∫ +∞

−∞
eσx−

x2

2 dx = e
σ2

2

and finally obtain

E[X] = eµ+σ2

2 . (C.1)

For completeness let us calculate the variance too:

E[X2] = E[e2Z ] = E[e2µ+2σU ] = e2µ 1√
2π

∫ +∞

−∞
e2σx−x

2

2 dx = e2µ+2σ2

so that

var[X] = E[X2]− E[X]2 = e2(µ+σ2

2
) − e2µ+2σ2

= e2µ+σ2

(eσ
2 − 1). (C.2)

C.3 Expectation formula

First of all, we recall the form of the density of a multinormal distribution:

Definition C.1. A random variable X : Ω → RN has multinormal distri-

bution with mean µ ∈ RN and covariance matrix C ∈ RN×N symmetric and

positive definite if its density has the form

fµ,C(x) =
1√

(2π)N detC
exp

(
− 1

2
〈C−1(x−µ), (x−µ)〉

)
, x ∈ RN . (C.3)
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In particular, for N = 2, (C.3) becomes

fµ,C(x) =
1

2π
√
σ2

11σ
2
22 − σ2

12

exp
(
−σ

2
22(x1 − µ1)2 − 2σ2

12(x1 − µ1)(x2 − µ2) + σ2
11(x2 − µ2)2

2(σ2
11σ

2
22 − σ2

12)

)
for x = (x1, x2) ∈ R2, and if µ = 0 it reduces to

f(0,0),C(x1, x2) =
1

2π
√
σ2

11σ
2
22 − σ2

12

exp
(
− σ2

22x
2
1 − 2σ2

12x1x2 + σ2
11x

2
2

2(σ2
11σ

2
22 − σ2

12)

)
.

In finance, when pricing derivatives it is frequent to meet expectations of the

form

E[eX(p eZ −K)+] (C.4)

where p ∈ R and (X,Z) is a bidimensional random variable with mean and

covariance matrix

µ = (µX , µZ), C =

(
σ2

11 σ12

σ12 σ2
22

)
.

In order to calculate (C.4) it is useful to re-express it in the form

E[eX−µXeµX (p eZ−µZeµZ −K)+] = eµX+µZpE[eX−µX (p eZ−µZ − K
p
e−µZ )+]

= eµX+µZpE[eXbis(p eZbis −Kbis)
+]

where Xbis = X − µX , Zbis = Z − µZ and Kbis = K
p
e−µZ ; in this way,

(Xbis, Zbis) has a bidimensional normal distribution with mean µ = (0, 0)

and covariance matrix still C, so that (C.4) can be calculated as

eµX+µZp
∫ +∞
−∞

∫ +∞
logKbis

ex(ez −Kbis)f(0,0),C(x, z)dxdz

= eµX+µZp
∫ +∞

logKbis
(ez −Kbis)

( ∫ +∞
−∞ exf(0,0),C(x, z)dx

)
dz.

Let us calculate the internal integral. For brevity we set S = σ2
11σ

2
22 − σ2

12:∫ +∞
−∞ exf(0,0),C(x, z)dx =

1
2π
√
S

∫ +∞
−∞ ex−

σ222x
2−2σ212xz+σ

2
11z

2

2S dx = 1
2π
√
S
e−

σ211z
2

2S

∫ +∞
−∞ e−

σ222(x
2+2x(−σ211+

σ212
σ222

−σ12
σ222

z))

2S dx

= 1√
2πσ2

22

e−
σ211z

2

2S e
(S+σ12z)

2

2S = 1√
2πσ2

22

e
− (z−σ12)

2

2σ222
+
σ211
2 .
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So the double integral is

1√
2πσ2

22

∫ +∞
logKbis

(ez −Kbis)e
− (z−σ12)

2

2σ222
+
σ211
2 dz =

1√
2πσ2

22

e
σ211
2
− σ212

2σ222

(
e

(
σ12
σ22

+σ22)
2

2

∫ +∞
logKbis

e
− (z−σ12−σ

2
22)

2

2σ222 dz −Kbise
σ212
2σ222

∫ +∞
logKbis

e
− (z−σ12)

2

2σ222 dz
)
.

Let us now make the changes of variable ξ =
z−σ12−σ2

22

σ22
in the first integral

and ν = z−σ12
σ22

in the second one:

e
σ211
2

+
σ222
2

+σ12 1√
2π

∫ +∞
logKbis−σ12−σ

2
22

σ22

e−
ξ2

2 dξ −Kbise
σ211
2

1√
2π

∫ +∞
logKbis−σ12

σ22

e−
ν2

2 dν

= e
σ211
2

+
σ222
2

+σ12Φ
(
− logKbis−σ12−σ2

22

σ22

)
−Kbise

σ211
2 Φ
(
− logKbis−σ12

σ22

)
where Φ(x) = 1√

2π

∫ x
−∞ e

−x
2

2 dx is the standard normal distribution function.

We have thus obtained the result:

E[eX(p eZ −K)+] =

eµX+µZ+
σ211
2 p
(
e
σ222
2

+σ12Φ
(µZ+log p−logK+σ12+σ2

22

σ22

)
− Ke−µZ

p
Φ
(
µZ+log p−logK+σ12

σ22

))
.
(C.5)

Sometimes instead of (C.4) we need to calculate

E[eX(K − p eZ)+].

The proceeding is exactly the same, and allows us to obtain the following

formula which generalizes (C.5):

E[eX(w(p eZ −K))+] =

weµX+µZ+
σ211
2 p
(
e
σ222
2

+σ12Φ
(
w
µZ+log p−logK+σ12+σ2

22

σ22

)
− Ke−µZ

p
Φ
(
wµZ+log p−logK+σ12

σ22

))(C.6)

where w can be ±1.
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