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Abstract

This thesis is focused on the financial model for interest rates called the
LIBOR Market Model, which belongs to the family of market models and
it has as main objects the forward LIBOR rates. We will see it from its
theoretical approach to its calibration to data provided by the market. In
the appendixes, we provide the theoretical tools needed to understand the
mathematical manipulations of the model, largely deriving from the theory of
stochastic differential equations. In the inner chapters, firstly, we define the
main interest rates and financial instruments concerning with the interest rate
models. Then, we set the LIBOR market model, demonstrate its existence,
derive the dynamics of forward LIBOR rates and justify the pricing of caps
according to the Black’s formula. Then, we also present the model acting as
a counterpart to the LIBOR market model, that is the Swap Market Model,
which models the forward swap rates instead of the LIBOR ones. Again,
even this model is justified by a theoretical demonstration and the resulting
formula to price the swaptions coincides with the one used by traders in the
market, i.e. the Black’s formula for swaptions. However, the two models are
not compatible from a theoretical point, because the dynamics that would
be obtained for the swap rate, by starting from the dynamics of the LIBOR
market model, is not log-normal as instead is in the swap market model.
Took note of this inconsistency, we select the LIBOR market model and
derive various analytical approximating formulae to price the swaptions. It
will also be explained how to perform a Monte Carlo algorithm to calculate
the expectation of any payoff involving such rates by a simulation. Finally, it
will be presented the calibration of the LIBOR market model to the markets
of both caps and swaptions, together with various examples of application to
the historical correlation matrix and the cascade calibration of the forward
volatilities to the matrix of implied swaption volatilities provided by the

market.






Sommario

Questa tesi e incentrata su un modello di mercato per i tassi d’intersse detto
LIBOR Market Model, il quale modellizza i tassi forward LIBOR, a par-
tire dalla sua impostazione teorica fino alla sua calibrazione ai dati forniti
dal mercato. Nelle appendici vengono forniti gli strumenti teorici necessari
per la gestione matematica del modello, derivanti in gran parte dalla teo-
ria delle equazioni differenziali stocastiche. Nei capitoli interni, innanzitutto
vengono definiti i principali tassi di interesse e gli strumenti finanziari alla
base dei modelli di mercato sui tassi d’interesse. Poi viene impostato il LI-
BOR market model, dimostrata la sua esistenza, ricavate le dinamiche dei
tassi forward LIBOR e i prezzi dei cap, fedeli alla formula di Black. Viene
poi presentato anche il modello che funge da controparte al LIBOR market
model, ovvero lo Swap Market Model, che modellizza i tassi forward swap
anziché i LIBOR. Anche in questo modello si giustifica, mediante una dimo-
strazione teorica, una formula usata dai traders sul mercato per prezzare le
swaption, ovvero la formula di Black per le swaption. Tuttavia, i due modelli
non sono compatibili dal punto di vista teorico, in quanto la dinamica che
si otterrebbe per il tasso swap a partire dalle dinamiche del LIBOR market
model non e log-normale come invece ¢ nello swap market model. Preso at-
to di questa inconsistenza, viene scelto il LIBOR market model e vengono
derivate diverse formule analitiche approssimate per prezzare le swaption.
Inoltre e spiegato come realizzare 1'algoritmo di Monte Carlo per calcolare
tali prezzi mediante una simulazione. Infine viene presentata la calibrazione
del suddetto modello al mercato dei cap e a quello delle swaption, con diversi
esempi di applicazione alla calibrazione della matrice di correlazione storica e
alla calibrazione a cascata delle volatilita forward alla matrice delle volatilita

implicite di mercato delle swaption.






Abbreviations and Notations

w.r.t. = with respect to

s.p. = stochastic process

s.t. = such that

a.s. = almost surely

SDE = stochastic differential equation
B.m. = Brownian motion

EMM = equivalent martingale measure
e.g. = exempli gratia = example given
i.e. =1id est = that is

IRS = Interest Rate Swap

PFS = Payer Interest Rate Swap

RFS = Receiver Interest Rate Swap
PFS = Payer Interest Rate Swap
LMM = LIBOR Market Model

SMM = Swap Market Model

c.d.f. = cumulative distribution function

il



iv

r.v. = random variable(s)
E = expectation
Std = standard deviation

i.i.d. = independent identically distributed
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Introduction

In this thesis we present the most promising family of interest rate models,
that are the market models. The two main representatives of this family are
the LIBOR Market Model (LMM), which models the forward LIBOR rates
as the primary objects in an arbitrage free way instead of deriving it from the
term structure of instantaneous rates, and the Swap Market Model (SMM),
which models the dynamics of the forward swap rates. The advantages of
them is that, by choosing a deterministic volatility structure for the dynamics
of the rates modeled, the first one prices caps according to the Black’s cap
formula, whereas the second one prices swaptions according to the Black’s
swaption formula. Indeed, these Black’s formulae are the standard ones
used respectively in the cap and swaption markets, which are the two main
markets in the interest-rate derivatives world. Despite the good premises, the
desirable compatibility between the two market formulae is not theoretically

confirmed.

The LIBOR Market Model came out at the end of the 90s, in particular
it was rigorously introduced in 1997 by Brace, Gatarek and Musiela, ”The
Market Model of Interest Rate Dynamics”, then other significant contributes
came by Jamshidian, " LIBOR and swap market models and measures”, and
Miltersen, Sandmann and Sondermann, ”Closed Form Solutions for Term
Structure Derivates with Log-Normal Interest Rates”, all in 1997. At the
same time, Jamshidian introduced the Swap Market Model, in 1997.

The point of this work is to analyze in detail the LIBOR market model,

from its theoretical setting and mathematical results to its financial and prac-
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tical use, together with some practical applications referring to the current

market data. This thesis is structured as follows.

Appendixes. We give a synthetic presentation of the mathematical defi-
nitions and the main theoretical results concerning the theory of the
stochastic processes and the stochastic differential equations. More-
over, we show the details of one of the most important tool in the
mathematical studying of financial markets, that is the change of nu-

meraire.

Chapter 1. We define the different types of interest rates and introduce
the basic financial instruments and the main derivatives we are dealing
with, i.e. caps and swaptions, together with their practically used

Black’s formulae.

Chapter 2. We introduce the LMM, derive the dynamics of the forward
LIBOR rate modeled and prove its existence. Then we introduce the
Black volatilities implied by the cap market and show that the risk-
neutral valuation formula of caps gives the same prices as the Black’s

cap formula.

Chapter 3. We introduce the SMM, prove that the pricing formula for
swaptions coincides with the Black’s swaption formula and show the
inconsistency of the dynamics assumed by the SMM with the ones
given by the LMM.

Chapter 4. We show in detail the different approaches to price swaptions
under the framework of the LMM, from the Monte Carlo simulation to

various analytical approximating formulae.

Chapter 5. We introduce the important and rich subject of the instanta-
neous correlation modeling, dealing with the modeling and parametriza-
tion of the correlations between the Brownian motions driving the dy-

namics of forward LIBOR rates.
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Chapter 6. We introduce the calibration of the LMM to the cap market and
we present various plausible parameterizations for the forward volatility
structure. Then we consider, for each of them, the evolution in time of

the term structure of volatility.

Chapter 7. We introduce the calibration of the LMM to the swaption mar-
ket, in particular we show an exact cascade calibration. Moreover,
we introduce the use of a historical correlation matrix, along with its

computation and parametric calibration.






Chapter 1

Interest rates and basic

instruments

Definition 1.1. A zero-coupon bond (also known as pure discount bond)
with maturity date T, briefly called T-bond, is a contract which guarantees
the holder to be paid 1 unit of currency at time 7', with no intermediate

payments. The contract value at time ¢t < T is denoted by p(¢,T) .
We must make some assumptions:
- there exist a (frictionless) market for T-bond for every 7" > 0;
- p(T,T) =1 holds for all T'> 0 (it avoids arbitrage);

- for all fixed t < T the application T' +— p(t,T) is differentiable w.r.t.

maturity time.

The graph of the function T — p(¢t,T7), T > t, called zero-bond curve,
is decreasing starting from p(¢,¢) = 1 and will be typically very smooth.
Whereas, for each fixed maturity 7, p(¢,7T) is a scalar stochastic process
whose trajectory will be typically very irregular (determined by a Brownian
motion).

The amount of time from the present date ¢ and the maturity date T,

called the time to maturity, is calculated in different ways, according to the

11



12

1. Interest rates and basic instruments

market convention (day-count convention). Once this last is made clear, the
measure of time to maturity, denoted by 7(t,T), is referred to as the year-
fraction between the dates t and T and it’s usually expressed in years. The

most frequently used day-count convention are:

- Actual /365 — a year is 365 days long and the year-fraction between
two dates is the actual number of days between them divided by 365;

- Actual /360 — a year is 360 days long and the year-fraction between
two dates is the actual number of days between them divided by 360;

- 30/360 — months are 30 days long, a year is 360 days long and the
year-fraction between two dates (di, my,y;) and (da, ma, ys) is given by
the ratio

max(30 — dy,0) + min(ds, 30) + 360 - (y2 — y1) + 30 - (M2 —my — 1)
360 '

In all the conventions adjustments may be included to leave out holidays.
Zero-coupon bonds are fundamental objects in the interest rate theory,
in fact all interest rates can be also defined in terms of zero-coupon bond
prices.
Talking about interest rates we need to distinguish the two main cate-

gories:
- government rates, related to bonds issued by governments;

- interbank rates, at which deposits are exchanged between banks and

swap transactions between them are.

We are considering the interbank sector of the market, however the mathe-
matical modeling of the resulting rates would be analogous in the two sectors.

Actually, interest rates are what is usually quoted in the (interbank)
financial markets, whereas zero-coupon bonds are theoretically instruments

not directly observable.
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Definition 1.2. The continuously-compounded spot interest rate at time t
for the maturity 7" is the constant rate at which an investment of p(t,7) unit
of currency at time ¢ accrues continuously to yield 1 unit of currency at time
T.

It is denoted by R(t,T') and is defined by:

CInp(t,T)

R(t,T) := . T)

Equivalently:
eR(t’T)T(t’T)p(t, T) -1 ’

from which we get the zero-coupon bond prices:
p(t, T) _ 6—R(t,T)7-(t,T) )

Definition 1.3. The simply-compounded spot interest rate at time t for the
maturity 7" is the constant rate at which an investment of p(¢,7) unit of
currency at time t accrues proportionally to the investment time to produce
1 unit of currency at time 7.

It is denoted by L(t,T") and is defined by:

L) = =P
7(t, T)p(t,T)

The most important interbank rate, as a reference for contracts, is the
LIBOR (London InterBank Offered Rate) rate, fixing daily at 12 o’ clock
in London. This is a simply-compounded spot interest rate, from which
derive the notation L for this last, and is typically linked to zero-coupon
bond prices by the ”Actual /360" day-count convention. Generally the term
"LIBOR” refers also to analogous rates fixing in other markets, e.g. the
EURIBOR rate (fixing in Bruxelles).

The bond prices in terms of LIBOR rate is:

1
pt.T) =17 L(t, T)r(t,T) "
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Definition 1.4. The annually-compounded spot interest rate at time t for
the maturity 7 is the constant rate at which an investment of p(t,7) unit
of currency at time t has to be reinvested once a year to produce 1 unit of
currency at time 7'.
It is denoted by Y'(t,T") and is defined by:
YT) = — 1.
p(t,T) &

The day-count convention typically associated to the annual compound-
ing is the " Actual/365”.
The bond prices in terms of these rates is:

B 1
)= (1+Y(t,T) ®D "

p(t, T
An extension of the annual compounding case is the following.

Definition 1.5. The k-times-per-year compounded spot interest rate at time
t for the maturity 7' is the constant rate at which an investment of p(t,T)
unit of currency at time ¢ has to be reinvested k times a year to produce 1

unit of currency at time 7.

It is denoted by Y*(¢,T) and is defined by:
k
YR, T) = ———— — k.
p(t, 1)

All the above spot interest rates are equivalent in infinitesimal time in-

tervals. For this reason, we can define the short rate in the following way.

Definition 1.6. The instantaneous short interest rate at time ¢ is the limit
of each of the different spot rates between times t and T with 7" — ¢+.
It is denoted by r(t) and is defined by:

rt) = lim R(t,T)
= lim L(t,T)
T—t+
= lim Y(¢,7T)
T—tt
= lim Y*(t,T) Vk.

T—t+
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Based on this, we can define the mathematical representation of a bank

account, which accrues continuously according to the instantaneous rate.

Definition 1.7. The bank account (or money market account) at time ¢t > 0
is the value (the t-value) of a bank account with a unitary investment at
initial time 0.

It is denoted by B(t) and its dynamics is given by:

solved by:

B(t) = exp( / r(s)ds)

as shown in (C.2). Notice that, according to the market setting (C.1)-
(C.2) and the theorem of change of drift with correlation, B is the only
asset in the market which is not modified when moving to a risk-adjusted
probability measure, in fact its instantaneous variation is not affected by a
change of measure.

The bank account is a stochastic process that provide us with a model of the

time value of money and allows us to build a discount factor of that value.

Definition 1.8. The (stochastic) discount factor between two time instants
t and T' > t is the amount of money at time ¢ equivalent (according to the
dynamic of B(t)) at 1 unit of currency at time 7.

It is denoted by D(t,T") and is defined by:

D(t,T) = % = exp (— /tTr(s)ds) :

In some financial areas where the short rate r is considered a determin-
istic function of time (i.e. in markets where the variability of the rate is
negligible with respect to movements of the underlying assets of options to
be priced), both the bank account and the discount factor become determin-
istic processes and we have D(t,T) = p(t,T) for all (t,7") . However, when

dealing with interest rate derivatives, the variability of primary importance
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is just that of the rates themselves. In this case r is modeled as a stochastic
process and consequently D(t,T") is a random value at time ¢ which depends
on the future evolution of r up to T, whereas p(t,T') is the t-value (known)

of a contract with maturity date T

1.1 Forward Rates

Now we move to define the forward rates, that are characterized by three
time instants: the present time ¢, at which they are locked in, and two points
in future time, the expiry time T" and the maturity time S, with ¢t <T < §'.

The forward rates can be defined in two different ways.

First approach to define forward rates

We start defining a contract at the current time ¢ which allows us to make
an investment of 1 unit of currency at time 7" and to have a deterministic
rate of return (determined at t) over the period [7', S]. Then we compute the
relevant interest rate involved by solving an equation that avoids arbitrage.

The corresponding financial strategy is the following:

Time Operations Portfolio value
t sell one T-bond and use
. T
the income p(t,T") to buy f}&sg S-bonds 0
T pay out 1 —1
: pt.T) _ pt.T)
S receive the amount ) 1+ o5

The net effect of all this, based on a contract made at time ¢, is that an
investment of 1 unit of currency at time 7" has yielded % at time S. Thus
it guarantees a riskless rate of interest over the future interval [T',S]. Such
an interest rate is what is called a forward rate and it can be characterized

depending on the compounding type, as follows.

Definition 1.9. The simply-compounded forward interest rate at time ¢ for
the expiry T > t and maturity S > T is denoted by F(¢; T, S) and is defined
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by:

. o 1 p(t,T)
F(t;T,S):= 79 <p(t, 9 — 1) . (1.1)

It is the solution to the equation

p(t,T)
p(t,S)

Definition 1.10. The continuously-compounded forward interest rate at time

t for the expiry 7" > ¢ and maturity S > T is denoted by R(¢;T,S) and is
defined by:

1+7(T,9)F =

Inp(t,S) —Inp(t,T)
a (T, 95)

R(t;T,S) =
It is the solution to the equation

rrrs) _ PET)
p(t,5)

The simple rate notation is the one used in the market, whereas the contin-

&

uous one is used in theoretical contexts and does not regard the model we

are exposing.

Second approach to define forward rates

Definition 1.11. A forward rate agreement (FRA) is a contract stipulated
at the current time ¢ that gives its holder an interest rate payment for the
period of time between the expiry T' > t and the maturity S > T". Precisely,
at time S he receives a fixed payment based on a fixed rate K and pays a
floating amount based on the spot rate L(T,S) resetting in 7.
Its S-payoft is thus:

N7(T,S)(K — L(T,S)),

where NN is the contract nominal value.

This payoff can be rewritten by substituting the LIBOR rate with its

expression:

N(T(T,S)K—p(Tl’S) +1) .
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Now we use the principle of no arbitrage to calculate the value of the above

FRA at time t. The amount 7 at time S equals to have p(T', 5) 7<= 1

(Ts
unit of currency at time 7', in turn this one equals to have p(t,T) unlts of
currency at time ¢. Instead, the amount 7(7,S)K + 1 at time S equals to
have p(t, S)(7(T, S)K + 1) units of currency at time ¢. Therefore, the ¢t-value

of the contract is

FRA(t,T,S,7(T,S),N,K) = N [p(t,S)r(T,S)K — p(t,T) + p(t, S)]) .
(1.2)
Finally we can define the simply-compounded forward interest rate as the
unique value of the fixed rate K which renders the FRA with expiry 7" and
maturity S a fair contract at time ¢, i.e. such that the ¢-price (1.2) is 0, to
achieve the same Definition 1.9 again. Then, the value of the FRA can be

rewritten in terms of the forward rate as

FRA(t,T,S,7(T,S),N,K) = N |p(t,S)7(T,S)K +pl(t, S) (1_%)}

= Nip(t,Sr(T,9)K+
+p(t, S)(=7(T, S)F (4T, 5))]
= N7(T,5)p(t,S) (K — F(t;T,5)) . (1.3)

Comparing the payoff and the price of the above FRA, we can view the
forward rate F(t;T,S) as a kind of estimate of the future spot rate L(T),5),

which is random at time ¢.

The last type of interest rate worthy to be mentioned is the analogous of

the instantaneous short interest rate, in the future.

Definition 1.12. The instantaneous forward interest rate at time t for the
maturity 7" is the limit of the forward rates expiring in 7" when collapsing

towards their expiry.
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It is denoted by f(¢) and is defined by:

f(t) = lim F(tT,S)

S—T+

= lim R(t;T,S)

S—T+
Olnp(t,T)
or '

Interest Rate Swaps

Definition 1.13. Given the tenor structure 7 = {7, ..., T3} with the corre-
sponding set of year fractions 7 = {7,,..., 73}, an Interest Rate Swap (IRS)
with tenor Ty — Ty, is a contract which, at every time T; € {Thi1,...,15}

exchanges the floating leg payment
N7 L(Ti1,T;)

with the fixed leg payment

NTZ'K,

where N is the nominal value and K a fixed interest rate.

It can be of two types: the holder of a Payer IRS, denoted by PFS, re-
ceives the floating leg and pays the fixed leg, whereas the holder of a Receiver
IRS, denoted by RFS, the opposite. The discounted payoff at a time t < T,
of a PFS is thus:

B
> D(t, T)N7(L(T;i1, T;) = K),

i=a+1

whereas a RFS has the opposite payoff.



1. Interest rates and basic instruments

The arbitrage-free value at t < T, of a PFS with a unit notional amount is:

B
PFS(t,T,K) = F Z D@t T;) 7 (Fi(Ti-1) — K) | F

, =a+1
= 'Z p(t, Ti) 7 E* [L(Ti1, T;) — K | F]
B
= p(t,Ty) —p(t, Ts) — K 'Z 7ip(t, T;) (1.4)
B
= Y p(t,T) 7 (F(t) - K), (1.5)

where denoting F;(t) := F(t;1;-1,1j) .

Proof. The formula (1.4) can be obtained analogously to the price of a FRA:

the floating payment set in T;_; and payed in T; can be rewritten as

1

S——
p(ﬂ—17ﬂ)

that equals to have
p(t, Tie1) — p(t, T7) (1.6)

at time t < T,, so that the arbitrage-free value at t of the whole floating side
is
B
> (o, Timy) = p(t,T5)) = p(t. To) — p(t, T5)

i=a+1

on the other hand the amount 7; K at time 7} equals to have p(t, T;)7; KK units

of currency at time t, so that the arbitrage-free value at t of the whole fixed

side is
B B
Z p(t, ) K = K Z p(t, T;)T; .
i=a+1 i=a+1

Equivalently we could have obtained (1.6) by the risk neutral pricing for-
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mula (D.6):

1
E< D(t, T, <7—1) ./_"W} =
P Gy )
1
L p(,‘ri—lairi)
r ) T
_ E.Q e ftTl rsdsEQ |:efTi1 rsds | ‘/—-%/1:| |ftW:| —p(t,T‘Z)

= E9|e S rads |‘/—_;5W} - B¢ [D(t’ L) |JT_;’W}

M Ti—1
= EC|e TSdS|'FtW:| —p(t, i) = p(t, Ti) — p(t,T3) .

Then, the formula (1.5) can be obtained by substituting the expression for

forward rates (1.1), as we made in (1.3). O

From another point of view, a RFS can be view as a portfolio of FRAs,
valued through formulas (1.2) or (1.3), leading to a price opposite to that of
a PFS.

Definition 1.14. The forward swap rate (or par swap rate) of a T, x (T —T,)
Interest Rate Swap is denoted by S, (t) at time ¢ and is defined as that value
of the fixed rate that makes the IRS a fair contract at the current time ¢. It

is obtained by equating to zero the ¢-value of the contract in (1.4):

Sap(t) = p(t’ﬁTa) —ptTp) (1.7)
‘:24-1 Ti p(ta irz)

Remark 1. It can be rewritten as a nonlinear function of the forward LIBOR

rates as
1
1= 1 e
Sap(t) = g i . (1.8)
1
T; T 50
i:%—l j:l;[-i-l i by ()
Proof.
p(t,Ta)—p(t,TB)
S . p(t, Ta) - p(t, Tﬁ) o p(t,Tw)
a75(t) - B - ﬁ ’
7Ti
>, Tip(t,T;) > Ti II;((tt,Ta))

i=a+1 i=a+1
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then, from the definition (1.1) of forward rates and by a simple algebraic

relation, we have:

pt.T)  vr p(tT) T 1
p(t’Tj—l)_ H 1+Tij(t)

Vi>o.

j:a+l j:()c+1

1.2 Main derivatives

In this chapter we present the two main interest rate derivatives, that are

caps/floors and swaptions.

Interest rate Caps/Floors

Definition 1.15. An interest rate cap is a financial insurance contract equiv-
alent to a payer interest rate swap where each exchange payment is executed
if and only if it has positive value. The discounted payoff at time ¢ of the cap

associated to the tenor structure 7 = {T,,..., T}, with the corresponding

set of year fractions 7 = {7,,..., 73}, and working on a principal amount of
money NV, is
B
> D(t, T)N7(L(T;-1, Ty) — K)* . (1.9)
i=a+1

Analogously, a floor is a contract equivalent to a receiver interest rate swap
where each exchange payment is executed if and only if it has positive value,
with ¢-discounted payoff
B
> D(t, T)N(K — L(T;—1, T;)) "
i=a+1
A cap has the task of protecting the holder, indebted with a loan at a
floating rate of interest, from having to pay more than a prespecified rate K,
called the cap rate. On the other hand, a floor guarantees that the interest

paid on a floating rate loan will never be below a predetermined floor rate.
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A cap consists in a portfolio of a number of more basic contracts, named
caplets: the i-th caplet is determined at time T;_; but not paid out until

time T; and has the t-discounted payoff
D(t, T))N7(L(T;_,, T;) — K)* .

Analogously are defined the floorlet contracts.

The market practice is to price caps by using the Black’s formula for caps,

an extension of the Black and Scholes formula, dating back to 1976 when
Black had to price the payoff of commodity options. The price at time ¢ of
the cap with tenor 7 and unit notional amount is

B
CapBlaCk(t>T7 T, K7 'U) = Z Tlp(taﬂ) Bl (K>F(t77—‘z—lairl)>vl)) 9 (110)

i=a+1
where
BUK, F(t;T;_1,T;),v)) := F(t;T;1,T;) ® (dy (K, F(t; T4, T;),v;)) +
—K® (do( K, F(t; T4, T3),v:))

dl(K>F>u) = 777
In(%)-%

d2(K>F>u) = T
V; = 'U\/K,

with the common volatility parameter v that is retrieved from market quotes.

Analogously, the Black’s formula for caplets is

CaplBlaCk(taj—‘i—la iri? Ka Ui) =T p(taj—‘z) Bl (Ka F(t7 CTi—laj—‘i)a Ul)) ) (111)

foralli=a+1,...,0.

Swaptions

Definition 1.16. A European T, x (1, — T3) Payer Swaption (PS) with
swaption strike K is a contract that gives the right (but not the obligation)
to enter a PFS with tenor T — 7|, and fixed rate K at the future time 75,

i.e. the swaption maturity.
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Namely, a swaption is an option of an IRS. The payer swaption payoff at

its first reset date T, which is also the swaption maturity, is:

B +
(PFS(TO”T> K))+ = ( Z p(TomTi) Ti (F(Ta;Ti—laTi) - K)) (1'12)

i=a+1
B8
(Sas(To) = K)" > mp(Ta.T) (1.13)
i=a+1

respectively in terms of forward rates and of the relevant forward swap rate.

Proof. The formula (1.12) is obtained simply by taking the positive part of
the T,,-price of a PFS in the form (1.5), whilst the formula (1.13) is obtained

from the other version (1.4) of the same price as follows:

B +
(PFS(TavTv K>>+ = (p(Ta,Ta) —p(Ta,Tg) - K Z Tip(TauTi>>

i=a+1
B
= (Sap(Te) = K)" > 7ip(Ta,To) .
i=a+1

0

The market practice is to price swaptions by using the Black’s formula for

swaptions: the price at time t of the above T}, x (T,, — Tj) payer swaption is

B
PSP, T, T K o) = D 7ip(t 1) BL(K, Sas(t), vasv/Ta — 1) -
i=a+1

(1.14)

A Receiver Swaption is defined analogously as an option on a RFS.



Chapter 2

The LIBOR Market Model
(LMM)

For a very long time, namely since the early '80 to 1996, the market
practice has been to value caps, floors and swaptions by using a formal ex-
tension of the Black (1976) model. However, this formula was applied in a
completely heuristic way, under some simplifying and inexact assumptions.
Indeed, interest rate derivatives were priced by using short rate models, based
on modeling the instantaneous short interest rate; at one point this was as-
sumed to be deterministic, so that the discount factor was identified with the
corresponding bond price, that could be factorized out of the Q)-expectation
in the risk-neutral pricing formula; then, inconsistently with the previous
assumption, the forward LIBOR rates were modeled as driftless geometric
Brownian motions under (), hence stochastic; finally the expectation could be
view as the price of a call option in a market with zero risk-free rate, therefore

it was obtained through the Black’s formula. This is logically inconsistent.

Then, at the end of the 90, after the coming of the theory of the change
of numeraire, a promising family of (arbitrage-free) interest rate models was
introduced: the Market Models. This breakthrough came at the hands of
Miltersen et al (1997), Brace et al (1997) and Jamshidian (1998). The prin-

cipal idea of these approaches is to choose a different numeraire than the

25
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risk-free bank account.

The interest rate market is radically different from the others, e.g. commodi-
ties or equities, thus needs a own kind of modeling. There are three possible
choices in interest rate modeling: short rate models, that model one single
variable, instantaneous forward rate models, that model all infinite points of
the term structure and Market Models.

These recent ones have the following characteristics:

- instead of modeling instantaneous interest rates, they model a selection
of discrete real world rates (quoted in the market) spanning the term

structure;

- under a suitable change of numeraire these market rates can be modeled

log-normally:;

- they produce pricing formulas for caps, floors and swaptions of the
Black-76 type;

- they are easy to calibrate to market data and are then used to price

more exotic products.

The model we are introducing is best known generally as "LIBOR Mar-
ket Model” (LMM), or else ”Log-normal Forward LIBOR Model” or ” Brace-
Gatarek-Musiela 1997 Model” (BGM model), from the names of the authors
of the first published papers that rigorously described it.

Setting the model:
e t =0 is the current time;

e theset {1y, T1,..., Ty} of expiry-maturity dates (expressed in years) is
the tenor structure, with the corresponding year fractions {1, 71, ..., 7a },
i.e. 7; is the one associated with the expiry-maturity pair (7;_1,7;), for

all © > 0, and 79 from now to Tp;

o set T 1 :=0;
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e the simply-compounded forward interest rate resetting at its expiry
date T;_y and with maturity 7; is denoted by Fi(t) := F(t;T;—1,T;)
and is alive up to time T;_;, where it coincides with the spot LIBOR
rate F;(T;_1) = L(T;_1,T;), fori =1,..., M,

e there exists an arbitrage-free market bond, where an EMM @ exists

and the bond prices p(+, T;) are @Q-prices, for i = 1,..., M;

e Q' is the EMM associated with the numeraire p(-,T;), i.e. the Tj-

forward measure;

e 7' is the M-dimensional correlated Brownian motion under ¢, with

instantaneous correlation matrix p.

Lemma 2.0.1. For every i = 1,..., M the forward LIBOR process F; is
a martingale under the corresponding T;-forward measure, on the interval
[07ﬂ—1]-

Proof. From the definition of forward rates we have

Ti
Since p(t,T;_1) and p(t,T;) are tradable assets, hence Q-prices, F;(t) is a Q-

price too. Thus, when normalizing it by the numeraire p(-,T;), it has to be

a martingale under @ on the interval [0, T;_4]. O

Modeling the F’s as diffusion processes, it follows that F; has a driftless

dynamics under Q°.

Definition 2.1. A discrete tenor LIBOR market model assumes that the
forward rates have the following dynamics under their associated forward

measures:
dFi(t) = o;()Fy(t)dZi(t), t<T;_,, fori=1,...,.M (2.1)
where the percentage instantaneous volatility process of Fj, o;, is assumed

to be deterministic and scalar, whereas dZ! is the i-th component of the Q'-

Brownian motion, hence is a standard B.m. (Observation 13 in Appendix

Q).
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There exist also extensions of this model where the scalar volatility o;(t)
are positive stochastic processes.
Notice that, if o; is bounded, the SDE (2.1) has a unique strong solution,

since it describes a geometric Brownian motion. Indeed, by It6’s formula,

dIn Fi(t) = a,-(t)dz.i(t) - #dt

—Jy o 4s

= F(T)=F;t) eli 0i(9)aZi(s)=% [} oi(s)?ds ., 0<t<T<T,.

Proposition 2.0.2 (Forward measure dynamics in the LMM). Under the
assumptions of the LIBOR market model, the dynamics of each Fy, for k =
1,..., M, under the forward measure Q" with i € {1,..., M}, is

k<i: dFy(t) = —o(t)Fiu(t) Lo dt + 04 (1) Fi()dZi(E)
j=k+1 !

k=i: dF,(t) = op(t)Fp(t)dZL(2),
k

. Tj0; () F; i
k>i: dFy(t) = ou(t) Fy(t) Py oIS dt + oy () Fie()dZi (),
(2.2)
fort <min{Ty_1,T;}.

Proof. By assumption, there exist a LIBOR market model satisfying (2.1).
We try to determine the deterministic functions (¢, F'(t)), where:
F(t) = (Fi(t),..., Fp(t)), that satisfies

dFy(t) = pi(t, F (1)) Fy(t)dt + ox(t) Fe(t)dZy(t) ,  k #i. (2.3)

In order to find pi (¢, F'(t)), i.e. the percentage drift of dFy under @', we're
going to apply the change of measure from Q° to Q*, then impose that the Q*-
resulting drift is null. From Corollary D.0.14, the Radon-Nikodym derivative
of Q! w.rt. Q' at time ¢ is

in_l\fW:p(tTi—l)P(O’Ti) o
dQ' )




and, by (1.9),
B r—
p(07 Cri—l)
Therefore, assuming (2.1), the dynamics of ; under Q" is

p(0, T) POT) )z
p(0.Ti1) o0 Ty e DEAZ](0)

_ V% ' i
= WTM( VFi(t)dZ;(t) .

Thus, the density 7; is in the form of an exponential martingale with asso-

dn; dFi(t)r; =

ciated process A that is the d-dimensional null vector apart from the i-th

component,

A=(0 gm0 (2.4)
so that we can apply the formula (C.3) of the change of drift with correlation:
dZ'(t) = dZ" 1 (t) — pAdt ,

namely with components

o (t) Fi(t )dt

dZi(t) = dZ;7'(t) + p“W

Applying this inductively we obtain:

: L i _ Thon () Fp(t) 74 .
k<i: dZi(t)=dzFt) + Z p’h dt ;

h: 1—|—Fh(t Th

k>1i: dZ;'.(t) = dZ]lf( ) — 2 pthhUh Fh(t dt

1+ Fp ()T
heit1 h h

Then, inserting these into (2.3) and equating the Q*-drift to zero, we have:

k<i: Fi(t) (uz<t,F<t>>+az-<t> ) é—<) dt =

h:k+1

= u@(t,F(t)) = —0;(t) E p]hThcrh(t Fy(t) :

hekd1 1+Fh Th
] k 'h ThO
k>i: Fy(t) (u;(t,p(t)) — oi(t) hz 1 hmﬁif;“) dt =0
i+

) Thop () F
= it F(t) = ailt >h21pfh Ol
i+
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At this point, we can turn around the argument to have the following

existence result.

Proposition 2.0.3. Consider a given volatility structure oy, ...,on, where
each o; is bounded, and the terminal measure Q™ with associated d-dimensional

correlated B.m. WM. If we define the processes F, ..., Far by

pi 705 (t) Fy(t)

dFi(t) = —oi(t)Fi(t) L+ 7,F5(1)

dt +o; () Ey(H)dZM(t),  (2.5)

j=i1+1
fori=1,...,M, then the Q' -dynamics of F; is given by (2.1), i.e. there
exists a LIBOR model with the given volatility structure.

Proof. First, we have to prove the existence of a solution of (2.5). For i = M
we simply have
which is just an exponential martingale, where o), is bounded, thus a solution

does exist. Now we proceed by induction: assume that (2.5) admits a solution

fori+1,..., M, then we write the i-th dynamics as
dE(t) = pit, Fiea (1), ... Fu () Fydt + oy() Fy(1)dZ M (t)

where the crucial fact is that u; depends only on Fy for k =¢+1,..., M.
Thus, denoting FA, := (Fyi1,..., Fuy)', we can solve explicitly the above
SDE by applying the Ito formula:
dF;(t) 1
E(t)  2F(t)
= Jult FL ()t + 0i(6)dZ (1) — S0t

dIn F(t) oi(t)* Fy(t)dt

= IE() = E(0) + [y (s, FA(s) = #57) ds + fy 0u()dZi(s)

= F(t) = B exp | fy (s, FYL () — 262 ) ds] exp | [ oi(s)azi(s)]

for 0 <t < T;_;. This proves existence.
Then, we have to prove that the process A defined in (2.4) satisfies the
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Novikov condition (B.1), in which case the density process 7' is a Q;-martingale
and consequently we can apply the Girsanov Theorem, retracing the same
steps as in the proof of Proposition 2.0.2. In this regard, given an initial
positive LIBOR term structure, as it is F'(0) = (F1(0),..., Fa(0))’, notice
that all LIBOR rate processes will be always positive, thus the process A

in (2.4) is bounded and consequently satisfies the Novikov condition. O

The "log-normal forward LIBOR model” takes his name from the log-
normal distribution of each forward rate under the related forward measure
and we find it in the literature with several names. Anyway, the most com-
mon terminology remains that of ”LIBOR Market Model”.

2.1 Pricing Caps in the LMM

In the market, cap prices are not quoted in monetary terms, but rather
in terms of the so-called implied Black volatilities. Typically, caps whose
implied volatilities are quoted have resettlement dates Ty, ..., Tz with either
a = 0, Ty = 3 months and all other T;’s equally three-months spaced, or

a =0, Ty = 6 months and all other T;’s equally six-months spaced.

Definition 2.2. Given market price data for caps with tenor structure as
above mentioned, denoted by Cap™(¢,7;, K) where T; = {T1y,...,T}}, the

implied Black volatilities are defined as follows:

e the implied flat volatilities are the solutions vy, _cqep, - - -, U1y, —cap Of the

equations

J
Cap™(t,7;, K) = Z Capl®* (¢, T;_1, T}, K, 07, —cap)

i=1

jg=1...,M;

e the implied spot volatilities are the solutions v, _capis - - -, V1 —capi Of

the equations

C&plm(t, ﬂ—17 ,—Tiv K) - CaplBlaCk<t7 E—lu ,—Tiv K7 UTi—capl) 9
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1=1,..., M, where

Capl™(t,T;_1,T;, K) = Cap™(t, T;, K) — Cap™(t, T;_1, K) .

Notice that the flat volatility v, _cqp is that implied by the Black formula
by putting the same average volatility in all caplets up to T}, whereas the
spot volatility vr,_cqp is just the implied average volatility from caplet over
[T, Th).

Remark 2. There seems to be one kind of inconsistency in the cap volatility
system. Indeed, when considering a set of caplets all concurring to different
caps, their average volatilities change moving from a cap to another, if com-
puted as implied flat volatilities. Therefore, to recover correctly cap prices

according to the LMM dynamics, we need to have

J
Zsz(tvﬂ) Bl (K,F(tﬂ_l,ﬂ), \/,—Ti—lvTj—cap» =
= (2.6)

J
= Z sz(tuﬂ) Bl (K,F(t,ﬂ_l,ﬂ), Vﬂ—lvTi—capl)) ’
1=1

forall j=1,..., M.
Recalling the t-discounted payoff (1.9) for a cap with tenor 7 = {T,, ..., 15},

year fractions 7, cap rate K and unit notional amount, we have that its price,

given by the risk neutral valuation formula, is

E¢ . Zﬁ: D(t, )1 (L(T;-1, T;) — K)T | R | =
" 1)
S B D TLT T~ K) |

i=a+1
but moving from the probability measure () with numeraire B to the T;-

forward measure in each i-th summand, as in (D.7), we have

B
S 1t T B [(L(Ti0, T) — K)* | 7
i=a+1
Notice that the joint dynamics of forward rates is not involved in the pricing

of a cap, because its payoff is reduced to a sum of payoffs of the caplets
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involved. Consequently, marginal distributions of forward rates are enough
to compute the expectation and the correlation between them does not mat-
ter. The above expectation in computed easily, remembering the log-normal
distribution of the F}’s under the related @;’s.

Proposition 2.1.1 (Equivalence between LMM and Black’s caplet prices).
The price of the i-th caplet implied by the LIBOR market model coincides
with that given by the corresponding Black caplet formula:

Capl"™(0, 7,1, T3, K) = Capl®*™0,T;_1, T;, K, v;)
= sz(ovﬂ) Bl (KaF(O;,—Ti—luf—ri)vUi ﬂ—l)) )

where
1

(0 = 7— /0 ()t (2.8)

Proof.
Capl""™(t,T,_1, T}, K) = 7ip(t, T,) E* [(L(T;—1, T;) — K)* | R

where L(T;_1,T;) = F(T;_1;T;-1,T;) = F;(T;—1) and, for T" < T;_4, F;(T) is

log-normal distributed under the forward measure @, indeed
F(T) = Fy(t)e) O3 [EaPds 0 <t <T < Ty,

with o; assumed to be deterministic. Let

v 1) = [ a0z - 5 [ oo,

we have
F(T) = F(t)e" ™ Yi(t,T) ~ N(my(t,T), 53(t, T)) ,
where LT .
mit.T) =5 [ oilspds, SHeT) = [ (s
t t
and F;(t) € R at time t. Thus the proof follows from (A.5). O

The quantity v; in (2.8), denote the average (standardized with respect
to time) instantaneous percentage variance of the forward rate F;(t) for

t € [0,T;_1], that is its average volatility.



Chapter 3

The Swap Market Model
(SMM)

We are going to illustrate the counterpart of the LIBOR market model
among the market models, i.e. the "Swap Market Model” (SMM), which
models the evolution of the forward swap rates instead of the one of the
forward LIBOR rates, these two kind of rates being the bases of the two main
markets in the interest rate derivatives world. The SMM is also referred to
as ”Log-Normal Forward Swap Model” or ” Jamshidian 1997 Market Model”.

The settings of this model are still the same of the LMM.

From the formula (1.13) for the T,,-price of a T,, x (15 —1T,) payer swaption,
it comes clearly that the natural choice of numeraire to model the dynamics

of the forward swap rate is the process

B

Cop(t):= > mp(t,Ty),

i=a+1
which is referred to as the accrual factor or the present value of a basis
point, given o, 5 € {0,..., M}, a < . Moreover the accrual factor has the
representation of the value at a time ¢ of a traded asset that is a buy-and-hold
portfolio consisting, for each i, of 7; units of the zero coupon bond maturing

at T;, thus it is a plausible numeraire.

34
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Lemma 3.0.2. Denoted by Q*" the EMM associated with the numeraire
C..5, the forward swap rate process S, g is a martingale under Q*, on the
interval [0, T,].

Proof. This follows immediately from the definition (1.7) of the forward swap

rate, in fact the product

Ca5(t)Sa,5(t) = p(t, Ta) — p(t, Ts)

gives the t-price of a tradable asset, whose discounted process by the nu-
meraire C,, 5 has to be a Q*#-martingale, by Theorem D.0.13 and the prop-
erties of an EMM. O

The probability measure Q®# is called the (forward) swap measure related
to a, 8. We may note that the accrual factors play for the swap rate the same
role as the the zero coupon bond prices did for the forward rates in the LIBOR

market model. The model we are defining is founded on this basis.

Definition 3.1. Consider a fixed a subset 7P%"¢ of all pairs («, 3) of integer
indexes such that 0 < a < 8 < M of the resettlement dates in the tenor
structure {1y, T4, . .., Th } and consider for each pair a deterministic function
of time t — 0,4(t). A swap market model (SMM) with volatilities o, s
assumes that the forward swap rates have the following dynamics under their

associated swap measures:
dSap(t) = 0aps(t)Sast)dWP(t), t<T,, (3.1)

for (o, B) € TP¥"s, where W*# is a scalar standard Q*”-Brownian motion.

We can also allows for correlation between the different Brownian mo-
tions, however, this will not affect the swaption prices but only the pricing

of more complicated products.

Remark 3. In a model with M + 1 resettlement dates it is possible to model
only M swap rates as independent. The two typical choices of possible 7P%"s

identify the following substructures:
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e the regular SMM, which models the swap rates So ar, S1as - -+, Svr—1,0m5
ie.

TPeirs = {(0, M), (1, M), ..., (M —1,M)};
o the reverse SMM, which models the swap rates Sy1, 502, - - -, S0, 1.€.

TPeirs = £(0,1),(0,2),...,(0,M)}.

3.1 Pricing Swaptions in the SMM

In a swap market model, the pricing of swaptions result trivial and exactly

analogous to the pricing of caplets in the LMM.

Proposition 3.1.1 (Equivalence between SMM and Black’s swaption prices).
The price of a T, x (Ts—T,) payer swaption implied by the swap market model

coincides with that given by the corresponding Black swaptions formula:
PS™MM(0, T, {T,, ..., Tp}, K) = PSPP¥0,T,,{Tu, ..., Ts}, K, va5(T0))
= Capl0) Bl (K, Sas(0), v/ Tt s(T)) )

where
,_ L [T 2
'Uaﬂ(T) = — O’a,g(t) dt . (32)
T, Jo
Proof. From (1.13), the risk neutral valuation formula at time ¢ for the price

of the above swaption is

PSMM ¢t T, AT, ..., T5}, K) =

— B2 [D(t,Ts) (Sas(Ta) = K) Cop(To) | Fi]

a, Ca
= B9 [ca,;?¥j> (Sas(Th) — K)" Cop(Th) |]—“t]

= Cap(t) B [(Sas(To) = K)* | F]
by moving from the probability measure () with numeraire B to the forward

swap measure Q%°, as in (D.7). Since S, 4 is log-normal distributed under

the swap measure Q®”, precisely

Sa,B(T) — Sa7ﬁ(t>€ftT o’a’ﬁ(s)dWQvB(s)—% ftT O—a,ﬁ(s)zds’ 0 S t S T S Ta’
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where 0, g is assumed to be deterministic, we can rewrite it consistently with

the assumptions of Corollary A.0.4:
Sas(T) = Sas(t)eretT)

where
T 1 T
Yos(t,T) = / O p(8)dW™P(s) — 5/ Oap(s)ds.
t t

Hence

Yas(t.T) ~ N st T), 52 4(6,T)),  where

1 T T
Mmaps(t,T) = —5/ UQ7B($)2CZ$, Ziﬁ(t,T) = / Uaﬁ(S)ZdS
t t

and S, 5(t) € R at time ¢.
Thus, considering the actual price of the swaption, i.e. t = 0, the proof
follows directly from (A.5). O

3.2 Theoretical incompatibility between LMM
and SMM

At this point, a crucial question rises: Are the two main market models,
the LMM and the SMM, theoretically consistent? That is, can the assump-
tions of log-normality of both LIBOR forward rates and forward swap rates

coexist? In order to give an answer we can proceed as follows:

1. assume the hypothesis of the LMM, namely that each forward rate F;
is log-normal under its related forward measure Q*, i = 1,..., M, as
in (2.1);

2. apply the change of measure to obtain their dynamics under the swap

measure Q%”, for a choice of (a, 3) € TP¥"s;

3. apply the Ito’s formula to obtain the resulting dynamics for the swap
rate S, 5 under Q%7;
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4. check if this distribution is log-normal, as it is under the hypothesis of
the SMM.

Unfortunately, the answer is negative. However, from a practical point of
view, this incompatibility seems to weaken considerably. Indeed, simulating
a large number of realizations of S, (7;,) with the dynamics induced by
the LMM one can compute its empirical (numerical) density and compare it
with the log-normal density. Consequently, it has been argued (Brace-Dun-
Burton 1998 and Morini 2001-2006) that, in normal market conditions, the
two distributions are hardly distinguishable.

Once ascertained the mathematical inconsistency of these two models, we
must admit that the SMM is particularly convenient when pricing a swaption,
because it yields the practice Black’s formula for swaptions. However, for
different products, even those involving the swap rate, there is no analytical
formula in general. The problem left is choosing either of the two models
for the whole market. After that choice, the half market consistent with the
model is calibrated almost automatically, thanks to Black’s formulae, but
the remaining half is more intricate to calibrate.

Since the LIBOR forward rates, rather than swap rates, are more natural
and representative coordinates of the yield curve usually considered, besides
being mathematically more manageable, the better choice of modeling may
be to assume as framework the LIBOR market model. Thus, hereafter, we

are working under the hypothesis of the LMM.



Chapter 4

Pricing of Swaptions in the
LMM

The LMM, unfortunately, does not feature a known distribution for the
joint dynamics of forward rates, hence to evaluate swaptions, as well as other
payoffs involving that joint dynamics, we have to resort to Monte Carlo
simulation, under a chosen numeraire among the T7,...,Ty-zero coupon

bonds, or to some analytical approximation.

4.1 Monte Carlo Pricing of Swaptions

The Monte Carlo method is a numerical and probabilistic method which
consists in a computational algorithm relying on repeated independent ran-
dom sampling to compute approximations of theoretical results, especially
when it is infeasible to compute an exact result with a deterministic algo-
rithm.

In general, Monte Carlo intends to estimate an expectation value through
an arithmetic mean of realizations of i.i.d. random variables and it proceed as
follows: let X be the r.v., with known distribution, on which the expectation
we need to estimate depends; a pseudorandom number generator provides

a sequence of realizations X(®) of theoretical independent r.v. X;, Xo,...

39
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distributed as X; then, the desired expectation is approximated by

1 m

il (k)

mg (X",
k=1

Indeed, by the ”Law of large numbers”, the sample average converges to the

12

Efp(X)]

expected value, under the hypothesis that X, X5, ... is an infinite sequence
of i.i.d. random variables with finite expected value.

The most general way to price a swaption, as well as any other option with
underlying forward rates, is through the Monte Carlo simulation. In order
to simulate all the processes involved in the payoff, their joint dynamics is
discretized with a numerical scheme for SDEs, e.g. the Euler scheme.

Recall the price of a T, x (13 — T,) payer swaption:

oz [D(O,Tc» (Sus(Ta) — )T 3 np<Ta,Ti>] -

i=a+1

— p(0.T,)E" [(Saﬁ(Ta)—K)* 5 n-p(Ta,T,-)] |

i=a+1

by considering this time the T,-bond p(+,T,) as numeraire.

Then, by keeping in mind that S, s has an expression in terms of the relevant
spanning forward rates, given by (1.8), notice that the expectation above
depends on the joint distribution of the same F’s.

The dynamics of the k-th forward rate, for each k = a+1,..., 3, under
Q“ is

k
AF(t) = o (t) Fi(t) PrsTi% B by o o R azew), ¢ < T,

a1 1+ Tij(t)
(4.1)
and, in order to evaluate the payoff
B
(Sas(To) = K)* Y mip(Ta ). (4.2)
i=a+1

we have to generate a number of realization, say m, of

Foi1(Th), ..., F5(Ty) ,
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according to the dynamics (4.1). Finally the Monte Carlo price of the swap-
tion is given by the mean of the m evaluations of the payoff (4.2).

To simulate the dynamics in the SDE (4.1), which has neither analytical
solution nor known distribution, we discretize it by using the Euler scheme
applied to the natural logarithm-version of the same equation. The choice to
discretize the In-version of (4.1) is based on the advantage of having both a
deterministic diffusion coefficients and a better numerical stability. We have,

by the It6’s formula, the In-dynamics

dIn Fy(t) = <gk(t) - Pr,Ti05 (1) F;(t) _ op(t)?

ey 5 ) dt + oy (t)dZ0(t) . (4.3)

We introduce a time grid with a sufficiently (but not too) small step At =

and consider the discrete scheme

T:O o )2
In Fy(tin) = lan(ti)< OIS primisCant) _ oulh) )At+

j=a+1

+o3 () (Z5 (tiv1) — Z ()
(4.4)

with ¢, = iAt, i = 0,...,N — 1. This provides us with m approximated

i
realizations F ( 9 F,gm) (T.,) of the true process Fy(T,), such that
360> 0: E° [\F,g“(Ta) - Fk(Ta)\] < o(Ty) At for At < 6,

where ¢(T,,) is a positive constant. Hence the convergence is of order 1.

Remark 4. We may consider a more refined scheme coming from (4.4) by the

following substitution, in the vector version:

N(t)(Z2%(tia) — Z2°() — AC(t)

where
0 o, 0-- 0 Z8
S(t) = - . 7o = i
0 o0
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A((t) == /t Y(s)dZ%(s) ~ N(0,Cou(t)),

with the covariance n X n matrix, n := § — «, having the elements

t+At
Cov; ;(t) := / (XpX);jds.
t

Indeed, integrating the In-dynamics (4.3) in the vector version between ¢
and t + At, the resulting stochastic integral in it is just A{(¢;). By means
of this substitution, we can simulate more accurate random shocks with

gaussian distribution

N(0,Couv(t))
instead of
N(0, AtXpY)) .

Monte Carlo Variance Reduction

Before introducing the variance reduction technique for Monte Carlo sim-
ulation, we need to give some general notions and results.

Consider a general payoff at time 7', TI(T'), depending on a vector of
spanning forward LIBOR rates F(t), for t € [0,7], where typically T is
smaller than or equal to the expiry of the first forward rate. For instance (4.2)
is a particular case of II(T") = II(7,,). We simulate various scenarios of I1(7T)
through a scheme as (4.4) under the T-forward measure. Let m be the

number of simulated paths, the Monte Carlo price of the payoff is

i 6 (T)
E9 (D0, T)I(T)] = p(0, T)E" [I(T)] =~ p(0,T) =

Since IIM(T),II®)(T), ... constitute a sequence of realizations of indepen-
dent identically distributed random variables distributed as II(T"), under the
hypothesis that the r.v. are summable, i.e. TI(T) € L}(Q), we can apply the

Central Limit Theorem to have the convergence
> (T9(T) — ET(I(T))]

7j=1 in law
vmsamy) 0 VO
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for m — 4o00. Thus, for large m, the following approximation yields:

- (T

s g sua))

— - LI A —F——
m NZD

It follows that the probability that the Monte Carlo estimate is not farther

Z, 7% NO,1).

than e from the true price is
- H(j)(T)

QT HT_ET[H(T)] <ep = QT{|Z‘<EW\%(T))}

_ Vm
= 20 <€Std(H(T))> -1,

where as usual ® denotes the c.d.f. of the standard gaussian distribution.
Once we have chosen a desired value for such a probability, we find the
corresponding value for e. For a typical choice of accuracy of 98%, we solve

in € the equation
Vi .
by
Std(11(T))
vmo

The resulting confidence interval at level 98% for the true value E[II(T)] is

2P(z) —1 =098 < ®(2) =099 < 2~ 233 & ¢~ 2.33

m

i 116 (T) S IO(T)

j=1 B 2_335td(H(T)) =1 N 2.33Std(H(T))

m m ’ m \/ﬁ

As m increases, the window shrinks as \/—% .

Moreover, the standard deviation of the payoff is usually unknown, thus it is
typically replaced by the sample standard deviation, with square

i(ﬂ(j)(T))Q i 9 (T) i

@(H; m)? = =1 —
m m
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m

and the actual Monte Carlo window is
5SS 16)(T)
1

S o7 _ _
=1 Std(Il;m) = Std(11;m)
—92.33 , +233—————=
m vm m vm

(4.5)

In some cases, to have a small enough window, we need to simulate a
huge number of scenarios, being thus too time-consuming. A way to tackle
this problem is given by the control variate technique, which allows to reduce
the sample variance, so as to narrow the window in (4.5), without increasing
m. Omitting for simplicity the time 7" in the notations, the method is to

proceed as follows:

I. Consider another payoff 11,,, which we can evaluate analytically, whose

expectation is denoted by
E[Han] = Tan »
and simulate it together with II under the same scenarios for F.
II. Define an unbiased control-variate estimator II,(v;m) for E[I] as
Suo (Y
Mo(yim) = 4y |
m

— Tlan )

which is also the sample mean of the r.v.
() i= M+ y(Ilan — Tan) -
Hence I1.(7) has expectation E[II] and variance
Var(Il(v)) = Var(Il) + v*Var(Il,,) + 2yCov(I1, I,,)

this last minimized by

_CO’U(H, )

argmin{Var(Il.(y))} =~ = Var(lL) — _COW(;>d1;Ig;1§td(H) .
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III.

IV.

The minimum variance of I1.() is computed as

Var(Il,(v*)) = Var(IT) + Corr(11, Han)2v‘giz’$i)1/ar(ﬂan)+

—2Corr(I1, ,, )V ar(I1)

= Var(Il) (1 — Corr(11, 1,,)?) |

that is smaller than the variance of II; moreover, the larger the distance
between the two variances the larger (in absolute value) the correlation

between the two r.v.

Moving to simulated quantities, we have

Std(I1.(~v*); m) = Std(Il; m)\/ (1 — Corr(I1, m)2> ,
where the sample correlation is

60\21(1_[, [, m)

C/OE’(H, My;m) == — —
Std(I1; m)Std(1l,,; m)

and the sample covariance is
SO i .
== j=1 1 . .
Cov(I1, I, ;m) = ]T -— (Z H(J)) (Z Hagn)> .
j=1 j=1

Concording with the observation at point III., the variance reduction
will be relevant if II and II,, are as correlated as possible. Now the
window (4.5) can be substituted by

i (e — 9,335 te(r7):m)
II.(y;m) — 2.33 Jm

, T (y;m) +2.335td(ﬂc(7 );m)] |

Jm
(1.6)

which is narrower than (4.5) by a factor \/<1 — C/'OE’(H, ,; m)2> .

This technique is quite general and the choice of 11, is theoretically free.

In the case of the pricing of swaptions in the LMM, we select as I,

one of the simplest payoftf with underlying rates Fi.1,..., Fj, as may be a
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portfolio of FRA contracts at time 7, on each single time interval (7;_y, T;],
such that are all fair contracts at time 0. By recalling the price in (1.3) and

reversing the two roles involved, we consider the T,-price

B
> (T, T)m(F(T.) — K),

i=a+1

where the fair value at time 0 of K is equal to F;(0). We take such contract
as our T,,-payoff and rewrite it by a change of measure under its expectation

as follows:

B8
ﬂﬂman>zzm;nmwmw—mmﬂ:

i=a+1
— pi | 205) ; T, . T)7(FA(T,) — Fi(0))] =
p(Ta,T5) '—21]9( o L) 7i(Fi(Tw) i(0)) (4.7)

5
. ,_:%lﬂp(Tasz‘)Tz‘(Fi(Ta)—Fi(O))
— p(0,T))E

p(Ta,Ty)
Thus we can set
B
> 1P(Taaﬂ)n(Fz‘(T ) — Fi(0))
Han Ta - =t 5
(Za) p(1a, T5)
whose price at time 0 is
Tan = 0.

Indeed, the payoff I1,,(-) is a sum of traded assets divided by p(-,T}), hence

it is a martingale under the 7T}~ forward measure ()7, which implies that

B [Hon(Ta)] = B [ (0)] = £ [0] = 0.

4.2 Approximated Analytical Swaption Prices

4.2.1 Rank-One analytical Swaption prices

This approximation is due to Brace (1996).
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By assuming the tenor structure 7 = {7,, ..., T3} and the year fractions

T = {74, ..., 73}, the swaption price can be also written as follows:
5 +
PS(0,1.,T,K) = E|D(0,T5) ( > p(Ta, T 7 (Fi(T) —K)>
i=a+1
8 +
= p(0,T,) E* ( Z (1o, T;) 7 (Fi(To) — K))
i=o+1
B .
= > p(0.T) 7 E'[(F(T,) — K) 14 ,
i=a+1
where

B
A= { ( > p(To, T) 7 (Fi(Tw) - K)) > o} = {S.5(T,) > K}.

i=a+1

The problem is to find approximated analytical formulae for the amount

E'[(Fi(Ta) — K)14] . (4.8)

Steps

e Choose a forward measure )7, with v € {«, ..., 5}, under which con-

sider the LMM forward rate dynamics given by Proposition 2.0.2.

e As first approximation replace the stochastic percentage drift with a

deterministic one:

v v
k<ny: — Pk,jTja‘j(t‘)Fj(t) ~ Pk,jTjJ‘j(t‘)Fj(O) = it
j;—l 14715 F; (t) jZ%‘rl 1471 F;(0) Vs ( )
k= v o 0= :u’YfY(t)
k
. GTioi(OF;(t) 705 () F;(0) .
b3 eSS S R <
J=v+1 J=v+1

so that each dynamics follows now a geometric Brownian motion:



48

4. Pricing of Swaptions in the LMM

Thus:
Ft) = O e ([ (st ~ Joue?) e+ [ iz

or equivalently, in the vector form:

F(T,) = F(0) exp < /0 Y (O (t)dt — % /0 " a(t)Zdt) exp (X7)
(4.9)

Oar1(t) ot (t)
o(t) = : e (t) = : , X7 = [t o(t)dZ(t)
Uﬁ(t) N%B(t)

and all the products act componentwise.
Notice that
Q fo
X7~ N(Oa V) ) ‘/i,j = / Ul(t)aj(t)pl,]dt :
0

Remark 5. -
X=X = [ a0 - pat)at.

Proof. Choosing as forward measure (%, we analogously obtain the
forward rate dynamics in (4.9) as long as you replace i (t) with 11,(t)
and dZ7(t) with dZ(t). Then we equal this with (4.9) and we get X7

in terms of X¢. O

Since p; j > 0 Vi, 7, we have V; ; > 0 Vi, 7 and V is irreducible.
Thus, by the Perron-Frobenius Theorem, V' admits a unique dominant
eigenvalue A;(V') > 0 whose associated eigenvector is e; (V) > 0.

Approximate V with a rank-one matrix:
VaVH=TI", where T':=+/M(V)e (V).
The previous X7 is then substituted by the one with components

X7 =T,U", where UY % N(0,1),
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and
D\ AT (6)F; (0
To
k=7 fo Ok ()dt = =150 =: Tyqy 4 ,
k
] T, 7T F(0)
k> v fo ( )lU”Y k‘( )dt Ly jg{;{_l 11_;]1:?](0) - qu“/,k .
(4.10)
Proof of (4.10).
) T, J 705 ()F;(0)
k<~ fo ot ,u,yk t)dt = —fO ak(t)jgl %dt

5 F(0) (T
= — zk: ! 1_:7_1_%,(]_()0) fO Uk(t)(%(t)pk,]dt,
_l’_

where -
/ O'k(t) ( )pkjdt Fkl“
0

Analogously the other cases. O

The forward-rate dynamics becomes
1
F(T,) = F(0) exp <Fq%. - §Diag(FF/)dt) exp(X7),
where the product I'g,. acts componentwise.

e Set
pi=(qa. and U:=U",

then express

and notice that

Qvk =Pk — Dy -
Indeed, in the case k <~ :
k
= — i () F5(0) 3 () F;(0) i 7 15()F5(0)
" ikt 1+ T]F’](O) ot 1+ T]F’](O) it 1+ Tij(O)
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and analogously in the other cases.

Thanks to the fact that ¢, = 0, we obtain the following expression for

the 7" forward-rate dynamics:
E(To;U7) := F,(0)exp (—302) exp(D,U") =
= Fv(o) C€Xp (—%1—%) eXp(Pv(U + pw)) = Fv(Ta? U,
from which: U'=U+p,, 7v=a,...,B.

Denote

7 7

P TOmTk 1
p(14,,T;) = T,,T:; U
k1;[+1 (To, Ti—1) k:1;[+ 1+Tka(Ta,U) 7l )

and rewrite

B

A::{ §jmnjmmnmuam—K0>o} (411)
:t;—i-l .

={ Zp@me%%%ﬁ?—hw@D>%

i=a+1
B
i=a+1
Remark 6. The equation
(T U)— K) = 4.12
Z H 1—|—TkaTa7U) i (F(Ta; U) ) =0 ( )

i=a+1 k=«

has a unique solution U = U, .

Proof. We aim to prove the monotony of the function in the left-hand
side of (4.12) and we do that by proving the positivity of its derivative,
ie.
#( S T st n (B(T0) - ) -
i—a+1 k=a-+1

8
from 41)= 0 (1— p(To, T;U) — 2 nKp(Ta,Tz-;U)) >0

i=a+1
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A sufficient condition for this is

T

D p(Ta, T3U) <0 Vie{a+1,...,5}
& Lnp(T,, T;U) <0 Vie{a+1,...,5}
o LS (14 F(TyU) >0 Vie{a+1,....5}

3

A sufficient condition for this is

L In(l+ 7 Fu(T;U) >0 Veke{a+1,...,8} &
& LE(T:U)>0 Vke{a+1,...,8}.

This is satisfied because

0
%Fk(Ta; U)=T3Fe(T,;U) >0, since ' > 0.

Thus the left-hand side of equation (4.12) is an increasing function of
U, hence the proof. O

From the last remark, the inequality in (4.11) is equivalent to

U>U,, aswellas U > U, +p;.

Compute the expectation (4.8) as

= E'||Fi(0)exp | —=T? +T,U" ) — Ff + F/+
—K) ]l{FZ(O)exp(—%F?y+FiUi)>Fi*}
. 1 . *
= F [FZ(O) exp <—§F? + FiUZ> — Fl*] + (4.13)
+ (FZ* — K) _E7Z []]_{FZ(O) CXP(—%FZZ+FiUi)>FZ-*}i| (414)
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where
1

and the last formula is obtained from the previous as:

1) = [ (m0ew (L) - m) I,

V2m

(o (5 e (5) e

with D = {F;(0)exp (—3I'% + T;z) > F;}

nto41ip2 In . —1r2
— { F, ((1)—3:‘2 i } — {Z > FZ-(%)Z 271 }
In FL(*O) + 11"22 1 Fz(?) 11"22
= (@13) = RO | e | )

In 50 _ %Fz

F*
= (F/=K)® :
(F; = K) -

Eventually we have an analytical formula that requires only a root-searching

procedure to find U, .

Proposition 4.2.1 (Brace’s rank-one formula). The approzimated price of

a Ty x (T —T,) payer swaption is given by

Proof.

B
S p(0.5) [F(0) BT, — U —p) — K(~U. —p)] . (415)
i=a+1
In Fi(.*O)—i_le? —In(ex —ll“?—l—l“i(U*—l— i) +ir2
dl(F’z*7F’Z(O)7FZ) = ELFZ- - = ( p( — T - )) —
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Analogously
dg(F’Z*,F,(O),F,) = Usx —Di-

4.2.2 Rank-r analytical Swaption prices

The approach is the same as in the rank-one case and the first two steps
still hold in the extended rank-r case.

Then define a rank-r approximation of V" as follows: V ~ V" :=TT",

where T := [\/Al(V)el(V) A(V)ea(V) o/ )\T(V)er(v)} :

Thus
X7 L N, V)

with components given by
X7 =TuU", where UY% N(0,1,)

and I'(;) is the i row of T".
Typically it suffices r << f — ar.
Formulae and definitions in (4.10) still hold by replacing I'yI'; with T’ ;.
Under the same adjustments, the following formulae still hold up to the
observation (4.12), but here U, the g, ;’s and the p,’s are r-vectors.

Now the equation (4.12) was found (Brace,1997) to describe with a fair

approximation a hyperplane:

U1 = 51 +ZSkUk~
k=2

Remark 7. The set A can be rewritten as follows:

A:{UERTZ U1>51+ZSkUk}- (416)

k=2
Indeed, exactly as in the rank-one case, the partial derivative with respect
to Uy of the left-hand side of the equation corresponding to (4.12) is shown

to be positive.



54 4. Pricing of Swaptions in the LMM

Remark 8. The set A can be expressed in terms of U’ as follows:
A={U"eR" : wU' >s;}, (4.17)

where

T

w = [1 —So - _Sr:| ) 5: =851+ (pi>1 - Sk(pi)k-
k=

Proof of (4.17). From (4.16) and U* = U + p;, we have

[\

A= {UiE]RT : Uf—ZSkU;i>51+(pz’)1— Sk(Pi)k} :
2

k=2 k=

Eventually, compute the expectation (4.8) as:
E'[(Fi(Ta) — K)14] =
= E'[(F(Ta) = K) Tjuuisay]

. |
= & |(FOew (rov - 50R) = K ) L]
= F(0)E {exp (F(i)UZ - §|F(i)|2) ]]-{in>s:f}:| + K E' [L{yuiss)
) s*
= F;(0)F" |1 R |- Ko —— 4.18
W { {‘U(UZ*F(Z'))””} ( \W|) 19
s; —wl', s
— F(0)® (—7) Ko (- i ) . (4.19)

|w] |w

Here, (4.18) follows from the first piece of the previous sum by applying the
property
) ) 1 ) ) )
E* {exp (b'U’ — éb’b) g(UZ)] =E' [g(U" +b)],
which holds because

1.7

E' [exp (WU — 30'b) g(U)] = [ et u=3bg (1) e 20— dy

_ — L (u—b)"(u—b) _g(u)
Jrre2 (%)rdu

dz

(cov. z=u=b) = [p. e g(z+D) \/(;T)

= E'[g(U" +b)] .
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Instead, (4.19) follows from the second summand by exploiting the fact that

.....

thus 7= == — Z%N(O,l).

Proposition 4.2.2 (Brace’s rank-r formula). The approzimated price of a

Ty x (Ts — Ty,) payer swaption is given by

i 7. p(0.T}) {m(om (_%F()) _K® <_WH a0

This analytical formula requires only 2r — 1 root-searching procedures to

find sq,...,s,, that can proceed according to the following:
e Solve numerically eq. (4.12) with U = [a3 0---0]", then s = ay .
e Solve eq. (4.12) with U = [y —50---0]" and with U = [a3 50---0],

then sy = ag — aj .

e For k = 3,...,r solve eq. (4.12) with U = [a; 0--- —
k
with U = [0 0--- 2 0---0]', then sy = af — oy .

0---0) and

N[

4.2.3 Rebonato’s approximation

In the LSM, the forward swap rate, which is always a martingal under

the measure Q*”, has the dynamics
dSap(t) = 0a,5(t) Sa,s (AW (1),

where the volatility process 0, is a deterministic function of time.

Instead, in the LMM, o, s is a stochastic process, thus we can’t use this to
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determine the Black swaption volatility vﬁ 5 as

B L[5 t)dt
('Uoz,ﬁ) _T Ua,ﬁ() )
a Jo

The goal is to find an approximated quantity ULMM of UE 5 in the LMM.

Steps

e The forward swap rate can be obtained also by equating to zero the

expression of the swap price in the form of (1.5):

B

Sapl(t) = Y wi(t)F(t), (4.21)

i=a+1
that looks like a weighted sum with weights

i
1
i 11 T+, 5 (D)

) tairz j =
wi(t) = — pBT)  _ gmen . (4.22)
Z Tkp(t7Tk) Z Tk H 1+TF(t
k=a+1 k=a+1 j=a+l 70

However these ones are not really weights, because they depend on the
stochastic F’s.

According to empirical studies (both historically and through Monte
Carlo simulations), the variability of the w;’s is small compared to the
one of LIBOR rates, so that it makes sense to freeze the w;’s at their

initial values w;(0) .

e Thus approximate

B

Suslt) = 3 w0)F(t).

i=a+1
Under any forward measure Q7, v € {1,..., M}, its dynamics is

B

dSap(t) = > wi(0)dE,(t) = (- )dt + Z w; (0)o;(t) Fy(t)dZ] (t)

i=a+1 i=a+1
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and its quadratic variation process is

d< Saﬂ, Saﬁ >y = dSa,g(t)dSa,g(t)
B
S w0y (0)os (8)a; () F(0)Fy (t) .

i, j=a+1

Q

The approximated forward swap volatility is then given by

0_2 (T,) - d < In Sa’ﬁ,ll’l Saﬁ >y - i dSa’ﬁ(t) dSaﬁ(t)
A dt T dt \ S s(t) Sas(t)

m:zéﬂ wi(0)w;(0)as(t)o; (1) Fi(1) F5(t) pi s
S (t)

e A further approximation makes the quadratic variation of In S, 5 deter-

Q

ministic, by freezing all the remained random variables, the F’s (even
inside S, ), at time O:

S wi(0)w, (0)s(6)a; (O FL(0) Fy(0)pi

2 (4) A BITOHL
) 52,0

~

The forward swap rate, that isn’t log-normal in the LMM, can thus be

approximated with a log-normal process:
dSa5(t) R Ga,5(t) Sa,s (AW (1)

where

S w(0)wy (0)o (1), (O F0)F (0)pi,

ij=a+1
S5 5(0)

Oa,6(t) =

e Finally compute the swaption price through the Black’s formula.

Proposition 4.2.3 (Rebonato’s formula). The LMM Black-like swap-

tion volatility can be approximated by UI(;%IM, with

8 0V , (0 . [Ta
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4.2.4 Hull and White’s approximation

The above procedure can be slightly improved by computing the dynamics

of the swap rate S, g(t) before freezing the w’s:

B
dSap(t) = ) (wil)dF(t) + Fi(t)dwi(t)) + (-~ )dt (4.23)
- w; ()
= ihzzaﬂ(wh(t)&,h(t)JrF’i(t) ap, (@) + (- )dt, (4.24)

where (4.23) is obtained by applying the It6’s formula to S, 3 = Sa 5(t, F, w)
and (4.24) applying the Itd’s formula to w; = w;(t, F).
Then, from (4.22), compute

k
(Zﬂf I1 1+TJF(t) ]l{l>h}>

8w2(t) h =a+
or,
(1 + 7 Fn(t)) Z Tk H 1+TJF(t
k=a+1 j=a+1
Proof.
ow;(t) | &, ifi<h
oFy, N ifi>h,
where
i k 1 _
- T H 1+7'7F7" ZTk H T+7; F;(t) (1+ThFZ(t))2
r=a+1 j=a+1
& — J#h

<Z Tk H 1+T]F(t>

k=a+1 Jj=oa+1
k

8
- wiTh 1
: R
(1 + 7 Fu(1))? Z n Il w=mm "

k=a+1 Jj=oa+1

k

B
o wiTh 1
N ;Tk ._Hl 1+ 1,F5(t)
(1 +7’hFh(t)) Z Tk H 1+T]FJ = J=at

k=a+1 Jj=o+1
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i

7 ]I E Tk H
Z":;fl 1+TrFr(t) (1+ThFh hat 1 jmet 1+TJ
T
c = 5 +.1.
> Tk H
(k Lo iza 1+7'JF (t )

L+ mB®) Y 7 11 e

k=a+1 Jj=o+1

Hence the proof. O
By denote
B
mu(t) = wnlt) + Y F) e
i=a+1 h
the swap rate dynamics can be rewritten as
B
dSap(t) = Y Wy(t)dFy(t) + (- )dt.
h=a+1

Now, freeze all F’s at their initial values in order to approximate

B

dSa,ﬁ(t) ~ Z wh(O)th(t) .

h=a+1
Finally, as in the Rebonato’s procedure, derive the volatility-like quantity

oM to be entered in the Black’s formula for swaptions.

Proposition 4.2.4 (Hull and White’s formula). The LMM Black-like swap-

tion volatility can be better approximated by ULMM, with

B W ; ) . rTa
(Tas")? = Z wil0) JT(%;;%?(O)’)“ /0 o:(t)o;(t)dt .

4.3 Example: computational results of the

different methods of swaption pricing

We now show the results we obtain by implementing in Mathematica all

the different methods we presented above to price the swaptions in the LMM.
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We started from an annual tenor structure
{To =1y,..., Ty = 509}

and with the market quotes for the spot-starting swap rates (i.e. where the
first reset date is the day of valuation, i.e. the 26th. of April, 2011)

5_170(0), 5_171(0), ceey 5_1749(0) s
from which we recover through a bootstrapping procedure and a log-linear
interpolation, the zero-bond curve shown in Figure 4.1.
p(O,T)
10
08|
06|
out[126]=

0.4

0.2

Figure 4.1: Zero-bond curve obtained from market data in April 26,2011.

Furthermore, as other inputs to our functions, we have:

- an historical correlation matrix obtained by market data spanning the
year before March 29, 2001, and calibrated in the Schoenmakers and
Coffey’s three-parameter structure, shown later on in Figure 7.8 (we will
describe the topics of correlation modeling and historical correlation

respectively in Chapter 5 and in Section 7.1);

- the current quotes of LIBOR forward rates modeled, Fy(0), ..., Fie(0),
obtained by their definition in terms of zero-coupon bond prices from

the curve in Figure 4.1;
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- the forward volatilities obtained by calibrating the model to swaption

data with an extended triangular cascade calibration, which we will see
in Subsection 7.2.3.

We priced for example three payer swaptions with different maturities and

tenors and we display the results in Table 4.1.

Swaption with tenor T, x Tz — T, and fixed rate K = 0.03

a=25 =38 a=5 =14 a=13, =18
pSieb 0.0339696 0.100866 0.0467792
psHW 0.0339599 0.100712 0.0468129
psbr 0.0339502 0.100645 0.0468045
psbs 0.0339492 0.100643 0.0468043
psMC 0.0330096 0.100043 0.0467224
99% || [0.0326904,0.0333288] | [0.099198,0.100888] | [0.0462018, 0.047243]

Table 4.1: Approximated prices of three payer swaptions with different ma-
turities and tenors, respectively by Rebonato’s, Hull and White’s, Brace’s
rank-1 and Brace’s rank-3 formulae and Monte Carlo simulation with 100000

scenarios and a time grid of step dt = %y.

We can notice that, often, the four approximated analytical prices fall
all into the 99%-confidence interval provided by the Monte Carlo simulation.
Moreover, sometimes they seem to be grouped into two classes, one with the
Rebonato’s and Hull and White’s prices and another with the Braces’ prices,
among which we cannot state what is in general more accurate with respect
to the Monte Carlo result.



Chapter 5

Instantaneous Correlation
Modeling

In the LMM setting, it remains to define the instantaneous correlation
between all the forward LIBOR rates modeled. In fact, we derived the dy-
namics of the F}’s as each dependent on a different random source 7, that
is instantaneously correlated with the others.

Not all interest rate derivatives have the same dependence on correlations.

In the pricing of caps we have already observed that the payoff does not
depend on the joint dynamics of F’s, unlike as the pricing of swaptions does,
depending on more than a single rate in a non-linear relation.
An appropriate correlation modeling can be important in the following step
of calibration to swaption prices and becomes definitely relevant when the
number of contracts to which the model has to be calibrated is large. The
challenge is to choose a structure both flexible enough to express a large
number of swaption prices and, at a same time, parsimonious enough to be
tractable.

The M-dimensional correlated Brownian motion Z is assumed to have an
associated constant correlation matrix p, which, recalling the Remark (14)
in Appendix C, is defined as

pij = Corr(Zi(t), Z;(t)) = Std(Z;(t))Std(Z;(

Cov(Zi(t), Z;(t)) < Zi, Zj >y
) t
62
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and it also holds that
pdt =d < Z >= dZ(t)(dZ(t))’,

from which we call p the instantaneous correlation.

As far as the LMM is concerned, if we assume the volatilities of forward
rates constant on small time intervals of length At, then we can consider
pi; a quantity roughly summarizing the "degree of dependence” between

instantaneous changes of In F; and In Fj:

t
<InF;,InF; >t=/ 0i(s)o;(s)pids
0

t+At
= A<IhF, Ink >t:/ oi(s)oj(s)pids = oi(t)o;(t)pi At
t
and

A< IHF;',IIIF’]' >y o O'Z(t)O'j(t)pz7jAt o
\/A<1HE,1IIF’Z >tA<lI1F],lI1Fj >4 \/O_ZQ(t)O_jg(t)(At)z pZ,]?

so that the correlation between different forward rates is completely deter-
mined by the correlation between different scalar Brownian motions, as far
as the dynamics of the [’s are given by the solutions of the SDEs in (2.2).

In the setting of the LMM, we stated that p is a square M-dimensional
matrix. There exist also low-factor models, i.e. driven by a d-dimensional
B.m. with d < M, which nevertheless have intrinsic problems to match
correlations between forward LIBOR rates realistically, therefore we consider
only M-dimensional structures.

Now, we recall the properties of a generic correlation matrix:

L pij=p;iVi,j (symmetry);

2. |pijl <1Vi,j (normalization);

3. pii=1Vi (maximum correlation for maximum dependence);

4. 2'pr > 0Vzr  (positive semidefinite matrix).
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Then, we describe the additional qualities that an instantaneous correlation

matrix associated with a LIBOR market model would have:
I. p;; >0Vi,j (positive correlations);

II. i — p;; is decreasing Vi > j  (joint movements of far away rates are

less correlated than ones of rates with close maturities);

III. @ — piyp; is increasing Vi, Vfixed p € IN  (the larger the tenor, the

more correlated changes in equally spaced forward rates become).

M(M—1
2

and the 1’s in the diagonal. The high number of parameters can be a prob-

A full-rank correlation matrix p has entries, thanks to the symmetry
lem for practical purposes, e.g. it makes correlations to be irregular when
obtained by fitting swaption prices. There are two possible approaches to
this problem: to use parameterizations of a full-rank matrix or to reduce the

rank.

5.1 Full-rank parameterizations

A general full-rank semi-parametric structure, suggested by
Schoenmakers and Coffey (2000) is:

SC(e),, e GG} (5.1)

p max{¢c;, ¢;}’

where ¢ € (RM)*™ with components such that

&1 Co Cp—1
l=¢<@m<...<cy and —<—=-<...< )
C2 C3 Cm

(5.2)

Remark 9. p3©(c) is determined by M — 1 parameters and satisfies all nec-

essary properties.
Proof. 1. follows directly from the definition;

2., 3., 1. are obviously derived;
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4. is hard to prove;

I1. Vfixed 7, the map
C.
i pg=—, 2]
&

is decreasing, because the ¢;’s are increasing;
III. Foralli e {1,...,M —p} :

p—1

pSC(C)H_p’i - Cic-il;il? - H Cic-li-l:—llf-l - Cic—lil A
p—1
where  A:= T S
p—1
P = ity = Tt = [t
= 4 Cic-i;f-l ’

Ci citp -
but S5 < =75 from definition .

O

For this reason this form is called semi-parametric, in the sense that it
depends on M — 1 parameters, i.e. O(M), rather than O(M?) in case of a
non-parametric M x M matrix, and consequently the parameter dimension
increase proportionally to the model dimension.

Let’s give an idea of the practical meaning of this structure, by showing
that there exists a class of random vectors which have a correlation matrix
satisfying the conditions (5.1)-(5.2).

Let ¢y < ¢ < ... < ¢y be an arbitrary positive increasing sequence
with ¢; = 1 and let W;,i = 1,..., M, be standard normally distributed

independent real r.v., then consider the random vector Y with components

Yi::Zaka ~ N(O,Zai) ,
k=1 k=1
ap=c=1 and a;:=4/c2—c?  fori=2,....M.

where
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We rewrite Y as

Y=A-W ~ N(0,A4), (5.3)
where
ag 0 - 0
a; as 0--- 0
A= :
0
ay Qs . e anr

Then the covariance between Y; and Y, for ¢ < j, is

Cov(Y,,Y)) = (AA);; =) ai=c},
k=1

i i
2 _ 2 2 2 _ 2
because > a;j =ci+ >, (i —ciq) =c;.
k=1 k=2
Thus the correlation between them is

Cov(Y;,Y;) & ¢

]

PY:Y; = = .
i ) 7 ) C; Cj Cj
> apy [ ay
k=1 k=1

Hence it follows that the correlation matrix of Y is given by a structure of

kind (5.1)-(5.2), which consequently defines a real correlation matrix.

Theorem 5.1.1. Every correlation structure of type (5.1)-(5.2) can be equiv-
alently characterized in terms of a sequence of non-negative numbers,

Ag, ..., Ay, in the following representation:

¢; = exp <Z min{i — 1,/ — 1}Al> . (5.4)

1=2
Proof. We now prove the direction (5.1)-(5.2) = (5.4), whereas the converse
follows straightforwardly by checking (5.1)-(5.2) for the sequence (¢;)i=1,. m
defined by (5.4).
Define &; := In¢;, 1 < ¢ < M. Then & = 0, since ¢; = 1, and for the

sequence (&;) the following constraints yield:
§ <&, 1<i<M-—1; (5.5)
Ci1+ &1 <26, 2<i<M-1. (5.6)
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Indeed: (5.5) follows from the increasing monotony of both the sequence

(¢;) and the function In; (5.6) follows from the increasing monotony of the

function ¢ — +11 and consequently we have In¢;,_1 —In¢; < In¢; — Incyq,

with again In 7 .

Now, introduce the new variables

Aj = 26-60 6= (&~ &)= (1 —&) =0, (5.7)
for2<i<M-1,

M-—1
Ay = &= A (5.8)
j=2

Hence, for 2 <i < M,
i i

G=6—6 = D) (G—&1) =) (G—&Ga—-(E-&)+&-&)

k=2 h=2
i (k-1
= L+, (Z G =& = (& —&-1)) + 52)
=3 \1=2
i k—1
= (i—D&+) > (Gn—&a—(E—4)
k=3 =2
= (i—-1)&— ZZAI— (i —1)& — ZZAl
k=3 [=2 =2 k=l+1

i—1

= (i-D&-> (i—D)A. (5.9)

=2
It follows that
i i—1
Gri—&G = &L= (i+1-DA+) (i—DA

=2 =2

= & — ZAl (I—=DA (5.10)

= @—Zm (5.11)
1=2

and the constraints (5.5)-(5.6) transform into

A >0, 2<i<M.
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Indeed:

(5.5),(5.11) & &> A, for2<i< M;

=2

7 1—1
(5.6),(5.11) = ZZ A—& =66 >80 -6 = zz A — & for
=92 =2

2<i<M-1 A;>0 for2<i<M-—1.

Then, by (5.8) and (5.9), we may express the £’s in terms of the new coordi-

nates A’s:
M i—1
gz = (Z_I)ZAZ— (Z—Z)Al
1=2 1=2
M i—1 M i—1
= <ZAZ —ZAZ> = A+ I
1=2 1=2 1=2 1=2
M i—1 M i—1
= (i— 1)ZAI — ZAl — ZAl_'_ZlAl
I=i 1=2 I=i 1=2
M i—1
= (i—-1)> AN+ (-1)A
I=i 1=2
M
= ) min{(i—1),(1—1)}A,.
1=2
Finally substitute the last equation in ¢; = exp(§) . O

Remark 10. A correlation structure (5.1)-(5.2), by representation (5.4), yields

M
plj = exp (— > min{l —i, j —i}Az> . i<y, (5.12)

j=i+1
Proof.
M M
2 =S minfi - 1,0 - 1}A, - Y min{j - 1,1 - 1}A,,
/A 1=2
from which we have three cases:
1—1, i1 <Il<y,;
min{i — 1,/ -1} —min{j — 1,1 -1} =< i—j, i<j<I;
0, [<i<y.
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Hence the proof. O

From representation (5.4), particularly in the form (5.12), we can derive

conveniently various low parametric structures, presented below.

5.1.1 Low-parametric structures by Schoenmakers and
Coffey

» DBy taking Ag, ..., Ay_1=:a>0,and Ay =: >0, we obtain the

following two-parameters form:

o
s =esp [ (5 a (M=) igan o Gy

Proof. For j < M :

r j M—1
Pij = €xp —aZ(l—i)—aZ(j—i)—ﬁ(j—i)]
L =it I=j+1

= exp ow’(M—l—i)—ozZl—aj(M—l—j)—ﬁ(j—i)]
L l=i+1
= exp ai(M—l—i)—a(‘j(‘j;—D—i(igl))—l—

)
r 1 . . . . .
= exp ozi(M———Z)—Ozﬂ—l—Ozﬂ—i-
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For j =M

piv = €xp |—a Z_ (I —1) —B(M—i)]

= exp ai(M—l—i)—a( 5 — )—B(M—i)}

= exp _ai<M—l—£)—aMM_1—B(M—i)]

2 2 2
= exp (z — M) (5 +a%)} :
_ O
Notice that for a = 0 we get the simple correlation structure
pij = e A=l (5.14)

which is frequently used in practice in spite of the unrealistic fact that prop-
erty III. is not satisfied, as the sub-diagonals are constant rather than in-
creasing, i.e. the correlation between forward rates that are equally spaced
is constant in time.

Now introduce two new parameters:

poo =, and o= (M —1)(M - 2),

where ps, is the correlation between the farthest forward rates in the family
considered. Hence, by computing In p,, in terms of «,  and inverting the

definition of 1, we obtain the old parameters in terms of the new ones as

o In poo 2n
f=—3 ) =a-1 T Or-nuI—9)
from which the form (5.13) transform into
B li — 7 M+1—-i—j
pij = €xp [ 1 In poo + =2 /|- (5.15)

This re-parametrization improves the parameter stability: relatively small
movements in the c-sequence associated with (5.15), and consequently in the

correlations themselves, cause relatively small movements in the parameters

Poo 1] -
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» Suppose M > 2 and take the A,; following a straight line for ¢ =

2,...,M — 1 and choose one parameter for i = M. Precisely:
AQZOélZO, AM_IZOKQZO, AM:BZO,

and for i =2,..., M — 1 we have

M—-1—-1 1—2
TM-3 " “M—3

Indeed, the equation representing the line, neither vertical nor horizontal,
through the two distinct points (2, ) and (M — 1, as) is

AZ’:OQ

Qg — (O
A= 2
M—-1-2

where the coordinates of the points are (i, A;) for each i.

(i—2)+a1,

Then we get the following three-parameter form:

pij=exp [—|i — j| (B — go2g (i + %+ ij — 61 — 65 — 3M? + 15M — 7)+

toitg (2 + j2 4 ij — 3Mi — 3Mj + 3i + 3j + 3M?* — 6M +2))] .
(5.16)
Notice that (5.16) collapses to (5.13) if a; = ag = «, in which case we would
have an horizontal line for the first M — 2 points.
In order to gain stability, as above, re-parameterize (5.16) by introducing
Poo 1= p1,m, Which yields

In Poo (03] Q9

§= -2 - M —2) - 2 -2),
and by setting
= 6m — 2o = 4ny .
(M —1)(M —-2)’ (M —1)(M —2)
Then (5.16) becomes
i = exp [_% <_lnpoo o i2+j2+ij—3M(ij‘—43_1\g[)j(ﬁi_—g?;j+2M2—M—4+

24524 = Mi—Mj—3i—3j+3M+2
72 (M—2)(M—3) :

(5.17)

Notice that for 7, = 1, = 7 the structure (5.17) collapses to (5.15) again, as

it is obvious.
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» The calibration experiments of Schoenmakers and Coffey pointed out
that correlation structure (5.17) suits very well in practice. However, cali-
brating a three-parameter matrix takes longer than a two-parameter one.
Furthermore, the experiments reveal that 7, ~ 0 in (5.17), i.e. the final
point of the straight line in the A’s is practically always close to 0. Thus we

may adopt the following computationally improved correlation structure:

_ i—j]
pij = exp[ 1 (—1Inpeot
’ M= (5.18)

+ 2452 +ij—3Mi—3Mj+3i+3j+2M>*~M—4
n (M—2)(M—3) ,

where the characteristics are the same of (5.17) apart from setting
M2 =0, 1:=1m.
» Consider the sequence (¢;) defined by
=60 1<i<M,B8>0,0<a<l.

The associated p satisfies the assumptions of a correlation structure (5.1)-
(5.2). Indeed:

1n< G ) =Ine —Inciy =B ((I—1)%—i%) < B — (i — 1))

Cit1

because ¢ — ¢ is an increasing function but with decreasing slope.
Then, by the definitions (5.7)-(5.8) in the proof of Theorem 5.1.1, we get the

coordinates

A = 25(¢—1)a—ﬁ('— )a—ﬁza 2<i<2M -1,

Ay = B~ ZAl—ﬁ BZ (=1 = (=2 =17
= ﬁ(1+(M—1) —2(M—2) + (M —2)"+1-2)
= B(M=1)" = (M =2)7),

where A; > 0 for 2 < i < M, as it must be.

Then, by introducing pe := p1,m = ——, we get the correlations

— exp |In 1—1 (it
pl,j_ Xp Poo m— 1 m— 1

] . (5.19)
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The correlation structures (5.18) and (5.19) have similar properties, but cal-

ibration experiments of Schoenmakers and Coffey pointed out that (5.18)

performs a little better.

5.1.2 Classical two-parameter structure
pi,j:poo_'_(l_pOO)eXp(_ﬁ‘i_jD ., B >0, (5'2())

where p., represents only asymptotically the correlation between the farthest
forward rates in the family.

This formulation guarantees all the desirable properties apart from III., in
the sense that sub-diagonals are flat. Notice that for p,, = 0 we get the

simple structure (5.14), again.

5.1.3 Rebonato’s three-parameter structure

Rebonato suggested the following perturbation of the classical structure:

Pij = Poo + (1 = poo) exp [=i — j| (B — avmax{i, j})] . (5.21)
This structure recovers the property III.; in fact

i Pij = Poo + (1 = poc) exp [=p (B — ali + p))]

is increasing for a > 0. Thus it may produce realistic market correlations for
properly chosen ps, 5 > 0 and small o > 0. However, (5.21) does not fit in
the general form (5.1)-(5.2) and its («, ps, 5) domain of positivity is not ex-
plicitly specified, hence it is not guaranteed to be a correlation structure. To
avoid this problem, at every step of a hypothetical calibration/optimization,
it must be verified that the resulting matrix is positive semi-definite, for ex-
ample through a constrained optimization. Furthermore for inappropriate
values of p, 8 and not small enough «, it may also happen that p; ; > 1,

thus the (5.21) is a weak characterization as correlation’s parametrization.
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5.2 Reduced rank parameterizations
Given p a positive definite symmetric matrix, it can be rewritten as
p=PAP, (5.22)

where A is the diagonal matrix of (positive) eigenvalues of p in decreasing
order and P the orthogonal matrix whose columns are the corresponding

eigenvectors. Indeed:
pP=PA, and P '=P.

Let A be the diagonal matrix whose entries are the square roots of the cor-
responding ones of A i.e. A =AA.
Then define C' := PA in order to have

p=CC", C'C=A.
The correlated M-dimensional Brownian motion is distributed as
dZ ~ N(0, pdt) ,
whereas the standard M-dimensional Brownian motion is
dW ~ N(0, Idt),

but we can replace dZ with CdW, where p = CC".
If rank p =r < M , there exist a r-rank M X r matrix B such that

p=BB', and dZ = BdW.

The advantage in this replacement is that now we have a r-dimensional ran-
dom shock, given by the r-dimensional standard B.m. .

Even when p is a full rank matrix, we may try and mimic the decompo-
sition p = CC’ with a r-rank M x r correlation matrix B, by introducing a

new noise correlation matrix p? = BB’, with typically r << M .
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5.2.1 Rebonato’s angles method

Counsider the M x r matrix

where for ¢ = 1,..., M the i-th row of B is

b1 = cos0;
by =cosbpsind;;---sinf .y, 1<k<r (5.23)
biy =sinb;;---sinb;, 4
Notice that
p? .= BB’
results a positive semi-definite matrix and all its diagonal terms are equal to
1, thus it is a possible correlation matrix.

The number of parameters of this r-factor structure is M(r — 1), thus
the angles parametrization is not necessarily reducing the dimension of the
problem. In fact keeping for instance full-rank p, i.e. r = M, the number
of parameters is then M (M — 1), that is twice the number of entries of a
generic correlation matrix. To avoid a such inconvenient we have to ask not

only » < M, but rather
M+1

r <<
2

5.2.2 Reduced rank approximations of exogenous cor-

relation matrices

When the correlation matrix is given exogenously as an historical estima-
tion, instead of being a fitting parameter in the calibration to the swaption
market, it has full rank M. The following two methods deal only with this
kind of situation.

The target is to obtain an approximated r-rank correlation matrix p,
with r < M:

M-rank historical p — r-rank p .

Two different approaches are presented below.
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Eigenvalues zeroing with normalization

Consider the decomposition (5.22) and define A" as the r x r diagonal
matrix obtained from A by taking away the M —r smallest diagonal elements,
together with the corresponding dimensions, and P as the M x r matrix
obtained from P by taking away the M — r corresponding columns.

Thus define B := PMWAM) | getting the matrix

27 .= BO(BM)Y

)
which is the best reduced rank approximation of p according to Frobenius
norm.

Remark 11. 7 results positive semi-definite, but it does not features ones

in the diagonal.

The solution is to interpret p") as a covariance matrix and derive the

associated correlation matrix:

—(r)

(r) Pij

P e
Pii Pj.j

Indeed, given a generic M-dimensional random variable X with covariance
matrix ¥ = (o;;), which is a M x M positive semi-definite matrix, the

associated correlation matrix is

p=A"TESATE
where
V01,1
A = t. . ,
OM,M
and o7 = 0;; is the variance of the i-th component X;, i =1,..., M.

Optimization on angles parametrization (Rebonato and Jikel, 1999)

Given the full rank correlation matrix p in input, we can find its r-rank

better approximation p(#) = B(0)B(#)" in terms of angles as in (5.23). Pre-
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cisely, once defined the i-th row of B(0) as

bm(ﬁ) = COS 92',1
bik(0) =cosbpsinb;q---sinb; 1, 1<k<r
b

,-77“(9) = sin 9@1 -+ -8in ei,k—l s

minimize with respect to (6) the quantity

M

> pij—pisOF).

ij=1
This method gives the optimal solution through an unconstrained optimiza-
tion.

Comparing the methods of eigenvalues zeroing and angles optimization,
we may see a noticeable better fit with the last one, despite a few seconds
of computation, with a low rank. This difference is going to attenuate by
increasing the rank.

In most situations a rank-4 approximation is satisfactory with both methods,

whereas in extreme cases we have to resort to a rank up the 7-th.



Chapter 6

Calibration of the LMM

6.1 Calibration of the LMM to Caplets

The LIBOR market model is calibrated to the most traded derivatives
among the liquid ones, namely the caplets, in an almost automatic way.
Indeed, the transition from caps to caplets is made by traders, then the
calibration of the LMM parameters to caps and floors results trivial, thanks
to the Proposition 2.1.1 and using market quoted volatilities.

Let assume that we are standing at time ¢t = 0. Given an empirical term
structure of implied spot volatilities, from Proposition 2.1.1 it follows that

calibrating the model to caplets amounts to choose the deterministic LIBOR

volatilities of forward rates o1,..., oy such that
1 Ti 1
V3 _apt = —/ oi(t)*dt, i=1,...,M. (6.1)
Ti1 Jo

6.1.1 Parameterizations of Volatility of Forward Rates

The system (6.1) is highly undetermined, thus it needs structural assump-
tions about the shape of volatility functions. The most popular specifications
fall into two main categories: piecewise-constant functions, in which case the
o’s are constant in each expiry-maturity time interval in which the corre-

sponding forward rates are alive, and functional parameterized forms, as

78
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shown below.
e General Piecewise-Constant volatilities (GPC):
oi(t) =0oipwy, 0<t<Ti,, (6.2)
where
pty=m if T, o<t<T,,1, m2>1. (6.3)
The index (t) indicates the maturity of the first forward rate that has

not expired yet by time ¢. These ¢’s can be organized in Table 6.1,
where we have the time intervals in the columns and the relative rates

in the rows.

te (0,To] | (To, Th] | (T, 1o | -+ | (Tar—2, Thi—1]
Fi(t) 011 dead dead | --- dead
F2 (t) 021 022 dead s dead
F(t) OM,1 OM,2 oMz |- oMM

Table 6.1: General Piecewise-Constant volatilities.

To perform calibration, by inserting the expression (6.2) in the equa-
tion (6.1), we impose:
Tiq 1 i
T 107, —capt = /0 07 0y dt = T Z;Tj—w—laijv (6.4)
j—
fori=1,..., M.
There exists multiple configurations that can fit caplets perfectly. In
fact:

\/TOUTl—capl = v/ (Tg — 0)0’171 < 01,1 = U7y —capl
\/T()O'il + (Tl - T())O'%Q = VvV Tlng—capl

\/T()O'%’l + (T1 — T0)0'32,72 + (T2 — T1)0'32)73 = vV TQ’UTS_Capl
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Then we can make some assumptions on this structure in order to

reduce the number of parameters.

Piecewise-constant volatilities dependent only on the time to maturity

T; — Tg()—1 of corresponding forward rates:
oi(t) = oigw) = Ni—g)-1), 0<t<Ti1. (6.5)

They are organized in Table 6.2.

te (0, 7o) | (To, ] | (11, T3] | -+ | (Thr—2, Tha1]
Fi(t) m dead dead | --- dead
Fy(t) 72 m dead | --- dead
Fa(t) N Mv-1 | Ma—2 | - M

Table 6.2: Time-to-maturity-dependent volatilities.

To perform calibration, by inserting the expression (6.5) in the equa-

tion (6.1), we impose:

Ti- 1UT —capl — E :T] 2,j— 17}2 —j+1> (66>

fori=1,..., M.
In this case we can find the parameters n’s that exactly fit the mar-
ket caplets volatilities, being each of those obtained in terms of the

previous. In fact:

(TO - 0)7]1 =V TOUTl—capl < M1,1 = Uy —capl

\/T0U2 Tl TO)U% = V9Ivr_—cop &

& N2 = \/LT*O\/TIU%E_capl —(Th — To)n?
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\/Tong + (Tl - To)ng + (TZ - Tl)n% = \/TZUTg—capl =

& 3= ﬁ\/TQ'U%g—capl - (Tl - TO)/U% - (T2 - Tl)n%

e Constant maturity-dependent volatilities:
O'Z(t) = 0iB(t) = Si 0<t<T;, 4 , (67)

as shown in Table 6.3.

te (0, Ty] | (To, Th] | (Th,To] | -+ | (D=2, Thr—a]
Fi(t) 1 dead dead | --- dead
Fy(t) S9 S9 dead | --- dead
Fu(t) Sm Sm Sm e Sm

Table 6.3: Constant maturity-dependent volatilities.

To perform calibration, by inserting the expression (6.7) in the equa-

tion (6.1), we impose:
2 2 2 2
E—lvTi—capl = tri—lsi A UTi—capl = Si, (68)

fori=1,..., M.

Again, the parameters s’s can exactly fit the market caplets volatilities.

e Separable piecewise-constant volatilities, factorized as follows:
O'Z(t) == Ui,ﬁ(t) = (bz‘llﬁ(t) s 0<t S 7—;‘_1 5 (69)

leading to Table 6.4.

This structure includes the one in (6.7) as a special case when all W’s
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te (0,70] | (To, Th] | (Th, To] | -+ | (Tar—2, Tha-1]
Fi(t) o, U, dead dead | --- dead
Fy(t) Oy Oy, dead | --- dead
Fu(t) (OVAUM Py Wy | Oy Ws |- [OSVAVSYY

Table 6.4: ®; W, structure

are equal to one. To perform calibration, by inserting (6.9) in (6.1), we

impose:
i
,—Ti—lv%i—capl = (I)Z2 ZTj—Zj—l\I]? ) (610)
j=1

fori=1,..., M.

In this case, having read from the market the caplet volatilities vy, _cqp =
vMET the parameters ®’s can be given in terms of the parameters ¥’s
as

(I>2 _ T'i_l(UiZMKT)2

(2

- :
o 2
' 17'3—2&—1\1’]'

J

Separable piecewise-constant volatilities, factorized as follows:
oi(t) = oip) = ®iVigy-1), 0<t<Ti, (6.11)

leading to Table 6.5.

This structure includes the one in (6.5) as a special case when all ®’s
are equal to one. It concludes the piecewise-constant volatility models.

To perform calibration, by inserting (6.11) in (6.1), we impose:

E—lv%i—capl - (b? Z Tj_27j_1\11?_j+1 ’ (612)

j=1
fori=1,..., M.

Similarly to the previous case, the parameters ®’s can be given in terms
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te (0,70 | (1o, 1] (11, T3] (Thi—2, Thi—1]
Fi(t) o,y dead dead dead
Fy(t) DOy, PV dead dead
F(t) Qy VW | PuWar—1 | PurWay— SV

Table 6.5: ®;W;_(5(;)—1) structure

of the parameters U’s as

T (0T

P2 =

g i

2
> 7'j—2,j—1‘1’i—j+1

Jj=1

Even the continuous parameterizations have always been very popular.

The main examples are the following.
e Parametric linear exponential volatilities, analogue to form (6.5) :
oi(t) = W(Ti_y —t;a,b,¢,d) := (a(Ti_y —t) + d)e ?Ti17D 4 ¢ (6.13)

This time, in order to perform calibration, by inserting (6.13) in (6.1)

we obtain a continuous expression:
Ti107, —gqp = 1*(Ti-1;a,b,¢,d) (6.14)
where

Ti1
I*(Ti_y;a,b,c,d) = / ([a(Tj=y — t) + dle T 4 0)2 dt .
0

The parameters a, b, ¢, d can be used to fit the market the caplet volatil-
ities through an optimization algorithm. This formulation can be per-

fected into the following richer parametric form.

e Parametric linear exponential volatilities, analogue to form (6.11) :

0i(t) = @V (T — t;a,b,c,d) = &; ((a(Ti—y — t) + d)e " T7D 4 ¢)
(6.15)
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This form reduces to the previous by setting all the ®’s to one.

In order to perform calibration, by inserting (6.15) in (6.1) we obtain:
tri—lv%—capl = (1)112 (,'Ti—l; a, bv ¢, d) : (616)

Now, having read from the market the caplet volatilities vy, _cop =
vMET  the parameters ®’s can be given in terms of the parameters

a,b,c,d as:
g Tl
! ]2(ﬂ—1;a7 b,C,d) .

Notice that formulation (6.5) and (6.7) allow the complete determination
of the parameters in Tables 6.2 and 6.3 respectively, whereas with formu-
lations (6.2), (6.9) and (6.11) we cannot recover the whole tables of such
parameters, respectively Tables 6.1, 6.4 and 6.5, since we have more un-
known than equations. However, having parameters in excess can be helpful
when we have to calibrate the model, either to the swaptions together with

the caplets or only to the swaptions.

6.1.2 The Term Structure of Volatility

At each time Tj of the set of expiry-maturity dates of the LMM, the term
structure of volatility is the graph of the average volatilities V (1}, 1},—1) of
the forward rates F} with fixing times T}_; and maturities 7}, in function of

expiry times 7},_;. Namely, at time ¢ = T}, it is plotted the set of points
(T, V(T3 Ty)), (T, V(T3 Tyi2)), -, (Tarr, VT Tag1)))

where, for h > 7+ 1,

LT dR (AR 1 [T
V2 T,’T_ — / = / Uztdt
(T, Th—1) Tine1 Jr, Fn(t)Fp(t) Tjh—1 JT; 0(t)

In particular, the term structure of volatility at time ¢t = 0 is

{<T07 V(Ov T0>>7 (Tlv V(O, Tl))v R (TM—17 V(O, TM—I))} =
I

= {(T07 UT1—Capl)7 (Tb UTQ—CCL])l)’ ceey (TM—17 UTM—capl)
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that is the market caplet volatility curve. A typical example of this curve
for annualized caplet volatilities from the Euro market, on May 4, 2011, is
shown in Figure 6.1.2.

In about the 80 percent of cases, the caplet volatility structure occurred

caplet volatilities

VT —capl

0.30 —
0.25 —
0.20 —
0.5 —
0.10 —

0.05F

\\\\\\\\\\\\\\\\\\\\\\\\\\e)(piryTj71

Figure 6.1: Term structure of volatility 7; — VT, 1 —capl from the Euro mar-
ket, on May 4, 2011; the resettlement dates Ty, ..., Ty are annualized and

expressed in years.

with this initially humped shape. The short-term forward LIBOR rates (with
maturity maximum in a year) depends largely on the choices of the monetary
institutions and a bit on everything that happens on the market, e.g. even
when you read a news on a newspaper this can influence the rates’ trend,
therefore they have a high volatility. The long-term forward LIBOR rates
does not depend anymore neither on the expectations about the choices of
institutions like the BCE nor on minor news, therefore they have a lower
volatility. The little hump that is usually located between six months and
two or three years is due to the fact that the institutions of central banks
try to provide information in advance about their future actions, so that in
a very short time the volatility is relatively low, while the peak remains in
that period of time that is still influenced by actions and news but is out of

the near future in which we have the forecasts.
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Up to July 2007 the very-short-term volatilities was very low, but from the
half of the same month, coinciding with the beginning of the crisis, these
volatilities have abruptly risen. As a consequence, in August 2007, mainly
in the USA and in GB, several banks registered big losses. Hence the central
banks inverted the way of working, by flooding the market with liquidity.
There are a few problems related to the choice of a parametrization for the
instantaneous volatilities of forward rates: different assumptions about those
imply different evolutions for the term structure of volatility. Moreover, dif-
ferent evolutions can change dramatically the price of some exotic products,
nevertheless they fit the whole structure of caplets today.

Let’s see the impact of different formulations by starting from the term struc-

ture of volatility today and getting its evolution in time.

e Formulation (6.5) gives

h—1

1

VAT, T 1) = Th kg -

k=j+1

Assuming for simplicity that the year fractions are all equal to 7, we
have that 7;,_1 = (h — 1 — j)7 and another 7 factorize out of the

summation, thus

h—1
1
Vz(Tj>Th—1) = m Z Mhei s

k=j+1

which implies that
V(15 Ther) = V(Tj1, Th) -

Therefore, the term structure of volatility simply shifts in time, i.e.

when moving from time 7} to time 7}; it moves from
{(,ij-i-lv V(,_TJ, j}+1))7 (7}+27 V(]}, ]}+2))7 RS (TM—17 V(]}, TM—I))}
to

(T2, V(T3 T310))s (T, V(TG Tia))s -5 (Tha 1, VAT, T ) 3 -
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The shape of volatility structure remains exactly the same, except that
is shifted of one date in the future, consequently becomes shorter, in
the sense that the tail of the graph is cut away. An example of this kind
of evolution is shown in Figure 6.2, starting from the initial structure
of Figure 6.1.2.

030
025+

020

015
0.10F

005

Figure 6.2: Evolution of the term structure of volatility of Figure 6.1.2 ob-
tained by calibrating the parametrization (6.5).

Qualitatively, this is a desirable feature, since the actual shape of the
market term structure does not change too much over time. Anyway,
there remains the question of whether this formulation allows for a
humped structure to be fitted at the initial time. We note that the

map

Thor = /ThaV(0,Th—y) =

is increasing. On the other hand, we know that the market volatility

structure is decreasing following the hump, namely
V(0,Th—1) > V(0,T})

typically for Tj, larger that three or four years. Putting these two
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constraints together we obtain:

\/KV((L Th—l) < \/ThV(O, Th)

= 1< OTh ) 1/ =/
V(0,Ty_1) > V(0,T}) V(0.T3)

This means that for large h the obtained term structure gets almost
flat at the end, i.e.

V(0,T,—1) = V(0,7,) for large h.
Thus we can use the formulation (6.5) unless the market term structure

is steeply decreasing also for large maturity.

Formulation (6.7) gives
VAT, Th1) = sp.-

Since this equality holds for all j = —1,0,1,..., h and the right member
is independent of j, the volatility term structure evolves simply by

cutting off the head. In particular, we move from the term structure

{(Tj41,5542)); (T2, Sjv3), - -+, (T—1,50m) ) at time Tj

to

{(Tj12,8543)), (Tjis,8544), -+, (Thr—1,50) ) at time T4

An example of this kind of evolution is shown in Figure 6.3, starting
from the initial structure of Figure 6.1.2.

This behaviour is not desirable, because even if the term structure
today features a hump around two years, this hump is disappearing in

the structure in three years.

Formulation (6.9) gives

V3T, Ty 1)

E Thonh 1V .

Tih=1 5770
In this case it is hard to control the qualitative behaviour of the fu-
ture term structure of volatilities, because it depends on the particular

specification of both the ®’s and the U’s.
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0.30 f
0.25 —
0.20 — . /
015 —
0.10 —

005

Figure 6.3: Evolution of the term structure of volatility of Figure 6.1.2 ob-

tained with parametrization (6.7).

e Formulation (6.11) gives

32 Il
VA(Ty, Tha) = — Te—1k Vi g -
Tih=1 4250
By assuming again 7,1, =7 forall h =0,..., M — 1, it reduces to
VA(Ty, T, o S v}
(75, Th-1) = m Z h—Fk -
k=j+1

Then, if the ®’s are all equal, this formulation is analogous to the (6.5).
Therefore, keeping the ®’s sufficiently close to each other, the quali-
tative behaviour of the future term structure of volatilities will not
be affected and the hump remains unchanged. This formulation is
considered the best among the piecewise-constant ones thanks to the
abundance of parameters together with the controllability of the future

evolution of the volatility structure.

e Formulation (6.13) gives

1 Th—1
VQ(TJ-, Th—l) = / \D(Th_l — t; a, b, C, d)2dt ..

Tj,h—1 JT;
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Being the analogous continuous version of the parametrization (6.5),
it maintains the shape of volatility structure as time passes, in par-
ticular its hump if initially present. Nevertheless, once again, it can’t
be used in the calibration if the initial structure is decreasing for large

maturities.

Formulation (6.13) gives

®h Th*l

V2(T']',Th_1) = / \D(Th_l —t;a, b, C, d)2dt .
Tj,h=1 JT;

Being the analogous continuous version of the parametrization (6.11),

if all the ®’s are all close to each other the term structure maintains

its humped as time passes, if initially humped.
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Calibration of the LMM to

Swaptions

Since swaption prices are quoted in the market, calibrating the LIBOR
market model to swaptions means reducing the distance between the mar-
ket quotes and the prices obtained in the LMM, by working on the model
parameters. But it is not all. Indeed, there are two points of interest: the
computational cost and the financial plausibility. On the one hand, the step
of calibration comes before anything else, hence it cannot be a slow proce-
dure. On the other hand, in case we have to price other products that are
very distant from those to which we have calibrated the model, we may find
quite different values depending on which model’s parametrization we have

chosen.

In the LMM framework, the free parameters are those deriving from the

instantaneous correlation and the volatility parameterizations.

Generally, traders translate swaption prices into implied Black’s swaption
volatilities and organize them in a table where the rows are indexed by the
maturity time and the columns are indexed by the length of the underlying
swap. An example of such a table of swaption volatilities is shown in Fig-
ure 7.1.

We must be careful to the shift of indexes of the resettlement dates of the

91
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ly 2y 3y 4y S5y 7y 10y

ly 0. 327 0.291 0.273 0. 26 0. 251 0. 236 0.221
2y 0. 313 0.272 0. 256 0. 247 0. 241 0.23 0. 216
3y 0. 284 0. 253 0. 24 0. 232 0. 227 0. 219 0. 207
4y 0. 259 0.234 0. 225 0. 218 0. 213 0. 206 0. 198
Sy 0. 238 0.22 0.212 0. 206 0. 201 0. 195 0.19

7y 0. 207 0.197 0.191 0. 187 0. 183 0.178 0.178
10y 0. 175 0.171 0. 167 0. 165 0. 164 0. 164 0. 168
15y 0.16 0. 164 0. 165 0. 167 0. 168 0.172 0.178
20y 0.18 0. 186 0.188 0.191 0. 193 0. 198 0. 201

Figure 7.1: Implied volatilities obtained by inverting the Black’s formula for

swaption, with swaption prices from the Euro market, May 4, 2011.

model Ty, ..., Ty with respect to the corresponding times in years. For in-
stance, the first row in the above figure is related to 1 year = Tj, the second

row to 2years = T}, and so on.

Furthermore, a thing to be extremely careful is the problem of "temporal
misalignments” in the swaption matrix, in the sense that it is not necessarily
uniformly updated. Indeed, although it is not stated, generally the most
liquid swaptions are updated regularly, whereas other entries of the matrix
refer to older market situations. This fact, together with the problem coming

from the missing data, can cause troubles in the calibration.

A calibration of the LMM exclusively to swaptions aims to incorporate
as much information as possible from the table of implied volatilities in the
model parameters. In this case we can choose any of the methods we have
seen in Chapter 4 to compute approximated swaption prices, then apply it to
price all the swaptions present in the market table and finally find the param-
eters that minimize the distance between the corresponding prices. Instead,
if we are going to calibrate the LMM both to caplets and to swaptions, we
will proceed analogously but carrying out an optimization on less (or nei-
ther) parameters, because we can recover one of them in terms of the others
from each implied caplet volatility, as we have seen in the different cases of
Subsection 6.1.1. Anyway, we would get a good compromise between fitting

(low errors) and gumption.



7.1 Historical instantaneous correlation

93

At this point, we have two possible ways of acting: to consider the instan-
taneous correlation either as input, estimated exogenously and introduced in
the calibration leaving free only the volatility parameters, or output, also

considered as fitting parameter, of the calibration.

7.1 Historical instantaneous correlation

The opportunity to introduce in the calibration a correlation matrix given
exogenously allows us to incorporate the behaviour of the real market rates in
our model and to unburden the optimization procedure. On the other hand,
however, historical estimations reflect some problems deriving from the data
sampling, e.g. outliers and non synchronous data. A way to tackle this unde-
sirable feature is to use parameterized correlation matrices approximating the
one estimated and preserving by construction the desired characteristics al-
ready described at the beginning of Chapter 5. In support of this, European
swaption prices are relatively insensitive to correlation details and a more
regular correlation structure can lead, through calibration, to more regular

volatilities and to a more stable evolution of the volatility term structure.

7.1.1 Historical estimation

Initially, we have to recover market quotations for interest rates, gener-
ally forward LIBOR or forward swap rates, over time. They are characterized
by a fixed time to maturity, contrarily to the forward rates modeled in the
LMM, which have a fixed maturity date.

Therefore, we must compute first the zero coupon bond prices from the mar-

ket rates, that will be in the form

p(ti, t1 +s:), plta,ta+ i), ..., p(ti, t + s4) (7.1)

for every time to maturity s; and time ¢; of quotations, always expressed in
years. In particular, we consider daily quotations and, since the first forward

rate modeled expires in 7T, i.e. in one year from today, we go back only one
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year with the data. Then, we carry out a linear interpolation between the
logarithms of the bond prices in (7.1) as functions of the maturity for each
fixed evaluation time, in order to compute then the bond prices related to
the fixed maturities Ty, . . ., T, constituting the tenor structure of our LMM,

and valued on the dates of the quotations, i.e. sequences

p(tlaj—‘i)ap(t%iri)a'-- >p(tlairi) (72)
for every i« = 0,...,M — 1. From these, we get the annual forward rates
Fy, ..., Fy—q valued daily from one year to date.

Notice that we loss the last forward rate Iy, in the historical estimation.

At this point, based on the Gaussian approximation
F (ti ) Far— (ti )
( 111( 1171(1:)1 ) ln( }lwfil(tt)l ) ) ~ N(,Ua V),

we use the following estimators for the mean and variance,

-1

- _ 1 Fi(tgt1)

o= ()
= (7.3)
-1

% 1 Fi(tet1) A Fj(tey1) N

V= ot g () i) (0 (56) ).

where [ is the number of past evaluation times, so that our estimation of the
historical correlation matrix p has elements

Vi
Pij =

Example of Historical estimation

Below, are shown the results obtained by historical data spanning the
year before March 29, 2001. In particular, we start with a table of rates
quoted at times t; = —ly,...,t;, = 0, [ = 260 (daily quotations apart
from holidays), specifically the EURIBOR rates for expires in one year and

the forward swap rates for tenors of 2,...,20 years from ¢ = 0. Then, we
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compute the bond prices by performing a bootstrap and, through a log-
linear interpolation, recover the same prices in the form of (7.1), with the
annualized tenor structure {7y = 1y, ..., Ti9 = 20y} . From these, we recover
the forward rates Fy'(t;),..., Fig(t;) for i = 1,...,1, and get the estimate,
following (7.3)-(7.3), for the correlations between them, shown in Figures 7.2
and 7.3.

Figure 7.2: Three-dimensional plot of correlations p;; from the estimated

matrix in Figure 7.3.

We must notice that the resulting p has the characteristics of a correlation
matrix but it does not satisfy the financial expected properties I, I and III.

As mentioned above, once we get the historical estimate, we could con-
sider a parametric correlation matrix that well approximates that estimate.

To do this, we have two possibilities:

e choose any of the parameterizations in Chapter 5 and minimize some
loss function of the distance between the parametric form and the es-

timate p;
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e directly estimate the correlations in the Schoenmakers and Coffey’s

semi-parametric structure (5.1)-(5.2).
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R R R R kK F F F F  Fo Fu Fp F3 Fu4 Fs  Fg Fiz Fig
F, [1.00 0.88 0.70 0.66 0.60 0.51 0.50 0.49 0.55 0.60 0.59 0.61 0.60 0.58 0.57 0.56 0.55 0.56
F, {0.88 1.00 0.93 0.88 0.81 0.75 0.73 0.71 0.77 0.79 0.78 0.78 0.77 0.74 0.73 0.72 0.70 0.70
F; {0.70 0.93 1.0 0.96 0.87 0.82 0.81 0.79 0.84 0.84 0.82 0.82 0.81 0.79 0.78 0.77 0.75 0.74
F, [0.66 0.88 0.96 1.00 0.94 0.91 0.90 0.89 0.91 0.90 0.88 0.87 0.8 0.84 0.83 0.81 0.79 0.78
Fs 10.60 0.81 0.87 0.94 1.00 0.98 0.98 0.97 0.96 0.92 0.91 0.89 0.89 0.87 0.85 0.82 0.80 0.79
Fe [0.51 0.75 0.82 0.91 0.98 1.00 0.99 0.98 0.96 0.91 0.89 0.87 0.87 0.85 0.82 0.80 0.78 0.76
F, {0.50 0.73 0.81 0.90 0.98 0.99 1.0 0.98 0.97 0.91 0.90 0.88 0.83 0.86 0.83 0.80 0.78 0.77
Fe [0.49 0.71 0.79 0.89 0.97 0.98 0.98 1.0 0.97 0.91 0.90 0.88 0.87 0.86 0.83 0.80 0.78 0.76
Fo [0.55 0.77 0.84 0.91 0.96 0.96 0.97 0.97 1.00 0.95 0.94 0.93 0.92 0.91 0.89 0.86 0.84 0.84
Fip10.60 0.79 0.84 0.90 0.92 0.91 0.91 0.91 0.95 1.00 0.98 0.96 0.95 0.95 0.94 0.93 0.91 0.90
Fi110.59 0.78 0.82 0.88 0.91 0.89 0.90 0.90 0.94 0.98 1.0 0.97 0.96 0.95 0.95 0.92 0.91 0.90
Fi,10.61 0.78 0.82 0.87 0.89 0.87 0.88 0.88 0.93 0.96 0.97 1.00 0.97 0.95 0.95 0.92 0.90 0.88
Fi310.60 0.77 0.81 0.86 0.89 0.87 0.88 0.87 0.92 0.95 0.96 0.97 1.00 0.98 0.96 0.93 0.91 0.90
Fis10.58 0.74 0.79 0.84 0.87 0.85 0.86 0.86 0.91 0.95 0.95 0.95 0.98 1.0 0.97 0.95 0.93 0.93
Fi510.57 0.73 0.78 0.83 0.85 0.82 0.83 0.83 0.89 0.94 0.95 0.95 0.96 0.97 1.0 0.96 0.96 0.95
Fis{0.56 0.72 0.77 0.81 0.82 0.80 0.80 0.80 0.86 0.93 0.92 0.92 0.93 0.95 0.96 1.00 0.96 0.97
Fi710.55 0.70 0.75 0.79 0.80 0.78 0.78 0.78 0.84 0.91 0.91 0.90 0.91 0.93 0.9 0.96 1.00 0.96
Fig10.56 0.70 0.74 0.78 0.79 0.76 0.77 0.76 0.84 0.90 0.90 0.88 0.90 0.93 0.95 0.97 0.96 1.00
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Example of Historically Optimized Rebonato’s correlation

For example, by performing in Matlab an optimization on the fitting

parameters of Rebonato’s form in (5.21), i.e.

PLs” = poc + (1= pso) exp [=i — j| (8 — armax{i, j})] .
wanting to approximate the historical estimate, we have obtained the follow-

ing values:

a=2249%10"" 5 =0.0068, po = 0.146,

which give the Rebonato’s correlations in Figures 7.4 and 7.5, respectively

plotted in the three-dimensional space and in the matrix form.

Figure 7.4: Three-dimensional plot of correlations pgj(?b(a, B, ping) with the

values above for the parameters.
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R kR R K kK F F F F  Fo Fu Fp Fz Fu Fs Fpg F7 Fpg
F, [1.00 0.99 0.99 0.98 0.98 0.97 0.97 0.96 0.95 0.95 0.94 0.94 0.93 0.93 0.92 0.92 0.91 0.91
F, {0.99 1.00 0.99 0.99 0.98 0.98 0.97 0.97 0.96 0.95 0.95 0.94 0.94 0.93 0.93 0.92 0.92 0.91
Fs [0.99 0.99 1.00 0.99 0.99 0.98 0.98 0.97 0.97 0.96 0.95 0.95 0.94 0.94 0.93 0.93 0.92 0.92
F, [0.98 0.99 0.99 1.00 0.99 0.99 0.98 0.98 0.97 0.97 0.96 0.95 0.95 0.94 0.94 0.93 0.93 0.92
Fs [0.98 0.98 0.99 0.99 1.00 0.99 0.99 0.98 0.98 0.97 0.97 0.96 0.95 0.95 0.94 0.94 0.93 0.93
Fe 10.97 0.98 0.98 0.99 0.99 1.00 0.99 0.99 0.98 0.98 0.97 0.97 0.96 0.95 0.95 0.94 0.94 0.93
F, {0.97 0.97 0.98 0.98 0.99 0.99 1.00 0.99 0.99 0.98 0.98 0.97 0.97 0.96 0.95 0.95 0.94 0.94
Fe¢ [0.96 0.97 0.97 0.98 0.98 0.99 0.99 1.00 0.99 0.99 0.98 0.98 0.97 0.97 0.96 0.95 0.95 0.94
Fo 10.95 0.96 0.97 0.97 0.98 0.98 0.99 0.99 1.00 0.99 0.99 0.98 0.98 0.97 0.97 0.96 0.95 0.95
Fip 10.95 0.95 0.96 0.97 0.97 0.98 0.98 0.99 0.99 1.00 0.99 0.99 0.98 0.98 0.97 0.97 0.96 0.95
Fi110.94 0.95 0.95 0.96 0.97 0.97 0.98 0.98 0.99 0.99 1.00 0.99 0.99 0.98 0.98 0.97 0.97 0.96
Fi,10.94 0.94 0.95 0.95 0.96 0.97 0.97 0.98 0.98 0.99 0.99 1.00 0.99 0.99 0.98 0.98 0.97 0.97
Fi310.93 0.94 0.94 0.95 0.95 0.96 0.97 0.97 0.98 0.98 0.99 0.99 1.00 0.99 0.99 0.98 0.98 0.97
Fi410.93 0.93 0.94 0.94 0.95 0.95 0.96 0.97 0.97 0.98 0.98 0.99 0.99 1.00 0.99 0.99 0.98 0.98
Fi510.92 0.93 0.93 0.94 0.94 0.95 0.95 0.96 0.97 0.97 0.98 0.98 0.99 0.99 1.00 0.99 0.99 0.98
Fig10.92 0.92 0.93 0.93 0.94 0.94 0.95 0.95 0.96 0.97 0.97 0.98 0.98 0.99 0.99 1.00 0.99 0.99
Fi710.91 0.92 0.92 0.93 0.93 0.94 0.94 0.95 0.95 0.96 0.97 0.97 0.98 0.98 0.99 0.99 1.00 0.99
Fig [0.91 0.91 0.92 0.92 0.93 0.93 0.94 0.94 0.95 0.95 0.96 0.97 0.97 0.98 0.98 0.99 0.99 1.00
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Example of Historically Estimated S. & C.’s semi-parametric cor-

relation

We start again from historical data spanning the past year before March
29, 2011, and we consider the table, obtained before, of historical forward
rates Fy(t;),..., Fjy(t;) fori=1,... 1.

Now, for each time t;, i =1,...,[, we consider the r.v. defined by
Fi(tiv)
* . J P —
y;(t;) ==In (6 foryj=1,...,m, m=18.

Then, we assume the vector y*(¢;), having values in R, following the model

(5.3), that we rewrite in the following form:

y=A-W = L-diag(a) - W ~ N(0,AA),

where

a 0 -+ 0 10 ay

a ay 0--- 0 11 0--- s

A= , L= , 4=
0 : 0

ay Qg Gy 1 1 m

By defining an auxiliary vector
w = diag(a) - W ~ N (0,diag (a*)) ,
where the square acts componentwise, we have
w=L" -y

Since we have an historical set of vectors y*(¢;), for ¢ = 1,...,1, which we

consider a sample of realizations of y, we obtain a consequent sample of
realizations of w. Then, we compute the sample covariance matrix of the
vector w, say C, being an estimate of the actual one diag (a?), thus we
estimate the vector a? by extracting the diagonal from C, say G°. Finally,

we get the vector
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whose elements ¢y, ... ¢, satisfy

i

2 -2 .

c; = E ap, 1=1,...,m
k=1

and we obtain the correlation matrix p5(c) of kind (5.1)-(5.2), given by

min{¢;, ¢; }
P = —

= 5,7 =1,...,m.
max{ci,cj}’ L] ) TN

This historically estimated semi-parametric correlation matrix is shown in
Figures 7.6 and 7.7, respectively plotted in the three-dimensional space and

in the matrix form.

Figure 7.6: Three-dimensional plot of correlations plsgj
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R R R R kK F F F F  Fo Fu Fp F3 Fu4 Fs  Fg Fiz Fig
F, [1.00 0.89 0.87 0.86 0.85 0.84 0.84 0.84 0.83 0.83 0.82 0.82 0.82 0.81 0.81 0.80 0.79 0.79
F, {0.89 1.00 0.98 0.97 0.95 0.95 0.95 0.95 0.94 0.93 0.93 0.92 0.92 0.92 0.91 0.90 0.90 0.89
Fs [0.87 0.98 1.00 0.99 0.98 0.97 0.97 0.97 0.96 0.95 0.95 0.95 0.94 0.94 0.93 0.93 0.92 0.91
F, [0.86 0.97 0.99 1.00 0.99 0.98 0.98 0.98 0.97 0.97 0.96 0.96 0.95 0.95 0.94 0.94 0.93 0.92
Fs 10.85 0.95 0.98 0.99 1.00 1.0 0.99 0.99 0.98 0.98 0.97 0.97 0.96 0.96 0.95 0.95 0.94 0.93
Fe [0.84 0.95 0.97 0.98 1.0 1.00 1.0 0.99 0.99 0.98 0.98 0.97 0.97 0.96 0.96 0.95 0.94 0.93
F, {0.84 0.95 0.97 0.98 0.99 1.0 1.00 1.0 0.99 0.98 0.98 0.98 0.97 0.97 0.96 0.95 0.94 0.94
Fg [0.84 0.95 0.97 0.98 0.99 0.99 1.0 1.00 0.99 0.99 0.98 0.98 0.97 0.97 0.96 0.96 0.95 0.94
Fo {0.83 0.94 0.96 0.97 0.98 0.99 0.99 0.99 1.00 0.99 0.99 0.98 0.98 0.97 0.97 0.96 0.95 0.94
Fio10.83 0.93 0.95 0.97 0.98 0.98 0.98 0.99 0.99 1.00 1.0 0.99 0.99 0.98 0.98 0.97 0.96 0.95
Fi110.82 0.93 0.95 0.96 0.97 0.98 0.98 0.98 0.99 1.0 1.00 0.99 0.99 0.98 0.98 0.97 0.96 0.95
Fi,10.82 0.92 0.95 0.96 0.97 0.97 0.98 0.98 0.98 0.99 0.99 1.00 0.99 0.99 0.98 0.98 0.97 0.96
Fi310.82 0.92 0.94 0.95 0.96 0.97 0.97 0.97 0.98 0.99 0.99 0.99 1.00 1.0 0.99 0.98 0.97 0.96
Fis10.81 0.92 0.94 0.95 0.96 0.96 0.97 0.97 0.97 0.98 0.98 0.99 1.0 1.0 0.99 0.99 0.98 0.97
Fi510.81 0.91 0.93 0.94 0.95 0.96 0.96 0.96 0.97 0.98 0.98 0.98 0.99 0.99 1.00 0.99 0.98 0.97
Fis10.80 0.90 0.93 0.94 0.95 0.95 0.95 0.96 0.96 0.97 0.97 0.98 0.98 0.99 0.99 1.00 0.99 0.98
Fi710.79 0.90 0.92 0.93 0.94 0.94 0.94 0.95 0.95 0.96 0.96 0.97 0.97 0.98 0.98 0.99 1.0 0.99
Fig 10.79 0.89 0.91 0.92 0.93 0.93 0.94 0.94 0.94 0.95 0.95 0.96 0.96 0.97 0.97 0.98 0.99 1.00
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Example of Historically Optimized S. & C.’s three-parameter cor-

relation

By performing in Matlab an optimization on the fitting parameters of

Schoenmakers and Coffey’s three-parameter form in (5.17), i.e.

SCpar il 2452 +ij—3mi—3mj+3i+3j+2m?—m—4
Pij = &Xp [ mo1 I pee (m—2)(m—3) +
24524 —mi—mj—3i—3j+3m+2
2 (m—2)(m—-3) ’

wanting to approximate the historical estimate p, we have obtained the fol-

lowing values:
m = 0.4856, 1y = 0.00, In p, = —0.5395,

which give the correlations in Figures 7.4 and 7.5, respectively plotted in the

three-dimensional space and in the matrix form.

0.9

SCpa
08 Piy

0.6

Figure 7.8: Three-dimensional plot of correlations pz-s,?par
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F, [1.00 0.91 0.85 0.79 0.75 0.71 0.68 0.66 0.64 0.62 0.61 0.60 0.60 0.59 0.59 0.59 0.58 0.58
F, {0.91 1.00 0.92 0.86 0.81 0.77 0.74 0.72 0.70 0.68 0.67 0.66 0.65 0.65 0.64 0.64 0.64 0.64
F; [0.85 0.92 1.00 0.93 0.88 0.84 0.80 0.77 0.75 0.74 0.72 0.71 0.71 0.70 0.70 0.69 0.69 0.69
F, {0.79 0.86 0.93 1.00 0.94 0.90 0.86 0.83 0.81 0.79 0.77 0.76 0.75 0.75 0.75 0.74 0.74 0.74
Fs 10.75 0.81 0.88 0.94 1.00 0.95 0.91 0.88 0.85 0.84 0.82 0.81 0.80 0.79 0.79 0.79 0.78 0.78
Fe [0.71 0.77 0.84 0.90 0.95 1.00 0.96 0.93 0.90 0.88 0.86 0.85 0.84 0.84 0.83 0.83 0.83 0.82
F, {0.68 0.74 0.80 0.86 0.91 0.96 1.00 0.97 0.94 0.92 0.90 0.89 0.88 0.87 0.87 0.86 0.86 0.86
Fe [0.66 0.72 0.77 0.83 0.88 0.93 0.97 1.00 0.97 0.95 0.93 0.92 0.91 0.90 0.90 0.89 0.89 0.89
Fo [0.64 0.70 0.75 0.81 0.85 0.90 0.94 0.97 1.00 0.98 0.96 0.95 0.94 0.93 0.92 0.92 0.92 0.92
Fio10.62 0.68 0.74 0.79 0.84 0.88 0.92 0.95 0.98 1.00 0.98 0.97 0.96 0.95 0.95 0.94 0.94 0.94
Fi110.61 0.67 0.72 0.77 0.82 0.86 0.90 0.93 0.96 0.98 1.00 0.99 0.98 0.97 0.96 0.96 0.96 0.95
Fi,10.60 0.66 0.71 0.76 0.81 0.85 0.89 0.92 0.95 0.97 0.99 1.00 0.99 0.98 0.98 0.97 0.97 0.97
Fi310.60 0.65 0.71 0.75 0.80 0.84 0.88 0.91 0.94 0.96 0.98 0.99 1.00 0.99 0.99 0.98 0.98 0.98
Fis10.59 0.65 0.70 0.75 0.79 0.84 0.87 0.90 0.93 0.95 0.97 0.98 0.99 1.00 0.99 0.99 0.99 0.98
Fi510.59 0.64 0.70 0.75 0.79 0.83 0.87 0.90 0.92 0.95 0.96 0.98 0.99 0.99 1.00 1.0 0.99 0.99
Fis10.59 0.64 0.69 0.74 0.79 0.83 0.86 0.89 0.92 0.94 0.9 0.97 0.98 0.99 1.0 1.00 1.0 0.99
Fi710.58 0.64 0.69 0.74 0.78 0.83 0.86 0.89 0.92 0.94 0.96 0.97 0.98 0.99 0.99 1.0 1.00 1.0
Fig10.58 0.64 0.69 0.74 0.78 0.82 0.86 0.89 0.92 0.94 0.95 0.97 0.98 0.98 0.99 0.99 1.0 1.00
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We denote the average squared relative error by MSE% and the average
simple relative error by ME%. In Table 7.1 we compare the errors charac-
terizing the three correlation get above, the Rebonato’s and Schoenmakers
and Coffey’s optimized three-parameter and the estimated Schoenmakers and

Coffey’s semi-parametric structure, in terms of the historical estimation.

ME% MSE%
Reb. three-par. 0.159833 | 0.246294
S. & C. semi-par. || 0.136001 | 0.189073

S. & C. three-par. || 0.0622644 | 0.0887776

Table 7.1: Average relative errors, both simple and squared, between histori-
cal estimation in Figures 7.3-7.2 and, respectively, the ones in Figures 7.5-7.4,
7.7-7.6 and 7.9-7.8.

7.2 Cascade Calibration

In Subsection 6.1.1 we presented some possible parameterizations of the
forward volatilities, that largely refer to the most general one, the GPC
formulation (6.2) shown in Table 6.1. This structure has a high number of
parameters, thus we then made some assumptions on it in order to reduce
the number of free parameters to be involved in an optimization algorithm of
the calibration. However, there exists an alternative method such that, given
exogenously the correlations, the calibration of the LMM to the swaptions
can be carried out through closed-form formulae. Substantially, we would

like to have a calibration that is:

- univocal, i.e. without all the indeterminacies seen in the calibration to

the caplets;

- exact, i.e. that avoids the problem of significant errors with respect to

the table of the market swaption volatilities;



106 7. Calibration of the LMM to Swaptions

- computationally efficient.

This method meets in a large part our expectations.

We assume the GPC volatility structure and we start from an historical
correlation matrix p and with the table of the swaption volatilities from the
market, denoting by V,, 5 the Black volatility for the swaption with underlying
swap rate S, g.

By recalling the Rebonato’s formula for swaptions, the approximated
Black volatility in the LMM is

B T
wi(0)w; (0)F3(0)F5(0)pi; [
(=M — ! : oi(t)o;(t)dt .
’ z‘,j;ﬂ T, Sa,ﬁ(0)2 0 ’
We apply this to the GPC formulation and equate it to the market swaption
volatility:
B a
w;(0)w;(0) F5(0)F5(0)pi;
(Vap)? = - = D ThOih410 5 ht1 s (7.4)
’ m§+1 T Sa,p(0)? hZ:o T

where we must remember that the w’s depend on the specific «, 8 considered.

The cascade calibration moves along the swaption table from left to right
and from top to down and we apply, at each step, the approximating for-
mula (7.4) to compute a new unknown volatility.

First, we analyze the simplest case of the calibration to the upper-left
triangular part of a swaption matrix providing all the market data involved,
which leads to sensible results, then the calibration to a rectangular sub-
matrix, again providing all the market volatilities involved. Finally, we con-
sider the extended triangular case in which we calibrate again to the upper-
left triangular part of a swaption matrix, where, however there are missing

data.

7.2.1 Triangular Cascade Calibration Algorithm

In this case we calibrate the GPC volatility formulation to the upper-left

triangular part of a swaption matrix where there are no missing data from
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the market. To give an overview of this procedure, in the Table 7.2 we show
the outcomes obtained by applying it to an example of just six swaptions.

Let’s see in detail how to proceed in this example. We start from the entry

Length lyear 2years | 3years
Maturity
Ty = lyear Vo1 Vo2 Vos
01,1 01,1 01,1
02,1 02,1
03,1
T, = 2years Vio Vis -
021,022 02,1,02,2
03,1,032
T2 = 3years V273 — —
03,1,032,033

Table 7.2: Table summarizing the swaption volatilities to which we calibrate
the LMM through a triangular cascade calibration and the dependence of
the GPC forward volatilities on them, where the blue ones are the new pa-

rameters determined at each step.

Vo1 in position (1, 1), i.e. the swaption maturing in 7y e living up to 7}, that
is an option on a single forward LIBOR rate collapsing to a spot LIBOR
rate, and the equation to solve has as unique unknown the volatility of F}

from now to Ty = lyear. Indeed:
S01(0) = wi(0)F1(0) = (Vou)’ = ot .

Hence the parameter oy ; is calibrated exactly.
Then we move to the entry (1,2), Vj2, which involves the rates F, F

over the time from now to a year:

S02(0°(Voz)® =~ wi(0)*F1(0)%07 , + w(0)*F2(0)03, +
+2p10w1(0) F1(0)wy(0) F5(0)o1 1091,
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where the only unknown is o3, which solves an algebraic second-order equa-
tion assuming existence and uniqueness of a positive solution.
Moving to the entry (1,3), Vi3, the rate Fj is added among others, still

over [0, Tp], and we have

5073(0)2(%73)2 ~ ’LU1(0)2F1 0 20’%71 + wo O)2F2(0)20'§71 + w3(0)2F3(0)2032,71 +

where the only unknown is o3 ;, which solves again a second-order equation,
by the same assumption of existence and uniqueness.

Now we move on the second row to the entry (2,1), Vi 5, where only Fy is
at stake but over the two time subintervals [0, Ty], [Ty, 71]. The formula (7.4)
gives

2 2 2
Ty (Vi) =~ To031 + 1039,

with the only unknown oy .
Moving on the right to the entry (2,2), Vi 3, the formula (7.4) gives

T1S13(0)*(Vig)® ~ wa(0)°Fu(0)*(1005 1 + 1103,) +
+ws(0)2F3(0

+2p2,3w2(0) F5(0)ws(0) F5(0) (10021031 + T102,:2032) ,

(
)

2(7'0032,71 + 7'1032,72) +

where the only unknown is o3.
Finally, we move to the only entry (3,1) on the third row, V4 3, where our
formula gives

2 2 2 2
Ty(Va3)” ~ To031 + T1035 + T2033,

with the only unknown o3 3.
Notice that each time we compute an only new parameter as a function
of a market swaption volatility and of the parameters previously found.
The procedure illustrated in the example above can be generalized in the

following scheme.
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Cascade Calibration Algorithm (CCA)
Brigo and Mercurio (2001,2002)

1. Select the dimension s of the swaption matriz that is of interest for the

calibration.
2. Seta=0.
3. SetB=a+1.

4. Solve the following equation in 0 a41

Aa 05 011 + Bapopar +Cap =0, (7.5)
where
Aag = wp(0)2F5(0)°7,
Bs—1
Bag = 2 wg(0)F(0)w;(0)F;(0) pgj Ta 0jat s
j=a+1
Cop = wi(0) F3(0)w; (0)F5(0) pij Y Th Oint1 Ojnsn +
i,j=a+1 h=0
B—1 a—1
+2 ) w(0)Fa(0)w;(0)F5(0) paj > Th Oa 1 Oiner +
j=a+1 h=0
+wg(0 Z Th 03 pp1 — Lo Sa5(0)2(Vag)?

Since Ay g, Bag > 0, the equation (7.5) admits a unique positive solu-

tion, namely

—Bas+ \/Bgﬁ — 444 5Ca s
2405 ’

08,a4+1 —
if and only if Cop < 0.
5. Set f=a+1;if 8 < s, go back to point 4, else set « = a+ 1.

6. If a« < s, go back to point 3, else stop.



110 7. Calibration of the LMM to Swaptions

Practical experiences confirm that for non-pathological swaption data the
condition C,, 3 < 0 is generally verified. Instead, in problematic situations, we
shall make some adjustments to this method, for example as in the extended
case. Notice that, in a triangular CCA of dimension s, the entries of the

swaption matrix involved are
(1,5) st (i+j)<(s+1),
hence we calibrate the model to Black swaption volatilities
Vap st. 0<a<s—1, a+1<pB<s.
Indeed:
. . . @ .
f=a+j=1+7—1 j=06-a.
This kind of calibration does not need further assumptions and it is indepen-
dent of the dimension s, provided all the market data involved, in the sense

that the output of the calibration to a sub-matrix of a swaption table V' will

be a subset of the output of the calibration to V.

Example of a 5-dimensional Cascade Calibration

We applied the CCA to the 5 x 5 triangular sub-matrix of the implied
Black swaption volatilities shown in Figure 7.10, where we highlight the fact
that there are maturities with missing data by showing the corresponding
rows and columns empty. We chose s = 5, as it is the larger maturity with
no missing data before.

Again, we have to pay attention to the shift of the indexes of the resettlement
dates of the model with respect to the corresponding times in years.

The resulting calibrated forward volatilities are shown in Figure 7.11.

7.2.2 Rectangular Cascade Calibration Algorithm

If we want to calibrate the LMM to a whole rectangular swaption ma-

trix with all the entries provided by the market, we need to make some
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ly 2y 3y 4y 5y 6y 7y 8y 9y 10y
1y [0.34 0.30 0.28 0.27 0.26 0. 24 0.22
2y 10.32 0.28 0.26 0.25 0.24 0. 23 0.22
3y ]0.29 0.26 0.24 0.23 0.23 0. 22 0.21
4y 10.26 0.24 0.23 0.22 0.21 0.21 0. 20
5y 10.24 0.22 0.21 0.21 0.20 0. 20 0.20
6y
7y [0.212 0.20 0.19 0.19 0.18 0.18 0.18
8y
9y
10 y [0.18 0.17 0.17 0.17 0.17 0.17 0.17
11y
12 y
13 y
14 y
15y |(0.16 0.16 0.17 0.17 O0.17 0.17 0.18
16 y
17 y
18 y
19 y
20y |0.18 0.18 0.19 0.19 0.19 0. 20 0.21

Figure 7.10: Implied Black swaption volatilities, from the Euro market, April
26, 2011.

0. 342 0 0 0 0
0.274301 0.36172 0 0 0

o = | 0.264304 0.245348 0.344644 0 0
0.252787 0.24233 0.220029 0.311907 0

0.247875 0.231487 0.20753 0.191782 0.293202

Figure 7.11: Forward volatilities calibrated to the 5 x 5 sub-matrix of the
swaption table in Figure 7.10.

adjustments to the CCA algorithm, because, in general, there are no market
swaption tables large enough to contain our rectangular one in its upper-

triangular part.

By recalling the initial example of dimension s = 3, in the Table 7.3
we show the outcomes of the rectangular cascade calibration, involving nine
swaptions.

We can see how, in each entry of the last column except from the first, we
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Length lyear 2years 3years
Maturity
T() = 1year V071 V072 V073
01,1 01,1 01,1
021 021
03,1
Tl = 2years V172 V173 V1,4
02,1,02,2 02,1,02,2 021,022
03,1,032 031,032
041,042
T2 = 3years V2,3 V274 V275
031,032,033 | 031,032,033 | 031,032,033
041,042,043 | 04,1,042,043
051,052,053

Table 7.3: Table summarizing the swaption volatilities to which we calibrate
the LMM through a rectangular cascade calibration and the dependence
of the GPC forward volatilities on them, where the blue ones are the new

parameters determined at each step.

have multiple unknown forward volatilities. The easiest way to interrelate
them is to assume they are all equal and this assumption makes sense, because
the multiple unknowns are always volatilities of a single forward LIBOR rate
over a few adjacent intervals of time.

This method is described in detail in the following scheme.

Rectangular Cascade Calibration Algorithm (RCCA)
Brigo and Morini (2002), Morini (2002) The RCCA algorithm recovers the
first three points of the CCA algorithm, unchanged. At point 5 the new

condition for B becomes

fb—a < s.
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Moreover, in the case
b=s+a«a,
at point 4 we have to assume all the unknowns to be equal, i.e.
01 =082 =...080+1-
Hence, instead of (7.5), the new equation to solve is
Al 505 qir + Bl g0s041 +Ch s =0, (7.6)

where

Ay = ws(0)F3(0* > 7,
h=0

B-1
2 ws(0)F5(0)w;(0)F5(0) pss Ta Tjars +
(0) Fy

Sy
JQ *
=

I

b

j=a+1
B—1
+2 wg 0)w;(0)F5(0) ps; > Thjnir,
j=a+1 h=0
B-1 a
;75 = Z w;(0) F;(0)w;(0)F5(0) pi Z Th Oih+10jht1 T
ij=a+1 h=0

~To Sa,5(0)*(Vag)? .

a—1

Example of a 5-dimensional Rectangular Cascade Calibration

We applied the RCCA to the whole 5 x 5 sub-matrix of the implied
Black swaption volatilities shown in Figure 7.10 and the resulting calibrated

forward volatilities are shown in Figure 7.12.

7.2.3 Extended Triangular Cascade Calibration Algo-

rithm

In case we want to calibrate the model to a larger dimension of the swap-

tion table, we have to tackle the problem of missing data. We refer to the
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0. 342 0 0 0 0
0.274301 0.36172 0 0 0
0. 264304 0.245348 0. 344644 0 0
0. 252787 0.24233 0.220029 0.311907 0
o = | 0.247875 0.231487 0.20753 0.191782 0.293202
0. 233045 0.233045 0.199793 0.204828 0.177152
0.220006 0.220006 0.220006 0.177201 0.178626
0. 206154 0.206154 0.206154 0.206154 0.17995
0. 190429 0.190429 0.190429 0.190429 0.190429

Figure 7.12: Forward volatilities calibrated to the 5 x 5 sub-matrix of the
swaption table in Figure 7.10.

algorithm we are describing as to the "ExtCCA Algorithm”.
It is essential to observe that the swaption volatility V,, g, which is located

in the (o — 1, 5 — «) entry of the table, involves the forward volatilities

{Oij}fiTifa4ﬁ'

Among these, as we are in the triangular case, the new unknown is always
98,041 -
Whenever the data V, 3 is not quoted by the market, we compute the

unknown forward volatility by means of the following devices:

_ 98,0193 1,a

OBatl = Op—1a+1,  if a=0;
Cpapr = ZtTemla if o 5 ()

Then, we create a fictitious data f/aﬁ, by the approximating formula (7.4),
using the ¢’s already calibrated and the one defined above, in order to fill in

the incomplete market table.

Example of a 10 and a 15-dimensional ExtCCA

Firstly, we applied the ExtCCA to the 10 x 10 triangular sub-matrix of
the implied Black swaption volatilities shown in Figure 7.10 and the resulting

calibrated forward volatilities are shown in Figure 7.13.
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We exploit the calibrated o’s to reconstruct the missing swaption volatil-
ities falling inside our triangular part of interest. Thus, the new obtained

swaption table is shown in Figure 7.14.

Then, we applied the ExtCCA to the largest 15 x 15 triangular matrix
deriving from the implied Black swaption volatilities shown in Figure 7.10

and the resulting calibrated forward volatilities are shown in Figure 7.15.

As above, we exploit the calibrated o’s to reconstruct the missing swap-
tion volatilities falling inside our triangular part of interest, thus obtaining

the swaption table shown in Figure 7.16.

Conclusions about the Cascade Calibration

We may conclude by pointing out the main features of the cascade cali-

bration. Its positive aspects are:

e it makes use of the correlation matrix in input from a historical esti-

mation;
e it is a fast method, thanks to the analytical closed-form formulae;

e it is exact, i.e. if Rebonato’s approximation for the Black implied
volatility of swaptions is used, the swaption market prices are fitted

exactly;

e given correlation, it has a unique solution, under some homogeneity

assumptions;

e it induces a one-to-one relation between the model o’s and the market

swaption volatilities.

However, on the other hand, we have encountered a few numerical problems,

for example the condition C, g < 0 is not always satisfied and some negative
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or imaginary ¢’s may come out. In particular, we came up against this
facts only in the last example of calibration, by carrying out an ExtCCA
with dimension s = 15, whereas is a too large because of the considerable
amount of missing data. Moreover, the temporal misalignments in the market
data provided by a single broker and the correlation coming from a different

calibration need more attention.
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1y 2y 3y 4y 5y 6y 7y 8y 9y 10y
1y [0.34 0.30 0.28 0.27 0.26 0.25 0.24 0.23 0.22 0.22
2y 10.32 0.28 0.26 0.25 0.24 0.23 0.23 0.23 0.22 0.22
3y ]0.29 0.26 0.24 0.23 0.23 0.23 0.22 0.22 0.21
4y 10.26 0.24 0.23 0.22 0.21 0.21 0.21 0. 20
5y 10.24 0.22 0.21 0.21 0.20 0.20 0.20 0.20
6y |0.21 0.21 0.20 0.20 O0.19
7y [0.212 0.20 0.19 0.19 0.18 0.18 0.18
8y ]0.19 0.19 0.18
9y [0.19 0.18
10 y [0.18 0.17 0.17 0.17 0.17 0.17 0.17
11y
12 y
13 y
14 y
15y |(0.16 0.16 0.17 0.17 O0.17 0.17 0.18
16 y
17 y
18 y
19 y
20y |0.18 0.18 0.19 0.19 0.19 0. 20 0.21

Figure 7.14: Black swaption volatilities partially reconstructed after a 10-

dimensional ExtCCA to the market swaption table in Figure 7.10.
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Appendix A
Preliminary theory

Definition A.1. We define an N-dimensional [t6 process any stochastic

process X = (X)) whose dynamics is given by
dXt = /,Ltdt + Utth

where W is a d-dimensional standard Brownian motion on (2, F, P, (F)),
pyo € L2 (Qx[0,T]), u having values in RY and o having values in RV*?.

Equivalently, in the integrated form, for ¢ = 1,..., N the ¢-th component of
X follows:

t d t
X;‘:X3+/ ugds+2/ oI AW
0 . 0
j=1

Definition A.2. Given an N-dimensional It6 process X, the associated co-
variation process is the s.p. (< X, X >)ejo.r] with values in RV*? defined
by

n

< XL X7 >p= lim Y (X] - X[ (XL - X] ),

[2]—0 o1
where X = {(0 =tg,...,t, =T)|to < ... <t,,n € IN}.
Lemma A.0.1. With the notations above, let Cy = o0} , we have
t
< X' X7 >t:/ Chds , or equivalently d < X', X7 >,=C}’dt.
0
We use also the notation d < X', X7 >= (dX") (dX7) .
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Lemma A.0.2 (Ité’s formula). Given an N-dimensional Ito process with

dynamics

dXt = ,utdt + Utth

and a function F = F(t,x) € CY2([0,T] x RY), then the s.p. Y defined by
Y, = F(t, X}) is an [to process with dynamics

N
1 , .
d)/; = @th—l—VFdXt—l— 5 E chijd < XZ,XJ >t7 F = F(t,Xt)

h,j=1

Definition A.3. Given a d-dimensional B.m. W on (Q, F, P, (F,)), Z € RY
p:[0,T] x RN — RN, o:[0,T] x RN — RY*?, the s.p. (Xt)iejo) solves
the SDE with coefficients Z, i, o0 with respect to W if:

i) p(t, Xp),0(t, X) € Li, (2 x [0,77);
i) Xy =27+ fot w(s, Xs)ds + fot o(s, Xs)dWs.

A statistical tool

Here, we give a basic and simple result that will be very useful as com-

monplace in pricing.

Lemma A.0.3. Let S be a random variable Log-Normally distributed with
mean m and variance X2, i.e. S = CeX with X ~ N(m,¥?) and C € R,
and K be a real positive constant, K € R™. Then:

2 In & 2 In &
E[(S—K)*] = Ce%+mq><nf<+m+ )—K@(M> L (A1)

by by

where ® is the cumulative distribution function for the N'(0,1) distribution.
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Proof.

1 _(z—m>2d
e 222 dx
\V2TH
1

(z=m)?
_ (Ce" —K)e = du
V21X AC@Z>K}

1 (z—m)? (z—m)?
B RV, / Ce*e 22 dr— K e~ 22 dx
23 {z>In %} {z>In %}

1 e — L (z24m?—2zm—22%?
— Ce =2 dx+

K
lna

E[(S-K)*] = /]RmaX{Ce:”—K,O}

3
3
™

+o0 (w—m)2
—-K e 222 dx

K
In &

1 +oeo 22 »2
= [ Ce ez ™Ydza+ (A.2)

\/%Z n%fmfzz

+oo w2
K [n%m e~ T Ydx (A.3)

)

1 »2 +oo 22 +oo u?
= — (Cez™ | . e Tdz—K | , e zdx
/27T In ?7m72 In o—m

P P

— Ce%2+mq><ln%+2m+22> —K® (_ln%;m—) ,

where the two summands in (A.2)-(A.3) are obtained respectively with the

(A4)

two following changes of variable:

O

Corollary A.0.4. If S is a random variable Log-Normally distributed with
mean —3%* and variance ¥?, i.e. S = Ce* with X ~ N(—1%2,%?) and

C € R, and K is a real positive constant, K € RT, then:

E[(S—K)"| =Co(di(K,C,X%) — KO(do(K,C, %)), (A.5)
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where

In (£ =2
di(K,S,5?) = 7“(%* z (A.6)

dy(K, 8, %2) = dy(K,C, %) —%. (A7)

Proof. Tt follows immediately from (A.1) by substituting m with —33%. O
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Change of measure

The change of probability measure will be essential to deal with the con-
cept of martingale measure, which plays a central role in discrete as well as
continuous market modeling.

For mathematical reasons, financial prices are expressed in terms of ex-
pectation values, but if we use the probability measure of the real world we’ll
be in wrong, because the market would not be free of arbitrage opportunities.
Here comes the martingale measure, which leads to the risk-neutral price for

derivatives in an arbitrage-free market.

In the following, we are assuming to have a probability space (2, F, P, (F))

and, on this, a d-dimensional standard Brownian motion (W}).c(077-

Definition B.1. Let A € L2 (2 x [0,7]) be a d-dimensional process, the

loc

exponential martingale associated to A is the s.p. Z* defined by

t 1 t
Z} = exp <—/ )\s~dWs—§/ |)\s|2d5) , tel0,7T].
0 0

Its dynamics is
dZ} = =22\ - dW,.

Indeed, by Ito’s formula:

1 1
dz} = 7} (‘At AW, — §\At\2dt) + S 20Nt = —ZPN, - AW
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2
loc

Since A € L2 and Z* is a continuous adapted process, than Z*\ € I

loc S0

that Z” is a continuous local martingale. Moreover, being positive, it is also

a super-martingale, i.e.
E|Z})<[Z31=1, te€0,T].
There are some situations in which Z* becomes a strict martingale.

Lemma B.0.5. If there exists a constant C such that
T
/ N2dt < O as.,
0

then the exponential martingale associated to X\, Z*, is a strict martingale
such that

E[sup (Zt)‘)p] <oo, p>1.

0<t<T

In particular Z* € LP(QQ, P) for everyp > 1.

Theorem B.0.6 (Novikov condition). If A € L2 (Qx[0,T]) is such that

loc

E {exp (% /OT|>\S\2ds>} < o0, (B.1)

then the the exponential martingale associated to X, Z*, is a strict martingale.

Let us endow the space (€2, F, P) with the Brownian filtration
FW = (EW)tG[O,T} .

Theorem B.0.7 (Martingal representation). Let M = (M;);co1r) be
a FW-local martingale, then there exists a unique (just up to (m & P)-

equivalence) process u € L} (FV) such that

loc
t
Mt:MoJr/ us - dW,, telo,T].
0

The following basic theorem is used in the main topic of this chapter.
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Theorem B.0.8 (Bayes’ Formula). Let P, Q be probability measures on (Q, F),
with Q <5 P, X € LYQ,Q), and G a sub-c-algebra of F. Let L be the
Radon-Nikodym derivative of Q) with respect to P, i.e.

Q(F):/FLdP, FeF,

denoted by L = %2 = |- Then we have

EP[XL|G|

EI9 = g

Proof. First denote B := E¥[L|G] and prove that Q(B > 0) =1 :

(B=0}eg = Q({BZO}):/{BZO}LdP:/{BZO}BdPZO.

Then denote A := E?[X|G] and prove that AB = EF[XLI|G] : for all G € G

/GABdP = /GEP[AL|g]dP:/GABdP:/GAdQ:
= /GEQ[X\g]dQ:/GXdQ = /GXLdP.

[
Thus, if @) is a probability measure on (€2, F) defined by
dQ
7y = —~ B.2

then, for every X € L1(Q,Q) we have

ET[XZ3 | Fi

EYXN R = A

tel0,7].

Consequently we have the following lemma.

Lemma B.0.9. Let Z* be a P-martingale and Q) the probability measure on (2, F)
defined by (B.2). Then a process (M)ico,r) s a Q-martingale if and only if

(MyZ})iejo.r) is a P-martingale.
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Theorem B.0.10 (Girsanov’s Theorem). Let Z* be a P-martingale and
Q the probability measure on (0, F) defined by (B.2). Then the process W*
defined by

t
WtA:Wt—I—/ As-ds, tel0,T],
0

is a Brownian motion on (0, F,Q, (Fy)) .

In financial applications, the processes playing the role of A are often

bounded, so that the martingale property of Z* follows from Lemma B.0.5.

Theorem B.0.11 (Change of drift). Let Q) be a probability measure on (2, F)
equivalent to P, i.e. (Q ~ P. Then, the Radon-Nikodym derivative of () with
respect to P is an exponential martingale:
dQ
dP
with associated process A\ € L2 (Q x [0,T]), and the process W defined by

loc

pw =2}, dZ) = —Z}) - dWy,

AWy = dW* — \dt (B.3)
is a Brownian motion on (2, F,Q, (F)) .
Proof. By denoting Z; := %b_—tw , we have
dQ
7, = EP | =X FW t T].
t |:dP |f;t :| ) S [07 ]
Indeed, for all A € F}V,

/AthP:/AdQ:/AZ—gdP.

Thus Z is a positive P-martingale, in fact Z; > 0Vt € [0,7] and, Vs < t,
dQ dQ)
P w1l _ P | P | w| _ pp |9 | _

Then, by the martingale representation theorem B.0.7, there exists a unique

(P-a.s.) d-dimensional process u € L7 (F") such that

loc

dZy = uy - dWy, or equivalently dZ, = —Z;\; - dWy ,
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having defined \ as the process

Uy
AN = — t 1.
t Ztv 6[07]

2

Since u € LZ,. and Z is a continuous adapted process, than A € L7 .

loc

Hence Z is the exponential martingale associated with .
Finally, the Girsanov theorem states that W* in (B.3) is a B.m. on (Q, F, Q, (F)).
O

Remark 12. Let X be an N-dimensional Ito process of the form
dXt = /,Ltdt + O-thVt s

p having values in R and ¢ having values in RV*¢.
Given () ~ P, then the @)-dynamics of X is

dXt = (,ut — O't>\t)dt + O'tth)\ .



Appendix C

Change of Measure with
Correlation in Arbitrage

Theory

In a continuous-time market model, where considering a probability space
(Q, F, P), the sources of risk are usually represented by a d-dimensional
correlated Brownian motion W = (W, ..., W%) on (Q, F, P), endowed with
the Brownian filtration (F}")ep,r1. We consider the correlation constant in

time, thus define

Wt:A‘Wt,

=1,...,

is a non-singular d x d constant matrix.
We denote p:= AA* and assume that, fori=1,...,d,

d
Pl = Z(Aij)2 =1 as.
j=1

Remark 13. For i = 1,...,d, W' is a standard 1-dimensional Brownian

motion.

Proof. All the properties of a real standard B.m. are verified:
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d
W= AWg =0;

i=1

2. W is a continuous adapted process on (€2, F, P);

d d
ti—l—h - Wtj = Z AY (Wtj;‘rh - Wtj) ~N (07 hZ(Aij)2> = N(O, h)
j=1 j=1

and (W}, — Vth) does not depend on F;.

The co-variation process of W has components given by
d< W' WI>,=pdt, i,57=1,....d.
Notice that for all ¢ it coincides with the covariance matrix of W. Indeed:
W, ~N(0,t1dg) = W, ~N(0,tAA)

= Cov(W/,W}) = pt =< W' W/ >, .
Remark 14. p is the correlation matrix of W (t) for each fixed time t.

Indeed,

o Cov(Wi, W}) dit
Corr(W!, W) = Lt - =,
m(Wa W = sammsam?) ~ vive "

where we denote by Std(W}) the standard deviation of W}, i.e.
Std(W}) := +/Cov(W}, W}).

When modeling a financial market, we assume the following hypothesis.
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C. Change of Measure with Correlation in Arbitrage Theory

e There are N risky assets whose price process is S = (S!,...,SY) and

one locally no-risky asset B, that satisfy respectively the following dy-

namics:

)2
dS! = piSidt + ot SidW; | ;ﬁ':bi+(02), i=1,....N (C1)

and
dBt = TtBtdt, B(] =1 y (02)

where b,r € I} (2 x [0,T]), o positive € L2 (92 x [0,T]) Vi.

loc loc

The dynamics in (C.1) derives from supposing
Si=eXt dX] = bidt +oldW;, i=1,...,N.
In fact, by It6’s formula,
dsi — 8xS§dX§+%8mS§d < XX 5= SZ(bidt+a§de)+%S§(ai)2dt.
The integrated form of the solution of the SDE (C.1) is:

t t )2
S = S exp (/ aldW! +/ (,uf9 — (U2> ) ds) :
0 0

obtained by searching the two processes A, B such that
S; = S} exp (fg A dWE+ fot Bsds), then by applying the Ito’s formula
and equating it to (C.1).

Notice that B, although representing a locally no-risky asset, is a
stochastic process, because r is a F"-progressively measurable pro-
cess. Anyway it has a smaller degree of randomness with respect to the
other assets, because it has bounded variation and consequently null

co-variation process. Indeed:

rel, = r(w)eLy,as forwe
= fot rsds € BV = exp (fot rsds) € BV.

e 1 and o satisfy Lemma B.0.5.
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e W is a d-dimensional Brownian motion with constant correlation ma-
trix p and d > N.

Theorem C.0.12 (Change of drift with correlation). Let Q) be a prob-
ability measure on (2, F) equivalent to P, i.e. Q ~ P. Then, the Radon-

Nikodym deriwvative of QQ with respect to P is an exponential martingale:

Q

with associated process A € L2 (2 x [0,T]), and the s.p. W defined by

loc
th = thA — p)\tdt (Cg)
is a Brownian motion on (0, F,Q, (FV)) with correlation matriz p.

Proof. Let Z;, = %| Fw , by the martingale representation theorem for the
standard B.m., there exists a unique (P-a.s.) d-dimensional process
A e L2 (F") such that

loc

dz, = —ZtXt : th = _tht : (A_lth) = —ZA - AW,

where )\, := (A7), . Notice that, by It6’s formula,

t t
Z = exp (_/ XS-dWS—%/ m%)
0 0

t t
= exp (—/ < AN, AN AW, > —%/ < AN, AN, > ds)
0 0

t t
= exp(—/)\s-dWs—%/ <p)\8,)\8>d8).
0 0

Then, by the Girsanov theorem, we have a standard ¢)-B.m. WX,
de = dW, + \dt, t € [0,T]. Multiplying by A this equation,

AW = AdW) = dW, + phdt

is a correlated ()-B.m. with correlation matrix p. O
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Remark 15. Analogously to the standard case, let X be an N-dimensional

It6 process of the form
dXt = ,[Ltdt + Utth s

p having values in RY and o having values in RV*? .
Given () ~ P, then the ()-dynamics of X is

dXt = (,ut — O'tp)\t)dt -+ Utth)\ .



Appendix D

Change of numeraire

Now we characterize the arbitrage-free financial markets by introducing

the previously mentioned equivalent martingale measure.

Definition D.1. An equivalent martingale measure (EMM) @ with nu-

meraire B is a probability measure on (€2, F) such that:
i) @ is equivalent to P;

ii) the process of the discounted prices S = (gt)te[o,:r} defined by

~ S ¢
St — =t €_f0 rstSt7 t e [O,T],
B,

is a strict @-martingale. In particular, the risk-neutral pricing formula
S, = E° [e_ftT rads g | ]—“tW] , telo,T],
holds.

We consider a market model (S, B) of the form (C.1)-(C.2) and assume
that the class Q of the EMMs is not empty.

Definition D.2. Let Q € Q be an EMM with numeraire B. A s.p. U is

called a Q-price process if:
i) U is strictly positive;
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ii) the process of its discounted price U, U, = %i, t € [0,7], is a strict

(Q-martingale.

Practically, a @-price process has all the features of a true price. The

martingale property leads to the risk-neutral pricing formula under @:
Uy =E?[Dt,T)Ur | F"] ., tel0,1],

where D(t,T) = % — ¢~ Ji' 745 ig the standard discount factor.
Notice that any risky asset S* is a Q-price process.
The so called numeraire is a s.p. that represents a basic standard by

which the prices of all other assets are measured.

Definition D.3. Let U be a Q-price process, a probability measure QY on
(Q, F) is called an EMM with numeraire U if:
i) QU is equivalent to P;

.. . . S, B . U .
ii) the processes of U-discounted prices 7, of are strict Q7 -martingales.

In particular, the risk-neutral pricing formulae

S. = EY [DY(t,T)Sr| 7], (D.1)
B, = E DY, T)Br|FY], te[0,T) (D.2)

hold, where DY(t,T) = {- is the U-discount factor.
Theorem D.0.13. Let ) € Q be an EMM with numeraire B and let U be a

Q-price process. Consider the probability measure QU on (2, F) defined by

dQ" _ D(0,T) _ UrBy
dQ — DU(0,T) BrUy’

Then, for any X € LY(Q,Q), we have

EQ D, T)X |F] = E®" [DV(t, )X |F], telo,T].  (D.3)

In particular QY is an EMM with numeraire U and the risk-neutral price of

a Furopean derivative X 1s equal to

EQ” DV, )X |FY], teloT].
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Proof. Denote
D(Ovt) _ UtBO

DU(0,1) B,

Since U is a (- price process,

Zt = t e [O,T]

BO UT
Z, = —E9 V] =E“
C U [BT 17 } [

D(0,T) W

— L =E° [ Zp|F)
DU(O,T)|E:| [T|‘Ft}>
hence Z is a strictly positive Q-martingale. Then, by the Bayes’ formula,

Q T tW
EQU [X|EW} _ EEQ[)[(ZZTll}_fW]] — EQ [XZ_::|]:tW}

R [X o) |fW} (D.4)

because
Zr UrByBUy UrBy D(0,T)

Z,  BrUyUB, BplU, DU(0,T)
Now, taking (DY(t,T)X) in place of simply X in (D.4), we obtain

D(t,T)
DU(t,T)
= B [DYt,T)X|FV] .

BDTIX|FY] = B9 | S (01X |7

Moreover QY ~ @, indeed EldeU, dcg, >0, 4 dQ ’dQU € L', therefore QU ~ P.

Finally, (D.3) prove (D.1) and (D.2). O

Corollary D.0.14. Let U,V be Q-price processes with corresponding EMMs
QY. QV, respectively. Then, we have

Qv Vilo

w
D.
OZQUIJT AT (D.5)
Proof.
aQvV . o [dQY dQ o [Vl
= E9 |/ 2 |FV| =E° v
aqgr [d@ aqr |7 v, |
Uo ov | Vr Uo Vi
= —ZE9 | = |FY
v, { 'E] VU,

The last equality follows from Theorem D.0.13, since V' is a Q)-price process.
U
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Forward measure

Let p(t,T) be the price at time ¢, under a fixed EMM @ with numeraire

B, of the zero coupon bond with maturity 7":
p(t, T) = EQ |e s | EW] L t<T. (D.6)

Clearly p(t,T') is a @Q-price, because it is just defined through the risk neu-
tral pricing formula under the selected EMM (). Thus there exist an EMM
associated with it, that is QT called T'-forward measure.

By Theorem D.0.13, the risk neutral price H of a European derivative X, at

time ¢, is equal to

p(t,T)
p(T,T)

H, = E9" [ X | ]—“tW} =p(t,T) B [X|FV] . (D.7)
This pricing formula in terms of a QT-expectation does not involve the
stochastic discount factor e~ Ji' Tsds , as instead the Q-expectation does. On
the other hand, it needs to know the distribution of X under @, which can be
deduced by a change of drift (Theorem B.3) in terms of the Radon-Nikodym
. T
derivative % = p(of}ﬁ (from (D.0.14)).
Now we move towards the cardinal theorem of the change of measure

induced by numeraires that are It0 processes.
Lemma D.0.15. Let U,V be two positive Ito processes of the form

AU, = (- )dt + o¥ - dW,
AV, = (---)dt + oV - dW, ,

where W is a correlated d-dimensional Brownian motion and

oV oV e L2 (2 x [0, T]; RY) are the diffusion coefficients.

loc
Then, % is an Ito process of the form

d—:(---)dt+ﬁ<i—§)-dwt. (D.8)
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Proof. Apply the Ito formula to the function F' of the 2-dimensional Ito
process (U, V), F(U,V) =

Vi Vi v Vi 1
d— = - dU; + — + d<UU> ——=d< UV >
U, 02U ()P L) '
V;f U 1 1%
= ( v )dt — (Ut)zo't . th + Utgt . th .

0

Theorem D.0.16 (Change of numeraire). Let U,V be two Q-price pro-

cesses of the form

dU; = (-+)dt + ol - dW;,

dVy = (-+)dt +a) - dW;,
where W is a correlated d-dimensional Brownian motion with correlation
matriz p and oV, 0" € L (Qx[0,T];RY) . Let QV, Q" be the EMMs related

to U,V respectively and WY, WYV be the corresponding Brownian motions.
Then:

aw —aw 4o (2 TN (D.9)
t - t p ‘/; Ut ° °
Proof. Apply the formula (D.5) from Corollary D.0.14:
dQY _y Vil
— = =: 7.
@ T

From Lemma D.0.15 the dynamics of Z under @ is

v U
iz, — 2o [(---)dt+ Ve (U—t—“—t) -th}

Vo u\v, U
ol oV
= (- Ndt+ 7, | == — L) . qW,

but we know from the theorem of Change of drift with correlation that Z is

an exponential martingale under QV, with dynamics given by
dZy = —Z N\ - dW .

As we see in the formula (C.3), the diffusion coefficient is never involved in

the change of measure, so that the percentage diffusion process under QY
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equals the one under @), i.e.

1% U
Vi U

Therefore, by applying (C.3), we have

O’V O’U
AWV =dw) — phdt = dW) +p [ =% — =L ) dt.
Vi U
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