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Abstract

This thesis is focused on the financial model for interest rates called the

LIBOR Market Model, which belongs to the family of market models and

it has as main objects the forward LIBOR rates. We will see it from its

theoretical approach to its calibration to data provided by the market. In

the appendixes, we provide the theoretical tools needed to understand the

mathematical manipulations of the model, largely deriving from the theory of

stochastic differential equations. In the inner chapters, firstly, we define the

main interest rates and financial instruments concerning with the interest rate

models. Then, we set the LIBOR market model, demonstrate its existence,

derive the dynamics of forward LIBOR rates and justify the pricing of caps

according to the Black’s formula. Then, we also present the model acting as

a counterpart to the LIBOR market model, that is the Swap Market Model,

which models the forward swap rates instead of the LIBOR ones. Again,

even this model is justified by a theoretical demonstration and the resulting

formula to price the swaptions coincides with the one used by traders in the

market, i.e. the Black’s formula for swaptions. However, the two models are

not compatible from a theoretical point, because the dynamics that would

be obtained for the swap rate, by starting from the dynamics of the LIBOR

market model, is not log-normal as instead is in the swap market model.

Took note of this inconsistency, we select the LIBOR market model and

derive various analytical approximating formulae to price the swaptions. It

will also be explained how to perform a Monte Carlo algorithm to calculate

the expectation of any payoff involving such rates by a simulation. Finally, it

will be presented the calibration of the LIBOR market model to the markets

of both caps and swaptions, together with various examples of application to

the historical correlation matrix and the cascade calibration of the forward

volatilities to the matrix of implied swaption volatilities provided by the

market.





Sommario

Questa tesi è incentrata su un modello di mercato per i tassi d’intersse detto

LIBOR Market Model, il quale modellizza i tassi forward LIBOR, a par-

tire dalla sua impostazione teorica fino alla sua calibrazione ai dati forniti

dal mercato. Nelle appendici vengono forniti gli strumenti teorici necessari

per la gestione matematica del modello, derivanti in gran parte dalla teo-

ria delle equazioni differenziali stocastiche. Nei capitoli interni, innanzitutto

vengono definiti i principali tassi di interesse e gli strumenti finanziari alla

base dei modelli di mercato sui tassi d’interesse. Poi viene impostato il LI-

BOR market model, dimostrata la sua esistenza, ricavate le dinamiche dei

tassi forward LIBOR e i prezzi dei cap, fedeli alla formula di Black. Viene

poi presentato anche il modello che funge da controparte al LIBOR market

model, ovvero lo Swap Market Model, che modellizza i tassi forward swap

anziché i LIBOR. Anche in questo modello si giustifica, mediante una dimo-

strazione teorica, una formula usata dai traders sul mercato per prezzare le

swaption, ovvero la formula di Black per le swaption. Tuttavia, i due modelli

non sono compatibili dal punto di vista teorico, in quanto la dinamica che

si otterrebbe per il tasso swap a partire dalle dinamiche del LIBOR market

model non è log-normale come invece è nello swap market model. Preso at-

to di questa inconsistenza, viene scelto il LIBOR market model e vengono

derivate diverse formule analitiche approssimate per prezzare le swaption.

Inoltre è spiegato come realizzare l’algoritmo di Monte Carlo per calcolare

tali prezzi mediante una simulazione. Infine viene presentata la calibrazione

del suddetto modello al mercato dei cap e a quello delle swaption, con diversi

esempi di applicazione alla calibrazione della matrice di correlazione storica e

alla calibrazione a cascata delle volatilità forward alla matrice delle volatilità

implicite di mercato delle swaption.





Abbreviations and Notations

w.r.t. = with respect to

s.p. = stochastic process

s.t. = such that

a.s. = almost surely

SDE = stochastic differential equation

B.m. = Brownian motion

EMM = equivalent martingale measure

e.g. = exempli gratia ≡ example given

i.e. = id est ≡ that is

IRS = Interest Rate Swap

PFS = Payer Interest Rate Swap

RFS = Receiver Interest Rate Swap

PFS = Payer Interest Rate Swap

LMM = LIBOR Market Model

SMM = Swap Market Model

c.d.f. = cumulative distribution function

iii



iv

r.v. = random variable(s)

E = expectation

Std = standard deviation

i.i.d. = independent identically distributed
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Introduction

In this thesis we present the most promising family of interest rate models,

that are the market models. The two main representatives of this family are

the LIBOR Market Model (LMM), which models the forward LIBOR rates

as the primary objects in an arbitrage free way instead of deriving it from the

term structure of instantaneous rates, and the Swap Market Model (SMM),

which models the dynamics of the forward swap rates. The advantages of

them is that, by choosing a deterministic volatility structure for the dynamics

of the rates modeled, the first one prices caps according to the Black’s cap

formula, whereas the second one prices swaptions according to the Black’s

swaption formula. Indeed, these Black’s formulae are the standard ones

used respectively in the cap and swaption markets, which are the two main

markets in the interest-rate derivatives world. Despite the good premises, the

desirable compatibility between the two market formulae is not theoretically

confirmed.

The LIBOR Market Model came out at the end of the 90s, in particular

it was rigorously introduced in 1997 by Brace, Gatarek and Musiela, ”The

Market Model of Interest Rate Dynamics”, then other significant contributes

came by Jamshidian, ”LIBOR and swap market models and measures”, and

Miltersen, Sandmann and Sondermann, ”Closed Form Solutions for Term

Structure Derivates with Log-Normal Interest Rates”, all in 1997. At the

same time, Jamshidian introduced the Swap Market Model, in 1997.

The point of this work is to analyze in detail the LIBOR market model,

from its theoretical setting and mathematical results to its financial and prac-

7



8 LIST OF TABLES

tical use, together with some practical applications referring to the current

market data. This thesis is structured as follows.

Appendixes. We give a synthetic presentation of the mathematical defi-

nitions and the main theoretical results concerning the theory of the

stochastic processes and the stochastic differential equations. More-

over, we show the details of one of the most important tool in the

mathematical studying of financial markets, that is the change of nu-

meraire.

Chapter 1. We define the different types of interest rates and introduce

the basic financial instruments and the main derivatives we are dealing

with, i.e. caps and swaptions, together with their practically used

Black’s formulae.

Chapter 2. We introduce the LMM, derive the dynamics of the forward

LIBOR rate modeled and prove its existence. Then we introduce the

Black volatilities implied by the cap market and show that the risk-

neutral valuation formula of caps gives the same prices as the Black’s

cap formula.

Chapter 3. We introduce the SMM, prove that the pricing formula for

swaptions coincides with the Black’s swaption formula and show the

inconsistency of the dynamics assumed by the SMM with the ones

given by the LMM.

Chapter 4. We show in detail the different approaches to price swaptions

under the framework of the LMM, from the Monte Carlo simulation to

various analytical approximating formulae.

Chapter 5. We introduce the important and rich subject of the instanta-

neous correlation modeling, dealing with the modeling and parametriza-

tion of the correlations between the Brownian motions driving the dy-

namics of forward LIBOR rates.
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Chapter 6. We introduce the calibration of the LMM to the cap market and

we present various plausible parameterizations for the forward volatility

structure. Then we consider, for each of them, the evolution in time of

the term structure of volatility.

Chapter 7. We introduce the calibration of the LMM to the swaption mar-

ket, in particular we show an exact cascade calibration. Moreover,

we introduce the use of a historical correlation matrix, along with its

computation and parametric calibration.





Chapter 1

Interest rates and basic

instruments

Definition 1.1. A zero-coupon bond (also known as pure discount bond)

with maturity date T , briefly called T -bond, is a contract which guarantees

the holder to be paid 1 unit of currency at time T , with no intermediate

payments. The contract value at time t < T is denoted by p(t, T ) .

We must make some assumptions:

- there exist a (frictionless) market for T -bond for every T > 0;

- p(T, T ) = 1 holds for all T > 0 (it avoids arbitrage);

- for all fixed t < T the application T 7→ p(t, T ) is differentiable w.r.t.

maturity time.

The graph of the function T 7→ p(t, T ) , T > t , called zero-bond curve,

is decreasing starting from p(t, t) = 1 and will be typically very smooth.

Whereas, for each fixed maturity T , p(t, T ) is a scalar stochastic process

whose trajectory will be typically very irregular (determined by a Brownian

motion).

The amount of time from the present date t and the maturity date T ,

called the time to maturity, is calculated in different ways, according to the

11



12 1. Interest rates and basic instruments

market convention (day-count convention). Once this last is made clear, the

measure of time to maturity, denoted by τ(t,T), is referred to as the year-

fraction between the dates t and T and it’s usually expressed in years. The

most frequently used day-count convention are:

- Actual/365 −→ a year is 365 days long and the year-fraction between

two dates is the actual number of days between them divided by 365;

- Actual/360 −→ a year is 360 days long and the year-fraction between

two dates is the actual number of days between them divided by 360;

- 30/360 −→ months are 30 days long, a year is 360 days long and the

year-fraction between two dates (d1, m1, y1) and (d2, m2, y2) is given by

the ratio

max(30− d1, 0) + min(d2, 30) + 360 · (y2 − y1) + 30 · (m2 −m1 − 1)

360
.

In all the conventions adjustments may be included to leave out holidays.

Zero-coupon bonds are fundamental objects in the interest rate theory,

in fact all interest rates can be also defined in terms of zero-coupon bond

prices.

Talking about interest rates we need to distinguish the two main cate-

gories:

- government rates, related to bonds issued by governments;

- interbank rates, at which deposits are exchanged between banks and

swap transactions between them are.

We are considering the interbank sector of the market, however the mathe-

matical modeling of the resulting rates would be analogous in the two sectors.

Actually, interest rates are what is usually quoted in the (interbank)

financial markets, whereas zero-coupon bonds are theoretically instruments

not directly observable.
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Definition 1.2. The continuously-compounded spot interest rate at time t

for the maturity T is the constant rate at which an investment of p(t, T ) unit

of currency at time t accrues continuously to yield 1 unit of currency at time

T .

It is denoted by R(t, T ) and is defined by:

R(t, T ) := − ln p(t, T )

τ(t, T )
.

Equivalently:

eR(t,T )τ(t,T )p(t, T ) = 1 ,

from which we get the zero-coupon bond prices:

p(t, T ) = e−R(t,T )τ(t,T ) .

Definition 1.3. The simply-compounded spot interest rate at time t for the

maturity T is the constant rate at which an investment of p(t, T ) unit of

currency at time t accrues proportionally to the investment time to produce

1 unit of currency at time T .

It is denoted by L(t, T ) and is defined by:

L(t, T ) :=
1− p(t, T )

τ(t, T )p(t, T )
.

The most important interbank rate, as a reference for contracts, is the

LIBOR (London InterBank Offered Rate) rate, fixing daily at 12 o’ clock

in London. This is a simply-compounded spot interest rate, from which

derive the notation L for this last, and is typically linked to zero-coupon

bond prices by the ”Actual/360” day-count convention. Generally the term

”LIBOR” refers also to analogous rates fixing in other markets, e.g. the

EURIBOR rate (fixing in Bruxelles).

The bond prices in terms of LIBOR rate is:

p(t, T ) =
1

1 + L(t, T )τ(t, T )
.
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Definition 1.4. The annually-compounded spot interest rate at time t for

the maturity T is the constant rate at which an investment of p(t, T ) unit

of currency at time t has to be reinvested once a year to produce 1 unit of

currency at time T .

It is denoted by Y (t, T ) and is defined by:

Y (t, T ) :=
1

p(t, T )
1

τ(t,T )

− 1 .

The day-count convention typically associated to the annual compound-

ing is the ”Actual/365”.

The bond prices in terms of these rates is:

p(t, T ) =
1

(1 + Y (t, T ))τ(t,T )
.

An extension of the annual compounding case is the following.

Definition 1.5. The k-times-per-year compounded spot interest rate at time

t for the maturity T is the constant rate at which an investment of p(t, T )

unit of currency at time t has to be reinvested k times a year to produce 1

unit of currency at time T .

It is denoted by Y k(t, T ) and is defined by:

Y k(t, T ) :=
k

p(t, T )
1

kτ(t,T )

− k .

All the above spot interest rates are equivalent in infinitesimal time in-

tervals. For this reason, we can define the short rate in the following way.

Definition 1.6. The instantaneous short interest rate at time t is the limit

of each of the different spot rates between times t and T with T → t+.

It is denoted by r(t) and is defined by:

r(t) = lim
T→t+

R(t, T )

= lim
T→t+

L(t, T )

= lim
T→t+

Y (t, T )

= lim
T→t+

Y k(t, T ) ∀k .
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Based on this, we can define the mathematical representation of a bank

account, which accrues continuously according to the instantaneous rate.

Definition 1.7. The bank account (or money market account) at time t ≥ 0

is the value (the t-value) of a bank account with a unitary investment at

initial time 0.

It is denoted by B(t) and its dynamics is given by:

dB(t) = r(t)B(t)dt , B(0) = 1 ,

solved by:

B(t) = exp(

∫ t

0

r(s)ds) ,

as shown in (C.2). Notice that, according to the market setting (C.1)-

(C.2) and the theorem of change of drift with correlation, B is the only

asset in the market which is not modified when moving to a risk-adjusted

probability measure, in fact its instantaneous variation is not affected by a

change of measure.

The bank account is a stochastic process that provide us with a model of the

time value of money and allows us to build a discount factor of that value.

Definition 1.8. The (stochastic) discount factor between two time instants

t and T ≥ t is the amount of money at time t equivalent (according to the

dynamic of B(t)) at 1 unit of currency at time T .

It is denoted by D(t, T ) and is defined by:

D(t, T ) =
B(t)

B(T )
= exp

(
−
∫ T

t

r(s)ds

)
.

In some financial areas where the short rate r is considered a determin-

istic function of time (i.e. in markets where the variability of the rate is

negligible with respect to movements of the underlying assets of options to

be priced), both the bank account and the discount factor become determin-

istic processes and we have D(t, T ) = p(t, T ) for all (t, T ) . However, when

dealing with interest rate derivatives, the variability of primary importance
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is just that of the rates themselves. In this case r is modeled as a stochastic

process and consequently D(t, T ) is a random value at time t which depends

on the future evolution of r up to T , whereas p(t, T ) is the t-value (known)

of a contract with maturity date T .

1.1 Forward Rates

Now we move to define the forward rates, that are characterized by three

time instants: the present time t, at which they are locked in, and two points

in future time, the expiry time T and the maturity time S, with t ≤ T ≤ S .

The forward rates can be defined in two different ways.

First approach to define forward rates

We start defining a contract at the current time t which allows us to make

an investment of 1 unit of currency at time T and to have a deterministic

rate of return (determined at t) over the period [T, S]. Then we compute the

relevant interest rate involved by solving an equation that avoids arbitrage.

The corresponding financial strategy is the following:

Time Operations Portfolio value

t sell one T -bond and use

the income p(t, T ) to buy p(t,T )
p(t,S)

S-bonds 0

T pay out 1 −1

S receive the amount p(t,T )
p(t,S)

−1 + p(t,T )
p(t,S)

The net effect of all this, based on a contract made at time t, is that an

investment of 1 unit of currency at time T has yielded p(t,T )
p(t,S)

at time S. Thus

it guarantees a riskless rate of interest over the future interval [T, S]. Such

an interest rate is what is called a forward rate and it can be characterized

depending on the compounding type, as follows.

Definition 1.9. The simply-compounded forward interest rate at time t for

the expiry T > t and maturity S > T is denoted by F (t;T, S) and is defined
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by:

F (t;T, S) :=
1

τ(T, S)

(
p(t, T )

p(t, S)
− 1

)
. (1.1)

It is the solution to the equation

1 + τ(T, S)F =
p(t, T )

p(t, S)
.

Definition 1.10. The continuously-compounded forward interest rate at time

t for the expiry T > t and maturity S > T is denoted by R(t;T, S) and is

defined by:

R(t;T, S) := − ln p(t, S)− ln p(t, T )

τ(T, S)
.

It is the solution to the equation

eRτ(T,S) =
p(t, T )

p(t, S)
.

The simple rate notation is the one used in the market, whereas the contin-

uous one is used in theoretical contexts and does not regard the model we

are exposing.

Second approach to define forward rates

Definition 1.11. A forward rate agreement (FRA) is a contract stipulated

at the current time t that gives its holder an interest rate payment for the

period of time between the expiry T > t and the maturity S > T . Precisely,

at time S he receives a fixed payment based on a fixed rate K and pays a

floating amount based on the spot rate L(T, S) resetting in T .

Its S-payoff is thus:

Nτ(T, S)(K − L(T, S)) ,

where N is the contract nominal value.

This payoff can be rewritten by substituting the LIBOR rate with its

expression:

N

(
τ(T, S)K − 1

p(T, S)
+ 1

)
.
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Now we use the principle of no arbitrage to calculate the value of the above

FRA at time t. The amount 1
p(T,S)

at time S equals to have p(T, S) 1
p(T,S)

= 1

unit of currency at time T , in turn this one equals to have p(t, T ) units of

currency at time t. Instead, the amount τ(T, S)K + 1 at time S equals to

have p(t, S)(τ(T, S)K+1) units of currency at time t. Therefore, the t-value

of the contract is

FRA(t, T, S, τ(T, S), N,K) = N [p(t, S)τ(T, S)K − p(t, T ) + p(t, S)]) .

(1.2)

Finally we can define the simply-compounded forward interest rate as the

unique value of the fixed rate K which renders the FRA with expiry T and

maturity S a fair contract at time t, i.e. such that the t-price (1.2) is 0, to

achieve the same Definition 1.9 again. Then, the value of the FRA can be

rewritten in terms of the forward rate as

FRA(t, T, S, τ(T, S), N,K) = N

[
p(t, S)τ(T, S)K + p(t, S)

(
1− p(t, T )

p(t, S)

)]

= N [p(t, S)τ(T, S)K+

+p(t, S)(−τ(T, S)F (t;T, S))]

= Nτ(T, S)p(t, S) (K − F (t;T, S)) . (1.3)

Comparing the payoff and the price of the above FRA, we can view the

forward rate F (t;T, S) as a kind of estimate of the future spot rate L(T, S),

which is random at time t.

The last type of interest rate worthy to be mentioned is the analogous of

the instantaneous short interest rate, in the future.

Definition 1.12. The instantaneous forward interest rate at time t for the

maturity T is the limit of the forward rates expiring in T when collapsing

towards their expiry.
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It is denoted by f(t) and is defined by:

f(t) = lim
S→T+

F (t;T, S)

= lim
S→T+

R(t;T, S)

= −∂ ln p(t, T )

∂T
.

Interest Rate Swaps

Definition 1.13. Given the tenor structure T = {Tα, . . . , Tβ} with the corre-

sponding set of year fractions τ = {τα, . . . , τβ}, an Interest Rate Swap (IRS )

with tenor Tβ − Tα is a contract which, at every time Ti ∈ {Tα+1, . . . , Tβ}
exchanges the floating leg payment

NτiL(Ti−1, Ti)

with the fixed leg payment

NτiK ,

where N is the nominal value and K a fixed interest rate.

It can be of two types: the holder of a Payer IRS, denoted by PFS, re-

ceives the floating leg and pays the fixed leg, whereas the holder of a Receiver

IRS, denoted by RFS, the opposite. The discounted payoff at a time t < Tα

of a PFS is thus:

β∑

i=α+1

D(t, Ti)Nτi(L(Ti−1, Ti)−K) ,

whereas a RFS has the opposite payoff.
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The arbitrage-free value at t < Tα of a PFS with a unit notional amount is:

PFS(t, T , K) = E

[
β∑

i=α+1

D(t, Ti) τi (Fi(Ti−1)−K) | Ft

]

=

β∑

i=α+1

p(t, Ti) τi E
i [L(Ti−1, Ti)−K | Ft]

= p(t, Tα)− p(t, Tβ)−K

β∑

i=α+1

τi p(t, Ti) (1.4)

=

β∑

i=α+1

p(t, Ti) τi (Fi(t)−K) , (1.5)

where denoting Fj(t) := F (t;Tj−1, Tj) .

Proof. The formula (1.4) can be obtained analogously to the price of a FRA:

the floating payment set in Ti−1 and payed in Ti can be rewritten as

1

p(Ti−1, Ti)
− 1 ,

that equals to have

p(t, Ti−1)− p(t, Ti) (1.6)

at time t < Tα, so that the arbitrage-free value at t of the whole floating side

is
β∑

i=α+1

(p(t, Ti−1)− p(t, Ti)) = p(t, Tα)− p(t, Tβ) ;

on the other hand the amount τiK at time Ti equals to have p(t, Ti)τiK units

of currency at time t, so that the arbitrage-free value at t of the whole fixed

side is
β∑

i=α+1

p(t, Ti)τiK = K

β∑

i=α+1

p(t, Ti)τi .

Equivalently we could have obtained (1.6) by the risk neutral pricing for-
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mula (D.6):

EQ

[
D(t, Ti)

(
1

p(Ti−1, Ti)
− 1

)
| FW

t

]
=

= EQ

[
e−

∫ Ti
t rsds

1

p(Ti−1, Ti)
| FW

t

]
− EQ

[
D(t, Ti) | FW

t

]

= EQ

[
e−

∫ Ti
t rsdsEQ

[
e
∫ Ti
Ti−1

rsds | FW
Ti−1

]
| FW

t

]
− p(t, Ti)

= EQ
[
e−

∫ Ti−1
t rsds | FW

t

]
− p(t, Ti) = p(t, Ti−1)− p(t, Ti) .

Then, the formula (1.5) can be obtained by substituting the expression for

forward rates (1.1), as we made in (1.3).

From another point of view, a RFS can be view as a portfolio of FRAs,

valued through formulas (1.2) or (1.3), leading to a price opposite to that of

a PFS.

Definition 1.14. The forward swap rate (or par swap rate) of a Tα×(Tβ−Tα)

Interest Rate Swap is denoted by Sα,β(t) at time t and is defined as that value

of the fixed rate that makes the IRS a fair contract at the current time t. It

is obtained by equating to zero the t-value of the contract in (1.4):

Sα,β(t) :=
p(t, Tα)− p(t, Tβ)

β∑
i=α+1

τi p(t, Ti)

. (1.7)

Remark 1. It can be rewritten as a nonlinear function of the forward LIBOR

rates as

Sα,β(t) =

1−
β∏

j=α+1

1
1+τjFj(t)

β∑
i=α+1

τi
i∏

j=α+1

1
1+τjFj(t)

. (1.8)

Proof.

Sα,β(t) =
p(t, Tα)− p(t, Tβ)

β∑
i=α+1

τi p(t, Ti)

=

p(t,Tα)−p(t,Tβ)

p(t,Tα)

β∑
i=α+1

τi
p(t,Ti)
p(t,Tα)

,
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then, from the definition (1.1) of forward rates and by a simple algebraic

relation, we have:

p(t, Ti)

p(t, Tα)
=

i∏

j=α+1

p(t, Tj)

p(t, Tj−1)
=

i∏

j=α+1

1

1 + τjFj(t)
∀i > α .

1.2 Main derivatives

In this chapter we present the two main interest rate derivatives, that are

caps/floors and swaptions.

Interest rate Caps/Floors

Definition 1.15. An interest rate cap is a financial insurance contract equiv-

alent to a payer interest rate swap where each exchange payment is executed

if and only if it has positive value. The discounted payoff at time t of the cap

associated to the tenor structure T = {Tα, . . . , Tβ}, with the corresponding

set of year fractions τ = {τα, . . . , τβ}, and working on a principal amount of

money N , is
β∑

i=α+1

D(t, Ti)Nτi(L(Ti−1, Ti)−K)+ . (1.9)

Analogously, a floor is a contract equivalent to a receiver interest rate swap

where each exchange payment is executed if and only if it has positive value,

with t-discounted payoff

β∑

i=α+1

D(t, Ti)Nτi(K − L(Ti−1, Ti))
+ .

A cap has the task of protecting the holder, indebted with a loan at a

floating rate of interest, from having to pay more than a prespecified rate K,

called the cap rate. On the other hand, a floor guarantees that the interest

paid on a floating rate loan will never be below a predetermined floor rate.
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A cap consists in a portfolio of a number of more basic contracts, named

caplets : the i-th caplet is determined at time Ti−1 but not paid out until

time Ti and has the t-discounted payoff

D(t, Ti)Nτi(L(Ti−1, Ti)−K)+ .

Analogously are defined the floorlet contracts.

The market practice is to price caps by using the Black’s formula for caps,

an extension of the Black and Scholes formula, dating back to 1976 when

Black had to price the payoff of commodity options. The price at time t of

the cap with tenor T and unit notional amount is

CapBlack(t, T , τ,K, v) =

β∑

i=α+1

τi p(t, Ti) Bl (K,F (t;Ti−1, Ti), vi)) , (1.10)

where

Bl(K,F (t;Ti−1, Ti), vi)) := F (t;Ti−1, Ti) Φ (d1(K,F (t;Ti−1, Ti), vi)) +

−KΦ (d2(K,F (t;Ti−1, Ti), vi)) ,

d1(K,F, u) :=
ln( F

K )+
u2

2

u
,

d2(K,F, u) :=
ln( F

K )−
u2

2

u
,

vi := v
√
Ti−1 ,

with the common volatility parameter v that is retrieved from market quotes.

Analogously, the Black’s formula for caplets is

CaplBlack(t, Ti−1, Ti, K, vi) = τi p(t, Ti) Bl (K,F (t;Ti−1, Ti), vi)) , (1.11)

for all i = α + 1, . . . , β.

Swaptions

Definition 1.16. A European Tα × (Tα − Tβ) Payer Swaption (PS ) with

swaption strike K is a contract that gives the right (but not the obligation)

to enter a PFS with tenor Tβ − Tα and fixed rate K at the future time Tα,

i.e. the swaption maturity.
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Namely, a swaption is an option of an IRS. The payer swaption payoff at

its first reset date Tα, which is also the swaption maturity, is:

(PFS(Tα, T , K))+ =

(
β∑

i=α+1

p(Tα, Ti) τi (F (Tα;Ti−1, Ti)−K)

)+

(1.12)

= (Sα,β(Tα)−K)+
β∑

i=α+1

τi p(Tα, Ti) (1.13)

respectively in terms of forward rates and of the relevant forward swap rate.

Proof. The formula (1.12) is obtained simply by taking the positive part of

the Tα-price of a PFS in the form (1.5), whilst the formula (1.13) is obtained

from the other version (1.4) of the same price as follows:

(PFS(Tα, T , K))+ =

(
p(Tα, Tα)− p(Tα, Tβ)−K

β∑

i=α+1

τi p(Tα, Ti)

)+

= (Sα,β(Tα)−K)+
β∑

i=α+1

τi p(Tα, Ti) .

The market practice is to price swaptions by using the Black’s formula for

swaptions: the price at time t of the above Tα × (Tα − Tβ) payer swaption is

PSBlack(t, Tα, T , K, vα,β) =

β∑

i=α+1

τi p(t, Ti) Bl
(
K,Sα,β(t), vα,β

√
Tα − t

)
.

(1.14)

A Receiver Swaption is defined analogously as an option on a RFS.



Chapter 2

The LIBOR Market Model

(LMM)

For a very long time, namely since the early ’80 to 1996, the market

practice has been to value caps, floors and swaptions by using a formal ex-

tension of the Black (1976) model. However, this formula was applied in a

completely heuristic way, under some simplifying and inexact assumptions.

Indeed, interest rate derivatives were priced by using short rate models, based

on modeling the instantaneous short interest rate; at one point this was as-

sumed to be deterministic, so that the discount factor was identified with the

corresponding bond price, that could be factorized out of the Q-expectation

in the risk-neutral pricing formula; then, inconsistently with the previous

assumption, the forward LIBOR rates were modeled as driftless geometric

Brownian motions under Q, hence stochastic; finally the expectation could be

view as the price of a call option in a market with zero risk-free rate, therefore

it was obtained through the Black’s formula. This is logically inconsistent.

Then, at the end of the ’90, after the coming of the theory of the change

of numeraire, a promising family of (arbitrage-free) interest rate models was

introduced: the Market Models. This breakthrough came at the hands of

Miltersen et al (1997), Brace et al (1997) and Jamshidian (1998). The prin-

cipal idea of these approaches is to choose a different numeraire than the

25
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risk-free bank account.

The interest rate market is radically different from the others, e.g. commodi-

ties or equities, thus needs a own kind of modeling. There are three possible

choices in interest rate modeling: short rate models, that model one single

variable, instantaneous forward rate models, that model all infinite points of

the term structure and Market Models.

These recent ones have the following characteristics:

- instead of modeling instantaneous interest rates, they model a selection

of discrete real world rates (quoted in the market) spanning the term

structure;

- under a suitable change of numeraire these market rates can be modeled

log-normally;

- they produce pricing formulas for caps, floors and swaptions of the

Black-76 type;

- they are easy to calibrate to market data and are then used to price

more exotic products.

The model we are introducing is best known generally as ”LIBOR Mar-

ket Model” (LMM), or else ”Log-normal Forward LIBOR Model” or ”Brace-

Gatarek-Musiela 1997 Model” (BGM model), from the names of the authors

of the first published papers that rigorously described it.

Setting the model:

• t = 0 is the current time;

• the set {T0, T1, . . . , TM} of expiry-maturity dates (expressed in years) is

the tenor structure, with the corresponding year fractions {τ0, τ1, . . . , τM},
i.e. τi is the one associated with the expiry-maturity pair (Ti−1, Ti), for

all i > 0, and τ0 from now to T0;

• set T−1 := 0;
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• the simply-compounded forward interest rate resetting at its expiry

date Ti−1 and with maturity Ti is denoted by Fi(t) := F (t;Ti−1, Ti)

and is alive up to time Ti−1, where it coincides with the spot LIBOR

rate Fi(Ti−1) = L(Ti−1, Ti), for i = 1, . . . ,M ;

• there exists an arbitrage-free market bond, where an EMM Q exists

and the bond prices p(·, Ti) are Q-prices, for i = 1, . . . ,M ;

• Qi is the EMM associated with the numeraire p(·, Ti), i.e. the Ti-

forward measure;

• Z i is the M-dimensional correlated Brownian motion under Qi, with

instantaneous correlation matrix ρ.

Lemma 2.0.1. For every i = 1, . . . ,M the forward LIBOR process Fi is

a martingale under the corresponding Ti-forward measure, on the interval

[0, Ti−1].

Proof. From the definition of forward rates we have

Fi(t)p(t, Ti) =
p(t, Ti−1)− p(t, Ti)

τi
.

Since p(t, Ti−1) and p(t, Ti) are tradable assets, hence Q-prices, Fi(t) is a Q-

price too. Thus, when normalizing it by the numeraire p(·, Ti), it has to be

a martingale under Qi on the interval [0, Ti−1].

Modeling the F ’s as diffusion processes, it follows that Fi has a driftless

dynamics under Qi.

Definition 2.1. A discrete tenor LIBOR market model assumes that the

forward rates have the following dynamics under their associated forward

measures:

dFi(t) = σi(t)Fi(t)dZ
i
i(t) , t ≤ Ti−1 , for i = 1, . . . ,M (2.1)

where the percentage instantaneous volatility process of Fi, σi, is assumed

to be deterministic and scalar, whereas dZ i
i is the i-th component of the Qi-

Brownian motion, hence is a standard B.m. (Observation 13 in Appendix

C).
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There exist also extensions of this model where the scalar volatility σi(t)

are positive stochastic processes.

Notice that, if σi is bounded, the SDE (2.1) has a unique strong solution,

since it describes a geometric Brownian motion. Indeed, by Itô’s formula,

d lnFi(t) = σi(t)dZ
i
i(t)− σi(t)

2

2
dt

⇒ lnFi(T ) = lnFi(t) +
∫ T

t
σi(s)dZ

i
i(s)−

∫ T

t

σi(s)
2

2
ds

⇒ Fi(T ) = Fi(t) e
∫ T

t
σi(s)dZi

i (s)− 1
2

∫ T

t
σi(s)2ds , 0 ≤ t ≤ T ≤ Ti−1 .

Proposition 2.0.2 (Forward measure dynamics in the LMM). Under the

assumptions of the LIBOR market model, the dynamics of each Fk, for k =

1, . . . ,M , under the forward measure Qi with i ∈ {1, . . . ,M} , is:

k < i : dFk(t) = −σk(t)Fk(t)
i∑

j=k+1

ρk,jτjσj(t)Fj(t)

1+τjFj(t)
dt+ σk(t)Fk(t)dZ

i
k(t) ,

k = i : dFk(t) = σk(t)Fk(t)dZ
i
k(t) ,

k > i : dFk(t) = σk(t)Fk(t)
k∑

j=i+1

ρk,jτjσj(t)Fj(t)

1+τjFj(t)
dt + σk(t)Fk(t)dZ

i
k(t) ,

(2.2)

for t ≤ min{Tk−1, Ti}.

Proof. By assumption, there exist a LIBOR market model satisfying (2.1).

We try to determine the deterministic functions µi
k(t, F (t)), where:

F (t) = (F1(t), . . . , FM(t))′, that satisfies

dFk(t) = µi
k(t, F (t))Fk(t)dt+ σk(t)Fk(t)dZ

i
k(t) , k 6= i . (2.3)

In order to find µi
k(t, F (t)), i.e. the percentage drift of dFk under Qi, we’re

going to apply the change of measure fromQi to Qk, then impose that theQk-

resulting drift is null. From Corollary D.0.14, the Radon-Nikodym derivative

of Qi−1 w.r.t. Qi at time t is

dQi−1

dQi
|FW

t =
p(t, Ti−1)p(0, Ti)

p(0, Ti−1)p(t, Ti)
=: γi

t
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and, by (1.9),

γi
t =

p(0, Ti)

p(0, Ti−1)
(1 + Fi(t)τi) .

Therefore, assuming (2.1), the dynamics of γi under Q
i is

dγi
t =

p(0, Ti)

p(0, Ti−1)
dFi(t)τi =

p(0, Ti)

p(0, Ti−1)
τiσi(t)Fi(t)dZ

i
i(t)

=
γi
t

1 + Fi(t)τi
τiσi(t)Fi(t)dZ

i
i(t) .

Thus, the density γi is in the form of an exponential martingale with asso-

ciated process λ that is the d-dimensional null vector apart from the i-th

component,

λ =
(

0 · · · − τiσiFi

1+Fiτi
· · · 0

)′
, (2.4)

so that we can apply the formula (C.3) of the change of drift with correlation:

dZ i(t) = dZ i−1(t)− ρλdt ,

namely with components

dZ i
j(t) = dZ i−1

j (t) + ρji
τiσi(t)Fi(t)

1 + Fi(t)τi
dt .

Applying this inductively we obtain:

k < i : dZ i
j(t) = dZk

j (t) +
i∑

h=k+1

ρjh
τhσh(t)Fh(t)
1+Fh(t)τh

dt ;

k > i : dZ i
j(t) = dZk

j (t)−
k∑

h=i+1

ρjh
τhσh(t)Fh(t)
1+Fh(t)τh

dt .

Then, inserting these into (2.3) and equating the Qk-drift to zero, we have:

k < i : Fk(t)

(
µi
k(t, F (t)) + σi(t)

i∑
h=k+1

ρjh
τhσh(t)Fh(t)
1+Fh(t)τh

)
dt = 0

⇒ µi
k(t, F (t)) = −σi(t)

i∑
h=k+1

ρjh
τhσh(t)Fh(t)
1+Fh(t)τh

;

k > i : Fk(t)

(
µi
k(t, F (t))− σi(t)

k∑
h=i+1

ρjh
τhσh(t)Fh(t)
1+Fh(t)τh

)
dt = 0

⇒ µi
k(t, F (t)) = σi(t)

k∑
h=i+1

ρjh
τhσh(t)Fh(t)
1+Fh(t)τh

.
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At this point, we can turn around the argument to have the following

existence result.

Proposition 2.0.3. Consider a given volatility structure σ1, . . . , σM , where

each σi is bounded, and the terminal measure QM with associated d-dimensional

correlated B.m. WM . If we define the processes F1, . . . , FM by

dFi(t) = −σi(t)Fi(t)

M∑

j=i+1

ρi,jτjσj(t)Fj(t)

1 + τjFj(t)
dt+ σi(t)Fi(t)dZ

M
i (t) , (2.5)

for i = 1, . . . ,M , then the Qi-dynamics of Fi is given by (2.1), i.e. there

exists a LIBOR model with the given volatility structure.

Proof. First, we have to prove the existence of a solution of (2.5). For i = M

we simply have

dFM = σM (t)FM(t)dZM
M (t) ,

which is just an exponential martingale, where σM is bounded, thus a solution

does exist. Now we proceed by induction: assume that (2.5) admits a solution

for i+ 1, . . . ,M , then we write the i-th dynamics as

dFi(t) = µi(t, Fi+1(t), . . . , FM(t))Fidt+ σi(t)Fi(t)dZ
M
i (t) ,

where the crucial fact is that µi depends only on FK for k = i + 1, . . . ,M .

Thus, denoting FM
i+1 := (Fi+1, . . . , FM)′, we can solve explicitly the above

SDE by applying the Itô formula:

d lnFi(t) =
dFi(t)

Fi(t)
− 1

2Fi(t)2
σi(t)

2Fi(t)
2dt

= µi(t, F
M
i+1(t))dt+ σi(t)dZ

M
i (t)− 1

2
σi(t)

2dt

⇒ lnFi(t) = lnFi(0) +
∫ t

0

(
µi(s, F

M
i+1(s))− σi(s)2

2

)
ds+

∫ t

0
σi(s)dZ

i
i(s)

⇒ Fi(t) = Fi(t) exp
[∫ t

0

(
µi(s, F

M
i+1(s))− σi(s)2

2

)
ds
]
exp

[∫ t

0
σi(s)dZ

i
i(s)
]
,

for 0 ≤ t ≤ Ti−1 . This proves existence.

Then, we have to prove that the process λ defined in (2.4) satisfies the
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Novikov condition (B.1), in which case the density process γi is aQi-martingale

and consequently we can apply the Girsanov Theorem, retracing the same

steps as in the proof of Proposition 2.0.2. In this regard, given an initial

positive LIBOR term structure, as it is F (0) = (F1(0), . . . , FM(0))′, notice

that all LIBOR rate processes will be always positive, thus the process λ

in (2.4) is bounded and consequently satisfies the Novikov condition.

The ”log-normal forward LIBOR model” takes his name from the log-

normal distribution of each forward rate under the related forward measure

and we find it in the literature with several names. Anyway, the most com-

mon terminology remains that of ”LIBOR Market Model”.

2.1 Pricing Caps in the LMM

In the market, cap prices are not quoted in monetary terms, but rather

in terms of the so-called implied Black volatilities. Typically, caps whose

implied volatilities are quoted have resettlement dates Tα, . . . , Tβ with either

α = 0, T0 = 3 months and all other Ti’s equally three-months spaced, or

α = 0, T0 = 6 months and all other Ti’s equally six-months spaced.

Definition 2.2. Given market price data for caps with tenor structure as

above mentioned, denoted by Capm(t, Tj , K) where Tj = {T0, . . . , Tj}, the
implied Black volatilities are defined as follows:

• the implied flat volatilities are the solutions vT1−cap, . . . , vTM−cap of the

equations

Capm(t, Tj , K) =

j∑

i=1

CaplBlack(t, Ti−1, Ti, K, vTj−cap) ,

j = 1, . . . ,M ;

• the implied spot volatilities are the solutions vT1−capl, . . . , vTM−capl of

the equations

Caplm(t, Ti−1, Ti, K) = CaplBlack(t, Ti−1, Ti, K, vTi−capl) ,



32 2. The LIBOR Market Model (LMM)

i = 1, . . . ,M , where

Caplm(t, Ti−1, Ti, K) = Capm(t, Ti, K)− Capm(t, Ti−1, K) .

Notice that the flat volatility vTj−cap is that implied by the Black formula

by putting the same average volatility in all caplets up to Tj , whereas the

spot volatility vTi−capl is just the implied average volatility from caplet over

[Ti−1, Ti].

Remark 2. There seems to be one kind of inconsistency in the cap volatility

system. Indeed, when considering a set of caplets all concurring to different

caps, their average volatilities change moving from a cap to another, if com-

puted as implied flat volatilities. Therefore, to recover correctly cap prices

according to the LMM dynamics, we need to have

j∑
i=1

τi p(t, Ti) Bl
(
K,F (t;Ti−1, Ti),

√
Ti−1vTj−cap)

)
=

=
j∑

i=1

τi p(t, Ti) Bl
(
K,F (t;Ti−1, Ti),

√
Ti−1vTi−capl)

)
,

(2.6)

for all j = 1, . . . ,M .

Recalling the t-discounted payoff (1.9) for a cap with tenor T = {Tα, . . . , Tβ},
year fractions τ , cap rate K and unit notional amount, we have that its price,

given by the risk neutral valuation formula, is

EQ

[
β∑

i=α+1

D(t, Ti)τi(L(Ti−1, Ti)−K)+ | Ft

]
=

=
β∑

i=α+1

τiE
Q [D(t, Ti)(L(Ti−1, Ti)−K)+ | Ft] ,

(2.7)

but moving from the probability measure Q with numeraire B to the Ti-

forward measure in each i-th summand, as in (D.7), we have

β∑

i=α+1

τip(t, Ti)E
i
[
(L(Ti−1, Ti)−K)+ | Ft

]
.

Notice that the joint dynamics of forward rates is not involved in the pricing

of a cap, because its payoff is reduced to a sum of payoffs of the caplets
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involved. Consequently, marginal distributions of forward rates are enough

to compute the expectation and the correlation between them does not mat-

ter. The above expectation in computed easily, remembering the log-normal

distribution of the Fi’s under the related Qi’s.

Proposition 2.1.1 (Equivalence between LMM and Black’s caplet prices).

The price of the i-th caplet implied by the LIBOR market model coincides

with that given by the corresponding Black caplet formula:

CaplLMM(0, Ti−1, Ti, K) = CaplBlack(0, Ti−1, Ti, K, vi)

= τi p(0, Ti) Bl
(
K,F (0;Ti−1, Ti), vi

√
Ti−1)

)
,

where

(vi)
2 =

1

Ti−1

∫ Ti−1

0

σi(t)
2dt . (2.8)

Proof.

CaplLMM(t, Ti−1, Ti, K) = τip(t, Ti)E
i
[
(L(Ti−1, Ti)−K)+ | Ft

]
,

where L(Ti−1, Ti) = F (Ti−1;Ti−1, Ti) = Fi(Ti−1) and, for T < Ti−1, Fi(T ) is

log-normal distributed under the forward measure Qi, indeed

Fi(T ) = Fi(t)e
∫ T
t

σi(s)dZ
i
i (s)− 1

2

∫ T
t

σi(s)
2ds , 0 ≤ t ≤ T ≤ Ti−1 ,

with σi assumed to be deterministic. Let

Yi(t, T ) :=

∫ T

t

σi(s)dZ
i
i(s)−

1

2

∫ T

t

σi(s)
2ds ,

we have

Fi(T ) = Fi(t)e
Yi(t,T ) , Yi(t, T ) ∼ N (mi(t, T ),Σ

2
i (t, T )) ,

where

mi(t, T ) = −1

2

∫ T

t

σi(s)
2ds , Σ2

i (t, T ) =

∫ T

t

σi(s)
2ds

and Fi(t) ∈ R at time t. Thus the proof follows from (A.5).

The quantity vi in (2.8), denote the average (standardized with respect

to time) instantaneous percentage variance of the forward rate Fi(t) for

t ∈ [0, Ti−1], that is its average volatility.



Chapter 3

The Swap Market Model

(SMM)

We are going to illustrate the counterpart of the LIBOR market model

among the market models, i.e. the ”Swap Market Model” (SMM), which

models the evolution of the forward swap rates instead of the one of the

forward LIBOR rates, these two kind of rates being the bases of the two main

markets in the interest rate derivatives world. The SMM is also referred to

as ”Log-Normal Forward Swap Model” or ”Jamshidian 1997 Market Model”.

The settings of this model are still the same of the LMM.

From the formula (1.13) for the Tα-price of a Tα×(Tβ−Tα) payer swaption,

it comes clearly that the natural choice of numeraire to model the dynamics

of the forward swap rate is the process

Cα,β(t) :=

β∑

i=α+1

τi p(t, Ti) ,

which is referred to as the accrual factor or the present value of a basis

point, given α, β ∈ {0, . . . ,M} , α < β . Moreover the accrual factor has the

representation of the value at a time t of a traded asset that is a buy-and-hold

portfolio consisting, for each i, of τi units of the zero coupon bond maturing

at Ti, thus it is a plausible numeraire.

34
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Lemma 3.0.2. Denoted by Qα,β the EMM associated with the numeraire

Cα,β, the forward swap rate process Sα,β is a martingale under Qα,β, on the

interval [0, Tα].

Proof. This follows immediately from the definition (1.7) of the forward swap

rate, in fact the product

Cα,β(t)Sα,β(t) = p(t, Tα)− p(t, Tβ)

gives the t-price of a tradable asset, whose discounted process by the nu-

meraire Cα,β has to be a Qα,β-martingale, by Theorem D.0.13 and the prop-

erties of an EMM.

The probability measureQα,β is called the (forward) swap measure related

to α, β. We may note that the accrual factors play for the swap rate the same

role as the the zero coupon bond prices did for the forward rates in the LIBOR

market model. The model we are defining is founded on this basis.

Definition 3.1. Consider a fixed a subset T pairs of all pairs (α, β) of integer

indexes such that 0 ≤ α < β ≤ M of the resettlement dates in the tenor

structure {T0, T1, . . . , TM} and consider for each pair a deterministic function

of time t 7→ σα,β(t) . A swap market model (SMM ) with volatilities σα,β

assumes that the forward swap rates have the following dynamics under their

associated swap measures:

dSα,β(t) = σα,β(t)Sα,β(t)dW
α,β(t) , t ≤ Tα , (3.1)

for (α, β) ∈ T pairs, where W α,β is a scalar standard Qα,β-Brownian motion.

We can also allows for correlation between the different Brownian mo-

tions, however, this will not affect the swaption prices but only the pricing

of more complicated products.

Remark 3. In a model with M + 1 resettlement dates it is possible to model

only M swap rates as independent. The two typical choices of possible T pairs

identify the following substructures:
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• the regular SMM, which models the swap rates S0,M , S1,M , . . . , SM−1,M ,

i.e.

T pairs = {(0,M), (1,M), . . . , (M − 1,M)} ;

• the reverse SMM, which models the swap rates S0,1, S0,2, . . . , S0,M , i.e.

T pairs = {(0, 1), (0, 2), . . . , (0,M)} .

3.1 Pricing Swaptions in the SMM

In a swap market model, the pricing of swaptions result trivial and exactly

analogous to the pricing of caplets in the LMM.

Proposition 3.1.1 (Equivalence between SMM and Black’s swaption prices).

The price of a Tα×(Tβ−Tα) payer swaption implied by the swap market model

coincides with that given by the corresponding Black swaptions formula:

PSSMM(0, Tα, {Tα, . . . , Tβ}, K) = PSBlack(0, Tα, {Tα, . . . , Tβ}, K, vα,β(Tα))

= Cα,β(0) Bl
(
K,Sα,β(0),

√
Tαvα,β(Tα))

)
,

where

vα,β(T )
2 =

1

Tα

∫ T

0

σα,β(t)
2dt . (3.2)

Proof. From (1.13), the risk neutral valuation formula at time t for the price

of the above swaption is

PSSMM(t, Tα, {Tα, . . . , Tβ}, K) =

= EQ
[
D(t, Tα) (Sα,β(Tα)−K)+Cα,β(Tα) | Ft

]

= EQα,β
[

Cα,β(t)

Cα,β(Tα)
(Sα,β(Tα)−K)+ Cα,β(Tα) | Ft

]

= Cα,β(t)E
Qα,β [

(Sα,β(Tα)−K)+ | Ft

]
,

by moving from the probability measure Q with numeraire B to the forward

swap measure Qα,β, as in (D.7). Since Sα,β is log-normal distributed under

the swap measure Qα,β, precisely

Sα,β(T ) = Sα,β(t)e
∫ T
t

σα,β(s)dW
α,β(s)− 1

2

∫ T
t

σα,β(s)
2ds , 0 ≤ t ≤ T ≤ Tα ,
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where σα,β is assumed to be deterministic, we can rewrite it consistently with

the assumptions of Corollary A.0.4:

Sα,β(T ) = Sα,β(t)e
Yα,β(t,T ) ,

where

Yα,β(t, T ) :=

∫ T

t

σα,β(s)dW
α,β(s)− 1

2

∫ T

t

σα,β(s)
2ds .

Hence

Yα,β(t, T ) ∼ N (mα,β(t, T ),Σ
2
α,β(t, T )) , where

mα,β(t, T ) = −1

2

∫ T

t

σα,β(s)
2ds , Σ2

α,β(t, T ) =

∫ T

t

σα,β(s)
2ds

and Sα,β(t) ∈ R at time t.

Thus, considering the actual price of the swaption, i.e. t = 0, the proof

follows directly from (A.5).

3.2 Theoretical incompatibility between LMM

and SMM

At this point, a crucial question rises: Are the two main market models,

the LMM and the SMM, theoretically consistent? That is, can the assump-

tions of log-normality of both LIBOR forward rates and forward swap rates

coexist? In order to give an answer we can proceed as follows:

1. assume the hypothesis of the LMM, namely that each forward rate Fi

is log-normal under its related forward measure Qi, i = 1, . . . ,M , as

in (2.1);

2. apply the change of measure to obtain their dynamics under the swap

measure Qα,β, for a choice of (α, β) ∈ T pairs;

3. apply the Itô’s formula to obtain the resulting dynamics for the swap

rate Sα,β under Qα,β ;
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4. check if this distribution is log-normal, as it is under the hypothesis of

the SMM.

Unfortunately, the answer is negative. However, from a practical point of

view, this incompatibility seems to weaken considerably. Indeed, simulating

a large number of realizations of Sα,β(Tα) with the dynamics induced by

the LMM one can compute its empirical (numerical) density and compare it

with the log-normal density. Consequently, it has been argued (Brace-Dun-

Burton 1998 and Morini 2001-2006) that, in normal market conditions, the

two distributions are hardly distinguishable.

Once ascertained the mathematical inconsistency of these two models, we

must admit that the SMM is particularly convenient when pricing a swaption,

because it yields the practice Black’s formula for swaptions. However, for

different products, even those involving the swap rate, there is no analytical

formula in general. The problem left is choosing either of the two models

for the whole market. After that choice, the half market consistent with the

model is calibrated almost automatically, thanks to Black’s formulae, but

the remaining half is more intricate to calibrate.

Since the LIBOR forward rates, rather than swap rates, are more natural

and representative coordinates of the yield curve usually considered, besides

being mathematically more manageable, the better choice of modeling may

be to assume as framework the LIBOR market model. Thus, hereafter, we

are working under the hypothesis of the LMM.



Chapter 4

Pricing of Swaptions in the

LMM

The LMM, unfortunately, does not feature a known distribution for the

joint dynamics of forward rates, hence to evaluate swaptions, as well as other

payoffs involving that joint dynamics, we have to resort to Monte Carlo

simulation, under a chosen numeraire among the T1, . . . , TM -zero coupon

bonds, or to some analytical approximation.

4.1 Monte Carlo Pricing of Swaptions

The Monte Carlo method is a numerical and probabilistic method which

consists in a computational algorithm relying on repeated independent ran-

dom sampling to compute approximations of theoretical results, especially

when it is infeasible to compute an exact result with a deterministic algo-

rithm.

In general, Monte Carlo intends to estimate an expectation value through

an arithmetic mean of realizations of i.i.d. random variables and it proceed as

follows: let X be the r.v., with known distribution, on which the expectation

we need to estimate depends; a pseudorandom number generator provides

a sequence of realizations X(k) of theoretical independent r.v. X1, X2, . . .

39
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distributed as X ; then, the desired expectation is approximated by

E [ϕ(X)] ∼= 1

m

m∑

k=1

ϕ(X(k)) .

Indeed, by the ”Law of large numbers”, the sample average converges to the

expected value, under the hypothesis that X1, X2, . . . is an infinite sequence

of i.i.d. random variables with finite expected value.

The most general way to price a swaption, as well as any other option with

underlying forward rates, is through the Monte Carlo simulation. In order

to simulate all the processes involved in the payoff, their joint dynamics is

discretized with a numerical scheme for SDEs, e.g. the Euler scheme.

Recall the price of a Tα × (Tβ − Tα) payer swaption:

EQ

[
D(0, Tα) (Sα,β(Tα)−K)+

β∑
i=α+1

τi p(Tα, Ti)

]
=

= p(0, Tα)E
α

[
(Sα,β(Tα)−K)+

β∑
i=α+1

τi p(Tα, Ti)

]
,

by considering this time the Tα-bond p(·, Tα) as numeraire.

Then, by keeping in mind that Sα,β has an expression in terms of the relevant

spanning forward rates, given by (1.8), notice that the expectation above

depends on the joint distribution of the same F ’s.

The dynamics of the k-th forward rate, for each k = α + 1, . . . , β, under

Qα is

dFk(t) = σk(t)Fk(t)
k∑

j=α+1

ρk,jτjσj(t)Fj(t)

1 + τjFj(t)
dt+ σk(t)Fk(t)dZ

α
k (t) , t < Tα ,

(4.1)

and, in order to evaluate the payoff

(Sα,β(Tα)−K)+
β∑

i=α+1

τi p(Tα, Ti) , (4.2)

we have to generate a number of realization, say m, of

Fα+1(Tα), . . . , Fβ(Tα) ,
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according to the dynamics (4.1). Finally the Monte Carlo price of the swap-

tion is given by the mean of the m evaluations of the payoff (4.2).

To simulate the dynamics in the SDE (4.1), which has neither analytical

solution nor known distribution, we discretize it by using the Euler scheme

applied to the natural logarithm-version of the same equation. The choice to

discretize the ln-version of (4.1) is based on the advantage of having both a

deterministic diffusion coefficients and a better numerical stability. We have,

by the Itô’s formula, the ln-dynamics

d lnFk(t) =

(
σk(t)

k∑

j=α+1

ρk,jτjσj(t)Fj(t)

1 + τjFj(t)
− σk(t)

2

2

)
dt+ σk(t)dZ

α
k (t) . (4.3)

We introduce a time grid with a sufficiently (but not too) small step ∆t = Tα

N

and consider the discrete scheme

lnFk(ti+1) = lnFk(ti)

(
σk(ti) +

k∑
j=α+1

ρk,jτjσj(ti)Fj(ti)

1+τjFj(ti)
− σk(ti)

2

2

)
∆t+

+σk(ti)(Z
α
k (ti+1)− Zα

k (ti)) ,

(4.4)

with ti = i∆t, i = 0, . . . , N − 1. This provides us with m approximated

realizations F
(1)
k (Tα), . . . , F

(m)
k (Tα) of the true process Fk(Tα), such that

∃δ0 > 0 : Eα
[
|F (i)

k (Tα)− Fk(Tα)|
]
≤ c(Tα)∆t for ∆t ≤ δ0 ,

where c(Tα) is a positive constant. Hence the convergence is of order 1.

Remark 4. We may consider a more refined scheme coming from (4.4) by the

following substitution, in the vector version:

Σ(ti)(Z
α(ti+1)− Zα(ti)) 7−→ ∆ζ(ti) ,

where

Σ(t) :=




σα+1 0 · · · 0

0 σα+2 0 · · · 0
... 0

. . . 0

0 · · · 0 σβ




, Zα =




Zα
α+1

Zα
α+2
...

Zα
β




.



42 4. Pricing of Swaptions in the LMM

∆ζ(t) :=

∫ t+∆t

t

Σ(s)dZα(s) ∼ N (0, Cov(t)) ,

with the covariance n× n matrix, n := β − α, having the elements

Covi,j(t) :=

∫ t+∆t

t

(ΣρΣ′)i,j ds .

Indeed, integrating the ln-dynamics (4.3) in the vector version between t

and t + ∆t, the resulting stochastic integral in it is just ∆ζ(ti). By means

of this substitution, we can simulate more accurate random shocks with

gaussian distribution

N (0, Cov(t))

instead of

N (0,∆tΣρΣ′) .

Monte Carlo Variance Reduction

Before introducing the variance reduction technique for Monte Carlo sim-

ulation, we need to give some general notions and results.

Consider a general payoff at time T , Π(T ), depending on a vector of

spanning forward LIBOR rates F (t), for t ∈ [0, T ], where typically T is

smaller than or equal to the expiry of the first forward rate. For instance (4.2)

is a particular case of Π(T ) = Π(Tα). We simulate various scenarios of Π(T )

through a scheme as (4.4) under the T -forward measure. Let m be the

number of simulated paths, the Monte Carlo price of the payoff is

EQ [D(0, T )Π(T )] = p(0, T )ET [Π(T )] ≈ p(0, T )

m∑
j=1

Π(j)(T )

m
.

Since Π(1)(T ),Π(2)(T ), . . . constitute a sequence of realizations of indepen-

dent identically distributed random variables distributed as Π(T ), under the

hypothesis that the r.v. are summable, i.e. Π(T ) ∈ L1(Ω), we can apply the

Central Limit Theorem to have the convergence

m∑
j=1

(Π(j)(T )−ET [Π(T )]

√
mStd(Π(T ))

in law−→ N (0, 1)
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for m → +∞. Thus, for large m, the following approximation yields:

m∑
j=1

Π(j)(T )

m
− ET [Π(T )]

QT

∼ Std(Π(T ))√
m

Z , Z
QT

∼ N (0, 1) .

It follows that the probability that the Monte Carlo estimate is not farther

than ǫ from the true price is

QT





∣∣∣∣∣∣

m
∑

j=1
Π(j)(T )

m
− ET [Π(T )]

∣∣∣∣∣∣
< ǫ



 = QT

{
|Z| < ǫ

√
m

Std(Π(T ))

}

= 2Φ
(
ǫ

√
m

Std(Π(T ))

)
− 1 ,

where as usual Φ denotes the c.d.f. of the standard gaussian distribution.

Once we have chosen a desired value for such a probability, we find the

corresponding value for ǫ. For a typical choice of accuracy of 98%, we solve

in ǫ the equation

2Φ

(
ǫ

√
m

Std(Π(T ))

)
− 1 = 0.98

by

2Φ(z)− 1 = 0.98 ⇔ Φ(z) = 0.99 ⇔ z ≈ 2.33 ⇔ ǫ ≈ 2.33
Std(Π(T ))√

m
.

The resulting confidence interval at level 98% for the true value E[Π(T )] is




m∑
j=1

Π(j)(T )

m
− 2.33

Std(Π(T ))√
m

,

m∑
j=1

Π(j)(T )

m
+ 2.33

Std(Π(T ))√
m


 .

As m increases, the window shrinks as 1√
m
.

Moreover, the standard deviation of the payoff is usually unknown, thus it is

typically replaced by the sample standard deviation, with square

Ŝtd(Π;m)2 :=

m∑
j=1

(Π(j)(T ))2

m
−




m∑
j=1

Π(j)(T )

m




2
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and the actual Monte Carlo window is



m∑
j=1

Π(j)(T )

m
− 2.33

Ŝtd(Π;m)√
m

,

m∑
j=1

Π(j)(T )

m
+ 2.33

Ŝtd(Π;m)√
m


 . (4.5)

In some cases, to have a small enough window, we need to simulate a

huge number of scenarios, being thus too time-consuming. A way to tackle

this problem is given by the control variate technique, which allows to reduce

the sample variance, so as to narrow the window in (4.5), without increasing

m. Omitting for simplicity the time T in the notations, the method is to

proceed as follows:

I. Consider another payoff Πan which we can evaluate analytically, whose

expectation is denoted by

E[Πan] = πan ,

and simulate it together with Π under the same scenarios for F .

II. Define an unbiased control-variate estimator Π̂c(γ;m) for E[Π] as

Π̂c(γ;m) :=

m∑
j=1

Π(j)

m
+ γ




m∑
j=1

Π
(j)
an

m
− πan


 ,

which is also the sample mean of the r.v.

Πc(γ) := Π + γ(Πan − πan) .

Hence Πc(γ) has expectation E[Π] and variance

V ar(Πc(γ)) = V ar(Π) + γ2V ar(Πan) + 2γCov(Π,Πan) ,

this last minimized by

argmin{V ar(Πc(γ))} =: γ∗ = −Cov(Π,Πan)

V ar(Πan)
= −Corr(Π,Πan)Std(Π)

Std(Πan)
.
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III. The minimum variance of Πc(γ) is computed as

V ar(Πc(γ
∗)) = V ar(Π) + Corr(Π,Πan)

2 V ar(Π)
V ar(Πan)

V ar(Πan)+

−2Corr(Π,Πan)
2V ar(Π)

= V ar(Π) (1− Corr(Π,Πan)
2) ,

that is smaller than the variance of Π; moreover, the larger the distance

between the two variances the larger (in absolute value) the correlation

between the two r.v.

IV. Moving to simulated quantities, we have

Ŝtd(Πc(γ
∗);m) = Ŝtd(Π;m)

√(
1− Ĉorr(Π,Πan;m)2

)
,

where the sample correlation is

Ĉorr(Π,Πan;m) :=
Ĉov(Π,Πan;m)

Ŝtd(Π;m)Ŝtd(Πan;m)

and the sample covariance is

Ĉov(Π,Πan;m) :=

m∑
j=1

Π(j)Π
(j)
an

m
− 1

m2

(
m∑

j=1

Π(j)

)(
m∑

j=1

Π(j)
an

)
.

V. Concording with the observation at point III., the variance reduction

will be relevant if Π and Πan are as correlated as possible. Now the

window (4.5) can be substituted by
[
Π̂c(γ;m)− 2.33

Ŝtd(Πc(γ
∗);m)√

m
, Π̂c(γ;m) + 2.33

Ŝtd(Πc(γ
∗);m)√

m

]
,

(4.6)

which is narrower than (4.5) by a factor

√(
1− Ĉorr(Π,Πan;m)2

)
.

This technique is quite general and the choice of Πan is theoretically free.

In the case of the pricing of swaptions in the LMM, we select as Πan

one of the simplest payoff with underlying rates Fα+1, . . . , Fβ, as may be a
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portfolio of FRA contracts at time Tα on each single time interval (Ti−1, Ti],

such that are all fair contracts at time 0. By recalling the price in (1.3) and

reversing the two roles involved, we consider the Tα-price

β∑

i=α+1

p(Tα, Ti)τi(Fi(Tα)−K) ,

where the fair value at time 0 of K is equal to Fi(0). We take such contract

as our Tα-payoff and rewrite it by a change of measure under its expectation

as follows:

EQ

[
D(0, Tα)

β∑
i=α+1

p(Tα, Ti)τi(Fi(Tα)− Fi(0))

]
=

= Ej

[
p(0,Tj)

p(Tα,Tj)

β∑
i=α+1

p(Tα, Ti)τi(Fi(Tα)− Fi(0))

]
=

= p(0, Tj)E
j




β
∑

i=α+1
p(Tα,Ti)τi(Fi(Tα)−Fi(0))

p(Tα,Tj)


 .

(4.7)

Thus we can set

Πan(Tα) =

β∑
i=α+1

p(Tα, Ti)τi(Fi(Tα)− Fi(0))

p(Tα, Tj)
,

whose price at time 0 is

πan = 0 .

Indeed, the payoff Πan(·) is a sum of traded assets divided by p(·, Tj), hence

it is a martingale under the Tj- forward measure Qj , which implies that

Ej [Πan(Tα)] = Ej [Πan(0)] = Ej [0] = 0 .

4.2 Approximated Analytical Swaption Prices

4.2.1 Rank-One analytical Swaption prices

This approximation is due to Brace (1996).
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By assuming the tenor structure T = {Tα, . . . , Tβ} and the year fractions

τ = {τα, . . . , τβ}, the swaption price can be also written as follows:

PS(0, Tα, T , K) = E


D(0, Tα)

(
β∑

i=α+1

p(Tα, Ti) τi (Fi(Tα)−K)

)+



= p(0, Tα)E
α



(

β∑

i=α+1

p(Tα, Ti) τi (Fi(Tα)−K)

)+



=

β∑

i=α+1

p(0, Ti) τi E
i [(Fi(Tα)−K)1A] ,

where

A :=

{(
β∑

i=α+1

p(Tα, Ti) τi (Fi(Tα)−K)

)
> 0

}
= {Sα,β(Tα) > K} .

The problem is to find approximated analytical formulae for the amount

Ei [(Fi(Tα)−K)1A] . (4.8)

Steps

• Choose a forward measure Qγ , with γ ∈ {α, . . . , β}, under which con-

sider the LMM forward rate dynamics given by Proposition 2.0.2.

• As first approximation replace the stochastic percentage drift with a

deterministic one:

k < γ : −
γ∑

j=k+1

ρk,jτjσj(t)Fj (t)

1+τjFj(t)
≈ −

γ∑
j=k+1

ρk,jτjσj(t)Fj(0)

1+τjFj(0)
=: µγ,k(t)

k = γ : 0 =: µγ,γ(t)

k > γ :
k∑

j=γ+1

ρk,jτjσj(t)Fj(t)

1+τjFj(t)
≈

k∑
j=γ+1

ρk,jτjσj(t)Fj(0)

1+τjFj(0)
=: µγ,k(t)

so that each dynamics follows now a geometric Brownian motion:

dFk(t) = σk(t)µγ,k(t)Fk(t)dt+ σk(t)Fk(t)dZ
γ
k (t) , k = α + 1, . . . , β .



48 4. Pricing of Swaptions in the LMM

Thus:

Fk(Tα) = F (0) exp

(∫ Tα

0

(
σk(t)µγ,k(t)−

1

2
σk(t)

2

)
dt+

∫ Tα

0

σk(t)dZ
γ
k (t)

)
,

or equivalently, in the vector form:

F (Tα) = F (0) exp

(∫ Tα

0

σ(t)µγ(t)dt−
1

2

∫ Tα

0

σ(t)2dt

)
exp (Xγ) ,

(4.9)

where

σ(t) :=




σα+1(t)
...

σβ(t)


 , µγ(t) =




µγ,α+1(t)
...

µγ,β(t)


 , Xγ :=

∫ Tα

0
σ(t)dZγ(t)

and all the products act componentwise.

Notice that

Xγ Qγ

∼ N (0, V ) , Vi,j :=

∫ Tα

0

σi(t)σj(t)ρi,jdt .

Remark 5.

Xγ = Xα −
∫ Tα

0

σ(t)(µγ(t)− µα(t))dt .

Proof. Choosing as forward measure Qα, we analogously obtain the

forward rate dynamics in (4.9) as long as you replace µγ(t) with µα(t)

and dZγ(t) with dZα(t). Then we equal this with (4.9) and we get Xγ

in terms of Xα .

• Since ρi,j > 0 ∀i, j, we have Vi,j > 0 ∀i, j and V is irreducible.

Thus, by the Perron-Frobenius Theorem, V admits a unique dominant

eigenvalue λ1(V ) > 0 whose associated eigenvector is e1(V ) > 0 .

Approximate V with a rank-one matrix:

V ≈ V 1 := ΓΓ′ , where Γ :=
√

λ1(V ) e1(V ) .

The previous Xγ is then substituted by the one with components

X
γ
i = ΓiU

γ , where Uγ Qγ

∼ N (0, 1) ,
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and

k < γ :
∫ Tα

0
σk(t)µγ,k(t)dt = −Γk

γ∑
j=k+1

τjΓj(t)Fj(0)

1+τjFj(0)
=: Γkqγ,k ,

k = γ :
∫ Tα

0
σk(t)µγ,γ(t)dt = −Γγ0 =: Γγqγ,γ ,

k > γ :
∫ Tα

0
σk(t)µγ,k(t)dt = Γk

k∑
j=γ+1

τjΓjFj(0)

1+τjFj(0)
=: Γkqγ,k .

(4.10)

Proof of (4.10).

k < γ :
∫ Tα

0
σk(t)µγ,k(t)dt = −

∫ Tα

0
σk(t)

γ∑
j=k+1

ρk,jτjσj(t)Fj (0)

1+τjFj(0)
dt

= −
γ∑

j=k+1

τjFj(0)

1+τjFj(0)

∫ Tα

0
σk(t)σj(t)ρk,jdt ,

where ∫ Tα

0

σk(t)σj(t)ρk,jdt ≈ ΓkΓj .

Analogously the other cases.

The forward-rate dynamics becomes

F (Tα) = F (0) exp

(
Γqγ,· −

1

2
Diag(ΓΓ′)dt

)
exp(Xγ) ,

where the product Γqγ,· acts componentwise.

• Set

p := qα,· and U := Uα ,

then express

Xγ = Xα − Γ(qγ,· − qα,·) = Γ(U + p− qγ,·)

and notice that

qγ,k = pk − pγ .

Indeed, in the case k < γ :

qγ,k = −
γ∑

j=k+1

τjΓj(t)Fj(0)

1 + τjFj(0)
=

k∑

j=α+1

τjΓj(t)Fj(0)

1 + τjFj(0)
−

γ∑

j=α+1

τjΓj(t)Fj(0)

1 + τjFj(0)



50 4. Pricing of Swaptions in the LMM

and analogously in the other cases.

Thanks to the fact that qγ,γ = 0, we obtain the following expression for

the γth forward-rate dynamics:

Fγ(Tα;U
γ) := Fγ(0) exp

(
−1

2
Γ2
γ

)
exp(ΓγU

γ) =

= Fγ(0) exp
(
−1

2
Γ2
γ

)
exp(Γγ(U + pγ)) =: Fγ(Tα;U) ,

from which: Uγ = U + pγ , γ = α, . . . , β .

• Denote

p(Tα, Ti) =

i∏

k=α+1

p(Tα, Tk)

p(Tα, Tk−1)
=

i∏

k=α+1

1

1 + τkFk(Tα;U)
=: p(Tα, Ti;U)

and rewrite

A =

{(
β∑

i=α+1

p(Tα, Ti;U) τi (Fi(Tα;U)−K)

)
> 0

}
(4.11)

=

{(
β∑

i=α+1

p(Tα, Ti;U)

(
p(Tα, Ti−1;U)

p(Tα, Ti;U)
− 1− τi K

))
> 0

}

=

{(
1− p(Tα, Tβ;U)−

β∑

i=α+1

τi K p(Tα, Ti;U)

)
> 0

}
.

Remark 6. The equation

β∑

i=α+1

i∏

k=α+1

1

1 + τkFk(Tα;U)
τi (Fi(Tα;U)−K) = 0 (4.12)

has a unique solution U = U∗ .

Proof. We aim to prove the monotony of the function in the left-hand

side of (4.12) and we do that by proving the positivity of its derivative,

i.e.

∂
∂U

(
β∑

i=α+1

i∏
k=α+1

1
1+τkFk(Tα;U)

τi (Fi(Tα;U)−K)

)
=

from (4.11)= ∂
∂U

(
1− p(Tα, Tβ;U)−

β∑
i=α+1

τi K p(Tα, Ti;U)

)
> 0
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A sufficient condition for this is

∂
∂U

p(Tα, Ti;U) < 0 ∀i ∈ {α+ 1, . . . , β} ⇔
⇔ ∂

∂U
ln p(Tα, Ti;U) < 0 ∀i ∈ {α + 1, . . . , β} ⇔

⇔ ∂
∂U

∑i
k=α+1 ln(1 + τkFk(Tα;U)) > 0 ∀i ∈ {α + 1, . . . , β} .

A sufficient condition for this is

∂
∂U

ln(1 + τkFk(Tα;U)) > 0 ∀k ∈ {α + 1, . . . , β} ⇔
⇔ ∂

∂U
Fk(Tα;U) > 0 ∀k ∈ {α+ 1, . . . , β} .

This is satisfied because

∂

∂U
Fk(Tα;U) = ΓkFk(Tα;U) > 0 , since Γ > 0 .

Thus the left-hand side of equation (4.12) is an increasing function of

U , hence the proof.

From the last remark, the inequality in (4.11) is equivalent to

U > U∗ , as well as U i > U∗ + pi .

Compute the expectation (4.8) as

Ei [(Fi(Tα)−K)1A] =

= Ei
[
(Fi(Tα)−K)1{U i>U∗+pi}

]

= Ei

[(
Fi(0) exp

(
−1

2
Γ2
i + ΓiU

i

)
−K

)
1{U i>U∗+pi}

]

= Ei

[(
Fi(0) exp

(
−1

2
Γ2
i + ΓiU

i

)
−K

)
1{Fi(0) exp(− 1

2
Γ2
i+ΓiU i)>F ∗

i }

]

= Ei

[(
Fi(0) exp

(
−1

2
Γ2
i + ΓiU

i

)
− F ∗

i + F ∗
i +

−K) 1{Fi(0) exp(− 1
2
Γ2
γ+ΓiU i)>F ∗

i }

]

= Ei

[
Fi(0) exp

(
−1

2
Γ2
i + ΓiU

i

)
− F ∗

i

]+
+ (4.13)

+ (F ∗
i −K)Ei

[
1{Fi(0) exp(− 1

2
Γ2
i+ΓiU i)>F ∗

i }

]
(4.14)

= Fi(0) Φ(d1(F
∗
i , Fi(0),Γi))−K Φ(d2(F

∗
i , Fi(0),Γi)) ,
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where

F ∗
i := Fi(0) exp

(
−1

2
Γ2
i + ΓiU∗ + pi

)

and the last formula is obtained from the previous as:

(4.13) =

∫

D

(
Fi(0) exp

(
−1

2
Γ2
i + Γix

)
− F ∗

i

) exp
(
−x2

2

)

√
2π

dx

=

∫

D

(
Fi(0) exp

(
−(x− Γi)

2

2

)
− F ∗

i exp

(
−x2

2

))
1√
2π

dx ,

with D := {Fi(0) exp
(
−1

2
Γ2
i + Γix

)
> F ∗

i }

= {lnFi(0)− 1
2
Γ2
i + Γix > lnF ∗

i }

= {x >
ln

F∗

i
Fi(0)

+ 1
2
Γ2
i

Γi
} = {z >

ln
F∗

i
Fi(0)

− 1
2
Γ2
i

Γi
}

⇒ (4.13) = Fi(0) Φ


 ln Fi(0)

F ∗

i
+ 1

2
Γ2
i

Γi


− F ∗

i Φ


 ln Fi(0)

F ∗

i
− 1

2
Γ2
i

Γi


 ;

(4.14) = (F ∗
i −K)

∫

D

exp

(
−x2

2

)
1√
2π

dx

= (F ∗
i −K)Φ


 ln Fi(0)

F ∗

i
− 1

2
Γ2
i

Γi


 .

Eventually we have an analytical formula that requires only a root-searching

procedure to find U∗ .

Proposition 4.2.1 (Brace’s rank-one formula). The approximated price of

a Tα × (Tβ − Tα) payer swaption is given by

β∑

i=α+1

τi p(0, Ti) [Fi(0) Φ(Γi − U∗ − pi)−K Φ(−U∗ − pi)] . (4.15)

Proof.

d1(F
∗
i , Fi(0),Γi) =

ln
Fi(0)

F∗

i
+ 1

2
Γ2
i

Γi
=

− ln(exp(− 1
2
Γ2
i+Γi(U∗+pi)))+ 1

2
Γ2
i

Γi

=
1
2
Γ2
i−Γi(U∗+pi)+

1
2
Γ2
i

Γi
= Γi − U∗ − pi .
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Analogously

d2(F
∗
i , Fi(0),Γi) = U∗ − pi .

4.2.2 Rank-r analytical Swaption prices

The approach is the same as in the rank-one case and the first two steps

still hold in the extended rank-r case.

Then define a rank-r approximation of V as follows: V ≈ V r := ΓΓ′ ,

where Γ :=
[√

λ1(V )e1(V )
√

λ2(V )e2(V ) · · ·
√
λr(V )er(V )

]
.

Thus

Xγ Qγ

∼ N (0, V r)

with components given by

X
γ
i = Γ(i)U

γ , where Uγ Qγ

∼ N (0, Ir)

and Γ(i) is the ith row of Γ .

Typically it suffices r << β − α .

Formulae and definitions in (4.10) still hold by replacing ΓkΓj with Γ(k)Γ(j)
′.

Under the same adjustments, the following formulae still hold up to the

observation (4.12), but here U , the qγ,k’s and the pγ’s are r-vectors.

Now the equation (4.12) was found (Brace,1997) to describe with a fair

approximation a hyperplane:

U1 = s1 +

r∑

k=2

skUk .

Remark 7. The set A can be rewritten as follows:

A =

{
U ∈ R

r : U1 > s1 +
r∑

k=2

skUk

}
. (4.16)

Indeed, exactly as in the rank-one case, the partial derivative with respect

to U1 of the left-hand side of the equation corresponding to (4.12) is shown

to be positive.
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Remark 8. The set A can be expressed in terms of U i as follows:

A =
{
U i ∈ R

r : wU i > s∗i
}
, (4.17)

where

w :=
[
1 −s2 · · · −sr

]
, s∗i := s1 + (pi)1 −

r∑

k=2

sk(pi)k .

Proof of (4.17). From (4.16) and U i = U + pi, we have

A =

{
U i ∈ R

r : U i
1 −

r∑

k=2

skU
i
k > s1 + (pi)1 −

r∑

k=2

sk(pi)k

}
.

Eventually, compute the expectation (4.8) as:

Ei [(Fi(Tα)−K)1A] =

= Ei
[
(Fi(Tα)−K)1{wU i>s∗i }

]

= Ei

[(
Fi(0) exp

(
Γ(i)U

i − 1

2
|Γ(i)|2

)
−K

)
1{wU i>s∗i }

]

= Fi(0)E
i

[
exp

(
Γ(i)U

i − 1

2
|Γ(i)|2

)
1{wU i>s∗i }

]
+KEi

[
1{wU i>s∗i }

]

= Fi(0)E
i

[
1{w

(

U i+Γ∗

(i)

)

>s∗i }

]
−K Φ

(
− s∗i
|w|

)
(4.18)

= Fi(0) Φ

(
−
s∗i − wΓ∗

(i)

|w|

)
−K Φ

(
− s∗i
|w|

)
. (4.19)

Here, (4.18) follows from the first piece of the previous sum by applying the

property

Ei

[
exp

(
b′U i − 1

2
b′b

)
g(U i)

]
= Ei

[
g(U i + b)

]
,

which holds because

Ei
[
exp

(
b′U i − 1

2
b′b
)
g(U i)

]
=

∫
Rr e

b′u− 1
2
b′bg(u)e−

1
2
u′u 1√

(2π)r
du

=
∫
Rr e

− 1
2
(u−b)′(u−b) g(u)√

(2π)r
du

(c.o.v. z = u− b) =
∫
Rr e

z′zg(z + b) 1√
(2π)r

dz

= Ei [g(U i + b)] .
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Instead, (4.19) follows from the second summand by exploiting the fact that

U i Qi

∼ N (0, Ir) ⇔ (U i)j
Qi

∼ N (0, 1) ∀j ∈ {1, . . . , r} and (U i)j=1,...,r

are stochastically independent,

thus Z =
wU i

|w| =

r∑
j=1

wj(U
i)j

√
r∑

j=1

w2
j

=⇒ Z
Qi

∼ N (0, 1) .

Proposition 4.2.2 (Brace’s rank-r formula). The approximated price of a

Tα × (Tβ − Tα) payer swaption is given by

β∑

i=α+1

τi p(0, Ti)

[
Fi(0) Φ

(
−s∗i − wΓ(i)′

|w|

)
−K Φ

(
− s∗i
|w|

)]
. (4.20)

This analytical formula requires only 2r− 1 root-searching procedures to

find s1, . . . , sr, that can proceed according to the following:

• Solve numerically eq. (4.12) with U = [α1 0 · · ·0]′ , then s1 = α1 .

• Solve eq. (4.12) with U = [α−
2 − 1

2
0 · · ·0]′ and with U = [α+

2
1
2
0 · · ·0]′ ,

then s2 = α+
2 − α−

2 .

• For k = 3, . . . , r solve eq. (4.12) with U = [α−
k 0 · · ·

k

−1
2

0 · · ·0]′ and

with U = [α+
k 0 · · ·

k
1
2
0 · · ·0]′ , then sk = α+

k − α−
k .

4.2.3 Rebonato’s approximation

In the LSM, the forward swap rate, which is always a martingal under

the measure Qα,β, has the dynamics

dSα,β(t) = σα,β(t)Sα,β(t)dW
α,β(t) ,

where the volatility process σα,β is a deterministic function of time.

Instead, in the LMM, σα,β is a stochastic process, thus we can’t use this to
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determine the Black swaption volatility vBα,β as

(vBα,β)
2 =

1

Tα

∫ Tα

0

σ2
α,β(t)dt , .

The goal is to find an approximated quantity vLMM
α,β of vBα,β in the LMM.

Steps

• The forward swap rate can be obtained also by equating to zero the

expression of the swap price in the form of (1.5):

Sα,β(t) =

β∑

i=α+1

wi(t)Fi(t) , (4.21)

that looks like a weighted sum with weights

wi(t) :=
τi p(t, Ti)

β∑
k=α+1

τk p(t, Tk)

=

τi
i∏

j=α+1

1
1+τjFj(t)

β∑
k=α+1

τk
k∏

j=α+1

1
1+τjFj(t)

. (4.22)

However these ones are not really weights, because they depend on the

stochastic F’s.

According to empirical studies (both historically and through Monte

Carlo simulations), the variability of the wi’s is small compared to the

one of LIBOR rates, so that it makes sense to freeze the wi’s at their

initial values wi(0) .

• Thus approximate

Sα,β(t) ≈
β∑

i=α+1

wi(0)Fi(t) .

Under any forward measure Qγ , γ ∈ {1, . . . ,M} , its dynamics is

dSα,β(t) ≈
β∑

i=α+1

wi(0)dFi(t) = (· · · )dt+
β∑

i=α+1

wi(0)σi(t)Fi(t)dZ
γ
i (t)
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and its quadratic variation process is

d < Sα,β, Sα,β >t = dSα,β(t)dSα,β(t)

≈
β∑

i,j=α+1

wi(0)wj(0)σi(t)σj(t)Fi(t)Fj(t)ρi,jdt .

The approximated forward swap volatility is then given by

σ2
α,β(t) =

d < lnSα,β, lnSα,β >t

dt
=

1

dt

(
dSα,β(t)

Sα,β(t)

)(
dSα,β(t)

Sα,β(t)

)

≈

β∑
i,j=α+1

wi(0)wj(0)σi(t)σj(t)Fi(t)Fj(t)ρi,j

S2
α,β(t)

.

• A further approximation makes the quadratic variation of lnSα,β deter-

ministic, by freezing all the remained random variables, the F ’s (even

inside Sα,β), at time 0:

σ2
α,β(t) ≈

β∑
i,j=α+1

wi(0)wj(0)σi(t)σj(t)Fi(0)Fj(0)ρi,j

S2
α,β(0)

.

The forward swap rate, that isn’t log-normal in the LMM, can thus be

approximated with a log-normal process:

dSα,β(t) ≈ σ̃α,β(t)Sα,β(t)dW
α,β(t) ,

where

σ̃α,β(t) :=

√√√√√√

β∑
i,j=α+1

wi(0)wj(0)σi(t)σj(t)Fi(0)Fj(0)ρi,j

S2
α,β(0)

.

• Finally compute the swaption price through the Black’s formula.

Proposition 4.2.3 (Rebonato’s formula). The LMM Black-like swap-

tion volatility can be approximated by vLMM
α,β , with

(vLMM
α,β )2 :=

β∑

i,j=α+1

wi(0)wj(0)Fi(0)Fj(0)ρi,j
Tα S

2
α,β(0)

∫ Tα

0

σi(t)σj(t)dt .
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4.2.4 Hull and White’s approximation

The above procedure can be slightly improved by computing the dynamics

of the swap rate Sα,β(t) before freezing the w’s:

dSα,β(t) =

β∑

i=α+1

(wi(t)dFi(t) + Fi(t)dwi(t)) + (· · · )dt (4.23)

=

β∑

i,h=α+1

(wh(t)δi,h(t) + Fi(t)
∂wi(t)

∂Fh

)dFh(t) + (· · · )dt ,(4.24)

where (4.23) is obtained by applying the Itô’s formula to Sα,β = Sα,β(t, F, w)

and (4.24) applying the Itô’s formula to wi = wi(t, F ).

Then, from (4.22), compute

∂wi(t)

∂Fh

=

wiτh

(
β∑

k=h

τk
k∏

j=α+1

1
1+τjFj(t)

− 1{i≥h}

)

(1 + τhFh(t))
β∑

k=α+1

τk
k∏

j=α+1

1
1+τjFj(t)

.

Proof.

∂wi(t)

∂Fh

=

{
♣, if i < h

♠, if i ≥ h ,

where

♣ =

−τi
i∏

r=α+1

1
1+τrFr(t)

·
β∑

k=h

τk
k∏

j=α+1

j 6=h

1
1+τjFj(t)

−τh
(1+τhFh(t))2

(
β∑

k=α+1

τk
k∏

j=α+1

1
1+τjFj(t)

)2

=
wiτh

(1 + τhFh(t))2
β∑

k=α+1

τk
k∏

j=α+1

1
1+τjFj(t)

·
β∑

k=h

τk

k∏

j=α+1

j 6=h

1

1 + τjFj(t)

=
wiτh

(1 + τhFh(t))
β∑

k=α+1

τk
k∏

j=α+1

1
1+τjFj(t)

·
β∑

k=h

τk

k∏

j=α+1

1

1 + τjFj(t)
,



4.3 Example: computational results of the different methods of
swaption pricing 59

♠ =

τi
i∏

r=α+1
r 6=h

1
1+τrFr(t)

−τh
(1+τhFh(t))2

·
β∑

k=α+1

τk
k∏

j=α+1

1
1+τjFj(t)

(
β∑

k=α+1

τk
k∏

j=α+1

1
1+τjFj(t)

)2 +♣

= ♣− wiτh

(1 + τhFh(t))
β∑

k=α+1

τk
k∏

j=α+1

1
1+τjFj(t)

.

Hence the proof.

By denote

wh(t) := wh(t) +

β∑

i=α+1

Fi(t)
∂wi(t)

∂Fh

,

the swap rate dynamics can be rewritten as

dSα,β(t) =

β∑

h=α+1

wh(t)dFh(t) + (· · · )dt .

Now, freeze all F ’s at their initial values in order to approximate

dSα,β(t) ≈
β∑

h=α+1

wh(0)dFh(t) .

Finally, as in the Rebonato’s procedure, derive the volatility-like quantity

vLLMα,β to be entered in the Black’s formula for swaptions.

Proposition 4.2.4 (Hull and White’s formula). The LMM Black-like swap-

tion volatility can be better approximated by vLMM
α,β , with

(vLMM
α,β )2 :=

β∑

i,j=α+1

wi(0)wj(0)Fi(0)Fj(0)ρi,j
Tα S

2
α,β(0)

∫ Tα

0

σi(t)σj(t)dt .

4.3 Example: computational results of the

different methods of swaption pricing

We now show the results we obtain by implementing in Mathematica all

the different methods we presented above to price the swaptions in the LMM.
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We started from an annual tenor structure

{T0 = 1y, . . . , T49 = 50y}

and with the market quotes for the spot-starting swap rates (i.e. where the

first reset date is the day of valuation, i.e. the 26th. of April, 2011)

S−1,0(0), S−1,1(0), . . . , S−1,49(0) ,

from which we recover through a bootstrapping procedure and a log-linear

interpolation, the zero-bond curve shown in Figure 4.1.
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Figure 4.1: Zero-bond curve obtained from market data in April 26,2011.

Furthermore, as other inputs to our functions, we have:

- an historical correlation matrix obtained by market data spanning the

year before March 29, 2001, and calibrated in the Schoenmakers and

Coffey’s three-parameter structure, shown later on in Figure 7.8 (we will

describe the topics of correlation modeling and historical correlation

respectively in Chapter 5 and in Section 7.1);

- the current quotes of LIBOR forward rates modeled, F1(0), . . . , F49(0),

obtained by their definition in terms of zero-coupon bond prices from

the curve in Figure 4.1;
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- the forward volatilities obtained by calibrating the model to swaption

data with an extended triangular cascade calibration, which we will see

in Subsection 7.2.3.

We priced for example three payer swaptions with different maturities and

tenors and we display the results in Table 4.1.

Swaption with tenor Tα × Tβ − Tα and fixed rate K = 0.03

α = 5, β = 8 α = 5, β = 14 α = 13, β = 18

PSReb 0.0339696 0.100866 0.0467792

PSHW 0.0339599 0.100712 0.0468129

PSBr1 0.0339502 0.100645 0.0468045

PSBr3 0.0339492 0.100643 0.0468043

PSMC 0.0330096 0.100043 0.0467224

99% [0.0326904, 0.0333288] [0.099198, 0.100888] [0.0462018, 0.047243]

Table 4.1: Approximated prices of three payer swaptions with different ma-

turities and tenors, respectively by Rebonato’s, Hull and White’s, Brace’s

rank-1 and Brace’s rank-3 formulae and Monte Carlo simulation with 100000

scenarios and a time grid of step dt = 1
360

y.

We can notice that, often, the four approximated analytical prices fall

all into the 99%-confidence interval provided by the Monte Carlo simulation.

Moreover, sometimes they seem to be grouped into two classes, one with the

Rebonato’s and Hull and White’s prices and another with the Braces’ prices,

among which we cannot state what is in general more accurate with respect

to the Monte Carlo result.



Chapter 5

Instantaneous Correlation

Modeling

In the LMM setting, it remains to define the instantaneous correlation

between all the forward LIBOR rates modeled. In fact, we derived the dy-

namics of the Fk’s as each dependent on a different random source Zk, that

is instantaneously correlated with the others.

Not all interest rate derivatives have the same dependence on correlations.

In the pricing of caps we have already observed that the payoff does not

depend on the joint dynamics of F ’s, unlike as the pricing of swaptions does,

depending on more than a single rate in a non-linear relation.

An appropriate correlation modeling can be important in the following step

of calibration to swaption prices and becomes definitely relevant when the

number of contracts to which the model has to be calibrated is large. The

challenge is to choose a structure both flexible enough to express a large

number of swaption prices and, at a same time, parsimonious enough to be

tractable.

The M-dimensional correlated Brownian motion Z is assumed to have an

associated constant correlation matrix ρ, which, recalling the Remark (14)

in Appendix C, is defined as

ρi,j := Corr(Zi(t), Zj(t)) =
Cov(Zi(t), Zj(t))

Std(Zi(t))Std(Zj(t))
=

< Zi, Zj >t

t

62
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and it also holds that

ρ dt = d < Z >t= dZ(t)(dZ(t))′ ,

from which we call ρ the instantaneous correlation.

As far as the LMM is concerned, if we assume the volatilities of forward

rates constant on small time intervals of length ∆t, then we can consider

ρi,j a quantity roughly summarizing the ”degree of dependence” between

instantaneous changes of lnFi and lnFj:

< lnFi, lnFj >t=

∫ t

0

σi(s)σj(s)ρi,jds

⇒ ∆ < lnFi, lnFj >t=

∫ t+∆t

t

σi(s)σj(s)ρi,jds = σi(t)σj(t)ρi,j∆t

and

∆ < lnFi, lnFj >t√
∆ < lnFi, lnFi >t ∆ < lnFj , lnFj >t

=
σi(t)σj(t)ρi,j∆t√
σ2
i (t)σ

2
j (t)(∆t)2

= ρi,j ,

so that the correlation between different forward rates is completely deter-

mined by the correlation between different scalar Brownian motions, as far

as the dynamics of the F ’s are given by the solutions of the SDEs in (2.2).

In the setting of the LMM, we stated that ρ is a square M-dimensional

matrix. There exist also low-factor models, i.e. driven by a d-dimensional

B.m. with d < M , which nevertheless have intrinsic problems to match

correlations between forward LIBOR rates realistically, therefore we consider

only M-dimensional structures.

Now, we recall the properties of a generic correlation matrix:

1. ρi,j = ρj,i ∀i, j (symmetry);

2. |ρi,j| ≤ 1 ∀i, j (normalization);

3. ρi,i = 1 ∀i (maximum correlation for maximum dependence);

4. x′ρx ≥ 0 ∀x (positive semidefinite matrix).



64 5. Instantaneous Correlation Modeling

Then, we describe the additional qualities that an instantaneous correlation

matrix associated with a LIBOR market model would have:

I. ρi,j ≥ 0 ∀i, j (positive correlations);

II. i 7→ ρi,j is decreasing ∀i ≥ j (joint movements of far away rates are

less correlated than ones of rates with close maturities);

III. i 7→ ρi+p,i is increasing ∀i , ∀ fixed p ∈ N (the larger the tenor, the

more correlated changes in equally spaced forward rates become).

A full-rank correlation matrix ρ has M(M−1
2

entries, thanks to the symmetry

and the 1’s in the diagonal. The high number of parameters can be a prob-

lem for practical purposes, e.g. it makes correlations to be irregular when

obtained by fitting swaption prices. There are two possible approaches to

this problem: to use parameterizations of a full-rank matrix or to reduce the

rank.

5.1 Full-rank parameterizations

A general full-rank semi-parametric structure, suggested by

Schoenmakers and Coffey (2000) is:

ρSC(c)i,j :=
min{ci, cj}
max{ci, cj}

, i, j = 1, . . . ,M , (5.1)

where c ∈ (RM)+ with components such that

1 = c1 < c2 < . . . < cM and
c1

c2
<

c2

c3
< . . . <

cM−1

cM
. (5.2)

Remark 9. ρSC(c) is determined by M − 1 parameters and satisfies all nec-

essary properties.

Proof. 1. follows directly from the definition;

2. , 3. , I. are obviously derived;
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4. is hard to prove;

II. ∀ fixed j , the map

i 7→ ρi,j =
cj

ci
, i ≥ j

is decreasing, because the ci’s are increasing;

III. For all i ∈ {1, . . . ,M − p} :

ρSC(c)i+p,i =
ci

ci+p
=

p−1∏
k=0

ci+k
ci+k+1

= ci
ci+1

· A

where A :=
p−1∏
k=1

ci+k
ci+k+1

,

ρSC(c)i+1+p,i+1 =
ci+1

ci+1+p
=

p−1∏
k=0

ci+1+k
ci+1+k+1

=
p∏

k=1

ci+k
ci+k+1

= A · ci+p

ci+p+1
,

but ci
ci+1

< ci+p

ci+p+1
from definition .

For this reason this form is called semi-parametric, in the sense that it

depends on M − 1 parameters, i.e. O(M), rather than O(M2) in case of a

non-parametric M ×M matrix, and consequently the parameter dimension

increase proportionally to the model dimension.

Let’s give an idea of the practical meaning of this structure, by showing

that there exists a class of random vectors which have a correlation matrix

satisfying the conditions (5.1)-(5.2).

Let c1 < c2 < . . . < cM be an arbitrary positive increasing sequence

with c1 = 1 and let Wi , i = 1, . . . ,M , be standard normally distributed

independent real r.v., then consider the random vector Y with components

Yi :=
i∑

k=1

akWk ∼ N
(
0,

i∑

k=1

a2k

)
,

where

a1 = c1 = 1 and ai :=
√
c2i − c2i−1 for i = 2, . . . ,M .
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We rewrite Y as

Y = A ·W ∼ N (0, AA′) , (5.3)

where

A =




a1 0 · · · 0

a1 a2 0 · · · 0

...
...

. . .

...
0

a1 a2 · · · aM




.

Then the covariance between Yi and Yj, for i ≤ j, is

Cov(Yi, Yj) = (AA′)i,j =

i∑

k=1

a2k = c2i ,

because
i∑

k=1

a2k = c21 +
i∑

k=2

(c2k − c2k−1) = c2i .

Thus the correlation between them is

ρYi,Yj
=

Cov(Yi, Yj)√
i∑

k=1

a2k

√
j∑

k=1

a2k

=
c2i
ci cj

=
ci

cj
.

Hence it follows that the correlation matrix of Y is given by a structure of

kind (5.1)-(5.2), which consequently defines a real correlation matrix.

Theorem 5.1.1. Every correlation structure of type (5.1)-(5.2) can be equiv-

alently characterized in terms of a sequence of non-negative numbers,

∆2, . . . ,∆M , in the following representation:

ci = exp

(
M∑

l=2

min{i− 1, l− 1}∆l

)
. (5.4)

Proof. We now prove the direction (5.1)-(5.2) ⇒ (5.4), whereas the converse

follows straightforwardly by checking (5.1)-(5.2) for the sequence (ci)i=1,...,M

defined by (5.4).

Define ξi := ln ci , 1 ≤ i ≤ M . Then ξ1 = 0, since c1 = 1, and for the

sequence (ξi) the following constraints yield:

ξi < ξi+1 , 1 ≤ i ≤ M − 1 ; (5.5)

ξi−1 + ξi+1 < 2ξi , 2 ≤ i ≤ M − 1 . (5.6)
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Indeed: (5.5) follows from the increasing monotony of both the sequence

(ci) and the function ln; (5.6) follows from the increasing monotony of the

function i 7→ ci
ci+1

and consequently we have ln ci−1 − ln ci < ln ci − ln ci+1,

with again ln ր .

Now, introduce the new variables

∆i := 2ξi − ξi−1 − ξi+1 = (ξi − ξi−1)− (ξi+1 − ξi) ≥ 0 , (5.7)

for 2 ≤ i ≤ M − 1 ,

∆M := ξ2 −
M−1∑

j=2

∆j . (5.8)

Hence, for 2 ≤ i ≤ M,

ξi = ξi − ξ1 =
i∑

k=2

(ξk − ξk−1) =
i∑

k=2

(ξk − ξk−1 − (ξ2 − ξ1) + ξ2 − ξ1)

= ξ2 +

i∑

k=3

(
k−1∑

l=2

(ξl+1 − ξl − (ξl − ξl−1)) + ξ2

)

= (i− 1)ξ2 +

i∑

k=3

k−1∑

l=2

(ξl+1 − ξl − (ξl − ξl−1))

= (i− 1)ξ2 −
i∑

k=3

k−1∑

l=2

∆l = (i− 1)ξ2 −
i−1∑

l=2

i∑

k=l+1

∆l

= (i− 1)ξ2 −
i−1∑

l=2

(i− l)∆l . (5.9)

It follows that

ξi+1 − ξi = ξ2 −
i∑

l=2

(i+ 1− l)∆l +
i−1∑

l=2

(i− l)∆l

= ξ2 −
i∑

l=2

∆l − (l − l)∆l (5.10)

= ξ2 −
i∑

l=2

∆l (5.11)

and the constraints (5.5)-(5.6) transform into

∆i ≥ 0 , 2 ≤ i ≤ M .
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Indeed:

(5.5), (5.11) ⇔ ξ2 >
i∑

l=2

∆l , for 2 ≤ i ≤ M ;

(5.6), (5.11) ⇔
i∑

l=2

∆l − ξ2 = ξi − ξi+1 > ξi−1 − ξi =
i−1∑
l=2

∆l − ξ2 for

2 ≤ i ≤ M − 1 ⇔ ∆i > 0 for 2 ≤ i ≤ M − 1 .

Then, by (5.8) and (5.9), we may express the ξ’s in terms of the new coordi-

nates ∆’s:

ξi = (i− 1)

M∑

l=2

∆l −
i−1∑

l=2

(i− l)∆l

= i

(
M∑

l=2

∆l −
i−1∑

l=2

∆l

)
−

M∑

l=2

∆l +
i−1∑

l=2

l∆l

= (i− 1)

M∑

l=i

∆l −
i−1∑

l=2

∆l −
M∑

l=i

∆l +

i−1∑

l=2

l∆l

= (i− 1)
M∑

l=i

∆l +
i−1∑

l=2

(l − 1)∆l

=

M∑

l=2

min{(i− 1), (l − 1)}∆l .

Finally substitute the last equation in ci = exp(ξ) .

Remark 10. A correlation structure (5.1)-(5.2), by representation (5.4), yields

ρSCi,j = exp

(
−

M∑

j=i+1

min{l − i, j − i}∆l

)
, i < j . (5.12)

Proof.

ln
ci

cj
=

M∑

l=2

min{i− 1, l − 1}∆l −
M∑

l=2

min{j − 1, l − 1}∆l ,

from which we have three cases:

min{i− 1, l − 1} −min{j − 1, l − 1} =





i− l, i ≤ l < j ;

i− j, i < j ≤ l ;

0, l ≤ i < j .
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Hence the proof.

From representation (5.4), particularly in the form (5.12), we can derive

conveniently various low parametric structures, presented below.

5.1.1 Low-parametric structures by Schoenmakers and

Coffey

◮ By taking ∆2, . . . ,∆M−1 =: α ≥ 0 , and ∆M =: β ≥ 0 , we obtain the

following two-parameters form:

ρi,j = exp

[
−|i− j|

(
β + α

(
M − i+ j + 1

2

))]
, i, j = 1, . . . ,M. (5.13)

Proof. For j < M :

ρi,j = exp

[
−α

j∑

l=i+1

(l − i)− α

M−1∑

l=j+1

(j − i)− β(j − i)

]

= exp

[
αi(M − 1− i)− α

j∑

l=i+1

l − αj(M − 1− j)− β(j − i)

]

= exp

[
αi(M − 1− i)− α

(
j(j + 1)

2
− i(i+ 1)

2

)
+

−α j(M − 1− j)− β(j − i)]

= exp

[
αi

(
M − 1

2
− i

2

)
− α

ij

2
+ α

ij

2
+

−α j

(
M − 1

2
− j

2

)
− β(j − i)

]

= exp

[
−(j − i)

(
β + α

(
M − i+ j + 1

2

))]
.
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For j = M :

ρi,M = exp

[
−α

M−1∑

l=i+1

(l − i)− β(M − i)

]

= exp

[
αi(M − 1− i)− α

(
(M − 1)M

2
− i(i+ 1)

2

)
− β(M − i)

]

= exp

[
αi

(
M − 1

2
− i

2

)
− αM

M − 1

2
− β(M − i)

]

= exp

[
(i−M)

(
β + α

M − i− 1

2

)]
.

Notice that for α = 0 we get the simple correlation structure

ρi,j = e−β|i−j| , (5.14)

which is frequently used in practice in spite of the unrealistic fact that prop-

erty III. is not satisfied, as the sub-diagonals are constant rather than in-

creasing, i.e. the correlation between forward rates that are equally spaced

is constant in time.

Now introduce two new parameters:

ρ∞ := ρ1,M , and η :=
α

2
(M − 1)(M − 2) ,

where ρ∞ is the correlation between the farthest forward rates in the family

considered. Hence, by computing ln ρ∞ in terms of α, β and inverting the

definition of η , we obtain the old parameters in terms of the new ones as

β = −α

2
(M − 2)− ln ρ∞

M − 1
, α =

2η

(M − 1)(M − 2)
,

from which the form (5.13) transform into

ρi,j = exp

[
− |i− j|
M − 1

(
− ln ρ∞ + η

M + 1− i− j

M − 2

)]
. (5.15)

This re-parametrization improves the parameter stability: relatively small

movements in the c-sequence associated with (5.15), and consequently in the

correlations themselves, cause relatively small movements in the parameters

ρ∞ , η .
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◮ Suppose M > 2 and take the ∆i following a straight line for i =

2, . . . ,M − 1 and choose one parameter for i = M . Precisely:

∆2 = α1 ≥ 0 , ∆M−1 = α2 ≥ 0 , ∆M = β ≥ 0 ,

and for i = 2, . . . ,M − 1 we have

∆i = α1
M − i− 1

M − 3
+ α2

i− 2

M − 3
.

Indeed, the equation representing the line, neither vertical nor horizontal,

through the two distinct points (2, α1) and (M − 1, α2) is

∆i =
α2 − α1

M − 1− 2
(i− 2) + α1 ,

where the coordinates of the points are (i,∆i) for each i.

Then we get the following three-parameter form:

ρi,j = exp
[
−|i− j|

(
β − α2

6M−18
(i2 + j2 + ij − 6i− 6j − 3M2 + 15M − 7)+

+ α1

6M−18
(i2 + j2 + ij − 3Mi− 3Mj + 3i+ 3j + 3M2 − 6M + 2)

)]
.

(5.16)

Notice that (5.16) collapses to (5.13) if α1 = α2 = α, in which case we would

have an horizontal line for the first M − 2 points.

In order to gain stability, as above, re-parameterize (5.16) by introducing

ρ∞ := ρ1,M , which yields

β = − ln ρ∞
M − 1

− α1

6
(M − 2)− α2

3
(M − 2) ,

and by setting

α1 =
6η1 − 2η2

(M − 1)(M − 2)
, α2 =

4η2
(M − 1)(M − 2)

.

Then (5.16) becomes

ρi,j = exp
[
− |i−j|

M−1

(
− ln ρ∞ + η1

i2+j2+ij−3Mi−3Mj+3i+3j+2M2−M−4
(M−2)(M−3)

+

−η2
i2+j2+ij−Mi−Mj−3i−3j+3M+2

(M−2)(M−3)

)]
.

(5.17)

Notice that for η1 = η2 =
η

2
the structure (5.17) collapses to (5.15) again, as

it is obvious.
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◮ The calibration experiments of Schoenmakers and Coffey pointed out

that correlation structure (5.17) suits very well in practice. However, cali-

brating a three-parameter matrix takes longer than a two-parameter one.

Furthermore, the experiments reveal that η2 ≈ 0 in (5.17), i.e. the final

point of the straight line in the ∆’s is practically always close to 0. Thus we

may adopt the following computationally improved correlation structure:

ρi,j = exp
[
− |i−j|

M−1
(− ln ρ∞+

+η i2+j2+ij−3Mi−3Mj+3i+3j+2M2−M−4
(M−2)(M−3)

)]
,

(5.18)

where the characteristics are the same of (5.17) apart from setting

η2 = 0 , η := η1 .

◮ Consider the sequence (ci) defined by

ci := eβ(i−1)α , 1 ≤ i ≤ M , β > 0 , 0 < α < 1 .

The associated ρ satisfies the assumptions of a correlation structure (5.1)-

(5.2). Indeed:

ln

(
ci

ci+1

)
= ln ci − ln ci+1 = β ((i− 1)α − iα) < β (iα − (i− 1)α)

because i 7→ iα is an increasing function but with decreasing slope.

Then, by the definitions (5.7)-(5.8) in the proof of Theorem 5.1.1, we get the

coordinates

∆i = 2β(i− 1)α − β(i− 2)α − βiα , 2 ≤ i ≤ 2M − 1 ,

∆M = β −
M−1∑

l=2

∆l = β − β

M−1∑

l=2

(2(l − 1)α − (l − 2)α − lα)

= β (1 + (M − 1)α − 2(M − 2)α + (M − 2)α + 1− 2)

= β ((M − 1)α − (M − 2)α) ,

where ∆i > 0 for 2 ≤ i ≤ M , as it must be.

Then, by introducing ρ∞ := ρ1,M = 1
cM

, we get the correlations

ρi,j = exp

[
ln ρ∞

∣∣∣∣
(

i− 1

m− 1

)α

−
(

j − 1

m− 1

)α∣∣∣∣
]
. (5.19)
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The correlation structures (5.18) and (5.19) have similar properties, but cal-

ibration experiments of Schoenmakers and Coffey pointed out that (5.18)

performs a little better.

5.1.2 Classical two-parameter structure

ρi,j = ρ∞ + (1− ρ∞) exp (−β|i− j|) , β ≥ 0 , (5.20)

where ρ∞ represents only asymptotically the correlation between the farthest

forward rates in the family.

This formulation guarantees all the desirable properties apart from III., in

the sense that sub-diagonals are flat. Notice that for ρ∞ = 0 we get the

simple structure (5.14), again.

5.1.3 Rebonato’s three-parameter structure

Rebonato suggested the following perturbation of the classical structure:

ρi,j = ρ∞ + (1− ρ∞) exp [−|i− j| (β − αmax{i, j})] . (5.21)

This structure recovers the property III., in fact

i 7→ ρi,j = ρ∞ + (1− ρ∞) exp [−p (β − α(i+ p))]

is increasing for α > 0 . Thus it may produce realistic market correlations for

properly chosen ρ∞, β > 0 and small α > 0 . However, (5.21) does not fit in

the general form (5.1)-(5.2) and its (α, ρ∞, β) domain of positivity is not ex-

plicitly specified, hence it is not guaranteed to be a correlation structure. To

avoid this problem, at every step of a hypothetical calibration/optimization,

it must be verified that the resulting matrix is positive semi-definite, for ex-

ample through a constrained optimization. Furthermore for inappropriate

values of ρ∞, β and not small enough α , it may also happen that ρi,j > 1,

thus the (5.21) is a weak characterization as correlation’s parametrization.
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5.2 Reduced rank parameterizations

Given ρ a positive definite symmetric matrix, it can be rewritten as

ρ = P∆P ′ , (5.22)

where ∆ is the diagonal matrix of (positive) eigenvalues of ρ in decreasing

order and P the orthogonal matrix whose columns are the corresponding

eigenvectors. Indeed:

ρP = P∆ , and P−1 = P ′ .

Let Λ be the diagonal matrix whose entries are the square roots of the cor-

responding ones of ∆, i.e. ∆ = ΛΛ .

Then define C := PΛ in order to have

ρ = CC ′ , C ′C = ∆ .

The correlated M-dimensional Brownian motion is distributed as

dZ ∼ N (0, ρdt) ,

whereas the standard M-dimensional Brownian motion is

dW ∼ N (0, Idt) ,

but we can replace dZ with CdW , where ρ = CC ′ .

If rank ρ = r < M , there exist a r-rank M × r matrix B such that

ρ = BB′ , and dZ = BdW .

The advantage in this replacement is that now we have a r-dimensional ran-

dom shock, given by the r-dimensional standard B.m. W .

Even when ρ is a full rank matrix, we may try and mimic the decompo-

sition ρ = CC ′ with a r-rank M × r correlation matrix B, by introducing a

new noise correlation matrix ρB = BB′, with typically r << M .
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5.2.1 Rebonato’s angles method

Consider the M × r matrix

B = (bi,j)i=1,...,M
j=1,...,r

,

where for i = 1, . . . ,M the i-th row of B is

bi,1 = cos θi,1

bi,k = cos θi,k sin θi,1 · · · sin θi,k−1 , 1 < k < r

bi,r = sin θi,1 · · · sin θi,r−1

(5.23)

Notice that

ρB := BB′

results a positive semi-definite matrix and all its diagonal terms are equal to

1, thus it is a possible correlation matrix.

The number of parameters of this r-factor structure is M(r − 1), thus

the angles parametrization is not necessarily reducing the dimension of the

problem. In fact keeping for instance full-rank ρ, i.e. r = M , the number

of parameters is then M(M − 1), that is twice the number of entries of a

generic correlation matrix. To avoid a such inconvenient we have to ask not

only r < M , but rather

r <<
M + 1

2
.

5.2.2 Reduced rank approximations of exogenous cor-

relation matrices

When the correlation matrix is given exogenously as an historical estima-

tion, instead of being a fitting parameter in the calibration to the swaption

market, it has full rank M . The following two methods deal only with this

kind of situation.

The target is to obtain an approximated r-rank correlation matrix ρ(r),

with r < M :

M-rank historical ρ −→ r-rank ρ(r) .

Two different approaches are presented below.
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Eigenvalues zeroing with normalization

Consider the decomposition (5.22) and define Λ(r) as the r × r diagonal

matrix obtained from Λ by taking away theM−r smallest diagonal elements,

together with the corresponding dimensions, and P (r) as the M × r matrix

obtained from P by taking away the M − r corresponding columns.

Thus define B(r) := P (r)Λ(r), getting the matrix

ρ(r) := B(r)(B(r))′ ,

which is the best reduced rank approximation of ρ according to Frobenius

norm.

Remark 11. ρ(r) results positive semi-definite, but it does not features ones

in the diagonal.

The solution is to interpret ρ(r) as a covariance matrix and derive the

associated correlation matrix:

ρ
(r)
i,j :=

ρ
(r)
i,j√

ρ
(r)
i,i ρ

(r)
j,j

.

Indeed, given a generic M-dimensional random variable X with covariance

matrix Σ = (σi,j) , which is a M × M positive semi-definite matrix, the

associated correlation matrix is

ρ = Λ−1ΣΛ−1 ,

where

Λ =




√
σ1,1

. . .
√
σM,M


 ,

and σ2
i = σi,i is the variance of the i-th component Xi, i = 1, . . . ,M .

Optimization on angles parametrization (Rebonato and Jäkel, 1999)

Given the full rank correlation matrix ρ in input, we can find its r-rank

better approximation ρ(θ) = B(θ)B(θ)′ in terms of angles as in (5.23). Pre-
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cisely, once defined the i-th row of B(θ) as

bi,1(θ) = cos θi,1

bi,k(θ) = cos θi,k sin θi,1 · · · sin θi,k−1 , 1 < k < r

bi,r(θ) = sin θi,1 · · · sin θi,k−1 ,

minimize with respect to (θ) the quantity

M∑

i,j=1

(|ρi,j − ρi,j(θ)|2) .

This method gives the optimal solution through an unconstrained optimiza-

tion.

Comparing the methods of eigenvalues zeroing and angles optimization,

we may see a noticeable better fit with the last one, despite a few seconds

of computation, with a low rank. This difference is going to attenuate by

increasing the rank.

In most situations a rank-4 approximation is satisfactory with both methods,

whereas in extreme cases we have to resort to a rank up the 7-th.



Chapter 6

Calibration of the LMM

6.1 Calibration of the LMM to Caplets

The LIBOR market model is calibrated to the most traded derivatives

among the liquid ones, namely the caplets, in an almost automatic way.

Indeed, the transition from caps to caplets is made by traders, then the

calibration of the LMM parameters to caps and floors results trivial, thanks

to the Proposition 2.1.1 and using market quoted volatilities.

Let assume that we are standing at time t = 0. Given an empirical term

structure of implied spot volatilities, from Proposition 2.1.1 it follows that

calibrating the model to caplets amounts to choose the deterministic LIBOR

volatilities of forward rates σ1, . . . , σM such that

v2Ti−capl =
1

Ti−1

∫ Ti−1

0

σi(t)
2dt , i = 1, . . . ,M . (6.1)

6.1.1 Parameterizations of Volatility of Forward Rates

The system (6.1) is highly undetermined, thus it needs structural assump-

tions about the shape of volatility functions. The most popular specifications

fall into two main categories: piecewise-constant functions, in which case the

σ’s are constant in each expiry-maturity time interval in which the corre-

sponding forward rates are alive, and functional parameterized forms, as

78
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shown below.

• General Piecewise-Constant volatilities (GPC):

σi(t) = σi,β(t) , 0 < t ≤ Ti−1 , (6.2)

where

β(t) = m if Tm−2 < t ≤ Tm−1 , m ≥ 1 . (6.3)

The index β(t) indicates the maturity of the first forward rate that has

not expired yet by time t. These σ’s can be organized in Table 6.1,

where we have the time intervals in the columns and the relative rates

in the rows.

t ∈ (0, T0] (T0, T1] (T1, T2] · · · (TM−2, TM−1]

F1(t) σ1,1 dead dead · · · dead

F2(t) σ2,1 σ2,2 dead · · · dead
... · · · · · · · · · · · · · · ·

FM (t) σM,1 σM,2 σM,3 · · · σM,M

Table 6.1: General Piecewise-Constant volatilities.

To perform calibration, by inserting the expression (6.2) in the equa-

tion (6.1), we impose:

Ti−1v
2
Ti−capl =

∫ Ti−1

0

σ2
i,β(t)dt =

1

Ti−1

i∑

j=1

τj−2,j−1σ
2
i,j , (6.4)

for i = 1, . . . ,M .

There exists multiple configurations that can fit caplets perfectly. In

fact:

√
T0vT1−capl =

√
(T0 − 0)σ1,1 ⇔ σ1,1 = vT1−capl

√
T0σ

2
2,1 + (T1 − T0)σ2

2,2 =
√
T1vT2−capl

√
T0σ

2
3,1 + (T1 − T0)σ2

3,2 + (T2 − T1)σ2
3,3 =

√
T2vT3−capl

...
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Then we can make some assumptions on this structure in order to

reduce the number of parameters.

• Piecewise-constant volatilities dependent only on the time to maturity

Ti − Tβ(t)−1 of corresponding forward rates:

σi(t) = σi,β(t) = ηi−(β(t)−1) , 0 < t ≤ Ti−1 . (6.5)

They are organized in Table 6.2.

t ∈ (0, T0] (T0, T1] (T1, T2] · · · (TM−2, TM−1]

F1(t) η1 dead dead · · · dead

F2(t) η2 η1 dead · · · dead
... · · · · · · · · · · · · · · ·

FM (t) ηM ηM−1 ηM−2 · · · η1

Table 6.2: Time-to-maturity-dependent volatilities.

To perform calibration, by inserting the expression (6.5) in the equa-

tion (6.1), we impose:

Ti−1v
2
Ti−capl =

i∑

j=1

τj−2,j−1η
2
i−j+1 , (6.6)

for i = 1, . . . ,M .

In this case we can find the parameters η’s that exactly fit the mar-

ket caplets volatilities, being each of those obtained in terms of the

previous. In fact:

√
(T0 − 0)η1 =

√
T0vT1−capl ⇔ η1,1 = vT1−capl

√
T0η

2
2 + (T1 − T0)η21 =

√
T1vT2−capl ⇔

⇔ η2 =
1√
T0

√
T1v

2
T2−capl − (T1 − T0)η21
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√
T0η

2
3 + (T1 − T0)η22 + (T2 − T1)η21 =

√
T2vT3−capl ⇔

⇔ η3 =
1√
T0

√
T2v

2
T3−capl − (T1 − T0)η

2
2 − (T2 − T1)η

2
1

...

• Constant maturity-dependent volatilities:

σi(t) = σi,β(t) = si , 0 < t ≤ Ti−1 , (6.7)

as shown in Table 6.3.

t ∈ (0, T0] (T0, T1] (T1, T2] · · · (TM−2, TM−1]

F1(t) s1 dead dead · · · dead

F2(t) s2 s2 dead · · · dead
... · · · · · · · · · · · · · · ·

FM (t) sM sM sM · · · sM

Table 6.3: Constant maturity-dependent volatilities.

To perform calibration, by inserting the expression (6.7) in the equa-

tion (6.1), we impose:

Ti−1v
2
Ti−capl = Ti−1s

2
i ⇔ v2Ti−capl = s2i , (6.8)

for i = 1, . . . ,M .

Again, the parameters s’s can exactly fit the market caplets volatilities.

• Separable piecewise-constant volatilities, factorized as follows:

σi(t) = σi,β(t) = ΦiΨβ(t) , 0 < t ≤ Ti−1 , (6.9)

leading to Table 6.4.

This structure includes the one in (6.7) as a special case when all Ψ’s
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t ∈ (0, T0] (T0, T1] (T1, T2] · · · (TM−2, TM−1]

F1(t) Φ1Ψ1 dead dead · · · dead

F2(t) Φ2Ψ1 Φ2Ψ2 dead · · · dead
... · · · · · · · · · · · · · · ·

FM (t) ΦMΨ1 ΦMΨ2 ΦMΨ3 · · · ΦMΨM

Table 6.4: ΦiΨβ(t) structure

are equal to one. To perform calibration, by inserting (6.9) in (6.1), we

impose:

Ti−1v
2
Ti−capl = Φ2

i

i∑

j=1

τj−2,j−1Ψ
2
j , (6.10)

for i = 1, . . . ,M .

In this case, having read from the market the caplet volatilities vTi−capl =

vMKT
i , the parameters Φ’s can be given in terms of the parameters Ψ’s

as

Φ2
i =

Ti−1(v
MKT
i )2

i∑
j=1

τj−2,j−1Ψ2
j

.

• Separable piecewise-constant volatilities, factorized as follows:

σi(t) = σi,β(t) = ΦiΨi−(β(t)−1) , 0 < t ≤ Ti−1 , (6.11)

leading to Table 6.5.

This structure includes the one in (6.5) as a special case when all Φ’s

are equal to one. It concludes the piecewise-constant volatility models.

To perform calibration, by inserting (6.11) in (6.1), we impose:

Ti−1v
2
Ti−capl = Φ2

i

i∑

j=1

τj−2,j−1Ψ
2
i−j+1 , (6.12)

for i = 1, . . . ,M .

Similarly to the previous case, the parameters Φ’s can be given in terms
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t ∈ (0, T0] (T0, T1] (T1, T2] · · · (TM−2, TM−1]

F1(t) Φ1Ψ1 dead dead · · · dead

F2(t) Φ2Ψ2 Φ2Ψ1 dead · · · dead
... · · · · · · · · · · · · · · ·

FM(t) ΦMΨM ΦMΨM−1 ΦMΨM−2 · · · ΦMΨ1

Table 6.5: ΦiΨi−(β(t)−1) structure

of the parameters Ψ’s as

Φ2
i =

Ti−1(v
MKT
i )2

i∑
j=1

τj−2,j−1Ψ2
i−j+1

.

Even the continuous parameterizations have always been very popular.

The main examples are the following.

• Parametric linear exponential volatilities, analogue to form (6.5) :

σi(t) = Ψ(Ti−1 − t; a, b, c, d) := (a(Ti−1 − t) + d)e−b(Ti−1−t) + c . (6.13)

This time, in order to perform calibration, by inserting (6.13) in (6.1)

we obtain a continuous expression:

Ti−1v
2
Ti−capl = I2(Ti−1; a, b, c, d) , (6.14)

where

I2(Ti−1; a, b, c, d) :=

∫ Ti−1

0

(
[a(Ti−1 − t) + d]e−b(Ti−1−t) + c

)2
dt .

The parameters a, b, c, d can be used to fit the market the caplet volatil-

ities through an optimization algorithm. This formulation can be per-

fected into the following richer parametric form.

• Parametric linear exponential volatilities, analogue to form (6.11) :

σi(t) = ΦiΨ(Ti−1 − t; a, b, c, d) = Φi

(
(a(Ti−1 − t) + d)e−b(Ti−1−t) + c

)
.

(6.15)
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This form reduces to the previous by setting all the Φ’s to one.

In order to perform calibration, by inserting (6.15) in (6.1) we obtain:

Ti−1v
2
Ti−capl = ΦiI

2(Ti−1; a, b, c, d) . (6.16)

Now, having read from the market the caplet volatilities vTi−capl =

vMKT
i , the parameters Φ’s can be given in terms of the parameters

a, b, c, d as:

Φ2
i =

Ti−1(v
MKT
i )2

I2(Ti−1; a, b, c, d)
.

Notice that formulation (6.5) and (6.7) allow the complete determination

of the parameters in Tables 6.2 and 6.3 respectively, whereas with formu-

lations (6.2), (6.9) and (6.11) we cannot recover the whole tables of such

parameters, respectively Tables 6.1, 6.4 and 6.5, since we have more un-

known than equations. However, having parameters in excess can be helpful

when we have to calibrate the model, either to the swaptions together with

the caplets or only to the swaptions.

6.1.2 The Term Structure of Volatility

At each time Tj of the set of expiry-maturity dates of the LMM, the term

structure of volatility is the graph of the average volatilities V (Tj , Th−1) of

the forward rates Fh with fixing times Th−1 and maturities Th, in function of

expiry times Th−1. Namely, at time t = Tj , it is plotted the set of points

{(Tj+1, V (Tj, Tj+1)), (Tj+2, V (Tj, Tj+2)), . . . , (TM−1, V (Tj, TM−1))}

where, for h > j + 1,

V 2(Tj, Th−1) =
1

τj,h−1

∫ Th−1

Tj

dFh(t)dFh(t)

Fh(t)Fh(t)
=

1

τj,h−1

∫ Th−1

Tj

σ2
h(t)dt .

In particular, the term structure of volatility at time t = 0 is

{(T0, V (0, T0)), (T1, V (0, T1)), . . . , (TM−1, V (0, TM−1))} =

= {(T0, vT1−capl), (T1, vT2−capl), . . . , (TM−1, vTM−capl)} ,
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that is the market caplet volatility curve. A typical example of this curve

for annualized caplet volatilities from the Euro market, on May 4, 2011, is

shown in Figure 6.1.2.

In about the 80 percent of cases, the caplet volatility structure occurred

5 10 15 20 25
expiry T j-1

0.05

0.10

0.15

0.20

0.25

0.30

vT j-capl

caplet volatilities

Figure 6.1: Term structure of volatility Tj 7→ vTj+1−capl from the Euro mar-

ket, on May 4, 2011; the resettlement dates T0, . . . , TM are annualized and

expressed in years.

with this initially humped shape. The short-term forward LIBOR rates (with

maturity maximum in a year) depends largely on the choices of the monetary

institutions and a bit on everything that happens on the market, e.g. even

when you read a news on a newspaper this can influence the rates’ trend,

therefore they have a high volatility. The long-term forward LIBOR rates

does not depend anymore neither on the expectations about the choices of

institutions like the BCE nor on minor news, therefore they have a lower

volatility. The little hump that is usually located between six months and

two or three years is due to the fact that the institutions of central banks

try to provide information in advance about their future actions, so that in

a very short time the volatility is relatively low, while the peak remains in

that period of time that is still influenced by actions and news but is out of

the near future in which we have the forecasts.
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Up to July 2007 the very-short-term volatilities was very low, but from the

half of the same month, coinciding with the beginning of the crisis, these

volatilities have abruptly risen. As a consequence, in August 2007, mainly

in the USA and in GB, several banks registered big losses. Hence the central

banks inverted the way of working, by flooding the market with liquidity.

There are a few problems related to the choice of a parametrization for the

instantaneous volatilities of forward rates: different assumptions about those

imply different evolutions for the term structure of volatility. Moreover, dif-

ferent evolutions can change dramatically the price of some exotic products,

nevertheless they fit the whole structure of caplets today.

Let’s see the impact of different formulations by starting from the term struc-

ture of volatility today and getting its evolution in time.

• Formulation (6.5) gives

V 2(Tj, Th−1) =
1

τj,h−1

h−1∑

k=j+1

τk−1,kη
2
h−k .

Assuming for simplicity that the year fractions are all equal to τ , we

have that τj,h−1 = (h − 1 − j)τ and another τ factorize out of the

summation, thus

V 2(Tj, Th−1) =
1

(h− 1− j)

h−1∑

k=j+1

η2h−k ,

which implies that

V (Tj , Th−1) = V (Tj+1, Th) .

Therefore, the term structure of volatility simply shifts in time, i.e.

when moving from time Tj to time Tj+1 it moves from

{(Tj+1, V (Tj, Tj+1)), (Tj+2, V (Tj, Tj+2)), . . . , (TM−1, V (Tj, TM−1))}

to

{(Tj+2, V (Tj, Tj+1)), (Tj+3, V (Tj, Tj+2)), . . . , (TM−1, V (Tj, TM−1))} .



6.1 Calibration of the LMM to Caplets 87

The shape of volatility structure remains exactly the same, except that

is shifted of one date in the future, consequently becomes shorter, in

the sense that the tail of the graph is cut away. An example of this kind

of evolution is shown in Figure 6.2, starting from the initial structure

of Figure 6.1.2.

5 10 15 20 25
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0.10

0.15

0.20

0.25

0.30

Figure 6.2: Evolution of the term structure of volatility of Figure 6.1.2 ob-

tained by calibrating the parametrization (6.5).

Qualitatively, this is a desirable feature, since the actual shape of the

market term structure does not change too much over time. Anyway,

there remains the question of whether this formulation allows for a

humped structure to be fitted at the initial time. We note that the

map

Th−1 7→
√

Th−1V (0, Th−1) =

√√√√τ

h−1∑

k=j+1

η2h−k

is increasing. On the other hand, we know that the market volatility

structure is decreasing following the hump, namely

V (0, Th−1) ≥ V (0, Th)

typically for Th larger that three or four years. Putting these two
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constraints together we obtain:
√
Th−1V (0, Th−1) ≤

√
ThV (0, Th)

V (0, Th−1) ≥ V (0, Th)
⇒ 1 ≤ V (0,Th−1)

V (0,Th)
≤
√

Th

Th−1
=
√

h
h−1

.

This means that for large h the obtained term structure gets almost

flat at the end, i.e.

V (0, Th−1) ≈ V (0, Th) for large h .

Thus we can use the formulation (6.5) unless the market term structure

is steeply decreasing also for large maturity.

• Formulation (6.7) gives

V 2(Tj , Th−1) = s2h .

Since this equality holds for all j = −1, 0, 1, . . . , h and the right member

is independent of j, the volatility term structure evolves simply by

cutting off the head. In particular, we move from the term structure

{(Tj+1, sj+2)), (Tj+2, sj+3), . . . , (TM−1, sM)} at time Tj

to

{(Tj+2, sj+3)), (Tj+3, sj+4), . . . , (TM−1, sM)} at time Tj+1 .

An example of this kind of evolution is shown in Figure 6.3, starting

from the initial structure of Figure 6.1.2.

This behaviour is not desirable, because even if the term structure

today features a hump around two years, this hump is disappearing in

the structure in three years.

• Formulation (6.9) gives

V 2(Tj , Th−1) =
Φ2

h

τj,h−1

h∑

k=j+2

τk−2,k−1Ψ
2
k .

In this case it is hard to control the qualitative behaviour of the fu-

ture term structure of volatilities, because it depends on the particular

specification of both the Φ’s and the Ψ’s.
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Figure 6.3: Evolution of the term structure of volatility of Figure 6.1.2 ob-

tained with parametrization (6.7).

• Formulation (6.11) gives

V 2(Tj, Th−1) =
Φ2

h

τj,h−1

h−1∑

k=j+1

τk−1,kΨ
2
h−k .

By assuming again τh−1,h = τ for all h = 0, . . . ,M − 1, it reduces to

V 2(Tj , Th−1) =
Φ2

h

(h− 1− j)

h−1∑

k=j+1

Ψ2
h−k .

Then, if the Φ’s are all equal, this formulation is analogous to the (6.5).

Therefore, keeping the Φ’s sufficiently close to each other, the quali-

tative behaviour of the future term structure of volatilities will not

be affected and the hump remains unchanged. This formulation is

considered the best among the piecewise-constant ones thanks to the

abundance of parameters together with the controllability of the future

evolution of the volatility structure.

• Formulation (6.13) gives

V 2(Tj, Th−1) =
1

τj,h−1

∫ Th−1

Tj

Ψ(Th−1 − t; a, b, c, d)2dt . .
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Being the analogous continuous version of the parametrization (6.5),

it maintains the shape of volatility structure as time passes, in par-

ticular its hump if initially present. Nevertheless, once again, it can’t

be used in the calibration if the initial structure is decreasing for large

maturities.

• Formulation (6.13) gives

V 2(Tj, Th−1) =
Φh

τj,h−1

∫ Th−1

Tj

Ψ(Th−1 − t; a, b, c, d)2dt . .

Being the analogous continuous version of the parametrization (6.11),

if all the Φ’s are all close to each other the term structure maintains

its humped as time passes, if initially humped.



Chapter 7

Calibration of the LMM to

Swaptions

Since swaption prices are quoted in the market, calibrating the LIBOR

market model to swaptions means reducing the distance between the mar-

ket quotes and the prices obtained in the LMM, by working on the model

parameters. But it is not all. Indeed, there are two points of interest: the

computational cost and the financial plausibility. On the one hand, the step

of calibration comes before anything else, hence it cannot be a slow proce-

dure. On the other hand, in case we have to price other products that are

very distant from those to which we have calibrated the model, we may find

quite different values depending on which model’s parametrization we have

chosen.

In the LMM framework, the free parameters are those deriving from the

instantaneous correlation and the volatility parameterizations.

Generally, traders translate swaption prices into implied Black’s swaption

volatilities and organize them in a table where the rows are indexed by the

maturity time and the columns are indexed by the length of the underlying

swap. An example of such a table of swaption volatilities is shown in Fig-

ure 7.1.

We must be careful to the shift of indexes of the resettlement dates of the

91
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1y 2y 3y 4y 5y 7y 10y
1y 0.327 0.291 0.273 0.26 0.251 0.236 0.221
2y 0.313 0.272 0.256 0.247 0.241 0.23 0.216
3y 0.284 0.253 0.24 0.232 0.227 0.219 0.207
4y 0.259 0.234 0.225 0.218 0.213 0.206 0.198
5y 0.238 0.22 0.212 0.206 0.201 0.195 0.19
7y 0.207 0.197 0.191 0.187 0.183 0.178 0.178
10y 0.175 0.171 0.167 0.165 0.164 0.164 0.168
15y 0.16 0.164 0.165 0.167 0.168 0.172 0.178
20y 0.18 0.186 0.188 0.191 0.193 0.198 0.201

Figure 7.1: Implied volatilities obtained by inverting the Black’s formula for

swaption, with swaption prices from the Euro market, May 4, 2011.

model T0, . . . , TM with respect to the corresponding times in years. For in-

stance, the first row in the above figure is related to 1 year = T0 , the second

row to 2 years = T1 , and so on.

Furthermore, a thing to be extremely careful is the problem of ”temporal

misalignments” in the swaption matrix, in the sense that it is not necessarily

uniformly updated. Indeed, although it is not stated, generally the most

liquid swaptions are updated regularly, whereas other entries of the matrix

refer to older market situations. This fact, together with the problem coming

from the missing data, can cause troubles in the calibration.

A calibration of the LMM exclusively to swaptions aims to incorporate

as much information as possible from the table of implied volatilities in the

model parameters. In this case we can choose any of the methods we have

seen in Chapter 4 to compute approximated swaption prices, then apply it to

price all the swaptions present in the market table and finally find the param-

eters that minimize the distance between the corresponding prices. Instead,

if we are going to calibrate the LMM both to caplets and to swaptions, we

will proceed analogously but carrying out an optimization on less (or nei-

ther) parameters, because we can recover one of them in terms of the others

from each implied caplet volatility, as we have seen in the different cases of

Subsection 6.1.1. Anyway, we would get a good compromise between fitting

(low errors) and gumption.
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At this point, we have two possible ways of acting: to consider the instan-

taneous correlation either as input, estimated exogenously and introduced in

the calibration leaving free only the volatility parameters, or output, also

considered as fitting parameter, of the calibration.

7.1 Historical instantaneous correlation

The opportunity to introduce in the calibration a correlation matrix given

exogenously allows us to incorporate the behaviour of the real market rates in

our model and to unburden the optimization procedure. On the other hand,

however, historical estimations reflect some problems deriving from the data

sampling, e.g. outliers and non synchronous data. A way to tackle this unde-

sirable feature is to use parameterized correlation matrices approximating the

one estimated and preserving by construction the desired characteristics al-

ready described at the beginning of Chapter 5. In support of this, European

swaption prices are relatively insensitive to correlation details and a more

regular correlation structure can lead, through calibration, to more regular

volatilities and to a more stable evolution of the volatility term structure.

7.1.1 Historical estimation

Initially, we have to recover market quotations for interest rates, gener-

ally forward LIBOR or forward swap rates, over time. They are characterized

by a fixed time to maturity, contrarily to the forward rates modeled in the

LMM, which have a fixed maturity date.

Therefore, we must compute first the zero coupon bond prices from the mar-

ket rates, that will be in the form

p(t1, t1 + si) , p(t2, t2 + si) , . . . , p(tl, tl + si) (7.1)

for every time to maturity si and time tj of quotations, always expressed in

years. In particular, we consider daily quotations and, since the first forward

rate modeled expires in T0, i.e. in one year from today, we go back only one
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year with the data. Then, we carry out a linear interpolation between the

logarithms of the bond prices in (7.1) as functions of the maturity for each

fixed evaluation time, in order to compute then the bond prices related to

the fixed maturities T0, . . . , TM , constituting the tenor structure of our LMM,

and valued on the dates of the quotations, i.e. sequences

p(t1, Ti) , p(t2, Ti) , . . . , p(tl, Ti) (7.2)

for every i = 0, . . . ,M − 1 . From these, we get the annual forward rates

F0, . . . , FM−1 valued daily from one year to date.

Notice that we loss the last forward rate FM in the historical estimation.

At this point, based on the Gaussian approximation

(
ln
(

F1(ti+1)
F1(ti)

)
. . . ln

(
FM−1(ti+1)
FM−1(ti)

) )
∼ N (µ, V ) ,

we use the following estimators for the mean and variance,

µ̂i := 1
l−1

l−1∑
k=1

ln
(

Fi(tk+1)

Fi(tk)

)
,

V̂i,j := 1
l−1

l−1∑
k=1

(
ln
(

Fi(tk+1)

Fi(tk)

)
− µ̂i

)(
ln
(

Fj(tk+1)

Fj(tk)

)
− µ̂j

)
,

(7.3)

where l is the number of past evaluation times, so that our estimation of the

historical correlation matrix ρ has elements

ρ̂i,j =
V̂i,j√
V̂i

√
V̂j

.

Example of Historical estimation

Below, are shown the results obtained by historical data spanning the

year before March 29, 2001. In particular, we start with a table of rates

quoted at times t1 = −1y, . . . , tl = 0 , l = 260 (daily quotations apart

from holidays), specifically the EURIBOR rates for expires in one year and

the forward swap rates for tenors of 2, . . . , 20 years from t = 0. Then, we
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compute the bond prices by performing a bootstrap and, through a log-

linear interpolation, recover the same prices in the form of (7.1), with the

annualized tenor structure {T0 = 1y, . . . , T19 = 20y} . From these, we recover

the forward rates F ∗
1 (ti), . . . , F

∗
18(ti) for i = 1, . . . , l , and get the estimate,

following (7.3)-(7.3), for the correlations between them, shown in Figures 7.2

and 7.3.

Figure 7.2: Three-dimensional plot of correlations ρ̂i,j from the estimated

matrix in Figure 7.3.

We must notice that the resulting ρ̂ has the characteristics of a correlation

matrix but it does not satisfy the financial expected properties I, II and III.

As mentioned above, once we get the historical estimate, we could con-

sider a parametric correlation matrix that well approximates that estimate.

To do this, we have two possibilities:

• choose any of the parameterizations in Chapter 5 and minimize some

loss function of the distance between the parametric form and the es-

timate ρ̂;
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• directly estimate the correlations in the Schoenmakers and Coffey’s

semi-parametric structure (5.1)-(5.2).
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F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18
F1 1.00 0.88 0.70 0.66 0.60 0.51 0.50 0.49 0.55 0.60 0.59 0.61 0.60 0.58 0.57 0.56 0.55 0.56
F2 0.88 1.00 0.93 0.88 0.81 0.75 0.73 0.71 0.77 0.79 0.78 0.78 0.77 0.74 0.73 0.72 0.70 0.70
F3 0.70 0.93 1.0 0.96 0.87 0.82 0.81 0.79 0.84 0.84 0.82 0.82 0.81 0.79 0.78 0.77 0.75 0.74
F4 0.66 0.88 0.96 1.00 0.94 0.91 0.90 0.89 0.91 0.90 0.88 0.87 0.86 0.84 0.83 0.81 0.79 0.78
F5 0.60 0.81 0.87 0.94 1.00 0.98 0.98 0.97 0.96 0.92 0.91 0.89 0.89 0.87 0.85 0.82 0.80 0.79
F6 0.51 0.75 0.82 0.91 0.98 1.00 0.99 0.98 0.96 0.91 0.89 0.87 0.87 0.85 0.82 0.80 0.78 0.76
F7 0.50 0.73 0.81 0.90 0.98 0.99 1.0 0.98 0.97 0.91 0.90 0.88 0.88 0.86 0.83 0.80 0.78 0.77
F8 0.49 0.71 0.79 0.89 0.97 0.98 0.98 1.0 0.97 0.91 0.90 0.88 0.87 0.86 0.83 0.80 0.78 0.76
F9 0.55 0.77 0.84 0.91 0.96 0.96 0.97 0.97 1.00 0.95 0.94 0.93 0.92 0.91 0.89 0.86 0.84 0.84
F10 0.60 0.79 0.84 0.90 0.92 0.91 0.91 0.91 0.95 1.00 0.98 0.96 0.95 0.95 0.94 0.93 0.91 0.90
F11 0.59 0.78 0.82 0.88 0.91 0.89 0.90 0.90 0.94 0.98 1.0 0.97 0.96 0.95 0.95 0.92 0.91 0.90
F12 0.61 0.78 0.82 0.87 0.89 0.87 0.88 0.88 0.93 0.96 0.97 1.00 0.97 0.95 0.95 0.92 0.90 0.88
F13 0.60 0.77 0.81 0.86 0.89 0.87 0.88 0.87 0.92 0.95 0.96 0.97 1.00 0.98 0.96 0.93 0.91 0.90
F14 0.58 0.74 0.79 0.84 0.87 0.85 0.86 0.86 0.91 0.95 0.95 0.95 0.98 1.0 0.97 0.95 0.93 0.93
F15 0.57 0.73 0.78 0.83 0.85 0.82 0.83 0.83 0.89 0.94 0.95 0.95 0.96 0.97 1.0 0.96 0.96 0.95
F16 0.56 0.72 0.77 0.81 0.82 0.80 0.80 0.80 0.86 0.93 0.92 0.92 0.93 0.95 0.96 1.00 0.96 0.97
F17 0.55 0.70 0.75 0.79 0.80 0.78 0.78 0.78 0.84 0.91 0.91 0.90 0.91 0.93 0.96 0.96 1.00 0.96
F18 0.56 0.70 0.74 0.78 0.79 0.76 0.77 0.76 0.84 0.90 0.90 0.88 0.90 0.93 0.95 0.97 0.96 1.00
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Example of Historically Optimized Rebonato’s correlation

For example, by performing in Matlab an optimization on the fitting

parameters of Rebonato’s form in (5.21), i.e.

ρReb
i,j = ρ∞ + (1− ρ∞) exp [−|i− j| (β − αmax{i, j})] ,

wanting to approximate the historical estimate, we have obtained the follow-

ing values:

α = 2.249 ∗ 10−14 , β = 0.0068 , ρ∞ = 0.146 ,

which give the Rebonato’s correlations in Figures 7.4 and 7.5, respectively

plotted in the three-dimensional space and in the matrix form.

Figure 7.4: Three-dimensional plot of correlations ρReb
i,j (α, β, ρinf) with the

values above for the parameters.
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F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18
F1 1.00 0.99 0.99 0.98 0.98 0.97 0.97 0.96 0.95 0.95 0.94 0.94 0.93 0.93 0.92 0.92 0.91 0.91
F2 0.99 1.00 0.99 0.99 0.98 0.98 0.97 0.97 0.96 0.95 0.95 0.94 0.94 0.93 0.93 0.92 0.92 0.91
F3 0.99 0.99 1.00 0.99 0.99 0.98 0.98 0.97 0.97 0.96 0.95 0.95 0.94 0.94 0.93 0.93 0.92 0.92
F4 0.98 0.99 0.99 1.00 0.99 0.99 0.98 0.98 0.97 0.97 0.96 0.95 0.95 0.94 0.94 0.93 0.93 0.92
F5 0.98 0.98 0.99 0.99 1.00 0.99 0.99 0.98 0.98 0.97 0.97 0.96 0.95 0.95 0.94 0.94 0.93 0.93
F6 0.97 0.98 0.98 0.99 0.99 1.00 0.99 0.99 0.98 0.98 0.97 0.97 0.96 0.95 0.95 0.94 0.94 0.93
F7 0.97 0.97 0.98 0.98 0.99 0.99 1.00 0.99 0.99 0.98 0.98 0.97 0.97 0.96 0.95 0.95 0.94 0.94
F8 0.96 0.97 0.97 0.98 0.98 0.99 0.99 1.00 0.99 0.99 0.98 0.98 0.97 0.97 0.96 0.95 0.95 0.94
F9 0.95 0.96 0.97 0.97 0.98 0.98 0.99 0.99 1.00 0.99 0.99 0.98 0.98 0.97 0.97 0.96 0.95 0.95
F10 0.95 0.95 0.96 0.97 0.97 0.98 0.98 0.99 0.99 1.00 0.99 0.99 0.98 0.98 0.97 0.97 0.96 0.95
F11 0.94 0.95 0.95 0.96 0.97 0.97 0.98 0.98 0.99 0.99 1.00 0.99 0.99 0.98 0.98 0.97 0.97 0.96
F12 0.94 0.94 0.95 0.95 0.96 0.97 0.97 0.98 0.98 0.99 0.99 1.00 0.99 0.99 0.98 0.98 0.97 0.97
F13 0.93 0.94 0.94 0.95 0.95 0.96 0.97 0.97 0.98 0.98 0.99 0.99 1.00 0.99 0.99 0.98 0.98 0.97
F14 0.93 0.93 0.94 0.94 0.95 0.95 0.96 0.97 0.97 0.98 0.98 0.99 0.99 1.00 0.99 0.99 0.98 0.98
F15 0.92 0.93 0.93 0.94 0.94 0.95 0.95 0.96 0.97 0.97 0.98 0.98 0.99 0.99 1.00 0.99 0.99 0.98
F16 0.92 0.92 0.93 0.93 0.94 0.94 0.95 0.95 0.96 0.97 0.97 0.98 0.98 0.99 0.99 1.00 0.99 0.99
F17 0.91 0.92 0.92 0.93 0.93 0.94 0.94 0.95 0.95 0.96 0.97 0.97 0.98 0.98 0.99 0.99 1.00 0.99
F18 0.91 0.91 0.92 0.92 0.93 0.93 0.94 0.94 0.95 0.95 0.96 0.97 0.97 0.98 0.98 0.99 0.99 1.00
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Example of Historically Estimated S. & C.’s semi-parametric cor-

relation

We start again from historical data spanning the past year before March

29, 2011, and we consider the table, obtained before, of historical forward

rates F ∗
1 (ti), . . . , F

∗
18(ti) for i = 1, . . . , l .

Now, for each time ti, i = 1, . . . , l , we consider the r.v. defined by

y∗j (ti) := ln
F ∗
j (ti+1)

F ∗
j (ti)

, for j = 1, . . . , m , m = 18 .

Then, we assume the vector y∗(ti), having values in R
m, following the model

(5.3), that we rewrite in the following form:

y = A ·W = L · diag(a) ·W ∼ N (0, AA′) ,

where

A =




a1 0 · · · 0

a1 a2 0 · · · 0

...
...

. . .

...
0

a1 a2 · · · am




, L =




1 0 · · · 0

1 1 0 · · · 0

...
...

. . .

...
0

1 1 · · · 1




, a =




a1

a2
...

am




.

By defining an auxiliary vector

w = diag(a) ·W ∼ N
(
0, diag

(
a2
))

,

where the square acts componentwise, we have

w = L−1 · y .

Since we have an historical set of vectors y∗(ti), for i = 1, . . . , l , which we

consider a sample of realizations of y, we obtain a consequent sample of

realizations of w. Then, we compute the sample covariance matrix of the

vector w, say Ĉ, being an estimate of the actual one diag (a2), thus we

estimate the vector a2 by extracting the diagonal from Ĉ, say â2. Finally,

we get the vector

c =

√
L · â2 ,
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whose elements c1, . . . cm satisfy

c2i =

i∑

k=1

â2k , i = 1, . . . , m

and we obtain the correlation matrix ρSC(c) of kind (5.1)-(5.2), given by

ρSC(c)ij =
min{ci, cj}
max{ci, cj}

, i, j = 1, . . . , m .

This historically estimated semi-parametric correlation matrix is shown in

Figures 7.6 and 7.7, respectively plotted in the three-dimensional space and

in the matrix form.

Figure 7.6: Three-dimensional plot of correlations ρSCi,j .
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F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18
F1 1.00 0.89 0.87 0.86 0.85 0.84 0.84 0.84 0.83 0.83 0.82 0.82 0.82 0.81 0.81 0.80 0.79 0.79
F2 0.89 1.00 0.98 0.97 0.95 0.95 0.95 0.95 0.94 0.93 0.93 0.92 0.92 0.92 0.91 0.90 0.90 0.89
F3 0.87 0.98 1.00 0.99 0.98 0.97 0.97 0.97 0.96 0.95 0.95 0.95 0.94 0.94 0.93 0.93 0.92 0.91
F4 0.86 0.97 0.99 1.00 0.99 0.98 0.98 0.98 0.97 0.97 0.96 0.96 0.95 0.95 0.94 0.94 0.93 0.92
F5 0.85 0.95 0.98 0.99 1.00 1.0 0.99 0.99 0.98 0.98 0.97 0.97 0.96 0.96 0.95 0.95 0.94 0.93
F6 0.84 0.95 0.97 0.98 1.0 1.00 1.0 0.99 0.99 0.98 0.98 0.97 0.97 0.96 0.96 0.95 0.94 0.93
F7 0.84 0.95 0.97 0.98 0.99 1.0 1.00 1.0 0.99 0.98 0.98 0.98 0.97 0.97 0.96 0.95 0.94 0.94
F8 0.84 0.95 0.97 0.98 0.99 0.99 1.0 1.00 0.99 0.99 0.98 0.98 0.97 0.97 0.96 0.96 0.95 0.94
F9 0.83 0.94 0.96 0.97 0.98 0.99 0.99 0.99 1.00 0.99 0.99 0.98 0.98 0.97 0.97 0.96 0.95 0.94
F10 0.83 0.93 0.95 0.97 0.98 0.98 0.98 0.99 0.99 1.00 1.0 0.99 0.99 0.98 0.98 0.97 0.96 0.95
F11 0.82 0.93 0.95 0.96 0.97 0.98 0.98 0.98 0.99 1.0 1.00 0.99 0.99 0.98 0.98 0.97 0.96 0.95
F12 0.82 0.92 0.95 0.96 0.97 0.97 0.98 0.98 0.98 0.99 0.99 1.00 0.99 0.99 0.98 0.98 0.97 0.96
F13 0.82 0.92 0.94 0.95 0.96 0.97 0.97 0.97 0.98 0.99 0.99 0.99 1.00 1.0 0.99 0.98 0.97 0.96
F14 0.81 0.92 0.94 0.95 0.96 0.96 0.97 0.97 0.97 0.98 0.98 0.99 1.0 1.0 0.99 0.99 0.98 0.97
F15 0.81 0.91 0.93 0.94 0.95 0.96 0.96 0.96 0.97 0.98 0.98 0.98 0.99 0.99 1.00 0.99 0.98 0.97
F16 0.80 0.90 0.93 0.94 0.95 0.95 0.95 0.96 0.96 0.97 0.97 0.98 0.98 0.99 0.99 1.00 0.99 0.98
F17 0.79 0.90 0.92 0.93 0.94 0.94 0.94 0.95 0.95 0.96 0.96 0.97 0.97 0.98 0.98 0.99 1.0 0.99
F18 0.79 0.89 0.91 0.92 0.93 0.93 0.94 0.94 0.94 0.95 0.95 0.96 0.96 0.97 0.97 0.98 0.99 1.00
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Example of Historically Optimized S. & C.’s three-parameter cor-

relation

By performing in Matlab an optimization on the fitting parameters of

Schoenmakers and Coffey’s three-parameter form in (5.17), i.e.

ρ
SCpar
i,j = exp

[
− |i−j|

m−1

(
− ln ρ∞ + η1

i2+j2+ij−3mi−3mj+3i+3j+2m2−m−4
(m−2)(m−3)

+

−η2
i2+j2+ij−mi−mj−3i−3j+3m+2

(m−2)(m−3)

)]
,

wanting to approximate the historical estimate ρ̂, we have obtained the fol-

lowing values:

η1 = 0.4856 , η2 = 0.00 , ln ρ∞ = −0.5395 ,

which give the correlations in Figures 7.4 and 7.5, respectively plotted in the

three-dimensional space and in the matrix form.

Figure 7.8: Three-dimensional plot of correlations ρSCpar
i,j .
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F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18
F1 1.00 0.91 0.85 0.79 0.75 0.71 0.68 0.66 0.64 0.62 0.61 0.60 0.60 0.59 0.59 0.59 0.58 0.58
F2 0.91 1.00 0.92 0.86 0.81 0.77 0.74 0.72 0.70 0.68 0.67 0.66 0.65 0.65 0.64 0.64 0.64 0.64
F3 0.85 0.92 1.00 0.93 0.88 0.84 0.80 0.77 0.75 0.74 0.72 0.71 0.71 0.70 0.70 0.69 0.69 0.69
F4 0.79 0.86 0.93 1.00 0.94 0.90 0.86 0.83 0.81 0.79 0.77 0.76 0.75 0.75 0.75 0.74 0.74 0.74
F5 0.75 0.81 0.88 0.94 1.00 0.95 0.91 0.88 0.85 0.84 0.82 0.81 0.80 0.79 0.79 0.79 0.78 0.78
F6 0.71 0.77 0.84 0.90 0.95 1.00 0.96 0.93 0.90 0.88 0.86 0.85 0.84 0.84 0.83 0.83 0.83 0.82
F7 0.68 0.74 0.80 0.86 0.91 0.96 1.00 0.97 0.94 0.92 0.90 0.89 0.88 0.87 0.87 0.86 0.86 0.86
F8 0.66 0.72 0.77 0.83 0.88 0.93 0.97 1.00 0.97 0.95 0.93 0.92 0.91 0.90 0.90 0.89 0.89 0.89
F9 0.64 0.70 0.75 0.81 0.85 0.90 0.94 0.97 1.00 0.98 0.96 0.95 0.94 0.93 0.92 0.92 0.92 0.92
F10 0.62 0.68 0.74 0.79 0.84 0.88 0.92 0.95 0.98 1.00 0.98 0.97 0.96 0.95 0.95 0.94 0.94 0.94
F11 0.61 0.67 0.72 0.77 0.82 0.86 0.90 0.93 0.96 0.98 1.00 0.99 0.98 0.97 0.96 0.96 0.96 0.95
F12 0.60 0.66 0.71 0.76 0.81 0.85 0.89 0.92 0.95 0.97 0.99 1.00 0.99 0.98 0.98 0.97 0.97 0.97
F13 0.60 0.65 0.71 0.75 0.80 0.84 0.88 0.91 0.94 0.96 0.98 0.99 1.00 0.99 0.99 0.98 0.98 0.98
F14 0.59 0.65 0.70 0.75 0.79 0.84 0.87 0.90 0.93 0.95 0.97 0.98 0.99 1.00 0.99 0.99 0.99 0.98
F15 0.59 0.64 0.70 0.75 0.79 0.83 0.87 0.90 0.92 0.95 0.96 0.98 0.99 0.99 1.00 1.0 0.99 0.99
F16 0.59 0.64 0.69 0.74 0.79 0.83 0.86 0.89 0.92 0.94 0.96 0.97 0.98 0.99 1.0 1.00 1.0 0.99
F17 0.58 0.64 0.69 0.74 0.78 0.83 0.86 0.89 0.92 0.94 0.96 0.97 0.98 0.99 0.99 1.0 1.00 1.0
F18 0.58 0.64 0.69 0.74 0.78 0.82 0.86 0.89 0.92 0.94 0.95 0.97 0.98 0.98 0.99 0.99 1.0 1.00

F
igu

re
7.9:

S
ch
o
en
m
akers

an
d
C
off

ey
’s

th
ree-p

aram
eter

stru
ctu

re
ap

p
rox

i-

m
atin

g
th
e
h
istorically

estim
ation

ρ̂
fou

n
d
in

F
igu

re
7.3.



7.2 Cascade Calibration 105

We denote the average squared relative error by MSE% and the average

simple relative error by ME%. In Table 7.1 we compare the errors charac-

terizing the three correlation get above, the Rebonato’s and Schoenmakers

and Coffey’s optimized three-parameter and the estimated Schoenmakers and

Coffey’s semi-parametric structure, in terms of the historical estimation.

ME% MSE%

Reb. three-par. 0.159833 0.246294

S. & C. semi-par. 0.136001 0.189073

S. & C. three-par. 0.0622644 0.0887776

Table 7.1: Average relative errors, both simple and squared, between histori-

cal estimation in Figures 7.3-7.2 and, respectively, the ones in Figures 7.5-7.4,

7.7-7.6 and 7.9-7.8.

7.2 Cascade Calibration

In Subsection 6.1.1 we presented some possible parameterizations of the

forward volatilities, that largely refer to the most general one, the GPC

formulation (6.2) shown in Table 6.1. This structure has a high number of

parameters, thus we then made some assumptions on it in order to reduce

the number of free parameters to be involved in an optimization algorithm of

the calibration. However, there exists an alternative method such that, given

exogenously the correlations, the calibration of the LMM to the swaptions

can be carried out through closed-form formulae. Substantially, we would

like to have a calibration that is:

- univocal, i.e. without all the indeterminacies seen in the calibration to

the caplets;

- exact, i.e. that avoids the problem of significant errors with respect to

the table of the market swaption volatilities;
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- computationally efficient.

This method meets in a large part our expectations.

We assume the GPC volatility structure and we start from an historical

correlation matrix ρ and with the table of the swaption volatilities from the

market, denoting by Vα,β the Black volatility for the swaption with underlying

swap rate Sα,β.

By recalling the Rebonato’s formula for swaptions, the approximated

Black volatility in the LMM is

(vLMM
α,β )2 :=

β∑

i,j=α+1

wi(0)wj(0)Fi(0)Fj(0)ρi,j
Tα Sα,β(0)2

∫ Tα

0

σi(t)σj(t)dt .

We apply this to the GPC formulation and equate it to the market swaption

volatility:

(Vα,β)
2 ≈

β∑

i,j=α+1

wi(0)wj(0)Fi(0)Fj(0)ρi,j
Tα Sα,β(0)2

α∑

h=0

τhσi,h+1σ,j,h+1 , (7.4)

where we must remember that the w’s depend on the specific α, β considered.

The cascade calibration moves along the swaption table from left to right

and from top to down and we apply, at each step, the approximating for-

mula (7.4) to compute a new unknown volatility.

First, we analyze the simplest case of the calibration to the upper-left

triangular part of a swaption matrix providing all the market data involved,

which leads to sensible results, then the calibration to a rectangular sub-

matrix, again providing all the market volatilities involved. Finally, we con-

sider the extended triangular case in which we calibrate again to the upper-

left triangular part of a swaption matrix, where, however there are missing

data.

7.2.1 Triangular Cascade Calibration Algorithm

In this case we calibrate the GPC volatility formulation to the upper-left

triangular part of a swaption matrix where there are no missing data from
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the market. To give an overview of this procedure, in the Table 7.2 we show

the outcomes obtained by applying it to an example of just six swaptions.

Let’s see in detail how to proceed in this example. We start from the entry

Length 1year 2years 3years

Maturity

T0 = 1year V0,1 V0,2 V0,3

σ1,1 σ1,1 σ1,1

σ2,1 σ2,1

σ3,1

T1 = 2years V1,2 V1,3 –

σ2,1, σ2,2 σ2,1, σ2,2

σ3,1, σ3,2

T2 = 3years V2,3 – –

σ3,1, σ3,2, σ3,3

Table 7.2: Table summarizing the swaption volatilities to which we calibrate

the LMM through a triangular cascade calibration and the dependence of

the GPC forward volatilities on them, where the blue ones are the new pa-

rameters determined at each step.

V0,1 in position (1, 1), i.e. the swaption maturing in T0 e living up to T1, that

is an option on a single forward LIBOR rate collapsing to a spot LIBOR

rate, and the equation to solve has as unique unknown the volatility of F1

from now to T0 = 1year. Indeed:

S0,1(0) = w1(0)F1(0) ⇒ (V0,1)
2 ≈ σ2

1,1 .

Hence the parameter σ1,1 is calibrated exactly.

Then we move to the entry (1, 2), V0,2, which involves the rates F1, F2

over the time from now to a year:

S0,2(0)
2(V0,2)

2 ≈ w1(0)
2F1(0)

2σ2
1,1 + w2(0)

2F2(0)
2σ2

2,1 +

+2ρ1,2w1(0)F1(0)w2(0)F2(0)σ1,1σ2,1 ,
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where the only unknown is σ2,1, which solves an algebraic second-order equa-

tion assuming existence and uniqueness of a positive solution.

Moving to the entry (1, 3), V0,3, the rate F3 is added among others, still

over [0, T0], and we have

S0,3(0)
2(V0,3)

2 ≈ w1(0)
2F1(0)

2σ2
1,1 + w2(0)

2F2(0)
2σ2

2,1 + w3(0)2F3(0)
2σ2

3,1 +

+2ρ1,2w1(0)F1(0)w2(0)F2(0)σ1,1σ2,1 +

+2ρ1,3w1(0)F1(0)w3(0)F3(0)σ1,1σ3,1 +

+2ρ2,3w2(0)F2(0)w3(0)F3(0)σ2,1σ3,1 ,

where the only unknown is σ3,1, which solves again a second-order equation,

by the same assumption of existence and uniqueness.

Now we move on the second row to the entry (2, 1), V1,2, where only F2 is

at stake but over the two time subintervals [0, T0], [T0, T1]. The formula (7.4)

gives

T1(V1,2)
2 ≈ τ0σ

2
2,1 + τ1σ

2
2,2 ,

with the only unknown σ2,2.

Moving on the right to the entry (2, 2), V1,3, the formula (7.4) gives

T1S1,3(0)
2(V1,3)

2 ≈ w2(0)
2F2(0)

2(τ0σ
2
2,1 + τ1σ

2
2,2) +

+w3(0)
2F3(0)

2(τ0σ
2
3,1 + τ1σ

2
3,2) +

+2ρ2,3w2(0)F2(0)w3(0)F3(0)(τ0σ2,1σ3,1 + τ1σ2,2σ3,2) ,

where the only unknown is σ3,2.

Finally, we move to the only entry (3, 1) on the third row, V2,3, where our

formula gives

T2(V2,3)
2 ≈ τ0σ

2
3,1 + τ1σ

2
3,2 + τ2σ

2
3,3 ,

with the only unknown σ3,3.

Notice that each time we compute an only new parameter as a function

of a market swaption volatility and of the parameters previously found.

The procedure illustrated in the example above can be generalized in the

following scheme.
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Cascade Calibration Algorithm (CCA)

Brigo and Mercurio (2001,2002)

1. Select the dimension s of the swaption matrix that is of interest for the

calibration.

2. Set α = 0 .

3. Set β = α+ 1 .

4. Solve the following equation in σβ,α+1 :

Aα,βσ
2
β,α+1 +Bα,βσβ,α+1 + Cα,β = 0 , (7.5)

where

Aα,β = wβ(0)
2Fβ(0)

2τα ,

Bα,β = 2

β−1∑

j=α+1

wβ(0)Fβ(0)wj(0)Fj(0) ρβ,j τα σj,α+1 ,

Cα,β =

β−1∑

i,j=α+1

wi(0)Fi(0)wj(0)Fj(0) ρi,j

α∑

h=0

τh σi,h+1 σj,h+1 +

+2

β−1∑

j=α+1

wβ(0)Fβ(0)wj(0)Fj(0) ρβ,j

α−1∑

h=0

τh σβ,h+1 σj,h+1 +

+wβ(0)
2Fβ(0)

2
α−1∑

h=0

τh σ
2
β,h+1 − Tα Sα,β(0)

2(Vα,β)
2 .

Since Aα,β, Bα,β > 0, the equation (7.5) admits a unique positive solu-

tion, namely

σβ,α+1 =
−Bα,β +

√
B2

α,β − 4Aα,βCα,β

2Aα,β

,

if and only if Cα,β < 0.

5. Set β = α+ 1 ; if β ≤ s , go back to point 4, else set α = α + 1 .

6. If α < s , go back to point 3, else stop.
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Practical experiences confirm that for non-pathological swaption data the

condition Cα,β < 0 is generally verified. Instead, in problematic situations, we

shall make some adjustments to this method, for example as in the extended

case. Notice that, in a triangular CCA of dimension s, the entries of the

swaption matrix involved are

(i, j) s.t. (i+ j) ≤ (s+ 1) ,

hence we calibrate the model to Black swaption volatilities

Vα,β s.t. 0 ≤ α ≤ s− 1, α + 1 ≤ β ≤ s .

Indeed: {
α = i− 1

β = α + j = i+ j − 1
⇐⇒

{
i = α + 1

j = β − α .

This kind of calibration does not need further assumptions and it is indepen-

dent of the dimension s, provided all the market data involved, in the sense

that the output of the calibration to a sub-matrix of a swaption table V will

be a subset of the output of the calibration to V.

Example of a 5-dimensional Cascade Calibration

We applied the CCA to the 5 × 5 triangular sub-matrix of the implied

Black swaption volatilities shown in Figure 7.10, where we highlight the fact

that there are maturities with missing data by showing the corresponding

rows and columns empty. We chose s = 5, as it is the larger maturity with

no missing data before.

Again, we have to pay attention to the shift of the indexes of the resettlement

dates of the model with respect to the corresponding times in years.

The resulting calibrated forward volatilities are shown in Figure 7.11.

7.2.2 Rectangular Cascade Calibration Algorithm

If we want to calibrate the LMM to a whole rectangular swaption ma-

trix with all the entries provided by the market, we need to make some
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1 y 2 y 3 y 4 y 5 y 6 y 7 y 8 y 9 y 10 y

1 y 0.34 0.30 0.28 0.27 0.26 0.24 0.22
2 y 0.32 0.28 0.26 0.25 0.24 0.23 0.22
3 y 0.29 0.26 0.24 0.23 0.23 0.22 0.21
4 y 0.26 0.24 0.23 0.22 0.21 0.21 0.20
5 y 0.24 0.22 0.21 0.21 0.20 0.20 0.20
6 y
7 y 0.21 0.20 0.19 0.19 0.18 0.18 0.18
8 y
9 y
10 y 0.18 0.17 0.17 0.17 0.17 0.17 0.17
11 y
12 y
13 y
14 y
15 y 0.16 0.16 0.17 0.17 0.17 0.17 0.18
16 y
17 y
18 y
19 y
20 y 0.18 0.18 0.19 0.19 0.19 0.20 0.21

Figure 7.10: Implied Black swaption volatilities, from the Euro market, April

26, 2011.

Σ =

0.342 0 0 0 0
0.274301 0.36172 0 0 0
0.264304 0.245348 0.344644 0 0
0.252787 0.24233 0.220029 0.311907 0
0.247875 0.231487 0.20753 0.191782 0.293202

Figure 7.11: Forward volatilities calibrated to the 5 × 5 sub-matrix of the

swaption table in Figure 7.10.

adjustments to the CCA algorithm, because, in general, there are no market

swaption tables large enough to contain our rectangular one in its upper-

triangular part.

By recalling the initial example of dimension s = 3, in the Table 7.3

we show the outcomes of the rectangular cascade calibration, involving nine

swaptions.

We can see how, in each entry of the last column except from the first, we
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Length 1year 2years 3years

Maturity

T0 = 1year V0,1 V0,2 V0,3

σ1,1 σ1,1 σ1,1

σ2,1 σ2,1

σ3,1

T1 = 2years V1,2 V1,3 V1,4

σ2,1, σ2,2 σ2,1, σ2,2 σ2,1, σ2,2

σ3,1, σ3,2 σ3,1, σ3,2

σ4,1, σ4,2

T2 = 3years V2,3 V2,4 V2,5

σ3,1, σ3,2, σ3,3 σ3,1, σ3,2, σ3,3 σ3,1, σ3,2, σ3,3

σ4,1, σ4,2, σ4,3 σ4,1, σ4,2, σ4,3

σ5,1, σ5,2, σ5,3

Table 7.3: Table summarizing the swaption volatilities to which we calibrate

the LMM through a rectangular cascade calibration and the dependence

of the GPC forward volatilities on them, where the blue ones are the new

parameters determined at each step.

have multiple unknown forward volatilities. The easiest way to interrelate

them is to assume they are all equal and this assumption makes sense, because

the multiple unknowns are always volatilities of a single forward LIBOR rate

over a few adjacent intervals of time.

This method is described in detail in the following scheme.

Rectangular Cascade Calibration Algorithm (RCCA)

Brigo and Morini (2002), Morini (2002) The RCCA algorithm recovers the

first three points of the CCA algorithm, unchanged. At point 5 the new

condition for β becomes

β − α ≤ s .
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Moreover, in the case

β = s+ α ,

at point 4 we have to assume all the unknowns to be equal, i.e.

σβ,1 = σβ,2 = . . . σβ,α+1 .

Hence, instead of (7.5), the new equation to solve is

A∗
α,βσ

2
β,α+1 +B∗

α,βσβ,α+1 + C∗
α,β = 0 , (7.6)

where

A∗
α,β = wβ(0)

2Fβ(0)
2

α∑

h=0

τh ,

B∗
α,β = 2

β−1∑

j=α+1

wβ(0)Fβ(0)wj(0)Fj(0) ρβ,j τα σj,α+1 +

+2

β−1∑

j=α+1

wβ(0)Fβ(0)wj(0)Fj(0) ρβ,j

α−1∑

h=0

τh σj,h+1 ,

C∗
α,β =

β−1∑

i,j=α+1

wi(0)Fi(0)wj(0)Fj(0) ρi,j

α∑

h=0

τh σi,h+1 σj,h+1 +

−Tα Sα,β(0)
2(Vα,β)

2 .

Example of a 5-dimensional Rectangular Cascade Calibration

We applied the RCCA to the whole 5 × 5 sub-matrix of the implied

Black swaption volatilities shown in Figure 7.10 and the resulting calibrated

forward volatilities are shown in Figure 7.12.

7.2.3 Extended Triangular Cascade Calibration Algo-

rithm

In case we want to calibrate the model to a larger dimension of the swap-

tion table, we have to tackle the problem of missing data. We refer to the
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Σ =

0.342 0 0 0 0
0.274301 0.36172 0 0 0
0.264304 0.245348 0.344644 0 0
0.252787 0.24233 0.220029 0.311907 0
0.247875 0.231487 0.20753 0.191782 0.293202
0.233045 0.233045 0.199793 0.204828 0.177152
0.220006 0.220006 0.220006 0.177201 0.178626
0.206154 0.206154 0.206154 0.206154 0.17995
0.190429 0.190429 0.190429 0.190429 0.190429

Figure 7.12: Forward volatilities calibrated to the 5 × 5 sub-matrix of the

swaption table in Figure 7.10.

algorithm we are describing as to the ”ExtCCA Algorithm”.

It is essential to observe that the swaption volatility Vα,β, which is located

in the (α− 1, β − α) entry of the table, involves the forward volatilities

{σi,j} i=α+1,...,β
j=1,...,α+1

.

Among these, as we are in the triangular case, the new unknown is always

σβ,α+1 .

Whenever the data Vα,β is not quoted by the market, we compute the

unknown forward volatility by means of the following devices:

{
σβ,α+1 = σβ−1,α+1, if α = 0;

σβ,α+1 =
σβ,α+σβ−1,α

2
, if α > 0.

Then, we create a fictitious data Ṽα,β, by the approximating formula (7.4),

using the σ’s already calibrated and the one defined above, in order to fill in

the incomplete market table.

Example of a 10 and a 15-dimensional ExtCCA

Firstly, we applied the ExtCCA to the 10 × 10 triangular sub-matrix of

the implied Black swaption volatilities shown in Figure 7.10 and the resulting

calibrated forward volatilities are shown in Figure 7.13.
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We exploit the calibrated σ’s to reconstruct the missing swaption volatil-

ities falling inside our triangular part of interest. Thus, the new obtained

swaption table is shown in Figure 7.14.

Then, we applied the ExtCCA to the largest 15 × 15 triangular matrix

deriving from the implied Black swaption volatilities shown in Figure 7.10

and the resulting calibrated forward volatilities are shown in Figure 7.15.

As above, we exploit the calibrated σ’s to reconstruct the missing swap-

tion volatilities falling inside our triangular part of interest, thus obtaining

the swaption table shown in Figure 7.16.

Conclusions about the Cascade Calibration

We may conclude by pointing out the main features of the cascade cali-

bration. Its positive aspects are:

• it makes use of the correlation matrix in input from a historical esti-

mation;

• it is a fast method, thanks to the analytical closed-form formulae;

• it is exact, i.e. if Rebonato’s approximation for the Black implied

volatility of swaptions is used, the swaption market prices are fitted

exactly;

• given correlation, it has a unique solution, under some homogeneity

assumptions;

• it induces a one-to-one relation between the model σ’s and the market

swaption volatilities.

However, on the other hand, we have encountered a few numerical problems,

for example the condition Cα,β < 0 is not always satisfied and some negative
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or imaginary σ’s may come out. In particular, we came up against this

facts only in the last example of calibration, by carrying out an ExtCCA

with dimension s = 15, whereas is a too large because of the considerable

amount of missing data. Moreover, the temporal misalignments in the market

data provided by a single broker and the correlation coming from a different

calibration need more attention.
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1 y 2 y 3 y 4 y 5 y 6 y 7 y 8 y 9 y 10 y

1 y 0.34 0.30 0.28 0.27 0.26 0.25 0.24 0.23 0.22 0.22
2 y 0.32 0.28 0.26 0.25 0.24 0.23 0.23 0.23 0.22 0.22
3 y 0.29 0.26 0.24 0.23 0.23 0.23 0.22 0.22 0.21
4 y 0.26 0.24 0.23 0.22 0.21 0.21 0.21 0.20
5 y 0.24 0.22 0.21 0.21 0.20 0.20 0.20 0.20
6 y 0.21 0.21 0.20 0.20 0.19
7 y 0.21 0.20 0.19 0.19 0.18 0.18 0.18
8 y 0.19 0.19 0.18
9 y 0.19 0.18
10 y 0.18 0.17 0.17 0.17 0.17 0.17 0.17
11 y
12 y
13 y
14 y
15 y 0.16 0.16 0.17 0.17 0.17 0.17 0.18
16 y
17 y
18 y
19 y
20 y 0.18 0.18 0.19 0.19 0.19 0.20 0.21

Figure 7.14: Black swaption volatilities partially reconstructed after a 10-

dimensional ExtCCA to the market swaption table in Figure 7.10.
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Appendix A

Preliminary theory

Definition A.1. We define an N -dimensional Itô process any stochastic

process X = (Xt)t∈[0,T ] whose dynamics is given by

dXt = µtdt+ σtdWt

where W is a d-dimensional standard Brownian motion on (Ω,F , P, (Ft)),

µ, σ ∈ L
2
loc(Ω× [0, T ]) , µ having values in R

N and σ having values in R
N×d .

Equivalently, in the integrated form, for i = 1, . . . , N the i-th component of

X follows:

X i
t = X i

0 +

∫ t

0

µi
sds+

d∑

j=1

∫ t

0

σi,j
s dW j

s .

Definition A.2. Given an N -dimensional Itô process X , the associated co-

variation process is the s.p. (< X,X >t)t∈[0,T ] with values in R
N×d defined

by

< X i, Xj >t:= lim
|Σ|→0

n∑

k=1

(X i
tk
−X i

tk−1)(X
j
tk
−X

j
tk−1) ,

where Σ = {(0 = t0, . . . , tn = T ) | t0 < . . . < tn , n ∈ N} .

Lemma A.0.1. With the notations above, let Ct = σtσ
∗
t , we have

< X i, Xj >t=

∫ t

0

C i,j
s ds , or equivalently d < X i, Xj >t= C

i,j
t dt .

We use also the notation d < X i, Xj >t≡ (dX i) (dXj) .

121
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Lemma A.0.2 (Itô’s formula). Given an N-dimensional Itô process with

dynamics

dXt = µtdt+ σtdWt

and a function F = F (t, x) ∈ C1,2([0, T ] × R
N ) , then the s.p. Y defined by

Yt = F (t, Xt) is an Itô process with dynamics

dYt = ∂tF dt+∇F · dXt +
1

2

N∑

i,j=1

∂xixj
F d < X i, Xj >t , F ≡ F (t, Xt) .

Definition A.3. Given a d-dimensional B.m. W on (Ω,F , P, (Ft)), Z ∈ R
N ,

µ : [0, T ] × R
N → R

N , σ : [0, T ] × R
N → R

N×d , the s.p. (Xt)t∈[0,T ] solves

the SDE with coefficients Z, µ, σ with respect to W if:

i) µ(t, Xt), σ(t, Xt) ∈ L
2
loc(Ω× [0, T ]) ;

ii) Xt = Z +
∫ t

0
µ(s,Xs)ds+

∫ t

0
σ(s,Xs)dWs .

A statistical tool

Here, we give a basic and simple result that will be very useful as com-

monplace in pricing.

Lemma A.0.3. Let S be a random variable Log-Normally distributed with

mean m and variance Σ2, i.e. S = C eX with X ∼ N (m,Σ2) and C ∈ R,

and K be a real positive constant, K ∈ R
+. Then:

E
[
(S −K)+

]
= C e

Σ2

2
+mΦ

(
ln C

K
+m+ Σ2

Σ

)
−K Φ

(
ln C

K
+m

Σ

)
, (A.1)

where Φ is the cumulative distribution function for the N (0, 1) distribution.
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Proof.

E
[
(S −K)+

]
=

∫

R

max{C ex −K, 0} 1√
2πΣ

e−
(x−m)2

2Σ2 dx

=
1√
2πΣ

∫

{C ex>K}
(C ex −K) e−

(x−m)2

2Σ2 dx

=
1√
2πΣ

(∫

{x>ln K
C
}
C ex e−

(x−m)2

2Σ2 dx−K

∫

{x>ln K
C
}
e−

(x−m)2

2Σ2 dx

)

=
1√
2πΣ

(∫ +∞

ln K
C

C e−
1

2Σ2 (x
2+m2−2xm−2xΣ2

dx+

−K

∫ +∞

ln K
C

e−
(x−m)2

2Σ2 dx

)

=
1√
2πΣ

(∫ +∞

ln K
C

−m−Σ2

Σ

C e−
z2

2 e
Σ2

2
+mΣ dz+ (A.2)

−K

∫ +∞

ln K
C

−m

Σ

e−
u2

2 Σ dx

)
(A.3)

=
1√
2π

(
C e

Σ2

2
+m

∫ +∞

ln K
C

−m−Σ2

Σ

e−
z2

2 dz −K

∫ +∞

ln K
C

−m

Σ

e−
u2

2 dx

)

= C e
Σ2

2
+mΦ

(
ln C

K
+m+ Σ2

Σ

)
−K Φ

(
ln C

K
+m

Σ

)
,

(A.4)

where the two summands in (A.2)-(A.3) are obtained respectively with the

two following changes of variable:

z =
x−m− Σ2

Σ
, u =

x−m

Σ
.

Corollary A.0.4. If S is a random variable Log-Normally distributed with

mean −1
2
Σ2 and variance Σ2, i.e. S = C eX with X ∼ N (−1

2
Σ2,Σ2) and

C ∈ R, and K is a real positive constant, K ∈ R
+, then:

E
[
(S −K)+

]
= CΦ(d1(K,C,Σ2))−KΦ(d2(K,C,Σ2)) , (A.5)
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where

d1(K,S,Σ2) :=
ln
(
S
K

)
+ Σ2

2

Σ
, (A.6)

d2(K,S,Σ2) := d1(K,C,Σ2)− Σ . (A.7)

Proof. It follows immediately from (A.1) by substituting m with −1
2
Σ2.



Appendix B

Change of measure

The change of probability measure will be essential to deal with the con-

cept of martingale measure, which plays a central role in discrete as well as

continuous market modeling.

For mathematical reasons, financial prices are expressed in terms of ex-

pectation values, but if we use the probability measure of the real world we’ll

be in wrong, because the market would not be free of arbitrage opportunities.

Here comes the martingale measure, which leads to the risk-neutral price for

derivatives in an arbitrage-free market.

In the following, we are assuming to have a probability space (Ω,F , P, (Ft))

and, on this, a d-dimensional standard Brownian motion (Wt)t∈[0,T ].

Definition B.1. Let λ ∈ L
2
loc(Ω × [0, T ]) be a d-dimensional process, the

exponential martingale associated to λ is the s.p. Zλ defined by

Zλ
t = exp

(
−
∫ t

0

λs · dWs −
1

2

∫ t

0

|λs|2ds
)

, t ∈ [0, T ] .

Its dynamics is

dZλ
t = −Zλ

t λt · dWt .

Indeed, by Ito’s formula:

dZλ
t = Zλ

t

(
−λt · dWt −

1

2
|λt|2dt

)
+

1

2
Zλ

t |λt|2dt = −Zλ
t λt · dWt .
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Since λ ∈ L
2
loc and Zλ is a continuous adapted process, than Zλλ ∈ L

2
loc , so

that Zλ is a continuous local martingale. Moreover, being positive, it is also

a super-martingale, i.e.

E[Zλ
t ] ≤ [Zλ

0 ] = 1 , t ∈ [0, T ] .

There are some situations in which Zλ becomes a strict martingale.

Lemma B.0.5. If there exists a constant C such that

∫ T

0

|λt|2dt ≤ C a.s. ,

then the exponential martingale associated to λ, Zλ, is a strict martingale

such that

E

[
sup

0≤t≤T

(Zλ
t )

p

]
< ∞ , p ≥ 1 .

In particular Zλ ∈ L
p(Ω, P ) for every p ≥ 1 .

Theorem B.0.6 (Novikov condition). If λ ∈ L
2
loc(Ω× [0, T ]) is such that

E

[
exp

(
1

2

∫ T

0

|λs|2ds
)]

< ∞ , (B.1)

then the the exponential martingale associated to λ, Zλ, is a strict martingale.

Let us endow the space (Ω,F , P ) with the Brownian filtration

FW = (FW
t )t∈[0,T ] .

Theorem B.0.7 (Martingal representation). Let M = (Mt)t∈[0,T ] be

a FW -local martingale, then there exists a unique (just up to (m ⊗ P )-

equivalence) process u ∈ L
2
loc(FW ) such that

Mt = M0 +

∫ t

0

us · dWs , t ∈ [0, T ] .

The following basic theorem is used in the main topic of this chapter.
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Theorem B.0.8 (Bayes’ Formula). Let P,Q be probability measures on (Ω,F),

with Q ≪F P , X ∈ L1(Ω, Q) , and G a sub-σ-algebra of F . Let L be the

Radon-Nikodym derivative of Q with respect to P , i.e.

Q(F ) =

∫

F

LdP , F ∈ F ,

denoted by L = dQ

dP
= dQ

dP
|F . Then we have

EQ[X | G] = EP [XL | G]
EP [L | G] .

Proof. First denote B := EP [L|G] and prove that Q(B > 0) = 1 :

{B = 0} ∈ G ⇒ Q({B = 0}) =
∫

{B=0}
LdP =

∫

{B=0}
BdP = 0 .

Then denote A := EQ[X|G] and prove that AB = EP [XL|G] : for all G ∈ G
∫

G

AB dP =

∫

G

EP [AL|G] dP =

∫

G

AB dP =

∫

G

AdQ =

=

∫

G

EQ[X|G] dQ =

∫

G

X dQ =

∫

G

XLdP .

Thus, if Q is a probability measure on (Ω,F) defined by

Zλ
T =

dQ

dP
, (B.2)

then, for every X ∈ L1(Ω, Q) we have

EQ[X | Ft] =
EP [XZλ

T | Ft]

EP [Zλ
T | Ft]

, t ∈ [0, T ] .

Consequently we have the following lemma.

Lemma B.0.9. Let Zλ be a P -martingale and Q the probability measure on (Ω,F)

defined by (B.2). Then a process (Mt)t∈[0,T ] is a Q-martingale if and only if

(MtZ
λ
t )t∈[0,T ] is a P -martingale.
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Theorem B.0.10 (Girsanov’s Theorem). Let Zλ be a P -martingale and

Q the probability measure on (Ω,F) defined by (B.2). Then the process W λ

defined by

W λ
t = Wt +

∫ t

0

λs · ds , t ∈ [0, T ] ,

is a Brownian motion on (Ω,F , Q, (Ft)) .

In financial applications, the processes playing the role of λ are often

bounded, so that the martingale property of Zλ follows from Lemma B.0.5.

Theorem B.0.11 (Change of drift). Let Q be a probability measure on (Ω,F)

equivalent to P , i.e. Q ∼ P . Then, the Radon-Nikodym derivative of Q with

respect to P is an exponential martingale:

dQ

dP
|FW

t
= Zλ

t , dZλ
t = −Zλ

t λt · dWt ,

with associated process λ ∈ L
2
loc(Ω× [0, T ]) , and the process W λ defined by

dWt = dW λ
t − λtdt (B.3)

is a Brownian motion on (Ω,F , Q, (Ft)) .

Proof. By denoting Zt :=
dQ

dP
|FW

t
, we have

Zt = EP

[
dQ

dP
| FW

t

]
, t ∈ [0, T ] .

Indeed, for all A ∈ FW
t ,

∫

A

ZtdP =

∫

A

dQ =

∫

A

dQ

dP
dP .

Thus Z is a positive P -martingale, in fact Zt ≥ 0 ∀t ∈ [0, T ] and, ∀s < t ,

EP
[
Zt | FW

s

]
= EP

[
EP

[
dQ

dP
| FW

t

]
| FW

s

]
= EP

[
dQ

dP
| FW

s

]
= Zs .

Then, by the martingale representation theorem B.0.7, there exists a unique

(P -a.s.) d-dimensional process u ∈ L
2
loc(FW ) such that

dZt = ut · dWt , or equivalently dZt = −Ztλt · dWt ,
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having defined λ as the process

λt =
ut

Zt

, t ∈ [0, T ] .

Since u ∈ L
2
loc and Z is a continuous adapted process, than λ ∈ L

2
loc .

Hence Z is the exponential martingale associated with λ.

Finally, the Girsanov theorem states thatW λ in (B.3) is a B.m. on (Ω,F , Q, (Ft)) .

Remark 12. Let X be an N -dimensional Itô process of the form

dXt = µtdt+ σtdWt ,

µ having values in R
N and σ having values in R

N×d .

Given Q ∼ P , then the Q-dynamics of X is

dXt = (µt − σtλt)dt+ σtdW
λ
t .



Appendix C

Change of Measure with

Correlation in Arbitrage

Theory

In a continuous-time market model, where considering a probability space

(Ω,F , P ), the sources of risk are usually represented by a d-dimensional

correlated Brownian motion W = (W 1, . . . ,W d) on (Ω,F , P ), endowed with

the Brownian filtration (FW
t )t∈[0,T ]. We consider the correlation constant in

time, thus define

Wt = A · W̄t ,

where W̄ is a standard d-dimensional Brownian motion and A = (Aij)i,j=1,...,d

is a non-singular d× d constant matrix.

We denote ρ := AA∗ and assume that, for i = 1, . . . , d ,

ρii =

d∑

j=1

(Aij)2 = 1 a.s.

Remark 13. For i = 1, . . . , d , W i is a standard 1-dimensional Brownian

motion.

Proof. All the properties of a real standard B.m. are verified:

130



131

1.

W i
0 =

d∑

j=1

AijW̄
j
0 = 0 ;

2. W is a continuous adapted process on (Ω,F , P ) ;

3.

W i
t+h −W

j
t =

d∑

j=1

Aij
(
W̄

j
t+h − W̄

j
t

)
∼ N

(
0, h

d∑

j=1

(Aij)2

)
= N (0, h)

and
(
W i

t+h −W
j
t

)
does not depend on Ft.

The co-variation process of W has components given by

d < W i,W j >t= ρijdt , i, j = 1, . . . , d .

Notice that for all t it coincides with the covariance matrix of W . Indeed:

W̄t ∼ N (0, t Idd) ⇒ Wt ∼ N (0, t AA′)

⇒ Cov(W i
t ,W

j
t ) = ρij t =< W i,W j >t .

Remark 14. ρ is the correlation matrix of W (t) for each fixed time t.

Indeed,

Corr(W i
t ,W

j
t ) =

Cov(W i
t ,W

j
t )

Std(W i
t )Std(W

j
t )

=
ρij t√
t
√
t
= ρij ,

where we denote by Std(W i
t ) the standard deviation of W i

t , i.e.

Std(W i
t ) :=

√
Cov(W i

t ,W
i
t ) .

When modeling a financial market, we assume the following hypothesis.
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• There are N risky assets whose price process is S = (S1, . . . , SN) and

one locally no-risky asset B, that satisfy respectively the following dy-

namics:

dSi
t = µi

tS
i
tdt+ σi

tS
i
tdW

i
t , µi = bi +

(σi)2

2
, i = 1, . . . , N (C.1)

and

dBt = rtBtdt , B0 = 1 , (C.2)

where b, r ∈ L
1
loc(Ω× [0, T ]) , σi positive ∈ L

2
loc(Ω× [0, T ]) ∀i .

The dynamics in (C.1) derives from supposing

Si
t = eX

i
t , dX i

t = bitdt+ σi
tdW

i
t , i = 1, . . . , N .

In fact, by Itô’s formula,

dSi
t = ∂xS

i
tdX

i
t+

1

2
∂xxS

i
td < X i, X i >t= Si

t(b
i
tdt+σi

tdW
i
t )+

1

2
Si
t(σ

i)2dt .

The integrated form of the solution of the SDE (C.1) is:

Si
t = Si

0 exp

(∫ t

0

σi
sdW

i
s +

∫ t

0

(
µi
s −

(σi)2

2

)
ds

)
,

obtained by searching the two processes A,B such that

Si
t = Si

0 exp
(∫ t

0
AsdW

i
s +

∫ t

0
Bsds

)
, then by applying the Itô’s formula

and equating it to (C.1).

Notice that B, although representing a locally no-risky asset, is a

stochastic process, because r is a FW -progressively measurable pro-

cess. Anyway it has a smaller degree of randomness with respect to the

other assets, because it has bounded variation and consequently null

co-variation process. Indeed:

r ∈ L
1
loc ⇒ r(w) ∈ L1

[0,t] a.s. for w ∈ Ω

⇒
∫ t

0
rsds ∈ BV ⇒ exp

(∫ t

0
rsds

)
∈ BV .

• r and σ satisfy Lemma B.0.5.
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• W is a d-dimensional Brownian motion with constant correlation ma-

trix ρ and d ≥ N .

Theorem C.0.12 (Change of drift with correlation). Let Q be a prob-

ability measure on (Ω,F) equivalent to P , i.e. Q ∼ P . Then, the Radon-

Nikodym derivative of Q with respect to P is an exponential martingale:

dQ

dP
|FW

t
= Zλ

t , dZλ
t = −Zλ

t λt · dWt ,

with associated process λ ∈ L
2
loc(Ω× [0, T ]) , and the s.p. W λ defined by

dWt = dW λ
t − ρλtdt (C.3)

is a Brownian motion on (Ω,F , Q, (FW
t )) with correlation matrix ρ.

Proof. Let Zt = dQ

dP
|FW

t
, by the martingale representation theorem for the

standard B.m., there exists a unique (P -a.s.) d-dimensional process

λ ∈ L
2
loc(FW ) such that

dZt = −Ztλt · dW t = −Ztλt · (A−1dWt) = −Ztλt · dWt ,

where λt := (A−1)′λt . Notice that, by Itô’s formula,

Zt = exp

(
−
∫ t

0

λs · dW s −
1

2

∫ t

0

|λs|2ds
)

= exp

(
−
∫ t

0

< A∗λs, A
−1dWs > −1

2

∫ t

0

< A∗λs, A
∗λs > ds

)

= exp

(
−
∫ t

0

λs · dWs −
1

2

∫ t

0

< ρλs, λs > ds

)
.

Then, by the Girsanov theorem, we have a standard Q-B.m. W
λ
,

dW
λ

t = dW t + λtdt , t ∈ [0, T ] . Multiplying by A this equation,

dW λ
t := AdW

λ

t = dWt + ρλtdt

is a correlated Q-B.m. with correlation matrix ρ.
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Remark 15. Analogously to the standard case, let X be an N -dimensional

Itô process of the form

dXt = µtdt+ σtdWt ,

µ having values in R
N and σ having values in R

N×d .

Given Q ∼ P , then the Q-dynamics of X is

dXt = (µt − σtρλt)dt+ σtdW
λ
t .



Appendix D

Change of numeraire

Now we characterize the arbitrage-free financial markets by introducing

the previously mentioned equivalent martingale measure.

Definition D.1. An equivalent martingale measure (EMM ) Q with nu-

meraire B is a probability measure on (Ω,F) such that:

i) Q is equivalent to P ;

ii) the process of the discounted prices S̃ = (S̃t)t∈[0,T ] defined by

S̃t =
St

Bt

= e−
∫ t
0 rsdsSt , t ∈ [0, T ] ,

is a strict Q-martingale. In particular, the risk-neutral pricing formula

St = EQ
[
e−

∫ T

t
rsdsST | FW

t

]
, t ∈ [0, T ] ,

holds.

We consider a market model (S,B) of the form (C.1)-(C.2) and assume

that the class Q of the EMMs is not empty.

Definition D.2. Let Q ∈ Q be an EMM with numeraire B. A s.p. U is

called a Q-price process if:

i) U is strictly positive;

135
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ii) the process of its discounted price Ũ , Ũt =
Ut

Bt
, t ∈ [0, T ] , is a strict

Q-martingale.

Practically, a Q-price process has all the features of a true price. The

martingale property leads to the risk-neutral pricing formula under Q:

Ut = EQ
[
D(t, T )UT | FW

t

]
, t ∈ [0, T ] ,

where D(t, T ) = Bt

BT
= e−

∫ T

t
rsds is the standard discount factor.

Notice that any risky asset Si is a Q-price process.

The so called numeraire is a s.p. that represents a basic standard by

which the prices of all other assets are measured.

Definition D.3. Let U be a Q-price process, a probability measure QU on

(Ω,F) is called an EMM with numeraire U if:

i) QU is equivalent to P ;

ii) the processes of U -discounted prices St

Ut
, Bt

Ut
are strict QU -martingales.

In particular, the risk-neutral pricing formulae

St = EQU [
DU(t, T )ST | FW

t

]
, (D.1)

Bt = EQU [
DU(t, T )BT | FW

t

]
, t ∈ [0, T ] (D.2)

hold, where DU(t, T ) = Ut

UT
is the U -discount factor.

Theorem D.0.13. Let Q ∈ Q be an EMM with numeraire B and let U be a

Q-price process. Consider the probability measure QU on (Ω,F) defined by

dQU

dQ
=

D(0, T )

DU(0, T )
=

UTB0

BTU0

.

Then, for any X ∈ L1(Ω, Q), we have

EQ
[
D(t, T )X | FW

t

]
= EQU [

DU(t, T )X | FW
t

]
, t ∈ [0, T ] . (D.3)

In particular QU is an EMM with numeraire U and the risk-neutral price of

a European derivative X is equal to

EQU [
DU(t, T )X | FW

t

]
, t ∈ [0, T ] .
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Proof. Denote

Zt :=
D(0, t)

DU(0, t)
=

UtB0

BtU0
, t ∈ [0, T ] .

Since U is a Q- price process,

Zt =
B0

U0
EQ

[
UT

BT

| FW
t

]
= EQ

[
D(0, T )

DU(0, T )
| FW

t

]
= EQ

[
ZT | FW

t

]
,

hence Z is a strictly positive Q-martingale. Then, by the Bayes’ formula,

EQU [
X | FW

t

]
=

EQ[XZT | FW
t ]

EQ[ZT | FW
t ]

= EQ
[
X ZT

Zt
| FW

t

]

= EQ
[
X

D(0,T )
DU (0,T )

| FW
t

]
,

(D.4)

because
ZT

Zt

=
UTB0

BTU0

BtU0

UtB0
=

UTB0

BTU0
=

D(0, T )

DU(0, T )
.

Now, taking (DU(t, T )X) in place of simply X in (D.4), we obtain

EQ
[
D(t, T )X | FW

t

]
= EQ

[
D(t, T )

DU(t, T )
(DU(t, T )X) | FW

t

]

= EQU [
DU(t, T )X | FW

t

]
.

Moreover QU ∼ Q, indeed ∃dQU

dQ
, dQ

dQU > 0 , dQU

dQ
, dQ

dQU ∈ L
1, therefore QU ∼ P .

Finally, (D.3) prove (D.1) and (D.2).

Corollary D.0.14. Let U, V be Q-price processes with corresponding EMMs

QU , QV , respectively. Then, we have

dQV

dQU
|FW

t =
VtU0

UtV0

. (D.5)

Proof.

dQV

dQU
|FW

t = EQU

[
dQV

dQ

dQ

dQU
| FW

t

]
= EQU

[
VTU0

UTV0

| FW
t

]

=
U0

V0
EQU

[
VT

UT

| FW
t

]
=

U0

V0

Vt

Ut

.

The last equality follows from Theorem D.0.13, since V is a Q-price process.
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Forward measure

Let p(t, T ) be the price at time t, under a fixed EMM Q with numeraire

B, of the zero coupon bond with maturity T :

p(t, T ) = EQ
[
e−

∫ T

t
rsds | FW

t

]
, t ≤ T . (D.6)

Clearly p(t, T ) is a Q-price, because it is just defined through the risk neu-

tral pricing formula under the selected EMM Q. Thus there exist an EMM

associated with it, that is QT , called T -forward measure.

By Theorem D.0.13, the risk neutral price H of a European derivative X , at

time t, is equal to

Ht = EQT

[
p(t, T )

p(T, T )
X | FW

t

]
= p(t, T )EQT [

X | FW
t

]
. (D.7)

This pricing formula in terms of a QT -expectation does not involve the

stochastic discount factor e−
∫ T

t
rsds , as instead the Q-expectation does. On

the other hand, it needs to know the distribution ofX underQT , which can be

deduced by a change of drift (Theorem B.3) in terms of the Radon-Nikodym

derivative dQT

dQ
= B0

p(0,T )BT
(from (D.0.14)).

Now we move towards the cardinal theorem of the change of measure

induced by numeraires that are Itô processes.

Lemma D.0.15. Let U, V be two positive Itô processes of the form

dUt = (· · · )dt+ σU
t · dWt ,

dVt = (· · · )dt+ σV
t · dWt ,

where W is a correlated d-dimensional Brownian motion and

σU , σV ∈ L
2
loc(Ω× [0, T ];Rd) are the diffusion coefficients.

Then, Vt

Ut
is an Itô process of the form

d
Vt

Ut

= (· · · )dt+ Vt

Ut

(
σV
t

Vt

− σU
t

Ut

)
· dWt . (D.8)
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Proof. Apply the Itô formula to the function F of the 2-dimensional Itô

process (U, V ), F (U, V ) = V
U
:

d
Vt

Ut

= − Vt

(Ut)2
dUt +

dVt

Ut

+
Vt

(Ut)3
d < U, U >t −

1

(Ut)2
d < U, V >t

= (· · · )dt− Vt

(Ut)2
σU
t · dWt +

1

Ut

σV
t · dWt .

Theorem D.0.16 (Change of numeraire). Let U, V be two Q-price pro-

cesses of the form

dUt = (· · · )dt+ σU
t · dWt ,

dVt = (· · · )dt+ σV
t · dWt ,

where W is a correlated d-dimensional Brownian motion with correlation

matrix ρ and σU , σV ∈ L
2
loc(Ω× [0, T ];Rd) . Let QU , QV be the EMMs related

to U, V respectively and WU ,W V be the corresponding Brownian motions.

Then:

dWU
t = dW V

t + ρ

(
σV
t

Vt

− σU
t

Ut

)
· dt . (D.9)

Proof. Apply the formula (D.5) from Corollary D.0.14:

dQV

dQU
|FW

t =
VtU0

UtV0
=: Zt .

From Lemma D.0.15 the dynamics of Z under Q is

dZt =
U0

V0

[
(· · · )dt+ Vt

Ut

(
σV
t

Vt

− σU
t

Ut

)
· dWt

]

= (· · · )dt+ Zt

(
σV
t

Vt

− σU
t

Ut

)
· dWt ,

but we know from the theorem of Change of drift with correlation that Z is

an exponential martingale under QU , with dynamics given by

dZt = −Ztλt · dWU
t .

As we see in the formula (C.3), the diffusion coefficient is never involved in

the change of measure, so that the percentage diffusion process under QU
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equals the one under Q, i.e.

λt = −σV
t

Vt

+
σU
t

Ut

.

Therefore, by applying (C.3), we have

dWU
t = dW V

t − ρλtdt = dW V
t + ρ

(
σV
t

Vt

− σU
t

Ut

)
dt .
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