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Acronyms

SNR Signal-to-Noise Ratio

UDN Ultra-Dense Network

MIMO Multiple-Input Multiple-Output

RF Radio Frequency

LNA Low Noise Amplifier

ADC Analog-to-Digital Converter

SRE Smart Radio Environment

RIS Reconfigurable Intelligent Surface

FPGA Field-Programmable Gate Array

PIN Positive-Intrinsic-Negative

FET Field-Effect Transistor

MEMS Micro-Electromechanical System

CSI Channel State Information

SISO Single-Input Single-Output

MSE Mean Square Error

EM Electromagnetic field

LOS Line-Of-Sight

ML Maximum Likelihood

CDF Cumulative Density Function
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Sommario

Il progetto di tesi svolto riguarda lo studio di alcuni schemi di stima del
canale di propagazione in presenza di superfici intelligenti riconfigurabili (co-
munemente chiamate RIS, reconfigurable intelligent surfaces).
In particolare, nel Capitolo 1, viene prima di tutto descritto lo scenario in cui
avere a disposizione una RIS che guidi opportunamente il segnale trasmesso
può essere vantaggioso (se non necessario nei futuri sistemi cellulari), per
poi analizzare, nel Capitolo 2, in maniera più dettagliata cosa sia una RIS,
come può essere modellata, e come cambia il protocollo di comunicazione in
presenza di tali superfici, evidenziando l’importanza e la difficoltà di trovare
delle tecniche di stima del canale in scenari di questo genere.
Nel Capitolo 3 viene presentato lo stato dell’arte relativo ai principali ap-
procci di stima del canale studiati in letteratura, facendo anche una suddivi-
sione delle varie casistiche. Sempre nello stesso capitolo, viene analizzato nel
dettaglio uno dei principali approcci ottimi validi nel caso di sistemi singola
antenna (single-input single-output - SISO), in cui la comunicazione viene
assistita da una singola RIS, ed un secondo approccio valido nel caso di sis-
temi multi-antenna (multiple-input multiple-output -MIMO).
Essendo evidente come il principale problema riguardante la maggior parte
degli approcci studiati in letteratura (sia ottimi che sub-ottimi) sia il numero
elevato di toni pilota necessari nella fase di training per stimare il canale,
nel Capitolo 4 viene proposto un nuovo algoritmo, valido nel caso SISO, in
grado di superare questo grosso limite. In particolare, viene analizzato come
si presenta il profilo di fase del canale sia in condizioni di campo lontano
che campo vicino, e viene poi illustrato nel dettaglio come tali informazioni
possono essere sfruttare per stimare il canale tramite un approccio maximum
likelihood. Le simulazioni che seguono, fanno vedere come un simile approc-
cio sia in grado di ottenere delle valide stime delle informazioni di canale
sfruttando solamente il 10/15% dei toni pilota necessari nell’approccio ot-
timo descritto nel Capitolo 3. Sempre nello stesso capitolo, viene evidenziato
come il problema di stima del canale sia equivalente al problema di stima
della posizione del ricevitore. In particolare, note le posizioni del trasmetti-

5



tore e della RIS adottata, viene illustrato un metodo (strettamente collegato
all’approccio di stima del canale) di stima della posizione del ricevitore.
Infine, nel Capitolo 5, vengono presentate le conclusioni e possibili sviluppi
futuri correlati all’algoritmo proposto nel capitolo precedente.
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Summary

The thesis activity developed is about the study of some propagation chan-
nel estimation schemes in the presence of reconfigurable intelligent surfaces
(commonly called RISs).
In particular, in Chapter 1, it is described the scenario in which having a RIS
available to guide appropriately the transmitted signal can be advantageous
(if not necessary in future cellular systems), whereas, in Chapter 2, how a
RIS works is analyzed in more detail by describing the typical models and
how the communication protocol changes in the presence of such surfaces,
highlighting the importance and difficulty of finding channel estimation tech-
niques in RIS-assisted wireless network.
Chapter 3 presents the state of the art relating to the main channel esti-
mation approaches studied in the literature, also making a classification of
the various case studies. In the same chapter, one of the main optimal ap-
proaches valid in the singe-input single-output (SISO) case, in which the
communication is assisted by a single RIS, is analyzed in detail and then a
second valid approach for the multiple-input multiple-output (MIMO) sce-
nario is presented.
Being evident that the main problem concerning most of the approaches
studied in the literature (both optimal and sub-optimal) is about the high
number of pilot tones required in the training phase to estimate the channel,
in Chapter 4 a novel algorithm is proposed, valid in the SISO case, able to
overcome this big limit. In particular, it is analyzed the phase profile of the
channel both in far-field and near-field channel conditions, and then it is illus-
trated in detail how this information can be exploited to estimate the channel
through a maximum likelihood approach. The simulations that follow show
how this approach is able to obtain valid estimates of the channel information
by exploiting only the 10/15% of the pilot tones needed in the optimal ap-
proach described in Chapter 3. In the same chapter, it is highlighted how the
channel estimation problem is equivalent to the receiver position estimation
problem. In particular, once the positions of the transmitter and the RIS
adopted are known, a method (strictly connected to the channel estimation
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approach) for estimating the position of the receiver is illustrated. Finally, in
Chapter 5, the conclusions and possible future developments related to the
algorithm proposed in the previous chapter are discussed.
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Chapter 1

Smart Radio Environments

1.1 Digital communication in noisy channels

The goal of a wireless communication system is to create a network where all
the nodes belonging to the network itself can exchange the greatest amount
of information with the highest reliability. The challenge of preserving a
high reliability arises from the fact that any propagation channel is noisy:
the noise represents a source of disturbance for communications, leading to
a trade off between the quantity of information sent per unit of time and the
reliability of the information itself.
In a digital communication system, the information is described in the form
of discrete symbols: we talk about symbol rate, that is the number of infor-
mation (symbols) per unit of time. The symbol rate depends on the bit rate
and on the specific modulation technique adopted.
Given a communication system, a well-known figure of merit for the relia-
bility of information is represented by the error probability, that it is seen
as the probability to receive a different symbol (or message) with respect to
the transmitted one; it is a decreasing function of the signal-to-noise ratio
(SNR) defined as follow:

SNR =
S

N
=

Eb · Br

N0 · B

where Br represents the bit rate, B the bandwidth of the modulated signal
and N0 · B the noise power (being N0 the one-sided noise spectral density).
In the hypothesis of fixed transmission power S, it can be noted that an
increasing of the bit rate leads to a lower energy per bit with a consequent
decreasing of SNR (because of B is proportional to Br) and a decreasing of
performance.
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Given a propagation channel, it is known from the Shannon-Hartley theorem
the expression of channel capacity C:

C = B(1 + log2 SNR)

As it can be seen, the capacity is a function of the SNR and of the bandwidth
B. Always from Shannon theorem, the channel capacity represents also the
maximum bit rate that permits to obtain any desired low level of error prob-
ability. We can note that the increasing of B is more advantageous rather
than an increasing of SNR, because of the logarithm.
Applications that require an ever increasing number of highly reliable infor-
mation per unit of time pushed to the use of higher and higher frequencies,
exploiting and discovering new portions of the power spectrum, according to
the use of higher carrier frequency with a wider bandwidth B.

1.2 Towards 6G: TeraHertz communications

Looking at the evolution of cellular systems through different generations,
the common denominator is:

• Higher bit rate;

• Lower latency;

• Possibility of managing more and more users.

In particular, in 5G system, the bit rate is set equal to 20 Gb/sec, the
maximum latency is 10 ms and there is the possibility of managing a massive
number of IoT nodes. The targeted 1000-fold network capacity increase
and ubiquitous wireless connectivity for at least 100 billion devices by the
forthcoming fifth-generation wireless network could be achieved thanks to
the various key enabling technologies such as:

• Ultra-dense network (UDN);

• Massive multiple-input multiple-output (MIMO);

• Millimeter wave (mmWave) communication.

However, according to [1], the required high complexity and hardware cost as
well as the increased energy consumption are still crucial issues that remain
unsolved. For instance, densely deploying base stations or access points in
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a UDN not only entails an increased hardware deployment and maintenance
cost, but also aggravates the network interference issue. In addition, extend-
ing massive MIMO from sub-6 GHz to mmWave frequency bands generally
requires more complex signal processing as well as more costly and energy
consuming hardware (e.g., radio frequency (RF) chains). Therefore, current
research has focused on finding effective solutions for energy and spectral
efficient beyond 5G wireless cellular network.
We can summarize the goals and characteristics of the 5G system by com-
paring the futures beyond-5G and 6G systems in the following table:

Figure 1.1: Requirements of 5G vs Beyond-5G vs 6G [2].

To satisfy 6G requirements shown in figure 1.1, a leap in the frequency
band is necessary and THz communications seem a promising solution.
Despite the fact that by definition the THz band extends from 300 GHz
to 10 THz, researchers have found it convenient to categorize beyond 100
GHz applications as THz communications (today referred to also as a sub-
THz band), below such a threshold the millimeter-wave bands of 5G are de-
fined. Unlike mmWave communications, THz communications can achieve a
terabit/second data rate without any spectral efficiency enhancement tech-
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nique such as MIMO. Furthermore, according to [3], due to their shorter
wavelengths, THz communication systems present the following advantages:

• They can support higher link directionality;

• They are less susceptible to free-space diffraction;

• They are less susceptible to inter-antenna interference;

• They can be realized in much smaller footprints;

• They possess higher resilience to eavesdropping.

On the other hand, it is important to focus on the problems that arise when
higher frequencies are adopted. Hereafter, we can recall the most important
ones [3]:

• Higher propagation path loss;

• Higher obstruction from obstacles;

• Larger insertion losses in the RF frontend;

• More low noise amplifier (LNA);

• More analog-to-digital converter (ADC) noise;

• Lower power amplifier efficiency compared to lower frequencies.

In conclusion, high frequencies offer the benefit of large channel bandwidths
and, thus, high throughput, low latency and high capacity: in particular,
THz band communications are expected to play a pivotal role in the upcom-
ing 6G of wireless mobile communications, enabling ultra-high bandwidth
and ultra-low latency communication paradigms. On the other hand, many
challenges need to be addressed before the widespread use of THz commu-
nications. For instance, high propagation losses and power limitations result
in very short communication distances, and frequency-dependent molecular
absorptions result in band-splitting and bandwidth reduction. The improve-
ments that can be expected by operating only on the end-points of the wire-
less environment may not be sufficient to fulfill the challenging requirements
of future wireless network.
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1.3 Definition of a smart radio environment

Due to the very high frequencies exploited in future wireless networks, path
loss attenuation becomes the main problem to manage in order to guarantee
an adequate SNR to the receiver. A typical mobile network base station
transmits radio waves in the order of magnitude of Watts while a user equip-
ment receives signals of the order of magnitude of microWatts when operating
at high frequencies [4]. Hence, researchers are putting efforts in understand-
ing how to not waste such a huge amount of power in the environment, for
example, by recovering it using new materials and techniques. A possibility
is to re-think the wireless environment as an active entity able to reshape
and guide the propagation, and not as a passive reflector. In this direction,
reflecting materials, for example metamaterials, can be used to coat walls in
order to focus the multipath towards the desired destinations and, hence, to
avoid a dispersion of useful contributions.

Figure 1.2: Three users communicating with intelligent surfaces, in an out-
door and an indoor scenario, respectively [5].

As depicted in figure 1.2, the key idea is to imagine a technology that
permits to program in real-time the reflection angle of the walls, obtaining
an “intelligent” environment that can always favor the propagation, what-
ever are the positions of the transmitter and the receiver.
In this way, according to [4], the propagation channel itself becomes an op-
timization variable of the system in addition to the transmitter and the
receiver. This approach is referred to as a Smart Radio Environment (SRE)
or Wireless 2.0 in order to emphasize the conceptual and fundamental differ-
ence with the design and optimization criteria adopted in current and past
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generations of wireless network, as shown in figure 1.3.

Figure 1.3: Radio environments vs smart radio environments [4].

In contrast to current wireless networks where the environment is out of
control of the telecommunication operators, a smart radio environment is a
wireless network where the environment is turned into a smart reconfigurable
space that plays an active role in transferring and processing information.
Wireless networks, in particular, are rapidly evolving towards a software-
based and reconfigurable platform, where every part of the network will be
capable of adapting itself to the changes of the environment. Broadly speak-
ing, according to [6], current wireless networks operate according to three
main postulates:

1) The environment is usually perceived as an “unintentional adversary”
to communication and information processing;

2) Only the end-points of the communication network are usually opti-
mized;

3) Wireless network operators have usually no control of the environment.

Apart from being uncontrollable, the environment has usually a negative
effect on the communication efficiency and the quality of service: the signal
attenuation limits the radio connectivity, multipath propagation results in
fading phenomena, and reflections and refractions from large objects are the
main sources of uncontrollable interference. In smart radio environments,
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on the other hand, as depicted in figure 1.4, the wireless environment itself
is turned into a software-reconfigurable entity, whose operation is optimized
to enable uninterrupted connectivity, high quality of service, and where the
information is transmitted without necessarily generating new signals but
recycling the existing ones whenever possible.

Figure 1.4: A vision of communications in a smart radio environment [3].

Conceptually, the difference between current wireless networks and smart
radio environments is shown in figure 1.5.

Figure 1.5: New communication-theoretic model for smart radio environ-
ments [6].

Recalling the previous figure, according to Shannon the system model is
given and it is formulated in terms of transition probabilities (i.e., Pr(y /
x), where x is the message send, y the received and Pr(y / x) represents the
probability to obtain y given x). According to Wiener, the system model
is still given, but its output is fed back to the input, which is optimized by
taking the output into account (for example, the channel state is sent from
a receiver back to a transmitter for channel-aware beamforming). In smart
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radio environments, by contrast, the environment can be customized in order
to obtain the desired system model.
The key enabler technology to realize the vision of SREs, by making the
wireless environment programmable and controllable, is the so-called RIS
(Reconfigurable Intelligent Surface).
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Chapter 2

RIS: Reconfigurable Intelligent
Surface

2.1 Description of a RIS

A RIS (or IRS) can be seen as a matrix of N smart reflective/radiating
elements, that can be programmed by adjusting their phases through phase-
shifters and, eventually, adjusting their amplitudes (by considering the at-
tenuation of the impinging signal).

Figure 2.1: RIS as a surface with a discrete number of reflecting elements
[7].

The RIS can be made with inexpensive adaptive (smart) thin composite
material sheet, which, similar to a wallpaper, covers parts of walls, buildings,
obstacles, etc., capable of modifying the radio waves impinging upon it in
ways that can be programmed and controlled by using external stimuli. In
this way, it can be possible to control the phase and the amplitude of the

19



signals impinging at each radiating element, so that the propagation can be
guide in the desired manner. A prominent property of RISs is, therefore,
the capability of being (re-)configurable after their deployment in a wireless
environment.
Based on this general definition, the operation of a RIS can, in general, be
split into two phases that are executed periodically based on the coherence
time of the environment [4].

• Control and programming phase : the necessary environmental
information for configuring the operation of the RIS is estimated, and
it is configured for subsequent operation.

• Communication phase : the RIS is configured already and assists
the transmission of other devices throughout the network.

There are different ways to conceive a RIS, but the main possible implemen-
tations are using reflectarray and metasurface [8].

1) Reflectarray-based RIS The simplest way to implement a reconfig-
urable intelligent surface is to use a passive planar reflectarray (figure 2.2)
whose antenna termination can be electronically controlled to shift the phase
of the incident signal and properly backscatter it.

Figure 2.2: A 48-element reflectarray. Each element is a traditional antenna
connected to a phase shifter [8].

When working at high frequencies, a large number of antennas is needed
to obtain a surface of a few square meters. For example, considering a center
band frequency equal to 28 GHz (the same of the 5G system), about ten
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thousand antennas are needed to cover a surface of one square meters.

2) Metasurface-based RIS A more sophisticated implementation of a
RIS can be made using metasurfaces [8]. A metasurface is the two-dimensional
planar form of metamaterials, which are man-made synthetic materials with
electromagnetic properties not found in naturally occurring materials. A
metasurface is comprised of a large number of closely spaced deeply sub-
wavelength resonating structures called pixels or meta-atoms.

Figure 2.3: Metasurface scattering particles. a) Unit cell front view dog-
bone shaped metallic particle. b) Unit cell perspective view with dielectric
substrates made transparent for visualization. c) Supercell composed of 6
unit cells, front view. d) Supercell perspective view [9].

Both individual meta-atom (namely unit cell, depicted in figure 2.3) and
the space between adjacent meta-atoms are much smaller than the wave-
length. The meta-atom size and the thickness of the tile are important design
factors that define the maximum frequency for electromagnetic (EM) wave
interaction. According to [10], as a rule of thumb, meta-atoms are bounded
within a square region of [ λ

10
, λ

5
]. The minimal metasurface thickness is also

in the region of [ λ
10
, λ

5
].

Furthermore, in order to make a metasurface reconfigurable, it is necessary to
obtain dynamic meta-atoms able to change their electromagnetic properties
through time (figure 2.4).
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Figure 2.4: Dynamic metasurface: a very promising, cost-effective, and
highly scalable approach is to control the metasurface switches as a diode
array [9].

The very small size of these closely-packed atoms and their large number
offer a vast number of degrees of freedom in manipulating the incident electro-
magnetic waves. However, the majority of empirical works in the literature
employ reflectarray-based RIS. Even with the simpler reflectarray-based im-
plementation, impressive results have been reported.

One crucial assumption for the linear channel model of RIS is the igno-
rance of any reflected signal coupling among neighbouring RIS elements. In
practice, increasing the number of reflecting elements given the same RIS size
is generally helpful in achieving more fine-grained passive beamforming and
thus enhanced performance. This, however, will reduce the element spacing
and may render the mutual coupling more severe and thus no more negligi-
ble, as nearby reflecting elements will interact with each other through their
circuit coupling and thus result in coupled reflection coefficients.

2.2 Phase-shift control techniques

According to [7], to reconfigure RIS elements for highly controllable reflec-
tion, there are three main approaches proposed in the literature, namely:

1) mechanical actuation (e.g., mechanical rotation and translation of the
RIS);

2) functional materials (e.g., liquid crystal and graphene);
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3) electronic devices (e.g., positive-intrinsic-negative (PIN) diodes, field-
effect transistors (FETs), or micro-electromechanical system (MEMS)
switches).

In particular, the third approach (as the one depicted in figure 2.5) has been
widely adopted in practical implementation both for reflectarray-based and
metasurface-based RIS, due its fast response time, low reflection loss as well
as relatively low energy consumption and hardware cost.
A typical architecture consists of three layers and a smart controller, as
depicted in figure 2.5.

Figure 2.5: A typical architecture of a RIS based on electronic control [8].

The first/outside layer is composed of a large number of tunable (recon-
figurable) metallic patches printed on a dielectric substrate to directly ma-
nipulate incident signals. In the second/intermediate layer, a copper plate is
usually employed to minimize the signal energy leakage during RIS’s reflec-
tion. It is followed by the third/inside layer that is a control circuit board
responsible for exciting the reflecting elements as well as tuning their reflec-
tion amplitudes and/or phase-shifts in real-time. Moreover, the reflection
adaptation is determined by a smart controller attached to each RIS, which
can be implemented via field-programmable gate array (FPGA).
One example of an individual element’s structure where a PIN diode is em-
bedded in each element in order to control it, it is shown in figure 2.6.
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Figure 2.6: An example of the tunable reflecting element based on PIN diode
[1].

By controlling its biasing voltage via a direct-current feeding line, the
PIN diode can be switched between “ON” and “OFF” states as shown in
the equivalent circuits reported in figure, thereby generating a phase-shift
difference of π in rad.
The diode approach can be applied both for a reflectarray-based or for a
metasurface-based RIS; in the latter, it can be applied also in a more complex
structure (figure 2.7) where a meta-atom is seen as a supercell made up of a
set of single units, as the one depicted in figure 2.3.

Figure 2.7: Reconfigurable metasurface with dynamic supercells [6].

The diode array approach results in a very simple control layer, which
comprises just the wiring to connect each element switch to the gateway.
Furthermore, the PIN diode switching frequency can be up to 5 MHz, which
corresponds to the switching time of 0.2 microsecond. This is much smaller
than the typical channel coherence time that is on the order of millisecond
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and thus well suited for mobile applications with time-varying channels.
While continuously tuning the reflection amplitude and phase shift of each of
the RIS’s elements is certainly advantageous for communication applications,
according to [7] it is costly to implement in practice because manufactur-
ing such high-precision elements requires sophisticated design and expensive
hardware, which may not be a scalable solution as the number of elements
becomes very large. For example, to enable 16 levels of phase shift, four PIN
diodes need to be integrated to each element. This not only makes the ele-
ment design very challenging due to the limited element size, but also requires
more controlling pins from the RIS controller to excite a large number of PIN
diodes. As such, for practical RISs that usually have massive elements, it
is more cost-effective to implement only discrete amplitude/phase-shift lev-
els requiring a small number of control bits for each element, for example,
1-bit for two-level (reflecting or absorbing) amplitude control, and/or two-
level (0 or π) phase-shift control. Furthermore, to reduce the hardware cost
and design complexity, only discrete phase-shift control or discrete amplitude
control may be implemented, thus leading to the following two special cases
of the above discrete models:

1) RIS with discrete phase-shift control only, where for each reflecting ele-
ment, only the phase-shift can be tuned while the reflection amplitude
is set to its maximum value of one;

2) RIS with discrete amplitude control only, where for each reflecting ele-
ment, only the reflection amplitude can be tuned while the phase-shift
is set to be a constant (say, zero without loss of generality).

Generally speaking, phase-shift control (or phase beamforming) is of higher
cost to implement as compared to amplitude control (or amplitude beam-
forming) for RIS, while the former can achieve better passive beamforming
performance than the latter given the same number of control bits/discrete
levels per reflecting element.
Although independent control of the reflection amplitude and phase shift si-
multaneously provides the maximum design flexibility, it imposes challenges
for unit-cell design.

2.3 Models for RIS

Regardless of the adopted technology, a practical reflection model for RIS
was proposed in [11] by modeling each antenna element as a resonant circuit
with certain inductance, capacitance, and resistance, as shown in figure 2.8.
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Figure 2.8: Equivalent transmission line model of a reflecting element [11].

Ideally, the reflection amplitude and phase-shift per element can be indepen-
dently and continuously tuned.
The reflection amplitude typically attains its minimum value at the zero
phase-shift, but monotonically increases and asymptotically approaches the
maximum value of one as the phase-shift tends to -π or π. This is due to
the fact that in each reflecting element, any phase-shift is achieved by tuning
its effective capacitance/resistance, which inevitably changes the reflection
amplitude.
To be specific, when the phase-shift approaches zero, the reflective currents
(also referred to as image currents) are in-phase with the element currents,
and thus the electric field as well as the current flow in the element are
both enhanced, which results in maximum energy dissipation and the lowest
reflection amplitude. In contrast, when the phase shift is around -π or π
the reflective currents are out-of-phase with the element currents, and thus
the electric field as well as the current flow in the element both diminish,
thus leading to minimum energy loss and the highest reflection amplitude as
shown in figure 2.9.

2.4 RIS in digital communication systems

In order to maximize the data rate and coverage, the controller has to opti-
mize the RIS coefficients through appropriate algorithms. For this purpose,
however, we must accurately know the status of the channel which also de-
pends on the RIS configuration. Therefore, a critical aspect for the effective
introduction of a RIS in a communication system is the channel estimation.
One of the main challenge in RIS-enabled communication systems is the esti-
mation of the channel state information (CSI), which depends on the channel
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Figure 2.9: Reflection amplitude vs phase-shift for the practical RIS reflecting
element [11].

between the transmitter and the RIS, the configuration of the RIS, and the
channel between the RIS and the receiver. According to [7], however, in the
existing literature there are two main approaches for RIS channel estima-
tion based on two different RIS configurations, depending on whether it is
mounted with sensing devices (receive RF chains) or not, termed as semi-
passive RIS and (fully) passive RIS. The difficulty arises especially in the
case of fully passive RISs that do not possess any active RF chains and thus
cannot transmit pilot/training signals to facilitate channel estimation, which
is in sharp contrast to the conventional wireless systems.

Semi-passive RIS To endow the RIS with sensing capability for chan-
nel estimation, additional sensing devices (such as low-power sensors) need
to be integrated into the RIS, e.g., interlaced with RIS reflecting elements,
as shown in figure 2.10, each equipped with a low-cost receive RF chain (e.g.,
low-resolution ADC) for processing the sensed signal. As such, the semi-
passive RIS generally operates in one of the following two modes alternately
over time:

1. Channel sensing mode (phase I of the protocol illustrated in figure
2.10): with all the reflecting elements turned OFF, the sensors are
activated to receive the pilot signals from the BS/users in the down-
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Figure 2.10: Semipassive RIS [7].

link/uplink for estimating their respective channels to RIS;

2. Reflection mode (phase II of the protocol illustrated in figure 2.10):
with the sensors deactivated, the RIS reflecting elements are turned
ON to reflect the data signals from the BS/users for enhancing the
downlink/uplink communication, respectively.

Fully passive RIS To make the RIS energetically autonomous, as the
one depicted in figure 2.11, it must be completely passive (without compli-
cating the hardware with antennas for energy harvesting); this implies that
it cannot be equipped with any active antenna capable of sending signals,
making direct acquisition of CSI challenging.

A fundamental assumption of all the beamforming techniques studied in
literature in order to guide properly the signal toward the receiver, is to have a
complete knowledge of the propagation channel. In practice, the acquisition
of accurate CSI of the RIS-reflected links is crucial, which, however, is a
difficult task especially in a fully passive RIS, where the absence of sensors
makes it more challenging. Moreover, to reduce the training overhead for
RIS with practically large number of reflecting elements as well as simplify
RIS reflection design for data transmission, an efficient approach is to group
adjacent RIS elements (over which the RIS channels are usually spatially
correlated) into a sub-surface, referred to as RIS element grouping; as a result,
only the effective cascaded transmitter-RIS-receiver channel associated with
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Figure 2.11: (Fully) passive RIS [7].

each sub-surface needs to be estimated, thus greatly reducing the training
overhead. Thus, the element grouping strategy provides a flexible trade-off
between training/design overhead/complexity and RIS passive beamforming
gain in practice [7].
Note that although RIS only reflects signal without power amplification,
it still needs a power supply to sustain the operation of reconfiguring the
reflecting elements as well as its smart controller. The power consumption
of the smart controller will depend on the controller’s circuit implementation
(e.g., FPGA) and communication module used. Therefore, RIS generally
consumes substantially lower energy consumption than the existing active
relays used for enhancing communications in wireless cellular networks.
Details on specific CSI methods for RIS will be illustrated in the next chapter.
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Chapter 3

State of art of CSI estimation
in RIS-enabled systems

In order to summarize the main approaches present in literature, it is impor-
tant to note that the CSI estimation scheme depends on the particular setup
of the system. In particular, it is possible schematize the main scenarios as
following:

1. Semi-passive RIS or Fully passive RIS;

2. SISO or MISO/MIMO systems in single-user scenarios;

3. SISO or MISO/MIMO systems in multi-user scenarios;

4. Continuous or Discrete phase-shift.

1) Semi-passive or Fully passive RIS Regarding a semi-passive
RIS, advanced signal processing tools, such as compressed sensing, data in-
terpolation, and machine learning, can be applied to construct the CSI of
transmitter/receiver-RIS links from the estimated CSI via the RIS sensors
by exploiting their inherent spatial correlation. Moreover, it is worth not-
ing that the channel estimation accuracy for semi-passive RIS is generally
limited by the number of available sensors, their finite (e.g., 1-bit) ADC res-
olution, and the channel sensing time. Intuitively speaking, installing more
sensors provides more channel-sensing measurements for reducing the RIS
CSI construction error in general, applying higher-resolution ADCs can re-
duce the quantization error, and increasing the channel sensing time can help
average out the sensing noise more effectively. However, according to [7], a
systematic study on the fundamental limits, practical algorithms, and their
cost-performance trade-offs for semi-passive RIS channel estimation is still
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lacking in the literature, although a handful of preliminary works [12]–[16]
on addressing some of these aspects have recently appeared.
When there are no sensors mounted on the RIS for low-cost implementa-
tion, RIS becomes fully passive and thus it is generally infeasible to acquire
the CSI between the RIS and transmitter/receiver directly. In this (perhaps
more practical yet challenging) case, an alternative approach is to estimate
the cascaded transmitter-RIS-receiver channels; note that with this approach
only the cascaded channels can be estimated, but it is also sufficient to con-
trol the RIS adequately during the communication phase. Moreover, it is
worth pointing out that differently from the semi-passive RIS case where the
channels need to be estimated via RIS sensors, the cascaded transmitter-RIS-
receiver channel in the case of passive RIS can be directly estimated at the
transmitter/receiver without the need of sophisticated channel reconstruc-
tion.
All the approaches discussed in the thesis have been developed under the
assumption of fully passive RIS.

2) SISO or MISO/MIMO systems in single-user scenarios For
the purpose of exposition, we proceed considering first the simple RIS-aided
single-user system with flat-fading channels, where both the transmitter
and receiver are equipped with one single antenna (SISO system). In this
case, one practical method for RIS channel estimation is by employing an
ON/OFF-based RIS reflection pattern [17], i.e., each one of the RIS elements
is turned ON sequentially with the others set OFF at each time, thereby the
cascaded channels associated with different RIS elements are estimated sepa-
rately. Note that this method requires at least N pilot symbols for estimating
the total N channel coefficients in this system. Albeit being simple to imple-
ment, the ON/OFF-based RIS reflection pattern incurs substantial reflection
power loss as only one element is switched ON at each time and thereby the
reflected signal is rather weak. To overcome this power loss issue and im-
prove the channel estimation accuracy, the all-ON RIS reflection pattern can
be employed, whereby all the N channel coefficients can be estimated over
N pilot symbol durations [18].
For the passive RIS-aided single-user MISO/MIMO system, it is required
to estimate more channel coefficients due to the increased channel dimen-
sions and the matrix multiplication of the transmitter-RIS and RIS-receiver
channels. By adopting the same approach applied in a SISO system for ev-
ery antennas, the total training overhead is increased as compared to the
single-user SISO case, which can be practically prohibitive if the number
of the antennas is large. A lot of works in literature are based on the de-
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composition and factorization of the channel matrix, in order to estimate
the cascaded channel vectors. Anyway, given the large numbers of channels,
certain RIS channel properties (such as low-rank, sparsity, and spatial cor-
relation) can be exploited to facilitate the cascaded channel decomposition
as well as reduce the training overhead [19]–[23]. Furthermore, to acceler-
ate the training process, deep learning and hierarchical searching algorithms
have also been developed for the channel estimation in passive RIS-aided
MISO/MIMO systems [24]–[27].

3) SISO or MISO/MIMO systems in multi-user scenarios For
channel estimation with passive RIS serving multiple users (with U users),
a straightforward method is by adopting the single-user channel estimation
design to estimate the channels of different users separately over consecutive
time [28], which, however, increases the total training overhead by U times
as compared to the single-user case and thus is practically prohibitive if the
number of the users U is very large. Recall that all the users (receivers)
share the same common transmitter-RIS channel, the training overhead for
RIS channel estimation in the multi-user case can be significantly reduced.
For example, a user can be selected as the reference user of which the cas-
caded channel is first estimated. Then, based on this reference CSI, the
cascaded channels of the remaining U − 1 users can be efficiently estimated
by exploiting the fact that these cascaded channels are scaled versions of the
reference user’s cascaded channel and thus only the low-dimensional scaling
factors, rather than the whole high-dimensional cascaded channels, need to
be estimated.

4) Continuous or Discrete phase-shift In all the works of our knowl-
edge present in literature, the CSI estimation schemes are based on the as-
sumption of continuous values for RIS phase control, so that the optimiza-
tion problem is not constrained and an optimal solution can be easily found.
However, it is always possible to approximate the optimal solution with a
sub-optimal considering as a generic phase coefficient of the RIS the one
that comes closer to the optimal. This approach is usually valid both for
approaches based on all-ON RIS reflection pattern and the ones based on
machine learning techniques.

In this chapter, we illustrate a classical approach based on all-ON RIS
reflection pattern [18], applicable in a single-user SISO system. Below, we
also present an extension of this algorithm applicable in a MISO/MIMO
system, based on the factorization of channel matrix [21].
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3.1 Analysis of a CSI estimation scheme in a

RIS-enabled SISO system

3.1.1 Introduction

As a first scenario, we consider an intelligent reflecting surface -aided single
user system where a RIS with discrete phase shifts is deployed to assist the
uplink communication. Both the BS and the user have a single antenna.

Figure 3.1: A RIS-aided single-user SISO communication system [18].

In order to illustrate CSI estimation schemes, we need to describe prop-
erly the channel model.
Since every cell of the RIS is made of N scattering element, then at the re-
ceiver the signal will be result of N different paths (not considering the direct
one, without lose of generality). Under narrowband flat fading assumption,
we can see the transmission channel as a vector of N complex numbers, each
of them represents the complex channel coefficient between transmitter - a
unit cell of the RIS - receiver. The same applies to the channel between the
RIS and the receiver.
The goal is to estimate the cascaded channel vector.

3.1.2 Signal model

Starting from the hypothesis of flat fading and AWGN channel, we imagine
to transmit a pilot signal x. The baseband equivalent signal at the receiver
it is given by

y = x · g + z (3.1)
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where z ∼ N(0, σ2) represents the Gaussian noise component, and g ∈ C
summarizes the global channel effect (that, for the hypothesis of flat fading,
it attenuates and phase-shifts the signal sent). In particular, since y is given
by the sum of every path at the receiver, assuming that the direct path is
obstructed we can express g as follows:

g = hTRΩhRU (3.2)

where hTR ∈ C1×N and hRU ∈ CN×1 denote respectively the baseband equiv-
alent channel between transmitter - RIS, and between RIS - user/ receiver,
and Ω = diag(β1e

jω1 , β2e
jω2 , . . . , βNe

jωN ) takes into account the reflection
coefficient of the RIS, where diag(a1, a2, . . . , an) represents the operator that
generates a diagonal matrix of N ×N dimensions, where the generic ai ele-
ment is collocated in the (i, i) position.
Defining in the same way the operator diag applied to a generic vector v of
length l, diag(v) generates a diagonal matrix of l×l dimensions, where the ith
element of the vector is collocated in the (i, i) position of the matrix. So, let
h , diag(hTR)hRU ∈ CN×1 denotes the cascaded user - RIS - receiver chan-
nel in the absence of RIS phase shifts, and θ , [ejω1 , ejω2 , . . . , ejωN ] ∈ C1×N

denotes the RIS reflection vector imposing βi = 1,∀i = 1, . . . , N . Then, we
can rewrite (3.2) as

g = θh (3.3)

[Note that the equation (3.3) is valid whatever the values of β.]
In order to estimate the channel h, the transmitter sends N consecutive pilot
symbols x[n], n = 1, 2, . . . , N and the RIS changes its configuration such as
at time n the configuration θ[n] is adopted. Now, if we consider to send N
consecutive pilot signals, we can extend and represent (3.1) under a matrix
formulation. The received signal vector during this channel training can be
compactly written as

y = Xg + z (3.4)

where X , diag(x[1], x[2], ..., x[N ]), g , [(g[1], g[2], ..., g[N ]]T and z , [(z[1],
z[2], ..., z[N ]]T . Furthermore, we can write g as

g = Θh

where Θ , [θ[1],θ[2], . . . ,θ[N ]]T and where g[n], z[n], θ[n] are respectively,
the global channel coefficient, the noise term and the RIS reflection coeffi-
cients related to the transmission of the nth pilot signals x[n] at time instant
n.
Before proceeding, it is important to remember that usually RIS phases are
not implemented using continuous phases between 0 and 2π, but they are
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discrete and they can be represented using b bits of quantization. So, it is
important to distinguish two cases:

1) when b is infinite;

2) when b it is limited and it is not possible to program the RIS in the
optimal way.

3.1.3 Problem formulation

The final goal is to obtain a valid estimation of the vector h in order to the
system could be able to predict how the cascaded channel g will be; a perfect
knowledge of h permits to program the RIS coefficients in order to maximize
the SNR at the receiver. In literature, some beamforming algorithms are
studied in order to optimize the communication performance having only a
noisy estimation of h. So, let’s proceed to analyze a possible way to get the
CSI. An estimation of g, denoted by ĝ, can be derived from (3.4) as follows:

ĝ = X−1y = g + X−1z = g + eg (3.5)

Thus, if Θ is of full-rank, the estimate of h is given by

ĥ = Θ−1ĝ = h + eh (3.6)

where eg , X−1z and eh , Θ−1X−1z denotes respectively the estimation
error of g and h. As such, the MSE of the above least square channel
estimation is given by

MSE = E[||h− ĥ||2] = E[||eh||2]

= E[tr(Θ−1X−1zzH(X−1)H(Θ−1)H)]

=
σ2

Pt
tr((ΘHΘ)−1)

(3.7)

where Pt denotes the transmit power associated to a generic symbol, and H

represents the conjugate transpose operator.
The advantage of adopting the previous scheme is considerable, as the esti-
mation error only depends on how the RIS is programmed. Now the goal
becomes to find the best RIS configuration Θ in order to minimize the MSE
in (3.7).

36



3.1.4 Problem constraints

Accounting for the RIS discrete phase shifts and the feasibility of the previous
estimation method, the constraints for the feasible RIS reflection pattern, Θ,
are listed as follows.

1) The entries of the RIS reflection pattern should satisfy the constraints
of unit-modulus and discrete phase, i.e.,

|[Θ]i,j| = 1, 1 ≤ i ≤ N, 1 ≤ j ≤ N

∠([Θ]i,j) ∈ F, 1 ≤ i ≤ N, 1 ≤ j ≤ N
(3.8)

where F represents all the possible values that the phase coefficients
can assume. Usually, F = {0,∆ω, ..., (K − 1)∆ω} where ∆ω = 2π

K
and

K = 2b.

2) The RIS reflection pattern should be full-rank, i.e.,

rank(Θ) = N (3.9)

3.1.5 Problem optimization

Under the above constraints, the optimization problem for minimizing the
MSE of channel estimation is formulated as

(P1) : min
Θ

σ2

Pt
tr((ΘHΘ)−1)

s.t. (3.8)− (3.9)

(3.10)

First, it can be easily verified that problem (P1) is always feasible, since there
exists a naive reflection pattern that satisfies all the constraints in (3.8)-(3.9).
We denote it by Θ, whose entries are given by

[Θ]i,j =

{
−1, i 6= j

1, otherwise
(3.11)

However, despite its feasibility, the objective function of (P1) is non-convex
and the phase shifts of the RIS reflection pattern are restricted in a finite
number of discrete values, turning the problem (P1) to be a NP-hard prob-
lem to solve. Numerically, the optimal solution to problem (P1) cannot be
obtained by an exhaustive search over all possible reflection pattern: it is
practically prohibitive try to find numerically the optimum since it increases
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exponentially with N and/or b.
Focusing on the rank-related constraint (3.9), we can immediately think to
consider an orthogonal matrix to overcome it, since an orthogonal matrix
has surely maximum rank. Therefore, if there exists an orthogonal reflection
pattern satisfying all the above constraints so that ΘHΘ = NIN , then that
it is surely an optimal solution to (P1), providing to the follow estimation
error

MSE =
σ2

Pt
tr((NIN)−1) =

σ2

Pt
where IN represents the N ×N identity matrix.
In fact, if we look at the constraints (3.8) of the problem, we can not obtain
a matrix ΘHΘ equal to MIN , with M > N . It follows that the minimum
value of MSE expressed in (3.7) is reduced to

MSE =
σ2

Pt

due to the fact that tr((ΘHΘ)−1) is greater to 1 (or equal, in the optimum
configuration).

3.1.6 An optimal solution

Based on the previous considerations, an optimal orthogonal reflection matrix
is given by the DFT matrix, denoted by D, whose entries are given by

[D]i,j = e−j
2π(i−1)(j−1)

N 1 ≤ i, j ≤ N (3.12)

In practical settings, we cannot always implement this matrix, because of
the number b of available bits for the discrete phase shift levels. So the DFT
matrix represents an optimal reflection pattern only for special cases. In par-
ticular, for RIS with equally spaced discrete phase shifts, the DFT matrix is
an optimal solution if N ∈ {2c, where c = 1, 2, . . . ,b}.

3.1.7 A sub-optimal solution

In order to obtain a quantized DFT matrix D for any N , it is proposed to
design the matrix as follows:

[D]i,j = ejϕi,j

where ϕi,j = argminϕi,j | ejϕi,j − e−j
2π(i−1)(j−1)

N |.
It is important to say that now we have no guarantee of invertibility of D,
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but from extended simulations done by the authors of the article in question
([18]) we can observe that D is always invertible for b ≥ 2 and achieves an
MSE close to that of the continuous phase shifts when b is large.

3.1.8 Validity of the solution proposed for problem P1

In order to analyze the proposed estimation channel method for a SISO
communication, we proceed testing the algorithm in different simulations.
First of all, we analyze the validity of the algorithm, comparing it with the
“naive” approach (see equation 3.11). In particular, we have considered the
following simulation parameters:

• transmitted power Pt = 1 Watt;

• number of reflecting elements N = 100;

• noise power σ2 variable from [0.001, 0.1] Watt;

In order to analyze the validity of the optimal and sub-optimal solutions of
the problem P1, we consider a random set ofN complex numbers representing
the CSI that has to be estimate through the tested algorithm.
The following results was obtained through Monte Carlo iterations, in which
each problem is solved through different approaches: optimal, sub-optimal,
“naive”. From figure 3.2, we can note that with the optimal DFT matrix the
MSE coincides with the theoretical result:

MSE =
σ2

Pt

We extend simulations considering noise power fixed to 0.1 Watt and chang-
ing the number of reflecting elements; in particular, we consider N variable
in the interval [1,30]. The results are shown in the figure 3.3.

3.1.9 A method to lower the estimation error

If we imagine to send K pilot signals, with K > N , we can adapt the
algorithm in a very simple way. In fact, it is sufficient to change the Θ−1

matrix with the Moore-Pensore pseudo-inverse of Θ. In particular, we can
adapt (3.6) with

h = Θ†g (3.13)

where ”†” refers to the operation of the pseudo-inversion of the matrix so
that Θ† represent the pseudo-inverse matrix of Θ. This operation works
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Figure 3.2: Simulations made with fixed number of RIS elements (N = 100).
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Figure 3.3: Simulations made with fixed noise power (σ2 = 0.1 Watt).
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because the matrix Θ is a left-inverse, because it is a K × N matrix with
maximum rank, such that Θ†Θ = K

N
IN . If we consider (3.7), the estimation

error expression become

MSE =
σ2

Pt
tr(Θ†(Θ†)H) (3.14)

If we design Θ as a truncated DFT matrix, we obtain tr(Θ†(Θ†)H) = N
K

. So,
it follows that we can break down the estimation error simply considering to
send a greater number of pilot signals rather than the total number of the
RIS elements.
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Figure 3.4: Simulation made exploiting the DFT configuration; the MSE
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K
.

3.2 Analysis of a CSI estimation scheme in a

RIS-enabled MIMO system

3.2.1 Introduction

Now, we consider a MIMO communication system assisted by a RIS com-
posed of N elements. The transmitter and the receiver are equipped with M
and L antennas, respectively.
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Figure 3.5: A RIS-aided single-user communication system [21].

In order to achieve the CSI, we need to describe properly the channel
model.
We can see the transmission channel as a matrix of L×M complex numbers,
where the generic (i, j) element represent the effect of the channel between
the jth antenna of the transmitter and the ith antenna of the receiver.
Since every cell of the RIS is made up of a scattering element, for every signal
sent by a single transmission antenna the receiver will experience N different
paths (without loss of generality, we have neglected the direct path).
In the flat fading hypothesis, the goal is to estimate the channel matrix,
where the real part of each (i, j) element represents the attenuation of the
path between the jth antenna in transmission and the ith antenna of the
receiver, while the imaginary one represents the phase shift.

3.2.2 Signal model

Starting to the hypothesis of flat fading and AWGN channel, we imagine to
transmit a pilot signal x ∈ CM×1. The baseband equivalent signal at the
receiver it is given by

y = Cx + n (3.15)

where n ∈ CL×1is the additive white Gaussian noise (AWGN) vector, and
C ∈ CL×M summarizes the global channel effect (that, for the hypothesis of
flat fading, it is only about attenuation and phase shifting). In particular,
since every element of y is given by the sum of every path came at the
corresponding receiving antenna, we can express C as follow:

C = GDH (3.16)
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where H ∈ CN×M and G ∈ CL×N denote respectively the baseband equiva-
lent channel matrix between transmitter - RIS, and between RIS - receiver,
and D ∈ CN×N represents diag(s) (where s = [s1e

jω1 , s2e
jω2 , ..., sNe

jωN ] takes
into account the reflection coefficient of the RIS and diag(s) refers to the di-
agonal matrix composed by s as the principal diagonal).
Now, if we consider to send T consecutive pilot signals, we can extend (3.13)
representing the received signals during this channel training as

Y = GDHXT + N (3.17)

where X = [x[1],x[2], ...,x[T ]]T ∈ CT×M , D = diag(s) and N = [n[1],n[2], ...,
n[T ]]T . For notation simplicity, we neglect the noise term and we focus only
on the useful signal. We can rewrite the signal part of equation (3.15) as:

Y = GDZT , Z , XHT ∈ CT×N (3.18)

Figure 3.6: Training signals scheme [21].

If we imagine to repeat the transmission of the T pilot signals for K times
(as depicted in figure 3.3), we can see the generic Y[k] as the kth frontal
matrix slice of a three way tensor Y ∈ CL×T×K that follows a PARAFAC
(PARallel FACtor) decomposition. Exploiting trilinearity of the parafac de-
composition, we can unfold received signal tensor Y in the following matrix
forms:

Y1 = G(S � Z)T ∈ CL×TK (3.19)

Y2 = Z(S �G)T ∈ CT×LK (3.20)

where ”�” indicates the Khatri Rao product and S = [s[1], s[2], ..., s[K]].
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3.2.3 Problem formulation

The goal is to estimate G and H from the received signals.
From the noisy versions of the matrix unfoldings (3.17) and (3.18), we can
derive an iterative solution based on a Bilinear Alternating Least Squares
(BALS) algorithm. This algorithm consists of estimating the matrices G
and H in an alternating way by iteratively optimizing the following two cost
functions:

G = argmin
G
||Y1 −G(S �XHT )T ||2F (3.21)

H = argmin
H
||Y2 −XHT (S �G)T ||2F (3.22)

the solutions of which are respectively given by

G = Y1[(S �XHT )T ]† (3.23)

H
T

= X†Y2[(S �G)T ]† (3.24)

where || ||F refers to the norm operator.
The BALS algorithm can be summarized as follows:

1. Let i the ith iteration of the algorithm, and set i = 0;

2. At the first iteration, initialize randomly the matrix H(i=0), where the
subscript i indicates the matrix at the ith iteration;

3. Increment i = i+ 1;

4. Find a least square estimate of G, at the iteration i:

G(i) = Y1[(S �XHT
i−1)T ]† (3.25)

5. Find a least square estimate of H, at the iteration i:

H
T

(i) = X†Y2[(S �Gi)
T ]† (3.26)

6. Repeat steps 3 to 5 until converge.

Despite the iterative nature of the BALS algorithm, only a few iterations are
necessary for convergence (usually less than 10 iterations) due to the knowl-
edge of the matrix factor S that remains fixed during the iterations.
Provided that the above conditions are satisfied, the channel estimates G
and H are unique up to scalar ambiguities. More specifically, the rows of H
and the columns of G are affected by scaling factors that compensate each
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other, i.e., H = ∆HH and G = G∆G , where ∆H∆G = IN . However,
these ambiguities disappear when building an estimate of the cascaded (end-

to-end) channel C = G H
T

of the RIS-assisted MIMO system. Note also
that permutation ambiguity does not exist due to the knowledge of the RIS
matrix S at the receiver.
The only constraints are about the possibility to construct all the inverse
matrix above mentioned. So, the BALS method requires that (S �XHT ) ∈
CKT×N and (S �G) ∈ CKL×N have full column-rank, so that the problems
(7), (8) admit unique solutions. This implies that min(KT,KL) ≥ N .
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Chapter 4

A novel algorithm for overhead
reduction

If we imagine to send K pilot signals, with K < N , it is not possible to
exploit the same approach previously analyzed. In fact, if K < N , the RIS
coefficients’ matrix Θ will result a right-inverse matrix, making impossible
the CSI estimation through equation (3.6).
In this chapter we are going to present a novel algorithm able to obtain a
valid channel estimation exploiting the characteristics of the channel itself.
In particular, in the next sections, we are going to analyze the phase profile of
the cascaded channel h as a function of the position of the transmitter and
receiver, under both far-field and near-field hypothesis, and then how this
information can be exploited thanks to the maximum likelihood criterion
(ML) in order to get a valid CSI estimation.
Let us proceed to illustrate the considered scenario:

• Transmitter, receiver and RIS placed in a 10 meters × 10 meters room,
at the same altitude (z = 1);

• Center frequency of the signal equal to 28 GHz, to which a wavelength
λ = 1 cm corresponds;

• Transmitter placed at a corner of the room, in (x = 0, y = 10, z = 1);

• Receiver placed at the opposite corner of the room, in (x = 10, y =
10, z = 1);

• Stripe RIS composed of N = 100 antennas equally spaced by a half
of wavelength λ, placed along x dimension at (y = 0, z = 1). The
first element is placed at (x = 2, y = 0, z = 1) and the last one at
(x = 2.535, y = 0, z = 1) (being the RIS 0.535 meters long).
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The described scenario is depicted below, in figure 4.1.

Figure 4.1: Illustration of the scenario.

4.1 RIS-assisted communication in far-field

4.1.1 Phase profile of the cascaded channel vector

When the transmitter is placed far enough from the RIS, it is possible to
approximate the wave front of the EM field impinging to every element of
the surface as a plane wave, as shown in figure 4.2.

Figure 4.2: Wave front of the EM field transmitted toward RIS’s elements,
in far-field communication.
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In this particular condition, the angles of incidence of the impinging wave
front at each antenna are the same. In the hypothesis of line-of-sight (LOS)
between transmitter and RIS and without considering the multipath effect
of the surrounding environment, it follows that the generic channel hTR =
[hTR1 , hTR2 , . . . , hTRN ] between transmitter and RIS must be given by the
following expression:

hTRn = q1n · ei
2π
λ
·∆·(n−1)·sin(α), ∀n = 1, . . . N, (4.1)

where the index n represents the path toward the nth reflecting element of
the RIS, q1n the channel gain of the respective path (that thanks to the far-

field hypothesis we can assume to be constant, and equal to q1 =
√

Gt·λ2

(4π)2 · 1
d1

,

where Gt is the transmitter antenna’s gain and d1 the distance between the
transmitter and the RIS), i the imaginary unit, ∆ the inter-element spacing
and α the angle of incidence of the EM field impinging the RIS. It is also
important to note that the term sin(α) corresponds to the phase gradient
of the channel hTR along the RIS and that it remains constant for all the
vector.
It is now clear that in far-field communication it is sufficient to know the value
of the sine of the angle of incidence α of the wave front and the distance
between every element of the surface to characterize uniquely the channel
vector hTR (with the exception of constant q1 relating to the path loss).
Given the position of the transmitter, because of in far-field hypothesis the
RIS is seen as a point, we can say that α is also the angle between transmitter
and the RIS itself; by considering also the receiver in far-field and following
the same steps, we can refer to β as the angle between the RIS and the
receiver. It follows that also the channel hRU = [hRU1 , hRU2 , . . . , hRUN ] can
be expressed as:

hRUn = q2 · ei
2π
λ
·∆·(n−1)·sin(β), ∀n = 1, . . . N, (4.2)

where q2 =
√

Gr·λ2

(4π)2 · 1
d2

and Gr and d2 represents respectively the receiver

antenna’s gain and the distance between the RIS and the receiver.
For this reason, the cascaded channel vector h, that it is equal to the product
element by element of the two vectors hTR and hRU, is:

hn = k · ei
2π
λ
·∆·(n−1)·(sin(α)+sin(β)), ∀n = 1, . . . N, (4.3)

where k = q1 · q2 is the total path loss effect.
In order to see if the assumption of far-field is valid at least when the trans-
mitter and receiver are placed at a sufficient distance from the RIS in the

49



previously described scenario, we are going to consider the scenario depicted
in figure 4.1.
Plotting the phase profile and the phase gradient of the cascaded channel in
those particular positions of transmitter and receiver, we obtain the results
shown in figure 4.3.
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Figure 4.3: Phase profile and phase gradient of the vector h with transmitter
and receiver far from the RIS.

Remembering that in far-field hypothesis we would have expected a con-
stant phase gradient, and consequently a linear phase profile, we can note
from figure 4.3 that, in those particular positions of transmitter and receiver,
the far-field hypothesis seems to be perfectly satisfied. Anyway, making a
zoom of the only gradient profile, we can note that it varies from [1.35, 1.11]
rad about; we can therefore approximate it as a constant without large error.

Optimal configuration of the RIS in far-field communications Dur-
ing the communication phase, the best configuration of the RIS coefficients
consists in setting up θ as the conjugate of the cascaded vector h, in such
a way that all reflected components sum up coherently at the receiver side.
For this reason, we can refer to the term sin(α) + sin(β) as the absolute
value of the optimal phase gradient of the RIS.
Considering that the phase gradient of the cascaded channel h depends on
the positions of the transmitter and the receiver (because it depends on α
and β), we can extend the previous simulation by varying the x dimension
of the receiver, keeping fixed (y = 10, z = 1) and the position of the trans-
mitter. From figure 4.4, we can note that the phase gradient of the cascaded
channel depends linearly on sin(α) + sin(β). In particular, we can note that
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Figure 4.4: Phase gradient of the vector h as a function of receiver position.

when α = β, the gradient assumes a value equal to zero. It follows that,
in far-field communications, a RIS programmed with the optimal coefficients
behaves like an anomalous mirror whose angle is such that the signal is re-
flected towards the receiver. Because of the RIS is fixed along a wall, it can
be seen as an intelligent mirror able to overcome the law’s Snell of reflection
simply re-programming its coefficients.

4.1.2 Channel maximum likelihood estimator

Keeping in mind the geometry of the problem, through the gradient esti-
mation it is possible to calculate the whole channel h. It is important to
note that theoretically we can proceed exploiting the optimal method shown
in the Chapter 3 with only two pilot signals: in fact, the constant gradient
could be estimated only by two measures. The problem of this approach is
that we would need to select two reflecting elements and get an estimate one
by one, keeping only one element ON at a time, making the received power
extremely low. For this reason, we can get around the problem by chang-
ing our approach. In particular, we can search (e.g., by considering more
measurements obtained considering a subset of the possible RIS configura-
tions) for the estimate of the phase gradient of the cascaded channel that
minimizes the error between the collected measurements and the expected
receiver vector which depends on the channel h and the RIS configuration
Θ. In order to apply the ML criterion to find an estimate of h, because of
∆ is fixed and equal to λ

2
, the problem can be reduced to the research of the
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sin(α) + sin(β). The problem to solve becomes:

ŝ = arg min
s
| y −XΘh(s) | (4.4)

where s = sin(α) + sin(β), ŝ an its estimate and h(s) the cascaded channel
vector in function of the gradient (see expression (4.3)).

ML estimation scheme The ML criterion is based on the approach de-
scribed in the flow chart described in figure 4.5. Points from 3 to 5 are
iterated for different values of s. Trying theoretically all possible values of s,
the receiver can consider as the best estimate of the cascaded channel vec-
tor the htest that produced the lowest norm e. It is important to note that
because of we do not know the transmitter and the receiver position we are
not able to know the path loss effect; for this reason, the term e is calculated
normalizing ĝ and gtest.
In order that this approach produces a good estimate of h it is necessary
that:

• The number of values of s tested during the ML search is sufficiently
large;

• The link budget is adequate, in order that ĝ is not too corrupted by
the noise.

In section 4.3 the validity of this approach will be assessed through simulation
results.

4.2 RIS-assisted communication in near-field

4.2.1 Phase profile of the cascaded channel vector

A more detailed expression of the channel between the transmitter and the
RIS can be obtained approximating the phase gradient as a linear function,
recalling figure 4.3. In particular, taking into account that a linear gradient
is equivalent to a parabolic phase profile, we obtain:

hTRn = q1n · e
i 2π
λ
·∆·(n−1)·sin(α)+i 2π

λ
· (∆·(n−1))2

2·dFTR , ∀n = 1, . . . N, (4.5)

where dFTR (the focal distance) represents the distance between the trans-
mitter and the center of the RIS.
The same is for the channel between the RIS and the receiver:

hRUn = q2n · e
i 2π
λ
·∆·(n−1)·sin(β)+i 2π

λ
· (∆·(n−1))2

2·dFRU , ∀n = 1, . . . N, (4.6)
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Figure 4.5: Description of the ML criterion adopted in order to estimate the
cascaded channel h.
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where dFRU represents the distance between the center of the RIS and the
receiver.
It follows that the cascaded channel h is given by:

hn = k · ei
2π
λ
·∆·(n−1)·(sin(α)+sin(β))+i 2π

λ
· (∆·(n−1))2

2·dF , ∀n = 1, . . . N, (4.7)

where 1
dF

= 1
dFTR

+ 1
dFRU

. Note that in this case the knowledge of the only
term sin(α) + sin(β) is not enough to characterize uniquely the cascaded
channel vector. In particular, we can describe uniquely a parabolic profile
(as the one expressed by equation (4.7)) through the knowledge of the term
relating to the angles α and β and the cascaded distance dF .

4.2.2 Channel maximum likelihood estimator

The approach is the same of the one proposed in the subsection 4.1.2 (figure
4.5), but in this case we have to do a joint search, one for the term referring
to sin(α) + sin(β) and one for the focal distance dF .

4.3 Implementation and validation of the ML

approach

Recalling that our ML-based approach is valid when the estimation of g is
not too corrupted by the noise, we are going to consider a scenario where
thanks to an adequate link budget we can ensure high SNR at the receiver.
Taking a cue from the link budget proposed in the article [29], we are going
to fixed following data:

• Transmitted power Pt [dBW] = 0;

• Transmitter antenna gain Gtx [dB] = 5;

• Signal bandwidth W = 10 MHz;

• Center frequency fc = 28 GHz;

• Receiver antenna gain Grx [dB] = 2;

• Receiver noise figure F [dB] = 3;

• Reference temperature of receiver T = 290 °C;

From these data is possible to calculate the noise power σ2 as N0 ·W, where
N0 = 1.38 · 10−23 · T · F .
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Far-field hypothesis We begin our simulations considering a generic trans-
mitter and receiver position, for example transmitter placed in (x = 10, y =
0, z = 1) and receiver in (x = 10, y = 10, z = 1) (figure 4.1). In order to
evaluate the ML criterion, we consider a large number of test values for s, for
example equal to 1000. In fact, considering that s represents a sum of two
sines, it can only assume a value included in the interval [-2,2] and trying
1000 possible values means making a search with a very fine step. Further-
more, in our scenario, it is possible to consider a narrower range, for example
[-1,1]. We can now apply the ML criterion to the considered scenario, in
order to analyze its performance as a function of the number of pilot tones
and compare it with the ideal case with a perfect CSI estimation.
Since setting up θ as the conjugate of ĥ may not be the optimal solution for
imperfect CSI, in literature beamforming techniques have been proposed in
order to minimize the effect of the estimation error. Anyway, in our simula-
tions, we exploit the optimum approach considering the estimate ĥ obtained
through ML criterion, evaluating the performance in comparison with the
case of perfect knowledge of CSI.
The following simulations show the comparison between the SNR achiev-
able at the receiver (defined as the ratio between the received power and the
thermal noise σ2) in three cases:

• Perfect CSI estimation (where the received power is maximized);

• Imperfect CSI estimation;

• Unconfigured RIS (where RIS’s coefficients assume random values dur-
ing the communication phase).

Setting a random training coefficients of the RIS for the estimation phase of
the channel and making the assumption of far-field communication, we obtain
the results shown in figure 4.6. Always considering the same position for the
transmitter and the receiver, it is interesting to note if also in this approach,
based on ML criterion, the DFT-based training coefficients can give us better
results. Considering the comparison between figures 4.6 and 4.7, by repeating
the simulation for different transmitter and receiver positions same results
are obtained. In particular, it is clear that:

• Both approaches come to the convergence;

• The DFT-based training pattern causes an ”ON/OFF” behavior before
and after 10-15% about of pilot tones.

For this reason, from here on all the simulations will be made taking into
account a RIS configured with a random pattern for the estimation phase of
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Figure 4.6: Results obtained exploiting the ML criterion (with 1000 iterations
and setting the RIS with a random training pattern during the estimation
phase of the channel). Simulations are made considering 100 Monte Carlo
iterations, in order to mediate the noise effect.
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Figure 4.7: Results obtained exploiting the ML criterion (with 1000 iterations
and setting the RIS with a random training pattern during the estimation
phase of the channel). Simulations are made considering 100 Monte Carlo
iterations, in order to mediate the noise effect.
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the channel.
Extending our simulations, considering the transmitter located in the same
position (x = 0, y = 10, z = 1) and considering different points inside the
room for the receiver, we are going to fix the following data:

• Number of pilot signals K equal to 30;

• Number of possible values of s equal to 1000;

• Number of Monte Carlo iterations equal to 100;

We obtain the following results:
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Figure 4.8: Heatmaps obtained with 30 pilot signals, based on the hypothesis
of far-field.

In order to evaluate our approach, we need to compare it between the
results obtained with an unconfigured RIS.
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Figure 4.9: Heatmaps obtained with an unconfigured RIS.
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As we can see comparing figures 4.8 and 4.9, results obtained with the
ML research are much better than the ones obtained with an unconfigured
RIS. Moreover, from figure 4.8 (b), it is interesting to note that:

1) The gap between the SNR obtained in the figure (a) and the best SNR
achievable at the receiver with a perfect knowledge of CSI increase as
we get closer to the RIS (because of the approximation of the EM as a
plane wave fails);

2) Even in the most distance points from the RIS, the performance are
not perfect (even though very good).

Near-field communication In order to overcome the limits imposed by
the far-field hypothesis, we extend our simulation assuming a more accurate
approximation of the wave front shape. In particular, we are going to simulate
the ML criterion in the assumption of near-field communication. In this
case, how previously said, we need to make a joint research about the terms
sin(α) + sin(β) and dF . Keeping in mind that in far-field simulations we
have exploited the research through 1000 different values of the gradient, now
we need to consider a lower number in order to obtain results in a reasonable
time. In particular, through different simulations, we have obtained good
results in the previous scenario also considering 250 different values of the
gradient. As the proof of this, heatmaps obtained are shown below:
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Figure 4.10: Heatmaps obtained with 30 pilot signals assuming 250 different
values for s, instead of 1000) and under the hypothesis of far-field.

Comparing figures 4.8 and 4.10 the results are almost the same.

In order to choose a correct interval within which varying the value of the
distance dF , it is important to recall that 1

dF
= 1

dFTR
+ 1

dFRU
. Remembering
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that dFTR and dFRU are respectively the distance between the transmitter
and the center of the RIS and the distance between the center of the RIS and
the receiver, dF will assume an increasingly larger value as the transmitter
and receiver move away from the RIS and, vice versa, a lower value when
transmitter and receiver come closer to it: so, the maximum value that we
are expecting for dF will be equal to 5.6 meters (that corresponds to the
case of transmitter and receiver as far as possible to the RIS). In our simu-
lations it makes sense to consider dF ∈ [0, 6] meters. Because of previously
considerations, we are going to set up the following data for simulations:

• Number of pilot signals K = 30;

• Number of different values for the term referring to sin(α) + sin(β)
equal to 250 (chosen in the interval [-1,1], as previously explained);

• Number of different values for the term referring to dF equal to 100;

• Number of Monte Carlo iterations equal to 10.

Fixing the transmitter in (x = 0, y = 10, z = 1) and varying the positions of
the receiver, we obtain the following results:
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Figure 4.11: Heatmaps obtained with 30 pilot signals, based on the hypoth-
esis of near-field.

As we can see, considering a more detailed approximation of the EM
field impinging to the RIS brings to better performance, especially where the
transmitter or the receiver (or both) are near to the RIS.
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4.4 Trade-off between SNR and number of

pilot signals

Keeping in mind the obtained results, the proposed method allows us to
reach good performance exploiting much less pilot signals rather than that
requested in the optimal method. In particular, the best performance of our
approach is reached with the 30% of the number N of elements of the RIS.
Rearranging the data extrapolated from the figure 4.6, that it refers to the
case of transmitter at (x = 0, y = 10, z = 10) and receiver at (x = 10, y =
10, z = 1), we can better visualize the difference of the performance obtained
between the proposed method and the best achievable results obtainable only
with a perfect estimation of CSI:
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Figure 4.12: Deviation from the best SNR achievable.

As we can see from figure 4.12, it exists a saturation curve which begins
approximately at 10% of the pilot signals.
Because of our goal is to reduce the overhead training as much as possible
(without degrading “too much” the performance), we can consider a trade-
off between the number of pilot signals and the performance desired. For
example, if we are willing to accept a SNR lower than the 10-15% of the
maximum possible value, we can exploit less pilot signals. As we can see in
figure 4.13, always in those particular positions of transmitter and receiver,
accepting a performance degraded of 10% lower then the best achievable,
permits to reduce the number of the training signals at 12-13% of the ones
needed in the method proposed in Chapter 3.
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Figure 4.13: Difference (%) between performance obtained, in function of
the number of pilot signals, in comparison to the best achievable obtainable
with 30% of signals.

4.5 Extension of the method for a planar RIS

In the previous analysis, we have considered a stripe RIS. In this section, we
are going to show the cascaded channel expression in presence of a planar
RIS, both for far-field and near-field communication. In particular, we are
going to consider a planar RIS arranged on the same wall as the previous
scenario, on the XZ-plane.

4.5.1 Far-field communication

Keeping in mind that a planar RIS is arranged on the XZ-plane, while
transmitter and receiver are placed at the height of z = 1 meter and can
be placed in generic points inside the room on the plane (x, y), we have to
note that the phase gradients of the channels hTR and hRU are both bi-
dimensional. Because of we can represent a planar RIS as a matrix of N
reflecting elements, the expressions of the two channels becomes:

hTRn,m = q1 · ei
2π
λ
·∆·(n−1)·sin(α1)+i 2π

λ
·∆·(m−1)·sin(α2), (4.8)

hRUn,m = q2 · ei
2π
λ
·∆·(n−1)·sin(β1)+i 2π

λ
·∆·(m−1)·sin(β2), (4.9)

∀n = 1, . . . A, ∀m = 1, . . . B, where A and B represents respectively the
number of reflecting elements for every row and for every column of the
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planar RIS. Moreover, α1 and α2 represent respectively the horizontal angles
of incidence between the EM field and RIS and the vertical one. The same
is for β1 and β2 referring to the channel between RIS and receier.
In far-field communications, referring to the channel between transmitter
and RIS, the terms sin(α1) and sin(α2) remains constants for every element
of the RIS. The same is for the terms sin(β1) and sin(β2), referred to the
channel between the RIS and the receiver. The cascaded channel vector will
be:

hn,m = k · ei
2π
λ
·∆·
(

(n−1)·(sin(α1)+sin(β1))+(m−1)·(sin(α2)+sin(β2))
)

(4.10)

∀n = 1, . . . A, ∀m = 1, . . . B. Recalling d1 as sin(α1) + sin(β1) and d2 as
sin(α2) + sin(β2), the ML criterion consist on the jointly research of these
two parameters.

4.5.2 Near-field communication

In near-field communication, in analogy to the case of stripe RIS, we have to
consider also the term referred to the focal distance. The expression (4.11)
will become:

hn,m = k · e
i 2π
λ
·

(
∆
(

(n−1)·d1+(m−1)·d2

)
+

(
(∆(n−1))2+(∆(m−1))2

)
2·dF

)
(4.11)

∀n = 1, . . . A, ∀m = 1, . . . B. In this case, the ML criterion consists on the
jointly research of three terms:

• d1

• d2

• dF

where dF we remember is the total contribute of the focal distance of the
channel between transmitter and RIS and the channel between RIS an re-
ceiver.

4.6 Relation between CSI and user position

In a free-space scenario, as the one we treated until now, the CSI is strongly
related to the position of the transmitter, receiver and RIS. In fact, in a
free-space scenario, fixed the transmitter and the RIS positions, a particular
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phase profile of the cascaded channel h is associated to any user position.
According to this, the CSI estimation can be useful also to localize the user
position.
Anyway, without knowing the coordinates of the transmitter and the RIS, it
is not possible to trace back from the cascaded channel to the user position
because a generic phase profile of h is obtained by the combined effect of the
channels hTR and hRU. Because of the CSI is related to the positions of the
transmitter, receiver and RIS, this is perfectly in line as previously said: as
without the knowledge of the transmitter and the RIS positions we can not
get an estimate of the channels hTR and hRU, but only their cascaded h,
at the same way it is not possible to trace back to the transmitter/receiver
position from the knowledge of the cascaded channel.

4.6.1 A method to estimate the user position

In the hypothesis to know the transmitter and RIS positions, and after es-
timating the cascaded channel (for example, with the ML criterion), it is
possible to estimate the user position making a comparison between ĥ and
all the possible cascaded channel vectors associated to all the possible posi-
tions of the receiver. In particular, knowing the position of the transmitter
and the RIS, it is possible to calculate the cascaded channel vector for any
user position and collect the results into a look-up table. So, fixed a number
P of the total possible different positions of the user taking into account, a
loop-up table is created saving the P vectors calculated.
In reality, it is possible to estimate the position of the receiver even without
estimating the channel directly: it is sufficient to save in the loop-up table
the global channel effect g for every user position and compare them with
(theoretically) a single collected measure ĝ made by the receiver.
In order to evaluate this approach, we are going to consider and simulate
the same scenario described until now, considering the position of the user
variable inside the room.
In order to create the loop-up table, we need to select a grid representing the
possible positions for the receiver, taking into account that a grid too large
slows down the calculation times. In our simulations, we divide the room
into a grid with a step equal to 10 cm, remembering that this is also the
maximum resolution that we can have. So, after choosing the number K of
pilot tones to send and the RIS configurations, we can collect K measure-
ments of g, saved in a vector ĝ, in order to compare them with the values
saved in the loop-up table.
We can schematize the algorithm as follows:
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1. Select the number P of the cascaded channels to save in the look up-
table;

2. Select the number K of pilot signals;

3. Select K different configuration of the RIS, one for every pilot signal
(it can be the same also);

4. Create a look-up table G of dimension P × N , where the generic ith
row represents the cascaded channel vector related the ith position of
the receiver;

5. The receiver collects K noisy measurements of g, represented in the
vector ĝ;

6. The receiver calculates the norm of the difference between every row of
G and ĝ;

7. The receiver estimates its coordinates selecting those that refer to the
position that gave rise to the least difference.

4.6.2 Position maximum likelihood estimator

In order to simulate this approach in the same scenario, we consider:

• A grid with a step equal to 10 cm;

• K = 30;

• A random configuration of the RIS (that it remains the same for every
pilot signal);

Repeating the algorithm for 1000 random positions of the user inside the
room, and considering 100 Monte Carlo iterations for every problem in order
to mediate the noise effect, we obtain the following result shown in figure
4.14, which shows the empirical cumulative distribution function (CDF) of
the root mean square error (RMSE) of the position estimation. As we can
see, a RIS with more elements allows to better estimate the position of the
receiver. This result is in agreement with the fact that having more elements
is equivalent to having an increasingly unique phase profile that permits to
be more robust on noise.
Since the estimation error also depends on how fine the grid of positions is,
we can repeat the same simulation considering a new grid with a step equal
to 20 cm. The results are shown in figure 4.15.
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Figure 4.14: CDF of the position estimation RMSE considering 1000 random
positions of the user, a grid with step equal to 10 cm and a RIS composed
by N reflecting elements.
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Figure 4.15: CDF of the position estimation RMSE considering 1000 random
positions of the user, a grid with step equal to 20 cm and a RIS composed
by N reflecting elements.

Making a comparison between the results in figure 4.14 and 4.15, we can
plot them together (figure 4.16).
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Figure 4.16: Comparison between CDF of the position estimation RMSE
considering 1000 random positions of the user and a grid with step equal to
10 cm and 20 cm.

The results obtained indicate with that large RIS it is possible to localize
with sub-meter accuracy in more than 90% of locations without the need
of deploying more base stations as required in the conventional positioning
system. In order to see what happens with a grid with few positions, we
repeat the simulation considering a step equal to 1 meter. The results are
shown in figure 4.17. As we can see, this approach for the estimation of the
user position is valid only with sufficient fine grids.
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Figure 4.17: CDF of the position estimation RMSE considering 1000 random
position of the user and a grid with step equal to 1 meter.
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Chapter 5

Conclusions and perspective

The thesis activity developed is about the study of RIS-assisted wireless net-
works. One of the main problems of these networks has always concerned the
estimation of the CSI due to the high number of pilot tones required, even
in the simplest SISO systems. After having analyzed the main approaches
present in literature regarding the channel estimation, we have presented a
novel algorithm, based on the ML criterion, able to estimate the CSI with a
reduced number of pilot tones. In fact, how shown in our simulations, the
approach proposed allows to obtain a good estimate of the channel with only
10/15% of the pilot tones required by the main optimal approaches studied.
Furthermore, considering that the channel estimation problem is strictly re-
lated to the user position, it was also possible to adapt the algorithm to
estimate the position of the receiver without the need of any anchor node
(as it is necessary in current real-time location system). The idea of adopt-
ing a RIS to assist the communication in order to improve the SNR at the
receiver is probably the future of the next communication systems based on
frequencies of the order of terahertz, as it represents a simple and economi-
cal solutions, which does not require additional hardware and which reduce
wasting power.
It can be interesting to extend our channel estimation approach also for the
MIMO case and to think of a strategy applicable for multiple users and/or
multiple RIS.
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