
Alma Mater Studiorum · Università di Bologna

SCUOLA DI SCIENZE

Corso di Laurea Magistrale in Informatica

Multi-node Fault Classification

using Machine Learning

Supervisor:

Professor Zeynep Kiziltan

Presented by:

Vito Vincenzo Covella

Co-supervisors:

Dr. Alessio Netti

Dr. Alina Ŝırbu

III Session

2019-2020

Contents

Acknowledgements iii

Sommario iv

Abstract vi

1 Introduction 1

1.1 Area of research . 1

1.2 Research motivation and goals . 2

1.3 Contributions . 3

1.4 Thesis structure . 4

2 Background 5

2.1 HPC systems . 5

2.1.1 Architectures . 6

2.1.2 Software and programming models . 8

2.2 Preliminaries . 8

2.2.1 Definitions . 8

2.2.2 Decision trees and random forests . 9

2.2.3 Gaussian mixture models . 10

2.2.4 Evaluation metrics . 10

2.3 State of the art . 12

3 Dataset 16

3.1 Data acquisition . 16

3.2 Data preparation . 18

4 Methodology 21

4.1 Single-node baseline . 21

i

Contents ii

4.2 Multi-node fault classification . 21

4.2.1 The number of training nodes . 22

4.2.2 The actual training nodes . 22

4.2.3 Metaparameters . 24

5 Experimental study 26

5.1 Experimental setup . 26

5.2 Initial experiments . 30

5.3 Feature selection . 32

5.4 Other metaparameters and the number of training nodes 33

5.5 The actual training nodes . 45

5.5.1 One single node . 46

5.5.2 Two nodes . 48

5.5.3 Three nodes . 50

5.5.4 Four nodes . 52

5.5.5 Five nodes . 55

5.5.6 Discussion of results . 60

6 Conclusions and future work 61

6.1 Summary . 61

6.2 Future work . 62

6.3 Conclusions . 62

Appendix 69

Acknowledgements

Before presenting to you the work we did for this thesis, I’d like to spend some time to thank

some people that have helped me through this journey.

First of all I’d like to thank my supervisor Professor Zeynep Kiziltan and my co-supervisors,

Dr. Alessio Netti and Dr. Alina Ŝırbu, for having guided me through the work done for the

thesis and for having inspired me. Even though we were limited by the pandemic and interacted

only through Skype and emails, I really liked discussing with them about the results and about

how to tackle the problems we encountered; I hope the inspiration and advice they gave me

help me become a better computer scientist. Dr. Alessio Netti deserves special credits also for

having acquired the dataset at LRZ.

I’d also like to thank some of my friends, in particular Alessandro Lopez, Giuseppe Antonio

Nanna and Patrizia Castellaneta.

A special thanks goes also to the Telegram community called “Jacksoft Labs”, where we

discussed in a light-hearted way about Computer Science and various other topics.

I’d also like to thank my family for having supported me during troubling and difficult times,

in particular my father Nicola Covella and my mother Beatrice Catucci, my aunt Rosa Catucci

and my cousins Nunzio Nanna and Ortenzia Ludovico.

Finally a special thanks goes to all the researchers that worked on the topic before me and

to the Open Source community that built the libraries we used throughout the work; as Isaac

Newton said, “if I have seen further it is by standing on the shoulders of giants”.

iii

Sommario

Un sistema ad alte prestazioni (HPC - High Performance Computing), cioè un sistema con molta

più potenza computazionale di un generico sistema, è composto da differenti sezioni e molti nodi

di computazione. In un sistema cos̀ı complesso gli errori e i malfunzionamenti possono verificarsi

per differenti ragioni: a causa dell’ interazione fra i componenti, a causa di specifiche tecnologie

usate per massimizzare il rapporto performance/costi o a causa di bugs nel software. In ogni

caso, per raggiungere le performance tipiche di un sistema Exascale e garantire disponibilità e

affidabilità è importante rilevare e correggere queste anomalie. In questa tesi proponiamo un

metodo di classificazione degli errori basato su machine learning.

Altri ricercatori hanno già lavorato su questo campo, ma il loro lavoro si basa principalmente

su modelli specifici per ogni nodo. Tuttavia, siccome le operazioni di fault injection e addestra-

mento non sono scalabili quando il numero dei nodi aumenta, la creazione di modelli specifici

per ogni nodo è impraticabile perché richiederebbe troppi dati e la fault injection diventerebbe

difficile da controllare ed effettuare. Per questo motivo la nostra ricerca si basa su modelli

generici singolarmente usati su vari nodi (multi-node models), dato che per questi modelli c’è

meno sforzo operazionale nella fase di addestramento e il costo di mantenimento nel tempo è

minore. Nello specifico, la nostra metodologia propone non solo tecniche di esplorazione dei

metaparametri, ma si concentra anche su quanti nodi sono necessari per la fase di addestra-

mento e quali specifici nodi siano i migliori candidati. Per queste ragioni, confrontiamo due

approcci: addestramento incrementale con nodi selezionati randomicamente e addestramento

incrementale con nodi che rappresentano un prescelto numero di clusters. In entrambi i casi il

risultato è un singolo modello generico che può essere usato su differenti nodi per la fault detec-

tion (rilevazione degli errori). L’idea di base consiste nell’avere un singolo modello multi-node

che sia abbastanza generico da poter lavorare su nuovi dati che provengono da diversi nodi.

Usando il dataset reso disponibile da LRZ, che contiene i dati di 32 nodi, mostriamo che

le prestazioni di classificazione si stabilizzano quando si usa un piccolo sottoinsieme di nodi

nel training set e che entrambi i metodi precedentemente discussi superano le performance di

modelli specifici per ogni nodo qualora si usi più di un nodo nella fase di addestramento. Infine

mostriamo che l’approccio basato sul clustering è più affidabile e stabile qualora si usino più

iv

Chapter 0. Sommario v

nodi di addestramento, mentre l’approccio randomico permette di ottenere migliori risultati

qualora si usi un numero minore di nodi di addestramento.

Abstract

An High Performance Computing (HPC) system, which is a system with much more computa-

tional power than general computing systems, is a complex system made up of different sections

and many computing nodes. In such systems failures and malfunctions can arise for different

reasons: because of the interactions among the components, because of the specific technologies

used to have an high performance/cost ratio or because of bugs in the software. In any case, in

order to reach Exascale performances and guarantee availability and reliability it is important to

detect and recover from these anomalies. In this thesis we propose a fault classification method

based on machine learning.

Other researchers have already worked in this field, but their work mainly relies on per-node

models. However, since both fault injection and training do not scale well when the number

of compute nodes increases, per-node models are impractical because they require too much

data and fault injection would be hard to control. For this reason our research involves single

multi-node models, since for single general models there’s less operational effort for training and

maintaining the model over time is easier. More specifically our methodology is focused not

only on metaparameter exploration, but also on understanding how many nodes are necessary

for training and which specific nodes are the best candidates. For these reasons, we compare

two approaches: incremental training with nodes selected randomly and incremental training

with nodes which are representative of a chosen number of clusters. In both cases the end result

is a single general model that can be used on different nodes for fault detection. The idea is

to have a single multi-node model that generalizes well enough to work on novel data coming

from different nodes.

Using the dataset provided by LRZ, which consists of data about 32 compute nodes, we

show that the classification performances stabilize when using a small subset of compute nodes

as training set and both the previously discussed selection methods outperform node-specific

classifiers when using more than one training node. Finally we show that the clustering approach

is more reliable and stable when using more training nodes, while the random approach gives

better performances when using a lower number of training nodes.

vi

Chapter 1

Introduction

In this chapter we will introduce the work done for this thesis. More specifically, this chapter

is organized as follows: Section 1.1 will introduce the area of research in which we operated.

Section 1.2 will present the research motivation and the goals we wanted to achieve. Section 1.3

will list our contributions to the research field. Finally Section 1.4 will present how the thesis

is structured.

1.1 Area of research

Supercomputers and High-Performance Computing (HPC) systems, which are systems with

much higher performances than general computers, are widely used to drive modern scientific

discoveries in many fields, such as Big Data analysis, particle physics, bioinformatics and cos-

mology. Scientists and engineers are trying to build Exascale (1018 floating point operations

per second) systems exploiting the use of faster processors and massive parallelism [Wa10].

HPC systems that aim to reach Exascale performances are built using lots of cores and

various technologies, such as advanced low-voltage technologies (that tend to be more prone to

ageing effects) [BBC+08] and dynamic voltage frequency scaling. Such technologies are used to

lower the energy consumption of an increasingly high number of components while maintain-

ing high performances. The use of an increased number of components with the technologies

previously described is one of the factors that lead to increased fault rates [HE17]. Moreover

in such complex systems faults and anomalies can also arise from hardware that breaks, incor-

rect configurations and bugs contained in the software used. Nowadays HPC systems based

on the cluster architecture are also made up of multiple nodes and multiple sections (the fron-

tend section, the backend section, the computing nodes and the networking infrastructure) [Net],

meaning that the possibility of having a fault arises due to the complex interactions among these

1

Chapter 1. Introduction 2

sections. Moreover economic forces push the designers to build HPC systems using commodity

components aimed at mass market, which can improve the likelihood of having faults [NKB+20].

Finally HPC system users must also take into account the interaction between Open Source

software, modern software and legacy software; these interactions can be another component

that leads to faults and errors.

Faults and anomalies can lead to sub-optimal performances and prevent applications from

making progress. They can also hinder the availability and reliability required by the systems

used by the scientific community, data centers and cloud providers.

Modern HPC systems also have monitoring frameworks, such as DCDB [NMA+19], in order

to store information coming from sensors which can be useful to guide the process of fault

detection and analyze the performance variation of the HPC system.

1.2 Research motivation and goals

Due to to the system’s complexity previously described, the amount of data stored by monitoring

frameworks is huge and analyzing it manually is a daunting and impractical task. For these

reasons it is important to have automated tools not only for logging but also for fault detection,

in order to be able to detect the faults and correct them before they lead to failures and service

disruption. This is vital to have resiliency mechanisms and to achieve Exascale performances.

The work presented in this thesis involves performing fault classification by exploiting the

use of supervised machine learning techniques. This has already been done by some researchers,

such as by Netti et al. in [NKB+20], but only at node-specific level. They showed successful

results in fault injection, using the novel FINJ tool, and in fault classification with a random

forest model on the Antarex dataset1 and using 22 statistical features for each metric in the

system. However traditional node-specific fault detection methods, such as the one mentioned

before, may not scale up well in modern HPC systems, instead they can become more costly

to build and maintain and thus less effective in their job since the number of computing nodes

in HPC systems keeps increasing. For these reasons, instead of focusing on models tailored

on specific compute nodes, as others in the research field have already tried, we focused on

building a single general multi-node model. This problem can be challenging since we have

to mitigate the problems that can arise from the presence of different characteristics in each

computing node. Focusing on multi-node models means that training is performed on a specific

set of computing nodes and testing is done on different computing nodes. The main idea is

to explore different techniques that will lead to the identification of the minimal set of best

1https://zenodo.org/record/2553224

https://zenodo.org/record/2553224

Chapter 1. Introduction 3

computing nodes to perform training in order to create a single general model, which will be

able to provide good classification performances even on different computing nodes. Multi-node

models would be ideal because they are easier to build and maintain as the number of nodes

scales up and may outperform node-specific models.

For the previously mentioned reasons, new methods for fault detection should focus not only

on accuracy but also on scalability. Thus the multi-node aspect of fault detection becomes

very important in order to achieve peak performances in such complex systems.

After acquiring and using the dataset about the CooLMUC-3 HPC2 system, provided by

LRZ and made up of data about 32 compute nodes, we wanted to develop a methodology for

finding the best metaparameters of the model and for building such multi-node models. More

specifically, we wanted to develop a methodology for finding the right amount of training nodes

needed to achieve good classification performances and for finding which specific nodes to use.

1.3 Contributions

After having acquired the dataset about the CooLMUC-3 HPC system provided by LRZ, we

processed the data in a specific way in order to obtain the best signatures, that is the way

to obtain the best feature vectors, relying on our previous work done during the internship

[Cov20]. We then performed some initial experiments in order to compare the results with the

baseline obtained in our previous work. Then we performed feature selection, in such a way to

save up space without compromising the classification results, and metaparameter exploration,

since we wanted to understand how normalization, shuffling, class balancing and subsampling

can influence the results. Finally we designed a methodology for multi-node fault detection,

that is a strategy to find out how many nodes are needed during the training phase and which

specific nodes to choose. This is important since using all the nodes is not a scalable option and

the memory and time requirements would be too high. Moreover choosing wisely the training

nodes is important in order to have a model that generalizes well enough to work on novel data.

Indeed each compute node can be configured differently or have its own peculiar hardware.

Moreover the computation in the cluster may be imbalanced, using heavily some nodes but

using very little resources of some other different nodes. This can happen because of particular

configurations of the job scheduler or because of many different other reasons, such as the

peculiarity of the applications executed. The imbalance would surely influence the sensors’

readings, which are used as metrics for building the features of the classification model. Moreover

different sensors’ readings may be obtained because of hardware performance variability, as

2https://doku.lrz.de/display/PUBLIC/CoolMUC-3

https://doku.lrz.de/display/PUBLIC/CoolMUC-3

Chapter 1. Introduction 4

pointed out by Inadomi et al. [IPI+15]. Despite this challenge, building a single general multi-

node model that generalizes well enough for all computing nodes is still an important research

topic because of the reasons explained in Section 1.2, and it is the main scientific contribution

of this thesis.

To tackle these challenges we considered running incremental experiments with nodes chosen

randomly inside a pool of training nodes and incremental experiments with nodes chosen with

a clustering-based approach, whose aim is to identify candidate nodes which are representative

of each cluster.

To summarize, our contributions are the following ones:

• a comparison between node-specific models and single general multi-node models;

• finding the number of training nodes for achieving good performances with multi-node

models;

• a comparison between two novel techniques for selecting training nodes in order to build

a single general multi-node model: incremental random approach and clustering-based

approach.

1.4 Thesis structure

In Chapter 2 we will introduce some background information, a summary of related work on

the topic of fault classification and what’s new and original in our work.

In Chapter 3 we will describe the dataset used throughout the thesis and we will also

present the details on how the data has been acquired and how it gets processed in order to

obtain the final feature vectors.

In Chapter 4 we will introduce the methodology for multi-node fault classification.

In Chapter 5 we will present the experiments and their results, along with the experimental

setup and the hardware used to execute these experiments.

Finally we will discuss the conclusions and possible further future developments on the topic.

In the Appendix we will add the information about the libraries and code used.

Chapter 2

Background

In this chapter we will describe the background needed to understand the rest of the thesis and

introduce the related work in the field we are interested in.

The chapter is organized as follows: in Section 2.1 we will introduce a definition of HPC

system, the main architectures emerged throughout the years of research and the frameworks

used. In Section 2.2 we will introduce the machine learning background needed to understand

the thesis and the algorithms used, along with some basic definitions of terms used throughout

our work. In Section 2.3 we will explore the prior works done in the field of fault classification

and emphasize what’s new and original in our research work.

2.1 HPC systems

While there is no formal definition, an High-Performance Computing system (HPC), often called

“supercomputer”, is a computing system with a level of performance which is much higher than

a general-purpose computer.1 Indeed usually the applications executed on an HPC system

require a huge number of computational and memory requirements that cannot be satisfied by

using a common Personal Computer.2 Speed, scalability and flexibility are key aspects for an

HPC system. Their performance gets usually measured in FLOPS (floating-point operations

per seconds) and researchers are trying to build powerful systems trying to achieve Exascale

performances (1 exaFLOPS: 1018 FLOPS).

HPC systems are used for solving problems in a wide range of fields: from Big Data analysis

to bioinformatics and, in general, to try to tackle NP-hard problems. Over the years, many

architectures have been proposed, from vector processors based on SIMD to clusters.

1https://en.wikipedia.org/wiki/Supercomputer
2http://www.hpcadvisorycouncil.com/pdf/Intro_to_HPC.pdf

5

https://en.wikipedia.org/wiki/Supercomputer
http://www.hpcadvisorycouncil.com/pdf/Intro_to_HPC.pdf

Chapter 2. Background 6

2.1.1 Architectures

The first systems, such as the Cray 1, were based on vector processors which relied on the

SIMD (Single Instruction Multiple Data) paradigm [HW10]. This paradigm is based on the

assumption that a single instruction is applied to a large number of arguments of the same

type, that is a vector. This approach is ideal for achieving peak performances for “vectorizable”

code.

However the previously mentioned kind of architecture fell out of favour with the rise of

powerful RISC-based massive parallel machines [HW10]. However MPP (Massive Parallel Pro-

cessors) had an high cost and low performance despite their price.

Then the trend moved to the use of SMP (symmetric multiprocessors) systems, which make

use of a small number of RISC processors tightly integrated in a cluster. With this kind of

architecture, there were two basic way to access the memory: S-COMA (Simple Cache-Only

Memory Architecture) and ccNUMA (cache coherent Non Uniform Memory Access). This

means that these systems fell into the category of SM-MIMD systems (Shared Memory - Multiple

Instruction Multiple Data) [VdSD95]. Figure 2.1, taken from [VdSD95], shows how these kind

of systems looked like.

Figure 2.1: SMP SM-MIMD HPC systems.

However since the previously mentioned architecture suffers from scalability and distributed

computing was difficult to use in the context of parallel performances3, modern HPC systems

have moved to an architecture based on clusters. The adoption of clusters, which are collection of

workstations/PCs or servers connected by a local network, has exploded since the design of the

first Beowulf cluster in 1994. This is due to the fact that for such systems there’s a (potentially)

low cost for both hardware and software, but at the same time there is high possibility for the

users to control and customize their systems [VdSD95].

3http://www.hpcadvisorycouncil.com/pdf/Intro_to_HPC.pdf

http://www.hpcadvisorycouncil.com/pdf/Intro_to_HPC.pdf

Chapter 2. Background 7

Clusters proved to be more affordable, cost effective and scalable than specialized systems,

while maintaining a reliable architecture. Figure 2.2 shows how a typical cluster architecture

looks like.

Figure 2.2: Clusters architecture, taken from http://www.hpcadvisorycouncil.com/pdf/

Intro_to_HPC.pdf.

Modern cluster-based HPC systems try to optimize each part of their architecture: the

frontend section, the backend section, the computing nodes and the networking infrastructure

[Net]. The frontend section is the one the users interact with, while the backend section is

responsible for the control, management of the system and job dispatching. The computing

nodes are the ones that are mainly used for executing the jobs and provide the computational

power of the system. The network infrastructure is also another vital component for the HPC

system and during the years of research various technologies have been used to speed up the

transmission of the data in clusters, from Infiniband to three-dimensional torus interconnections

[Kni07, ABC+05].

Modern HPC systems based on the cluster architecture can be very huge and complex:

in Bologna researchers are building a 250 Pflops (250 trillion operations per second) system,

called Leonardo, equipped with 1536 servers with Intel Xeon Sapphire processors, 3456 servers

equipped with Intel Xeon Ice Lake and NVIDIA Ampere architecture GPUs and using NVIDIA

Mellanox HDR InfiniBand connectivity.4 The architecture will be based on 5000 computing

nodes.5 This system, which is estimated to be built by the end of 2021, will outperform the

HPC system called Marconi100, which in June 2020 was ranked in the ninth position on the

global TOP500 list of the world’s most powerful supercomputers.6

4https://www.cineca.it/en/hot-topics/Leonardo-announce
5https://www.cineca.it/en/our-activities/data-center/hpc-infrastructure/leonardo
6https://www.top500.org/lists/top500/2020/06/

http://www.hpcadvisorycouncil.com/pdf/Intro_to_HPC.pdf
http://www.hpcadvisorycouncil.com/pdf/Intro_to_HPC.pdf
https://www.cineca.it/en/hot-topics/Leonardo-announce
https://www.cineca.it/en/our-activities/data-center/hpc-infrastructure/leonardo
https://www.top500.org/lists/top500/2020/06/

Chapter 2. Background 8

2.1.2 Software and programming models

Besides benchmark applications such as the famous LINPACK [DBMS79], the applications

that run on HPC systems are developed using various techniques, depending on the type of

architecture that it is addressed.

Shared-memory parallel programming models can make use of OpenMP7, while distributed-

memory systems must rely on Message Passing Interface (MPI), since there’s no way for a

processor to address the memory assigned to another processor. However MPI can also be

viewed as a programming model and also be used on shared-memory or hybrid systems [HW10].

2.2 Preliminaries

2.2.1 Definitions

First of all a definition of fault is needed: Gainaru et al. define a fault as an anomalous

behaviour at the software or hardware level that can lead to illegal system states (errors) and

to service interruptions (failures) [GC15]. In this thesis we are interested in the automatic

detection of these faults via supervised machine learning techniques [Mit99]. Alpaydin [Alp20]

defines machine learning as the series of programming techniques used in order to optimize

a performance criterion using example data or past experience. The program, usually called

model, optimizes its parameters during the learning phase and it can then be used to either

make predictions (predictive model) or gain knowledge from the data (descriptive model), or

both.

Supervised techniques make use of labelled data during the training phase. More specifically,

each data point supplied to the learning algorithm is tagged with the class it belongs to. In

more simple and precise terms, supervised learning consists in using a collection of input-output

pairs in order to learn a function that predicts the output for new inputs [RN+13]. As the title

of the thesis suggests, we will deal with classification, that is automatically identifying to which

category (also called label or tag) an input belongs; this is a common task solved by supervised

learning.

Instead unsupervised learning [Mit99, MMC13] requires data containing only the features

that describe the system state, without labels; useful properties about the data and its structure

will be learned by the algorithm. Clustering is the automatic identification of different groups

of inputs such that each group is made up of input points that share some common properties;

clustering is a common task that can be approached using unsupervised techniques.

7https://www.openmp.org/specifications/

https://www.openmp.org/specifications/

Chapter 2. Background 9

Finally semi-supervised techniques rely on partially labelled data.

Sometimes we will refer to the term overfitting : overfitting happens when the model is too

complex and specialized over the peculiarities of the training data given as example. Basically

it relies too much on the examples, on which it works very well, but it doesn’t generalize well

enough for working on new novel data.

We will also refer to the process of feature selection, which is the process of selecting a

subset of the available features in order to save up memory space and prevent overfitting,

without compromising the evaluation metric used for the classification results (in our case, the

F1-score). Feature selection can be done by hand with expert knowledge (especially when the

number of total features is low) or automatically via algorithms.

For training and testing we will refer to two strategies: splitting the dataset in training and

testing set (for example 60% as training and 40% as testing set) and k-fold cross validation; this

last approach is based on dividing the set of observations into k groups, or folds, of approximately

equal size. The first fold is treated as a validation or test set, and the model is trained on the

remaining k − 1 folds [JWHT13].

Some of the datasets used in the literature for this topic are obtained via fault injection,

that is the deliberate triggering of faults and anomalies in a computing system done in order to

observe the behaviour of the system in a controlled environment [HTI97].

2.2.2 Decision trees and random forests

A Decision Tree is a model based on supervised learning; each node in the tree represents a

test on the value of one of the input attributes, while the branches from the node are labelled

with the possible values. The leaves of the tree are labelled with the value returned by the

learned function [RN+13]. Usually the algorithms used to learn this kind of models make use

of the concepts of information gain and entropy [SW98]. Russel et al. [RN+13] define entropy

as a measure of uncertainty of a random variable and say that the acquisition of information

corresponds to the reduction of entropy.

The goal of many algorithms designed to build Decision Trees (such as ID3 [Qui86], C4.5

[Qui14], CART [BFSO84], etc.) is to design the tree in such a way to minimize the depth of

the tree. The main idea is to choose each time the attribute that goes as far as possible toward

giving an exact classification of the example provided.

The Random Forests are an example of ensemble learning : instead of training one single

Decision Tree, training happens on many Decision Trees, each on a random subset of training

set or a random subset of the input features, then their predictions get combined (for example

Chapter 2. Background 10

using the mode of the classes for classification or the mean/average prediction of individual tree

for regression) [Alp20, Ho95, Ho98]. Random Forests models, along with decision tree pruning,

can mitigate the overfitting problem typical of Decision Trees.

2.2.3 Gaussian mixture models

A Gaussian Mixture Model is a probabilistic model that assumes that the data given as input

belong to a mixture of a finite number of Gaussian distributions with unknown parameters

[PVG+11]. Thus the GMM model can be used for clustering and the most common algo-

rithm used for optimizing the parameters is the expectation-maximization (EM) [YSM11, XJ96,

DLR77].

GMM models have been the preferred over K-means in various papers. For example, Patel

et al. found out that Gaussian Mixture Models perform better than K-Means, because, in the

context of cloud workloads, they can discover complex patterns and group them into cohesive,

homogeneous components that are close representatives of real patterns within the dataset

[PK20]. Moreover Ozer et al. [ONTS20] successfully used GMM models to characterize the

performance of an HPC system’s components and identify anomalies using sensor data.

2.2.4 Evaluation metrics

Throughout the work done for the thesis we exploited the use of these evaluation metrics:

F1-score, sensitivity (also called recall), specificity, false positive rate and false negative rate.

Given the following confusion matrix in Figure 2.3, here we will define each evaluation

metric; in the following equations TP stands for True Positive, TN for True Negative, FP for

False Positive and FN for False Negative.8 As can be seen, the confusion matrix is a table

organized as follows: each row represents the instances in a predicted class, while each column

represents the instances in an actual class [Pow08].

Figure 2.3: Confusion Matrix.

8https://en.wikipedia.org/wiki/Sensitivity_and_specificity

https://en.wikipedia.org/wiki/Sensitivity_and_specificity

Chapter 2. Background 11

Sensitivity (also called recall or True Positive Rate, TPR) is the proportion of true

positives that are correctly identified by the test [AB94]. It is calculated as follows:

sensitivity =
TP

TP + FN
(2.1)

Specificity (also called True Negative Rate, TNR) is the proportion of true negatives

that are correctly identified by the test [AB94]. It is calculated as follows:

specificity =
TN

FP + TN
(2.2)

Before introducing F1-measure, we have to talk about precision. Precision denotes the

proportion of predicted positive cases that are real positives [Pow20]. Precision is calculated as

follows:

precision =
TP

TP + FP
(2.3)

F1-score (or F1-measure) is a way for combining both precision and recall, since it’s their

harmonic mean. It is calculated as follows:

F1 = 2 · precision · recall
precision+ recall

(2.4)

The False Positive Rate, which can be interpreted as the probability of false alarm, is the

proportion of all negatives that still yield positive test outcomes and it is calculated as follows:

False Positive Rate =
FP

FP + TN
(2.5)

The False Negative Rate, also known as miss rate, is the proportion of positives which

yield negative test outcomes with the test and it is calculated as follows:

False Negative Rate =
FN

TP + FN
(2.6)

Finally the accuracy, which is the measure of all correctly identified classes, is calculated

as follows:

accuracy =
TP + TN

TP + TN + FP + FN
(2.7)

In our work we used mainly the F1-measure instead of the accuracy, because the F1-measure

tends to take into account how the data is distributed and is useful when there’s imbalance

among the classes in the data. Moreover it’s a good trade-off between precision and recall.

Chapter 2. Background 12

2.3 State of the art

Previous work of other researchers

Tuncer et al. [TAZ+17] leverage resource usage and performance counter data collected during

application runs by a monitoring framework instead of relying on log files. This data is then

converted in statistical features, such as percentiles, standard deviation, skewness, kurtosis, serial

correlation, linearity and self-similarity, that are able to summarize the system’s state. These

features are then supplied to different ML algorithms in order to classify the behaviour of the

system.

Baseman et al. [BL16] use a similar approach, more specifically their work is based on a

statistical technique called classifier-adjusted density estimation. They then use a random forest

classifier in order to rank how anomalous a specific data point is.

Other scientists focused on reducing the dimension of the collected data without hindering

too much the classification performances. Bodik et al. [BGF+10] used a specific representation

of the system state called a fingerprint, which is based on quantiles related to different time

epochs. Netti et al. [NTOS20] proposed a way to compute a compact representation, called

a signature, from multi-dimensional time series data based on the Correlation-Wise Smoothing

method. The researchers showed that this method is useful not only for having a compact repre-

sentation of the system’s status (that can be used by ML algorithms), but also for visualization

purposes, since the signatures produced can be visualized as heatmaps.

Another important source of inspiration for the work done in this thesis is the paper written

by Netti et al. [NKB+20], where they presented FINJ, a novel tool for fault injection, and

performed fault injection and fault classification on the Antarex dataset9. In this work the

researchers injected 8 faults in the system and then used various classification models to per-

form fault classification. More precisely they made experiments using a Random Forest (RF),

Decision Tree (DT), Linear Support Vector Classifier (SVC) and a Neural Network (NN) with

two hidden layers, each having 1000 neurons. The feature vectors were created via aggregation;

each feature set corresponded to a 60s aggregation window and was related to a specific CPU

core, while the time step between consecutive feature sets was 10s. For each metric they com-

puted several statistical measures over the distribution of values within the aggregation window.

These measures were average, standard deviation, median, minimum, maximum, skewness, kur-

tosis, and the 5th, 25th, 75th and 95th percentiles. The best classifier was the RF model, with

an overall F-score of 0.98. This is the reason why throughout the work done for this thesis the

9https://zenodo.org/record/2553224

https://zenodo.org/record/2553224

Chapter 2. Background 13

main model used for classification was the RF model.

As for clustering, we were inspired by the work of Ozer et al. [ONTS20], where they use

Bayesian Gaussian Mixture Models in order to characterize the performances of an HPC sys-

tem’s components and identify anomalies using sensor data. For the CPU core-level analysis

they exploited the use of instructions and cache-misses metrics. Instead for the compute node-

level analysis they focused on power consumption, temperature and CPU-idle time. Finally for

the rack-level analysis they used the water’s inlet temperature in the racks, its return tempera-

ture and the amount of heat removed from the racks quantified in Watts. Moreover they were

able to detect outliers exploiting the use of the Mahalanobis distance.

Another important work in the field is the one by Borghesi et al. [BBL+19], where they use

a semisupervised technique to perform anomaly detection. More specifically their approach is

based on building an autoencoder which is capable of reconstructing its input. This autoen-

coder is trained on non anomalous data (cpu frequency governor set to conservative) and the

reconstruction error is used to detect anomalous states (belonging to powersave, performance

and on-demand). The researchers also compared the performances of two different models: a

node-specific model and a single general model, that is a single model used for all the computing

nodes. To the best of our knowledge, this is the only prior work done for multi-node models.

As can be seen from the previous paragraphs, most of the research done in the scientific

literature on this topic is based on building a model tailored for a specific computing node.

Instead we wanted to focus on trying to build a single general model for all computing nodes,

mitigating the problems that can arise from the presence of different characteristics in each

computing node.

To the best of our knowledge, there is very little work done on building a single general

multi-node model. Borghesi et al. [BBL+19] did a similar work, but they deal with performance

anomalies that are based on different configurations of the CPU frequency governor rather than

with faults and errors that can cause the disruption of computation. Moreover it is based on

different techniques, more precisely on deep learning with semisupervised technique. The work

by Pecchia et al. [PCKI11] deals with the issues of the tuple heuristic, used to group the error

entries in the log, in multi-node computing systems and doesn’t deal with fault detection using

machine learning. IDÉ et al. [IK04] propose a method for anomaly detection based on multi-

node computer systems relying on principal eigenvector of the eigenclusters of a graph, where

each node represents a service and each edge represents a dependency between services. The

data is then analyzed by their own novel online algorithm that doesn’t use traditional machine

learning or deep learning. In the work by Preuveneers et al. [PRT+18] the researchers show

Chapter 2. Background 14

how incremental updates on a machine learning model can be distributed in a federated learning

environment and chained together on a distributed ledger. However the focus is on intrusion

detection (malicious nodes with malicious behaviour) rather than detection of faults, errors and

anomalies that can disrupt the computation.

The process that leads to the construction of a model that generalizes well for all computing

nodes, using the best minimal set of computing nodes, is the main scientific contribution of this

thesis.

Our previous work

The starting point for the thesis was built up from the internship, whose works began the 22nd

of June 2020 and ended the 7th of September 2020 [Cov20]. During this period we used data

coming from the CooLMUC-3 HPC10 system located at the Leibniz Supercomputing Centre

(LRZ) in Munich, while it was subject to fault injection. This dataset was different from the

one used in the thesis, more precisely it was made up of 7 datasets with faults injected in

them (instead of 32) and instead of PENNANT there was LAMPS. Moreover the datasets were

acquired in separate user jobs, without collecting any sensitive user data. Instead the new

dataset used for this thesis is larger in size and more representative of real systems. More

details can be viewed in the final internship report [Cov20]. We executed different experiments

on computing nodes belonging to different acquisition experiments in order to identify on which

dataset the model performed better. Then the aim was to use various techniques of data

processing and classification in order to improve the classification results and obtain a new

baseline for future works. The work done during the internship was heavily inspired by the paper

written by Netti et al. [NKB+20] (whose work on the Antarex dataset have been described in

Section 2.3) and the results obtained have been used as the starting point for working on the

this thesis.

During the data acquisition phase, several HPC proxy applications were executed. These

applications come from the Coral-2 suite11 and from LINPACK [DBMS79]. More specifically,

they are kripke, AMG, Neckbone, LAMMPS, HPL. Along with these applications, the system

could also be in idle state. The faults, injected using the HPAS framework [AZA+19], were

memeater, memleak, membw, cpuoccupy, cachecopy, iometadata, iobandwidth. Along with these

anomalies, the systems could also be in healthy state.

After many experiments we concluded that the best results have been obtained by computing

the horizontal aggregation of CPU-specific metrics, by computing 11 features per metric and

10https://doku.lrz.de/display/PUBLIC/CoolMUC-3
11https://asc.llnl.gov/coral-2-benchmarks

https://doku.lrz.de/display/PUBLIC/CoolMUC-3
https://asc.llnl.gov/coral-2-benchmarks

Chapter 2. Background 15

by selecting the optimal number of features via RFECV. Minor differences can be observed by

using as labelling strategy either the mode or the most recent fault. Class balancing was also

important in order to get better classification performances. Figure 2.4 shows the best results

obtained at the end of the internship.

a) best results using the mode b) best results using the most recent fault

Figure 2.4: Best results so far with different labelling strategy.

We showed here the final best F1-scores obtained during the internship because they will

serve as a baseline and starting point for the thesis. Moreover the whole process of feature

generation and model configuration will be based on this work.

Chapter 3

Dataset

In this chapter we will introduce the dataset we acquired and prepared for the experiments.

More specifically, the chapter contains the following sections: in Section 3.1 we will talk about

how the researchers of LRZ acquired the data needed for the research. In Section 3.2 we will

describe how we processed the data in order to have the final feature vectors needed in our

experiments.

3.1 Data acquisition

The HPC system

The CooLMUC-3 is made up of 148 nodes, each one of them equipped with 64 cores (4 hy-

perthreads per core), which operate at a nominal frequency of 1.3 GHz, and 96GB of DDR4

memory. The network layer uses Omnipath switches and the infrastructure makes use of water

cooling. The system can reach 459 TFlop/s as peak performance.1

Experimental setup

The data has been collected from the CooLMUC-3 HPC system using DCDB [NMA+19], a

comprehensive monitoring system designed to be scalable and extensible. DCDB also provides

a series of command line tools (libDCDB) in order to make queries on the storage backend

(Apache Cassandra).2

The DCDB framework was configured to sample fine-granularity sensor data (for example

from ProcFS and CPU perfevents) from 32 compute nodes of the system. The collection process

took roughly 48 hours and the dataset does not contain per-CPU core performance counter,

1https://doku.lrz.de/display/PUBLIC/CoolMUC-3
2https://gitlab.lrz.de/dcdb/dcdb

16

https://doku.lrz.de/display/PUBLIC/CoolMUC-3
https://gitlab.lrz.de/dcdb/dcdb

Chapter 3. Dataset 17

because the DCDB framework was configured to compute and store the minimum, maximum,

sum, median, 25th and 75th percentiles for each of them instead, resulting in 167 metrics for

each node.

Benchmark applications

While acquiring the data, several HPC proxy applications coming from the Coral-2 suite3 and

from LINPACK [DBMS79] were executed. The applications and their labels are the following:

20. Kripke: a structured deterministic transport using wavefront algorithms, which stress

both memory and network latency and bandwidth;

21. AMG : a parallel algebraic multigrid solver for linear systems;

22. Nekbone: a compute-intensive mini-app derived from the Nek5000 Navier-Stokes CFD

solver;

23. PENNANT : a mini-app for hydrodynamics on general unstructured meshes in 2D (ar-

bitrary polygons), which makes heavy use of indirect addressing and irregular memory

access patterns;

24. HPL: measures performance in solving a system of linear equations.

Label 0 is used to identify the idle state.

Fault injection

In order to reproduce anomalous conditions the HPAS4 framework [AZA+19], which consists of

a set of synthetic anomalies that reproduce common root causes of performance variations in

supercomputers, has been used. In total seven fault programs are used to simulate anomalies:

they use processes that run in user space and do not require any hardware or kernel modification.

The programs and their labels are the following ones:

1. memeater ;

2. memleak ;

3. membw ;

4. cpuoccupy ;

3https://asc.llnl.gov/coral-2-benchmarks
4https://github.com/peaclab/HPAS

https://asc.llnl.gov/coral-2-benchmarks
https://github.com/peaclab/HPAS

Chapter 3. Dataset 18

5. cachecopy ;

6. iometadata;

7. iobandwidth

Label 0 is used to identify healthy states where no fault is running. The programs cpuoccupy

and cachecopy are used to generate CPU faults, the programs leak, memleak and membw are

used to produce memory faults while iobandwidth and iometadata simulate an I/O fault. More

specifically cpuoccupy affects CPU performance, cachecopy emulates cache contention or cache

lines to be unexpectedly evicted, leak allocates an array of a given size and fills it with random

values, memleak models a memory leak, membw creates contention in the memory bandwidth,

iobandwidth causes contention in the disks of the storage servers and iometadata stresses the

metadata server.

Compared to the dataset used during the internship, the intensity of the iobandwidth and

iometadata faults had to be reduced so as to avoid distrupting the cluster’s operation. All fault

programs are launched on a random subset of 16 up to 32 nodes, except for the iobandwidth

and iometadata faults; these are launched on random subsets of 8 to 16 nodes, hence they will

have roughly 50% less observations than other faults.

3.2 Data preparation

Before analyzing and using the data with Python libraries like Pandas [pdt20] and Scikit-Learn

[PVG+11], we needed to code a pipeline whose purpose was to extract the data from Apache

Cassandra, store it in CSV files, one CSV for each compute node, and then compute feature

vectors from them. Figure 3.1 summarizes the pipeline used for data preparation and described

in the following sections.

Figure 3.1: Data preparation pipeline.

Chapter 3. Dataset 19

Data extraction

The first step consisted in using dcdbconfig in order to obtain the list of all sensors stored in

Apache Cassandra and then using dcdbquery to actually obtain the data of each sensor as a

CSV. To do so, the information stored in the log file of the corresponding SLURM job was used.

Both dcdbconfig and dcdbquery are taken from libDCDB, which is a part of DCDB [NMA+19].

Merging sensor data

In the second phase of the pipeline, we coded a Python script in order to merge the CSVs

previously obtained in a single CSV per compute node. At this stage we introduced various

checks and operations to align the timeseries data and check for monotonic columns, converting

them to their delta equivalent.

Feature generation

For the third stage we coded another Python script whose purpose is to generate feature vectors

for each CSV. This script accepts various command line arguments and allows the user to

compute 11 (or 6, depending on the argument provided) features for each metric in the dataset

and considers different durations for the aggregating window (the default value is 60 seconds).

For our experiments, the indicators used are the average, standard deviation, the 25th and

75th percentiles, the sum of the changes measured within the aggregating window, the last

monitored value for each metric, the minimum and maximum value, the 5th and the 95th

percentiles and the median of the distribution of the values measured within the aggregation

window. Moreover the user can decide which labelling strategy to use (most recent fault running

in the corresponding time window or using the mode, that is the most frequent label in the

corresponding time window).

Efficiency of data manipulation

The previously described scripts underwent various debugging and optimization phases in order

to make them faster and more memory efficient. More specifically, the Bash script used in data

extraction is designed to run different dcdbquery tasks in parallel in background (the number of

parallel tasks can be provided as a command line argument).

The script used for merging sensor data also underwent optimizations and uses wisely

thresholds to merge lists of Pandas’ dataframes. Moreover we understood the various per-

formance implications and memory footprints of some Pandas’ functions, like DataFrame.join,

DataFrame.align and Pandas.merge.

Chapter 3. Dataset 20

Finally, the Python script used for feature vectors generation makes use of the process-

based parallelism using the multiprocessing Python package instead of of using multithreading,

whose performances are limited by the GIL (Global Interpreter Lock). Moreover, to reduce

the memory footprint, the script reads and computes the data from CSV previously obtained

in chunks (the number of lines per chunk can be set as a command line argument), making it

capable of handling large files and large amount of data.

Chapter 4

Methodology

In this chapter we will describe our methodology used during the experimental stage. More

precisely, we want to show how we want to achieve our goals, that is how to perform feature

selection and other metaparameters exploration and how to build multi-node models. In this

last case we need to figure out how many nodes are necessary for the training phase and which

specific nodes to choose. We also want to compare multi-node models against single-node

models.

The chapter is organized using the following sections: in Section 4.1 we will present how to

obtain models for each specific node. In Section 4.2 we will instead focus our attention on the

multi-node case, explaining how we choose good training nodes and the best metaparameters.

4.1 Single-node baseline

In our experiments we want to compare how a single general multi-node model compares to

models specifically tailored for each node. For this reason, it is vital to present how such node-

specific models are obtained: for each node a train-test split is produced; we then train the

random forest model on the training set using only a subset of the features and test it on the

testing set. Then we consider the classification results across all the testing sets and plot some

box plots in order to compare this kind of models with multi-node models. Indeed the results

obtained from node-specific models will be used by us as a baseline during the research, since

we want to see if (and which) multi-node models can outperform them.

4.2 Multi-node fault classification

Multi-node models are classifiers that can be used also for fault detection in nodes which are

different from the ones used for training. As we’ve already said, our aim is to obtain a single

21

Chapter 4. Methodology 22

multi-node model that generalizes well enough in order to be able to obtain good classification

performances on various different nodes. Before solving the issues presented in the following

sections, we identified the compute nodes in which the faults were more balanced, in order to

use them as the training pool. Finally, unless otherwise stated, we executed multiple runs for

the various experiments that will be presented in Chapter 5.

4.2.1 The number of training nodes

In order to reach our goals, one of the issues we had to tackle was how to choose the right

amount of training nodes for the classifier. To deal with this issue we decided to adopt an

incremental approach.

The incremental approach consists in different experiments in which each time we train a

model increasing the number of training nodes by one. The training nodes are chosen randomly

inside a pool of well balanced training nodes. In this way we can observe if the results get

better when the number of training nodes increases; moreover we can also find out if the results

stabilize when using a number of nodes above a specific threshold. This last case would be

very ideal, since it would become easier to find a minimal number of training nodes for our

multi-node classifier.

Choosing the right amount of training nodes is important because we want to develop a

methodology that is scalable; if the number of training nodes required is too high, we would

need to perform fault injection and training on an high number of training nodes, which can

take effort and be time consuming. Instead if the number of training nodes is too low, the

classification performances (such as the F1-measure) can be poor and not optimal.

4.2.2 The actual training nodes

The other issue we had to deal with was how to choose the best specific nodes for training; to

tackle this issue we decided to compare random selection with a clustering-based approach.

Random selection consists of selecting randomly k training nodes from the training pool,

which was a subset of the whole dataset since we restricted this pool to be made up of compute

nodes with well balanced faults.

However random selection doesn’t take into account the peculiarities of each computing

node. Indeed each one of them can have peculiar sensors’ readings because of an imbalance in

the job scheduler or because of how a specific application affects each computing node, using

heavily the resources of some computing nodes and using very little resources of other different

nodes. Obviously all of this will be reflected on the features vectors, which are computed from

Chapter 4. Methodology 23

the metrics and that will be used by the classifier. For this reason we also took into consideration

a more informed strategy for choosing the training nodes, that is the clustering-based approach.

The clustering approach consists of selecting nodes which are representative of k clusters

and use them as training nodes in order to have a model that generalizes better and prevents

overfitting. We performed clustering using Gaussian Mixture Models, inspired by [ONTS20], and

hand-picked the metrics using expert knowledge. We also filtered out specific faults (using only

healthy states) and applications running on the compute nodes; the reason behind this is that we

don’t want the selection process to depend from fault injection, which can be impractical with

an increasing number of compute nodes. We then used the minimal Mahalanobis distance to

identify good candidate nodes. Finally we compared the results obtained with the incremental

random approach, the clustering-based approach and the single-node baseline using mainly box

plots about the evaluation metrics.

The algorithm used for clustering is the following one:

input : Folder containing the dataset

output: candidates: Candidate nodes for each cluster

begin

Select the faults to consider;

Select the applications to consider;

Select the columns/metrics to perform clustering on;

k ← number of clusters/candidate nodes to find;

Choose outlier threshold (optional);

Choose to divide each compute node in half (optional);

for each compute node of the dataset or each half of them do

Filter out the data not needed using the faults and applications to consider;

Compute the averages of each column;

Add the resulting row to df;

end

clusteredDF ← GaussianMixtureModel(df, k);

if Outlier threshold chosen then

clusteredDF ← DetectOutliers(clusteredDF, MahalanobisDistance);

end

candidates ← FindCandidates(MahalanobisDistance, clusteredDF);

end

Algorithm 1: Clustering algorithm.

Chapter 4. Methodology 24

4.2.3 Metaparameters

When we were considering the methodology to follow, we also needed a way to find the best con-

figuration for the metaparameters, which are the subset of the features, normalization, shuffling,

sampling and class balancing.

We already talked about feature selection in Section 2.2.1. It is done to reduce the memory

requirements of the process without impacting negatively on the classification performances.

Without feature selection, we wouldn’t be able to perform experiments on an high number of

training nodes.

Normalization implies the adjustment of values that vary on different ranges to make them

vary inside a common range. This process can be done in different ways, such as using Standard

Score Scaling or Min-Max Scaling.1 We chose Min-Max scaling, which is calculated using the

following equation, where X ′ is the new scaled value, X the old value, Xmin the minimal value

that X can assume, while Xmax is the maximum value:

X ′ =
X −Xmin

Xmax −Xmin
(4.1)

Since random forest models work on thresholds and the metrics may have different ranges,

normalization may help the classifier in such a way to achieve better F1-scores.

Shuffling consists in randomly changing the order of the feature vectors; this technique may

mitigate the negative impact of potential time regions in which some sources of interference

might be present.

Sampling consists in choosing a subset of the feature vectors in order to save up space

without compromising the results. Along with feature selection, it might be useful when we

want to scale up training on an higher number of training nodes.

Class balancing is generally an operation that is used to make all the classes have almost

the same number of instances in the dataset. It is used to prevent overfitting on the most

represented classes in the dataset, which would result in a model with poor F1-scores for the

less represented classes.

As for feature selection, we picked a random node inside the chosen pool of possible training

nodes (under the assumption that any such node can be representative of all the nodes for the

feature extraction process) and used a classifier (Decision Tree) to select only a subset of all the

features.

Regarding the other metaparameters, we executed a single incremental random experiment

(from 1 up to 16 training nodes) for each metaparameter: normalization vs non-normalization,

1https://en.wikipedia.org/wiki/Normalization_(statistics)

https://en.wikipedia.org/wiki/Normalization_(statistics)

Chapter 4. Methodology 25

shuffling vs non-shuffling and finally balancing the test set vs non-balancing the test set (the

training set was always balanced).

We then investigated further the effects of class balancing (both for training and testing set)

and subsampling with multiple runs of incremental random experiments (again each run uses

from 1 up to 16 training nodes).

Chapter 5

Experimental study

In this chapter we will present the experimental results from which we can draw interesting

conclusions.

The chapter is organized as follows: in Section 5.1 we will describe the setup used for the

experiments. In Section 5.2 we will show the results of some preliminary experiments. In

Section 5.3 we will show the results regarding the feature extraction process. In Section 5.4

there will be the results for the process of metaparameters exploration, done in order to get

the best configuration of metaparameters. Finally in Section 5.5 we will compare the results

obtained using incremental random experiments and incremental clustering-based experiments.

5.1 Experimental setup

First of all, we chose a naming scheme for the 32 computing nodes, which goes from N1 to N32.

Then we identified using histograms the most balanced compute nodes, which were the ones

between N9 and N24 (extremes included). For this reason, unless otherwise stated, the training

pool for the multi-node experiments is made up of these nodes, excluding the so called “edge

nodes”. In the multi-node case testing is done on all the nodes, including the “edge nodes”, but

excluding the nodes used for training.

Figure 5.1 shows the difference in faults distribution and balancing between “edge nodes”

(in this case N1) and nodes chosen for the training pool (in this case N15).

26

Chapter 5. Experimental study 27

a) N1 b) N15

Figure 5.1: Histograms of faults in N1 and N15.

Feature generation and selection

As we described in Section 3.2, the script used for feature generation can compute 6 or 11

features per metric. For the following experiments we configured the script in order to use

11 features per metric with an aggregating window of 60 seconds, for a total of 1805 features.

The labelling strategy used is the mode, that is the most frequent label in the corresponding

time window. We decided to adopt this configuration because it resulted in best results in the

experiments done during the internship.

We executed some preliminary experiments using all the available features generated. How-

ever, in order to increase the number of training nodes and avoid problems in space complexity,

it was vital to perform feature selection. This process also helps to avoid overfitting the model.

We performed feature selection on node N15 using two strategies: getting an optimal num-

ber of 16 features using the RFECV algorithm1 and selecting 100 most important features

using the Decision Tree feature importances attribute. In both cases the whole dataset was

balanced using the RandomUnderSampler2 with “majority” technique (the majority class gets

undersampled and its cardinality becomes equal to the one of the minority class). However

when testing the effects of feature selection on the same node, we applied a 60-40 split (60% for

training and 40% for testing) and we performed balancing with the same technique separately

for each set. The evaluation metric used was the F1-score (the overall score is obtained via

weighted avarage).

1https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html
2https://imbalanced-learn.org/stable/generated/imblearn.under_sampling.RandomUnderSampler.

html

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html
https://imbalanced-learn.org/stable/generated/imblearn.under_sampling.RandomUnderSampler.html
https://imbalanced-learn.org/stable/generated/imblearn.under_sampling.RandomUnderSampler.html

Chapter 5. Experimental study 28

At the end, for the next experiments, we ended up using 100 most important features selected

using the latter method because it was a good middle ground between selecting too few very

important features and too many features. Moreover the results showed minimal differences

between the two methods, as we will see in Section 5.3.

Single-node baseline

We conducted the experiments for node-specific models using only 100 most important features

and splitting each node in 60% training set and 40% test set. We didn’t perform any class

balancing in this case. Then for each fault we considered all the results across all the nodes

in order to be able to plot the box plots. The evaluation metrics computed are the F1-score,

sensitivity, specificity, false positive rate and false negative rate. The overall scores are computed

via weighted average.

Configuration of the model

The model used throughout the experiments is the Random Forest Classifier, with 30 estimators

and max depth of 20. This was the best configuration that resulted from prior related works and

from the internship. Unless otherwise stated, a random state of 42 was used in order to ensure

reproducibility. For the multiple runs experiments used for metaparameters exploration, the

random state seed was set to the time the instruction was running, in order to fully randomize

each run.

Exploration of other metaparameters

In Section 4.2.3 we described the general methodology used for setting the metaparameters.

Here we will describe the specific settings.

When using normalization, we normalized the metrics using Min-Max Scaling before com-

puting the feature vectors. When using shuffling, it was performed randomly using 42 as seed

for the single run experiments.

As for subsampling, the following strategy was used: the script used allows the user to

specify the --step parameter that controls subsampling. If this parameter is set to a value

f = 1, no subsampling will be performed on the training set. Otherwise, if f > 1, each time

we pick up a node to be part of the training set, the algorithm picks a feature vector, skips

the next f − 1, picks again a feature vector, and so on. For example, if f = 3, each time we

pick up a node to be part of the training set, we pick feature vectors in lines 1, 4, 7, and so

on. For a file with 166669 vectors, using f = 3 gives us only 55557 vectors. When subsampling

Chapter 5. Experimental study 29

was considered, we used f = 3. We chose this value in order not to be too “aggressive” with

subsampling, but at the same time to obtain a good reduction in memory usage.

Regarding class balancing, the Imbalanced-Learn’s RandomUnderSampler with “majority”

technique was used. When using multiple runs of incremental random experiments we executed

10 runs, each time training from 1 up to 16 nodes.

Clustering

We performed clustering using a web app we coded by exploiting the use of the Streamlit

framework3 in such a way that the user can select the parameters and obtain the results within

minutes, without executing each time a script with different command line arguments.

The clustering process follows 4 stages:

1. Data preparation: for each node, the data is filtered according to the faults and applica-

tions selected by the user and then aggregated computing the mean of each sensor/column

that will be used for the clustering process;

2. Clustering: the data obtained from the previous step is used as input to the GMM model,

that performs clustering;

3. Outlier detection (optional): outliers are detected using the Mahalanobis distance and a

user-defined threshold, this stage is optional and we didn’t use it in the experiments;

4. Candidates identification: nodes representative of each cluster are obtained detecting the

node with minimal Mahalanobis distance within each cluster.

As we said in Section 4.2.2, we selected the metrics used for clustering using expert knowl-

edge, taking inspiration from the work of [ONTS20]. More specifically, we used the cache-

misses.min, instructions.max and power, which are related to memory, CPU and energy con-

sumption. Moreover we filtered the data selecting only the healthy instances and the instances

in which HPL was running. As we’ve already said, we didn’t want the node selection process to

depend from fault injection and the application used should stress all the system components

equally.

We considered clustering only for nodes inside the range N9 to N24 (extremes included),

because these nodes are the most balanced ones. We configured the Gaussian Mixture Model

with default parameters and a random state of 42 (again for reproducibility); however the

number of components to retrieve (which will be the number of clusters) can be user defined.

3https://www.streamlit.io/

https://www.streamlit.io/

Chapter 5. Experimental study 30

When searching for 4 and 5 clusters, we configured the web app in order to divide each

compute node in half, considering the first half and second half of the original node as separate

nodes, in order to have a larger pool of nodes to perform clustering on; indeed finding 4 or 5

clusters with only 16 nodes can be difficult or give unreliable results. The notation that we used

in this case is N〈X〉 1 and N〈X〉 2 where 〈X〉 is the node number (for example N10 1 is the first

half of node N10, while N10 2 is the second half).

The Mahalanobis distance formula is the following one, used via the Scipy framework:

DM (~x) =
√

(~x− ~µ)TS−1(~x− ~µ) (5.1)

In Equation 5.1 ~µ and S are respectively the mean vector and the covariance matrix of the

Gaussian distribution to which the vector ~x is assigned by the GMM algorithm.

Hardware and software

The hardware on which we executed the scripts is the following one:

• a laptop with Intel Core i5 5300U 2.9GHz and 16GB of RAM, running Fedora 32;

• a VM instance equipped with Intel Xeon Gold 5120 CPU 2.20GHz and 16GB of RAM,

running Ubuntu 16.04.5 LTS;

• a dedicated Linode instance equipped with 48 threads (AMD EPYC 7601 2.2GHz) and

96GB of RAM, running Fedora 32; this instance has been used for memory heavy work-

loads, such has running the RFECV algorithm.

The libraries and code used for the experiments are specified in the Appendix.

5.2 Initial experiments

In order to see if we could obtain results similar to our previous work [Cov20], we executed

some preliminary experiments with 5 fold cross validation on 4 (out of 32) random nodes. We

considered shuffled and non-shuffled data (shuffling is performed setting the shuffle parameter

of KFold to True, meaning that shuffling happens before splitting the data into batches) and

we also considered the last labelling strategy and the mode labelling strategy. We applied class

balancing using the “majority” technique each time to both training and testing folds.

The results that show the F1-scores are in Figure 5.2 and Figure 5.3.

Chapter 5. Experimental study 31

a) without shuffling b) with shuffling

Figure 5.2: 5-fold cross validation, mode labelling.

a) without shuffling b) with shuffling

Figure 5.3: 5-fold cross validation, last labelling.

In all the cases, shuffling seems to mitigate the negative impact of potential time regions in

which some sources of interference might be present. However the difference between shuffling

the data and disabling shuffling is so high that we wanted to investigate further its effect during

the metaparameters exploration.

Comparing the heatmaps for the two labelling strategies without shuffling, we can see that

with the last labelling strategy the classification performances of some faults generally drop a

little for some nodes, while the healthy state shows very little improvement. For this reason the

next experiments will be focused on using the mode labelling strategy, which also proved to be

better in prior related works done during the internship [Cov20].

Chapter 5. Experimental study 32

5.3 Feature selection

We performed feature selection using the setup explained in the appropriate subsection of Sec-

tion 5.1. The results, showing the F1-scores, are presented in Figure 5.4 and Figure 5.5.

a) overall F1-score changes when the number of

features changes

b) results with RF model on a 60-40 split

Figure 5.4: Results of RFECV on N15.

a) with all the features b) with 100 features

Figure 5.5: F1-scores on a 60-40 split on node N15.

As can be seen from the figures, selecting 100 features clearly outperforms the case in which

all the features are used. Moreover between using only the optimal 16 features retrieved by

using RFECV and the 100 most important features obtained via DT there’s minimal difference,

with the healthy state that improves a little when using 100 features; for the other faults the

differences are inconsistent, sometimes they improve with 100 features, sometimes they are

worse, but the difference is very minimal.

As we said, for these reasons, we decided that 100 most important features is a good middle

Chapter 5. Experimental study 33

ground for our research.

5.4 Other metaparameters and the number of training nodes

In this section we will show the results regarding the metaparameters: shuffling, normalization,

class balancing and subsampling. The methodology has already been described in Section 4.2.3

while the experimental setup can be retrieved from Section 5.1. In these experiments, along

the way, we increase each time the number of training nodes; this helps us see how the results

change when the training nodes are increased and if there is some sort of stabilization after a

certain threshold.

Shuffling

In this experiment we fixed class balancing (on both training and testing set), we used non-

normalized data and evaluated the impact of training data shuffling.

In Figure 5.6 you can see the comparisons of the F1-scores between shuffling disabled and

shuffling enabled when 5 nodes are used as training set. Even though the results with a different

number of training nodes are similar, we decided to investigate further what happens to healthy

and memeater in Figure 5.7 and Figure 5.8 by using box plots.

Chapter 5. Experimental study 34

a) without shuffling b) with shuffling enabled

Figure 5.6: F1-scores on the test nodes when 5 nodes are used as training nodes.

a) without shuffling b) with shuffling enabled

Figure 5.7: Healthy scores as we increase the number of training nodes.

Chapter 5. Experimental study 35

a) without shuffling b) with shuffling enabled

Figure 5.8: memeater scores as we increase the number of training nodes.

As can be seen from all the figures above, there isn’t much difference in the results obtained

in the two different configurations. However the boxplots in Figure 5.7 and Figure 5.8 suggest

that generally the median scores of the healthy and memeater faults are a little higher when

shuffling is disabled. For these reasons we disabled shuffling the training data in the following

experiments.

Normalization

In this experiment balancing is performed on both training and testing set, training data shuf-

fling is disabled and we compare the results obtained using non-normalized data vs normalized

data. In Figure 5.9 we can clearly see that normalization makes us lose performances on most

of the faults (results with different number of training nodes are similar). For this reason, the

following experiments will be performed on non-normalized data.

Chapter 5. Experimental study 36

a) without normalization b) with normalization

Figure 5.9: F1-scores on the test nodes when 5 nodes are used as training nodes.

Test set balancing

In this experiment we wanted to see the impact of testing set class balancing on the final

scores. The data used is non-normalized data and training set shuffling is disabled. Training

set balancing is always enabled. In general balancing the testing node gives us better overall

scores and better scores for memeater, while in this case the healthy scores are a little lower.

However lower healthy scores do not seem to impact much on the overall results. You can see

the details in Figures 5.10, 5.11 and 5.12.

Chapter 5. Experimental study 37

a) with balancing enabled b) without balancing

Figure 5.10: overall scores as we increase the number of training nodes.

a) with balancing enabled b) without balancing

Figure 5.11: memeater scores as we increase the number of training nodes.

a) with balancing enabled b) without balancing

Figure 5.12: healthy scores as we increase the number of training nodes.

Since in the real world both testing data and training data may be not balanced and we

don’t want to hide the effects of imbalance from the results of our research (indeed balancing

may artificially influence the evaluation metrics), we decided to investigate further on class

Chapter 5. Experimental study 38

balancing in the following experiments.

Overall class balancing

As described in Section 4.2.3 and Section 5.1, for these experiments we executed 10 runs each

time and the seeds are not fixed but based on the time the instruction is executed, in order to

have full randomization and have results that are statistically valid. Shuffling and normalization

are both disabled. We wanted to compare what happens when balancing is enabled or disabled

on both training and testing set.

In the following figures, which will show the F1-scores for each fault, part a) and will be

about balancing enabled (on both training and testing set). Instead part b) will be about

balancing disabled (on both training and testing).

a) both balanced b) both unbalanced

Figure 5.13: overall scores as we increase the number of training nodes.

a) both balanced b) both unbalanced

Figure 5.14: healthy scores as we increase the number of training nodes.

Chapter 5. Experimental study 39

a) both balanced b) both unbalanced

Figure 5.15: memeater scores as we increase the number of training nodes.

a) both balanced b) both unbalanced

Figure 5.16: memleak scores as we increase the number of training nodes.

a) both balanced b) both unbalanced

Figure 5.17: membw scores as we increase the number of training nodes.

Chapter 5. Experimental study 40

a) both balanced b) both unbalanced

Figure 5.18: cpuoccupy scores as we increase the number of training nodes.

a) both balanced b) both unbalanced

Figure 5.19: cachecopy scores as we increase the number of training nodes.

a) both balanced b) both unbalanced

Figure 5.20: iometadata scores as we increase the number of training nodes.

Chapter 5. Experimental study 41

a) both balanced b) both unbalanced

Figure 5.21: iobandwidth scores as we increase the number of training nodes.

As can be seen from Figure 5.13 the overall score stabilizes when using 5 or more training

nodes. As for the other figures, the ones that stand out are Figure 5.14 and Figure 5.15 about

healthy and memeater. In these cases class balancing can make a difference. More precisely,

healthy improves when there’s no class balancing, while memeater gets worse performances.

Since in the real world both testing data and training data may be not balanced and we

don’t want to hide the effects of imbalance from the results of our research, in the experiments

where we choose the actual training nodes class balancing will be disabled both on the training

and testing set.

Subsampling

As described in Section 4.2.3 and Section 5.1, for these experiments we executed 10 runs each

time and the seeds are not fixed but based on the time the instruction is executed, in order to

have full randomization and have results that are statistically valid. Shuffling, normalization

and balancing (on both training and testing set) are all disabled. In the following figures part

a) will be about subsampling disabled and part b) about subsampling enabled.

Chapter 5. Experimental study 42

a)without subsampling b)with subsampling

Figure 5.22: overall scores as we increase the number of training nodes

a)without subsampling b)with subsampling

Figure 5.23: healthy scores as we increase the number of training nodes

a)without subsampling b)with subsampling

Figure 5.24: memeater scores as we increase the number of training nodes

Chapter 5. Experimental study 43

a)without subsampling b)with subsampling

Figure 5.25: memleak scores as we increase the number of training nodes

a)without subsampling b)with subsampling

Figure 5.26: membw scores as we increase the number of training nodes

a)without subsampling b)with subsampling

Figure 5.27: cpuoccupy scores as we increase the number of training nodes

Chapter 5. Experimental study 44

a)without subsampling b)with subsampling

Figure 5.28: cachecopy scores as we increase the number of training nodes

a)without subsampling b)with subsampling

Figure 5.29: iometadata scores as we increase the number of training nodes

a)without subsampling b)with subsampling

Figure 5.30: iobandwidth scores as we increase the number of training nodes

From Figure 5.22 we can see that subsampling doesn’t impact negatively the classification

performances (a thing that can be observed even for other faults). However with subsampling

enabled the execution of the scripts doesn’t go much faster (for example, when using 5 nodes

Chapter 5. Experimental study 45

as training set and testing on all the other nodes, there’s roughly a 3 minutes difference).

Subsampling is much more important in order to save up memory space, especially when using

an high number of features. For these reasons, in the experiments where we chose the actual

training nodes, we didn’t use subsampling.

General conclusions

As can be seen from the discussion and figures above, we can conclude that most of the time the

F1-scores stabilize when using 5 or more training nodes. Moreover in the experiments where we

choose the actual training nodes we will not use normalization, shuffling, class balancing and

subsampling for the reasons already described in the sections dedicated to each one of them.

To summarize here these reasons, normalization when enabled gives us worse F1-scores.

Shuffling doesn’t impact much the classification performances and some times the median of

the F1-scores are higher when shuffling is disabled. Class balancing will be disabled because

we don’t want to hide the effects of imbalanced classes in our research. Finally subsampling

doesn’t affect much the classification performances and it gives very low speedup, while being

much more important for saving up memory space when using a very high number of training

nodes; for this reason it will be disabled, since in choosing the actual training nodes we will not

use more than 5 training nodes.

5.5 The actual training nodes

In this section we will present the results regarding the clustering vs multiple run random

experiments. We will also be able to compare these results against the node-specific models.

Unless otherwise stated, we will refer to the F1-scores and introduce the other evaluation metrics

only when needed to prove a point. Moreover we will train the multiple run random models

and the clustering-based models on up to 5 training nodes, because in Section 5.4 we saw that

the results stabilize after that threshold.

In the box plots that will be shown, a white circle with black edge represents the average.

Moreover for each fault, there will be three boxes: the left blue one shows the results of the

clustering experiments across all testing nodes, the middle orange one shows the results of the

multiple run random experiments (across all the testing nodes and all the runs), the right green

one represents the results of node-specific models (again, across all the testing nodes), whose

experimental setup has already been discussed in Section 5.1. A box plot is a way to depict the

variation of data through their quartiles.

Chapter 5. Experimental study 46

5.5.1 One single node

Clustering

When selecting a candidate for a single cluster, the algorithm gave us N21 as result, as shown

in Table 5.1. Figure 5.31 can also help the reader see how the nodes are distributed in the 3D

space.

Figure 5.31: Scatter plot with clusters

Cluster Node Distance

1 N21 0.4008287862566875

Table 5.1: Nodes representative of each cluster

Results

For this particular experiment, we also wanted to compare the overall results between clustering

and all the random runs (from “r1” to “r10”) in Figure 5.33; we also wanted to see in a scatter

plot how the nodes have been selected, as can be seen in Figure 5.34. In Figure 5.32 there are

the F1-scores for each fault and the reader can compare clustering vs random vs node-specific

models.

Chapter 5. Experimental study 47

Figure 5.32: F1-scores clustering vs multi-run random vs node-specific models

Figure 5.33: F1-scores clustering vs 10 run random

Chapter 5. Experimental study 48

Figure 5.34: clustering vs random, training nodes scatter plot

From the figures above we can deduce that when using only 1 training node, random selection

clearly outperforms clustering. Moreover when using only 1 training node, node-specific models

outperform multi-node models.

5.5.2 Two nodes

Clustering

When choosing candidates for 2 clusters, the GMM algorithm gave us nodes N15 and N10, as

can be seen in Table 5.2. The specific clusters can be observed in Figure 5.35.

Figure 5.35: Scatter plot with clusters

Chapter 5. Experimental study 49

Cluster Node Distance

1 N15 0.5551379436529936

2 N10 0.003576257131923944

Table 5.2: Nodes representative of each cluster

Results

For this experiment we will show the F1-scores in Figure 5.36, the sensitivity in Figure 5.37 and

the specificity in Figure 5.38.

Figure 5.36: F1-scores clustering vs multi-run random vs node-specific models

Figure 5.37: Sensitivity clustering vs multi-run random vs node-specific models

Chapter 5. Experimental study 50

Figure 5.38: Specificity clustering vs multi-run random vs node-specific models

From Figure 5.36 we can see that with 2 training nodes, random selection still outperforms

the clustering approach, although by a little margin. However we can also start to see that

a single general multi-node model has an overall score that surpasses the one obtained with

node-specific models. This is true even for many other faults.

Instead from Figure 5.37 and Figure 5.38 we can see that the random approach has lower

sensitivity for memeater (and it also is highly variable since the box is wider) and higher and

less variable specificity; this means that for memeater with the random approach we can be sure

about the instances that are identified as not belonging to memeater, but less sure when the

instances are classified as belonging to this fault. This is true also for the clustering approach,

which however tends to remain more stable. As for iometadata, the clustering-based approach

shows problems similar to the ones shown by memeater in the random approach.

5.5.3 Three nodes

Clustering

When searching for 3 candidate nodes via clustering, we obtained nodes N23, N10 and N19, as

shown in Table 5.3. Instead Figure 5.39 shows how the clusters are distributed in the 3D space.

Chapter 5. Experimental study 51

Figure 5.39: Scatter plot with clusters

Cluster Node Distance

1 N23 0.949795176961559

2 N10 0.003576257131923944

3 N19 0.5945542546369079

Table 5.3: Nodes representative of each cluster

Results

In Figure 5.40 we can see the F1-scores of the experiment.

Figure 5.40: F1-scores clustering vs multi-run random vs node-specific models

Chapter 5. Experimental study 52

From the Figure above we can see that generally the average of the clustering approach is

higher than the one of the random approach; moreover both clustering and random approaches

outperform the node-specific models. Finally the clustering approach seems to become more

stable and reliable than the random approach, except for the memeater and iometadata faults.

5.5.4 Four nodes

Clustering

When selecting 4 candidates nodes via clustering we obtained the first half of node N20, the

first half of node N10, the first half of node N9 and the first half of node N19, as shown in Table

5.4. Figure 5.41 shows instead how the clusters are distributed in the 3D space.

Figure 5.41: Scatter plot with clusters

Cluster Node Distance

1 N20 1 0.5037602723821104

2 N10 1 1.0249200129411562

3 N9 1 0.5873675358414548

4 N19 1 0.9497396060421003

Table 5.4: Nodes representative of each cluster

Chapter 5. Experimental study 53

Results

Here we will show the F1-scores, sensitivity, specificity, false positive rate and false negative

rate of the experiments.

Figure 5.42: F1-scores clustering vs multi-run random vs node-specific models

Figure 5.43: Sensitivity clustering vs multi-run random vs node-specific models

Chapter 5. Experimental study 54

Figure 5.44: Specificity clustering vs multi-run random vs node-specific models

Figure 5.45: False Positive rate clustering vs multi-run random vs node-specific models

Chapter 5. Experimental study 55

Figure 5.46: False Negative rate clustering vs multi-run random vs node-specific models

The conclusions we can draw from Figure 5.42 are similar to the one we explained in Section

5.5.3: clustering seems to become more stable and reliable than the random approach, but we

still have problems with memeater and iometadata.

As for sensitivity and specificity, for the clustering results we can see a similar behaviour

explained in Section 5.5.2: we can see that we have lower sensitivity for memeater (and it also

is highly variable since the box is wider) and higher and less variable specificity; this means that

for memeater with the clustering approach we can be sure about the instances that are identified

as not belonging to memeater, but less sure when the instances are classified as belonging to

this fault. We have similar problems with iometadata, whose sensitivity is highly variable, while

the specificity is more stable and higher.

Finally false positive rates (Figure 5.45) are generally lower and more stable than false

negative rates (Figure 5.46), which can be interpreted as low probability of false alarm but an

high probability of miss rate.

5.5.5 Five nodes

Clustering

When searching for the best 5 training nodes via clustering we obtained the first half of N20,

the first half of N10, the first half of N9, the first half of N19 and the second half of N10, as can

be seen in Table 5.5. Figure 5.47 shows instead the distribution of the clusters in the 3D space.

Chapter 5. Experimental study 56

Figure 5.47: Scatter plot with clusters

Cluster Node Distance

1 N20 1 0.5037602723821104

2 N10 1 0.003576257131923944

3 N9 1 0.5873675358414548

4 N19 1 0.9497396060421003

5 N10 2 0.0038146707432278617

Table 5.5: Nodes representative of each cluster

Results

For this particular experiment, we also wanted to compare the overall results between clustering

and all the random runs (from “r1” to “r10”) in Figure 5.49; we also wanted to see in a scatter

plot how the nodes have been selected, as can be seen in Figure 5.50. The other figures instead

show the F1-scores, sensitivity, specificity, false positive rate and false negative rate.

Chapter 5. Experimental study 57

Figure 5.48: F1-scores clustering vs multi-run random vs node-specific models

Figure 5.49: F1-scores clustering vs 10 run random

Chapter 5. Experimental study 58

Figure 5.50: clustering vs random, training nodes scatter plot

Figure 5.51: Sensitivity clustering vs multi-run random vs node-specific models

Chapter 5. Experimental study 59

Figure 5.52: Specificity clustering vs multi-run random vs node-specific models

Figure 5.53: False Positive rate clustering vs multi-run random vs node-specific models

Chapter 5. Experimental study 60

Figure 5.54: False Negative rate clustering vs multi-run random vs node-specific models

From Figure 5.49 we can clearly see that even if some lucky random choices give higher

averages, the clustering approach has good results and is more stable and reliable. This is

confirmed by the F1-scores shown in Figure 5.48.

Sensitivity and specificity confirm what we have said in Section 5.5.4 and 5.5.2. Figure 5.53

and 5.54 highlight again some problems in memeater and iometadata, where the false positive

rate of clustering (that is the probability of false alarm) is lower than the false negative rate

(that is the miss rate). This is reflected in the lower scores and high variety of them when we

look at these faults in Figure 5.48.

5.5.6 Discussion of results
Single-node models outperform multi-node models only when using 1 training node. When using

2 training nodes, the multi-node approach (in this case the random one) starts to outperform

node-specific models. This trend will become more clear even for the clustering-based approach

when using an higher number of training nodes.

With a low number of training nodes (1 or 2), the random approach gives better results than

the clustering-based approach. However when the number of training nodes is equal or greater

than 3, the clustering-based approach gives averages comparable to the random approach but

it is more stable and reliable.

We identified some problems with memeater and iometadata both for clustering and random.

More precisely the sensitivity tends to be low and the specificity tends to be high. Moreover

the false positive rates are generally lower and more stable than the false negative rates. These

problems have been addressed at the end of Section 5.5.4 and Section 5.5.5.

Chapter 6

Conclusions and future work

6.1 Summary

During the work executed for this thesis, we extracted the data of the CooLMUC-3 HPC system

using libDCDB and crafted the best signatures by exploiting the knowledge gained from previous

research. We then conducted various experiments with a specific purpose: finding the best way

to design a single general multi-node model and compare its performances against node-specific

models.

First of all we started with some initial k-fold cross validation experiments, in order to

see how the techniques used in our previous work [Cov20] could influence the classification

results obtained with the new dataset used for this thesis. Then we executed a metaparameter

exploration, in order to find the best metaparameters for the rest of the experiments. We

conducted this exploration by using an incremental random approach and multiple runs, in

order to have statistically significant results. This kind of experiments was also useful for

determining that the results stabilize over a certain number of training nodes.

Having found out on how many nodes to train on, we had to answer another question: which

specific nodes do we need to use for training? To answer the previous question we compared

the incremental random approach with multiple runs against the incremental clustering-based

approach. The idea of clustering was to train the model on nodes which are representative of a

specific cluster, in order to have a model that generalizes better and works well on novel data.

Clustering was executed using hand-picked metrics exploiting the use of expert knowledge (more

specifically we used cache-misses.min, instructions.max and power) and filtering out the data

which did not belong to healthy and HPL; the idea was to make the process of choosing nodes

to train on independent of fault injection, which can be impractical, costly and not scalable

when the number of nodes increases.

61

Chapter 6. Conclusions and future work 62

6.2 Future work

Even though our research shows promising results, further developments can be made, especially

for solving the problems with memeater and iometadata.

First of all, some exploratory analysis could be done by removing memeater, iometadata

and iobandwidth faults, in order to see if the overall results improve. However obviously this

would not solve the problem, but it would be interesting to see how with our configuration the

overall results change without these faults and if they improve.

Then, to actually try to solve the aforementioned problems, we could try to identify better

metrics for clustering. Indeed the poor performances of the mentioned faults could be related

to a low impact of these faults on the chosen metrics for clustering.

Finally, instead of using expert knowledge to pick specific metrics for clustering, one could

try to apply a dimensionality reduction technique, such as PCA, to the whole vector of metrics

and use the first k (for example 3) resulting metrics.

6.3 Conclusions

The initial exploratory experiments with k-fold cross validation on 4 random nodes gave in-

teresting results, especially when shuffling was enabled, meaning that the strategy we used

for designing the signatures during our previous internship work [Cov20] may be good, but

class balancing and shuffling should be investigated further. For this reason we conducted a

metaparameter exploration.

During the metaparameter exploration we found out that the classification results stabilize

when using 5 or more nodes as training set. By interpreting the results of these experiments,

we also decided to avoid the usage of shuffling, normalization, subsampling and class balancing

in order to have better results and at the same time to be transparent about some problems

encountered with some faults.

After executing the clustering vs random experiments, whose results have been shown in

Section 5.5, we found out that the random approach gives better results when the number of

training nodes is low, while the clustering-based approach gives overall average results compa-

rable to the random approach, but it is more stable and reliable, when using an high number

of training nodes. Moreover we also proved that training a multi-node model on a reasonable

number of nodes (such as 3 or above) gives better results than node-specific models.

All of this means that we have contributed to the research field in the way described in

Section 1.3. More precisely, we provided a methodology for finding the subset of training node

Chapter 6. Conclusions and future work 63

necessary for multi-node models and for choosing which specific nodes to use as part of the

training set. We also showed that multi-node models can outperform node-specific models.

This is an important achievement, since multi-node models are more scalable.

We also identified for some configurations some problems regarding the performances of

memeater and iometadata both for clustering and random. More precisely the sensitivity tends

to be low and the specificity tends to be high. Moreover the false positive rates are generally

lower and more stable than the false negative rates, which can mean that we have an low

probability of false alarm but an high probability of miss rate for these faults. Future work to

address these issues has been presented in Section 6.2.

Bibliography

[AAB+14] A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos, J. Fullop, A. Gentile,

S. Monk, N. Naksinehaboon, J. Ogden, M. Rajan, M. Showerman, J. Stevenson,

N. Taerat, and T. Tucker. The lightweight distributed metric service: A scalable in-

frastructure for continuous monitoring of large scale computing systems and applica-

tions. In SC ’14: Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis, pages 154–165, 2014.

[AB94] Douglas G Altman and J Martin Bland. Diagnostic tests. 1: Sensitivity and speci-

ficity. BMJ: British Medical Journal, 308(6943):1552, 1994.

[ABC+05] Narasimha R Adiga, Matthias A Blumrich, Dong Chen, Paul Coteus, Alan Gara,

Mark E Giampapa, Philip Heidelberger, Sarabjeet Singh, Burkhard D Steinmacher-

Burow, Todd Takken, et al. Blue gene/l torus interconnection network. IBM Journal

of Research and Development, 49(2.3):265–276, 2005.

[Alp20] Ethem Alpaydin. Introduction to machine learning. MIT press, 2020.

[AZA+19] Emre Ates, Yijia Zhang, Burak Aksar, Jim Brandt, Vitus J. Leung, Manuel Egele,

and Ayse K. Coskun. Hpas: An hpc performance anomaly suite for reproducing

performance variations. In Proceedings of the 48th International Conference on Par-

allel Processing, ICPP 2019, New York, NY, USA, 2019. Association for Computing

Machinery.

[BBC+08] Keren Bergman, Shekhar Borkar, Dan Campbell, William Carlson, William Dally,

Monty Denneau, Paul Franzon, William Harrod, Kerry Hill, Jon Hiller, et al. Ex-

ascale computing study: Technology challenges in achieving exascale systems. De-

fense Advanced Research Projects Agency Information Processing Techniques Office

(DARPA IPTO), Tech. Rep, 15, 2008.

[BBL+19] Andrea Borghesi, Andrea Bartolini, Michele Lombardi, Michela Milano, and Luca

Benini. A semisupervised autoencoder-based approach for anomaly detection in high

64

Bibliography 65

performance computing systems. Engineering Applications of Artificial Intelligence,

85:634 – 644, 2019.

[BFSO84] Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen. Classifi-

cation and regression trees. CRC press, 1984.

[BGF+10] Peter Bodik, Moises Goldszmidt, Armando Fox, Dawn B. Woodard, and Hans An-

dersen. Fingerprinting the datacenter: Automated classification of performance

crises. In Proceedings of the 5th European Conference on Computer Systems, Eu-

roSys ’10, page 111–124, New York, NY, USA, 2010. Association for Computing

Machinery.

[BL16] Elisabeth Baseman and Lissa. Interpretable anomaly detection for monitoring of

high performance computing systems. 2016.

[Cov20] Vito Vincenzo Covella. Relazione finale di tirocinio. https://

dochub.com/covinc93heron/pqb0g5YRqyvJvZzRJ2nx67/report-pdf?dt=

hcDiEKGQFQw9Lz-rxYQD, 2020.

[DBMS79] J. Dongarra, J. Bunch, C. Moler, and G. W. Stewart. LINPACK Users Guide, 1979.

[DLR77] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from

incomplete data via the em algorithm. Journal of the Royal Statistical Society:

Series B (Methodological), 39(1):1–22, 1977.

[GC15] Ana Gainaru and Franck Cappello. Errors and Faults, pages 89–144. Springer

International Publishing, Cham, 2015.

[HE17] Saurabh Hukerikar and Christian Engelmann. Resilience design patterns: A struc-

tured approach to resilience at extreme scale. arXiv preprint arXiv:1708.07422,

2017.

[Ho95] Tin Kam Ho. Random decision forests. In Proceedings of 3rd international confer-

ence on document analysis and recognition, volume 1, pages 278–282. IEEE, 1995.

[Ho98] Tin Kam Ho. The random subspace method for constructing decision forests. IEEE

transactions on pattern analysis and machine intelligence, 20(8):832–844, 1998.

[HTI97] Mei-Chen Hsueh, Timothy K. Tsai, and Ravishankar K. Iyer. Fault injection tech-

niques and tools. Computer, 30(4):75–82, April 1997.

https://dochub.com/covinc93heron/pqb0g5YRqyvJvZzRJ2nx67/report-pdf?dt=hcDiEKGQFQw9Lz-rxYQD
https://dochub.com/covinc93heron/pqb0g5YRqyvJvZzRJ2nx67/report-pdf?dt=hcDiEKGQFQw9Lz-rxYQD
https://dochub.com/covinc93heron/pqb0g5YRqyvJvZzRJ2nx67/report-pdf?dt=hcDiEKGQFQw9Lz-rxYQD

Bibliography 66

[HW10] Georg Hager and Gerhard Wellein. Introduction to high performance computing for

scientists and engineers. CRC Press, 2010.

[IK04] Tsuyoshi IDÉ and Hisashi KASHIMA. Eigenspace-based anomaly detection in com-

puter systems. In Proceedings of the Tenth ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, KDD ’04, page 440–449, New York, NY,

USA, 2004. Association for Computing Machinery.

[IPI+15] Yuichi Inadomi, Tapasya Patki, Koji Inoue, Mutsumi Aoyagi, Barry Rountree, Mar-

tin Schulz, David Lowenthal, Yasutaka Wada, Keiichiro Fukazawa, Masatsugu Ueda,

et al. Analyzing and mitigating the impact of manufacturing variability in power-

constrained supercomputing. In SC’15: Proceedings of the International Conference

for High Performance Computing, Networking, Storage and Analysis, pages 1–12.

IEEE, 2015.

[JWHT13] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An introduc-

tion to statistical learning, volume 112. Springer, 2013.

[Kni07] Will Knight. Ibm creates world’s most powerful computer. New scientist. com news

service, June, 2007.

[Mit99] Tom M. Mitchell. Machine learning and data mining. Commun. ACM, 42(11):30–36,

November 1999.

[MMC13] RS Mitchell, JG Michalski, and TM Carbonell. An artificial intelligence approach.

Springer, 2013.

[Net] Alessio Netti. Development of Data-Driven Dispatching Heuristics for Heteroge-

neous HPC Systems. PhD thesis.

[NKB+20] Alessio Netti, Zeynep Kiziltan, Ozalp Babaoglu, Alina Ŝırbu, Andrea Bartolini, and

Andrea Borghesi. A machine learning approach to online fault classification in hpc

systems. Future Generation Computer Systems, 110:1009 – 1022, 2020.

[NMA+19] Alessio Netti, Micha Mueller, Axel Auweter, Carla Guillen, Michael Ott, Daniele

Tafani, and Martin Schulz. From facility to application sensor data: Modular,

continuous and holistic monitoring with DCDB. CoRR, abs/1906.07509, 2019.

[NTOS20] Alessio Netti, Daniele Tafani, Michael Ott, and Martin Schulz. Correlation-wise

smoothing: Lightweight knowledge extraction for hpc monitoring data, 2020.

Bibliography 67

[ONTS20] Gence Ozer, Alessio Netti, Daniele Tafani, and Martin Schulz. Characterizing hpc

performance variation with monitoring and unsupervised learning. In Heike Jagode,

Hartwig Anzt, Guido Juckeland, and Hatem Ltaief, editors, High Performance Com-

puting, pages 280–292, Cham, 2020. Springer International Publishing.

[PCKI11] A. Pecchia, D. Cotroneo, Z. Kalbarczyk, and R. K. Iyer. Improving log-based field

failure data analysis of multi-node computing systems. In 2011 IEEE/IFIP 41st

International Conference on Dependable Systems Networks (DSN), pages 97–108,

2011.

[pdt20] The pandas development team. pandas-dev/pandas: Pandas, February 2020.

[PK20] Eva Patel and Dharmender Singh Kushwaha. Clustering cloud workloads: K-

means vs gaussian mixture model. Procedia Computer Science, 171:158 – 167, 2020.

Third International Conference on Computing and Network Communications (Co-

CoNet’19).

[Pow08] David Powers. Evaluation: From precision, recall and f-factor to roc, informedness,

markedness & correlation. Mach. Learn. Technol., 2, 01 2008.

[Pow20] David MW Powers. Evaluation: from precision, recall and f-measure to roc, in-

formedness, markedness and correlation. arXiv preprint arXiv:2010.16061, 2020.

[PRT+18] Davy Preuveneers, Vera Rimmer, Ilias Tsingenopoulos, Jan Spooren, Wouter

Joosen, and Elisabeth Ilie-Zudor. Chained anomaly detection models for federated

learning: An intrusion detection case study. Applied Sciences, 8(12), 2018.

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine

learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[Qui86] J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.

[Qui14] J Ross Quinlan. C4. 5: programs for machine learning. Elsevier, 2014.

[RN+13] Stuart Russel, Peter Norvig, et al. Artificial intelligence: a modern approach. Pear-

son Education Limited London, 2013.

[SW98] Claude Shannon and Warren Weaver. The mathematical theory of communication.

University of Illinois Press, Urbana, 1998.

Bibliography 68

[TAZ+17] Ozan Tuncer, Emre Ates, Yijia Zhang, Ata Turk, Jim Brandt, Vitus J. Leung,

Manuel Egele, and Ayse K. Coskun. Diagnosing performance variations in hpc

applications using machine learning. In Julian M. Kunkel, Rio Yokota, Pavan Balaji,

and David Keyes, editors, High Performance Computing, pages 355–373, Cham,

2017. Springer International Publishing.

[VdSD95] Aad J Van der Steen and Jack J Dongarra. Overview of recent supercomputers.

Citeseer, 1995.

[Wa10] Margaret Wright and al. The opportunities and challenges of exascale computing.

http://science.energy.gov/. U.S. Department of Energy, 2010.

[XJ96] Lei Xu and Michael I Jordan. On convergence properties of the em algorithm for

gaussian mixtures. Neural computation, 8(1):129–151, 1996.

[YSM11] Guoshen Yu, Guillermo Sapiro, and Stéphane Mallat. Solving inverse problems with

piecewise linear estimators: From gaussian mixture models to structured sparsity.

IEEE Transactions on Image Processing, 21(5):2481–2499, 2011.

Appendix

Libraries and code

The code with the scripts used is available at the following GitHub repository: https://github.

com/DarthVi/hpcscripts. The main directory and the “computeNodesCSV” directory contain

the scripts used for the extraction of the data from Apache Cassandra and for preprocessing

it in order to obtain a single CSV for each compute node, as described in Section 3.2. The

“multinode” folder contains instead all the scripts, written in Python and Bash, used in this

thesis for our multi-node fault detection research.

The scripts written in Python use the following libraries: Pandas [pdt20], tqdm, Scikit-Learn

[PVG+11], Scipy, Imbalanced-Learn, Matplotlib, Seaborn, Jupyter, Streamlit, Plotly.

Code for data extraction and data processing

dcdbquery has been used to get all the sensors available in DCDB. More specifically the command

is dcdbconfig -h 127.0.0.1 sensor listpublic and the output has been saved in a text file.

Later this text file has been modified in order to have one sensor per line (lines in the form

<sensorname> : <sensorname> become <sensorname>) and saved as sensorlist_trimmed.txt.

Another text file has been created and contains the name of compute nodes we are interested

in per line. This file, named compute_nodes.txt, is read by createSensorListPerNode.py,

a Python file whose purpose is to select a subset from sensorlist_trimmed.txt. This subset

contains only the sensors related to the compute nodes written inside compute_nodes.txt and it

is saved as sensorlist_data.txt. The content that needs to be put inside compute_nodes.txt

can be retrieved from the log file of the corresponding SLURM job. The code that relies on

compute_nodes.txt requires that each node is written into this file one per line and without

the character “/”, so “/mpp3/r02/c05/s02” becomes “mpp3r02c05s02”.

Once sensorlist_data.txt has been obtain from the procedure previously described, the

Bash shell script splitdata.sh can be executed in order to obtain all the CSVs with sensor

data in them. More specifically there will be one CSV for each sensor, all of them located

69

https://github.com/DarthVi/hpcscripts
https://github.com/DarthVi/hpcscripts

Chapter 6. Appendix 70

in the root directory. Moreover this shell script needs 3 command line arguments to be run:

the starting timestamp, the ending timestamp (both of them retrievable in the log file of the

corresponding SLURM job) and the number of processes to spawn in order to get the data in

parallel. The data in all the CSVs obtained can be merged into a single CSV per compute node

by running mergeStatPerNode.py, which also reads from compute_nodes.txt. This Python

script will also automatically align the data and check for monotonic columns, converting them

to their delta equivalent. The resulting CSVs will be stored in the computeNodesCSV folder.

mergeStatPerNode.py accepts 2 optional command line arguments: the interpolation method

(-i or --interpolationmethod) and the order (-o or --order, in case the interpolation method

is “polynomial” or “spline”).

The creation of feature vectors is handled by createFeatureVectors.py, that needs to be

run inside the folder where the previously defined CSVs are located. When running this Python

file, 9 command line arguments can be specified:

-w : --timewindow the duration in seconds of the aggregating window, the default value is

60;

-f : --features the number of features to produce for each metric in the dataset, it can be

6 or 11, the default value is 6;

-s : --stepsize the stride/step size of the rolling window, the default value is 1;

-p : --processes the number of processes to spawn to speed up the program and execute

some parts of it in parallel, the default value is 4;

-c : --chunk the number of CSV rows to read at each iteration, the default value is 10000;

this is useful for processing large CSV files;

-r : --corr a string translated into a boolean value (possible values: ’t’, ’f’, ’true’, ’false’),

that indicates wether to compute pairwise correlations among the features, the default

value is False;

-l : --horiz a string translated into a boolean value (possible values: ’t’, ’f’, ’true’, ’false’),

that indicates whether to compute horizontal aggregation of the CPU-specific metrics, the

default value is False; if True for each CPU-specific metric, the script will compute the

minumum, maximum, 25th and 75th percentile and the mean;

-t : --label a string that indicates which labelling strategy to use, it can be ‘mode’ or ‘last’;

the default value is ‘last’;

Chapter 6. Appendix 71

-n : --normalize a string translated into a boolean value (possible values: ’t’, ’f’, ’true’,

’false’), that indicates wether to perform min-max scaling as normalization technique

before computing the feature vectors.

The resulting files will have names following the form

<nodename>_<numfeatures>f_<windowsize>s_<numstep>step.csv (for example

N1_11f_60s_1step.csv) and will be located in the same directory where the CSVs from which

they are generated are located, namely computeNodesCSV.

Code for the experiments

The code for multi-node fault classification is located inside the “multinode” folder. We coded

the initial preliminary experiments in the file randomCrossValidation.py, whose command

line arguments can be retrieved appending -h after calling it in the console.

Feature selection is handled by DT featureSelection rus.py for the version that uses k

user defined most important features while RFECV featureSelection optimal rus uses the

RFECV algorithm to find the minimal number of best features.

For the metaparameters exploration we heavily used the inmemoryMultirunRandom

MultinodeTrainAndTest featureSelected allmetrics updateCSV.py which loads upfront all

the necessary data in memory in order to save time while running multiple random runs. More-

over this scripts appends the results of each run to the classification

results.csv for each evaluation metrics, in order to be able to use them later. Another file

instead, does not append the results each time and immediately computes the box plots after exe-

cuting the experiments: inmemoryMultirunRandomMultinodeTrainAndTest

featureSelected allmetrics.py.

The single-node baseline has been obtained running singlenodeTrainAndTestSplit

featureSelected allmetrics.py; the command line arguments needed can be retrieved by

using the commmand -h.

The code for clustering is contained inside the “multinode/Clustering” folder and can be

run using the command streamlit run clusteringApp.py. The web interface gives all the

information needed for performing clustering and allows the user to choose where to save the

results.

The Python script selectedMultinodeTrainAndTest featureSelected

allmetrics withbaseline.py is used to run the multi-node training and testing experiments

with nodes selected via clustering. The command line argument needed can be retrieved via

the -h (--help) command.

Chapter 6. Appendix 72

We also coded auxiliary scripts to handle the creation of box plots and other scatter

plots: these are create clustering random boxplot multi.py and scatterplot clustering

vs random.py. These scripts can be customized by the user in case changes are needed.

Most of the scripts need the “FileFeatureReader” folder/module available in the root direc-

tory order to be able to read and parse the feature selected saved in a .txt file. The scripts in

this module are built using the Builder design pattern.

	Acknowledgements
	Sommario
	Abstract
	Introduction
	Area of research
	Research motivation and goals
	Contributions
	Thesis structure

	Background
	HPC systems
	Architectures
	Software and programming models

	Preliminaries
	Definitions
	Decision trees and random forests
	Gaussian mixture models
	Evaluation metrics

	State of the art

	Dataset
	Data acquisition
	Data preparation

	Methodology
	Single-node baseline
	Multi-node fault classification
	The number of training nodes
	The actual training nodes
	Metaparameters

	Experimental study
	Experimental setup
	Initial experiments
	Feature selection
	Other metaparameters and the number of training nodes
	The actual training nodes
	One single node
	Two nodes
	Three nodes
	Four nodes
	Five nodes
	Discussion of results

	Conclusions and future work
	Summary
	Future work
	Conclusions

	Appendix

