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Abstract

Nowadays, the installation of residential battery energy storages (BES) has

increased as a consequence of the decrease in the cost of batteries. The cou-

pling of small-scale energy generation (residential PV) and residential BES

promotes the integration of microgrids (MG), i.e., clusters of local energy

sources, energy storages, and customers which are represented as a single

controllable entity. The operations between multiple grid-connected MGs

and the distribution network can be coordinated by controlling the power

exchange; however, in order to achieve this level of coordination, a control

and communication MG interface should be developed as an add-on DMS

(Distribution Management System) functionality to integrate the MG energy

scheduling with the network optimal power flow.

This thesis proposes an edge-cloud architecture that is able to integrate

the microgrid energy scheduling method with the grid constrained power

flow, as well as providing tools for controlling and monitoring edge devices.

As a specific case study, we consider the problem of determining the energy

scheduling (amount extracted/stored from/in batteries) for each prosumer

in a microgrid with a certain global objective (e.g. to make as few energy

exchanges as possible with the main grid).

The results show that, in order to have a better optimization of the BES

scheduling, it is necessary to evaluate the composition of a microgrid in such

a way as to have balanced deficits and surpluses, which can be performed

with Machine Learning (ML) techniques based on past production and con-

sumption data for each prosumer.
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Sommario

Oggigiorno, in seguito alla diminuzione del costo delle batterie, l’installazione

di accumulatori di energia (BES) residenziali è aumentata. La combinazione

tra produzione di energia su piccola scala (PV residenziale) e BES residenziali

promuove lo sviluppo delle microgrids, cioè cluster di fonti locali, accumula-

tori e consumatori di energia rappresentati come una singola entità control-

labile. Le operazioni tra più MG connesse alla rete e la rete di distribuzione

principale possono essere coordinate controllando lo scambio di energia, ma

per raggiungere questo livello di coordinamento, dovrebbe essere sviluppata

un’interfaccia MG di controllo e comunicazione come funzionalità DMS (Dis-

tribution Management System) aggiuntiva per integrare la programmazione

energetica della microgrid con il flusso ottimale della rete.

Questa tesi propone un’architettura edge-cloud che è in grado di integrare

il metodo di pianificazione energetica della microgrid con il flusso di potenza

vincolato della rete, oltre a fornire strumenti per il controllo e il monitoraggio

dei dispositivi periferici.

Come caso di studio specifico, consideriamo il problema di determinare lo

scheduling dell’energia (quantità estratta/stoccata da/in batterie) per ogni

prosumer in una microgrid con un certo obiettivo globale (ad esempio fare

meno scambi di energia possibile con la rete principale).

I risultati mostrano che è necessario valutare la composizione di una mi-

crogrid in modo da avere deficit e surplus bilanciati per avere un’efficiente

ottimizzazione dello scheduling energetico, il che può essere fatto basandosi

su tecniche di ML basate su dati di produzione e consumo passati per ogni

prosumer.
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Chapter 1

Introduction

In Europe, in the past 100 years, geopolitical strength has depended on access

to fossil fuel resources. Nowadays, with the support schemes for renewable

energy, the energy system is taking a new course towards greater democrati-

zation and decentralization: renewable capacity in the EU has increased by

71 percent between 2005 and 2015, contributing to sustainable development

and more local jobs [1].

The spread of renewable energy means a switch from a few large power plants

to many smaller sources and digitalization is the answer for integrating mil-

lions of solar panel and wind turbines into a reliable system that balances

out supply and demand in real time (as the capacity of power lines is a scarce

resource) [11].

Despite progress with renewables, the European Union is still energy depen-

dent from other countries. A solution lies in improving energy efficiency and

developing renewables so as to reduce dependency on imports, for example

with a distributed energy system: electricity produced by a large number of

small generators (solar roofs, wind turbines, etc.), opposed to a centralized

power supply based on large power stations (nuclear and fossil-fuel plants,

utility-scale photovoltaic power plants and large wind farms).

In the energy system, the growing phenomenon of decentralized community

energy has led to ordinary citizens becoming prosumers: they both pro-

duce and consume electricity, especially solar. Prosumers may generate large
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2 CHAPTER 1. INTRODUCTION

amounts of renewable energy, and in doing so may disrupt the centralized

energy system [12].

1.1 Thesis Objective

The objective of this thesis is to illustrate an IoT architecture for the moni-

toring, managing and exchanging energy resources in microgrids.

In addition to this, the theoretical basis for understanding how this mecha-

nism works are provided and the current level of digitalization in the energy

sector is illustrated.

Finally, by comparing the different exchange optimisation strategies devel-

oped, the characteristics identified as crucial for successful optimisation are

shown.

1.2 Project Goals

The goal of the thesis project is to develop an edge-cloud architecture capable

of optimising the exchange of energy resources between the various prosumers

that make up a microgrid, making the latter ”smart”. Prosumers are users

who produce the energy they use, store it and exchange it with the local and

central grid, thus reducing the cost of buying it and the pollution involved

in transporting and storing it.

1.3 Ethics and Sustainability

With reference to economic sustainability, this project aims at a more sus-

tainable energy exchange between prosumers (consumers who also produce

energy, e.g. with photovoltaic panel installations) within a smart energy grid,

thanks to so-called microgrids.

The objective of smart energy grids is a more efficient exchange of energy

between different consumers using renewable energy production within the

microgrid, so that they do not need as much energy from the main grid
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(which only produces parts of it with renewable resources).

In regard to the scope of this thesis, there are no ethical concerns.

1.4 Outline

This thesis is structured as follows. The first Chapter describes the current

situation in Europe regarding the transition to renewable energy sources and

the ”smart” energy evolution; the concepts underlying this thesis project

such as smart grids, microgrids and IoT, as the leading technology in this

field, are then presented.

In Chapter 3, a technology-independent system architecture is illustrated,

which is therefore more generic and focuses only on the objective of the ar-

chitecture; the data sources and their refinement are then presented, and the

solutions designed for energy scheduling problems are illustrated in theoret-

ical terms. Chapter 4 explains how each component of the actually imple-

mented architecture works, also mentioning the technologies used, and how

data is processed at each step.

In Chapter 6 we assess the actual performance of the finished product, evalu-

ating and comparing in different scenarios the effectiveness of algorithms for

optimising energy exchanges between citizens and/or commercial activities.

Chapter 7 draws conclusions and discusses some ideas for possible future

developments.
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Chapter 2

State of the art

This chapter aims at providing foundations for understanding, albeit in a

rather general way, the themes underlying this work, i.e. from Smart En-

ergy to IoT; subsequently some solutions on the market, similar to some

components of the conceived system, are analyzed, and finally we review the

literature which has been used as a starting point for the interaction models

between the agents involved in the smart grid.

2.1 Background

2.1.1 The Europe’s energetic transition

In the past, Europe was supplied largely by a small number of big energy

companies, but its future lies increasingly in the hands of cities and munici-

palities, and millions of ordinary citizens across Europe.

The energy transition is already well underway, but it is happening at differ-

ent speeds across the continent (as shown in Fig. 2.1).

Competition from North America and the Far East is pushing Europe to

invest further in research and innovation, and to establish conditions where

green technologies can flourish: flagship projects are emerging with EU fi-

nancial support, such as offshore wind-farms in the North Sea and Baltic

Sea, the conversion of district heating from fossil fuels to renewable energy,

and European corridors for electric mobility.

5



6 CHAPTER 2. STATE OF THE ART

Figure 2.1: City-wide power consumption by generator source [1].

2.1.1.1 Coupling sectors

The next big challenges in Europe’s energy transition are the heating and

transport sectors, bringing them together with the power sector will allow

Europe to reach a 100 percent renewable system with technology that is al-

ready available today [13].

So far, strategies to reduce emissions have been implemented independently

in the heating, electricity and transport sectors. The potential of sector

coupling-increased energy efficiency, reduced CO2, emissions, and cost reduc-

tions - remains untapped. However, in recent years, we have seen a growing
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interest in a more integrated approach (e.g. Fig. 2.2). The first is in trans-

port, where excess power could be stored in the batteries of electric vehicles,

reducing the need for liquid fuel. To make this sector coupling commercially

Figure 2.2: Possible joins between different energy sector [1].

viable, electricity prices for end-users need to reflect the actual supply and

demand: they should be reduced when excess power is generated, and higher

at times of shortage. Today, households pay the same price for electricity

even when demand drops at night or during holidays, when industrial pro-

duction is curbed. At such times, electricity prices on the wholesale market

fall close to zero or may even be negative, meaning power plant operators ac-

tually have to pay to feed electricity into the grid. The sensible thing would

be to switch off some power stations, but big conventional coal and nuclear

power plants are not designed to ramp up and shut down quickly [14].

2.1.1.2 Renewable energy balance

Since electricity cannot easily be stored, the exact amount consumed gener-

ally has to equal the amount generated. Until recently, power supply sys-

tems were designed so that the supply side was managed to meet demand;

large central power plants ramp up and down as electricity demand increases
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and decreases. With intermittent renewables, however, power supply can no

longer be adjusted easily, so demand will have to be managed [1].

On windy and sunny days, turbines whirl and solar panels sizzle, feeding lots

of power into the grid. This depresses the price of power to a level that is

below the amount needed for solar and wind operators to cover the costs

of their initial investment. Without support schemes, they cannot make a

profit. But when the wind drops and night falls, wind and solar grind to a

halt, and other sources of power (or sufficiently large storage capacity) must

step in to bridge the gaps in supply.

The power grid could also be better stabilized by managing the amount

of power that consumers require. One strategy is to pool together consumers

who are willing to adjust their immediate power consumption. These compa-

nies, known as ”demand aggregators”, then offer these pools of consumers to

the grid operators. If there is a shortage of power in the grid (for example on

a calm, cloudy day when both wind and solar generators are idle), the grid

operator can reduce the amount of power used by the consumers in the pool.

By being aggregated together each individual customer only needs to reduce

a small amount. On sunny or windy days when power is in over-supply,

the operator can increase consumption by the consumers in the pool. Such

”demand-side responses” can decrease the cost and carbon footprint of the

power supply system, while increasing its flexibility, as the pooled consumers

can change their load faster than conventional power generators. Digital

solutions, such as smart meters and grids, will help to manage demand [15].

2.1.1.3 Digitalization in the energy industry

Digitalization in the energy sector is still in its infancy; this is probably due

to the fact that bringing new technologies and ideas into a tightly regulated

sector is challenging. Energy giants will look for legal arguments to bar new

technologies from market entry and young companies often find themselves

in legal battles over the most trivial issues. The future of a digitalized energy

system largely depends on whether new technologies are used as tools for de-
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mocratizing the energy system, or as a means for increasing the efficiency of

incumbent energy giants.

Some hail digitalization as the future market maker of a decarbonized sys-

tem. Renewables, battery storage, electric cars and the grid would silently

and digitally negotiate the flow of green electricity in the background, while

people go about their daily lives. Other experts see digitalization as a mere

hype: because of the vital role of electricity for modern life, they say that

control over the system should be best entrusted to large, experienced energy

companies [11].

2.1.1.4 Energy dependence

Despite progress with renewables, the European Union still imports 54 per-

cent of its energy needs, including 90 percent of its crude oil and 69 percent

of its natural gas. This import dependency comes at a high price: in 2013,

the EU spent 403 billion euros for fuel imports, falling to 261 billion euros

in 2015; this drop does not reflect lower demand but a fall in world market

prices-indicating the EU’s vulnerability to price volatility. In Fig. 2.3 we can

observe the share of imports in energy consumption for the main European

countries.

2.1.2 Smart energy systems and smart grids

In recent years, the terms “Smart Energy” and “Smart Energy Systems” have

been used to express an approach that reaches broader than the term “Smart

grid”. Where Smart Grids focus primarily on the electricity sector, Smart

Energy Systems take an integrated holistic focus on the inclusion of more

sectors (electricity, heating, cooling, industry, buildings and transportation)

and allow for the identification of more achievable and affordable solutions to

the transformation of renewable and sustainable energy. So smart grids may

require significant expansion of grid and storage infrastructures, while smart

energy systems can succeed within existing grid and storage infrastructures

[16].
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Figure 2.3: Share of imports in energy consumption for the main European
countries [1].

Today, computation and control management is used in all corners of

the power sector, but is far from being used to its full potential. As Amin

and Wollenberg emphasize [17], practical methods, tools and technologies

are allowing “power grids and other infrastructures to locally self-regulate,

including automatic reconfiguration in the event of failures, threats or dis-

turbances”. Amin and Wollenberg have not included a formal definition of

smart grid, but it can be understood from the paper that a smart grid is a

power network that uses modern computer and communication technology

to better deal with potential failures [16].

Later, the discussion of the need for changes in future power infrastructures

has often been related to the “smart grid” concept in a large number of re-

ports and papers, many of them argue for the need of this stuff for smart

grids, in order to facilitate better integration of fluctuating renewable en-

ergy [18]. Also several smart grid papers focus on the consumer and how to

involve the consumer in the active operation of the power balance by intro-

ducing technical operation systems and/or economic incentives to facilitate
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flexible demands [16].

As showed in Fig. 2.4, the typical schema for defining a smart grid consists

Figure 2.4: Classical energy market compared to the one who use smart grids
[1].

of a bi-directional power flow, i.e. the consumers also produce to the grid,

which differs from the traditional grid in which there is a clear separation

between producers on the one side and consumers on the other side resulting

in a uni-directional power flow. Consequently, concepts such as regulation

hierarchies, distributed generation (the challenge of integrating fluctuating

renewable energy sources into the electric power grid), vehicle to grid con-

cepts (charging systems capable of transferring energy not only from the
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source to the battery but also in the opposite direction, so that, if necessary,

the cars themselves can be transformed into reserves to draw on at particu-

larly critical moments to stabilize the network and avoid overloads) as well as

many micro-grids all become smart grids or part of the smart grid concepts

[1].

In 2013, [19] made a formal definition of a smart energy system con-

sisting of “new technologies and infrastructures which create new forms of

flexibility”. In simple terms, this means combining the electricity, thermal,

and transport sectors so that the flexibility across these different areas can

compensate for the lack of flexibility from renewable resources such as wind

and solar.

The smart energy system is built around three grid infrastructures:

• Smart Electricity Grids to connect flexible electricity demands such

as heat pumps and electric vehicles to the intermittent renewable re-

sources such as wind and solar power.

• Smart Thermal Grids (District Heating and Cooling) to connect the

electricity and heating sectors. This enables the utilisation of thermal

storage for creating additional flexibility and the recycling of heat losses

in the energy system.

• Smart Gas Grids to connect the electricity, heating, and transport

sectors. This enables the utilisation of gas storage for creating addi-

tional flexibility. If the gas is refined to a liquid fuel, then liquid fuel

storage can also be utilised.”

Based on these fundamental infrastructures, a smart energy system is defined

as follows: ”A Smart Energy System is defined as an approach in which smart

electricity, thermal and gas grids are combined with storage technologies and

coordinated to identify synergies between them in order to achieve an optimal

solution for each individual sector as well as for the overall energy system.”

Several synergies can be achieved by taking a coherent approach to the com-

plete smart energy system compared to looking at only one sector. This does
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not only apply to finding the best solution for the total system, but also to

finding the best solutions for each individual sub-sector [16].

2.1.3 Microgrid

Following a decrease in the cost of batteries, the installation of residential,

stationary battery energy storages (BES) has increased, signifying their value

in reducing the electricity cost of the prosumers. BES can be combined with

residential PV to increase the self-supply level of end-users during the day

and can help small-scale RES owners increase their revenue by maximizing

self-consumption of PV generation [7].

The coupling of small-scale generation with residential BES could promote

the integration of microgrids (MG), i.e., clusters of local energy sources,

energy storages, and customers which are represented as a single control-

lable entity. The U.S. Department of Energy has defined the MG as [20]: ”a

group of interconnected loads and distributed energy resources within clearly

defined electrical boundaries that acts as a single controllable entity with re-

spect to the grid. A microgrid can connect and disconnect from the grid to

enable it to operate in both grid-connected or island mode.”

MGs can be employed at various locations including both rural and urban

areas. Off-grid solutions are usually ideal for remote rural areas. In cities, on

the other hand, grid-connected MGs can be formed by clusters of distributed

energy resources that are integrated in commercial or residential buildings [7].

2.1.3.1 Energy management

MGs are defined as clusters of distributed energy sources (generation, stor-

age, flexible loads, etc.) and energy consumers (non-flexible load): in grid-

connected mode, the difference between the MG generation and consumption

can be imported or exported to the main grid; while, in island mode, the MG

is completely autonomous meaning that energy is supplied exclusively from

the MG resources and any excess in generation must be stored or curtailed,

if self-consumption is not an option. In Fig. 2.5 we show a general micro-
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grid base structure with the DMS (Distribution Management System) of the

main grid that interact with the EMS (Energy Management System) of each

microgrid ( µ stands for one of the microgrids connected to the main grid).

Regardless of the mode of operation, a MG can be considered as a con-

Figure 2.5: Microgrid standard structure [2].

trollable entity, which is represented as a single entity to the distribution

grid. This can be achieved with the help of the MG controller, which is the

key component of the MG in control of the producing and consuming units

(distributed generation, flexible loads, storage) that are clustered together to

form the MG. The MG controller ensures that the operation of the MG is

both secure and reliable as well as efficient and economical.

The MG-EMS is employed by the MG controller and its main task is to

optimally balance load and supply both in the planning phase and in the

delivery phase (either by MG resources or through interconnections). The

use of the MG-EMS is essential in dispatching the MG resources in an in-

telligent, secure, and reliable manner and in achieving coordination both

among the MG components as well as with other grids. The objectives and

strategies that determine the decisions of MG-EMS are defined by the MG

operator. If the MG operator is different from the DSO and the MG operates
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in grid-connected mode, then these objectives might not be co-aligned with

the operational objectives that optimize the operation of the main distribu-

tion network [7].

For example, if the objective for the DSO is to reduce the costs paid to

the TSO (thus minimising transmission costs), the whole grid operational ob-

jective for the DSO will be to make the microgrids as autonomous as possible

in such a way that they do not trade on the general distribution grid; for the

individual microgrids (MG operator) however the objective may be different,

e.g. in the case of profit maximisation the MG controller will inform the

MG-EMS to export as much energy as possible out of the microgrid, load-

ing the distribution grid and thus raising the transmission costs for the DSO.

The MG-EMS also determines the power exchange between the MG and

the main grid at the point of common coupling (PCC), which is the physical

interface of the MG with the distribution network. The operation between

multiple grid-connected MGs and the distribution network can be coordi-

nated by controlling the active (and/or reactive) power exchange at the

PCCs, but to achieve this level of coordination, a control and communi-

cation MG interface should be developed as an add-on DMS functionality to

integrate the MG energy scheduling with the network optimal power flow (a

functionality already available at the DMS) [7].

2.1.3.2 Optimal energy scheduling

The MG energy scheduling is the result of a decision-making process, where

the MGs and the DSO (or a MG aggregator) need to exchange information to

determine the interactions between the MGs and the main grid (e.g., power

exchange, energy prices). In this decision making process, there is often a

hierarchy with the DSO usually acting as the leader (upper level) and the

MG operators are the followers (lower level), then this problem can be for-

mulated as a bi-level optimization problem [7].

In most works presented in 2.1.3.1, the DSO is viewed as a supervisor and
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central coordinator for the energy exchange among all interconnected net-

work entities. Therefore, these studies usually assume that the DSO has full

knowledge of MG information, which extends beyond the PCC data such as

the MGs’ objectives, MG grid constraints as well as DER and customer data

in order to solve the bi-level optimization problem. Full knowledge helps

to simplify the bi-level optimization problem, as it can then be transformed

into an equivalent single-level mathematical problem with complementarity

constraints. Full MG information, however, comes into conflict with the

requirement of preserving the privacy of the MG data [7].

2.1.4 Internet of things

Internet of Things (IoT) refers to the networked interconnection of every-

day objects. It is described as a self-configuring wireless network of sensors

whose purpose would be to interconnect its nodes and deliver the informa-

tion to where it should be processed. Internet of Things has three important

characteristics:

1. Comprehensive sense, provided by the usage of sensors to collect infor-

mation of objects anytime, anywhere.

2. Reliable transmission, i.e. accurate real-time delivering information of

objects through meshing a variety of telecommunications networks and

Internet.

3. Intelligent processing, i.e. using intelligent computing such as cloud

computing to analyze and process vast amounts of data and informa-

tion, for the purpose of implementation of intelligent control to objects.

IoT has some use cases in intelligent environmental protection (an im-

portant long-term strategy of national development), as the massive envi-

ronmental data including water data, air data, regional environment data,

nature protection data and other data, should be collected accurately by

sensors and transmitted to servers to be treated and analyzed by software.

The intelligent environmental protection includes intelligent environmental
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monitoring, intelligent public facilities monitoring, intelligent city pipeline

monitoring, intelligent sewage treatment monitoring, intelligent parks con-

trol and so on [21].

2.1.4.1 IoT role in smart grid technology

Smart Grid is a new kind of intelligent power system realized with infor-

mation, communication, the computer control technology and the existing

transmission/distribution power infrastructure. The applications of IoT in

the Smart Grid are divided into smart power generation, intelligent trans-

mission and substation and intelligent power use, data collection is the key

to smart power grid. Sensor technology in IoT forms interactive real-time

network connection between the users, corporation and power equipment to

make data reading real-time, high-speed and two-way, which improve the

overall efficiency of the integrated power grid [22]. Smart Grid may use

more devices, including a variety of intelligent sensors, control components

and electrical equipment, which require higher digitization degree of power

grid and better data collection, transmission, storage and utilization in the

process of power generation, transmission, substation and distribution [21].

2.1.4.2 IoT edge cloud architecture

An IoT edge cloud architecture (see Fig. 2.6) is a distributed system, typ-

ically consisting of an outer rim of IoT, sensor devices and networks, an

intermediate layer of local processing capabilities and more centralised cloud

systems for data processing and storage. Fog and edge architectures provide

a link between centralised clouds and the world of IoT and sensors. The

architectures consist of devices of different sizes that coordinate the commu-

nication with sensors and cloud services, and that process data from or for

the sensors and the cloud locally [23].

The next generation of factories will be digital, it will mostly work au-

tonomously and will adapt its production processes dynamically in order to

improve the product quality, detect machine failures, etc. This is fueled by

the integration in real time of big data, edge and cloud computing, analytics,
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Figure 2.6: The edge computing infrastructure.

machine learning and networks. For this purpose, the machines will have

numerous sensors and actuators, which detect, perceive and they act in real

time with a significant level of autonomy and adaptation. For this, artificial

intelligence and machine learning methods are very important. To adapt

quickly, intelligence must be close to machines, spreading analytical intelli-

gence on ”network-edges”, to run AI algorithms inside the factory both on

small integrated boards near the machines and on larger computing nodes

within the factory’s IT services. This edge/cloud-based architecture requires

reliable and real-time communication and custom hardware/software in local

controllers to support large-scale AI-based applications that can work with

temporal constraints [24].
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Smart grids employ smart meters which are responsible for two-way flows

of electricity information to monitor and manage the electricity consumption.

In a large smart grid, smart meters produce tremendous amount of data that

is hard to process, analyze and store. The regular monitoring is expected to

be performed with all kinds of IoT devices and processing servers instead

of manpower, where IoT devices such as sensors and cameras will collect

and upload the real-time videos and other information about the power line

to the processing servers. Such information will then be automatically pro-

cessed by the servers running ML algorithms to detect potential threats and,

if necessary, trigger appropriate actuations to achieve timely and intelligent

monitoring with automatic threat identification.

Since deep learning algorithms are extremely data intensive, computation

intensive and hardware-dependent, the processing servers of smart grid are

expected to be equipped with abundant computation resources. This makes

cloud computing be widely proposed as a natural choice to host such servers.

However, transferring large volume of data into the cloud will push significant

pressure to the network and generate huge communication costs. In addition,

from power providers perspective, moving data to the remote cloud may also

incur privacy concerns. Moreover, the latency in the network can become

a severe performance bottleneck due to the latency sensitivity of real-time

monitoring.

Recently, the concept of edge computing has been proposed as a comple-

ment of cloud computing, attracting great interests from both academia and

industry. In contrast to cloud, edge usually refers to a geographical concept

which is in close proximity to the end devices in the network [25]. By pushing

applications, data and services away from centralized cloud to edge servers,

the computing paradigm will be extended to an edge-cloud collaborative com-

puting, which has shown outstanding performance on communication latency

and traffic reduction, and ease the privacy concerns of users as well [26].

In conclusion, edge computing is an environment that offers a place for col-

lecting, computing and storing smart meter data before transmitting them to
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the cloud. This environment acts as a bridge in the middle of the smart grid

and the cloud. It is geographically distributed and overhauls cloud comput-

ing via additional capabilities including reduced latency, increased privacy

and locality for smart grids [27].

2.2 Related Works

2.2.1 Existing Microgrid-based Energy Management

Systems models

Traditionally, energy consumers pay non-commodity charges (e.g. transmis-

sion, environmental and network costs) as a major component of their energy

bills. With the distributed energy generation, enabling energy consumption

close to producers can minimize such costs. The physically constrained en-

ergy prosumers in power networks can be logically grouped into virtual mi-

crogrids (VMGs) using communication systems.

There are centralized and distributed optimization approaches: distributed

approaches are, for example, based on game theory as no global information

is available and each agent makes its own decisions. Peer-to-peer (P2P) en-

ergy trading offers an approach to produce and sell energy at the edge of the

network and can help in reducing charges. Since there are multiple producers

and consumers involved, attaining optimal pricing as well as utility for the

consumers and producers respectively, can be complicated.

[28] introduces a game theory-based approach to optimize energy trading

costs in a single VMG. In this work prosumers can act as consumers when

they need to buy energy. In the model, A (a producer) sets up its own

energy price and the consumer has the liberty to choose who to purchase

energy from. Typically, the energy price defined by A is cheaper than the

grid-price at the prevailing transaction interval. Thus, the price set by A

depends on the prices set by other A’s and the grid. This type of coupling

between prosumers’ trading strategies necessitates the use of game theory to

model the interaction between the producers and consumers. Specifically, is

adopted a multi-leader multi-follower Stackelberg game.
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For [3] there are some reasons game theory is applied to model the energy

management of future distribution networks with the presence of multiple

microgrids, the main reasons for authors to use game theory in this problem

have been listed as follow:

• The strategic game is used to model selfish behaviors of other agents.

• Networked optimization usually consists of multiple agents who can

observe and react to their environment. Game theory offers a powerful

tool set to analyze interactions between such intelligent entities.

• Although network components or agents would like to cooperate, it

might be impractical or impossible to exchange the information re-

quired to implement presented method. It might then be better for

agents to optimize their local or private objective and react to limited

network information.

• Game theory provides a way to predict, analyze or even to improve the

outcome of a non-cooperative interaction, e.g. the notation of equilib-

rium.

[3] present optimal scheduling of resources from the DNO’s point of view con-

sidering reaction of multiple autonomous microgrid; since multiple microgrid

are considered multi follower bi-level programming has been implemented.

In general, MFBP is a bi-level decision-making problem which has three sig-

nificant characteristics:

• There exists two decision levels within a principally ordered structure.

• The decision level at the lower order executes its policies in consequence

of decision making at the upper level.

• Each level autonomously optimizes its objective but it is affected by

the reactions of other level.
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The decision maker at the upper level is denominated as the leader, and at

the lower level, is named as the followers. The leader cannot adequately

control the decision making process of the followers, however, it is affected

by the reaction of the followers. The optimal solution of the followers allow

the leader to execute his/her objective functions value. Since, this type of

decision making process has been appeared in many decentralized organiza-

tions, and been mainly handled by bi-level programming technique.

As shown in the Fig. 2.7 the problem has been formulated in two level witch

DNO as upper level determines its decision making considering reaction of

MGs.

Figure 2.7: Problem statement as a bi-level programming [3].

For [29], a critical point for the distributed management can be that each

microgrid control centre is not informed of generated and consumed powers

of other rivals, consequently, the microgrids may face the problem of common

line congestion.

Assuming a line limitation in PCC and some microgrids are connected to

the grid through this point. When grid electricity price is cheap/expensive,

each microgrid starts to buy/sell from/to grid without knowing about neigh-

bouring microgrids. For this purpose, in this work, a new unit to manage

congestion called MGA is proposed. This unit is responsible for line utilisa-
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tion, and allocating fair capacity among various microgrids.

The proposed mathematical framework for solving the problem is based on a

bi-level model: in the first level, microgrids implement day-ahead scheduling

independently and provide the aggregator with the results; In the second

level, a novel energy management mechanism is carried out by the aggrega-

tor, taking PCC constraints into consideration.

[30] and [31] formulate the problem as a stochastic bi-level problem with

the DNO in the upper level and MGs in the lower level and also for [32]

the MMG system is a hierarchical decentralized SoS. Individual MGs are in-

dependently managed and operated, and they can choose to join the MMG

system, but a controller for the MMG system, the DMS, is present to coordi-

nate the power exchange among the participating MGs and the trading with

the DN. Energy management at the level of MMG system interacts with the

DN and coordinates participating MGs in the system. In other words, the

MGCC of each participating MG derives an optimal solution of energy man-

agement for the MG with consideration of the request for power exchanges

and trading from the DMS. Meanwhile, the DMS assesses the optimality of

energy management solutions for the MMG system based on the optimal

solutions provided by the MGCCs.

The development of a cluster-based (similar to microgrid) energy manage-

ment scheme with a mathematical model for residential consumers of a smart

grid community is proposed by [33] to reduce energy use and monetary cost.

Solar and wind generators, an energy storage system and a typical energy

consumption profile for residential consumers are also considered. Further-

more, the home appliances considering peak-load, mid-peak, and off-peak

loads and real-time electricity prices scenarios are modeled.

However, we highlight that most models take into account a ”simplified”

microgrid structure (see Fig. 2.8) only with ”produce” and ”consume” agent-

types, in which the prosumer entity (an agent that both ”produce” and

”consume”) is not present.

The energy scheduling problem illustrated in the work [7] takes into con-
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Figure 2.8: Standard MG system communication infrastructure, linking the
microgrid central controller (MGCC) and the local controllers (LCs) [4].

sideration the prosumer entity and, respect to all the others works that

mostly focus on the dynamic prices based on supply/demand, this estab-

lish fixed prices (considered in the decision making process) and the main

issue is the energy exchange between the microgrid agents. For this reason

this was chosen as the starting point for the optimization component in this

work.

2.2.2 Microgrid Energy Management optimization prob-

lem

The energy management in microgrids is typically formulated as an offline op-

timization problem for day-ahead scheduling, most of the offline approaches

assume perfect forecasting of the renewables, the demands, and the mar-

ket, which is difficult to achieve in practice. Existing online algorithms,

on the other hand, oversimplify the microgrid model by only considering

the aggregate supply-demand balance while omitting the underlying power

distribution network and the associated power flow and system operational

constraints. Consequently, such approaches may result in control decisions

that violate the real-world constraints [4].
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2.2.3 Real-world Deployments of Microgrid Energy Man-

agement Systems

MG-EMSs are already offered by several manufacturers including Siemens,

Hitachi, and General Electric among others. Some of these platforms provide

also integration with the supervisory control and data acquisition (SCADA)

system of the utility through standard industrial protocols. Thus, the tech-

nology for both MG deployment and DSO integration is available. The adop-

tion of MGs could benefit both end-users, which could reduce their energy

cost, and the operation of the distribution system, which can exploit the

energy flexibility offered by MGs [7].

2.2.3.1 Siemens

Microgrid Control Microgrid Control from Siemens provides reliable con-

trol and monitor a microgrid, ensuring an independent power supply and bal-

ancing out grid fluctuations as well as fluctuations in energy consumption,

the Fig. 2.9 illustrates the components over which control is exercised [5]. It

offers the following functionalities:

• Blackout detection, black start, and automatic grid modes;

• Automatic start of backup generators;

• Optimization of operating points;

• Reserve monitoring;

• Peak shaving;

• State-of-charge management.

Spectrum Power™ Microgrid Management System The Siemens Spec-

trum Power™ MGMS is an advanced control and optimization software – used

to maximize the value of onsite generation and energy storage in coordina-

tion with local utility rates, it can be used as a support tool for the more
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Figure 2.9: Microgrid Control, by Siemens [5].

general Microgrid Controller. Spectrum Power™ has the ability to forecast

site electrical and thermal loads – and while taking into account the cur-

rent electric and fuel/gas utility tariffs, will execute a comprehensive plant

operation routine in order to find the economic optimal unit schedules for

the next 24 hours or 7 days. These schedules are then dispatched in real

time, turning units on and off, and sending the economic optimal operating

set points and charge/discharge rates. This results in significantly decreased

operating expenses from electricity and fuel/gas purchases.

The overall function of MGMS (as showed in Fig. 2.10) is the optimal coor-

dination of dispatchable generation (gas, diesel generators, etc.), renewable

generation (PV, wind, etc.), energy storage (batteries), and load (via Build-

ing Management System or remotely-operated switches) [6].

2.2.3.2 Hitachi e-mesh Energy Management System

Hitachi ABB Power Grids’ e-mesh™ EMS is specially designed to manage

distributed energy and renewable resources, conventional power generation

sources, and controllable loads like electric vehicle chargers. e-mesh EMS is

a flexible and highly scalable application that allows for easy expansion as
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Figure 2.10: MGMS Operational Flow, by Siemens [6].

the number of energy resources and the size of the operation grow [34].

The application comes with four key features:

• EMS Optimize: improves energy production whilst reducing costs and

emissions. With the optimisation module the assets’ management is

based on each unit’s constraints and costs. Flexible and scalable models

are implemented to rapidly expand from few to several units.

• Simulate & Plan: helps in making cost-effective decisions.

• Analyze: enhances transparency whilst providing energy insights.

• Integrate: enables connectivity options for integration with SCADA

(”Supervisory Control And Data Acquisition”) systems, third-party

systems such as forecast providers and trade platforms can also be easily

integrated with the application, allowing meaningful data exchange.

2.2.4 Identified research gaps

At present there are many practical and theoretical solutions that adopt

the technique of optimisation in distributed systems using e.g. game theory

which do not assume global knowledge, while there are missing centralised
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solutions that can calculate good solutions fast.

In addition, we would like to avoid using off-the-shelf products, this to

ensure maximum low coupling between the various components from the very

beginning of the project, in such a way that you can test the performance and

add, modify or remove components when necessary (for research purposes of

new solutions, testing for machine learning models, etc.).

As [7] has observed, studies on coordinated operation of the MGs and

the DSO have exclusively focused on defining the amount of energy trade

between the DSO and the MGs often without considering the underlying

constraints of the distribution network operation.

For efficient BES dispatch and accurate evaluation of the BES utilization, it

is important to consider both real-life performance and usage constraints of

the BES for each prosumer.



Chapter 3

Design

This chapter first presents the general structure of the existing context in

which we operate. It then illustrates the software architecture designed to

manage and process the data, irrespective of the technologies used. This

is followed by a presentation of the data sources used for the simulations,

the machine learning model used to derive the energy production data, the

theoretical structure of the energy scheduling problem and, finally, the per-

formance metrics chosen for the subsequent evaluation phase.

3.1 Energy network structure

The Fig. 3.1 shows the basic general structure of the smart grid on which

the project will be developed.

Each microgrid contains a cluster of prosumers, each with an associated

control board (edge unit) that is responsible for collecting data from the

various sensors (battery state of energy, energy consumption and energy pro-

duction from the photovoltaic panels) and for receiving any instruction for

the battery scheduling from the controllers. In the cloud we find the micro-

grid controllers, which are responsible for collecting all local information and

making optimal decisions at a global level (such as how much energy each

prosumer has to draw/feed from/into its battery); the main grid provides

other information such as energy buying and selling prices etc. and a circuit

29
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Figure 3.1: Network structure with microgrids. In the microgrid (i) in the
scheme there are j prosumers.
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breaker acts as an automatically operated electrical switch.

As illustrated in the legend, there are two ”parallel” flows:

• the energy flow that, starting from the main grid, branches out on

the electricity grid and arrives at each prosumer (this configuration is

independent of the microgrid as the latter is intended to represent an

abstract level cluster only);

• the flow of information (depending on the configuration of the prosumer

cluster in the microgrid) which can be divided into two phases: sending

data to the server and receiving results/decisions.

3.2 General system architecture

Based on the structure illustrated in the previous section, the hardware/-

software system in Fig. 3.2 has been designed to achieve the objective of

this project: each prosumer predicts its energy supply and demand locally

using edge computing and pushes this information to the cloud that, in a

marketplace, optimize energy exchanges between prosumers.

Each edge unit receives the data from the sensors and, together with those

values, it sends to the server (as telemetries) also the data predicted by the

machine learning model for the next time interval. In the cloud server, the

data is received by a device manager that passes it to an aggregator that

groups together all the time series data-points received in a certain time in-

terval for each microgrid; the aggregated real-time data are sent to a tool

for graphical representation (consumption and production), while the aggre-

gated data becomes the input for the energy scheduling optimizer. The result

of the optimisation (which devices should charge or discharge their battery

in the next time interval) is finally communicated to the respective boards.

3.2.1 Data structure in the flow

The table 3.1 shows the structure of the data collected and sent (in out

use case, sent every 30 seconds) from the board (edge unit) to the server.
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Figure 3.2: General system architecture. In this schema is represented, as
an example, only one edge unit (i).

Depending on the strategy used (local or global, see section 3.5 for a detailed

explanation) some of these fields may be empty or not.

This data structure is similar even after aggregation for each device and

then for each microgrid; indeed, the output of the aggregator contains the

attributes concerning the individual prosumer together with the ones of the

microgrid. As showed in table 3.2, the data that regard a property of the

single device are the ones with index: 1, 2, 7, 9, 10; while the ones which are

an aggregation of the values produced by the board in a 5-minute interval

have index: 3, 4, 5, 6, 8, 11, 12. Data such as consumption and production are

aggregated by summing all the data-points while the battery state of charge

is averaged over the 5-minutes interval. The attribute microgridAggregator

(index 13) has the structure represented in table 3.3 and contains the sum (for

that precise time interval) of consumption, production, import and export

for the microgrid stated in microgridID (index 1) and is replicated in every

device belonging to that microgrid.
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Index Data Source Strategies
that use
the data

1 microgridID board local,
global

2 deviceID board local,
global

3 consumption (kW): energy
consumption of the building
in the previous time step

sensor local,
global

4 production (kW): energy
production of the PVs in the
previous time step

sensor local,
global

5 predictedConsumption
(kW): predicted energy
consumption of the build-
ing for the next time
step

ML inference global

6 predictedProduction (kW):
predicted energy produc-
tion of the PVs for the next
time step

ML inference global

7 batteryCapacity (Ah) battery at-
tributes

global

8 batteryStateOfCharge (Ah) sensor global
9 chargingLimit (percentage):

maximum amount of bat-
tery charge for a time step

battery at-
tributes

global

10 dischargingLimit (percent-
age): maximum amount of
battery discharge for a time
step

battery at-
tributes

global

11 energyImport (kW) local computa-
tion

local

12 energyExport (kW) local computa-
tion

local

Table 3.1: Data structure from the board.
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Index Data Strategies that
use the field

1 microgridID local, global
2 deviceID local, global
3 sumConsumption (kW) local, global
4 sumProduction (kW) local, global
5 sumPredictedConsumption (kW) global
6 sumPredictedProduction (kW) global
7 batteryCapacity (Ah) global
8 averageBatteryStateOfCharge (Ah) global
9 chargingLimit (percentage over the battery

capacity)
global

10 dischargingLimit (percentage over the bat-
tery capacity)

global

11 sumEnergyImport (kW) local
12 sumEnergyExport (kW) local
13 microgridAggregator local

Table 3.2: Data structure of the output of the aggregator (for each device).

Index Data

1 microgridID
3 sumConsumption (kW)
4 sumProduction (kW)
5 sumEnergyImport (kW)
6 sumEnergyExport (kW)

Table 3.3: Data structure of the attribute microgridAggregator.

3.3 Input data preparation

For this project it has been decided to simulate consumption and production

data, in order to create prosumers with different profiles (e.g. residential

or commercial), otherwise connecting real sensors to the board would have

simulated at most one single prosumer at a time.

A number of datasets containing numbers on energy consumption and pro-

duction over the course of a day have been then used to simulate real data.
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3.3.1 Datasets

3.3.1.1 Production

The data source for energy production has been the dataset of FerroAmp’s

EnergyCloud portal (desktop version: [35]) where selected segments of the

time series (containing both production and consumption) of some residential

dwellings can be viewed and downloaded (a snapshot of the system can be

seen in Fig. 3.3). The downloaded file is a CSV file and contains data about

a single residential prosumer for one day.

Figure 3.3: Snapshot of the desktop version of the monitoring application
ferroAmp.

3.3.1.2 Consumption

Two data sources were used for consumption:

• FerroAmp for residential consumption (see 3.3.1.1), also in this case

the data are about a single residential prosumer in one day;

• OpenEI (desktop version: [36]) for commercial buildings for one day

data; the chosen types are (one each): hospitals, hotels, schools, super-

markets, warehouses.

In both cases the downloaded file is a CSV file.
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3.3.2 Pattern extraction

For both consumption and production it has been decided to find the daily

pattern. For each time series of data (residential production/consumption

and commercial) hourly mean and standard deviation have been calculated

over a single prosumer, starting from a data granularity of 1 minute.

Arithmetic mean and standard deviation have been computed as well:

x̄ =
1

N

N∑
i=1

xi (3.1)

s =

√√√√ 1

N − 1

N∑
i=1

(xi − x̄)2 (3.2)

because, when looking at various graphs and/or time series representing pro-

duction and/or consumption values, it was noted that the values follow a

normal distribution (see figures 3.4 and 3.5).

Having these two values for each hour, the simulator generate a significant

value (a normally distributed random number) for any time of day and at

any granularity (depending on the frequency chosen for sending telemetry

from the board to the server) proportioning the values to the granularity of

the original dataset.

3.4 ML model for production inference

In our case, a 4-layer bidirecional LSTM model (from[38]) has been used to

infer the energy production of the photovoltaic panels.

In comparison to normal MLP (Multilayer Perceptron), which consists of

many layers with neurons in it and the input data is propagated through the

network itself, the LSTM (Long Short-Term Memory Network) has recurrent

connections. This means, that the state of the previous activations is also

used as a context for the output. Long short-term memory (LSTM) is, in

fact, an artificial recurrent neural network (RNN) architecture mostly used in

the field of deep learning and, unlike standard feedforward neural networks,
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(a) Average daily energy consumption during the weekdays and the variation
throughout the different months [37].

(b) Average daily energy consumption during the weekdays and the variation
throughout the different months [37].

Figure 3.4: Average daily energy consumption and the variation throughout
the different months.
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(a) Average monthly load profiles of the block of flats from January to June [37].

(b) Average monthly load profile of the block of flats from July to December [37].

Figure 3.5: Average monthly load profiles of the block of flats.
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LSTM has feedback connections, this means that it can not only process

single data points (such as images), but also entire sequences of data (such

as speech or video). In addition, in comparison to normal RNN the design

of the LSTM Network allows to overcome the problem of the vanishing or

exploding gradients ( the weight update procedure changes the weights so fast

in one direction or the other, that it is graduate to zero or infinity) as those

phenomena make the neural network useless. Moreover, in general RNNs are

good for the processing of sequential data and for the prediction of those, but

those networks suffer from short-term memory. LSTM networks overcome

this obstacle processing a time series one step at a time and maintaining an

internal state that summarises the information acquired up to that moment

[38].

A Bidirectional LSTM, or biLSTM, is a sequence processing model that

consists of two LSTMs: one taking the input in a forward direction, and the

other in a backwards direction. BiLSTMs effectively increase the amount of

information available to the network, improving the context available to the

algorithm (e.g. knowing what words immediately follow and precede a word

in a sentence) [39]. In Sec. 4.6 the technical details of the model for inference

will be explained.

3.5 Structure of the energy scheduling prob-

lem and solution approaches

The solution of the MG energy scheduling problem depends on the opera-

tional objectives of the MG operator. It is assumed that the MG operator

has full access to the installed DERs in the MG and is responsible for deliv-

ering power to the MG customers; the MG operator is a different entity from

the DSO.

The architecture proposed by [7] for the integration of the MG to the distri-

bution system can be seen in Fig. 3.6, which is a schematic representation of

the interface between the MG-EMS and the DMS. Two-ways communication

is always assumed between the MG-EMS and the DMS. No communication or
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interaction is considered between different MG-EMSs, i.e., the MG-EMSs can

only interact with the DMS. Three different schemes of coordination between

the MG-EMS and the DMS are depicted, these coordination schemes, which

affect the approach followed for the solution of the MG energy scheduling

problem, can be described as follows:

• No coordination: the MG-EMS solves the energy scheduling problem

and dispatches the MG resources according to this solution.

• Centralized coordination: it is assumed that the DMS is empowered

to dispatch the MG resources, the MG-EMS receives the reference set-

points from the DMS and then transmits them to the MG resources.

• Decentralized coordination: the DMS can only transmit the desired

reference values for the PCC and is in no other way involved in the

MG energy scheduling.

In our use case we have decided to use ”No coordination” for the two global

strategies (see Sec. 3.5.3).

3.5.1 Rolling horizon

An energy management scheme can have a scheduling horizon that depends

on the accuracy of the forecasted values of load, non-dispatchable generation

and electricity price. It can be applied hour-ahead, day-ahead, week-ahead

or even month-ahead. The scheduling horizon is divided in time steps (time

discretization steps), which usually (although not necessarily) correspond to

the frequency update of the dispatched set-points and the resolution of the

input data (resolution of forecast).

Typically, hourly or 15-minutes time intervals are used in energy manage-

ment. Energy management schemes with time intervals which are shorter

than 5 minutes can be classified as real-time energy management schemes.

For implementation of real-time or close to real-time energy management,

the rolling horizon (RH) approach must be adopted. When the MG energy

scheduling follows a RH approach, the energy scheduling problem is solved
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Figure 3.6: The integration of the MG-EMS to the DMS [7].

before each time step [7]. In our case, as we have a 5 minutes time step

(to determine the transactions between the components of the microgrid) we

have decided to use the rolling horizon approach in our scheduling problem.

As showed in Fig. 3.7, during the time step 1 (between t and t+1, where +1

means 5 minutes) together with the real time data, the board also sends the

predicted data (production and consumption) for time step 3 (between t+2

and t+3), because we take into account time step 2 as the time-frame for

the computation of the optimised energy scheduling; therefore the decisions

for time step 3 will be made based on data received in time step 1. This

procedure is performed at each time step, shifting 2 units for the results.

3.5.2 Business As Usual (local) strategy

In this scenario, the dispatch of the BES follows a rule-based algorithm local

to the edge unit; each prosumer then acts independently of the others and

charges/discharges its battery and buys/sells energy only according to its

needs. The procedure showed in the Algorithm 1 is actuated in each board,
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Figure 3.7: The rolling horizon approach.

in case the chosen strategy is the BAU (Business As Usual, normal execution

of operations will be followed) this will also be the final local configuration

of the edge-unit. The first step is to check whether the prosumer has an

energy deficit or surplus, after this the energy balance of the single prosumer

is levelled with two possible alternatives:

• charging (in case of surplus) or discharging (in case of deficit) the bat-

tery: in this case it is checked that this meets the conditions indicated

in the Equations 3.4, 3.5, 3.6, 3.7, 3.8;

• importing/buying (in case of surplus) or exporting/selling (in case of

deficit) energy: this solution is adopted if and only if the energy balance

has not been completely levelled out by using the battery.

More in detail, the Algorithm 1 adopts the following procedure to check that

the scheduling meets the conditions indicated in the Equations 3.4, 3.5, 3.6,

3.7, 3.8:

• At line 1 it calculates the difference between production and consump-

tion, if this value is positive the prosumer has a surplus of energy,

otherwise there is a deficit.

• In case of surplus (from line 6 to 20) it is checked if it is possible to

recharge the battery of that particular building for the entire amount

of the extra energy (line 7) based on the maximum charging level for a

time-step.
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– If the quantity does not exceed the maximum charging level (lines

8-13), it is checked that the maximum SoE for that prosumer

(corresponding to 80% of the battery capacity) is not exceeded

(line 8); if this value is surpassed, the feasible amount is stored in

the battery and the remaining amount is exported (lines 12-13).

– If the quantity exceeds the maximum charging level (lines 15-20),

it is checked that the maximum SoE for that prosumer is not

exceeded by just adding the maximum charge quantity (line 15);

if the maximum SoE is surpassed, the feasible amount is stored in

the battery and the remaining amount is exported (lines 19-20).

• In case of deficit (from line 22 to 36) it is checked if it is possible to

balance the entire amount of the deficit of energy by discharging the

battery of that particular building for of the based on the maximum

discharging level for a time-step (line 23).

– If the quantity does not exceed the maximum discharging level

(lines 24-29), it is checked that the minimum SoE for that pro-

sumer (corresponding to 20% of the battery capacity) is not ex-

ceeded (line 24); if this value is surpassed, the feasible amount is

drawn from the battery to be used and the remaining amount is

imported (lines 25-26).

– If the quantity exceeds the maximum discharging level (lines 31-

36), it is checked that the minimum SoE for that prosumer is not

exceeded by withdrawing the maximum discharge quantity (line

31); if the minimum SoE is surpassed, the feasible amount is with-

drawn from the battery and the remaining amount is imported

(lines 19-20).

3.5.3 Optimized (global) strategies

The MGs can have different objectives (minimize the exchange with the

main grid or minimize the total cost) and centrally (respect to the MG)

coordinated energy scheduling (microgrid global optimization) is considered
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in this case. Depending on the strategy (operational objectives), a different

energy scheduling problem is formulated and solved.

The optimisation strategies are addressed to the single microgrid, foreseeing

energy exchanges only between prosumers within the same microgrid and not

between those belonging to different microgrids; outside the cluster there are

exchanges only with the DSO and the microgrids do not cooperate with

each other. We are not looking at individual prosumer exchanges within a

microgrid and we assume that they all cooperate because, otherwise, there

should be a rationale about what should be doe with surplus of money of the

microgrid, how should that be distributed to individual prosumers and which

prosumers are willing to exchange energy with others. This problem is solved

by the MG-EMS of each individual MG. However, the solution can also be

affected (or even directly dispatched) by the DMS of the DSO depending on

the level of interaction between the MGs and the DSO (in our case the only

interaction consist in communicating the energy prices).

3.5.3.1 General constraints

MG energy balance In 3.3, C is the set/cluster of prosumers in that

microgrid, pim and pex are its import and export. For each prosumer j,

bch, bdis respectively refer to the charging/discharging of his battery, pPV is

his photovoltaic energy production and pC is his energy consumption. This

constraint is necessary to ensure that the energy balance in the individual

microgrid is maintained.∑
j∈C

(pPV
j,t − pCj,t − bchj,t + bdisj,t ) + pim − pex = 0 (3.3)

BES scheduling The BES model that has been most frequently used in

the latest literature on BES scheduling (for [7]) assumes that the SoE of the

BES at each time step is linearly dependent on the cumulative BES through-

put of the previous time steps. This model is described by the following

equations:

soej,t = soej,t−1 + bchj,t−1 − bdisj,t−1,∀j ∈ C (3.4)



3.5. STRUCTUREOF THE ENERGY SCHEDULING PROBLEMAND SOLUTION APPROACHES45

SoEmin
j < soej,t < SoEmax

j ,∀j ∈ C (3.5)

0 ≤ bchj ≤ kchj , ∀j ∈ C (3.6)

0 ≤ bdisj ≤ kdisj ,∀j ∈ C (3.7)

bchj,t ∗ bdisj,t = 0,∀j ∈ C (3.8)

In the above formulation, C is the set/cluster of prosumers in that microgrid,

kch, kdis denotes the maximum charging/discharging power according to the

specifications of the battery manufacturer. Moreover, bch, bdis respectively

refer to the charging/discharging of the battery, SoE is the state-of-energy,

which must lie between the lower and upper limit (SoEmin and SoEmax, re-

spectively). It is also noticeable that the battery of a prosumer can only

be charged or discharged in a time step, is impossible having both values

different than 0.

3.5.3.2 Objective functions

Minimum exchange strategy In this case the objective function is the

energy exchange minimization and is related to the desired level of interaction

between the single microgrid and the main grid (as the microgrids do not

cooperate with each other).

min(pim + pex) (3.9)
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In 3.9, p is the power imported im and exported ex in that microgrid that

wants to minimize its energy exchange. These two variables are the result-

ing value for the entire microgrid after the energy deficits and surpluses of

the prosumers within it have been aligned and possibly compensated for by

charging and/or discharging the batteries.

Minimum cost strategy In this case the objective function is cost min-

imization for the single microgrid, which can alternatively be formulated as

profit maximization, and is related to economic operation targets.

min(pim ∗ P SLOT im − pex ∗ P SLOT ex

) (3.10)

In 3.10, p is the power imported im and exported ex in that microgrid that

wants to minimize its cost/maximize its profit and PSLOT is the price, given

by the main grid for import im and export ex. Also in this case pim and

pex are the resulting value for the entire microgrid after the energy deficits

and surpluses of the prosumers within it have been aligned and possibly

compensated for by charging and/or discharging the batteries, with the goal

of minimizing the cost.

3.6 Evaluation metrics

In order to evaluate the project, we consider in different scenarios the differ-

ences between the global optimisation strategies and the local BAU strategy.

For example, in the case of minimizing cost / maximizing profit, the cost

incurred by the microgrid in case of adoption of the global strategy will be

compared with the cost sustained in case of BAU. Different configurations

for the algorithms and their impact on the final performance (e.g. solving

times) will also be compared.
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Algorithm 1: BAU local algorithm

Data: prevBatterySoe, batteryCapacity,maxCharging,
maxDischarging, production, consumption
Result: export, import, newBatterySoe

1 diff ← production− consumption;
2 import← 0 ;
3 export← 0 ;
4 newBatterySoe← 0;
5 if diff > 0 then
6 charging ← diff ;
7 if charging < maxCharging ∗ batteryCapacity then
8 if (prevBatterySoe+ charging) < 0.8∗ batteryCapacity then
9 newBatterySoe← prevBatterySoe+ charging;

10 export← 0;

11 else
12 newBatterySoe← 0.8 ∗ batteryCapacity;
13 export← charging− (newBatterySoe−prevBatterySoe);
14 else
15 if (prevBatterySoe+ (maxCharging ∗ batteryCapacity)) <

0.8 ∗ batteryCapacity then
16 newBatterySoe←

prevBatterySoe+ (maxCharging ∗ batteryCapacity);
17 export← charging − (maxCharging ∗ batteryCapacity);

18 else
19 newBatterySoe← 0.8 ∗ batteryCapacity;
20 export← charging− (newBatterySoe−prevBatterySoe);

21 else
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(21)

(22) discharging ← −1 ∗ diff ;
(23) if discharging < maxDischarging ∗ batteryCapacity then
(24) if (prevBatterySoe− discharging) < 0.2 ∗ batteryCapacity

then
(25) newBatterySoe← 0.2 ∗ batteryCapacity;
(26) import←

discharging − (prevBatterySoe− newBatterySoe);
(27) else
(28) newBatterySoe← prevBatterySoe− discharging;
(29) import← 0;

(30) else
(31) if

(prevBatterySoe− (maxDischarging ∗ batteryCapacity)) <
0.2 ∗ batteryCapacity then

(32) newBatterySoe← 0.2 ∗ batteryCapacity;
(33) import←

discharging − (prevBatterySoe− newBatterySoe);
(34) else
(35) newBatterySoe←

prevBatterySoe− (maxDischarging ∗ batteryCapacity);
(36) import←

discharging − (maxDischarging ∗ batteryCapacity);



Chapter 4

Implementation

This chapter describes the implementation of the designed solution described

in the previous chapter. First of all, there is an overview of the technologies

used, from the development environment to the programming languages,

both edge and cloud side. Then the chosen software architecture is presented

and finally the individual interaction mechanisms between the components

are explained.

4.1 Development environment

For the development of the project Eclipse IDE for Java Developers has

been used. In our case, it has been chosen firstly for the possibility of using

different languages thanks to the plug-ins and secondly for the presence of the

”Remote System Explorer” tool which, by supporting SSH connections, has

made it possible to carry out the development phase directly on the servers

in a more user-friendly manner, speeding up and simplifying the procedures.

In addition to the programming language Node.js (see Sec. 4.2.2), Java and

Python were also used.

49
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4.2 Technologies used for the edge unit

4.2.1 Jetson Nano Developer Kit

The NVIDIA Jetson Nano development kit 4.1 is a small, powerful computer

that enables multiple neural networks to run in parallel for applications such

as image classification, object recognition, segmentation and speech process-

ing. At 70 x 45 mm, the Jetson Nano-Module is the smallest Jetson device.

It has four USB 3.0 ports for peripherals, HDMI and display-port connectors,

a Micro-USB port to supply power or allow remote operation, an Ethernet

port, two ribbon connectors for attaching Raspberry Pi-compatible camera

modules, and a barrel jack socket for providing the additional power needed

for intensive computations [40].

It has been used as edge unit for sensor connection, computation and machine

learning inference.

Figure 4.1: NVIDIA Jetson Nano Developer Kit.
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4.2.2 Node.js

Node.js is an open-source, cross-platform, back-end JavaScript runtime en-

vironment that runs on the Chrome V8 engine and executes JavaScript code

outside a web browser. Node.js lets developers use JavaScript to write com-

mand line tools and for server-side scripting—running scripts server-side to

produce dynamic web page content before the page is sent to the user’s

web browser. Consequently, Node.js represents a ”JavaScript everywhere”

paradigm, unifying web-application development around a single program-

ming language, rather than different languages for server-side and client-side

scripts.

Node.js allows the creation of Web servers (primary use) and networking

tools using JavaScript and a collection of ”modules” that handle various core

functionalities. Modules are provided for file system I/O, networking (DNS,

HTTP, TCP, TLS/SSL, or UDP), binary data (buffers), data streams, and

other core functions. Node.js’s modules use an API designed to reduce the

complexity of writing server applications [41].

4.2.3 TensorFlow

TensorFlow, is an end-to-end open source platform for machine learning. It

allows to create dataflow graphs structures that describe how data moves

through a graph, or a series of processing nodes. Each node in the graph

represents a mathematical operation, and each connection or edge between

nodes is a multidimensional data array, or tensor.

Basically, to develop a deep learning program, a set of graph nodes (op-

erations) and tensors (multidimensional data) must be designed. Tensors are

usually created by external data (i.e. the datasets images and annotations)

and are processed by the graph nodes to build and train, in this case, a deep

neural network [42]. In our case it has been used, together with python for

running the ML model for the inference.
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4.2.4 MQTT

MQTT (MQ Telemetry Transport or Message Queue Telemetry Transport)

is an ISO standard (ISO/IEC PRF 20922) lightweight publish-subscribe mes-

saging protocol placed on top of TCP/IP. It is designed for situations where

low impact is required and where bandwidth is limited [43]. The MQTT pro-

tocol defines two types of network entities: a message broker and a number

of clients. An MQTT broker is a server that receives all messages from the

clients and then routes the messages to the appropriate destination clients.

An MQTT client is any device (from a micro controller up to a fully-fledged

server) that runs an MQTT library and connects to an MQTT broker over

a network.

Information is organized in a hierarchy of topics. When a publisher has a

new item of data to distribute, it sends a control message with the data to the

connected broker. The broker then distributes the information to any clients

that have subscribed to that topic. The publisher does not need to have any

data on the number or locations of subscribers, and subscribers, in turn, do

not have to be configured with any data about the publishers. If a broker

receives a message on a topic for which there are no current subscribers, the

broker discards the message unless the publisher of the message designated

the message as a retained message. A retained message is a normal MQTT

message with the retained flag set to true. The broker stores the last retained

message and the corresponding QoS for the selected topic. Each client that

subscribes to a topic pattern that matches the topic of the retained message

receives the retained message immediately after they subscribe. The broker

stores only one retained message per topic. This allows new subscribers to

a topic to receive the most current value rather than waiting for the next

update from a publisher. Clients only interact with a broker, but a system

may contain several broker servers that exchange data based on their current

subscribers’ topics [44].
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4.3 Technologies used in the cloud

4.3.1 Kubernetes and Docker

Kubernetes (abbreviated K8s) is an open-source container orchestration and

management system. Initially developed by Google, it is now maintained by

the Cloud Native Computing Foundation. It works with many containerisa-

tion systems, including Docker. Kubernetes is software made up of several

software components arranged according to the orchestrator pattern. This

pattern distinguishes participants into masters and nodes. They coordinate

the execution of the workload on the servers that form a cluster controlled

by Kubernetes.

Figure 4.2: Architecture of a Kubernetes cluster.
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Fig. 4.2 shows the architecture of a cluster, in the case of this project

only one cluster was developed, with two worker nodes and one master node.

The pod is the resource describing the elementary unit executable on a clus-

ter node. A pod groups containers that share resources and run on the same

node. The pod abstracts network and storage in order to be easily moved and

replicated on cluster nodes, allowing strong horizontal scalability, especially

for microservice oriented applications.

Pods can be managed manually via Kubernetes APIs or more frequently via

controllers that ensure their execution is maintained [45] [46].

Docker is an open-source project that automates the deployment (delivery

or release to the customer, with associated installation and commissioning or

operation, of an application or software system typically within an enterprise

information system) of applications within software containers, providing an

additional abstraction through virtualization at the Linux operating system

level [47]. Docker uses Linux kernel resource isolation features such as cgroup

and namespace to allow independent ”containers” to coexist on the same

Linux instance, avoiding installation and maintenance.

Docker implements high-level APIs to manage containers that run processes

in isolated environments [48]. Because it uses Linux kernel functionality

(primarily cgroup and namespaces), a Docker container, unlike a virtual ma-

chine, does not include a separate operating system [49]. Instead, it uses

kernel functionality and leverages resource isolation (CPU, memory, block

I/O, network) and separate namespaces to isolate what the application can

see of the operating system. So is supported having multiple containers with

different application requirements and dependencies to run on the same host,

as long as they have the same operating system requirements.

According to industry analysis firm 451 Research, ”Docker is a tool that

can package an application and its dependencies into a virtual container that

can run on any Linux server” [49].

Using Docker to create and manage containers can simplify the creation

of distributed systems, allowing different applications or processes to work
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autonomously on the same physical machine or on different virtual machines.

4.3.2 IoT managing platform - ThingsBoard

First of all ThingsBoard is presented and then some other existing platforms

specialised in managing, processing and monitoring data and devices from

the IoT are described. For example, classical databases cannot be relied upon

because we are talking about much larger data volumes.

ThingsBoard is an open-source IoT platform that enables rapid develop-

ment, management, and scaling of IoT projects. It provides an out-of-the-box

IoT cloud that enable server-side infrastructure for IoT applications, offer-

ing device management, data collection, visualization, and processing. The

platform integrates fault-tolerance, production and scalability.

With ThingsBoard, is possible to:

• Provision devices, assets and customers, and define relations between

them.

• Collect and visualize data from devices and assets.

• Analyze incoming telemetry and trigger alarms with complex event

processing.

• Control devices using remote procedure calls (RPC).

• Build work-flows based on a device life-cycle event, REST API event,

RPC request, etc.

• Design dynamic and responsive dashboards and present device or asset

telemetry and insights to your customers.

• Enable use-case specific features using customizable rule chains.

• Push device data to other systems.
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More specifically, as showed in Fig. 4.3, TB provides a rich set of features

related to telemetry data [8]:

• Collect data from devices using MQTT, CoAP, or HTTP protocols;

• Store time series data in Cassandra (efficient, scalable, and fault-tolerant

NoSQL database);

• Query the latest time series data values or all data within the specified

time-frame;

• Subscribe to data updates using WebSockets (for visualization or real-

time analytics);

• Visualize time series data using configurable and highly customizable

widgets and dashboards.

Here below is presented a deeper explanation of the features of TB used

in this project.

4.3.2.1 Entities and relations

ThingsBoard provides the user interface and REST APIs to provision and

manage multiple entity types and their relations in an IoT application. The

supported entities of our interest are:

• Devices: basic IoT entities that may produce telemetry data and handle

RPC commands. For example, sensors, actuators, switches;

• Assets: abstract IoT entities that may be related to other devices and

assets. For example factory, field, vehicle;

• Dashboards: visualization of IoT data and ability to control particular

devices through the user interface;

Each entity supports:

• Attributes: static and semi-static key-value pairs associated with enti-

ties. For example serial number, model, firmware version;
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Figure 4.3: High-level ThingsBoard architecture overview.

• Telemetry data: time-series data points available for storage, querying

and visualization. For example temperature, humidity, battery level;

• Relations: directed connections to other entities. For example contains,

manages, owns, produces.

In our case the microgrids (Assets) contain various boards (Devices), see

Fig. 4.4.
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Figure 4.4: ThingsBoard Assets - Devices relations in our use case [8].

4.3.2.2 Dashboards

ThingsBoard provides the ability to create and manage Dashboards. Each

Dashboard may contain plenty of widgets (e.g. Fig. 4.5) and display data

from many entities: devices, assets, etc.

4.3.2.3 Rule Engine

Rule Engine is an easy to use framework for building event-based workflows.

There are 3 main components:

• Message: any incoming event. It can be an incoming data from devices,

device life-cycle event, REST API event, RPC request, etc.

• Rule Node: a function that is executed on an incoming message. There

are many different Node types that can filter, transform or execute some

action on incoming Message.

• Rule Chain: nodes are connected with each other with relations, so the

outbound message from rule node is sent to next connected rule nodes.

Here are some common use cases that one can configure via ThingsBoard

Rule Chains:
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Figure 4.5: Widget example [8].

• Data validation and modification for incoming telemetry or attributes

before saving to the database.

• Trigger actions based on device life-cycle events. For example, create

alerts if Device is Online/Offline.

• Load additional data required for processing. For example, load tem-

perature threshold value for a device that is defined in Device’s Cus-

tomer or Tenant attribute.

• Trigger REST API calls to external systems.

• Send emails when complex event occurs and use attributes of other

entities inside Email Template.

• Integrate with external pipelines like Kafka, Spark, AWS services, etc.

4.3.2.4 REST Client

The ThingsBoard REST API Client helps you interact with ThingsBoard

REST API from your Java application, with Rest Client you can program-
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matically create assets, devices, customers, users and other entities and their

relations in ThingsBoard [8].

4.3.2.5 Others IoT platforms

Astarte Astarte is an Open Source IoT platform focused on Data man-

agement. It takes care of everything from collecting data from devices to

delivering data to end-user applications.

Ii is an Open Source IoT platform written in Elixir and it is a turnkey solu-

tion which packs in everything needed for connecting a device fleet to a set of

remote applications. It performs data modeling, automated data reduction

and real-time events.

Although Astarte’s main supported protocol is MQTT, Astarte can work

with any transport which provides a mean of authentication/authorization

and can be mapped to a key/value paradigm. Astarte can be used with

CoAP, HTTP and pretty much any protocol. And being Open Source, de-

velopers can implement their favorite protocol or wrapper, and have Astarte

work with it seamlessly.

InfluxDB InfluxDB is an open-source time series database (TSDB) de-

veloped by InfluxData. It is written in Go and optimized for fast, high-

availability storage and retrieval of time series data in fields such as oper-

ations monitoring, application metrics, Internet of Things sensor data, and

real-time analytics [50].

InfluxDB has no external dependencies and provides an SQL-like language

with built-in time-centric functions for querying a data structure composed

of measurements, series, and points. Each point consists of several key-value

pairs called the fieldset and a timestamp. When grouped together by a set

of key-value pairs called the tagset, these define a series [51].

Grafana Grafana is a multi-platform open source analytics and interactive

visualization web application. It provides charts, graphs, and alerts for the

web when connected to supported data sources.

As a visualization tool, Grafana is a popular component in monitoring stacks,



4.3. TECHNOLOGIES USED IN THE CLOUD 61

often used in combination with time series databases such as InfluxDB; mon-

itoring platforms and other data sources [52].

4.3.3 Kafka as message broker

Apache Kafka is an open-source stream-processing software platform devel-

oped by the Apache Software Foundation, written in Scala and Java. The

project aims to provide a unified, high-throughput, low-latency platform for

handling real-time data feeds. Kafka can connect to external systems (for

data import/export) via Kafka Connect and provides Kafka Streams, a Java

stream processing library. Kafka uses a binary TCP-based protocol that

is optimized for efficiency and relies on a ”message set” abstraction that

naturally groups messages together to reduce the overhead of the network

roundtrip.

Apache Kafka is based on the commit log, and it allows users to subscribe to

it and publish data to any number of systems or real-time applications [9].

Figure 4.6: Overview of Apache Kafka [9]

As showed in Fig. 4.6, Kafka stores key-value messages that come from

arbitrarily many processes called producers. The data can be partitioned into

different ”partitions” within different ”topics”. Within a partition, messages



62 CHAPTER 4. IMPLEMENTATION

are strictly ordered by their offsets (the position of a message within a par-

tition), and indexed and stored together with a timestamp. Other processes

called ”consumers” can read messages from partitions. For stream process-

ing, Kafka offers the Streams API that allows writing Java applications that

consume data from Kafka and write results back to Kafka.

Kafka runs on a cluster of one or more servers (called brokers), and the par-

titions of all topics are distributed across the cluster nodes. Additionally,

partitions are replicated to multiple brokers. This architecture allows Kafka

to deliver massive streams of messages in a fault-tolerant fashion.

4.3.3.1 Kafka Streams or Streams API

In a modern context, where speed of data processing seems to be the most

functional approach in the management of many services, Kafka Streams of-

fers itself as one of the most performing and scalable solutions. In fact, it

goes beyond a Batch data processing model, performed in the background

and at predefined intervals. It provides real-time data processing and enrich-

ment, while ensuring robustness and ease of use.

This API converts the input streams to output and produces the result;

allows for the development of stateful stream-processing applications that

are scalable, elastic, and fully fault-tolerant. The main API is a stream-

processing domain-specific language (that offers high-level operators like fil-

ter, map, grouping, windowing, aggregation, joins, and the notion of tables).

4.3.4 Node.js

Node.js programming language is also used in the cloud programming as in

the case of the edge unit, see Sec. 4.2.2.

4.3.5 OptaPlanner

OptaPlanner is an Open Source AI Constraint Solver. It solves constraint

satisfaction problems with construction heuristics and metaheuristic algo-
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rithms, using multithreaded incremental solving [53].

It is a lightweight, embeddable engine which optimizes planning problems. A

planning problem has an optimal goal, based on limited resources and under

specific constraints. Optimal goals can be any number of things, such as:

maximized profits (the optimal goal results in the highest possible profit),

minimized ecological footprint (the optimal goal has the least amount of en-

vironmental impact), maximized satisfaction for employees or customers (the

optimal goal prioritizes the needs of employees or customers); the ability to

achieve these goals relies on the number of resources available, such as: the

number of people, amount of time, budget, etc.

Specific constraints related to these resources must also be taken into account,

such as the number of hours a person works, their ability to use certain ma-

chines, or compatibility between pieces of equipment.

OptaPlanner is able to solve constraint satisfaction problems efficiently

by combining optimization heuristics and metaheuristics with very efficient

score calculation.

Usually, a planning problem has at least two levels of constraints: a (nega-

tive) hard constraint that must not be broken (e.g. 1 teacher cannot teach

2 different lessons at the same time) and a (negative) soft constraint that

should not be broken if it can be avoided (e.g. teacher A does not like to

teach on Friday afternoon). Some problems have positive constraints too, a

positive soft constraint (or reward) should be fulfilled if possible (e.g. teacher

B likes to teach on Monday morning).

These constraints define the score calculation (AKA fitness function) of a

planning problem. Each solution of a planning problem can be graded with

a score. With OptaPlanner, score constraints are written in an Object Ori-

ented language, such as Java code or Drools rules. Such code is easy, flexible

and scalable.

A planning problem has a number of solutions. There are several cate-

gories of solutions:

• A possible solution is any solution, whether or not it breaks any number
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of constraints. Planning problems tend to have an incredibly large

number of possible solutions, many of those solutions are worthless.

• A feasible solution is a solution that does not break any (negative) hard

constraints. The number of feasible solutions tends to be relative to the

number of possible solutions, sometimes there are no feasible solutions

(every feasible solution is a possible solution).

• An optimal solution is a solution with the highest score. Planning

problems tend to have 1 or a few optimal solutions. There is always

at least 1 optimal solution, even in the case that there are no feasible

solutions and the optimal solution is not feasible.

• The best solution found is the solution with the highest score found by

an implementation in a given amount of time. The best solution found

is likely to be feasible and, given enough time, it’s an optimal solution.

Counterintuitively, the number of possible solutions is huge (if calculated

correctly), even with a small dataset. As there is no silver bullet to find the

optimal solution, any implementation is forced to evaluate at least a subset

of all those possible solutions.

OptaPlanner supports several optimization algorithms to efficiently wade

through that incredibly large number of possible solutions. Depending on

the use case, some optimization algorithms perform better than others, but

it’s impossible to tell in advance. With OptaPlanner, it is easy to switch the

optimization algorithm, by changing the solver configuration in a few lines

of XML or code [10].

The Fig. 4.7 shows the solving process: a construction heuristic builds

a pretty good initial solution in a finite length of time, its solution isn’t

always feasible but it finds it fast, and metaheuristics can finish the job. The

algorithms used by default are:

• First Fit regarding the Construction Heuristics phase: the First Fit

algorithm cycles through all the planning entities (in default order),
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initializing one planning entity at a time, it assigns the planning en-

tity to the best available planning value, taking the already initialized

planning entities into account. It terminates when all planning entities

have been initialized and it never changes a planning entity after it has

been assigned. A construction heuristics terminate automatically, so

there’s usually no need to configure a Termination on the construction

heuristic phase specifically.

• Late Acceptance (Meta Heuristic) for the Local Search phase: heuris-

tics are often problem-dependent (an heuristic is defined for a given

problem), metaheuristics are problem-independent techniques that can

be applied to a broad range of problems.

Local Search starts from an initial solution and evolves that single so-

lution into a mostly better and better solution. It uses a single search

path of solutions, not a search tree. At each solution in this path it

evaluates a number of moves on the solution and applies the most suit-

able move to take the step to the next solution. It does that for a high

number of iterations until it’s terminated (usually because its time has

run out).

Late Acceptance (also known as Late Acceptance Hill Climbing) also

evaluates only a few moves per step. A move is accepted if does not

decrease the score, or if it leads to a score that is at least the late score

(which is the winning score of a fixed number of steps ago)[10].

4.4 Actual system architecture

The MAPE-K (Monitor-Analyze-Plan-Execute over a shared Knowledge)

loop is the most influential reference control model for autonomic and self-

adaptive systems. Here in Fig. 4.8 is presented how this can be applied to

our system:

• Monitoring: pushing data from edge-devices to TB in the cloud with

the simulator.
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Figure 4.7: OptaPlanner solving process. [10]

• Analyzing: pre-processing with Kafka Stream aggregator together with

python consumer.

• Planning: Algorithms caller and OptaPlanner optimizer.

• Executing: Algorithm caller sends instructions to edge units.

• Shared Knowledge: Thingsboard stores the values and could implement

machine learning on data to pre-plan better actions.

The Fig. 4.9 shows the final software architecture, after choosing the

technologies for the components and the types of interaction between them.

The first component to come into play is the ThingsBoard REST Client that

has the duty to create the elements representing our case in the abstract (De-

vices as boards, Assets as microgrids and Dashboards) within ThingsBoard;

once inserted and obtained the access credentials, it is the turn of the data

simulator that generates consumption and production values (following pat-

terns according to the prosumer typology, see 3.3.2) for real-time data and
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Figure 4.8: MAPE-K loop in the actual system architecture.

the data of future consumption, while inferring (through ML) the data on

future production.

When ThingsBoard receives the data from the devices, it forwards them to

the Kafka broker, to which an application is connected that, intercepting

the stream of timeseries, aggregates them according to the device and the

microgrid to which it belongs.

To this out-topic of Kafka is subscribed a consumer that, first of all, publishes

on TB the aggregated real-time data for production and consumption of each

microgrid (so that we can observe the trend in the dashboards) and, after

that, depending on the chosen strategy decides whether to use the algorithms

for the optimization of energy scheduling in OptaPlanner and communicate

the decisions taken on the batteries to the boards via RPC or whether to

communicate directly the values of import and export to ResultsTracker that

will store them on CSV files.
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Figure 4.9: Actual system architecture with used technologies.
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4.5 Data simulation

In order to simulate a data flow in our system, as we did not have several

boards with their respective sensors, we decided to create some scripts capa-

ble of simulating the devices and the reading of the data of our interest from

the sensors.

4.5.1 Device and Assets creation

Using the ThingsBoard REST API, a Java tool was developed that, taking as

input a CSV file containing the necessary information for each board/edge-

unit: type of building (residential, hospital, school, etc.) represented and

microgrid membership, inserts the boards into ThingsBoard in the form of

Devices and microgrids in the form of Assets, then creates the necessary

membership relationships. A Dashboard is also automatically created for

each asset, which will then be where the total data of the devices for that

asset will be displayed.

The main features of the tool are as follows:

• Class MyAsset: represents an object of type microgrid, the attributes

present are in fact the name of the microgrid and the assetId (subse-

quently needed as a key to publish via REST the telemetries relating

to the asset such as production and total consumption).

• Class MyDevice: represents a device type object, the attributes are in

fact the name of the microgrid it belongs to, the name of the device

itself, the intended use of the building, the existing panel units (useful

element to parameterize the simulated data on production), the capac-

ity and the maximum power of charge/discharge of the battery, the

accessToken of the device (subsequently needed as a key to publish via

MQTT the telemetries related to the device) and the deviceId (subse-

quently needed as a key to publish via REST the telemetries related to

the device).
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• Class ThingsboardElementsCreator: first of all the CSV file contain-

ing the characteristics of the desired boards is read, after which the

corresponding Devices are created on Thingsboard, together with the

microgrids that are created in the form of Assets, through the REST

client; for each Device at the creation the accessToken and the deviceId

are assigned, while for the Assets only the assetId. Then the relation-

ships between Devices and Assets are established so that a microgrid

contains the correct boards and finally all the information on Device

and Asset (in particular the credentials) are saved in CSV files to be

used later.

• Class ThingsboardDashboardCreator: after reading the asset char-

acteristics (microgrid name and assetId) from the CSV file created as

output by ThingsboardElementsCreator, this class is responsible for

publishing on Thingsboard a dashboard for each of the assets using a

given JSON format dashboard template and modifying the attributes

of this JSON for each assets/microgrid.

4.5.2 Consumption and production creation

The script that takes care of this functionality is in JS format and is laid out

using NodeJS. To start it reads the content of the two CSV files produced

in the previous phase (devices and assets) through the Node module ”fs”,

that is responsible for all the asynchronous or synchronous I/O operations;

at the success of the operation it reads the content of the CSV file containing

the mean and variance for the production and consumption patterns; these

data are then used at the time of the creation of an MQTT client for each

board/edge-unit as input for the simulation of data (generating a random

number normally distributed) consistent with the building typology.

For the creation of an MQTT client, able to send telemetry to ThingsBoard

via MQTT, the accessToken of the device is required; when the connection is

successful the consumption and production data are simulated (generating a

random number following the normal distribution). Moreover, if the chosen

strategy is BAU, the local logic for the energy balance will be applied, as
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seen in the previous section and illustrated in the algorithm 1; if the strategy

is global, no pre-computation will be done in the board before sending the

telemetries to ThingsBoard via MQTT.

A further function of the MQTT client used in this case (except with the BAU

strategy) is the ability to receive RPCs (Remote Procedure Calls): the client,

immediately after the connection registers to receive messages and defines

the actions to be performed following a given communication, in our case the

body of the message will contain how much to vary (charge/discharge) the

state of battery charge in the next time step.

4.6 ML for inference of production data

With regard to the PV panel production forecasts, introduced in the pre-

viously mentioned tool for simulation, an ML model (4-layer bi-directional

LSTM [38]) already trained for inference was used, while for consumption

forecasts the patterns of the respective prosumers are used. The input of the

inference is the production data of the previous 15 minutes with a granularity

of 30 seconds (so 30 data-points), the same for the output produced.

The Python support file inference.py uses the Tensorflow module to load the

model (this can be done once) while the simulator invokes a specific infer-

ence function (the loaded model predicts the data based on the input) at the

beginning of each time step (5 minutes), in order to obtain the prediction

information for time step +2 to be attached to the following telemetry.

4.7 ThingsBoard telemetries collection and

processing

When receiving telemetries, Thingsboard follows the so-called ”Root rule

chain”: the basic rule chain in which all messages arrive. As shown in Fig.

4.10, telemetries once saved are forwarded to Kafka broker as stream with

the predefined topic, simply by adding a node and configuration to the rule

chain.
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Figure 4.10: Root rule chain forwarding to Kafka stream.

4.8 Kafka stream aggregator application

A Maven application was deployed in the cloud to manage the stream of

telemetries. Kafka broker receives the messages for a certain topic (in our

case we record the stream for the same topic outgoing from ThingsBoard).

The application must then first deserialize the message, save the content as

an object, aggregate the data in the chosen range, reserialize the output and

publish it in the out-topic.

In detail, the input is given by each telemetry coming from a device, with

the following attributes: microgridID, deviceID, consumption, production,

energyImport, energyExport, predicted consumption, predicted production,

battery capacity, battery state of charge, charging and discharging limit. If

the chosen strategy is BAU all these attributes will have a value because

they are the result of a pre-computation local to the board (except for pre-

dicted consumption and production that are not used because in this case we

are not interested in forecasting because prediction is used to decide on the

scheduling of prosumer batteries based on the exchanges they have to make

within the microgrid, but with the local BAU strategy each prosumer decides

autonomously), vice versa for the other strategies energyImport and energy-

Export will not be initialized because we will refer directly to the global ones

of the microgrid once the scheduling problem is optimized.

Regarding aggregation, it is performed according to the key that is declared,

in this case the key defined was (microgridID, deviceID); each telemetry pub-
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lished as output of the stream in the cloud is therefore the aggregation by

device in a 5-minute interval with also the aggregation by microgrid (see the

following JSON schema that respects what is specified in the tables 3.2 3.3),

consequently the aggregation by microgrid could be redundant.

Listing 4.1: JSON schema of the message for aggregated data about a device

” type ” : ” ob j e c t ” ,

” p r o p e r t i e s ” : {
” microgr idID ” : {” type ” : ” s t r i n g ”} ,

” deviceID ” : {” type ” : ” s t r i n g ”} ,

” count ” : {” type ” : ”number ”} ,

”sumConsumption ” : {” type ” : ”number ”} ,

” sumProduction ” : {” type ” : ”number ”} ,

” sumPredictedConsumption ” : {” type ” : ”number ”} ,

” sumPredictedProduction ” : {” type ” : ”number ”} ,

” sumEnergyImport ” : {” type ” : ”number ”} ,

”sumEnergyExport ” : {” type ” : ”number ”} ,

” capac i ty ” : {” type ” : ”number ”} ,

” sumStateOfEnergy ” : {” type ” : ”number ”} ,

” avgStateOfEnergy ” : {” type ” : ”number ”} ,

” charg ingLimit ” : {” type ” : ”number ”} ,

” d i s charg ingL imi t ” : {” type ” : ”number ”} ,

” microgr idAggregator ” :

{ ” type ” : ” ob j e c t ” ,

” p r o p e r t i e s ” : {
” microgr idID ” : {” type ” : ” s t r i n g ”} ,

” count ” : {” type ” : ”number ”} ,

”sumConsumption ” : {” type ” : ”number ”} ,

” sumProduction ” : {” type ” : ”number ”} ,

” sumPredictedConsumption ” : {” type ” : ”number ”} ,

” sumPredictedProduction ” : {” type ” : ”number ”} ,

” sumEnergyImport ” : {” type ” : ”number ”} ,

”sumEnergyExport ” : {” type ” : ”number”}
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}
}

}

It should be noted finally that in order to aggregate all parameters, except

for the state of charge of the battery where a mathematical average of the

values is made, the data are summed.

4.9 Consumer of the aggregated data

The application that consumes the data from the topic containing the aggre-

gated values has been written in Python (see Python Consumer in Fig.4.9).

Once the message is received, it checks that it respects the default JSON

schema Lst. 4.1, if not, the content is ignored. If the schema is compliant,

the content is parsed and processed:

1. The ”properties” of the ”microgridAggregator” element are sent with

the ThingsBoard REST API to the microgrid assets, to be visualized

in a dashboard (see Fig. 4.11), as they represent the aggregation of

all the telemetries received for the devices of that microgrid. Since, as

explained above, this data is redundant for all aggregated devices, it is

sent to ThingsBoard only the first time, to identify the uniqueness of

the data the microgridID (formed by the ID of the microgrid and the

time-step identifier) is taken into account.

2. (a) In the case where the chosen strategy is BAU type, without hav-

ing to turn to the optimisation algorithm, the data aggregated

by microgrid on import and export are directly sent to the Node

service created ResultsTracker which, for the purposes of perfor-

mance evaluation and comparison, keeps them updated by writing

them in a CSV file.

(b) If the chosen strategy is a global one (minimum cost or mini-

mum exchange), all the aggregated data of the devices present

in the same microgrid are collected and sent to the supporting
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Figure 4.11: Dashboard of a microgrid showing aggregated data of its devices
about the last 10 minutes.

Node service AlgorithmCaller so that the latter can manage asyn-

chronously the request to the algorithm in the OptaPlanner ap-

plication.

4.10 Support web service AlgorithmCaller

This web service exposes a number of APIs, in particular the ability to call the

optimisation algorithm on OptaPlanner given the aggregated edge-devices

data as input. The endpoint for the request is ’/addsolve’ and the parameters

in the body accepted are the list of prosumer data and the type of strategy
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to be used for the algorithm, all in JSON format; once the request is received

the service makes the solve enquiry to OptaPlanner sending it also the device

data and, at regular intervals, checks if a solution has been found or not:

in case of positive outcome the optimised energy scheduling is obtained,

otherwise it is tried again after a certain time.

When the solution is found:

1. the results are sent (import and export of the microgrid) to the Result-

sTracker service which will update its data;

2. the settings points on how to manage the prosumer’s devices (e.g. how

to charge/discharge the battery) are sent to the to the prosumer’s local

controller, via ThingsBoard RPC.

4.11 Energy scheduling optimizer

In our case we have two planning problems that differ in the goal (minimising

the total cost incurred by the microgrid or minimising the amount of energy

exchanged with the main grid) but have constraints in common (see 3.5.3.1

regarding the energy balance and battery scheduling).

A Maven project has been therefore created in Java using OptaPlanner

to solve these planning problems.

First, the classes representing the problem domain were defined (see Fig.

4.12):

• Prosumer: is considered a PlanningEntity, i.e. it varies during the res-

olution of the problem. Its static attributes are: id of the microgrid

it belongs to, id of the device itself, expected consumption and pro-

duction, battery capacity and charge/discharge limits, battery charge

status; while the PlanningVariable is the battery scheduling in the next

time-step (charge/discharge and quantity). The energy balance of a

prosumer is given by the difference between expected production and

consumption to which the battery scheduling is added.
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Figure 4.12: Class diagram of the domain model.

• Microgrid: is considered a PlanningEntity, the attribute that varies is

the energy exchange while the only other attribute is the identifier of

the microgrid itself. A microgrid can contain one or more prosumers.

• Solution: in this class of type PlanningSolution the attributes are the

list of microgrids and the list of prosumers as PlanningEntityCollection

and the relative score. Here the value ranges for the PlanningVariables

of the PlanningEntities are also specified, i.e. the possible values for

the prosumers’ battery charge/discharge and the amount of energy ex-

changed between the microgrids and the main grid.

After that, for the ”Entity” classes (Microgrid.java and Prosumer.java)

repositories were created with Panache Quarkus to give persistence.

For each of the three classes listed above, the possibility of access via

REST API to the resource has also been created; the Solution.java class

is however the only one which, in addition to the simple REST methods for

adding or removing, implements further endpoints such as launching a search
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for a solution, displaying it, etc. Through the endpoint ”/addAllProsumers”

one can, from the outside, add prosumers and microgrids as resources and

start the process of solving the energy scheduling problem.

Finally, the MicrogridConstraintProvider.java class contains the imple-

mentation of both soft (the goal of the planning problem) and hard (the

generic constraints that cannot be broken) constraints.

Below is the code (for illustrative purposes) for the energy balance constraint

equal to 0 inside the microgrid:

31 Constraint energyBalance(ConstraintFactory

constraintFactory) {

32 return constraintFactory

33 .from(Prosumer.class)

34 .groupBy(Prosumer :: getMicrogridId ,

ConstraintCollectors.sumBigDecimal(

Prosumer :: getBalance))

35 .join(Microgrid.class)

36 .filter (( microgridId , balance , microgrid) ->

{

37 if( microgridId.equals(microgrid.

getMicrogridId ())

38 && (balance.doubleValue () + microgrid.

getExchange ().doubleValue () != 0.0) )

{

39 return true;

40 }else {

41 return false;

42 }

43 })

44 .penalize("energyBalance",

HardSoftBigDecimalScore.ONE_HARD);

45 }
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As it can be seen, the sum of the energy balances of the prosumers is cal-

culated respecting the constraint stated in equation 3.3 (it is not obligatory

for each prosumer to be 0 as in the end the overall positive or negative bal-

ance of the microgrid is compensated by the import/export of the microgrid

itself) and is then compared with the energy exchange value of the microgrid

with the main grid, this value must compensate for the balance in order to

reach 0; if it is not 0, the HardScore of the solution is penalised by 1 point,

going negative. In our use case all solutions with a HardScore equal to 0 are

considered feasible solutions, but they are not always optimal.

In order to evaluate which solution is better than another among the fea-

sible ones, the SoftScore is analysed, as an example the code of the goal for

the minimum energy exchange strategy is shown:

46 Constraint minEnergyExchange(ConstraintFactory

constraintFactory) {

47 return constraintFactory

48 .from(Microgrid.class)

49 .penalizeBigDecimal("minEnergyExchange",

HardSoftBigDecimalScore.ONE_SOFT ,

50 Microgrid :: getAbsValExchange );

51 }

In this case, as it can be seen, for each microgrid the amount of energy

exchanged (import or export) is checked and the SoftScore is penalised by

that value; the optimality in this case would be that all the microgrids had

an exchange of 0.

4.12 Support web service ResultsTracker

This service has been created in order to have an automated record of the

results obtained with both the local BAU scheduling and the global ones, so

that they can be compared. Its API exposes an endpoint for each strategy
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and when a scheduling solution is received it is temporarily saved in the

corresponding support array (one for each strategy). Every 10 seconds it

updates the content of the CSV files (one for each strategy) with the import

and export values of the supporting arrays.



Chapter 5

Evaluation

This chapter presents the results of the final phase of the project’s perfor-

mance evaluation. First of all, an environment useful only for testing was

recreated, then different scenarios of microgrid composition were created, and

finally the parameters (briefly introduced in Sect. 3.6), different for each of

the strategies according to the objective, were evaluated.

5.1 Scenarios

Three scenarios have been created for testing:

• 2 microgrids with only residential prosumers: with the characteristics

shown in Tab. 5.1;

• 2 microgrids with only commercial prosumers: with the characteristics

shown in Tab. 5.2;

• 2 microgrids with residential and commercial prosumers together: with

the characteristics shown in Tab. 5.3.

We remind that the optimisation strategies are addressed to the single mi-

crogrid, foreseeing energy exchanges only between prosumers within the same

microgrid and not between those belonging to different microgrids. Outside

the cluster there are exchanges only with the DSO.
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Microgrid
ID

Device ID Building
Type

Panels
Units

Battery
Capacity

Charging
Limit

Discharging
Limit

Microgrid-1 Device-1 Residential 1 50 0.4 0.4
Microgrid-1 Device-2 Residential 1 50 0.4 0.4
Microgrid-1 Device-3 Residential 1 50 0.4 0.4
Microgrid-2 Device-4 Residential 1 50 0.4 0.4
Microgrid-2 Device-5 Residential 1 50 0.4 0.4
Microgrid-2 Device-6 Residential 1 50 0.4 0.4

Table 5.1: Microgrids testing scenario 1.

Microgrid
ID

Device ID Building
Type

Panels
Units

Battery
Capacity

Charging
Limit

Discharging
Limit

Microgrid-1 Device-1 Hotel 70 100 0.4 0.4
Microgrid-1 Device-2 Supermarket 70 100 0.4 0.4
Microgrid-1 Device-3 Mall 70 100 0.4 0.4
Microgrid-2 Device-4 Hospital 230 100 0.4 0.4
Microgrid-2 Device-5 School 120 100 0.4 0.4
Microgrid-2 Device-6 Supermarket 70 100 0.4 0.4

Table 5.2: Microgrids testing scenario 2.

With regard to the prices of energy imported and exported by the micro-

grid, in our use case we have referred to the Eurostat 2020 statistics and the

Eurostat 2020 statistics [54] and to [55].

The EU-27 average price in the first semester of 2020, a weighted average us-

ing the most recent (2020) data for electricity consumption by non-household

consumers (given that the microgrid is considered a single entity with an

overall consumption level higher than residential), was 0.1254 €/kWh (in

our case approximated to 0.13 EUR per kWh). As far as energy fed into the

grid is concerned, this is valued on average at 0.09-0.10 €/kWh.
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Microgrid
ID

Device ID Building
Type

Panels
Units

Battery
Capacity

Charging
Limit

Discharging
Limit

Microgrid-1 Device-1 Residential 1 50 0.4 0.4
Microgrid-1 Device-2 Residential 1 50 0.4 0.4
Microgrid-1 Device-3 Mall 70 100 0.4 0.4
Microgrid-2 Device-4 Residential 1 50 0.4 0.4
Microgrid-2 Device-5 School 120 100 0.4 0.4
Microgrid-2 Device-6 Supermarket 70 100 0.4 0.4

Table 5.3: Microgrids testing scenario 3.

5.2 Testing dataflow

In order to obtain comparable results in the strategies, we decided to create

a standard input for each scenario in order to have the same production and

consumption values for each prosumer.

For the set of devices indicated in each of the three different scenarios, the

simulator (4.5.2) was then started for a period of one hour, during which

the BAU strategy (local decisions to each device) was performed. After the

aggregation phase by the Kafka Stream, via the Python consumers, from the

aggregated telemetries obtained:

• the summed import and export values for each microgrid were stored

by the ResultsTracker (in an external CSV file);

• the consumption and production values were forwarded to the energy

scheduler in OptaPlanner to obtain the import and export values also

in the two global strategies, also in this case the results were sent to

the ResultsTracker.

It should be noted that, running everything at the same time, in the

case of the BAU strategy the SoE battery was changed automatically by

the device, while with the global strategies instead of changing it with the

RPC (which would have affected the changes made in real-time by the local

strategy) it was changed in the AlgorithmCaller in the next time-step for

each device.
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5.3 Results

This section presents the results obtained in the three scenarios, comparing

the different strategies.

The outcomes show that just applying an optimisation strategy to a cluster

of prosumers is not enough. It is necessary to evaluate the composition of a

microgrid in such a way as to have deficits and surpluses roughly balanced

between them, which can be done by comparing past production and con-

sumption data for each prosumer, the more balanced they are the better the

optimisation will be.

It is also good practice to assess the best battery capacity for each require-

ment, e.g. if a minimum exchange strategy is to be pursued it is good to

have a high storage capacity.

5.3.1 Residential scenario

Regarding the results in the residential scenario (see Tab. 5.4) we can note

that the results are not optimized.

This is due to the fact that, as we can already see in the BAU strategy, there

is in general no energy surplus in either of the two microgrids.

In the two strategies, initially the deficits of the single prosumers are compen-

sated with the batteries of all the others that have charge available but, since

there is never an energy surplus, the batteries are not given the possibility

to recharge and these, remaining at the minimum level, have no possibility

to exchange energy.

Each prosumer can therefore rely solely on the main grid to import energy

and respect the energy balance.

5.3.2 Commercial scenario

Regarding the results in the business scenario (see Tab. 5.5) we can note

that:

• With the minimum exchange strategy, an overall reduction in exchanged

power was effectively achieved, for both microgrids, compared to the
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BAU strategy

Microgrid
ID

Import
(kW)

Export
(kW)

Exchanged
Power
(kW)

Cost (€) Income
(€)

Profit
(€)

1 1.128 0 1.128 146,64 0,0 -146,64
2 1.043 0 1.043 135,59 0,0 -135,59

Minimum Exchange strategy

Microgrid
ID

Import
(kW)

Export
(kW)

Exchanged
Power
(kW)

Cost (€) Income
(€)

Profit
(€)

1 1.128 0 1.128 146,64 0,0 -146,64
2 1.043 0 1.043 135,59 0,0 -135,59

Minimum Cost / Maximum Profit strategy

Microgrid
ID

Import
(kW)

Export
(kW)

Exchanged
Power
(kW)

Cost (€) Income
(€)

Profit
(€)

1 1.128 0 1.128 146,64 0,0 -146,64
2 1.043 0 1.043 135,59 0,0 -135,59

Table 5.4: Results of microgrids testing scenario 1 (residential prosumers
only).

sum of imports and exports calculated from the localised policies of the

individual prosumers.

The exchanged power of microgrid 2 is optimised (compared to BAU)

to a greater extent, as the excess energy produced is used to cover a

greater demand in proportion to microgrid 1, where demand is low and

therefore the surplus produced (as in the BAU strategy) cannot be used

within the cluster and must therefore be exported.

There is also a reduction in costs / increase in profits due to a decrease

in the quantity imported.

• Both microgrids also achieved their goal in the case of the minimum cost

strategy by reducing imports or, as we can see by comparing the case

of microgrid 1 in the minimum exchange strategy and the maximum

cost strategy, by increasing exports (discharging the batteries instead
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of storing the energy).

BAU strategy

Microgrid
ID

Import
(kW)

Export
(kW)

Exchanged
Power
(kW)

Cost (€) Income
(€)

Profit
(€)

1 277 20.559 20.836 36,01 2.055,90 2.019,80
2 15.617 13.133 28.750 2.030,21 1.313,30 -716,91

Minimum Exchange strategy

Microgrid
ID

Import
(kW)

Export
(kW)

Exchanged
Power
(kW)

Cost (€) Income
(€)

Profit
(€)

1 0 20.821 20.821 0,0 2.082,10 2.082,10
2 4.516,5 979,5 5.496 587,14 97,95 -489,19

Minimum Cost / Maximum Profit strategy

Microgrid
ID

Import
(kW)

Export
(kW)

Exchanged
Power
(kW)

Cost (€) Income
(€)

Profit
(€)

1 0 20.890 20.890 0,0 2.089,90 2.089,90
2 3.737,5 1.302,5 5.040 485,87 130,25 -355,62

Table 5.5: Results of microgrids testing scenario 2 (commercial prosumers
only).

5.3.3 Mixed scenario

Regarding the results in the scenario with both residential and commercial

prosumers (see Tab. 5.6) we can note that:

• For the minimum exchange strategy, in both microgrids, the overall

exchanged power corresponds more or less to the balance that would

be obtained in the BAU strategy by subtracting the energy deficit to the

surplus (by acting with the BAU locally to each device without having

a global overview, it is however impossible to achieve this objective if

not with a global strategy such as minimum exchange); profits are also

increased.
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• As regards profit maximisation, we can say that, again, balancing im-

port (low) and export (high) and selling the stored energy of the bat-

teries (thus not keeping them always at a high level of charge) resulted

in a good increase in profits, but increased exchanged power.

BAU strategy

Microgrid
ID

Import
(kW)

Export
(kW)

Exchanged
Power
(kW)

Cost (€) Income
(€)

Profit
(€)

1 1.010 2.625 3.635 131,3 262,50 131,20
2 929 13.219 14.148 120,77 1.321,90 1201,13

Minimum Exchange strategy

Microgrid
ID

Import
(kW)

Export
(kW)

Exchanged
Power
(kW)

Cost (€) Income
(€)

Profit
(€)

1 0 1.682,5 1.682,5 0,0 168,25 168,25
2 0 12.271,5 12.271,5 0,0 1.227,15 1.227,15

Minimum Cost / Maximum Profit strategy

Microgrid
ID

Import
(kW)

Export
(kW)

Exchanged
Power
(kW)

Cost (€) Income
(€)

Profit
(€)

1 13 1.700,5 1.713,5 1,69 170,05 168,81
2 0 12.321 12.321 0,0 1232,10 1232,10

Table 5.6: Results of microgrids testing scenario 3 (mixed types of pro-
sumers).

Moreover, only for this scenario, the graphs in Fig. 5.1 and 5.1 show

the aggregated production and consumption values for Microgrid 1 in the

considered interval of 1 hour and the exchange values (positive in case of

export and negative in case of import) that the microgrid would have if the

prosumers did not have any kind of storage device (BES).

The Tab. 5.7 presents the import and export values (and respective costs)

of the two microgrids analysed, in the case where prosumers can compensate

each other for individual surpluses and deficits but do not have a storage
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Figure 5.1: Aggregated values for Microgrid 1 in the observed interval of 1
hour.

Figure 5.2: Aggregated values for Microgrid 2 in the observed interval of 1
hour.
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device (BES).

Analysing the values and comparing them with those in Tab. 5.6 it emerges

that:

• Microgrid 1: the total exchanged power is higher than for the two

global optimisation strategies but still lower (therefore better to give

autonomy to the grid) than for the local non-cooperation prosumer

(BAU) strategy, the total profit is lower than for all three previous

strategies.

• Microgrid 2: the total exchanged power is higher than that obtained

with the minimum exchange algorithm but lower than the value that

would be obtained with the local optimisation or the minimum cost

strategy; the same result is obtained with the total profit, which is

worse only than the amount obtained with the profit maximisation

strategy.

No battery usage

Microgrid
ID

Import
(kW)

Export
(kW)

Exchanged
Power
(kW)

Cost (€) Income
(€)

Profit
(€)

1 354,5 1.727 2.081,5 46,09 172,70 126,61
2 0 12.295,5 12.295,5 0 1.229,55 1.229,55

Table 5.7: Results of microgrids testing scenario 3 without BES.

5.4 Testing of different algorithms configura-

tions

For both global strategies the default optimizing algorithms are applied (first

fit for the construction heuristics phase and late acceptance for the local

search phase), as after some tests it was noticed that the score obtained (or

the number of moves to obtain it) did not improve with the other alternatives.
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These algorithms are also influenced by the resolution times and termination

conditions imposed in the configuration phase:

• solver.termination.spent-limit : with this element we configure the max-

imum processing time for the algorithm, for the test a time limit of 2

minutes was used, after having proven that even with 5 minutes it gave

the same result and did not give a better score.

• solver.termination.best-score-limit : this element imposes an early ter-

mination on the algorithm in case of premature achievement of the

goal (e.g. score 0hard/0soft means getting 0 hard and soft constraints

broken, which is usually the optimal solution). However, not all strate-

gies benefit from the inclusion of this condition (which usually avoids

unnecessary computation in the server), such as cost minimisation or

profit maximisation because it ends the solving process as soon as it

has a positive score and, in the case of energy exports, that score can

be improved because selling energy gives a positive score with a reward.



Chapter 6

Conclusions and Future Works

The aim of this thesis was to create a hardware and software architecture

for monitoring and managing energy resources in microgrids, optimising the

exchange of energy resources between the various ”prosumers” that make up

the microgrid.

The result was an edge-cloud structure, with initial processing of data near

the place where it is generated (prosumer) and subsequent management in

the cloud for resources shared with other edge nodes.

From the analysis of the results obtained by applying this optimisation to

real scenarios, it is emerged that the heterogeneity of the types of prosumers

that constitute a microgrid (i.e. their production and consumption patterns)

and the type of storage chosen have a great impact on the quality of energy

scheduling, regardless of the hardware and software technologies used.

Despite this, both strategies implemented have good optimizations (min-

imum exchange and minimum cost) compared to traditional (BAU) or a

microgrid whose prosumers have no energy storage devices for the extra-

production.

6.1 Future Work

For the extension of the work presented in this master thesis, the first step

could be to introduce the possibility for prosumers within a certain geograph-

91
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ical radius to switch the microgrid they belong to in order to optimise the

overall performance (as shown in the evaluation, optimisation was more ef-

fective if import and export were balanced with each other) or, using ML

based clustering with graph networks, to identify prosumers with optimal

exchange possibilities.

Furthermore, in combination with the ML model used for inference re-

garding the energy production of PVs, we could add a model that predicts

consumption for different profiles of prosumers (commercial or residential

and, in the case of residential, also have as data the number of occupants

etc.) based on a larger training dataset (so that, for example, the season of

the year or the day of the week is also taken into account).

Finally, it would be very useful to add an internal energy market within

the microgrid with prices that vary according to the supply and demand

of individual prosumers; in connection with this, the demand of prosumers

could be dynamically managed by shifting it from peak to off-load periods

for non-essential energy consumption (e.g. recharging an electric vehicle).
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