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Scuola di Scienze
Dipartimento di Fisica e Astronomia

Corso di Laurea in Fisica

Sensitivity and uncertainty analyses on
ZED-2 reactor criticality calculations

with ENDF/B-VII.1 and recently
measured 155,157Gd(n,γ) cross-sections at

n TOF - CERN

Relatore:

Prof. Cristian Massimi

Correlatore:

Dott. Patrizio Console Camprini

Presentata da:

Ruggero Rosselli

Anno Accademico 2019/2020



Abstract

I veleni bruciabili sono una categoria di isotopi impiegata come dispositivo di si-
curezza nei moderni reattori nucleari. Gli isotopi dispari del gadolinio 155Gd e 157Gd
sono potenti veleni bruciabili, largamente impiegati in reattori di potenza di seconda
e terza generazione. Le sezioni d’urto degli isotopi 155,157Gd sono state misurate più
volte in passato, ma sembra esserci ulteriore margine di miglioramento. Inoltre,
una conoscenza precisa delle sezioni d’urto dei due isotopi è richiesta per ragioni
di sicurezza. Nel 2016, in risposta alla necessità di dati migliori, le sezioni d’urto
di 155,157Gd sono state misurate presso la struttura n TOF, CERN. L’obiettivo di
questa tesi è calcolare un benchmark scelto, in modo da valutare l’impatto delle
nuove sezioni d’urto del gadolinio. Inizialmente, vengono introdotti i metodi com-
putazionali per affrontare il problema di benchmark. Successivamente, il reattore
di ricerca canadese ZED-2 viene scelto come caso studio per calcoli di criticità
attraverso il codice MCNP6.2, eseguito sui sistemi CRESCO (ENEA). Le simu-
lazioni mostrano che il reattore ZED-2 è sensibile a variazioni delle sezioni d’urto del
gadolinio. L’impatto dei dati di sezioni d’urto del gadolinio della libreria ENDF/B-
VII.1 è valutato attraverso quattro modelli di benchmark, ognuno con diversa con-
centrazione di gadolinio. È presente un bias di −45 ± 7 pcm/ppm Gd del valore
di reattività al variare della concentrazione di gadolinio, considerando dati dalla li-
breria ENDF/B-VII.1. I medesimi benchmark sono valutati rispetto ai nuovi dati
del gadolinio di n TOF, mantenendo il resto del problema invariato. In questo caso,
è presente un bias minore di 19 ± 6 pcm/ppm Gd. I nuovi dati sembrano correg-
gere parzialmente le discrepanze tra risultati calcolati e sperimentali, nel contesto
di benchmark del reattore ZED-2 con codice MCNP.
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Abstract

Burnable reactor poisons are a class of isotopes used as safety devices in mod-
ern power reactor cores. Gadolinium odd isotopes 155Gd and 157Gd are powerful
burnable poisons, heavily employed in GEN-II and GEN-III power reactors. The
155,157Gd cross-sections have been measured in the past, and indications are that
there is still room for improvement. Additionally, accurate knowledge of the iso-
topes cross-sections is required for safety reasons. In 2016, to answer the need of
improved data, 155,157Gd cross-sections were measured at the n TOF facility, CERN.
The goal of this work is to evaluate a selected benchmarking problem, in order to
assess the impact of the new gadolinium cross-sections data. Initially, the computa-
tional methods necessary to evaluate the benchmark are introduced. The Canadian
ZED-2 research reactor is then chosen as a case study in order to compute criti-
cality calculations via the MCNP6.2 code, run on CRESCO systems (ENEA). The
ZED-2 reactor is shown to be sensitive to gadolinium cross-sections data variations.
The impact of gadolinium cross-section data from the ENDF/B-VII.1 library on
the reactivity worth values is assessed through four reactor benchmark models, each
with different gadolinium concentration. A bias of −45 ± 7 pcm/ppm Gd in the
reactivity worth with respect to gadolinium concentration is present with data from
the ENDF/B-VII.1 library. The same benchmarks are evaluated with respect to
the new n TOF gadolinium data, maintaining the rest of the problem unaltered. In
this case, a smaller bias of 19± 6 pcm/ppm Gd is present. The new data seems to
partly correct the discrepancies between calculated and experimental values, in the
context of MCNP code ZED-2 reactor benchmarks.
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Introduction

In 1939, physicists Leó Szilárd and Albert Einstein sent a letter to the United States
President Franklin D. Roosevelt warning that progress in nuclear science had been
made to the point where it was possible to develop powerful, atom-powered bombs.
Soon thereafter, the Manhattan Project began in the United States, together with
worldwide research in Nuclear Science and Engineering. Fortunately, nuclear fission
was not only used to build the well-known mass destruction weapons, but also for
the benefit of mankind, through the development of uranium-fuelled power reactors.

In modern times, international organisations regulate and supervise the access
to nuclear technologies, assisting member states with their peaceful use. The most
important international organisation is the IAEA (International Atomic Energy
Agency [1]), which counts 172 member states. The IAEA promotes nuclear safety
and sets the security standards in the use of nuclear technology and materials, in-
cluding but not limited to the energy sector. In fact, their mission is “to secure or
provide materials, services, equipment and facilities” as well as “to foster exchange of
scientific and technical information and training”. It represents the most important
Agency in the nuclear technology field.

On the other hand, the CTBTO (Comprehensive Nuclear-Test-Ban Treaty Orga-
nization) focuses specifically on preserving the peaceful use of nuclear materials and
technologies, while formally banning all nuclear explosions worldwide and detecting
and reporting any illegal test.

In the energy sector, a lot of efforts and resources are dedicated to the study of
nuclear safety, with the aim of introducing always enhanced standards. The present
work, then, ascribes to the field of nuclear safety studies, with focus on a particular
class of isotopes used in modern power reactors.

Nuclear Reactors

Let us initially describe behavioural aspects of a usual nuclear reactor core. There
are four classes of materials present in the core: the fuel, the moderator, neutron
absorbers and structural materials.

The fuel is of course the source of the thermal energy. For instance, when a
neutron fissions a 235U atom, energy is released in the form of heat together with
additional neutrons. But the chain reaction would not self-sustain unless very spe-
cific conditions are kept in the reactor core. To achieve the required neutron spectrum
(the neutron distribution in energy), moderators are employed. Moderating isotopes
are generally light particles, which neutrons can scatter on in order to slow down
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INTRODUCTION

from fast fission energy. For example, reactors which use natural uranium are known
as heavy water moderated reactors. Here, the water molecules contain deuterium
instead of hydrogen, which is much more efficient in slowing down the neutrons.

A different role is played by the isotopes known as neutron absorbers, or poisons.
Whereas moderators serve only to slow down the neutrons from fast to thermal ener-
gies, poisons absorb the neutrons, hence “removing” them from the fission spectrum
and inhibiting the chain reaction. Finally, we may classify as “structural materi-
als” all of the remaining materials in the reactor core, whose effects on the reactor
neutronics vary from isotope to isotope. In general, structural materials do not con-
tribute to the neutron multiplication and, in fact, absorb a part of the neutron flux.
It is also worth mentioning that these materials activate during the life of the core
and are a major source of radioactivity, even after shutdown.

The reactor poisons introduced above can be of different kinds and originate from
different sources. They can be fission products, like the isotopes of the elements
xenon and samarium. Xenon, for example, is a powerful poison which builds up
after reactor shutdown and entails a period of inactivity before the reactor can
be operative again. However, neutron absorbers can also feature in reactor cores
as safety devices. For example, they might be employed in the form of fixed or
removable rods inserted in the core or artificially injected into the moderator in the
form of soluble compounds.

The classes of isotopes mentioned above determine the behaviour of the reactor
core. It is useful to describe the reactor core in terms of its reactivity, which is a
measure of the stability of the reactor and is related to the effective multiplication
factor (see Chapter 2). The reactivity worth is then defined as the amount of
additional (positive or negative) reactivity yielded when some external factor affects
the reactor core. For example, some reactors can be operated by moving so-called
control rods, upwards or downwards with respect to the core. For example, the
extraction of a poisoning control rod determines the addition of a positive reactivity
worth. Conversely, the reactivity worth of a poison injection into the core will be
negative.

In this work, the focus will be on a particular class of poisoning isotopes, namely
burnable reactor poisons.

Burnable Reactor Poisons

Burnable poisons are a class of isotopes widely used in modern reactor cores to
limit excess reactivity and mitigate localised power peaking [2]. Reactor poisons
are competitors to the fuel isotopes, as they have thermal absorption cross-sections
comparable to the fuel fission cross-section. In other words, by absorbing thermal
neutrons, which would otherwise cause fission, poisons inhibit the neutron chain
reaction.

Natural gadolinium is widely used as a burnable reactor poison in LWRs (light
water reactors) [3], for example in the form of gadolinia (gadolinium oxide Gd2O3)
inside the fuel matrix. The use of gadolinium in fuel assemblies allows for higher
initial fuel enrichment, which would otherwise be forbidden for safety reasons. The
moderation of the reactivity at the BOL (beginning of life) then ensures longer fuel
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INTRODUCTION

cycles. As it is shown in Fig. 1, the presence of burnable poisons like boron means
that at some point in time a reactivity maximum occurs.

Figure 1: Multiplication factor as a function of time in three different cases,
from E. E. Lewis, Fundamentals of Nuclear Reactor Physics [2].

Accurate knowledge of neutron poisons - such as gadolinium - absorption cross-
sections is therefore required in order to predict when the peak will occur and how
intense it will be. Both of these two factors (timing and intensity of the peak) are
relevant for the assessment of criticality safety margins in SFPs (spent fuel pools).

Gadolinium is also used in CANDU (Canada Deuterium Uranium) heavy water
reactors. In this case, gadolinium nitrate is injected into the heavy water moderator
in case of reactivity excursions. Again, for safety reasons, precise knowledge of Gd
absorption cross-sections is desired.

In this work we will then outline the differences between different sets of gadolin-
ium cross-sections data present in the literature. Reasons will be given for the need
of more accurate data. At the same time, we will evaluate benchmarks for the Cana-
dian ZED-2 research reactor and calculate the effective multiplication factor’s (keff )
sensitivity to 155,157Gd(n,γ) cross-sections. Finally, we will assess the impact of the
data measured by the n TOF collaboration at the European Council for Nuclear
Research (CERN), in the context of ZED-2 reactor criticality calculations.
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Gadolinium Cross Sections

In this chapter, the gadolinium cross-sections evaluations are analysed and the dif-
ferences between different sets of data are outlined. Scientific reasons for the re-
assessment of the gadolinium odd isotopes cross-sections are given. In conclusion,
the main results of the 2016 measurement campaign carried out at n TOF (CERN)
are discussed and compared to the previous evaluations.

1.1 155,157Gd(n,γ) cross-sections evaluations and

scientific reasons for reassessment

Most commercial nuclear reactors are thermal-nuclear reactors, i.e. the reactor core
is operated with a thermal neutron spectrum. In these kind of reactors, fission oc-
curs via thermal neutrons, conventionally taken with energy E = kBT = 0.0253 eV,
where T = 293.61 K is the room temperature [4] and kB is the Boltzmann constant.
In the non-relativistic approximation, the speed of a thermal-energy neutron is de-
termined as v =

√
2E/m = 2200 m/s. The thermal regime is the energy range

where neutrons are most likely to fission the fuel atoms, i.e. where the fuel’s fission
cross-section is higher. Gadolinium is then chosen as a burnable reactor poison be-
cause of the high thermal absorption cross-sections of two of its odd isotopes, 157Gd
(15.65% abundance) and, to a lesser extent, 155Gd (14.80% abundance).

155,157Gd(n,γ) cross-sections have been measured a few times in the past decades,
but unfortunately, the reported results are not consistent with one another. In 2006,
for example, Leinweber et al. [5] reported a 157Gd(n,γ) thermal cross-section of 226
kb, which is 11% smaller than the ENDF/B-VII.11 evaluation of around 254 kb
(Mughabghab [7], 2006).

In addition, nuclear reactor experiments and simulations have shown discrepan-
cies between calculated and experimental reactor parameters. An article published
in 2016 by Bernard and Santamarina [8] showed that while the data (from the
JEFF-3.1.1 library2) allows for overall correct predictions of isotopics burnup in the
EPRTM GEN-III reactor (European Pressurised Reactor), still some C/E (calcu-
lated/experimental) biases are found for strong absorbers data.

1The ENDF/B file is the Evaluated Nuclear Data File produced by the collaboration between
the United States and Canada, compiled in the standard ENDF format [6].

2The JEFF file is the Joint Evaluated Fission and Fusion file, produced by the OECD-NEA.
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CHAPTER 1. GADOLINIUM 1.2. N TOF CAMPAIGN

The experiment led by Bernard and Santamarina was a simulation of the Gedeon-
II campaign, carried out from 1985 to 1988 in Grenoble. The experiment consisted
of irradiation and post-irradiation examinations of the PWR (pressurised water re-
actor) FAs (fuel assemblies). In particular, the Bernard and Santamarina simulation
demonstrated how the depletion of 155Gd and 157Gd (with cross-sections from the
JEFF-3.1.1 library) is slightly underestimated, probably indicating that Gd nuclear
data is incorrect (at least in the irradiation energy range).

It is also worth to mention the work from van der Marck [9] (2012), which
contains the evaluations of more than 2,000 benchmarks from the ICSBEP (In-
ternational Criticality Safety Benchmark Evaluation Project [10]) via MCNP code
simulations, with data from different nuclear data libraries. Out of the total num-
ber of evaluated benchmarks, 164 are no burnup, zero-power calculations containing
gadolinium. Among the results of these simulations, there are some non-negligible
discrepancies in the C/E ratios and it can be found that a bias is present, ranging
from around -578 pcm in the case of the JEFF-3.1.1 library to around -500 pcm
for the JENDL-4.0 library. The meaning of “bias” here is that there is a constant
underestimation or overestimation of some quantity (for example, calculated and ex-
perimental reaction rates). Therefore, it is again indicated that the Gd cross-sections
data are to an extent incorrect.

In 2012, experiments were conducted at the ZED-2 facility, AECL, Canada,
addressing the discrepancies in the Leinweber et al. [5] data. A full treatment of
the ZED-2 research reactor will be given in the third chapter as a case study, where
our own MCNP benchmark simulations are analysed. A more detailed summary of
different 155,157Gd(n,γ) cross-sections evaluations and reasons for reassessment can
be found in Rocchi et al. [3].
Figures 1.1 and 1.2 are plots of the main 157Gd isotope cross-sections evaluations
available on the OECD-NEA (Nuclear Energy Agency) database, plotted with the
JANIS [11] software.

1.2 n TOF campaign for Gd cross-sections mea-

surements

In light of indications of allegedly incorrect Gd cross-sections data, in 2015 an in-
ternational collaboration began, involving national and international organisations
such as the Italian INFN (National Institute for Nuclear Physics), ENEA (Italian
National Agency for New Technologies, Energy and Sustainable Economic Devel-
opment), Geneva’s CERN (European Organisation for Nuclear Research) and the
University of Bologna, in order to carry out experiments and obtain new cross-section
data for Gd odd isotopes 155Gd and 157Gd. In 2016, 4 high-purity Gd samples were
acquired from ORNL (Oak Ridge National Laboratories) and beam time was allo-
cated at the n TOF (CERN) facility. The experimental campaign and the obtained
results will now be briefly described.
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1.2. N TOF CAMPAIGN CHAPTER 1. GADOLINIUM

Figure 1.1: JANIS [11] plot of 157Gd(n,γ) cross-sections from a collection of different
libraries, plotted from 10 µeV to 100 MeV.

Figure 1.2: JANIS [11] plot of 157Gd(n,γ) cross-sections from a collection of different
libraries, plotted about the E = 0.0253 eV thermal point.

1.2.1 The n TOF facility

The n TOF (neutron time of flight) facility is part of the European Organization for
Nuclear Research (CERN) and has been operative since 2001 [12]. It is specifically
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CHAPTER 1. GADOLINIUM 1.2. N TOF CAMPAIGN

designed to study neutron-nucleus interactions.
The n TOF facility has a pulsed neutron source coupled with a 200 m flight path.

Neutrons are produced by spallation of 20 GeV/c protons delivered by the CERN
Protosynchrotron, impinging on a massive lead target [13]. Proton pulses have a
RMS width of 6 ns. Each proton yields around 300 neutrons, which are slowed
down by an initial 1 cm layer of demineralised water, followed by a second layer of
4 cm of borated water (H2O + 1.28% H3BO3, mass fraction). These layers serve
as moderators: the initial fast neutron spectrum becomes an isolethargic neutron
beam (uniform in lethargy units). Along the 185 m path to the experimental area,
collimators are used to shape the neutron beam, magnets are employed to remove
charged particles from the beam and shields are used to reduce the background from
the spallation source. The available energy resolution at E ' 1 keV is ∆E/E '
10−4 (i.e. smaller than the total width of neutron resonances). Thanks to the
Protosynchrotron low duty cycle (∼ 1 Hz), the overlap between the lowest neutrons
of a beam and the fastest neutrons of the following beam is avoided.

Figure 1.3: n TOF facility and Protosynchrotron overview, from CERN [12].

Of the 2 · 1015 neutrons/pulse produced at the source, 1.5 · 107 neutrons/pulse
arrive at the sample position and the beam profile is 2 cm in diameter. The experi-
mental area where the samples are positioned is known as EAR1. A schematic view
of the facility is represented in Figure 1.3.

1.2.2 Experimental setup and Data analysis

For the measurement of 155,157Gd(n,γ) cross-sections at the n TOF facility [14], an
array of 4 special C6D6 detectors was used. The deuterated benezene liquid scintil-
lation detectors are particularly suited for (n,γ) measurements and were optimised
in order to achieve a low sensitivity to background signal from neutron scatter-
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1.2. N TOF CAMPAIGN CHAPTER 1. GADOLINIUM

ing. They were put around 10 cm away from the Gd sample, at 90◦ angles from
each other. These organic detectors are very fast and enable measurements on
high-energy neutrons. However, they have very low efficiency, and therefore spe-
cial analysis techniques are required (see Mastromarco et al. [14] and Rocchi and
Castelluccio [15]).

The Gd samples were produced by the National Isotope Development Center
(NIDC), ORNL, USA, in the form of metallic disks with 1 cm radii. Two thin
samples were used to measure 155,157Gd cross-sections near thermal neutron energy,
avoiding saturation of the capture yield due to self-shielding. Thicker samples (10×
for 155Gd and 40× for 157Gd) were used for the measurement of cross-sections for
neutron energies above 1 eV. A total of 4 high purity (88.32% for 157Gd and 91.74%
for 155Gd) samples was used for the campaign.

Without claiming to be exhaustive, an overview of the main features and results
of the data analysis performed is presented here. For a neutron absorption experi-
ment, we may define the capture yield as the fraction of neutron beam that undergoes
capture reactions in the gadolinium sample. In particular, for this experiment, for
some energy En we have

Y (En) =
N

Sn + En
A
A+1

· Cw(En)−Bw(En)

ϕn(En)fBIF (En)
. (1.1)

The first factor in Eq. 1.1 contains a normalisation factor N , the neutron separation
energy of the compound nucleus Sn and the mass number of the target nucleus A. In
the second factor, then, Cw is the weighted C6D6 counting rate, Bw is the weighted
background count rate, ϕn is the neutron fluence and fBIF (Beam Interception
Factor) is a correction factor taking into account the variation of the neutron-beam
profile (and therefore interception with the sample) as a function of the neutron
energy.

It is worth mentioning that the total-energy detection principle was applied for
the present analysis. Therefore the detection efficiency was “artificially” set propor-
tional to the incoming γ-ray energy through the pulse height weighting technique.
For a complete discussion of the n TOF Gd campaign, the reader is referred to
Mastromarco et al. [14].

From the measured capture yield results, it was possible to calculate a value for
157Gd at the thermal point of 239.8± 9.3 kb (1 standard deviation) [3], reported in
Fig. 1.2. This point lies between the Mughabghab [7] evaluation of 254 kb ± 0.3%
and the Leinweber et al. [5] evaluation of 226 kb. Through the implementation
of the resonance parameters calculated with the n TOF campaign, ACE format3

nuclear data files have been produced for isotopes 155,157Gd and were used for the
simulations presented in this work (see Section 3.5).

3The ACE file format (A Compact ENDF) is a continuous-energy standard format for MCNP
simulations.

12



Computational Methods

In this chapter, the computational methods employed for the benchmark simula-
tions discussed in Chapter 3 in the context of reactor criticality calculations will be
introduced. In the following sections, the mathematical framework of the eigenvalue
problem will be introduced and the power iteration solution technique will be dis-
cussed. The sensitivity and uncertainty theory will be summarised and, finally, the
MCNP code examined and its main features listed, with a focus on its mathematical
methods.

2.1 The eigenvalue problem

For the assessment of gadolinium poisoning as a reactor safety device, we are inter-
ested in the benchmarking of a selected case study (see Chapter 3) in order to quan-
tify the effect of the gadolinium injection into a reactor core. In order to measure
the effect of the poison on the behaviour of the reactor, we consider a macroscopic
parameter called effective multiplication factor, keff . Physically, it represents the
ratio of neutrons between two consequent “generations”. If keff = 1, the reactor
core is critical, whereas if keff > 1 or keff < 1 the reactor core is, respectively, super-
critical and subcritical. In general, we refer to the calculations of keff as criticality
calculations.

Mathematically, the keff factor equation arises from a quite complicated deriva-
tion, which is omitted here. Rather, the following discussion begins with the special
case considered in this work. The benchmark problem analysed in Chapter 3 is in
fact the case of a stationary reactor, i.e. a reactor where the neutronics are constant
in time. Let us then straight-forwardly introduce the neutron transport equation
relative to our case study, namely a time-independent neutron transport equation
[16]:

[
~Ω · ∇+ ΣT (~r, E)

]
Ψk

(
~r, E, ~Ω

)
=

=

∫∫
Ψk

(
~r, E ′, ~Ω′

)
ΣS

(
~r, E ′ → E, ~Ω · ~Ω′

)
d~Ω′dE ′

+
1

keff
· χ (E)

4π

∫∫
νΣF (~r, E ′) Ψk

(
~r, E ′, ~Ω′

)
d~Ω′dE ′.

(2.1)
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2.1. THE EIGENVALUE PROBLEM CHAPTER 2. METHODS

Note that the equation above, in fact, contains the keff factor on the right-hand-
side. Let us first examine the meaning of each term in Equation 2.1:

• ~Ω is the versor indicating the direction of motion of neutrons;

• E is the energy;

• ~r is the position vector;

• Ψk

(
~r, E, ~Ω

)
is the time-independent neutron flux density at position ~r, for

particles with energy E, moving in direction ~Ω (the k subscript denotes a keff
eigenvalue calculation);

• keff is the effective multiplication factor;

• χ(E) is the energy probability density function for fission neutrons (i.e. the
neutron fission spectrum), including both prompt and delayed neutrons;

• ν is the average number of neutrons per fission event;

• ΣT (~r, E) is the macroscopic total neutron cross-section at position ~r and en-
ergy E;

• ΣS

(
~r, E ′ → E, ~Ω · ~Ω′

)
is the double differential macroscopic scattering cross-

sections for neutrons with energy E ′ and direction of motion ~Ω′ to energy E
and direction ~Ω;

• ΣF (~r, E ′) is the macroscopic fission cross-section at position ~r and energy E ′.

Equation 2.1 expresses a neutron balance, by identifying four terms, each ex-
pressing a gain or a loss of neutrons in the point of the phase space. Each of these
four terms can be expressed as an operator acting on the vector ΨK : a detailed
explanation of the symbols is shown in Table 2.1. This useful notation allows one
to rewrite Equation 2.1 as:(

L̂+ T̂
)

Ψ = ŜΨ +
1

keff
M̂Ψ (2.2)

where Ψ summarises Ψk in each point
(
~r, E, ~Ω

)
. With some more manipulation we

have:

Ψ =
1

keff
·
(
L̂+ T̂ − Ŝ

)−1
M̂Ψ (2.3)

and, with F̂ ≡
(
L̂+ T̂ − Ŝ

)−1
M̂ , we may write:

Ψ =
1

keff
· F̂Ψ. (2.4)

Equation 2.4 is clearly an eigenvalue equation, where Ψ is the eigenvector and keff
is the eigenvalue.

So far, the problem has been described mathematically. Now it will be possible
to find a solution with respect to the parameters Ψ and keff . The technique adopted
is the power iteration method.
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CHAPTER 2. METHODS 2.1. THE EIGENVALUE PROBLEM

Operator
Name

Notation Equation Term Description

Leakage
Operator L̂Ψk

(
~r, E, ~Ω

)
~Ω · ∇Ψk

(
~r, E, ~Ω

) Number of neutrons
that leave from the
point in the phase

space
(
~r, E, ~Ω

)
Collision
Operator T̂Ψk

(
~r, E, ~Ω

)
ΣT (~r, E) Ψk

(
~r, E, ~Ω

) Number of neutrons
colliding at(
~r, E, ~Ω

)
Scatter-in
Operator ŜΨk

(
~r, E, ~Ω

) ∫∫
Ψk

(
~r, E ′, ~Ω′

)
·

ΣS

(
~r, E ′ → E, ~Ω · ~Ω′

)
·

d~Ω′dE ′

Number of neutrons
that scatter scatter

to
(
~r, E, ~Ω

)
Multiplication

fission
Operator

M̂Ψk

(
~r, E, ~Ω

) χ(E)
4π

∫∫
νΣF (~r, E ′) ·

Ψk

(
~r, E ′, ~Ω′

)
d~Ω′dE ′

Number of neutrons
produced by fission

×keff at
(
~r, E, ~Ω

)
Table 2.1: Description of the terms in Eq. 2.1 and associated operator symbols.

2.1.1 Power Iteration

The principle behind the power iteration method is to iterate the eigenvalue calcu-
lation until stable values are obtained for both keff and Ψ. Let us then introduce

the indexed eigenvector Ψ(n) and the indexed eigenvalue k
(n)
eff .

Assuming that Ψ and keff are known for iteration (n), we may make an estimate
of Ψ(n+1) according to:

Ψ(n+1) =
1

k
(n)
eff

· F̂Ψ(n). (2.5)

From the equation above, we have(
L̂+ T̂ − Ŝ

)
Ψ(n+1) =

1

k
(n)
eff

· M̂Ψ(n) (2.6)

and, of course, the following also holds:(
L̂+ T̂ − Ŝ

)
Ψ(n+1) =

1

k
(n+1)
eff

· M̂Ψ(n+1). (2.7)

Through the right-hand-sides of both equations 2.6 and 2.7, we can esimate k
(n+1)
eff :

k
(n+1)
eff = k

(n)
eff

∫
M̂Ψ(n+1)d~r∫
M̂Ψ(n)d~r

. (2.8)

The equation above uses the M̂ operator for normalisation purposes. However, the
choice of the normalisation operator is arbitrary, and other choices could be made,
according to Equation 2.6.
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This iterative method only requires an initial estimate of Ψ and keff . The
iterations continue until both the eigenvector and eigenvalue have asymptotically
converged.

2.1.2 Convergence assessment

We are now interested in assessing the behaviour of the source eigenvector Ψ and
eigenvalue keff . Let us expand Ψ in terms of the orthonormal eigenfunctions ~uj:

Ψ =
∑
j=0

aj~uj (2.9)

with
∫
~uj~ukdV = δjk and aj =

∫
Ψ ·~ujdV . It is known from linear algebra that there

exist one dominant eigenvalue k0 ≡ keff such that k0 > k1 > k2 > . . .
Then, rewriting Equation 2.4 in light of the spectral decomposition of Equation

2.9, we have:

~uj =
1

kj
F̂ · ~uj. (2.10)

Finally, we can write an expression for Ψ(n+1) using both the power iteration and
the expansion:

Ψ(n+1) =
1

k(n)
F̂ ·Ψ(n) =

1

k(n)
· 1

k(n−1)
· ... · 1

k(0)
· F̂ n+1Ψ(0) (2.11)

and expanding Ψ(0) in the eigenbasis we have

Ψ(n+1) =
n∏

m=0

1

k(m)
· F̂ n+1 ·

∑
j=0

a
(0)
j ~uj =

n∏
m=0

1

k(m)
·
∑
j=0

a
(0)
j · F̂ n+1~uj =

=
n∏

m=0

1

k(m)

∑
j=0

a
(0)
j kn+1

j ~uj =
n∏

m=0

k0
k(m)

∑
j=0

a
(0)
j

kn+1
j

kn+1
0

~uj =

=
n∏

m=0

(
k0
k(m)

)
· a(0)0

(
~u0 +

∑
j=1

a
(0)
j

a
(0)
0

(
kj
k0

)n+1

~uj

)
'

' [const.]

(
~u0 +

a
(0)
1

a
(0)
0

·
(
k1
k0

)n+1

· ~u1 +
a
(0)
2

a
(0)
0

·
(
k2
k0

)n+1

· ~u2 + ...

)
.

(2.12)

According to Equation 2.8, then, we can calculate k(n+1):

k(n+1) ' k0 ·

[
1 +

(
a
(0)
1

a
(0)
0

)
·
(
k1
k0

)n+1

·G1 +

(
a
(0)
2

a
(0)
0

)
·
(
k2
k0

)n+1

·G2 + ...

]
[
1 +

(
a
(0)
1

a
(0)
0

)
·
(
k1
k0

)n
·G1 +

(
a
(0)
2

a
(0)
0

)
·
(
k2
k0

)n
·G2 + ...

] (2.13)

where

Gm =

∫
M̂~umd~r∫
M̂~u0d~r

. (2.14)
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Equations 2.12 and 2.13 can provide insights into the evolution of the source Ψ
and eigenvalue keff as the iterations proceed. In fact, since we imposed k0 = keff to
be the highest of the eigenvalues for the set of possible modes, the factors (kj/k0)

n

will all tend to zero, as n tends to infinity. Therefore, for n→ +∞, Ψ(n) → ~u0 and
k(n) → k0 (the fundamental eigenmode and eigenvalue, respectively).

However, Ψ and keff do not converge with the same pace. Let us define the
dominance ratio DR as the ratio between the first and the fundamental mode eigen-
values

DR =
k1
k0

(2.15)

which, as we just mentioned, is smaller than 1, because k1 < k0. Since the terms
due to higher modes die off quickly, the dominance ratio is the main source of error
in Ψ(n). An additional approximation may be made on k(n+1):

k(n+1) ' k0 ·

[
1 +

(
a
(0)
1

a
(0)
0

)
·
(
k1
k0

)n+1

·G1 +

(
a
(0)
2

a
(0)
0

)
·
(
k2
k0

)n+1

·G2 + ...

]
[
1 +

(
a
(0)
1

a
(0)
0

)
·
(
k1
k0

)n
·G1 +

(
a
(0)
2

a
(0)
0

)
·
(
k2
k0

)n
·G2 + ...

] '

' k0

[
1 +

(
a
(0)
1

a
(0)
0

)
·
(
k1
k0

)n+1

·G1

][
1−

(
a
(0)
1

a
(0)
0

)
·
(
k1
k0

)n
·G1

]
'

' k0

[
1 +

(
a
(0)
1

a
(0)
0

)
·
(
k1
k0

)n
·
(
k1
k0
− 1

)
·G1

]
(2.16)

where we notice that an additional (k1/k0 − 1) multiplies the DR term. For
typical light-water reactor systems, the DR is in the range 0.8 − 0.99 [17], so the
(DR - 1) factor is not small enough to entail immediate convergence of keff . For
some other critical systems, though, the DR can be very close to one. In such cases,
the keff multiplication factor converges very rapidly compared to the fission source
Ψ and additional care is needed in assessing convergence [18]. For this reason, we
always couple the keff calculation to a measure of the source convergence, computing
the Shannon entropy of the source distribution [18].

A 3D grid is superimposed on the system and a number of boxes is considered,
in order to have a minimum amount of entries per box. The Shannon entropy of
the discretised source distribution is a sum over all of the N boxes:

HSRC = −
N∑
J=1

PJ · ln2 (PJ) , (2.17)

where PJ is the ratio between the number of source sites in the J-th grid box and the
total number of source sites. The two limit cases for HSRC are a point ditribution,
where HSRC = 0, and the uniform distribution, where HSRC = ln2 (PJ).

The concepts illustrated in this section will be examined in the following sections
of this chapter in the context of the MCNP code.
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2.2 Sensitivity and uncertainty analysis

Let us now describe the mathematical framework of the sensitivity and uncertainty
theory. keff physically represents the ratio between the number of neutrons in the
ith+1 generation and those in the ith generation. Mathematically, keff is an integral
parameter (see previous section), and is a function of several reactor parameters:

keff = f(x1, x2, ..., xN) (2.18)

For the purpose of this work’s simulations, though, the multiplication factor can be
considered as a function of the isotopes cross-sections only, as they will be the only
parameters being affected during the MCNP code execution (see Section 2.3). In
fact, the sensitivity is computed by means of the perturbation theory, perturbing
the targeted cross-sections. Overall, for n isotopes, we have:

keff = f(σ1, ..., σn). (2.19)

Considering small deviations, it is possible to expand in a Taylor series. Truncating
to first order we have

keff (σ1, ..., σn) ' keff (σ10, ..., σn0) +
n∑
i=1

(
∂keff
∂σi

)
σi0

(σi − σi0) (2.20)

so that the differential is

dkeff =
n∑
i=1

(
∂keff
∂σi

)
σi0

(∂σi). (2.21)

Then taking the ratio dkeff/keff we may write

dkeff
keff

=
n∑
i=1

(
∂keff
∂σi

)
σi0

∂σi
σi0

σi0
keff

=
n∑
i=1

(
∂keff/keff
∂σi/σi0

) ∣∣∣∣
σi0

∂σi
σi0

(2.22)

and we define the sensitivity coefficients

Si =

(
∂keff/keff
∂σi/σi0

) ∣∣∣∣
σi0

(2.23)

which yield
dkeff
keff

=
n∑
i=1

Si|σi0 ·
∂σi
σi0

. (2.24)

Equation 2.24 represents the type of calculation carried out in this work with the
evaluation of benchmarks for sensitivity analyses. In particular, in our benchmark-
ing problem (discussed in Chapter 3), the keff sensitivity is calculated with respect
to the isotopes 155Gd and 157Gd, one at a time, so that the sum in Eq. 2.24 reduces
to one single term. Two types of such calculations are carried out: energy-dependent
sensitivity calculations, and integral sensitivity calculations (over the whole energy
spectrum), which we expect to be equal. In the next section, the code used for
the benchmarking process is examined together with the sensitivity analysis calcu-
lational tools. The benchmark calculation setup is then reported in Section 3.2.
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2.3 MCNP code

The benchmark calculations were carried out with MCNP6.2 code, run on CRESCO
systems (part of the ENEA calculational infrastructure).

MCNP (Monte Carlo N-Particle) is a general purpose, continuous energy, gen-
eralised geometry, time dependent, Monte Carlo radiation-transport code designed
to track many particle types over broad ranges of energies [19]. The Monte Carlo
method is a powerful tool to solve complex 3D problems because it is a statistical
method. It is particularly suited for continuous energy calculations, i.e. the kind
performed in this work. It is based on pseudo-random number generation: complex
algorithms generate a sequence of numbers, and the difference between sequences is
guaranteed by unique seeds.

In practice, the code simulates particles in a physical system, and calculates each
particle’s history throughout each cycle. The code can be operated to transport a
wide variety of particles, although for this work it was only requested to transport
neutrons (see Section 3.2). For example, a neutron may elastically scatter on a
carbon nucleus (n,n) and subsequently fission a 235U atom (n,f) or undergo radiative
capture (n,γ) hitting a poisoning isotope, like gadolinium. A possible path is shown
in Fig. 2.1.

Figure 2.1: Diagram of a neutron elastically scattering on a 12
6 C nucleus, then

hitting a 235
92 U atom and causing fission. Overall, two more neutrons are released

in this process.

For its intrinsically statistical behaviour, the Monte Carlo method is usually the
most faithful description of what happens in a real system. On the other hand,
though, it takes great computational resources, and only provides the user with the
tallies specifically requested (as well as a few default ones).

In comparison, deterministic methods, such as the discrete ordinates method,
allow one to solve the transport equation for the average particle. A few of these
methods (partially deterministic methods) are actually included in the MCNP code,
as variance reduction options. However, deterministic methods are not suited for all
nuclear reactor systems calculations and, in the case of the benchmarks presented in
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this work, Monte Carlo stochastic methods are employed [17]. Let us now describe
the types of structures supported by the MCNP code and the elements employed
for the criticality calculations of our benchmarking problem.

The MCNP code is based on one input file, containing the details of the problem.
The declarations are structured in cards, which represent the statements for the
MCNP code. The problem is defined according to a fixed-order structure, whose
elements are:

• Geometry (surfaces and cells)

• Materials

• Simulation parameters (the type of calculation and the physical parameters)

• Variance reduction parameters

2.3.1 Criticality calculations

Two different types of calculations are permitted: defined source calculations and
eigenvalue calculations. The former type is used when the source is known and
consequently does not change throughout the problem. The latter is used when the
particle source is unknown and to be found within the problem execution by solving
an eigenvalue problem. This represents the type of calculation performed in this
work. Hence, a so-called KCODE source is used. The user can define the number
of histories (source particles) per cycle, and the number of cycles to evaluate.

The so-called KSRC card is then required to choose the position of the first
generation of neutrons, which have to be in the vicinity of fission sites. The specified
keff and KSRC are computational representations of the initial estimates for the
eigenvalue and eigenvector as part of a power iteration eigenvalue problem (see
Section 2.1).

When a job is run, the code initially generates the specified number of histories
(according to KSRC) and processes the first cycle. After the first cycle has ended,
some neutrons will have disappeared (for example, due to neutron absorption), and
some new ones will have been created. Then, in order to keep the reactor critical,
the code generates just as many neutrons as initially requested, from the spatial
points where the previous neutrons have been terminated, typically “adding” some
new ones. keff is calculated for each iteration, and at the end of the simulation, the
average keff is given with its associated uncertainty.

Three types of estimators are used for the calculation of keff : collision, absorp-
tion and track-length estimators. They represent different ways of calculating the
effective multiplication factor, and the average of the three (each averaged over the
number of executed cycles) is taken as the “result” at the end of a criticality calcula-
tion. The results of the KCODE calculations performed for the selected benchmark
are examined in the following chapter.
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2.3.2 Tallies

Other physical quantities (tallies) are also calculated averaging over all of the cycles
and, again, what happens to each particle is due to the probability of each possible
outcome in the simulated random walk. Tallies are simply calculated by counting
the number of particles that behave in some specific way. Qualitatively, one might
make an estimate of the particle flux in a point of the system geometry by counting
how many particles collide in a nearby cell.

Flux is taken as the neutron spectrum in the moderator, averaged over all the
considered cells, hence taking a spatial average, using the F4 tally flux card. The E
tally energy card is used to specify 237 energy bins, ranging from 10−5 eV to 20 MeV
(usually taken as the high end of a reactor’s neutron spectrum). Complementary
tally cards are also used to perform the flux calculation.

keff sensitivity to isotopic cross-section variations is calculated through the so-
called KSEN card. The isotope and the data library are specified together with
the reaction number. The card can only be used in KCODE calculations and is
recommended for code validation and uncertainty qualification [19]. The KSEN
card is based on linear perturbation theory. It is specifically designed for continuous
energy calculations (the kind performed in this work) and could in principle also
be used for multigroup calculations, although neglecting the effect of cross-section
self-shielding.
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ZED-2 Reactor Benchmarks

In this chapter we examine the ZED-2 reactor benchmark calculations with data
from the ENDF/B-VII.1 library. Problem setup and calculation details are pre-
sented and the results of the simulations are provided. The focus is mainly on re-
actor sensitivity to Gd odd isotopes’ cross-sections. At the end of the chapter, two
different data sets are compared, namely data from the ENDF/B-VII.1 library and
recently measured n TOF (CERN) data. Throughout the chapter, input validation
procedures are also discussed.

3.1 The ZED-2 reactor

To perform simulations and make predictions on Gd cross-sections data, the ZED-2
reactor was chosen as a case study. It is a thermal neutron spectrum reactor, and
experiments were conducted with gadolinium in the reactor core [20], with the results
being submitted to the IRPhEP Handbook (International Handbook of Evaluated
Reactor Physics Benchmark Experiments), OECD-NEA. Furthermore, a validated
ZED-2 reactor core MCNP model was available [21], with simulated keff from Chow
et al. [21] consistent with experimental keff from Atfield [20].

The ZED-2 (Zero Energy Deuterium) reactor (Fig. 3.1) is a heavy water moder-
ated research reactor, operating at the Chalk River Laboratories, AECL, Canada.
The ZED-2 reactor is a tank type research reactor, with fuel rods inserted in a cylin-
drical aluminium tank (calandria), spanning ∼ 3.4 m both in height and diameter.

Research reactors differ significantly from commercial power reactors1. For in-
stance, the ZED-2 reactor is not connected to turbines or any additional apparatus.
It does not need cooling and is usually operated at an indicated power ranging be-
tween 5 to 120 watts [22]. Since the reactor produces very little power, the chain
reaction is not accountable for a rise in temperature, so the treatment of the reactor
kinetics is referred to as zero-power kinetics, with a negligible thermal feedback.

Criticality is achieved by varying the heavy water moderator level. As shown
in Fig. 3.1 this operation occurs through a system of pumps and valves located
below the reactor. The ZED-2 reactor is also equipped with a graphite reflector
surrounding the calandria and with a shielding layer all around the core.

1In general, a power reactor and a research reactor are built for very different purposes: the
former needs to guarantee a constant, efficient, reliable heat source, while the latter needs to
provide the experimenter with a requested neutron flux.
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Figure 3.1: Illustration of the ZED-2 Facility in Atfield [20].

The calculations performed for this work involved four different experimental set-
ups, each with a different gadolinium concentration. Each set-up is characterised by
different parameters, like critical height of moderator, moderator and fuel tempera-
ture and moderator purity. These parameters were reported by Chow et al. [21] and
will be examined in Section 3.3.

A graphical representation of the ZED-2 core model (from Chow et al. [21]) is
shown in Fig. 3.2 via the Visual Editor MCNP code2, whereas Table 3.1 presents
an overview of the reactor features.

3.2 Benchmark calculations

The code input used for the simulations was developed by Chow et al. [21] in the
context of ZED-2 reactor benchmarking, following experiments at the ZED-2 facility,
Chalk River Laboratories, AECL [20].

The purpose of this section is to examine in detail which settings were chosen
for each of the cards introduced in Section 2.3 for the ZED-2 reactor benchmark

2The Visual Editor package allows to plot a geometry directly from the MCNP input file (the
plot is produced by flooding the geometry with histories).
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(a) Vertical section of the reactor core (b) Horizontal section of the calandria

(c) Vertical section of three fuel rods (d) Horizontal section of a single fuel rod

Figure 3.2: ZED-2 reactor core model by J. C. Chow et al., 1.5ppm Gd in the mod-
erator, visualised via the MCNPX Visual Editor, Version X 24E. Different materials
are shown in different colours (for instance the heavy water moderator is shown in
dark blue, while air is shown in light blue). The numbers indicate the cells of the
system.

problems. Note how we consider the problem of a stationary reactor, with no burn-
up, therefore, no change in the isotopic composition is present.

KCODE criticality calculation card

The KCODE card was used to perform the criticality calculations, simulating 500,000
histories per cycle and 5,000 cycles for each benchmark.

The first calculation performed for this work was the convergence check. In
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Fuel type Bundle height Pitch Coolant
Moderating

system

LEU (Low
enriched

uranium) / RU
(Recovered
Uranium)

49.67 cm
24.5 cm pitch
square lattice

Stagnant - air
cooling

Heavy water
moderator

Table 3.1: Overview of the main ZED-2 reactor setup parameters.

order to obtain a reliable calculation it is initially necessary that the effective mul-
tiplication factor has converged. Furthermore, the source shape distribution must
have also converged to its fundamental mode. In fact, if each cycle began with a
significantly different source shape, the tallies calculated during the problem would
show great variances and should not be considered safe estimates of the real physical
quantities [16].

The standard reference parameter for source distribution convergence in MCNP
is the Shannon entropy (for a more detailed discussion of the computational tools
employed, see Chapter 2). The preliminary checks allowed us to make an estimate of
the number of cycles required to achieve keff and HSRC convergence. Hence we set
the number of inactive cycles (a KCODE card parameter) to 50 for every subsequent
simulation.

Immediately after the KCODE card, the KSRC card also needs be specified,
providing an approximated initial source distribution. Below is a summary of the
input parameters related to the KCODE card (where, for simplicity, only two rows
are shown for the KSRC card).

C KCODE NSRCK RKK IKZ KCT

C NSRCK [500,000: number of source histories per cycle]

C RKK [1: initial guess for keff]

C IKZ = [50: number of cycles to skip before tallying starts]

C KCT = [250: number of cycles to run]

KCODE 500000 1 50 5000

C Initial point sources : one per center of 1st pin in each bundle

C

KSRC -36.7500 -85.7500 39.2250 $ (O, -3), 1

-36.7500 -85.7500 88.7350 $ (O, -3), 2

[...]

HSRC Shannon Entropy card

The KCODE card automatically provides a source entropy calculation together with
the estimated keff value for each cycle. It does so by automatically superimposing
a mesh to the system geometry and estimating the Shannon entropy value for each
resulting box.

25



3.2. BENCHMARK CALCULATIONS CHAPTER 3. BENCHMARKS

However, during the code execution, the default mesh is expanded according to
the change in the source distribution. Then, in order to gain a better insight into
the behaviour of the Shannon entropy for the initial cycles, it is necessary to choose
a custom, fixed mesh. For this purpose, the HSRC card may be used. The input
parameters are the x, y, z ranges for the mesh and the number of cells for each
direction. The MCNP6.2 manual recommends the choice of a number of cells equal
to the number of histories divided by 20, although not less than 4× 4× 4 should be
chosen. For example, with 500,000 histories, a total of (30× 30× 30) ' 500,000/20
cells are chosen. This card was used in particular for the preliminary convergence
calculations (see Paragraph 3.4.1). Below is an example of the card in the case of a
simulation with 20,000 histories per cycle.

HSRC 7 -2.8E+02 2.8E+02 7 -2.8E+02 2.8E+02 7 -1.3E+02 3.2E+02

Physics parameters

The problem was set as a MODE N problem (only neutrons are transported by the
code). The PHYS:N card was used to specify neutrons with energies in the range
0 − 20 MeV, and the CUT:N card was used to cutoff neutrons with energies lower
than 10−11 MeV.

Since in this problem the interest is for a static reactor, no distinction is made
between prompt and delayed neutrons. Hence, total ν̄ factor was used, in order
to include both prompt and delayed fission neutrons in the calculation (which is
the default choice in the case of KCODE calculations). The TOTNU card is then
specified in the code. There are other Physics cards and options which were not
specified in the input, therefore the default values were assumed by the code. A
summary of the input Physics follows.

MODE N

TOTNU

PHYS:N 20 0 0

CUT:N j 1e-11

F4 Flux card

For each simulation, flux tallies are requested. Neutron flux is requested over a broad
lattice of moderator cells. In such a way, the whole tank is sampled and a reliable
spatially averaged flux can be calculated. In each cell, the flux is binned in 237
energy bins via the E energy card, covering the whole specified neutron spectrum
(10−11 MeV − 20 MeV). While flux is calculated over a great number of cells, the
total is the quantity of greatest interest, as it is taken as the neutron spectrum in
the reactor core. Below, the F4 card is shown as featured in the input, with the
brackets used as nested geometry notation and the T indicating the total average.

C TALLY FLUX

f14:n (226 < 228[-8:7 -8:7 0] < 229) $ moderator in FA u=19
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(112 < 121 < 228[-8:7 -8:7 0] < 229) $ moderator in FA u= 9

( 94 < 122 < 228[-8:7 -8:7 0] < 229) $ moderator in FA u= 9

( 94 < 123 < 228[-8:7 -8:7 0] < 229) $ moderator in FA u= 9

( 99 < 124 < 228[-8:7 -8:7 0] < 229) $ moderator in FA u= 9

(210 < 219 < 228[-8:7 -8:7 0] < 229) $ moderator in FA u=18

(192 < 220 < 228[-8:7 -8:7 0] < 229) $ moderator in FA u=18

(192 < 221 < 228[-8:7 -8:7 0] < 229) $ moderator in FA u=18

(197 < 222 < 228[-8:7 -8:7 0] < 229) $ moderator in FA u=18

T

KSEN sensitivity calculation card

Finally, the Gd absorption cross-sections sensitivity is calculated for the two Gd
odd isotopes (155,157Gd(n,γ)) in a number of ways. In particular, for each of the two
isotopes, we request both energy binned and integral KSEN calculations. For both
of these, we request two different reaction numbers, 102 and special reaction number
-2 (radiative neutron absorption and neutron capture, respectively). In the case of
gadolinium, these reactions are equivalent, and we expect the two results to be the
same. For both of these reactions, we then request both CONSTRAIN=YES and
CONSTRAIN=NO calculations. The constrain option is an energy normalisation
option only used in fission-chi or scattering law sensitivities and therefore does not
affect the calculations considered in our problem.

For each simulation, then, a total of 16 different sensitivity calculations is per-
formed. A summary is represented in Tab. 3.2. The two different reaction numbers
and the constrain option are only considered in our problem for consistency check
purposes. In other words, as users, it is desirable to verify that these different cal-
culations output the same results. Below is an example of the card, as it was used
in the input file (with ksen01 being an integral calculation and ksen05 an energy-
dependent calculation).

C Integral KSEN

ksen01 xs iso=64157.80c mt=102 -2 constrain=yes

[...]

C Energy dependent KSEN

ksen05 xs iso=6157.80c mt=102 -2 constrain=yes

erg=[...]

The simulations were run on the CRESCO6 server (ENEA), where the MCNP6.2
version of the code is installed. For each simulation, 3 cluster nodes were employed,
for a total of 144 working CPUs (each node is equipped with 48 Intel(R) Xeon(R)
Platinum 8160 CPUs) [23]. In other words, each simulation involved great compu-
tational power, and lasted approximately 40 hours. Although the MCNP code offers
a great variety of variance reduction techniques, none were used for our problem,
thanks to the great computational power offered by the CRESCO server.
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Isotope Binning Reaction number Constrain
157Gd No 102 Yes
157Gd No 102 No
157Gd No -2 Yes
157Gd No -2 No
155Gd No 102 Yes
155Gd No 102 No
155Gd No -2 Yes
155Gd No -2 No
157Gd Yes 102 Yes
157Gd Yes 102 No
157Gd Yes -2 Yes
157Gd Yes -2 No
155Gd Yes 102 Yes
155Gd Yes 102 No
155Gd Yes -2 Yes
155Gd Yes -2 No

Table 3.2: Summary of the 16 KSEN sensitivity calculations performed for each
of the 4 ZED-2 MCNP models. The isotope column indicates the isotope (n, γ)
cross-section which the sensitivity calculation is perturbing. The binning column
indicates whether the calculation is energy-dependent (Yes) or integral (No).
The constrain column indicates whether the constrain normalisation option is
specified. The four blocks separated by horizontal lines are expected to give the
same results.

3.3 Reactor configurations

In 2006, a team led by Dr. J.E. Atfield carried out experiments at the ZED-2 facility
[20]. Following these evaluations, it was possible to develop and calibrate the com-
putational MCNP input models used in this work [21]. For the analyses discussed in
the following paragraphs, four different ZED-2 models were evaluated, each with a
different gadolinium concentration and different criticality parameters (mainly the
heavy water moderator level).

In the first case there is no gadolinium dissolved in the moderator, although
small amounts can still be found in the graphite reflector. The second, third and
fourth case each come with increasing amounts of dissolved gadolinium. Nominally,
the second, third and fourth case have nominal gadolinium concentrations of 0.5
ppm, 1.0 ppm, 1.5 ppm respectively (i.e. µg of Gd per g of fuel). The details of each
experimental reactor configuration examined by Atfield [20] have been summarised
by Chow et al. [21]. They are reported in Tab. 3.3
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Case ppm Gd
Moderator

Purity
[wt%D2O]

Channel
Tempera-

ture
[°C]

Moderator
Tempera-

ture
[°C]

Critical
Height [cm]

G1 0.0 98.748 21.80 21.70 131.585

G2 0.5 98.748 21.75 21.79 138.248

G3 1.0 98.744 21.65 21.89 145.632

G4 1.5 98.739 21.45 22.51 153.926

Table 3.3: Reactor core parameters for the four MCNP Gd cases, from Chow et al.
[21].

3.3.1 Model calibration

The nominal gadolinium concentration might differ significantly from the real con-
centration. In fact, as it happens, the portion of “effective” poison in the reactor
tank is always to an extent less than the dissolved amount: small amounts can
leave the “active” part of the core and be transported into the pipes connected to
the tank, where the neutron flux becomes small. Therefore, a calibration factor is
introduced to obtain more accurate evaluations of the amount of poison in the mod-
erator. To calibrate the Gd concentration for each case, it is convenient to initially
calibrate the concentration of a different element (boron) with reference isotopic
cross-sections (i.e. negligible associated error). For each case, criticality is set as
a requirement in this approach (since it was initially obtained experimentally) and
poison concentrations are corrected consequently. In fact, while the error on boron
cross-sections can be considered negligible with respect to the keff calculation, there
can be a significant bias in the poison concentration, which is hence accountable for
deviations from criticality. Once the calibration factor is calculated for a reference
element (boron), that same factor can be applied for the element of interest (gadolin-
ium), assuming the same systematic error affects the two concentrations (i.e., that
the boron and gadolinium compounds have the same solubility in the heavy water
moderator). This whole procedure, referred to as calibration, is only sensible un-
der the assumption of keff depending linearly from the poison concentration. The

Boron-Calibrated
Gd Conc. [ppm]

keff

0.000 0.99788
0.494 0.99766
0.988 0.99759
1.482 0.99713

Table 3.4: Calibrated Gd concentrations, with the calibration factor calculated by
the CRL team [21].

work from J.C. Chow et al. [21] provides 4 different cases for calibration, where
the experimental setup is mainly left unaltered. Only the reactor parameters listed
in Tab. 3.3 and the boron concentration vary from case to case. The work from
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Chow used the E70CRL in-house nuclear data library, based on the ENDF/B-VII.0
library. The linearity hypothesis is verified and the resulting calibration factor is
−1.2%, which is the factor that is also applied to the Gd concentrations and was
implemented in our core models. In other words, the −1.2% calibration factor was
considered for all of the simulations presented in this work, where the target library
is the ENDF/B-VII.1 data set. The corrected Gd concentrations can be found in
Tab. 3.4 together with the yielded effective multiplication factors.

A more accurate analysis of this problem that takes into account the ENDF/B-
VII.1 data set from the beginning of the calibration procedure can be found in
Console Camprini et al. [24].

3.4 ENDF/B-VII.1 results and data analysis

In this section, the preliminary calculations are examined in the context of conver-
gence assessment. The main results of the complete simulations are then discussed:
the reactor core spectrum and the reactor core sensitivity to cross-sections varia-
tions, in the case of ENDF/B-VII.1 gadolinium cross-sections data.

3.4.1 Convergence

In order to assess the correct convergence of the effective multiplication factor for
our reactor core models, convergence3 calculations were initially carried out. As
described in Section 3.2, the HSRC card is added to the input in order to choose a
fixed mesh, sampling the source entropy in every region of the reactor core. In par-
ticular, we examined the case with the highest dissolved gadolinium concentration
(1.5 ppm). The reference nuclear data library considered here is the ENDF/B-VII.1
nuclear data file.

We initially examined a few cases with small numbers of particles. For each
case we adjusted the mesh according to the suggested criteria (see Section 3.2).
The provided keff is calculated solely via the collision estimator. The results of
these simulations are plotted in Fig. 3.3. None of these 4 cases actually converge
(according to the definition given in footnote 3) because of the relatively small
number of particles per cycle and the small number of total cycles. Nevertheless,
they intuitively represent the dependence of keff and HSRC fluctuations from the
number of particles transported in each cycle.

For the actual simulations that follow, we performed KCODE calculations with
500,000 neutrons per cycle, which yield an almost immediate convergence of both
the keff factor and the HSRC entropy, in the first ∼10 cycles.

Therefore, making a reasonable safe estimate of the proper number of required
inactive cycles, the number was set to 50 for every following simulation.

3 We may talk about convergence with the following convention: keff convergence is achieved at
some cycle n if from every following cycle until the last cycle, keff is within one standard deviation
from the mean of the second half of the keff values.
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(a) KCODE calculation with 500 par-
ticles per cycle. The adopted mesh is
the recommended minimum of 4×4×4.

(b) KCODE calculation with 1,000
particles per cycle. The adopted mesh
is the recommended minimum of 4 ×
4× 4.

(c) KCODE calculation with 10,000
particles per cycle. The adopted mesh
is a 8× 8× 8 grid.

(d) KCODE calculation with 20,000
particles per cycle. The adopted mesh
is a 10× 10× 10 grid.

Figure 3.3: Results of KCODE calculations in the case with the most dissolved
gadolinium, with 500, 1,000, 10,000 and 20,000 particles per cycle respectively.
Both HSRC and keff were normalised, so they are comparable in each graph.
Each simulation was run for a total of 200 cycles.

3.4.2 Neutron Spectra

The four reactor core models introduced in Section 3.3 (summarised in Tab. 3.3)
have been benchmarked with complete simulations, with all of the previously intro-
duced features (KCODE, KSEN and tallies) executed at once. The nuclear data
library used is again the ENDF/B-VII.1 file. Let us first examine the results of the
flux calculations requested via the F4 cards, which are plotted in Figures 3.4 and
3.5.

We may note that the models employed in the calculations really simulate a ther-
mal neutron spectrum, with most neutrons concentrated in the range 10−3 eV−10−1

eV (which, in fact, is the region with the highest cross-section sensitivities). In addi-
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tion, it is shown how increasing amounts of dissolved gadolinium affect the neutron
spectrum (Fig.s 3.4, 3.5): the peaks around thermal energy are lower for the core
models with higher gadolinium concentration. Due to the resolution of the plotted
graphs, it is not possible to see the higher fluxes at the right end (high energies)
of Figures 3.4 and 3.5. However, the calculated spectra have been correctly nor-
malised4 according to the calculated integral fluxes and a higher Gd concentration
does determine a harder neutron spectrum. This is in accordance with what we
would expect, since poisons conceptually “remove” slower neutrons from the reactor
core.
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Figure 3.4: Neutron spectrum in the four Gd cases (G1, G2, G3, G4) per unit energy
in the ZED-2 reactor core.

3.4.3 Sensitivity analysis

From both Figures 3.6 and 3.7 we can see that the reactor is sensitive to Gd cross-
section variations, in particular in cases G2, G3 and G4 where the Gd concentration
is relevant (note the change of scale from one graph to the other). The sensitivity
peak, close to the thermal point, is approximately proportional to the Gd concen-
tration (Fig. 3.7). The sensitivity is generally highest in the near-thermal energy
range, particularly from 10−3 eV to 10−1 eV. The calculations also show that over

4 Note how here the normalisation procedure is intended solely as a numerical artifact, in order
to be able to compare the four examined cases. For the calculation of the simulated core fluxes, one
should take into account an additional normalisation factor due to some arbitrary reaction rate.
For instance, in KCODE calculations, tallies are normalised to be per fission neutron generation
[17].
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the whole neutron energy range, the reactor sensitivity to Gd is negative: since
absorption cross-sections are being considered, a positive cross-section increment
yields a negative reactivity worth, i.e. a decrease in the multiplication factor. This
behaviour is the standard for poisoning isotopes cross-sections.

The 157Gd isotope has a greater absorption cross-section than the 155Gd isotope.
This means that the multiplication factor is more sensitive to 157Gd(n,γ) variations
than it is to 155Gd(n,γ) variations, as can be seen from Figures 3.6 and 3.7.

The most relevant results from the cases G1, G2, G3, G4 have been listed in
Table 3.5.

Case keff
Integral 157Gd KSEN

[dk/dσ]
Integral 155Gd KSEN

[dk/dσ]

G1 0.99557± 0.00001 (−2.290± 0.008) · 10−5 (−0.533± 0.002) · 10−5

G2 0.99542± 0.00001 (−0.8352± 0.0003) · 10−2 (−1.8744± 0.0007) · 10−3

G3 0.99510± 0.00001 (−1.6261± 0.0007) · 10−2 (−3.6488± 0.0015) · 10−3

G4 0.99476± 0.00001 (−2.3794± 0.001) · 10−2 (−5.339± 0.002) · 10−3

Table 3.5: Summary of the main calculated parameters for the ZED-2 reactor core
MCNP model. The keff results are expressed with statistical uncertainty of one
standard deviation. The relative uncertainties on KSEN are all around 40 pcm.

While the multiplication factors reported in Table 3.5 indicate that for all four
models the reactor core is slightly subcritical as requested, a bias is introduced. In
other words, there seems to be an underestimation on the Gd cross-sections, such

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

1.00 E-4 1.00 E-2 1.00 E+0 1.00 E+2 1.00 E+4 1.00 E+6

Z
E

D
 S

p
e
c
tr

u
m

 p
e
r 

u
n
it
 L

e
th

a
rg

y
 [
--

]

Energy [eV]

ZED-2 Reactor - Test Cases - Neutron Spectrum

Case G1: Spectrum
Case G2: Spectrum
Case G3: Spectrum
Case G4: Spectrum
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that higher Gd concentrations yield multiplication factors lower than expected. A
comparison between the ENDF/B-VII.1 and one of its beta versions (which includes
the 2006 Leinweber Gd cross-sections data) can be found in Chow et al. [21]. This
matter will also be addressed in Section 3.5, considering the latest available Gd
cross-sections data.

Finally, let us examine the code checks introduced in Section 3.2, with reference
to Table 3.2, in the context of the KSEN sensitivity calculations. The constrain
option showed no effect on the obtained results, with integral and energy-dependent
sensitivities being exactly equal in all cases. Similarly, both reaction numbers gave
the same results in each of the cases examined, as the Nuclear Physics would suggest.

It is also worth recalling that both the energy-dependent fluxes and the energy-
dependent sensitivities can be integrated over the energy range to correctly obtain
the MCNP estimate of the integral fluxes and sensitivities, respectively. In fact,
the sums of the MCNP energy-binned quantities are in good accordance with the
MCNP integral quantities, taken with uncertainty of one standard deviation.

3.5 ENDF/B-VII.1 and n TOF data comparison

In this last section, the two different Gd data sets (from the ENDF/B-VII.1 library
and from the n TOF campaign) are compared, in the context of the same KCODE
simulations explored in Section 3.4. The aim of this section is to verify whether a
bias is introduced in the criticality of the ZED-2 reactor core as more Gd is dissolved
in the moderator. The same four cases G1, G2, G3, G4 were run, but the input
was modified in order to specify Gd cross-section data reported by Mastromarco
et al. [14] (while the rest of the problem still referenced the ENDF/B-VII.1 library).
Also, the focus here is only on the criticality of the system, so all of the remaining
tallies were excluded, and the adopted input file ended with the KCODE calculation
request. The results of these additional calculations are reported in Figure 3.8.

From Figure 3.8 it is immediately understood that there exists a significant bias
in the keff multiplication factor in the case of ENDF/B-VII.1 Gd cross-sections
data, particularly due to 157Gd cross-section. The bias, given by the slope of the
linear fit, is −0.45±0.07 mk/ppm Gd. Although a smaller bias can still be found in
the case of n TOF Gd cross-sections data, there is a noticeable improvement. The
bias in the n TOF data case, opposite in sign, is 0.19± 0.06 mk/ppm Gd.

The examined ZED-2 reactor benchmarks suggest that the recently measured
155,157Gd(n,γ) cross-sections represent an improvement, if compared to the ENDF/B-
VII.1 155,157Gd(n,γ) cross-sections.

3.5.1 keff Uncertainties

In this paragraph, a method to estimate the uncertainties associated to the final
values of the effective multiplication factor is examined. According to Chow et al.
[21], we may assess the uncertainty on keff as

σkeff =
√
σ2
stat + σ2

exp + σ2
cal + σ2

Gd (3.1)

35



3.5. ENDF/B-VII.1-N TOF CHAPTER 3. BENCHMARKS

Figure 3.8: keff multiplication factor comparison in cases G1, G2, G3, G4 for the
MCNP ZED-2 reactor core model, in the case of n TOF elaborated Gd cross-sections
data (for isotopes 155Gd and 157Gd) and ENDF/B-VII.1 Gd cross-sections data.

The first source of uncertainty to consider is the statistical MCNP calculation un-
certainty σstat. As reported in Table 3.5, by employing 500,000 histories per cycle
and a total of 5,000 cycles (4,950 active cycles), the statistical uncertainty is very
low, and for every simulation we have σstat = 0.00001 = 0.01 mk.

The σexp term is due to experimental uncertainty on core parameters, such as
critical height on the moderator and moderator purity. According to Chow et al.

[21], we have σexp =
√
σ2
hc + σ2

pur = 0.07 mk.

The third term considered in 3.1 is the calibration uncertainty σcal due to the
calibration procedure described in paragraph 3.3.1. We have a boron calibration

uncertainty σcalB =
√
σ2
statB

+ σ2
B = 0.04 mk/ppm, where σstatB is the statistical

uncertainty in the boron simulations (0.06 mk in the Chow et al. [21] calculations)
and σB is the keff uncertainty due to boron cross-sections, which is simply the boron
reactivity worth (per ppm) times by the boron relative error of ±0.1% about the
thermal region, yielding σB = 0.07 mk, which is 0.2% of the total boron reactivity
worth5 of −33.6 mk (with 6 ppm of nominal boron). Since we adopt the same
calibration factor for gadolinium, we have σcal = ρGd · (0.2%) = 0.04 mk/ppm, with

5 So that the complete calibration factor is −1.2%± 0.2%
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an estimated Gd reactivity ρGd = −20.1 mk/ppm.
The last term in Equation 3.1 is due to the uncertainty in Gd absorption cross-

sections, particularly in the thermal energy range. σGd is given by a sensitivity
calculation, of the type of Equation 2.24. In accordance with Chow et al. [21],
we may assume a 157Gd relative uncertainty of ±2% for the ENDF/B-VII.1 cases,
whereas we considered a 3% uncertainty for the n TOF Gd cross-sections data [25].
Hence we have σGd−ENDF/B = 0.32 mk/ppm and σGd−n TOF = 0.48 mk/ppm.

Note how the third and fourth term are proportional to the amount of dissolved
gadolinium, hence varying from case to case. The fourth term σGd is the major
source of uncertainty, and in case G3 (1.0 ppm Gd) it accounts for around 80% of
the total uncertainty on keff . The calculated uncertainties are reported in Tables
3.6 and 3.7 and represented graphically in Figure 3.8.

ENDF/B σstat σexp σcal σGd σkeff
G1 0.01 0.07 0 0 0.07
G2 0.01 0.07 0.02 0.16 0.2
G3 0.01 0.07 0.04 0.32 0.4
G4 0.01 0.07 0.06 0.48 0.6

Table 3.6: Partial uncertainties on the keff values in the four cases, with gadolinium
data from the ENDF/B-VII.1 library.

n TOF σstat σexp σcal σGd σkeff
G1 0.01 0.07 0 0 0.07
G2 0.01 0.07 0.02 0.24 0.3
G3 0.01 0.07 0.04 0.48 0.6
G4 0.01 0.07 0.06 0.72 0.8

Table 3.7: Partial uncertainties on the keff values in the four cases, with gadolinium
data from the n TOF measurements.
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Conclusion

Gadolinium is used as a burnable reactor poison in many GEN-II and GEN-III nu-
clear power reactors. For its importance as a safety device, then, accurate knowledge
of its nuclear data is required.

In this work, we examined the behaviour of the gadolinium odd isotopes in the
context of criticality calculations performed via the MCNP6.2 code, with reference
to the ENDF/B-VII.1 library. The benchmarks analysed are the MCNP input files
developed by Chow et al. [21] for the ZED-2 research reactor, AECL, Canada. A to-
tal of 4 cases were examined, each with a different gadolinium concentration. Thanks
to the great computational power offered by the CRESCO servers (ENEA) where
the code was run, a large number of histories per cycle and a large number of cycles
were set for each simulation. The preliminary checks showed that the criticality
calculations entail an almost immediate convergence of the effective multiplication
factor keff , which is close to but less than 1 for all of the four cases. Similarly, the
Shannon entropy of the fission source also converges rapidly.

It was shown that the reactor models have thermal spectra, for all of the four
cases. As the gadolinium concentration increases, the spectra harden, with lower
thermal peaks in the cases with more dissolved gadolinium. The reactor core was
shown to be sensitive to variations in the gadolinium odd isotopes cross-sections,
especially to 157Gd(n,γ). Higher gadolinium concentrations determine higher sensi-
tivities and, in fact, around thermal, the sensitivity is almost proportional to the
gadolinium concentration in the moderator.

The gadolinium data from the ENDF/B-VII.1 library also shows that a bias on
keff of −45 ± 7 pcm/ppm Gd is present, with higher gadolinium concentrations
determining lower-than-expected effective multiplication factor values. For the rea-
sons listed in the initial chapter of this work, new gadolinium data were measured at
n TOF (CERN). Criticality simulations that included the newly evaluated data were
then carried out and compared to the simulations where the gadolinium ENDF/B-
VII.1 data were used. With the n TOF data, the bias is partly corrected and reduces
to 19±6 pcm/ppm Gd. Hence, the n TOF cross-sections represent an improvement
in the context of ZED-2 reactor criticality simulations. The obtained cross-sections
were submitted to the EXFOR database in 2019.
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Acronyms and Abbreviations

ACE A Compact ENDF

AECL Atomic Energy of Canada Limited

BOL Beginning of life

C/E Calculated/Experimental

CANDU Canada Deuterium Uranium

CERN European Organisation for Nuclear Research

CRESCO Computational RESsearch Centre on COmplex systems

CTBTO Comprehensive Nuclear-Test-Ban Treaty Organisation

DR Dominance Ratio

EAR Experimental Area

ENDF Evaluated Nuclear Data File

ENEA Italian National Agency for New Technologies, Energy and Sustainable
Economic Development

EPR European Power Reactor

FA Fuel assembly

fBIF Beam Interception Factor

Hsrc Source entropy (Shannon entropy)

IAEA International Atomic Energy Agency

ICSBEP International Criticality Safety Benchmark Evaluation Project

INFN National Institute for Nuclear Physics

IRPhEP International Reactor Physics Experiment Evaluation Project

JANIS Java-based nuclear information software

JEFF Joint Evaluated Fission and Fusion Nuclear Data Library

JENDL Japanese Evaluated Neutron Data Library

Keff Effective multiplication factor

LWR Light water reactor

MCNP Monte Carlo N-Particle

n TOF Neutron Time of Flight

NEA Nuclear Energy Agency

NIDC National Isotope Development Center

OECD Organisation for Economic Co-operation and Development

ORNL Oak Ridge National Laboratories

PHWT Pulse Height Weighting Technique

PWR Pressurised water reactor

40



APPENDIX A. ACRONYMS AND ABBREVIATIONS

SFP Spent fuel pool

XS Cross section

ZED-2 Zero Energy Deuterium reactor
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