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Abstract

In the few past decades, there has been an increasing interest in asteroid missions, which
can be explained by three main reasons. The first reason being the fact that their com-
position has remained the same since their formation in the protoplanetary disc, and
therefore, they can provide information on the formation of the solar system. The second
being the fact that they can be dangerous to Earth, as it has been the case in the distant
past and can still be seen in the Yucatan craters. Last but not least, it is possible to
exploit asteroid resources before the Earth’s resources are exhausted.

Many successful asteroid missions have been carried out, leading to many technical ad-
vances, particularly in terms of navigation. However, they all faced many challenges, the
latter being the Osiris-Rex probe sample collection. To ensure secure navigation around
asteroids, they have shown that precise navigation has been and would be of significant
importance. The spacecraft has to experience an extremely disturbed environment while
approaching asteroids. Although these asteroids’ gravity fields are small, they ca be very
irregular and they can perturbed the spacecraft’s dynamics. To ensure safe navigation,
it is therefore very important to characterise these gravity fields.

Through estimating the asteroids’ gravity field, this thesis will approach autonomous
navigation. In the navigation software, the spherical harmonics model has been selected
to be applied in the simulator. The spherical harmonic coefficients are calculated at each
time step, along with the state vector. While this approach is convenient and can lead
to sufficiently accurate results, it is important to take into account that this model is
limited and can not be used for precise landing near the surface, since when approaching
the sphere of Brillouin, the spherical harmonics models tend to diverge. Another gravity
model must then be used for the last step of the mission.

A real world model was implemented to propagate the dynamics of the spacecraft in
a simulated but“real” environment, taking into account solar induced perturbations and
torques as well as the spherical harmonics gravity field of 433 Eros up to degree and order
22. To compare their results, an Extended Kalman filter (EKF) has been developed along
with an Unscented Kalman filter (UKF). Although the difference in efficiency was not
seen to be significant, the UKF, when calculating large number of parameters, was chosen
over the EKF for the simplicity of implementation.

To evaluate its performance, the simulator was tested under different conditions,
changing the range, inclination of the orbit, and evaluating the effect of different per-
turbations on the estimation. The simulator was applied to the Near-Shoemaker mission
conditions, where it has been shown that all degree and order coefficients up to degree 8
could be estimated with an error below 10%.
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1
Introduction

Since the discovery in 1801 of the first asteroid named Ceres, interest in these small bodies
has only grown. Asteroid missions have been increasingly relevant in past few decades due
to the fascinating and complex information that can be obtained from asteroid studies.
This thesis will focus on autonomous navigation around asteroids, with a particular inter-
est on the estimation of the gravity field, for such irregular bodies. To do so, a number of
aspects need to be discussed, to better understand the theme of this dissertation. First,
we will explain why asteroid missions are being conducted, then we will explain briefly
what the challenges in this type of environment are, and we will detail and motivate the
choice of autonomous navigation.

Asteroids as a mission target

Asteroids are small, geologically inactive bodies. Although they have experienced con-
siderable collisional evolution since their formation, 4.5 billion years ago, within the disk
of gas and dust where the planets were also formed, most of them have not suffered from
major geological, thermal or orbital evolution. And this is where the main interest of
the study of asteroids lies. Owing to their small size, the original heat of the protosolar
nebula was rapidly evacuated by these objects, thereby freezing the initial composition of
the protosolar nebula (Binzel et al., 1991). The study of these small bodies therefore gives
information on the initial circumstances that occurred at the birth of the Solar System,
and the study of their composition can help to understand the origins of the Solar system.

Another interest in asteroids must be understood when staring at the surface of the
moon. Covered with craters, we know that in the past, the surface of the moon and the
surface of the earth have already experienced many collisions with small bodies. When
we talk of collisions with the Earth’s surface, it becomes a ritual to invoke the impact of a
massive comet or asteroid, 65 million years ago, at the boundary of the Cretaceous and the
Tertiary, which was perhaps responsible for the extinction of the dinosaurs. It is therefore
important to understand the motion of asteroids in the solar system to predict and maybe
avoid future impacts. In particular, the Near-Earth asteroid, which have an orbit similar
to the Earth and especially, a subclass called Potentially Hazardous Asteroids, which can
be a potential danger for the Earth. Today, in 2020, NASA discovered 2043 PHAs and
currently predicts 4700, 1500 of which have a diameter larger than 100 m.1

1https://cneos.jpl.nasa.gov/stats/totals.html



A third and last interest that can be found in the study of asteroids is economic.
Earth’s resources are not inexhaustible, and we should expect to be able to access the
mineral resources of asteroids in the near future. It is estimated that one cubic kilometre
of the M-type, i.e., metallic, asteroid comprises 7 billion tonnes of iron, 1 billion tonnes
of nickel and enough cobalt to satisfy global demand for 3,000 years. Asteroids may
constitute beneficial space bases for the pre-colonization of the solar system. In reality,
thanks to their mineral wealth, they can supply the settlers with building materials as
well as their needs for water, oxygen, carbon and nitrogen. In comparison, due to their
low mass and thus low gravity, the energy needed to escape the host asteroid is much
smaller than the energy necessary to leave Earth.

These three aspects are the main motivations of the asteroids missions. Now we have
understood why these missions were conducted, it is interesting to know the technical
challenges that asteroid missions have faced in this type of environment.

Asteroid missions and environment

Our interest in asteroid missions has only grown after the Galileo spacecraft flew by aster-
oid 951 Gaspra on its way to Jupiter. This success initiated a series of missions devoted
to asteroids, each as enriching as the previous mission in terms of technical advancements
and scientific research. The first dedicated asteroid mission, named Near-Shoemaker,
was devoted to the study of 433 Eros, an Earth-crossing asteroid belonging to the Amor
group. This successful mission has produced great developments in terms of navigation,
especially due to the unexpected landing phase, which has made this spacecraft the first
ever to orbit and land on the surface of an asteroid. The missions that followed have led
to a deeper understanding of the processes involved in this type of environment and all
the technical advances that have been made possible. However, these missions have faced
a number of technical challenges, which have made it clear that the asteroid environment
is far more complicated than anticipated.

On its way to the target asteroid, the spacecraft is exposed to general interplanetary
forces and disturbances, primarily due to the Sun and the nearest planets. Their effect
can be predicted with reasonable precision, as we can acquire information on the distance
from these bodies, and we also know the characteristics of these bodies. However, entering
the sphere of influence of the asteroid, the environment can be extremely disturbed. It
is very difficult to predict the shape of this celestial body, because of the distance and
the size of the asteroid. Most of the time, asteroids have a very irregular shape, which
leads to an extremely irregular gravity field. Even if its influence is relatively weak, it can
severely affect the orbital motion of the spacecraft (Williams et al., 2018). The motion
of the spacecraft near the surface can be a great challenge in terms of navigation due
to all these irregularities that are difficult to anticipate before the flight. In addition,
these disturbances are very interesting to study, because they can provide details on the
internal composition of the asteroid. This is why this thesis will focus on estimating the
gravity field for asteroid missions. If we can model the gravity field of the asteroid, the
on-board knowledge will be enriched and therefore the dynamics of the spacecraft in this
environment will be better understood.

Past missions around asteroids have proven that the study of asteroids was feasible,
and the success of asteroids-sample return missions such as Osiris-Rex has further our
knowledge about navigation around asteroids. We can imagine that in the near future,
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Asteroids missions will be more and more frequent. Thus, the navigation around asteroid
is and will be of a particular interest.

Autonomous navigation

To understand why autonomous asteroid navigation is such an important problem to
address, we must first answer the basic question: What is a navigation system? The main
objective of the navigation system is to answer the not-so-simple question ”Where am
I?”. Included in the Guidance, Navigation and Control System (GNC), which attempts
to guide the spacecraft on its trajectory to the target asteroid, we realize the importance
of a good navigation system for every mission. Indeed if we are unable to address where
the spacecraft is located, it becomes difficult to know where it is heading and how to
change its trajectory to meet the location target.

A good navigation system depends on the knowledge that we can give the system
to estimate its position via the so-called sensors. The choice of sensors carried by the
spacecraft is the first challenge faced in the construction of a navigation system. The
number of sensors should be minimised to avoid excessive weight and thus excessive costs.
However, the decision must be wise to provide the navigation software with adequate
knowledge to determine the position of the spacecraft with sufficient precision. The most
commonly used asteroid sensors are Star Trackers, Lidars, and Navcams. These sensors
and their combinations are the focus of numerous researchs as they can be a real asset
for autonomous navigation, especially with the Navcam which, as we will show later on,
can be used for very promising navigation techniques (Owen et al., 2002).

As mentioned above the navigation system is estimating the state of the spacecraft.The
navigation system cannot exactly indicate the exact position of the spacecraft. It processes
information coming from sensors that may be influenced by noise from the environment
or by bias, misalignment or others errors coming directly from the sensors. This mea-
surements are not ideal, and the purpose of the navigation system is to try to eliminate
these imperfections to achieve the most precise values, hence the term ”estimate”. For
this process to be carried out, the navigation system should include an estimator, which,
based on analytical equations describing the dynamics of the spacecraft and the sensors
data, would attempt to determine the real state of the spacecraft. However, a perfect es-
timation is impossible, and it become important to analyse the final estimation errors and
to choose the optimum estimator. The navigation software architecture, with the choice
of sensors and filters, will be discussed in Chapter 6 for a more detailed explanation of
the navigation software mechanisms.

The last question to be answered is why to develop autonomous asteroid navigation?
The first and most simple answer is to reduce operating costs. But it is not the only
explanation. Owing to the large distance from the Earth, there is a considerable delay
in communication with the spacecraft. It is therefore necessary to make the spacecraft
autonomous for this type of mission if we want to improve the safety of the spacecraft
during close operations and landings in such disturbed environments.
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1.2. RESEARCH QUESTIONS

1.2 Research questions

Autonomous asteroid navigation is on its own, a real challenge in many aspects we have
already mentioned. The focus of this thesis is, however, on the estimation of the gravity
field of the target asteroid, which, due to the irregular shape of these bodies, has a signifi-
cant effect on the dynamics of the spacecraft while approaching the surface. Accordingly,
the main objective of this thesis is to address the following research question:

– How to increase the safety of autonomous navigation for asteroid
missions?

With a particular focus on the asteroid gravity field estimation, and therefore to
answer the following sub-questions:

(a) What is the influence of an irregular gravity field on the mo-
tion of a spacecraft in the vicinity of asteroids?

(b) What is the impact of the gravitational modelling on the nav-
igation accuracy?

(c)How can the gravity field be autonomously estimated using only
on-board data and measurements?

1.3 Thesis outline

This study is divided into seven chapters starting with the introduction, each of which
focuses on a particular theme:

Chapter 2 : The Mission and studies heritage were addressed in Chapter 2. It will
list the previous missions and detail the outcomes and limitations found during
those missions. It will also review existing research topics on autonomous asteroid
navigation and mission requirements and assumptions will be detailed.

Chapter 3 : This chapter details the characteristics and properties of the asteroids.
Interest in 433 Eros as a target body will be explained.

Chapter 4 : This chapter will focus on the environment to be simulated. Which bodies
are present in the spacecraft environment, which forces and torques are to be con-
sidered and how they can be modelled. It will also detail the various gravity field
models available to model gravity field of the target asteroid.

Chapter 5 : This chapter describes every aspect of the Navigation software from hard-
ware to filters. Filters theoretical equations will be derived and each parameter will
be explained for a deep understanding of how the estimation process works.
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Chapter 6 : The design of the Simulator will be presented in this chapter. The top-layer
software architecture will be explained and every component in the simulator will
be detailed. A verification procedure will be conducted for every component of the
Simulator.

Chapter 7 : This chapter will discuss the various scenarios in which the software has
been evaluated. The performance of the software will be tested under different
conditions to test the limits and find the optimal conditions for the estimation
procedure to be carried out. The results of these examples will be explained in
depth.

Chapter 8 : The conclusions and recommendations for future work, based on the results
obtained during this thesis will be detailed in this chapter. The results will be
discussed, their significance, how they can be interpreted, their validity and their
limitations will be assessed.
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2
Mission heritage

Over the last few decades, interest in asteroids has evolved. Many technological challenges
have been faced by missions, particularly with regard to navigation in such a perturbed
environment. Interest in asteroid research will be explained in this chapter, and some of
the previous missions will be reviewed, discussing their outcomes and limitations.

2.1 Past Asteroid missions

The first close-ups images of asteroids were the work of the Galileo probe, which was
approached in 1991 and Ida in 1993 as it travelled to Jupiter. After this successful
approach, the interest in asteroids and small-scale missions grew exponentially.

2.1.1 Near-Shoemaker

NEAR (Near-Earth Asteroid Rendez-vous) Shoemaker is a space probe launched by
NASA on 17 February 1996 to study one of the largest Earth-crossing asteroids, Eros
433, shown in Figure 2.1. It was the first NASA Discovery programme mission, which
contributed to several advances in the development of modern navigational strategies to
manoeuvre a spacecraft around an irregular body.

The main objective of this 800 kg mass probe, including 56 kg of scientific instrumen-
tation, was to identify the main features of Eros, such as its mass, internal distribution,
magnetic field and mineralogical composition (Cheng et Andrew, 2002). To this end, the
probe was launched on February 14, 2000, set in orbit around Eros and remained for
around a year. The mission ended on 12 February 2001 when, even though it was not
planned for such manoeuvres, the spacecraft landed. Against all odds, the spacecraft
survived to the landing, and transmitted data and Until 28 February 2001.

Eros’ a-priori knowledge was not sufficient to allow an accurate design of the orbit,
which could have led to unexpected disturbances during the mission, especially in this
highly disturbed environment (Owen et al., 2002). The most powerful navigation tech-
nique successfully used for the first time during this mission, was optical navigation via
Landmark tracking. In addition to the range and radio-metric measurement, these data
were used for the asteroid’s orbit determination process, gravity and shape modelling,
and rotational rate estimation (Williams, 2002).
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Figure 2.1: Picture of 433 Eros (Image Credit : NASA)

2.1.2 Hayabusa

Also known as MUSES-C (Mu Space Engineering Spacecraft), Hayabusa was a Japanese
Space Agency (JAXA) space probe. The aim of the project was to research a tiny asteroid
named Itokawa and to test new robotic techniques to carry back to Earth a soil sample
of the asteroid.

The asteroid probe was launched in 2003, and in 2005 it met with Itokawa, shown
in Figure 2.2. Due to the difficulty of navigation in a very low gravity environment,
several unsuccessful landing attempts were made before a small sample was obtained.
Contact with the probe was very difficult because of the great distance between the
planet and the asteroid. Hayabusa carried a star-tracker, IMU and a two-axis Sun-
aspect sensor for inertial measurements, as well as optical cameras, lidar, and laser-range
finder (LRF) for relative navigation. A three-month approach was scheduled (Hashimoto
et al., 2010) after the rendezvous in August 2005. The on-board equipment could not
provide sufficient information to estimate the key physical parameters during this process,
because of the poor gravity of Itokawa and because the approach was made on a straight
line. Therefore, 3 km away from the centre of mass of the asteroid, an orbit phase was
scheduled, requiring high navigation protection procedures to prevent collisions with the
surface of the asteroid. Since Hayabusa moved towards the asteroid in a straight line,
an accurate asteroid gravitational field estimation was not needed for navigation in the
first mission phase (Yoshikawa et al., 2006). Instead an assessment of the solar radiation
pressure and gravity in the trajectory was used to estimate the mass.

2.1.3 Rosetta

To analyse and collect data on the core composition of comet 67p/Chouriusumov-Guerassimenko,
Rosetta was launched by the European Space Agency on 2 March 2004. This research
mission’s main purpose was to investigate the origin and relationship of comets with the
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Figure 2.2: Hayabusa spacecraft and the asteroid Itokawa (Yoshikawa et al., 2006).

origin of the Solar system. Rosetta is the sixth spacecraft that observe a comet from a
short distance, but the first to orbit a comet and carry a lander to the surface. On 12
November 2014, Philae landed on the surface. In many aspects, this project was a real
technological challenge. Until the spacecraft met the target, the main parameters, the
gravity and the physical parameters such as mass remain undetermined. As the trajec-
tory was very difficult to forecast, because of this lack of knowledge, a versatile strategy
to cover for the uncertainties had to be adopted. In addition, the probe had to be au-
tonomous during critical phases, which is a real challenge for safety and navigational
design, due to the substantial Earth-comet distance (Munoz et al., 2012). The trajec-
tory of the spacecraft was estimated by radiometric monitoring from ground stations on
Earth, such as the Doppler range or the DDOR (Delta-Differential One Way Range),
which provided reliable data on the Solar System barycenter. However, this knowledge
was not sufficient to describe the approach trajectory relative to the comet, primarily due
to significant uncertainties about the comet and its environment (Godard et al., 2015).

Accurate relative navigation could only be achieved by using optical navigation meth-
ods with on-board optical cameras taking pictures of the comet’s surface, defining direc-
tions from Rosetta to the comet’s centre and enhancing relative navigation performance
(Castellini et al., 2014).

2.1.4 Dawn

Dawn was a NASA probe launched in 2007, the mission of which was to study Vesta
and Ceres, the two major bodies of the Main Belt. The observations began in 2011, first
orbiting Vesta and then Ceres, and ended in 2018. It was the ninth mission of NASA’s
Exploration Program. The DAWN mission was the first to use only optical navigation
for relative navigation with radiometric and Doppler data for absolute navigation. No
altimeters or star-trackers were used, only two navigation cameras (FCs) were carried for
redundancy. Optical navigation cameras have been used for scientific purposes as well as
for the orbit determination and gravity modelling (Konopliv et al., 2014).
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Figure 2.3: Picture of the comet Tchouri taken by the NavCAMs of Rosetta, 5 June 2015.
(Image Credit : ESA)

Figure 2.4: Comparison of Ceres, Vesta and Eros (Image Credit : NASA)
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2.1.5 Osiris-Rex

OSIRIS-REx (Origins-Spectral Interpretation-Resource Identification-Security-Regolith
Explorer) is a NASA mission launched on September 8, 2016 to research and carry back
a sample of the Earth-crossing asteroid named Bennu.

The main objective of this mission is to collect data that will allow us to better
understand the Solar System’s formation process. The primary elements of the Solar
System that the asteroid has retained can be isolated by retrieving a sample from the
surface. It is the first mission by NASA to send an asteroid sample back to Earth. In
terms of navigation and flight dynamics, this mission faced many difficulties, such as
very accurate manoeuvring and orbiting around a very small asteroid, at low altitude, to
precisely map the surface. The sample has been obtained by a robotic arm after landing
on the surface, requiring surface navigation. The return to earth is expected to take place
in 2023.

Launch and interplanetary phase navigation was made by Radio metric tracking using
Nasa Deep Space Network and DDOR to estimate the absolute state of the spacecraft
(McMahon et al., 2018). The approach of Bennu was made by Optical Navigation Track-
ing and lidar, to estimate the relative state of the spacecraft with respect to the asteroid.
During this mission, a new navigation technique called Natural Feature Tracking (NFT)
was introduced and tested. To evaluate the trajectory, the NFT uses image analysis. It
compares features previously determined during earlier stages of the missions with on-
board data of known features during landmark tracking to assess the spacecraft’s attitude
and uses extended Kalma, filter to update the position and velocity based on the previous
spacecraft state.

2.2 Autonomous navigation research

Autonomous navigation is a very broad topic, as it covers all stages of the navigation
process, from the sensors to the estimation technique. Numerous research has been carried
out in this area, and it is still a very active research topic to study for future missions.

2.2.1 Current research objectives and results

The asteroid environment, while dominated by the gravitational field effect of this body,
is generally a highly disturbed environment. As we have seen before, asteroids are usually
small and may have very irregular shapes. These properties of asteroids contribute to a
very complex dynamic system, which makes it very difficult to orbit around them. Orbits
can be quite tough to anticipate and thus it is complicated to ensure safe navigation and
prevent collisions with the surface. The interest in landing asteroids makes it even more
difficult to ensure the safety of spacecraft. Moreover, since the shape and rotation of the
asteroid are not known beforehand, the spacecraft must provide a complex and robust
GNC system to approach, meet and land safely on the asteroid. That is why autonomous
navigation is being studied for this kind of mission, to improve on-board knowledge and
therefore improve navigation safety.
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Figure 2.5: Image of Bennu taken by polycams of Osiris-Rex mission before spacecraft
arrival (Image Credit:NASA)

We should think of the work of Mooij et al. (2009), which studied the gravitational
modelling of a diamond-shaped asteroid, Steins, for autonomous navigational purposes,
and which is the main basis of this thesis. They have shown that the spherical harmonics
model diverges near to the surface and therefore it is wiser to use a polyhedral shape
approximation or a triaxial ellipsoid model. However, the last two models are seen to be
20 times slower than the spherical harmonics model.

Kubota et al. (2010) discuss an autonomous GNC system for the MUSES-C spacecraft
and the Rendez-vous and Landing Conditions. Gil-Fernandez et al. (2019) demonstrate
HERA’s GNC technology, developed to maintain a balance between navigation safety,
flight operations, payload and spacecraft characteristics and time constraints. The GNC
system depends on a vision-based navigation system with a landmark tracking as well as
an attitude-based approach. Autonomous navigation based on optical tracking is a very
promising technique, particularly for asteroid landings. The new autonomous navigation
algorithm for optical navigation is described in the work of Shuang et al. (2013), which
achieved a position error and a velocity error of less than 1 m and 0.1 m/s respectively.

2.2.2 Msc Thesis heritage

The studies already done by fellow students at TU Delft have been reviewed to support
our research. We can think of the work of Razgus (2016), who used a dual-quaternion ap-
proach to investigate the relative navigation in the vicinity of asteroids. He compared two
separate approaches, the Cartesian coordinates for position and the attitude quaternions,
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and the double quaternions approach. The two methods, he concluded, were quite simi-
lar. Some of the models that he developed will be reused in the future study, for example
for the asteroid and its environment. We may also think of the study of Moreno Villa
(2018), which examined the motion of satellites around small bodies. A GNC simulator
was designed to test the behaviour of the orbit determination methods used in ground
control centres. The results showed a difference in magnitude between the long and cross-
track directions and the radial direction, due to a lack of information on the line of sight
of the optical measurements, which could not be removed. Both of these master’s thesis
will be used as a basis for the development of our simulator, as they already developed a
navigation software and simulator, and they both worked in asteroids environments.

2.3 Outcomes, limits and initiatives

Outcomes and drawbacks of navigation systems observed during previous missions will
be evaluated in this section. The conclusions, assumptions and mission requirements that
result from this analysis will be detailed.

2.3.1 Outcomes and Limits

Future asteroid missions would require a high degree of guidance, navigation and control
autonomy to minimise costs and to perform more complex missions. During previous
missions, different navigation strategies have been used. Near-Shoemaker faced a lot of
navigation challenges due to the unusual shape of the asteroid. In addition to optical
landmark tracking, it uses Radiometric Doppler and Range tracking to navigate around
Eros. The SRIF filter was used to approximate the physical parameters of Eros, but the
calculation of mass was quite difficult. Owing to the very low gravity of Eros, a high
accuracy of navigation and low reaction time became very necessary to prevent escape
or crash on the surface. As a result, the highly disturbed orbit at the time of the arrival
at Eros was very hard to anticipate and the data was very slow to converge. Navigation
camera images were analysed on Earth to identify landmarks, which makes this process
very expensive in terms of workload and time loss.

Hayabusa encountered similar issues. The landmark tracking, which was processed
on Earth, was a very heavy task for the navigation team. Navigation was intended to
be entirely autonomous on the approach of Itokawa, but due to the malfunction of the
reaction wheel and the complex shape of Itokawa, it was not possible to locate the centre of
mass of the asteroid. Hybrid ground-based optical navigation was therefore used instead
of autonomous navigation. Gravity simulation of Itokawa were carried out using periods
of no thrust but the accuracy was poor due to the direct trajectory of the spacecraft.

Rosetta showed some weaknesses in the absolute navigation system. The star-trackers
used to determine the absolute location of the spacecraft became disturbed by the debris
of the comet and the increasing activity of the comet. Star trackers help monitor the
attitude of the spacecraft by guiding the high-gain antenna to Earth for communication.
Thus, as this condition arose, the high-gain antenna began to drift away from Earth, and
communications with the spacecraft were almost lost. It has been demonstrated that
star-trackers cannot function independently in such a noisy environment.
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The initial Osiris-Rex mission was to use only Lidar for autonomous navigation, but
a new system, a natural tracking feature, was added due to reliability issues. The NFT
framework depends on the integration of images captured by optical navigation systems
with an on-board catalogue. Since this device was brought late in the mission process, it
was not completely used during this mission, but this system has an immense potential
for future missions.

These missions have contributed to the development of many techniques essential for
precise navigation. Kim et al. (2007) developed a Multiplicative Expanded Kalman Filter
to approximate the relative state of the spacecraft with high precision, based on optical-
navigation measurements. The outcome of this research is an estimate of the state of the
asteroid as well as the state of the spacecraft. Many on-board optical estimation algo-
rithms have been developed for small-body exploration, based on the results of previous
missions and the shortcomings of current missions, such as the AIM mission. The impor-
tance of autonomy has been emphasised, and the incorporation of camera measurements
into the on-board spacecraft estimator has been a significant topic of past research. We
should think of the work of Hashimoto et al. (2010), which uses the estimator for the
asteroid return sample mission. Adding a laser range to optical navigation as with the
Osiris-Rex mission, significantly improved navigation accuracy. The NFT can be used to
lower the laser range error, which can be very high based on the shape of the asteroid.

2.3.2 Mission requirements

Missions requirements can be discussed according to the mission heritage information.

REQ-MIS-01 433 Eros will be chosen as a reference asteroid for the thesis.

REQ-MIS-02 The asteroid will be visited by the spacecraft and the results will be
compared to existing models built during the NEAR mission.

REQ-MIS-03 The spacecraft will be designed on the basis of the Near-Shoemaker space-
craft, weighing 800 kg, with a cubic shaped body of 1.7 m length and two solar panels
with dimensions 1.2× 1.8 m.

REQ-MIS-04 The mission should be based on the Near mission. First, a flyby at 1200
km will be conducted to estimate the SRP and an a-priori of the µ parameter value,
then a 200 km orbit to estimate µ more accurately, and to attempt the estimation of
the J2 and first-order harmonics coefficients. At 50 km from the surface, an attempt
to estimated the spherical harmonics coefficients will be made and confirmed with
a 35 km altitude orbit, who should terminate the estimation.

REQ-MIS-05 The trajectory should be designed to ensure maximum time with suffi-
cient illumination conditions for optical navigation, i.e., the phase angle (the angle
between the direction of the Sun and the spacecraft’s relative position vector) must
remain within the range of 20◦ to 70◦.

REQ-MIS-06 The mission shall be planned to ensure optimum surface coverage, i.e.,
the inclination should be as near as possible to 90. In addition, repeat orbits must
be avoided.
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REQ-MIS-07 The spacecraft shall navigate autonomously without the intervention of
the ground station.

REQ-MIS-08 The spacecraft is equipped with a star tracker for absolute attitude mea-
surement.

REQ-MIS-09 The spacecraft is equipped with Lidar and optical navigation cameras
for relative state measurement and the creation of a digital elevation model to
characterise the surface of the asteroid.

REQ-MIS-10 The spacecraft carries an accelerometer to estimate the solar radiation
pressure in the early characterisation phase.

REQ-MIS-11 The navigation system should be able to estimate the gravity field of the
asteroid as well as its rotational rate and the inertial state of the spacecraft.

REQ-MIS-12 The trajectory should remain a collision-free course at all times, which
means that the distance between the asteroid and the spacecraft cannot be less than
the error on the state of the spacecraft.

REQ-SYS-01 The spacecraft should be able to navigate around an asteroid, regardless
of its physical characteristics.

REQ-SYS-02 For optimum landmark navigation the phase angle should be constricted
between 20◦and 70◦, that the surface seen by the camera is illuminated.

REQ-SYS-03 The mass of the asteroid and the SRP force shall be determined with a
3-sigma accuracy of at least 10%.

REQ-SYS-04 The state of the spacecraft should be estimated with a precision of 10 m
for the position and 1 mm/s for the velocity, with 3-sigma confidence.

REQ-SYS-05 The gravity field coefficients should be determined at least up to the
order/degree 8 with a 3-sigma accuracy of at least 10%.

REQ-MAT-01 The software should be able to run on a computer with the following
characteristics: i5-6200U CPU, dual-core 2.30-2.40 GHZ, 8Go RAM. The simulation
time should not exceed one day in total for each scenario.

2.3.3 Assumptions

The assumptions of the missions are the following :

• At the beginning, only the distance between the Earth and the asteroid is known,
as well as a gross estimate of the mass and shape of the asteroid.

• The first part of the spacecraft’s trajectory, from the Earth to the asteroid’s en-
counter, is not considered. This part of the journey is assumed to be well designed
in advance, without any disruptive body encounter.

• The physical parameters of the asteroid remain unknown, until the spacecraft is
close enough to determine those parameters by itself.
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• The only perturbations present in the environment will be the SRP force and
torques, the gravitational effect of the asteroid and the third-body perturbation
from the Sun.

• In the Simulator, the gravity field of the asteroid will be modelled with a spherical
harmonics model up to degree and order 22, with coefficients obtained from the
NEAR mission.

• The SRP force is assumed to be estimated in the early characterisation phase with
an accelerometer, the estimation will not be conducted in this thesis.

• After the early characterisation phase, the surface of the asteroid will be scanned
and the landmarks will be identified. Their coordinates will be stored on-board for
the next phases.

• The motion of the asteroid around the Sun will not be taken into account.

• We can assume a constant rotational rate for the asteroid, to be determined by the
navigation process. No nutation or precession effects will be taken into account.

• The spacecraft is able to navigate around asteroids only, comets being the source
of extra noise due to their geological activity.

• We will use ideal sensors, which means that the sensors have no scaling errors or
misalignment

• No image processing will be done during the thesis. The navigation camera will
output noisy pixel coordinates of landmarks.

• Only the estimation of the required states and parameters will be done. During
this time, we assume that the position and velocity of the spacecraft will be au-
tonomously controlled.
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3
Asteroids

Asteroids, also called minor planets, are small bodies made up of rocks, metals and gazes,
with lengths ranging from a few metres to hundreds of kilometres. While the origin of
asteroids is still one of the most complex problems in cosmology, the prevailing hypothesis
is that they are made up of residual fragments of the initial protoplanetary disc. They
are therefore considered to provide valuable information about the genesis of the Solar
System. This chapter will detail asteroid properties and their classification.

3.1 Physical and Dynamical Properties

The primary recognised feature of asteroids is their diversity. They vary in scale, form,
colour, chemical and mineralogical composition from each other, which makes them so
distinctive. This particularity makes asteroid missions much more complicated, since for
navigation and trajectory design, the dynamic properties of the target object are very
important.

3.2 Mass, Shape and Size

The Rosetta probe showed in detail the Tchouri Comet’s irregular structure and very
steep surface. The Solar System is full of different shapes of these small celestial objects.
However, some objects are almost spherical, such as planets, the Sun, or the Moon.
This is mainly due to the fact that the electrostatic force of these bodies exceeds the
gravitational force. Thus, their gravity field dominates the inner strength of the planets,
which contributes to an equilibrium shape.

It is the electrostatic force that dominates a less massive object. However, its range
is restricted to a few interatomic distances, unlike gravitational force. Therefore, it has
no effect on the body’s overall form. This is why small celestial objects may have an
irregular shape and thus an irregular gravity field, such as Tchouri, whose size is a few
kilometres. It has been shown that an asteroid’s shape can also be influenced by spin
rates (Holsapple, 2001) and distinguished from hydrostatic equilibrium. It is possible to
observe different shapes of asteroids, as shown in Figure 3.1.

Mass estimation of asteroids is very important for enhancing the understanding of
inner planetary motion. Typically, estimating the mass of an asteroid from ground-based
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Figure 3.1: Various shapes of asteroids (Image credit: NASA)

measurements is very difficult and errors can be greater than 50%. Two key methods are
used to estimate an asteroid mass from ground-based observation, a dynamic method and
an astrophysical estimation method. The dynamical approach is based on observations
of the impact of asteroid-related gravitational disturbances on other objects in the sur-
rounding region of this asteroid. This method provides direct mass measurements and,
as shown by Ivantsov and Anatoliy (2008), can lead to relative errors of less than 50%.

Another way to estimate the mass of the asteroid is to study the effect of the asteroid
on a spacecraft during a mission. Optical observations, Doppler and range measurements
of the spacecraft orbiting can be used to calculate the mass of the asteroid as shown by
Yeomans et al. (2000) during the Near Shoemaker mission. The mass can also be deter-
mined by observing the effect of the asteroid on the predicted trajectory. As shown by
Yeomans et al. (1998), during the flyby of 253 Mathilde by the Near-Shoemaker spacecraft,
the impact of the gravitational disturbance on the spacecraft was sufficient to estimate
the mass using the tracking data. Using the optical data collected from navigation cam-
eras, an estimate of the volume can be made when the spacecraft is close enough to cover
the whole body with the cameras. The volume can also be determined by astronomical
infrared measurements. It makes it possible to estimate the so-called bulk density of
the asteroid. Asteroid bulk density measurements may provide insight into the internal
structure or porosity of the object.

3.3 Rotational rates

Study of the rotation of asteroids is essential in understanding the structure and for-
mation of asteroids. Celestial bodies rotate due to the accumulated angular momentum
during their creation and the additional angular momentum due to collisions with other
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Figure 3.2: Asteroids spin rate vs diameter plot (Hughes, 1983).

bodies. Rotational rates also have a major impact on the orbiting spacecraft, which is
why knowledge of this rate is critical for navigation and trajectory design. In addition to
light-curve results, rotation studies provide details on the internal structure of the aster-
oid. Although several studies have been performed in this area, the understanding of the
relationship between asteroid properties and rotational speeds is still not well understood.

Many asteroids rotate uniformly and have a rotation period ranging from very fast
(T = 1.3 min) to very slow (T = 2.400 hours). Hughes (1983) has shown that there is a
relationship between the rotational rate and the size of the asteroid, as shown in Figure
3.2. The bold solid curve is the geometric mean spin rate vs. diameter, the thin solid
curve is the limit used to exclude slow rotators. Constant time-scale damping lines of
non-main-axis rotational motion (thin dotted lines) are also plotted. From this figure, we
can see that increasing the diameter causes the mean rotational rate to decrease.

As written by Pravec and Harris (2000), the population of asteroids can be distin-
guished. It has been shown that there is a limit in the spin rate for asteroids with a
diameter greater than 40 km, which I s approximately 2.4 hours. This limitation can be
explained by the fact that most of these asteroids are made up of rubles that will break
apart at higher spin speeds. There are two distinct populations of asteroids smaller than
40 km in diameter, slow and quick rotators. For the smallest asteroids with a diameter
of 0.15 km the spin rate can be very high, up to 1.3 min and can be understood by their
monolithic composition. Among Near Earth asteroids, a significant fraction of the fast
rotators are binary systems. They are probably the product of the disturbance of the
tidal waves during their passage near planets.

The composition of asteroids may also have an influence on their rotation period.
Indeed as Harris and Burns (1979) indicates, Type-C asteroids have a rotation time of
20% slower than Type-S asteroids. This indicates that C-type asteroids are less compact
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or less dense than other types. While most asteroids have one main axis of rotation, a
small fraction of them have an additional axis of rotation that can be correlated with
precession and nutation effects, and this can lead to unexplained rotations such as the
Toutatis asteroid. Its rotation is the product of two distinct forms of motion around
two axes with a period of 5.4 and 7.3 Earth days respectively. Its shape and its specific
rotation could be the result of several collisions.

3.4 Classification

Asteroids can be categorised using their distribution within the Solar System, their chem-
ical composition and configuration.

3.4.1 Spatial location

Main groups of asteroids based on their locations within the Solar system are:

The Main Belt of Asteroids: Between the orbits of Mars and Jupiter, the largest
group of asteroids in our Solar System is located at a distance of two to four astro-
nomical units (au). Around 720,000 objects from this belt have been listed so far
(2019). Due to orbital resonance phenomenon, the impact of the gravitational field
of Jupiter has stopped all these bodies from forming a planet and is the source of
the Kirkwood gaps, almost empty areas found in the middle and on the edges of
the belt.

Jupiter Trojans: Trojan asteroids share their main body’s orbit around the Sun, and
are centred around the Sun-Jupiter system’s L − 4 and L − 5 Lagrange points. In
the region of Jupiter, the largest Trojan asteroids are found, hence the name of the
Jupiter Trojans.

Near Earth asteroids (NEAs): Asteroids with an orbit similar to the orbit of the
Earth with a radius of perihelion equal to or less than 1.3 au. Earth-crossing
asteroids (ECAs) are asteroids with a radius of aphelion equal to or less than 1,381
au (Mars-Sun distance) and whose orbits cross the orbit of the Earth. Potentially
Dangerous Asteroids (PHAs) are a specific and significant class of NEAs for which
the trajectory passes very close to Earth and could cause catastrophic damage to
the Earth.

Centaures: They are known to be minor planets that gravitate between the Gas Giants’
orbits. Owing to the intense impacts of the outer planets, they usually have unstable
orbits.

Kuiper Belt and trans-Neptunian objects: There are asteroids whose orbit is be-
yond the orbit of Neptune. The Kuiper belt is a ring similar to the Main Belt
located in the trans-Neptunian zone, but much broader, wider and much more mas-
sive. It is mainly made up of bodies of small sizes and three dwarf planets, Pluto,
Makémaké, and Hauméa.
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3.4.2 Chemical composition

The composition of the asteroids is assessed, as written by Shestpalov and Golubeva
(2020), according to their optical spectra measuring the reflected light. This classification
scheme is called asteroid spectral classification. Even if the chemical composition of the
asteroids is very complex, depending on their mineral composition, it allows the asteroids
to be divided into different groups. The following are the primary types:

• C-Type asteroid: The most common known asteroids (around 75%) are carbona-
ceous asteroids. They are distinguished by a very dark colour and their structure,
without light and volatile elements such as ice, is similar to the primitive Solar
System.

• S-Type asteroids: They are mostly composed of silicates, which are moderately
white and composed primarily of iron, magnesium and nickel. They are the second
most common type, with 17% of the known asteroids.

• M-Type asteroids: They have a composition that is partly known and corresponds
to the rest of the asteroids. They are distinguished by a bright surface, and some
of them are often made of an iron-nickel alloy.

3.4.3 Configuration

Asteroid configuration helps us to classify them into three categories: single asteroids,
binary asteroids contact, and binary asteroid systems. The configuration affects the as-
teroid’s shape, which can be from very irregular to nearly spherical. Single asteroids are
bodies with only one element and their irregular shapes define them. They constitute 20%
of the Solar System’s asteroids. Binary systems are the composition of a primary aster-
oid and a secondary asteroid, orbiting around their common barycenter .They constitute
roughly 17% of the NEAs. Finally, contact binaries are binary systems whose compo-
nents have gravitated towards each other before direct physical contact was formed. It is
possible to perceive them as a single body consisting of two lobes. Since most asteroids
are irregularly shaped, predicting their gravity field is very difficult. They can be pitted
or crated on the surface and that is why it is necessary to know their characteristics in
detail to ensure secure missions

3.5 Interest in 433 Eros

433 Eros was discovered on August, 13, 1898 by August Charlois, in Nice, France, and
by Gustave Witt, in Berlin, Germany. It is a Near-Earth asteroid, meaning that its orbit
is approaching or crosses the orbit of the Earth. It is very useful to understand this class
of asteroids and in particular, potentially hazardous objects (PHOs) to anticipate and
prevent possible Earth impacts. From a chemical point of view, Eros primarily consists
of silicates and thus belongs to asteroids of type S. It belongs to the group of Amors, also
known as Earth-grazing asteroids, a group of small bodies which do not cross the Earth’s
orbit. Eros is following an elliptical trajectory, with a 1.13 AU perihelion and a 1.78 AU
aphelion. The trajectory is inclined of 10.8◦with respect to the ecliptic, with an average
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Table 3.1: Characteristics of 433 Eros

Size 33 km x 13 km x 13 km
Approximate mass: 7.2× 1015 kg
Rotation Period: 5.270 hours
Orbital Period: 1.76 years
Spectral Class: S
Semi major Axis: 1.458 AU
Perihelion Distance: 1.13 AU
Aphelion Distance: 1.78 AU
Orbital Eccentricity: 0.223
Orbital Inclination: 10.8 deg
Geometric Albedo: 0.16

distance from the Sun of 1.46 AU1. The general characteristics of Eros are resumed in
the Table 3.1. All the data collected during the NEAR mission, such as shape, gravity
models, and landmark data are available on a dedicated website.2.

The (NEAR)–Shoemaker mission was a breakthrough in that it reflected the realistic
navigation of a spacecraft in the most seriously disturbed orbital environment a spacecraft
has ever encountered. In addition, all future asteroid orbital missions will encounter
conditions close to those experienced by NEAR at Eros in some way. It is therefore
very interesting to take this asteroid as a reference for this study, particularly since its
highly irregular shape contributes to a highly irregular gravitational field, and therefore
the modelling of this gravitational field could be a very tough challenge. In addition,
numerous models are currently available for the Eros shape and gravity field, which can
be used as a reference for the results obtained during this thesis.

1https://nssdc.gsfc.nasa.gov/planetary/text/eros.txt Accessed on: 27-04-2020
2https://sbn.psi.edu/pds/resource/nearbrowse.html Accessed on: 27-04-2020
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environment

The asteroid environment and spacecraft dynamics will be presented in this section. It
will reveal the technical characteristics of the spacecraft to be used in the simulator, as
well as the properties of the asteroid and the disturbing forces that can encounter the
spacecraft around this kind of body. The Near-Shoemaker mission will be used as a
reference for this thesis, so we will be studying the asteroid 433 Eros.

4.1 Spatial representation

Details on the reference frames and coordinate systems used to describe positions and
attitudes in the real environment will be provided in this section.

4.1.1 Reference frames and Cartesian coordinates

The motion of the spacecraft and the asteroid in the environment is represented by three
reference frames, from which the Cartesian coordinates can be obtained, as shown in
Figure 4.1:

“Inertial” reference frame: It is a non-rotating frame and is assumed to be non-
accelerating with respect to the stars’ reference frame, originating at the asteroid’s
centre of gravity. The X-axis is set by use of the vernal equinox. This reference
frame is used both to explain Eros’ rotation and to describe the spacecraft’s inertial
state. In this reference frame, the coordinates are denoted by (xI , yI , zI).

Asteroid reference frame: This reference frame, since it rotates with the asteroid, is
non-inertial. It is again fixed to the asteroid’s centre of gravity, but with the X-axis
fixed to the asteroid’s prime meridian, selected by Near scientists, and equator, and
the Z-axis parallel to the axis of rotation. The prime meridian defines the zero-
degree longitude line, while the equator defines the zero-degree latitude line. This
reference frame is used to describe, with respect to the asteroid, the relative state
of the spacecraft. The coordinates in this reference frame will therefore be denoted
as (xR, yR, zR).



4.1. SPATIAL REPRESENTATION

Figure 4.1: Reference frames

Body Reference frame: This reference frame is fixed to the spacecraft, with the axis
coinciding with the principal inertial moments. The Z-axis is aligned with the
line-of-sight of the camera, and parallel to the solar panels is the X-axis. This
reference frame is used to explain both the rotational motion and the pointing of
the instruments of the spacecraft. The coordinates are denoted by (xB, yB, zB) in
this reference frame.

4.1.2 Sphere-based coordinates

In addition to Cartesian coordinates used to describe the motion of the spacecraft, sphere-
based coordinates are used. These coordinates are fixed to the asteroid system, which
means that they are rotating with the asteroid, and are thus determined with respect to
the reference frame of the asteroid, as shown in Figure 4.2. The two systems of coordinates
are:

Spherical coordinates: Consisting of three components, the distance d, the colatitude
Φ, the angle between the position vector of the Z-axis and the position vector of
the spacecraft, and the latitude λ, the angle between the prime meridian and the
position vector projection of the X-Y plane. A triple (d,Φ, λ) can define the coordi-
nates of the spacecraft. This coordinate system enables the asteroid’s gravitational
field to be computed in a much simpler way.
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4.1. SPATIAL REPRESENTATION

Figure 4.2: Spherical and geographic coordinates system

Geographical coordinates: Represented by the (θ, λ) pair, the geographical coordi-
nates provide information on the relative location of the spacecraft projection on
the asteroid surface. θ is the angle of latitude, and λ is the angle of longitude. This
method is very useful when the asteroid is rotating, to determine the force acting
on the spacecraft due to the highly irregular gravity field of the asteroid.

4.1.3 Frame transformations

We will need to switch from one reference frame to another in the simulator. This can be
done by using a transformation matrix, which enables a vector to be transformed from
the perspective of the old reference frame to the new one. The transformation does not
alter the vector itself but changes its components to preserve its representation in the
new reference frame.

If we consider a (X, Y, Z) reference frame, called A, to which we apply an arbitrary
axis rotation, the resulting frame (X ′, Y ′, Z ′), called B, is shown in Figure 4.3. We can
write the vector coordinates in the new reference frame, that is:

rX′ = r · i′ = (rXi + rY j + rZk) · i′ = rXi · i′ + rY j · i′ + rZk · i′

rY ′ = r · j′ = (rXi + rY j + rZk) · j′ = rXi · j′ + rY j · j′ + rZk · j′

rZ′ = r · k′ = (rX i + rY j + rZk) · k′ = rXi · k′ + rY j · k′ + rZk · k′
(4.1)
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4.2. ASTEROID ENVIRONMENT

with (i, j,k) and (i′, j′,k′) the unit vector of the original and rotated reference frame
respectively. These equations can be written in a more compact way, that is:rX′rY ′

rZ′

 =

 i · i′ j · i′ k · i′
i · j′ j · j′ k · j′
i · k′ j · k′ k · k′

rXrY
rZ

 = TB/A

rXrY
rZ

 (4.2)

with TB/A the transformation matrix from the reference frame A to the reference frame
B. The inverse transformation can be applied by:rXrY

rZ

 = TA/B

rX′rY ′
rZ′

 (4.3)

where:
TA/B = TT

B/A (4.4)

Using the direction cosine matrix (DCM) is another way of computing the rotation from
a reference frame to another. The unit vectors of the B reference frame, in the A reference
frame, can be written as:

i′ = cos θ11i + cos θ21j + cos θ31k

j′ = cos θ12i + cos θ22j + cos θ32k

k′ = cos θ13i + cos θ23j + cos θ33k

(4.5)

where the θij corresponds to the angles between the corresponding unit vectors, as shown
in Figure 4.4. Therefore:rX′rY ′

rZ′

 =

cos θ11 cos θ2 cos θ31

cos θ12 cos θ22 cos θ32

cos θ13 cos θ23 cos θ33

rXrY
rZ

 = CB/A

rXrY
rZ

 (4.6)

The direction cosine matrix CB/A, which represents the attitude of the B-frame in relation
to the A-frame, can be used to transform a vector from a reference frame to another frame.

4.2 Asteroid Environment

During the NEAR mission, a spherical harmonics model of the shape and gravity field
of 433 Eros was made by Miller et al. (2002). Using radiometric tracking data, optical
images and the NEAR laser rangefinder (NLR) to determine the shape, rotational rate
and gravity field of Eros, NEAR spacecraft were injected into many different orbits. To
determine a 24th degree and order shape model, the NLR and optical data from a 50
km altitude orbit were used. In parallel, the radiometric data, together with the optical
data, were used to in the orbit determination process determine the gravity field of Eros
up to 15 degrees and order, from a 35 km altitude orbit. The shape model integration
given by the NLR shape model, assumed a constant density. Since the results of this
model are very close to those obtained by the orbit determination process, it indicates
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4.2. ASTEROID ENVIRONMENT

Figure 4.3: Rotation of a reference frame around an arbitrary axis

Figure 4.4: Direction cosines angles

that the density of Eros is almost uniform on a large scale (1% variation for 35 km).
After the mission, the data collected was post-processed to create more precise models,
such as the Chanut et al. (2014) polyhedron shape model and the Garmier et al. (2002)
ellipsoid model. To determine stable orbits around Eros, the polyhedron model was used,
as shown in Figure 4.12a. Chanut et al. (2014) has identified a minimum radius of 36 km
for direct, equatorial and circular stable orbits and a minimum radius of 31 km for any
other stable orbit. Only in elliptical orbits can be found stable at lower altitudes.
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4.2. ASTEROID ENVIRONMENT

4.2.1 Asteroid gravity field

Asteroids are defined by their complex shape and limited size. This feature, along with
the rotational speed of the asteroid, contributes to a complex dynamic situation in the
vicinity of asteroids. The gravitational field is relatively weak, but as it is the main
source of disturbance near the surface of the asteroid, gravitational disturbances can
be very large. They can lead to substantial deviations in the nominal trajectory of a
spacecraft. Awareness of this gravitational field may also provide details about the inner
structure and mass distribution of the celestial body.

Due to the large perturbations, the spacecraft would face high risks of collision with
the surface of the asteroid, if the gravitational field is not modelled correctly. Two models
are generally used to model the gravitational field of such bodies, polyhedral modelling
and spherical harmonic expansion. Those models have been studied by Werner and
Scheeres (1996) who came to the conclusion that polyhedron model was the most accurate
model, while harmonics modelling suffered from convergence and accuracy problems. An
ellipsoidal harmonic expansion can also be used, as written by Garmier et al. (2002), to
model the gravity fields of asteroids with an elongated shape. For Eros, this model leads
to more accurate results.

This section will explain the various ways of modelling an asteroid’s gravity field,
and will provide the gravity field model of Eros with details about the accuracy of these
methods and their performance.

Point Mass approximation

The simplest way to model the gravity field of a body is to use the point mass approxima-
tion. As Newton’s Law of Gravitation states, the gravitational force between two point
masses distant in the vacuum, is an attractive force and can be written as proportional
to the masses and inversely proportional to the square of the distance between the two
point masses:

FP/Q = G
mPmQ

d2
ePQ (4.7)

with FP/Q the force acting on the body Q, by the body P , mP and mQ masses of the two
bodies, ePQ the unit vector in the direction of the centre of mass of the body 2, and d
the distance between the two masses.

Using the second law of Newton, we can write the gravitational acceleration a due to
body Q acting on a body P :

a(P ) = −GmQ
xP − xQ
|xP − xQ|3

(4.8)

where xP , xQ are the position vectors of the bodies P and Q, respectively.

If multiple bodies are in the spacecraft environment, the summation of all the individ-
ual accelerations enables the identification of the total field strength. This representation
is not very accurate, since it does not take into account the effect of the shape of the
bodies on the gravitational field, but still yields a good approximation, especially when
the bodies are far from the spacecraft. If we consider a volume mass, integrating all the
elements dm = dΩ makes it possible to find the gravitational field of this volume.

28



4.2. ASTEROID ENVIRONMENT

Table 4.1: Gravitationnal acceleration acting on a spacecraft located at d=250 km from
the centre of the body.

Body
Point Mass gravitationnal acceleration
(d=250 km, m.s−2)

Eros 433 −7.04× 10−6

Itokawa −3.74× 10−11

Kleopatra −0.0050× 10−3

The point mass gravity model, shows a uniform gravitational acceleration for a space-
craft located at a certain distance from the centre. It results in a perfect stable circular
orbit when no other disturbances are taken into account. If the distance from the centre
of the body is increased, the gravitational acceleration decreases. This model gives the
first approximation of the gravity field, since it does not take into account any variation
of shape or density within Eros. Despite this, the first approximation is sufficient to
characterise the intensity of the gravity field, which is very low due to the small mass and
size of Eros. The gravitational disturbances due to the irregular shape or density of the
asteroid are getting much smaller by increasing the distance to the centre of Eros. The
point mass approximation is more than adequate at a sufficient distance from the centre
to simulate the effect of the asteroid on the dynamics of a spacecraft. The gravitational
field intensity of the asteroids Kleopatra and Itokawa are shown as a comparison in Table
4.1. We can see that the Itokawa gravity field is much smaller than the other two bodies
gravity field, mainly because of the difference in size and mass.

Spherical harmonics

A way of modelling the gravitational field of a celestial body is the spherical harmonic
representation. It consists of an expansion of the gravitational potential into a harmonic
series, by computing the harmonic coefficients (Werner and Scheeres, 1996). Harmonics
coefficients can be estimated using radio tracking data, NLR data or other measurements
techniques. The gravity potential can be approximated up to a certain order and degree.
Some convergence problems can be found by computation for the gravity field inside
the sphere, therefore the spherical harmonic expansion can only be used outside of the
reference sphere, the radius of this sphere usually being the maximum radius of the body.

The Laplace equation of the gravity potential in spherical coordinates can be written
has (Wakker, 2015):

V =
GM

R

{
∞∑
n=0

∞∑
m=0

(
R

r

)n+1

P̄nm(sin θ)[C̄nm cos(mλ) + S̄nm sin(mλ)]

}
(4.9)

With r the distance between the spacecraft and the centre of mass of the body, R the
reference radius, which is most of the time the maximum radius of the body, and (λ,θ)
longitude and latitude respectively. P̄nm represent the normalized Legendre associated
polynomials of the first kind, and C̄nm, S̄nm are called spherical harmonics coefficient.
Those coefficients are zero to the first order if the centre of mass of the body coincides
with the origin of the chosen body-fixed frame. By increasing the order and degree with
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4.2. ASTEROID ENVIRONMENT

Figure 4.5: Spherical coordinates.

the order of expansion, we can obtain complex models of the gravity field, as we can see in
Figure 4.6. The zonal harmonics corresponds to m = 0, and therefore the superposition of
the Legendre polynomials describe variations with latitude. The sectorial harmonics are
defined by n = m, and divide the sphere into sectors. For n 6= m, the tesseral harmonics
are described and thus reflect how the number of nodal lines is distributed over the nodal
meridians and parallels.

The acceleration acting on the spacecraft can be computed using the gradient of the
potential in spherical coordinates:

gA = ∇V =
∂V

∂r
r̂ +

1

r

∂V

∂θ
θ̂ +

1

r sin θ

∂V

∂λ
λ̂ (4.10)

where (r̂, θ̂, λ̂) are the unit vectors in spherical coordinates, as shown in Figure 4.5.

Analysis of low order and degree spherical harmonics coefficients

The effect of low order spherical hamonic terms may be related to the shape, mass
and density characteristics of Eros. The analysis of these terms can provide important
information on the shape and distribution of mass within the attracting body, as well as
useful information on the centre of gravity position.

Degree n = 1

The terms of the first order spherical harmonics relate to the position of the centre of
mass of the attracting body. If the coefficient c10 is non-zero, the centre of mass of the
body is shifted in the direction of the z-axis, which is parallel to the main axis of rotation.
The coefficients c11 and s11 are related to the shift of the centre of gravity in the direction
of the x-and y-axis. These coefficients provide useful information on the distribution of
mass within the attracting body.

Degree n = 2

1Image taken from: http://users.umiacs.umd.edu/ ramani/cmsc878R/09 15 11 Factorization Laplace
Helmholtz Lecture5.pdf
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4.2. ASTEROID ENVIRONMENT

Figure 4.6: Spherical harmonics modelling representation. Red areas represent positive
values while blue areas represents negative values.1

The c20 coefficient is associated with the J2 perturbation. It is one of the greatest
disturbances that can be experienced around the earth. In the equatorial region, the
coefficient c20 represents a mass excess and is related to the flattening of the poles of the
attracting body. For the Earth, this coefficient magnitude is ten times greater than any
other coefficient. The c21 and s21 coefficients represent a mass excess and a deficiency
in the opposite northern and southern quadrants. If these coefficients are different from
zero, the inertia axis may rotate around the rotation axis, and the body may rotate. This
effect is called a precession. The coefficients c22 and s22 are related to the sector quadrants
and represent the ellipticity of the equator in the x and y directions. The ellipticality of
the equator can be derived directly from the analysis of these coefficients.

Degree n = 3

The last coefficient that can be related to the shape of the attracting body is the c30 co-
efficient. The J3 perturbation due to this coefficient is called a pear-shaped perturbation,
because it represents a pear-shaped distribution of the body’s mass.

Degree n > 3

Higher degree spherical harmonics terms can not be neglected when considering orbit-
ing around complex shaped bodies. The c40 coefficient, although not related to any kind
of geometry, allows the potential of an ellipsoid to be refined, while the other degrees may
have a non-negligible effect on the dynamics of the spacecraft.

Gravitational and shape model of Eros 433 In the work of Miller et al. (2002), the
gravitational field, the shape and the rotational rate of Eros have been determined using
data obtained during the Near-Shoemaker mission by direct integration of the equations
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Table 4.2: Gravity harmonics coefficients of Eros from Near-Shoemaker archives

(a) NLR coefficients (b) Shape model integration

n m C̄nm S̄nm

0 0 1 0
1 0 1.17578583×10−3 0
1 1 -3.48442759×10−4 8.76645269×10−5

2 0 -5.28514887×10−2 0
2 1 1.02129351×10−4 8.31482741×10−2

2 2 1.17164118×10−5 -2.81976945×10−2

3 0 -1.74665867×10−3 0
3 1 4.08678974×10−3 -8.40192875×10−4

3 2 3.40082018×10−3 -1.04925252×10−2

3 3 2.12743267×10−3 -1.22164205×10−2

4 0 1.30771127×10−2 0
4 1 -1.44936922×10−4 -3.13023342×10−4

4 2 1.647971980510×10−4 -1.94651001×10−4

4 3 -1.76473039×10−2 1.76937286×10−2

4 4 4.62396512×10−3 -9.11827527×10−3

of motion. Another spherical harmonics model was built during the first phase of the
Eros approach, where radiometric data was used to approximate the shape of Eros, and
the spherical harmonic coefficients were deducted from the shape model.

The coefficients of the spherical harmonics for Eros were obtained from the Near-
Shoemaker archives2, obtained by integration of the shape model. The reference frame
used to compute the spherical harmonics coefficients was based on the IAU94 reference
frame (Davies et al., 1996), with a declination of 17.232◦, a right ascension of 11.363◦and
a prime meridian at 326◦. Using the spherical harmonic coefficients up to degree 22 of
the gravity model solution derived from the numerical integration of the shape model, the
Eros gravity potential and gravity strength may be determined. The spherical harmonic
coefficients used by Miller et al. (2002) and the models are shown in Table 4.2 only up
to degree and order 4, with a reference density of 2.6212 g.cm3. A number of conclusions
can be drawn from a single observation of the first coefficients. Since the value of C00 is
not set to zero, this means that the centre of gravity is different from the centre of mass of
Eros. In fact, the centre of gravity shift is small, equal to [−9.6,+2.4,+32] metres, in x, y
and z respectively. The values C21 and S21 are responsible for the off-diagonal moment of
inertia. These coefficients are different from zero in our representation, which means that
the reference frame is rotated in comparison to the spherical equatorial reference frame.

The spherical harmonics model, taking into account the irregular shape of Eros, has
a higher resolution than the point mass gravity model. Gravitational disturbances are
stronger when the spacecraft is above the two elongated poles and smaller when the

2https://sbn.psi.edu/pds/resource/nearbrowse.html accessed 05-06-2020
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Figure 4.7: Radial acceleration of Eros gravity field, up to degree and order 8, on a sphere
of 16 km radius (Miller et al., 2002).

spacecraft is between the two poles, as shown in Figure 4.7, where the gravity field of
Eros has been computed up to order and degree 8, on a sphere of 16 km radius.

The resolution of the gravity field can have a huge impact on a dynamic model. In
reality, the resolution of the Eros gravity field is infinite, which means that the order and
degree of expansion are infinity. It is not possible to have such an infinite resolution in
our model, as it would take an infinite amount of time. Increasing the resolution, and
therefore the order and degree of expansion, means increasing the accuracy, but also the
time of propagation and estimation. It is therefore important to determine the degree
and order such as the approximation of the gravity field is sufficient for the study and
for which the modelling time is as short as possible. It can be seen in 4.8 where spherical
harmonics up to degrees 2 and 22 are compared. Indeed, the gravitational map of the
spherical harmonics at degree and order 22 shows a higher resolution. It is also important
to establish a link between the distance to the centre, the resolution and the degree of
expansion of the spherical harmonics. Increasing the distance to the centre of Eros, the
disturbances coming from the irregular shape and density of Eros will fade away. As
can be seen in Figure 4.9, the gravity maps look more uniform for the 1500 km orbit
sphere. In other words, if we are far enough from the centre of Eros, we can consider
the gravitational field of Eros to be uniform. Getting closer to the surface, the major
disturbances will begin to disrupt the motion of the spacecraft, and the gravity resolution
’felt’ by the spacecraft will increase by decreasing the distance to the surface of Eros.
Wee can see by comparing Figure 4.10 and Figure 4.8b, that the 2nd order and degree
gravity maps looks a lot like the 22 order and degree map. It is widely known that one
of the main disturbances that a spacecraft may encounter is the J2 disturbance, which
is related to the c20 coefficient. This disturbance is related to the flattening of the body.
While it can only be appropriate to take the J2 disturbance around Earth, it can be seen
that for Eros, other disturbances can have a major effect on the motion of the spacecraft.

Polyhedron modelling

Polyhedron modelling is an accurate way to model highly irregular-shaped bodies such as
asteroids. It consists of a 3D model of the surface, most of the time assuming constant
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(a) Gravity acceleration, spherical harmonics up to
degree 22.

-150 -100 -50 0 50 100 150

Longitude°

-80

-60

-40

-20

0

20

40

60

80

La
tit

ud
e 

°

62

64

66

68

70

72

74

76

78

80

A
cc

el
er

at
io

n 
(m

ga
ls

)

(b) Gravity acceleration, spherical harmonics up to
degree 2.

Figure 4.8: Acceleration of Eros gravity field, up to degree and order 2 and 22, using the
coefficients collected during the Near mission.
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(a) Gravity acceleration on a sphere of 25 km radius. (b) Gravity acceleration on a sphere of 1500 km
radius.

Figure 4.9: Acceleration of Eros gravity field, up to degree and order 22, using the
coefficients collected during the Near mission.

density inside the body (which is, most of the time, not the case). This way of modelling
the gravity field has been studied by Werner and Scheeres (1996) who have shown that
this method leads to better results, and allows to model the gravity field inside of the
sphere, which is not the case for the spherical harmonics model. A polyhedron is a solid
model composed of multiple plane faces like triangles. Every face is connected through
its straight edges or at its vertices (isolated points). This model leads to even better
results than the spherical harmonics model, when the shape is highly irregular, such as
the shape of Kleopatra. The accuracy of the model is fully dependent on the number of
faces chosen to model the body and the density distribution. Therefore, increasing the
number of faces leads to a more accurate model. The expression of the gravity potential
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Figure 4.10: Acceleration of Eros gravity field, up to degree and order 2, on a 25km
sphere.

has been derived by Werner and Scheeres (1996), and can be written:

V =
1

2
Gρ

∑
e∈edges

reEereLe −
1

2
Gρ

∑
f∈faces

rfEfrfωf (4.11)

with :

Ee = nA(nA12)T + nB(nB21)T (4.12)

Ef = nf (nf )
T (4.13)

Le = ln
ri + rj + eij
ri + rj − eij

(4.14)

ωf = arctan
ri · rj × rk

rirjrk + ri(rj · rk + rj(rk · ri) + rk(ri · rj)
(4.15)

With G, gravitational parameter, ρ mean density of the body, re and rf are the
distances from the edges and the face respectively to the spacecraft. nA, nB and nf are
the unit vectors normal to the faces, and nA12 and nB21 are the unit vectors normal to the
edges of the associated faces as shown by the Figure 4.11. The dimensionless factor ωf
summed over the surface, gives a solid angle, which is a very useful angle in the detection
of possible collisions of the spacecraft with the asteroid. Vectors ri, rj, and rk are shown
in Figure 4.11, and eij is the length of the edges. The gravitational attraction can be
written as:

gp = ∇V = −Gρ
∑

e∈edges

EereLe +Gρ
∑

f∈faces

Efrfωf (4.16)

Although this method leads to a highly accurate model of the shape of the asteroid,
and therefore to a highly accurate model of the gravity field, it is computationally and
memory demanding when asking for high resolutions. The spherical harmonics model
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4.2. ASTEROID ENVIRONMENT

Figure 4.11: Polyhedron gravity model elements (Werner and Scheeres, 1996)

(a) Polyhedron model of 433 Eros, two per-
spectives (Chanut et al., 2014).

(b) Polyhedron model of the asteroid Kleopatra
(Chanut et al., 2015).

Figure 4.12: Polyhedron models

must be preferred because of its computational efficiency when the resolution is the same,
i.e. the number of faces selected for the polyhedron leads to approximately the same
results compared to the spherical harmonics model. The choice of the model should
therefore be made according to the accuracy required, taking into account the storage
and performance of the on-board computer.
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4.2.2 Solar environment

In the vicinity of a spacecraft, the complex environment is significantly disturbed, which
has an important impact on the behaviour of the spacecraft. Asteroid missions are highly
sensitive to the numerous disturbing spacecraft accelerations, including the third-body
perturbation. We will only consider the major disturbances the spacecraft will experience
in our simulator model i.e., the disturbances due to the Sun. Gravity fields of asteroids are
relatively small, because of their small size, and the SRP is now a significant disruption
to the proximity of such asteroids. This effect can, in certain peculiar situations, be
stronger than the than the third-body perturbation. The SRP accelerations are pushing
the spacecraft in the opposite direction from the Sun’s position.

Third-body perturbation

Because of its heavy mass, the Sun has a non-negligible effect on the dynamics of a
spacecraft in the Solar System. We may opt to view the Sun as the primary attractive
body, or only as a disturbing body, depending on the distances between the asteroid,
the Sun and the spacecraft. Two imaginary limits, the Hill’s sphere and the Sphere of
Influence can be used to describe the impact of the Sun in the proximity of the asteroid.
The dynamical problem can be reduced to the well-known two-body problem under the
asteroid’s Sphere of Influence, where only the gravitational influence of Eros is taken
into account, and where the Sun’s gravitational effect is negligible. The region above
this limit, where the Sun can be called a disturbing body, is defined by the Hill sphere.
Indeed, the sphere of influence is included within Hill’s sphere. The acceleration acting
on the spacecraft taking into account the point mass gravity effect of the main-attractive
body M, and the point-mass gravity effect of the perturbing body P can be written as:

r̈s = −GMm
rs

||r||3
+GMp(

rps

||rps||3
− rp

||rp||3
) (4.17)

where:
rp = xp − xm
rs = xs − xm
rps = xs − xp

(4.18)

Are the vectors between the spacecraft, the Sun and the main attractive body, as shown
in Figure 4.13.

The perturbing acceleration, ap is maximum when the three bodies are aligned. The
SOI can be computed using the fact that, on the boundaries we must satisfy:

ap,Sun

amain,body

=
ap,body

amain,Sun

(4.19)

Therefore:

rSOI = ||rp||(
Mmain

MSun

)
2
5 (4.20)

The sphere of Hill can be computed using:

rH ≈ a(1− e)(Mmain

3MSun

)
1
3 (4.21)
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Figure 4.13: Third-body perturbation geometry

with a the semi-major axis and e the eccentricity of the orbit of the lightest body around
the more massive body. For Eros, rH ≈ 1752 km and rSOI ≈ 352 km. These values
are only indicative, because due to the shape of Eros, the calculation does not take into
account the irregular field of gravity, but can give a first approximation of what we expect.

Solar-radiation pressure

The SRP can have a great influence on a spacecraft trajectory, and can even be dominant
over Solar gravitation, especially for large spacecraft. Several manoeuvers can be done
to differentiate these two perturbations, to characterise them separately. At a certain
distance from the asteroid, the SRP is twice the effect of a gravitational disturbance
due to the asteroid, which allows this perturbation to be modelled, removed from the
navigation filter, and an accurate model of the asteroid’s gravity field can be developed
later on in the mission.

Several models can be used to model the Solar radiation pressure as shown by Jean et
al. (2019). The model chosen is very important, because the effect of the SRP can lead
to large periodic variations. Modifications in the orbital elements can be predicted using
the Lagrange planetary equations and modelled, as shown by Scheeres (1999).

If the spacecraft can be decomposed into illuminated surfaces, the sum of force re-
sultant of the SRP over the N illuminated planes can be determined by Markley and
Crassidis (2013) :

FSRP = −P�
N∑
i=1

cos θiAi((1− ε)e�,i + 2ε cos θini) (4.22)

P� is the Solar radiation pressure, θi is the angle of incidence of the incoming radiation
over the ith plane, Ai is the area of the ith plane, e�,i and ni are unit vectors, as shown
in Figure 4.14. The SRP torque, torque induced by the SRP force can be computed as
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4.3. ASTEROID KINEMATICS

Figure 4.14: Solar radiation pressure

follows (Mukundan, 1990):

TSRP =

Ucp
Vcp
Wcp

× FSRP (4.23)

with (Ucp, Vcp,Wcp) the coordinates of the centre of pressure. To minimise the effect
of the SRP pressure, some orbits have to be preferred to the others due to their stability
with respect to this perturbing acceleration. For example, orbits that are included in the
ecliptic plane and in the Solar plane-of-sky are shown to be more stable in their orbital
elements (Scheeres, 1999).

Since we do not dispose of a real spacecraft and asteroid to test our navigation software,
their dynamics need to be modelled. This chapter will present the design and architecture
of the simulator whose main objectives are to generate the state of the spacecraft as well
as the attitude of the spacecraft and the asteroid with respect to the inertial frame. It
will detail the concepts and architecture of every part of the simulator. The simulator is
divided into two main modules, the asteroid dynamics and the spacecraft dynamics.

4.3 Asteroid kinematics

The motion of the asteroid results in a coupling of its trajectory around the Sun, with its
its rotation. In the work of Souchay et al. (2003), it has been shown that the obliquity
angle, i.e., the angle between the perpendicular to the orbital plane and the rotation axis,
is approximately 89◦for Eros, resulting in a very low precession rate. We will therefore
neglect this precession effect, taking care only of the main rotation. The rotation rate of
Eros is believed to be constant, revolving around the Z-axis, and equal to 5.27 h.
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According to Markley and Crassidis (2013), the attitude of the asteroid can be com-
puted at each time using the following relation:

ĊA/I = −ωA/I ×CA/I (4.24)

with CA/I the direction cosine matrix representing the attitude of the asteroid with
respect to the inertial frame, and ωA/I is the rotational rate vector of the asteroid with
respect to the inertial frame, expressed in the asteroid frame. The asteroid attitude is
very useful to transform the state and measurements vector from the body frame to the
inertial frame, when needed.

4.4 Spacecraft properties

The spacecraft to be used in the simulations is similar to the Near spacecraft and has a
total mass of 818 kg, with a dry mass of 487 kg, which means that 331 kg of propellant is
carried by the spacecraft. The mass is a very important parameter to take into account
during the spacecraft design, to reduce the amount of propellant that is needed for the
maneuvers. A total ∆v of 1450 m/s can be produced by the Near spacecraft3, which is
composed of an octogonal body carrying all the instruments, and four rectangular solar
panels, as shown by the figure 4.15.

The dimension of the body are resumed in the Table 4.3. The spacecraft reference
frame used is shown in the Figure 4.15 and the origin is located at the centre of mass of
the body.

The solar panels are attached to the body at the points (0 0.85 1.7), (0 -0.85 1.7),
(-0.85 0 1.7) and (0.85 0 1.7) in this reference frame. Therefore, the total length of the
body in the X and Y-axis is 5.3 m.

The moments of inertia can be calculated using the parallel axis theorem, since the
spacecraft can be divided into two simple bodies, namely the solar panels and the cubic-
shaped body. The mass of the solar panels is Ms = 46.1 kg each and the octogonal-shaped
body has a mass of Mb = 302.6 kg. The inertia tensor for the main body can, therefore,
be calculated as follows:

Ib =

 1
12
Mb(l

2
y + l2z) 0 0

0 1
12
Mb(l

2
x + l2z) 0

0 0 1
12
Mb(l

2
y + l2x)

 (4.25)

Table 4.3: Dimensions of Near spacecraft

Body Solar Panels
X dimension 1.7 m 1.2 m
Y dimension 1.7 m 1.8 m
Z dimension 1.7 m

3https://nssdc.gsfc.nasa.gov/planetary/near.html Accessed on: 23-05-2020
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where Mb is the mass of the body, lx, ly and lz are the X, Y, and Z-dimension respectively.
Therefore, after replacing the terms by their numerical values, we can write the inertia
tensor for the cubic-shape body:

Ib =

145.8 0 0
0 145.8 0
0 0 145.8

 kg.m2 (4.26)

Because the solar panels are shifted with respect to the main rotation axis, the calcu-
lation of their inertial tensor should include a correction. In addition, with respect to the
other length, the dimension of the solar panels on the Z-axis is negligible, and is assumed
to be zero. The inertia tensor can be calculate for the solar panels located around the
X-axis and for those around the Y-axis.

Isx =

 1
12
Msd

2
y +Msλ

2
x 0 0

0 1
12
Msd

2
x 0

0 0 1
12
Ms(d

2
y + d2

x)

 (4.27)

Z

Y

X

Figure 4.15: Near-Spacecraft spacecraft characteristics (Credit : NASA)
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Isy =

 1
12
Msd

2
y 0 0

0 1
12
Msd

2
x +Msλ

2
y 0

0 0 1
12
Ms(d

2
y + d2

x)

 (4.28)

with dx, dy, dz the dimensions of the solar panels along the X, Y, and Z axis respectively,
and λx, λy the displacement of their rotation axis along the X and Y axis respectively,
with a value of 1.2 m for both. Therefore, the inertia tensor of a unique solar panel
located at X-axis is:

Isx =

78.8 0 0
0 5.5 0
0 0 17.9

 kg.m2 (4.29)

and for the solar panels at the Y-axis:

Isy =

5.5 0 0
0 78.8 0
0 0 17.9

 kg.m2 (4.30)

and for the total body:

Itotal = Ib + 2Isx + 2Isy =

230.2 0 0
0 230.26 0
0 0 163.7

 kg.m2 (4.31)

Comparing these results with other spacecrafts found in literature, such as the mission
developed by Gasbarri and Pisculli (2015), where the inertial tensor is the following:

Ip =

12540 0 0
0 1109 0
0 0 12431

 kg.m2 (4.32)

and the Envisat (ESA’s veteran satellite) inertia tensor (Virgili et al, 2014):

IEnvisat =

170230 0 0
0 124825 0
0 0 129112

 kg.m2 (4.33)

We can assume that our results are within the range of feasibility since it depends on
the size of the spacecraft. The last technical aspect that needs to be taken into account
in our study is the spacecraft’s reflectivity. For determining the reflection properties of
the spacecraft, a simple model, consisting of a cubic shape for the body and rectangular
plates with the dimensions of the solar panels, can be used. The model consists, therefore,
of 8 faces-4 for the main body and 4 for the two solar panels-with 4 vertices for each face.
The reflectivity of the solar panels is ε = 0.21 as written by Montenbruck and Gill (2001),
and the body has a reflectivity of ε = 0.5, higher to avoid excessive heating and structural
damage than for the solar panels.
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4.5 Spacecraft dynamics

In the simulator, the actual position, attitude and velocity of the spacecraft are produced
at each time. To do so, the forces and torques acting on the spacecraft are integrated to
find the state vector of the spacecraft. This method will be detailed in this section.

4.5.1 Equations of motion

The equations of motion for a spacecraft orbiting an asteroid are the following:

dx

dt
= v

dv

dt
= a =

F

m

(4.34)

where x, v, a are the position, velocity and acceleration vectors respectively, and F
represent the sum of the forces acting on the spacecraft, i.e:

F = Fg + FSRP + F3pb (4.35)

where Fg is the gravitational force induced by the asteroid gravity field, FSRP is the Solar
radiation pressure resulting force, and F3bp is the third-body perturbation force due to the
Sun’s influence. Since the asteroid is rotating, the three resultants forces are expressed in
separate frames. Fg is expressed in the asteroid rotating frame, while the other forces do
not depend on the relative attitude of the spacecraft with respect to the asteroid, and are
instead expressed in the inertial frame. We can write the acceleration of the spacecraft
in the inertial frame:

aI = CI/Rag,R + aSRP,I + a3bp,I (4.36)

with
CI/R = CR/I

T (4.37)

being the direction cosine matrix from the asteroid relative frame to the inertial frame.

4.5.2 Spacecraft attitude dynamics

The spacecraft attitude is also generated by the simulator at each time step. Euler’s
rotation equations are differential equation, which can represent the rotation of a rigid
body, using a rotating reference frame with axes set to the body and parallel to the body’s
main inertia axes, and can be written as:

Iω̇ + ω × (Iω̇) = T (4.38)

with T the applied torque, I The moment of inertial and ω the rotational rate of the
spacecraft. In our simulator, only the SRP torque will be taken into account. This
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equation allows the rotation vector of the spacecraft to be retrieved at each time phase
and hence the attitude vector to be produced.

4.5.3 Integration

Runge-Kutta techniques are used is the real-world simulator, to propagate and derive
velocity and position from the acceleration vectors, as well as generate the rotation rate
vector at each time step. They are related to the basic method of Euler integration
(one-step method), which is used in the estimator to predict the a-priori value of the
velocity and position at the next time step, from the acceleration, as we will see in
detail in chapter 5. An precise estimate of the next point is achieved using the informa-
tion of the preceding points and their derivatives. Runge Kutta methods are the most
commonly adopted methods, because they lead to reasonably reliable results with easy
implementation and without unnecessary computational load. They are classified into
two sub-families: variable-step sizes and fixed-step sizes.

Several ki points are picked between two time steps to evaluate the function. If this
assessment is completed, the information of all intermediate points is used to calculate the
next step. The first step is to estimate the first derivative of the variable to be calculated,
based on the time and the variable itself as follows:

dy

dt
= f(y, t) (4.39)

The general structure of the Runge-Kutta method is as follows:

ki = f(tn + ∆tci, yn + ∆t
m∑
i=1

aijki) (4.40)

yn+1 = yn + ∆t
m∑
i=1

biki (4.41)

with:

m∑
i=1

aij = ci

m∑
i=1

bi = 1 (4.42)

The coefficients used in the integration method, a, b and c, depend on the order
of the Runge-Kutta method. These values are very important to achieve a consistent
numerical scheme and should conform with equation (4.42) to be zero-stable, i.e., to
preserve numerical disruptions (Hahn, 1967). These coefficients can be found in the so-
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called Butcher tableau (Butcher, 1987):

c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2m
...

...
...

. . .
...

cm am1 am2 . . . amm
b1 b2 . . . bm
b∗1 b∗2 . . . b∗m

(4.43)

The Butcher tableau determines whether the approach is implicit or explicit. If future
stage data are used to approximate the current stage, the process is considered implicit
and if not, results in a lower triangular matrix with a null diagonal. When the truncation
error due to the transition from continuous to discrete time is much faster than the
time step used for the ∆ t discretization, the process is said to be consistent. The
truncation error, which is the difference between the true and the truncated solution, can
be determined and the accuracy defined by the following equation (Mathews and Fink,
1999):

lim
∆t→0

yn − y(tn)

∆t
= 0 (4.44)

with:
yn − y(tn)

∆t
= y′n + o(∆tp+1) (4.45)

The order of the Runge-Kutta method p is defined by Equation (4.45).

If the method is consistent and zero-stable, it is a converging method, which implies
that the difference between the measured value and the actual value tends to be zero. If
this error is very small, the model can be very reliable.

In numerical analysis, the variable-step approach can be used to solve the EOM,
to reduce errors and to ensure stability. It is especially useful because there is a large
difference in the size of the derivative. If the error increases and the solution increases,
the integrator decreases the time step. Generally, the truncation error, calculated using
two different order methods, is used to measure the new time step, mainly:

∆tn+1 = n∆tn

(
εtrunc,n
εtrunc,n+1

) 1
p+1

(4.46)

In the simulator, a variable-step Runge-Kutta integrator is used to derive the real
position and velocity vectors from the acceleration value at each time step. The simulink
environment configures the appropriate method to calculate the results quicker and with
sufficient precision, therefore the Runge-Kutta 45 (RK45) integrator will be used. How-
ever, in the estimator, we will use the simple Euler method to evaluate the a-priori value
of the position and velocity at the next stage, both for simplicity and computational
speed.

45





5
Navigation

The navigation system will be examined in this chapter. It consists of sensors, the main
objective of which is to collect data from the environment, and a filter to remove the
noise coming from the sensors and to accurately estimate the state of the spacecraft and
the interesting parameters.

5.1 Loosely-coupled systems

For most simulations, we have chosen to use noisy observations as a measurement model.
It is a basic model that we can use, because it does not need any sensors to be modelled.
This first method leads to optimal results, because the sampling time during which the
measurements are delivered is not taken into account. Therefore, measurements are
assumed to be given at any estimating step. However, by playing with the noise from
these measurements and the number of measurements that we provide to the filter, we
can have an insight into how the filter behaves. In the model, we can use various types
of measurements. The first noisy data that could be used is the noisy position vector.
Given in the inertial or relative reference frame, this measurement can be used for most
simulations. The Gaussian noise is chosen as an additive and the measurement can be
written as:

x̃ = x + νx (5.1)

The range is another measurement that can be used in the simulator. It can be seen
as a distance from the surface, assuming that the spacecraft is always pointing to the
asteroid, and can be calculated by:

ρ̃ = ||x− xsurf ||+ νρ (5.2)

with xsurf the coordinates of the intersection of the surface with position vector of the
spacecraft.

The range will provide the filters with additional information by simply taking the
derivative:

˜̇ρ =
dρ̃

dt
(5.3)
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with ρ̇ the range rate. Although these measurements do not take into account specific
sensor problems such as biases, misalignments or scaling errors, it may be useful to provide
an idea of the efficiency of the filter in such a“ideal” situation. However, real sensors will
have more measurements and informations to give to the filters, so we cannot say that in
this ideal situation, the filtre will behave better than when using real sensors.

5.2 Proposed sensors

Our spacecraft, which is based on the Near-Shoemaker spacecraft, can be equipped with
a Star-Tracker for attitude measurements, as well as navigation cameras and a lidar for
relative navigation. An accelerometer is also added to measure the SRP force.

5.2.1 Star-Tracker

The star-tracker is a widely used instrument during past missions. It allows the determi-
nation of the state of the spacecraft with respect to the stars present in the field-of-view
of the camera. It can obtain the inertial attitude of the spacecraft, by comparing the po-
sition of the stars in the images taken, with an on-board library. The star-tracker output
is given in Euler angles, mainly Φ, θ,Ψ, corresponding to the roll, pitch and yaw angles
respectively.

Since we will assume perfect calibration of the star-tracker, no misalignment or scale-
factors will be taken into account. Therefore, we will only assume noise, simulated as
white noise with zero mean for each angle, with the associated variances σΦ, σθ, σΨ.
Usually, the axis in the direction of the line of sight suffers more from noise than the
two others axis. The values of the deviations are taken from the Rosetta spacecraft, with
σΦ = 45 arcsec, and σθ = σΨ = 5 arcsec (Buemi et al., 1999). In this model, the roll axis
is shown to be the least accurate compared to the pitch and yaw axis.

The characteristics of the star-tracker of Rosetta are listed in table 5.1. Even if these
characteristics does not belongs to the Near-Shoemaker STT, they can be used as they
represent possible values for every component of this sensor.

5.2.2 Navigation Cameras

One promising technique of navigation for past and future missions is called Landmark
Tracking. This technique is achieved by the use of Navigation Cameras (NAVCAM),
which scan the surface of the body looking for recognisable features. Knowing the position
of these features, the navcam helps to know the relative position of the spacecraft in
relation to these features. Navcams are also used in early characterisation phases to
construct the shape model of the interesting body. The implementation of Landmark
Tracking for Autonomous Navigation was studied by Gaskell (2005), who focused on the
use of this technique for landings. The landmark tracking technique has many advantages
and makes it possible to overcome problems due to the long delay in communication with
the DSN used for classical navigation. Optical cameras are taking images that can be
processed on-board, which includes the data edition, the centroid fitting and the noise
filtering (Vasile et al., 2000), which is a significant advantage compared to other navigation
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Table 5.1: Characteristics of the star-tracker of the Rosetta spacecraft (Buemi et al.,
1999).

Characteristics Value
Field of View 16.4× 16.4 deg2

Dynamic range 1.7 to 5.5 mi
Stars simultaneously tracked Up to 9
Accuracy:
Roll axis 45 arcsec
Pitch axis 5 arcsec
Yaw axis 5 arcsec
Update rate 2.5 Hz
Output format Quaternions
Mass 8 kg
CCD detector 1024× 1025 pixels
Focal length 46 mm
Diameter optical system 29 mm

techniques. Optical navigation using features tracking was first successfully used during
the Near Mission, around Eros. Using small craters or recognisable features such as large
rocks, this technique allows the position to be measured with a precision of a few metres.

The first step in acquiring Navcam measurements is the image processing part. It
consists of a series of techniques to detect and analyse the image through different algo-
rithms to find recognisable features. In this thesis, this part of the acquisition will not
be implemented in the software, but the method is shown in Figure 5.1. The first step
in the process of optical navigation is to obtain images of the grey surface or target area.
The on-board software then autonomously pre-processes the image, and several methods
are used to detect and monitor the features. The objective of Canny Edge detection is
to identify edge points in the gradient direction (Shuang et al., 2013), i.e., where a maxi-
mum of the gradient magnitude exists. The noise should be suppressed by the algorithm
to detect edges, but the main downside of noise suppression is the loss of useful edge
knowledge. Therefore, a trade-off between the noise and the accuracy of the information
about the edges needs to be made. The pseudo-edge elimination process is very important
for the rest of navigation. It enables real edges to be separated from, for instance, the
edges created by the shadow of the Sun. The algorithm will retrieve the pseudo-edges
and remove them from the model, taking into account the camera angle with respect to
the Sun and the Sun’s location in the area. After these steps, to project the outline of
the body or the features on the picture plane, the fitting of the limb profile is achieved.
At the end, to maintain trace of the features, the centroid of the landmarks or the body
should be identified. The centroid-fitting phase uses the fitting of the body-shape and
the techniques of edge detection to create the planet or body equation.

The simplest optical navigation measurement model is the pinhole camera model.
This model assumes that a single ray is emitted by every point in the target area. Thus,
each ray is mapped to a point on the focal plane (Shuang et al., 2013). The following
model describes the relationship between the landmark coordinates (xLM , yLM , zLM) and
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Figure 5.1: Image processing procedure(Shuang et al., 2013).

the associated pixel (u, v):

u =
xLM,c

zLM,c

f

v =
yLM,c

zLM,c

f
(5.4)

with u, v the coordinates of the point in the focal plane, f the focal length of the
camera and (xLM,c, yLM,c, zLM,c) are the coordinates in the camera-fixed frame. zLM,b

corresponds to the distance between the point (xLM , yLM , zLM) and the pinhole. Taking
into account the fact that the projective plane has a finite number of pixels, and that a
pixel has a size p, the real pixels coordinates are:

u =
xLM,c

zLM,c

f

p

v =
yLM,c

zLM,c

f

p

(5.5)

Since we will not simulate the image processing part, we must add certain measuring
errors in the pixels, i.e.:

ũ = u+ δu

ṽ = v + δv
(5.6)
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Figure 5.2: Navcam geometry

whit δu, δv are white noises with zero-mean. The line-of-sight vector ei,C corresponds to
the line between the ith image point, and the camera-exposure centre, as shown in Figure
5.2. In the camera-fixed frame, the line-of-sight vector is:

ei,b =
1√

ũ2
i + ṽ2

i + f

ũiṽi
f

 (5.7)

where vi and ui are the coordinates of the point where the ith point ray is projected
on the image plane. A transformation is necessary to change the line-of-sight vector form
the camera-fixed frame to the inertial frame:

ei,I = CI/Bei,B (5.8)

with CB/I the transformation matrix from body frame to inertial frame, since we assume
that the camera is following the attitude of the spacecraft. Navigation camera properties
are introducing some measurement noise, which can be modelled as follows:

b̃i,I = mi(x) + σi (5.9)

with b̃i,I the line-of-sight measurement from the ith landmark, x denotes the state of
the spacecraft and ν is the navigation-camera noise, modelled as white Gaussian noise
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with zero mean. Thus, if Ri is the noise covariance matrix representing the measurements
errors, we obtain (Shuang et al., 2013):

E[σi] = 0

E[σiσ
T
i ] = Riδij

(5.10)

Image processing is a highly complex task, involving several different algorithms to
manipulate NavCam image data. Due to the complexity of this method, image processing
will therefore not be part of this thesis, and the Navcams will show the landmarks’ noisy
pixel locations.

5.2.3 Lidar

The lidar (light detection and ranging) is a powerful navigation sensor based on the anal-
ysis of the properties of a beam of light returned to its emitter. Unlike radar that uses
radio waves or sonar, which uses acoustic waves, lidar uses light (from visible, infrared
or ultraviolet spectrum), most of the time a laser. In general, the concept of telemetry
(determining the distance of an object) involving a significant proportion of lidar applica-
tions involves the use of a pulsed laser. The distance is given by calculating the interval
between a pulse’s emission and a reflected pulse’s detection, recognising the speed of light.
Another class of speed modulation based applications uses a fine emission spectrum (a
fixed frequency) laser. It is the Doppler-Fizeau effect, which is the change in the reflected
and received wave frequency, which makes it possible to calculate the object’s speed.
Many other parameters (gas concentrations and individual particles, density, tempera-
ture, etc.) can affect the measurements in the atmosphere and other diffusive media.
The lidar is less wavelengthy, allowing for much smoother modulation and greater time
and spatial resolution for a reduced instrument size relative to radar technologies. Lidar
lasers, however, can not penetrate very diffusive media like thick clouds or soil surfaces
and require a extremely accurate calibration.

The Lidar sends the ideal laser beam to the target and uses the reflected light to
research the target characteristics by studying the received signal and comparing it to
the transmitted signal. It calculates the distance to the target by measuring the time-of-
flight of the obtained pulse and can be used to determine the range rate by measuring
the range at the next time stage. Lidars can be used to highlight some of the surface
properties by examining the received signal, such as the surface slope and the roughness
of the surface.

In our software model, we will only use lidar to measure the range and range-rate
of the spacecraft with respect to Eros, since we assume that the surface mapping of the
asteroid was done earlier in the mission. However, we must take into account the fact that
the relative distance from the surface of the asteroid to a random point can not provide
direct information on the actual location of the spacecraft. This distance is only useful if
we already know the location of this surface point in the asteroid frame. This condition
will be valid if we use the already projected landmarks for which we already know the
location. This model assumes that we can point the laser to the nearest landmark, which
is not true for every lidar model. However, we will assume that the laser is pointing
in the desired direction by the use of a mirror system, and that the lidar will work in
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Figure 5.3: Lidar geometry

combination with the Navcam to output measurements. The range of the spacecraft can
be calculated as follows:

ρ =
√

(x− xLM)2 + (y − yLM)2 + (z − zLM)2 (5.11)

where (xLM , yLM , zLM) are the coordinates of the landmark, and (x, y, z) the coordinates
of the lidar in the asteroid frame, as shown in Figure 5.3. Moreover,

ρ = c
t

2
(5.12)

where t is the time-of-flight (TOF), i.e., the time between the sent and received light
pulse, and c is the speed of light. We can compute the range resolution:

∆ρ = c
∆t

2
(5.13)

with ∆t the resolution of time measurements. When the Navcam can provide information
on the landmarks in its FOV, the lidar will point in the direction of the landmarks to
determine the range using the TOF, and the data at the previous time step will also
be used to determine the range-rate of the spacecraft. Although lidar may suffer from
pointing and bias errors, measurement errors are usually due to the instrument itself and
the asteroid environment and surface topography. Measurement errors can be modelled
as follows:

t̃ = t+ σt + σr

ρ̃ = c
t̃

2
σl = σt + σr
E[σl] = 0

E[σlσl] = Rt

(5.14)
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Figure 5.4: Lidar control angles

with νt white-Gaussian noise in the range of nano-seconds, which represents the error
in time due to the environment, and with νr, the resolution error. Rl is the noise covariance
representing the measurements errors. In tandem with the navcam, observations can be
reconstructed using the α and β lidar commanded angles, which can be calculated by the
following formula:

α = arctan
yLM,b

xLM,b

δ = arctan
zLM,b√

x2
LM,b + y2

LM,b

(5.15)

where (xLM,b, yLM,b, zLM,b) are the Landmarks coordinates in the spacecraft reference
frame. α and δ are called azimuth and elevation angles respectively, are shown in Figure
5.4, and are obtained from the camera image, with the following pointing errors:

α̃ = α + ∆α

δ̃ = δ + ∆δ
(5.16)

The measurement vector for the lidar sensor, from the ith landmark is given by:

h̃i =


ρi
ρ̇i
αi
δi

+ σl,i (5.17)

Hence, this sensor gives information on the location of the spacecraft, but also direct
information on the relative velocity of the spacecraft, with a good accuracy.
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5.3 Estimators

Kalman filtering is a well-known algorithm for estimating unknown variables and param-
eters based on real-time measurements. It can be used for estimating the state vector, as
well as for estimating external parameters. In the simplest case, where we would have to
deal with a linear system that we would like to know the evolution over time, we might
have used the Kalman Linear filter. However, there are only a few linear systems in
the real world. The linear Kalman filter can therefore no longer be applied. Extended
Kalman and Unscented Kalman filter have been developed to deal with such problems.
Since they are well documented, we know that they can produce very accurate results in
complex situations, without being too difficult to implement. They will therefore be used
in our estimation process. The Extended and Unscented Kalman filters will be presented
in this section.

5.3.1 Extended Kalman Filter

The Extended Kalman Filter (EKF) is an extension of the Linear Kalman Filter (LKF).
The Linear Kalman Filter is an effective tool to estimate the state of the system in a
noisy environment. However, it can only be applied to linear cases, which is not very
useful in real cases, that are mostly non-linear. As shown by Welch and Bishop (2006),
Tapley et al. (2004) and Mooij (2019), a discrete non linear system is expressed by:

xk+1 = f(xk,uk,wk) (5.18)

We can express the sensors measurements as:

zk = h(xk,vk) (5.19)

where u is the input vector, z is the measurement vector, x is the state of the spacecraft
and v and w are noise contributions. We denote by k the current time step, and k − 1
the previous time step. The first goal of the filter is to build an a-priori estimate of the
spacecraft:

x̂−k = f(x̂−k ,uk+1,0) (5.20)

The current a-priori state estimation is done using the previous a-posteriori state of the
spacecraft. Moreover, we can compute an estimate of the measurements:

ẑk = h(x̂−k , 0) (5.21)

By linearization of the previous equations, we can approximate the state and the
measurements, as shown by Welch and Bishop (2006) and Mooij (2019):

xk+1 ≈ x̂−k+1 + Ak(xk − x̂k) + Wkwk (5.22)

zk ≈ ẑ−k + Hk(xk − x̂k) + Vkvk (5.23)

In these equations, the state and measurement vectors are expressed as a function of the
current state, and a-priori estimations of the next time state.
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The noise parameters can be expressed as Gaussian noise with 0 mean:

p(vk) ∼ N(0,Rk) (5.24)

p(wk) ∼ N(0,Qk) (5.25)

Matrices Rk and Qk are the measurement-noise and process-noise matrices, respec-
tively. Matrices Ak, Wk, Hk, Vk are called Jacobians, and are defined as follows:

Ak =
∂f

∂x

∣∣∣∣
(x̂k,ûk+1,0)

Hk =
∂h

∂x

∣∣∣∣
(x̂−k ,0)

Vk =
∂h

∂v

∣∣∣∣
(x̂−k ,0)

Wk =
∂f

∂w

∣∣∣∣
(x̂k,ûk+1,0)

(5.26)

Since we have introduced approximations for the state of the spacecraft, an error with
respect to the real state can be calculated:

ê−xk ≡ xk − x̂k ≈ Ak−1(xk−1 − x̂k−1) + εk

ê−zk ≡ zk − ẑk ≈ Hk(ê
−
xk) + ηk

(5.27)

With ε and η linear approximations of the noise, with the following distributions:

p(εk) ∼ N(0,Wk−1Qk−1W
T
k−1) (5.28)

p(ηk) ∼ N(0,VkRkV
T
k ) (5.29)

We can define the prediction error, as the difference between the a-posteriori and the
a-priori errors, which should be equal to a scaled measurement residual:

ê−k ≡ xk − x̂−k = K(ê−zk) (5.30)

This equation is the key to find the a-posteriori state estimation:

x̂k = x̂−k + K(zk − ẑ−k ) (5.31)

Thus, the covariance matrix can be written as (Mooij, 2019):

P−k+1 = AkPkA
T
k + WkQkW

T
k (5.32)

And the gain K can be written as:

Kk = P−k HT
k (HkP

−
k HT

k + VkRkV
T
k )−1 (5.33)
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With :
Pk = (I−HkKk)P

−
k (5.34)

The EKF filter is widely used in state estimation. It results in fast convergence
compared to other methods, and leads to highly accurate results when the system is
almost linear. When the system is highly non-linear, other methods might be preferred,
such as the Unscented Kalman filter for better performance.

5.3.2 Unscented Kalman Filter

The Unscented Kalman Filter (UKF) is an improvement of the EKF, as written by Wan
and Van Der Merwe (2000). The EKF can cover significant uncertainties by using a first
order linearization of the equations of motion. The UKF uses a deterministic sampling
approach to provide more precise results, describing the state with a collection of sigma
points. This set is fed to a non-linear EOM, which allows the filter to estimate the
uncertainties up to the third order.

At each time step, the filter is fed with the sigma points, which have been carrefully se-
lected to contain maximum statistical characteristics of the state variables. The so-called
Unscented transformation will calculate those statistical characteristics. If we consider
a random variable x in our non-linear function y = g(x), a matrix of sigma vectors χi
should be built to estimate the statistical characteristics of the output, defined as follows:

χ0,k = x̄k

χi,k = x̄k +
√

(L+ λ)(Px,k + Qk+1)

∣∣∣∣
i

for i = 1, .., L

χi,k = x̄k −
√

(L+ λ)(Px,k + Qk+1)

∣∣∣∣
i−L

for i = L+ 1, .., 2L

(5.35)

We can define the associated weights to the corresponding sigma:

W
(m)
0 =

λ

L+ λ

W
(c)
0 =

λ

L+ λ
+ (1− α2 + β)

W
(m)
i =W

(c)
i =

1

2(L+ λ)
for i = 1, .., 2L

(5.36)

with Px the covariance matrix, x̄ the mean value of the random variable, L the dimension
of x and thus 2L + 1 is the dimension of the sigma matrix. λ = α2(L + κ) − L is a
scaling parameter, α determines the spread of the sigma points around x̄, κ is another
scaling parameter, most of the time equal to zero, and β gives information about the x
distribution.

Similarly to the EKF, the UKF is updating the state at every time step, but now
adding the sigma point computed through the previous equations. The sigma matrix can
be computed by the following non-linear equation:

χk+1|k = f(χk,uk,vk) (5.37)
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This equation can be used to find the current estimated a-priori state vector and
covariance matrix, as shown by Julier and Uhlmann (2004):

x̂−k+1 =
2L+1∑
i=1

W
(m)
i χi,k+1|k

P−x,k+1 =
2L+1∑
i=1

W
(m)
i (χk+1|k − x̂−k+1)(χk+1|k − x̂−k+1)T

(5.38)

Applying the unscented transform to the measurement equations results in finding the
a-priori measurements and covariance matrix associated through the following equations:

ζk+1|k =f(χk+1|k,wk)

ẑ−k+1 =
2L+1∑
i=1

W
(m)
i ζi,k+1|k

Pz̄,k+1 =
2L+1∑
i=1

W
(m)
i (ζk+1|k − ẑ−k+1)(ζk+1|k − ẑ−k+1)T

(5.39)

If we consider M measurements, ζk+1|k corresponds to a set of M × 2L + 1 sigma
measurements points. Similarly to the EKF, the a-posteri state can be written as:

x̂k = x̂−k + K(zk − ẑ−k ) (5.40)

The equation for the covariance propagation is the following:

P−x,k = Px,k + KkP
−
z,kK

T
k (5.41)

with the Kalman gain:

Kk = Pxz,kP
−1
z̄,k (5.42)

and the cross-covariance matrix can be found by:

Pxz,k+1 = W
(m)
i (χk+1|k − x̂−k+1)(ζk+1|k − ẑ−k+1)T (5.43)

The Unscented Kalman Filter can be used under non-linear conditions, where the
EKF efficiency is not enough. It requires more computational time but leads to significant
improvements in results, especially when the system is highly non-linear.

5.3.3 Kalman filters tuning

To be used efficiently, the Kalman filters covariance and measurement matrices must be
optimised. One very popular way to tune the Kalman filter is through trial and error.
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Figure 5.5: PSO pseudo-code

But this technique is time-consuming and not optimal. Other approaches such as Genetic
Algorithms (Rapp, 2004) and Particle Swarm Optimisation algorithms (Jatoth and Ku-
mar, 2009) can be implemented. Gene theory is used in the Genetic Algorithm in which
the genetic code is encoded by each individual in society. Particle Swarm optimisation is
a population-based stochastic search algorithm that is inspired by the social behaviour
of bird flocking and fish schooling. PSO was preferred over GA for the simplicity of
implementation to tune the Kalman filters.

Starting with an arbitrarily initialised swarm population, each PSO individual flies
through the N-dimensional solution space and recalls the best position they encountered.
Each particle in the swarm is described by its position and velocity. The position and
velocity of the particles at each iteration are updated according to the following equations:

vi(k + 1) = wvi(k) + c1rand()(pbest(k)− xi(k)) + c2rand()(gbest(k)− xi(k)) (5.44)

xi(k + 1) = vi(k + 1) + xi(k) (5.45)

With w, c1, c2 weights corresponding to the inertia weight, and cognitive and social
accelerations respectively.The pseudo-code of the PSO is shown in Figure 5.5.

Some PSO parameters can be chosen freely, such as acceleration coefficients, c1 and
c2, together with random vectors, which control the stochastic influence of cognitive
and social components on the total velocity of the particle. The PSO parameters are
summarized in Figure 5.2.
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Table 5.3: PSO results

Trial and error result PSO result
q1 1e-09 1.03e-14
q2 1e-11 2.64e-12
q3 1e-16 2.21e-18

Parameters Value
c1 2.5
c2 2.5
w 0.4-0.9

Table 5.2: Tuning parameters of the PSO

To reduce the computational time in the PSO optimisation, the covariance matrix
must be decomposed into two sub-matrices, according to the following equation:

Q =
(
q1 q2 q3

)1 0 0
0 1 0
0 0 1

 (5.46)

where q1, q2 and q3 are the free parameters to tune. The values of the covariance matrix
Q must also be constricted between minimum and maximum values to be optimised by
the PSO. The values of Q are constricted between [10−20, 10−2] for this optimiser. The
fitness function that must be minimised by the PSO is the mean-square error, which can
be calculated according to the following equation:

MSE =
1

N

N∑
1

(yk − ŷk) (5.47)

The results of the PSO optimisation are displayed in Table 5.3.
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6
Simulator design

The design of an autonomous navigation software is presented in this chapter. The main
purpose of this navigation software is to be able to predict at each stage the state of the
spacecraft, the rotational rate of the asteroid and the spherical harmonic coefficients, to
make navigation around the asteroid more autonomous.

6.1 State and parameters vector

The simulator outputs the spacecraft’s state and attitude vectors, as well as the asteroid’s
attitude. Navigation software will use data from the sensors to determine the location
and velocity of the spacecraft, as well as the spherical harmonic coefficients and the
rotational speed and attitude of the spacecraft, which would be needed to estimate the
same parameters in the next time step. The state and parameter vector that will be
output from the navigation software is as follows:

X =


xI
vI
ωR/I
Cij

Sij
qR/I

 (6.1)

where xI , vI are the position and velocity vectors of the spacecraft in the inertial frame,
Cij and Sij are the spherical harmonics coefficients of degree i and order j, and ωR/I and
ωR/I are the rotation rate and attitude vectors of the asteroid with respect to the inertial
frame. These states and parameters are the only vectors required to compute the state
of the spacecraft at the next time step, using the spherical harmonics model to estimate
the gravity field of the asteroid.

6.2 Top-level simulator architecture

The simulator is divided into four main blocks, each of which focuses on a specific task.
The complete architecture is shown in Figure 6.1 and consists of:
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Figure 6.1: Simulator architecture

Asteroid kinematics model : This block uses asteroid data to simulate the rotation
of the asteroid. The outputs of this block are the relative attitude of the aster-
oid with respect to the inertial frame, and the direction cosine matrix for frame
transformation between the relative and inertial references frame.

Spacecraft dynamics model : Using the gravity model, the Sun data and the output
of the first block, this block propagates the dynamics of the spacecraft starting with
given initial conditions.

Sensors model : Depending on the choice of sensors and their models, this blocks
output noisy measurements based on the real state and attitude vectors of the
spacecraft.

Navigation filters : This block outputs the estimated states and parameters based
on a-priori values, measurements and given analytical models. The filters must
be initialised with parameters and optimum covariance matrices, pre-processed by
the PSO.This block refers to the autonomous and on-board algorithm that the
spacecraft would be carrying.

6.3 Asteroid gravity modelling

For this study, we will assume that the main gravitational influence of the spacecraft is
due to the gravitational field of the asteroid. The asteroid orbit around the Sun will
be neglected, and it is assumed that no other bodies are disturbing the dynamics of the
environment except the asteroid, the spacecraft and the Sun.
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Figure 6.2: Eros polyhedron shape model

Polyhedron Shape model

A polyhedron model of Eros was implemented using shape data obtained during the Near-
Shoemaker mission, with 49150 facets of resolution, as shown in Figure 6.2. Using the
polyhedron model of the gravity field, the gravitational potential and acceleration acting
on a spacecraft due to the polyhedron shape model, can be computed. The polyhedron
gravity field algorithm is shown in Figure 6.3. The gravitation acceleration due to the
asteroid was calculated with this polyhedron gravity model on a sphere of 25 km and a
radius of 250 km, as shown in Figure 6.4. On the two figures, as expected, we can see the
two elongated poles of Eros, represented by the regions where the acceleration is much
stronger. For the 250 km sphere, we can also note that the differences in gravitational
accelerations are smaller, leading to a more uniform gravity map. That can be explained
by the fact that the disturbances due to the irregular shape are also decreasing with the
distance, since the acceleration decreases with the distance to the centre.

Spherical harmonics gravity field

In the Simulator, the spherical harmonics model of the gravity field of Eros was imple-
mented using the data obtained during the near-mission and up to degree and order 22.
As we will show, this resolution is sufficient to characterise the gravity field with sufficient
precision and has the benefit of reducing the computational loads that can be obtained
using the polyhedron gravity model. The algorithm used to construct the spherical har-
monics gravity field is shown in figure 6.5.

The gravity field of Eros with the spherical harmonics model based on the shape model
spherical harmonics coefficients is shown in Figure 6.6 on a 25 km sphere. The graphs
are showing the two poles of Eros, where the acceleration is maximum.

Conclusion

Spherical harmonics up to degree 22 and polyhedron gravity models with 3897 vertices
and 7790 faces have been simulated for 433 Eros to compare results. While the polyhe-
dron model is very accurate, it is computationally expansive compared to the spherical
harmonic model. Reducing the number of faces and resolution, the computational time
reduces with the accuracy of the model. It does however, contribute to a similar gravity
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Figure 6.3: Polyhedron gravity algorithm
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(a) 25 km sphere radius
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Figure 6.4: Gravity acceleration acting on a sphere of 25 km and 250 km radius.

field model where the shape of Eros can be identified. Errors increase by decreasing the
distance to the centre of the asteroid and the maximum residuals between the two models
in a 35 km sphere are shown in Figure 6.7 for the chosen resolutions. We can see in the
Figure that these errors are small, especially considering such low altitude orbits. How-
ever, they are dependant on the resolutions chosen both for the polyhedron and spherical
harmonics models. We have selected the resolution of the polyhedron model and the
resolution of the spherical harmonics according to our CPU limitations. Reducing the
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Figure 6.5: Spherical harmonics gravity algorithm
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Figure 6.6: Spherical harmonics gravity acceleration felt on a 25 km sphere.

degree and order of spherical harmonic expansion, the residuals would be greater. How-
ever by reducing the resolution of the polyhedron, the residuals decrease until we reach
almost the same resolution of the spherical harmonics because we have chosen a higher
resolution for the polyhedron model, and then start to increase again. In the navigation
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Figure 6.7: Spherical harmonics/Polyhedron gravity residuals on a 35 km sphere.

process, it is easier to use the spherical harmonics model to be computationally effective,
but this model cannot be used for the last mission or landing phases due to the fact
that the spherical harmonics are only true outside the reference sphere and can lead to
divergences close to the surface. A polyhedron model or other gravity model should be
chosen for the last mission phase.

6.4 Sensors models

Among the sensors, Navcam and Lidar require more complex modelling. In this section,
their algorithm will be detailed.

6.4.1 Navcam

The navcam algorithm used in the simulator model, resumed in Figure 6.8, can be divided
into three parts:

• Creation of the environment: create a polyhedron model and produce Landmarks
on the surface.

• Detection of the landmarks: are the landmarks in the field of view of the camera,
and are the lightning conditions adequate to be able to see the landmarks?

• Generation of measurements: map the Landmark coordinates on the pixel plane to
produce the corresponding measurement vector.

To create landmarks at certain locations on the shape model, the landmark generation
technique must be used. Landmarks are recognisable surface features, such as craters or
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Figure 6.8: Navcam landmarks detection algorithm

ridges, typically attributed to various impacts and events that a navigation camera can
detect, which may form the base of the optical navigation process. In this thesis, on
the surface of the asteroid, we will create random landmarks, although in fact a pre-
process of the asteroid images must be performed to determine the positions of the real
landmarks. However, since the exact position of these landmarks can not be known for
our thesis, we must consider the landmarks as a random distribution. The distribution
of the landmarks over the triangles can be written as (Osada et al., 2002), if we consider
a polyhedron model of triangular faces:

P = (1−
√
r1)A +

√
r1(1− r2)B +

√
r1r2C (6.2)

with A, B and C vertices of a triangle, and r1, r2 random numbers such that r1,r2 ∈
[0, 1]. The total number of landmarks can be decided on the basis of previous 433 Eros
models. We will generate 4600 Landmarks on the surface of Eros on the model of Gaskell
et al. (2006), as shown in Figure 6.9.

Once the landmarks are generated over the surface of the asteroid, an algorithm is
used to identify the landmarks that are present in the FOV to convert them into vector
measurements, based on the spacecraft state and attitude. The first step is to define which
landmarks are in the camera’s FOV as shown in Figure 6.10. If the Landmark coordinates
are located inside this volume, they are stored as Landmarks seen by the algorithm. The
lightning conditions are one more condition that should be verified for the landmark to

67



6.5. FILTERS MODEL

Figure 6.9: 4600 Landmarks generated on the surface of Eros.

be seen by the camera. In fact, if the spacecraft is located in the asteroid’s shadow, the
lightning conditions are not sufficient for any image to be recorded by the cameras.

The last step that must be done is the generation of the measurement vector from
the landmarks position. This can be done following Equations 5.5 to 5.9, where the
landmarks position are projected in the pixel plane before being converted to a noisy
vector measurement.

6.4.2 Lidar

The Lidar model would use the Landmarks in the camera field-of-view to extract the
spectrum and to measure the TOF. The time would be updated accordingly to the time-
resolution of the Lidar. Acting in addition to the Navcam, the Lidar is capable of giving
the range and control angles. The Lidar diagram is seen in Figure 6.11.

6.5 Filters model

The two navigation filters to be used are the Unscented Kalman Filter and the Extended
Kalman Filter. This section will clarify how they will be applied in the Navigation
software, and the results of their algorithms will be compared to the literature to be
validated.
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Figure 6.10: Field-of-view of the camera.

6.5.1 EKF model

The EKF model will be presented in detail in this subsection. The equations used in
the filter model as well as the algorithm applied in the Simulink environment will be
discussed. The full model for different scenarios can be found in Annexe A.

EKF equations

Starting from the acceleration equation:

ẍI = Fg + Fsrp + F3bp (6.3)

We can write the linearized full state matrix equation:

∆ẋ

∆ẍ

∆ċij

∆ṡij

∆ω̇R/I

∆q̇R/I


= J



∆x

∆ẋ

∆cij

∆sij

∆ωR/I

∆qR/I


+



νx

νv

νc

νs

νω

νq


(6.4)
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Figure 6.11: Lidar diagram

with ν the process noise associated with each element of the state and parameter
vector, and J being the following Jacobian matrix, i.e; the matrix of partial derivatives:

J =



03×3 I3×3 03×m 03×n 03×3 03×3

(∂ẍ
∂x

)
3×3

03×3 03×m 03×n 03×3 03×3

0m×3 0m×3 Im×m 0m×n 0m×3 0m×3

0n×3 0n×3 0n×m In×n 0n×3 0n×3

03×3 03×3 03×m 03×n I3×3 03×3

03×3 03×3 03×m 03×n 03×3 I3×3


(6.5)

where n and m are the length of the cij and sij vectors respectively, depending on the
order and degree of the spherical harmonics expansion. Although the system and mea-
suring equations are not linear, an approximation of the first order is used in the Riccati
continuous equations for the F and H matrices. The matrices refer to the non-linear
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system with the following equations (Zarchan, 2009):

F =
∂f(X)

∂X

∣∣∣∣
X=X̂

H =
∂h(X)

∂X

∣∣∣∣
X=X̂

(6.6)

Recalling the non-linear measurement equation at time k:

zk = h(Xk) + σk (6.7)

We can write measurement equations for the sensors that we use in our filter. First,
radiometric measurements and star-tracker sensor will simply produce a noisy position
and attitude vector:

zradio = xI + σradio
zSTT = qB/I + σSTT

(6.8)

The navcam will output noisy pixels coordinates of the ith landmark, transformed
into the line-of-sight vector, i.e., into unit vector from the camera to the ith landmark,
therefore:

zNavcam,i = CB/R

xLM,i −CR/IxI
||xLM,i −CR/IxI ||

+ σNavcam (6.9)

The Lidar will output range measurements from the ith Landmark of the FOV of the
camera, hence the measurement equation for the Lidar is:

zLidar,i = ||xLM,i −CR/IxI ||+ σLidar (6.10)

The continuous process noise matrix is given by:

Q = E(ννT ) (6.11)

And the discrete measurement noise matrix:

Rk = E(σkσk
T ) (6.12)

where σk is the noise measurement vector, at time step k. The discrete process noise
matrix can be obtained from the PSO, and kept constant for the rest of the simulations.

EKF algorithm

The EKF algorithm, based on the previous developed equations is resumed in Figure
6.12.
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Figure 6.12: EKF algorithm

6.5.2 UKF model

Using the software, the UKF will compare its results with the EKF filter. This filter is
easier to implement for several state variables and parameter elements as the analytical
derivation of matrices is not needed in advance.

UKF algorithm

The UKF algorithm implemented in the navigation software is resumed in Figure 6.13

6.6 Verification

The simulator will be verified in this section, evaluating the efficiency of the sensors and
filters and comparing them with the literature. The sensor models will be verified to see
if the sensors are capable of providing the correct information to the filter. Once the EKF
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Figure 6.13: UKF algorithm

filter has been verified the performance of the UKF will be assessed for a simple case and
compared to the results of the EKF.

6.6.1 Navcam

A verification procedure must be followed for the navcam algorithm to determine if the
navcam can see the right number of landmarks, with the right positions. The verification
procedure is as follows: the navcam FOV will be plotted for the generated set of land-
marks, and for a given spacecraft position and attitude. The number of landmarks must
then be counted, and must correspond to those found by the algorithm. The focal length
is set to f=0.05 m, based on the value of the Near spacecraft camera (Shuang, 2008).

The first verification test is shown in Figure 6.14. We can see that the navcam gives
the right number of pixels, corresponding to the landmarks.

The second test is with other conditions, with a new set of landmarks, to confirm the
first test and is shown in Figure 6.15. This time, the navcam only sees three landmarks,
and it again confirms that the right number of landmarks at exact locations are seen by
the camera.
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Figure 6.14: Landmarks seen by the navcam, with the corresponding pixels
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Figure 6.15: Landmarks seen by the navcam, with the corresponding pixels

6.6.2 Lidar

The lidar verification procedure will be performed using the FOV Navcam algorithm. If
the navcam is able to see the landmarks on the surface of the asteroid, the lidar should be
able to provide the same amount of measurements for the landmarks within the camera
FOV, with the exact range of elevation and azimuth angles if no noise is introduced, as
sown in Figure 6.16.

As expected, if no noise is introduced in the process, the lidar gives values of the range
depending on the value of the time resolution of the lidar. Indeed, when increasing the
resolution, the range error decreases. We can see in the Figure 6.17 that a time resolution
of at least 10−9s is required to have an accurate value of the range, which corresponds to
nano-seconds.
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Figure 6.16: Landmarks in the FOV of the camera, recorded by the lidar sensor(in blue).
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Figure 6.17: Mean RMS range errors in function of time resolution.

6.6.3 EKF verification

The extended Kalman filter model has been applied in the case of radar tracking falling
object in presence of drag as shown in Figure 6.18. The performances of the filter have
been assessed and compared to the results found in the book of Zarchan (2009).

First attempt

Setting the process noise Φs equal to zero, and the measurement noise σv equal to 1000
ft, the results are shown in Figures 6.19 and 6.20. We can see that, although the EKF
filter we use behaves slightly better, the results are quite similar with Zarchan’s results.

Second attempt

Another case was run in which the measurement noise standard deviation σv was reduced
from 1000 to 25 ft. The error in the altitude in this case is reduced but diverges from the
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covariance bounds, as shown in Figure 6.21. The error in velocity appears to be growing
over the time, as shown in Figure 6.22.

Third attempt

The third attempt consist in adding process noise to the filter, increasing form 0 to 100
with a noise standard deviation of 25 ft. The process noise appears to be useful to
eliminate the divergences in the filter, as shown in Figures 6.23 and 6.24.

The results are shown to be close to the reference model for each attempt, the small
differences we observe are due to the noise set we use at each attempt, which is different
from Zarchan, so we can conclude that the Extended Kalman filter model is verified.

Figure 6.18: Radar tracking falling object, initial conditions
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Figure 6.19: Error in altitude, Kalman filter performances.

76



6.6. VERIFICATION

0 5 10 15 20 25 30

Time (s)

-150

-100

-50

0

50

100

150

200

E
rr

or
 in

 E
st

im
at

ed
 V

el
oc

ity
 (

F
t/s

)

Error
1-  value

(a) EKF results (b) Zarchan results

Figure 6.20: Errors in velocity, Kalman filter performances.
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Figure 6.21: Error in altitude, Kalman filter performances.
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Figure 6.22: Errors in velocity, Kalman filter performances.
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Figure 6.23: Error in altitude, Kalman filter performances in (6.23a) compared to the
results of Zarchan (6.23b)
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Figure 6.24: Errors in velocity, Kalman filter performances in (6.24a) compared to the
results of Zarchan (6.24b)

6.6.4 UKF Verification

EKF and UKF have been applied to compare their efficiency in estimating the µ parameter
and the state vectors, in the simpler case, i.e., the point mass gravity model. Filter values
of α = 0, β = 2 and κ = 0 were selected to tune the UKF.

First attempt

On the first try, the noise covariance matrix was set to σ1=100 m for the position and
σ2=10 m/s for the velocity. The process noise matrix is Φs = [1e − 9, 5e − 11, 1e − 4],
and not optimised by the PSO to see the effect on the estimation. The output of the two
methods with the initial condition x0 = [25000, 0, 0] for the position is seen in Figure 6.25.
With large noise measurements, the Kalman Unscented Filter tends to be more effective
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(a) Error in position.
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Figure 6.25: Error in states and parameters, first attempt.

than the EKF. In particular, the errors are reduced in position and the convergence is
faster in the estimation of µ. The estimate of µ is very slow to converge in both cases
and there is a significant delay until the estimate begins to converge to the real value.

Second attempt

Reducing the measurement noise to σ1=10 m for the position and σ2=1 m/s for the
velocity, the effects for both filters are seen in Figure 6.26. By reducing the measurement
noise covariance, the behaviour of the filters tends to be enhanced with faster convergence
and a final error smaller than in the previous example. However, the differences in the
results between the UKF and EKF filters are reduced.
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(a) Error in position, second attempt.
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(b) Error in speed, second attempt.
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(c) Error in the µ parameter, second attempt.

Figure 6.26: Error in states and parameters, second attempt.
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7
Simulations

This chapter will discuss the simulation scenarios used to test the estimator. It will be split
into test cases in which a variety of initial conditions will be changed to see their effects
on the estimation process. First, simplified versions will be evaluated and the estimation
will be limited to the first order and degree of Spherical Harmonics coefficients. The
resolution of the spherical harmonics can then be improved to see if the estimator is
able to estimate all these coefficients. For all simulations, real-world dynamics will be
propagated using the Spherical Harmonics Gravity Model up to degree and order 22 to
ensure high accuracy of the gravity model without high computational workload.

7.1 µ and J2 estimation

The first test will be to estimate the µ and the J2 parameters at the same time as the
spacecraft state vector. The efficiency of the UKF and EKF filters is compared.

7.1.1 J2 perturbed environment

The first attempt will consists of reducing the resolution of the real-world spherical har-
monics gravity only to the central field with the J2 perturbation. In this case, no other
disturbances-gravitational or not-are present in the environment. This basic test allows
the efficiency of the various filters to be seen. As this is the most simple test we can
provide, we are going to use the noisy position vector as a ’measurement.’ Indeed, this
test is not reflective of real life, but it may provide an insight into how filters interact
with such data. Position measurement noise was set to σp = 10 m.

30 km altitude orbit

The estimation process will be carried out on an orbit of 30 km altitude, with i=60◦

inclination. The inclination has been chosen different to zero to be able to detect the
J2 effect on the system dynamics. The results as shown from Figures 7.5 to 7.8. The
results indicate that while the output is slightly improved with the final position error
with the UKF, the difference is not significant with the µ and J2 parameters. In addition,
under these conditions, both filters are capable of measuring the state vector and the
gravitational parameters with errors inferior to 10% their real values.
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Figure 7.1: Error in position after estimation, first attempt, d=30 km i=60◦.
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Figure 7.2: Error in velocity after estimation, first attempt, d=30 km i=60◦.
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Figure 7.3: Error in the µ parameter estimation, first attempt, d=30 km i=60◦.

1200 km altitude orbit

The altitude was raised to 1200 km for the second evaluation. We can see that while the
estimate can still be made, the transient behaviour of both filters appears to be growing,
which means that the peak we observe at the beginning of the estimation gets larger.
This can be explained by the fact that at varying altitudes and at the same time of
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Figure 7.4: Error in the J2 parameter estimation, first attempt, d=30 km i=60◦.
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Figure 7.5: Error in position after estimation, second attempt, d=1200 km i=60◦.

propagation, the dynamic vector rate of change is different. Indeed, with an orbit closer
to the earth, the spacecraft will make more revolutions around the asteroid than it does
for higher altitude orbits. This can then be converted into the estimator dynamics, where
the process noise covariance matrix is set closer to zero by the PSO, which increases the
transient peak in the estimation results. Convergence for the J2 parameter gets slower,
directly due to the fact that the effect of this parameter fades at higher altitudes. The
orbit tends to be more stable and thus it is more difficult to predict this parameter over
a limited propagation time.

7.1.2 Conclusion

With this first introduction, we can see in the simulations that the variations in efficiency
between the UKF and EKF filters are not significant for this type of estimation. We will
therefore now concentrate on the results of the UKF, which appears to be slightly better
than the EKF, primarily because the equations are easier to apply for models with a wide
number of parameters, as would be used in furture tests. For EKF, each model needs a
Jacobian matrix calculation that requires analytical expression or mathematical approx-
imation for each parameter that we want to estimate. It is therefore more convenient to
use the UKF, particularly if we want to estimate a large number of spherical harmonic
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Figure 7.6: Error in velocity after estimation, second attempt, d=1200 km i=60◦.
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Figure 7.7: Error in the µ parameter estimation, second attempt, d=1200 km i=60◦.
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Figure 7.8: Error in the J2 parameter estimation, second attempt, d=1200 km i=60◦.

coefficients.
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Table 7.1: Estimation results for the µ parameter for different altitude orbits

Distance to the centre of Eros Convergence time (s)
Simulation error Theoretical error
m3.s−2 % m3.s−2 %

150 19,265 966 0.2195 313 0.0711
250 43,948 369 0.0838 277 0.0629
350 98,828 222 0.0504 210 0.0477
500 184,348 56 0.0127 66 0.0150
1000 417,932 41 0.0093 198 0.0223

7.2 Third-body perturbation effect

Increasing the accuracy of the real-world simulator model, the third-body perturbation
is one of the main disturbances that can influence the dynamics of the spacecraft. The
effect of this disturbance on the estimation process will be detailed in this section.

7.2.1 Results

From Earth to the asteroid, the spacecraft is subjected to many gravitational forces.When
the Sphere of Hill of Eros is crossed, the spacecraft will orbit around Eros with a stable
orbit. When reaching the Sphere of Influence (SOI), the gravitational effect of other bod-
ies, such as the Sun, can be ignored and the problem reduced to the well-known two-body
problem. As shown in previous gravitational maps, the further the spacecraft is from
the centre of Eros, the more the gravitational field of Eros is felt by the spacecraft as a
central field force. The objective of this section is to find the optimum distance in such
a way that the µ parameter can be estimated alone as accurately as possible, to use the
value in the next estimation step, i.e., the estimation of the second higher perturbations.

In an ideal world, where only Eros and the spacecraft exist, and where all other forces
and perturbations can be neglected, we should expect that the farther we are from the
centre of Eros, the more precisely we can estimate the µ parameter, because increasing
the distance means that spherical harmonics disturbances will fade away. Indeed, that is
what we observe in Table 7.1, where the moving mean of the estimation error decreases
with the distance to the centre of Eros. The initial a-priori value of µ has been initialised
with an error of 4.0135 × 104 m3.s−2 compared to the true value. We also note that the
time of convergence increases with distance, possibly due to the fact that the gravitational
influence of Eros is diminishing. This explains the value of the 1000 km orbit, which is
higher than the estimated value of the 500 km orbit. Although the convergence is slower
and the simulation time remains the same, the error value at the end of the simulation is
higher with slower convergence.

In the real world, the higher gravitational perturbation after Eros is due to the Sun,
located at a distance dSun = 218.155×106 km from Eros. The radius of the SOI of Eros is
therefore RSOI = 366.437 km, while the radius of the Sphere of Hill is RH = 2255.70 km
when Eros is located at the semi-major axis of its orbit around the sun. As shown in Figure
7.9c, the ratio between the main and perturbing acceleration increases exponentially with
the distance. Therefore, we should expect that, by neglecting this disturbance in the

85



7.2. THIRD-BODY PERTURBATION EFFECT

0 2 4 6 8 10

Time (s) 106

-2

-1

0

1

2

3

4

E
rr

or
 in

 e
st

im
at

ed
 

 (
m

3 .s
-2

)

104

150 km
250 km
350 km
500 km
1000 km
1500 km

(a) Error in the µ estimation in function of time
for different altitude orbits.
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Figure 7.9: Third-body perturbation effect on the orbit and estimation procedure

estimation model, once we reach RSOI , the performance will begin to decay. This is
shown in Figure 7.9a, where a set of orbits are taken at different distances from the
centre of Eros to estimate the parameter µ, neglecting the Sun ’s contribution to the
dynamics of the spacecraft. Closer to the asteroid, the disturbances due to the highly
irregular shape or Eros are getting larger, and it becomes more difficult to isolate the µ
parameter. In the reverse situation, the Sun ’s contribution becomes greater when the
distance from the centre of Eros increases, and the estimation of the µ parameter alone
becomes difficult as well.

It is not complicated to take into account the third-body disturbance in the estimated
model, since we already know the Sun’s gravitational parameter µSun. The only vari-
ables are the position of the Sun and the position of the spacecraft with regard to Eros.
Including this perturbation in the estimation model by calculating this perturbation at
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Table 7.2: Estimation results for the µ parameter for different altitude orbits

Distance to the centre of Eros Convergence time (s)
Simulation error Theoretical error
m3.s−2 % m3.s−2 %

150 19,155 233 0.0527 135 0.0307
250 43,726 82 0.0186 110 0.0250
350 100,039 50 0.0114 81 0.0184
500 193,571 32 0.0073 75 0.0170
1000 438,645 34 0.0077 190 0.0432
1500 690,705 120 0.0273 432 0.0982

each step, based on the relative position of the sun with respect to the spacecraft, the
results are displayed in Table 7.2 and Figure 7.9b. Compared with the previous model,
we can observe that the divergences of the filter are corrected. The convergence time
still increases with the distance to the centre of Eros, hence the large theoretical and
estimated values for the 1000 km and 1500 km orbits.

7.2.2 Conclusion

• In an ideal world in which Eros is the principal gravitational body and all other
perturbations can be ignored, increasing the distance will increase the filter’s con-
vergence time, but will reduce the estimation errors.

• As we get closer to the asteroid, the disturbances due to Eros’s highly irregular
gravity field will be stronger, and thus estimating the µ parameter alone will be
more and more complicated.

• If the third-body perturbation due to the influence of the Sun is included in the
real-world simulator, after we reach the SOI, the performances of the filter will
decrease exponentially.

• Including the third-body perturbation in the estimated model will correct for the
previous divergences of the filter, and will increase the performances of the filter
compared to the previous case. The optimum distance to estimate the µ param-
eter in this case is around 500 km, for a low convergence time and the best filter
performances.

7.3 Effect of the Solar radiation pressure on the
estimation

Another disturbing force that can influence the spacecraft’s dynamics is the Solar Radi-
ation Pressure (SRP). The effect of the SRP in the estimation procedure will be detailed
in this section.
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7.3.1 Results

The SRP is the principle of massless electromagnetic waves, which possess mass-like prop-
erties. The photons in the light produced by the Sun travel and have momentum at the
speed of light. Since they have momentum, when they reach the spacecraft, they trans-
fer momentum to the spacecraft. The momentum that these photons bear is, however,
extremely small. Thus, in spacecrafts orbiting Earth, the perturbing force is not really
detected, but it is a disturbance that can not be ignored when orbiting an asteroid of
small mass and size. When a spacecraft is huge, exposed in the light or moving slowly,
the SRP perturbation is stronger. Since the gravity field of Eros is weak, the SRP per-
turbation effect is stronger when increasing the distance to the centre of Eros, as we can
see in Figure 7.10.

When attempting to estimate the µ parameter, it becomes very important to take the
SRP into account. It is wise to start by estimating the µ at a sufficient distance from
the centre to avoid all the irregular shape and density effects on the dynamics of the
spacecraft, as already seen in previous sections. But the gravitational acceleration due to
the Eros gravity field becomes weaker as the distance to the centre increases, and hence
the disturbances coming from the sun become greater. This is what we see in Figure
7.11a, where we can see that, ignoring the SRP, the estimate diverges after reaching
250 km from the centre of Eros. Unlike the third-body perturbation, it is complicated to
estimate the SRP perturbation. It depends on several parameters, such as the orientation
of the spacecraft with respect to the sun, the size of the spacecraft or its reflectivity.
In past missions, the SRP was the first parameter to be estimated before estimating
the gravity field of the main attracting body. Since the estimation cannot be perfectly
accurate, some estimation errors (up to 10%) will be taken into account when the SRP is
implemented in the estimation model. Figure 7.11b shows that taking into account the
SRP, the divergences are eliminated. In the same way as in the previous case, increasing
the distance to the centre increases the convergence time. This is probably due to the
fact that the gravitational influence of Eros is becoming weaker and that the spacecraft
will see less of the surface of Eros for the same amount of propagation time. In the case
of a high altitude orbit (> 500 km), the error in the SRP estimate introduces an error
in the µ estimate, as can be seen in Table 7.3. It is therefore important to estimate the
SRP as accurately as possible before estimating the µ at high distance from the centre of
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Figure 7.10: Maximum ration between the SRP perturbing and main acceleration.
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Figure 7.11: µ estimation results.

Table 7.3: µ simulation results

Distance to the centre of Eros
(km)

Simulation error Theoretical error
m3.s−2 % m3.s−2 %

150 235 0.0534 135 0.0306
250 96 0.0218 110 0.0249
350 48 0.0109 81 0.0184
500 49 0.0111 72 0.0163
1000 110 0.0249 318 0.0722
1500 550 0.1242 789 0.1792

Eros.

7.3.2 Conclusion

• The effect of the SRP on the orbit increases with the distance to the centre and
results in a force acting in the opposite direction to the vector position of the Sun
in the asteroid frame.

• Not taking into account the SRP in the estimation process result in a divergence of
the filter for high altitude orbits.

• Taking into account an estimated SRP in the process eliminates the filter divergences
but introduces error in the final estimate of µ.
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Figure 7.12: Spacecraft orbit propagated using two different maximum degree for the
spherical harmonics expansion, degree 2 and 22.

7.4 Gravity resolution

The gravity field resolution will depend on the degree of expansion selected for the ex-
pansion of spherical harmonics. The higher the degree, the closer the gravity field model
will be to the real gravity field of the asteroid. We have seen that while the polyhedron
gravity field can give the most precise modelling results, the spherical harmonics model
can give similar results when only the estimate outside the radius of the reference sphere
is taken into account. The estimate is therefore only suitable for the characterisation
phases, but not for the landing phases. In the estimation procedure, the modelling of
spherical harmonics is also easier to implement, since it requires only the estimation of
finite numbers of coefficients that can be used to directly calculate the acceleration felt
by the spacecraft at each step. Moreover the low computational time compared to the
polyhedron model is the main advantage of the spherical harmonics model.

The objective of this section is to find a trade-off between the computational time
and the resolution of the spherical harmonics expansion, since we can not just decide
to estimate the spherical harmonics coefficients up to infinity. In the end, the degree of
expansion of spherical harmonics must be sufficiently high to reduce errors in the final
estimation of the state. In Figure 7.12 between a spherical harmonics model of order 2
and 22, the error in position in a 50 km orbit is displayed. As expected, we can see that
the error increases with time in the spacecraft’s position and velocity, as shown in Figure
7.13, compared to the more precise model.

Indeed, as we can see in Figures 7.14, increasing the resolution of the spherical har-
monics model, the errors in position and velocity of the spacecraft are reduced. If we
take into account the propagation of the states in time, the small error at the beginning
is added to the next step until the propagation time is reached, which is why the final
position or velocity errors could have large values even with a high resolution of the ap-
proximate gravity model. That is why we used the spherical harmonics model in the
simulator model until order 22, to reduce these errors as much as possible. This is not,
however, the case in the estimation procedure. Since we estimate using the measurements
for the next time step at each instant, the errors in the propagation are not added to each
other linearly. This is why in the estimator model we can allow a decreased resolution of
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Figure 7.13: Error between states propagated with the SH-2 and SH-22 gravity model
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Figure 7.14: Error between states propagated with the SH-8 and SH-22 gravity model

the gravity field.

The differences in the propagation of orbits according to the resolution of the orbit can
be explained by the difference in the acceleration of the gravity field felt by the spacecraft.
As the gravity field resolution increases, the differences in gravitational accelerations
between the different gravity resolutions tend to decrease and thus reduce the differences
in the spacecraft’s dynamics. In Figure 7.15, this is what we observe by plotting the
differences in gravity accelerations for various resolutions for a sphere of 16 km radius
corresponding to the maximum radius of Eros. Since the difference between the degree
12 and 8 are as large as the differences between the degree 7 and 8, we can assume that
this degree of expansion will be sufficient for the estimation procedure. This is also what
we could observe in 7.14, where the initial differences in position and velocity induced by
the gravity field were small.
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Figure 7.15: Differences in gravity field on a sphere of 16 km radius, and in function of
the degree of expansion (SH-i denotes the spherical harmonics expansion of degree i).

7.5 Spherical harmonics coefficients estimation

We will attempt to estimate the coefficients of spherical harmonics up to degree and order
8 in this section. In an environment where only a noisy position vector is available as a
measurement, we will begin with an estimate of the maximum coefficients. We can test
the estimator in different conditions by setting the position noise quite high, to see any
improvement in the results. Real measurements will be implemented in the estimator and
tested in the Near-Shoemaker mission scenario when different conditions are tested.
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(c) σp = 10 m

Figure 7.16: Estimation errors in function of the position measurement error σp

7.5.1 Effect of position noise on the estimation

For the first attempt, under different noise position errors, we will try to estimate these
coefficients, where the position noise, σp, ranges from 1 km to 10 m. The propagation
time is chosen to be t=10,000,000 s for this estimation. The spacecraft is launched into a
polar circular orbit at an altitude of 45 km at the beginning of the estimation. The results
of the estimation are shown in Figures 7.16, where the final estimation error is shown for
all estimated coefficients. The negative degree coefficients represent the sij coefficients,
while the positive values represent the cij coefficients. These results indicate that reducing
the error in the position makes it possible to estimate higher degrees coefficients. This
can be explained by the fact that the small changes in the dynamics due to the high
spherical harmonic values are hidden by high noise on the position vector. Therefore the
measurement noise should be as low as possible to allow the spherical harmonic coefficients
of high order degrees to be felt in system dynamics for optimal estimation. We can also
see that with σp= 10 m, it is possible to estimate all coefficients up to degree 8. A 10 m
error in the measurements can be envisaged with current sensor technologies.

7.5.2 Effect of the range and inclination on the estimation

The spacecraft should cover the maximum surface area to feel the effect of every com-
ponent of the asteroid ’irregular gravity field. In the estimate, coverage is of major
significance as poor coverage can lead to divergences in estimated coefficients. It is more
complicated to estimate the J2 effect under specific conditions, such as equatorial orbits.
There are two major dependencies in the coverage of the surface, the time-of-flight and
the inclination.

The inclination is the first element that we can think of. The inclination increases
the surface area seen by the spacecraft for the same major axis orbit and time-of-flight,
as shown in Figures 7.17a, 7.17b and 7.18. The maximum latitude and longitude are
restricted by the initial inclination angle.

Time-of-flight also plays an important role in the procedure of estimation. Increasing
the flight time results in a higher estimation time, but it does not always lead to higher

93



7.5. SPHERICAL HARMONICS COEFFICIENTS ESTIMATION

(a) i=45◦ (b) i=60◦

Figure 7.17: Coverage plot for different altitudes orbit, with an inclination of i=45◦and
i=60◦.

coverage. Under certain conditions, every period T, the projected orbit on the surface
repeats the same scheme. Such special orbits are called repeat ground-track orbits. For
a time-of-flight of 3,000,000s, in Figure 7.17a, for i=45 ◦, the orbit seems to be repeated
every period, and therefore it leads to uncovered areas in the estimation process. It is
the same effect we observe for i=90◦ with a distance of 150 km form Eros in Figure 7.18.
These orbits must therefore be avoided. Repeat orbits for i=90◦ are shown for different
semi-major axis, and in function of the repeat time, in Figure 7.19. We can see that the
closer we are to the surface, the more repeated orbits we can find. This is only due to the
fact that the orbit can make more revolutions around the asteroid closer to the surface,
and therefore more repetitive orbits can be found.

To investigate the effects of the range and the inclination on the estimation procedure,
we reduce the propagation time to t=100,000s and use the position as a measurement with
σp=1 km. Under these conditions, we do not expect the estimated time to be sufficient
for the estimation of all coefficients. However, this technique allows us to see under
which conditions the estimation procedure converges more quickly. From Figures 7.20a
to 7.20c, it can be seen that a reduction in the distance to the centre of Eros allows a
better estimation of higher degree coefficients. This is due to the fact that as we have seen
before, increasing distances means reducing the effects of these higher degrees parameters
on the dynamics of the spacecraft. Increased inclination also improves the efficiency of
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Figure 7.18: Coverage plot for different altitudes orbit, with an inclination of i=90◦.
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Figure 7.19: Repeat orbits in function of the semi-major axis and the repeat time

the estimation. This is due to the effect of coverage, because with a high inclination, the
spacecraft covers more of surface and, combined with the rotation effect, allows much
more of the surface areas than with low inclinations orbits.

7.5.3 Conclusion

• Even with with bad conditions, i.e., only highly noisy position as a measurement,
small propagation time and not optimum orbits, the c10 and c20 coefficients can be
estimated with a high accuracy.
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(b) 60 km orbit
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(c) 100 km orbit

Figure 7.20: Estimation results for the spherical harmonics coefficients in function of the
altitude.
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(b) i=60◦
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(c) i=90◦

Figure 7.21: Estimation results for the spherical harmonics coefficients for a 60 km orbit,
and an inclination of i=45◦, i=60◦and i=90◦.

• Repeat orbits must be avoided for optimum coverage of the surface.

• Decreasing the distance to the surface of the asteroid, higher degree coefficients can
be estimated. This is due to the fact that the effect of the disturbances decreases
with the distance to the centre, and because the higher degree of disturbance has a
smaller dynamical effect, it is harder to feel this effect for high altitude orbits.

• To make the estimation procedure more efficient, the inclination of the orbit should
be as close as possible to 90◦. In the case of polar orbits, combined with the
rotational rate of Eros, coverage is optimum. Therefore, these orbits should be
preferred for the coefficient estimation.

7.6 Parameters effect on the estimation

As we have seen, the further away we are from the asteroid, the harder it becomes to
estimate the spherical harmonics coefficients of high order and degree. However, some
parameters, such as the µ and J2 parameters, have effects strong enough to be felt on
the dynamics of the spacecraft at high altitudes. It is therefore possible to estimate
these parameters in the early stages of the mission. Some other coefficients have strong
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(a) µ and J2 coefficients estimated
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(b) µ and J2 coefficients removed from
the estimation

Figure 7.22: Spherical harmonics coefficients estimation errors, with and without the
first-order and degree coefficients in the estimation.

physical means, such as the first degree coefficients, which represent a shift from the centre
of gravity to the centre of mass, and can therefore be also deducted earlier in the mission.
If these parameters are removed from the estimation procedure, we should not necessarily
expect an improvement in the estimation results. For example, since the estimator can
easily estimate the parameters J2 and µ, the rest of the estimation time is spent only on
estimating the other coefficients, and therefore the results should not be improved.

7.6.1 Removing the µ and J2 parameter from the estimation

The first step in investigating the effects on the estimation parameters is to remove the
main gravitational parameter µ. Since this parameter contributes to the central field, it is
the main contribution to the acceleration felt by the spacecraft. Therefore, and as we have
shown before, taking into account SRP and third-body disturbances, the µ parameter can
be estimated very precisely in the early stages of the mission, with an error of maximum
0.2%. The µ parameter will be removed from the estimation procedure, assuming a
constant value with an error of 0.2%, and the J2 will be assumed to be a constant with
1% error to evaluate the effects of these parameters on the estimation results. For a 45
km orbit, the results are compared in Figure 7.22 with the previous case, where µ and J2

were a part of the estimation procedure. As shown in Figure 7.22, the estimation results
are not actually improved. This was expected because the filter estimate the µ and J2

parameters very quickly with high accuracy, and therefore there is no reason for this test
to have an effect on the rest of the estimation procedure.

7.6.2 Removing the first-order and degree coefficients from
the estimation

We have seen in 7.16 that, especially when we consider highly noisy measurements, first
order and degree coefficients can be more difficult to estimate. However, they represent
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(a) First-order and degree coefficients
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(b) First-order and degree coefficients
removed from the estimation

Figure 7.23: Spherical harmonics coefficients estimation errors, with and without the
first-order and degree coefficients in the estimation.

a shift in the centre of the figure from the centre of the mass, which can be obtained by
multiplying the first order and degree coefficients by the reference sphere radius (16 km).
For the Near NLR Gravity Model, the centre shift is small and equal to [9.7 m, 2.4 m, 32.6
m], however for the shape model, the shift is reduced to less that 1 m for every axis, which
explains why it is difficult to estimated them. This shift can be obtained independently
from the estimation procedure, so we will choose to remove these coefficients from the
estimated model to see if any improvements can be made with the estimation results. In
Figure 7.23 the estimation results are compared for a 45 km polar orbit, with σp = 100
m. We still assume that the µ and J2 coefficients are estimated earlier in the mission,
and therefore are not estimated with the rest of the coefficients. We can observe that the
removal of the first order and the degree coefficients form the estimate slightly improves
the performance of the filter. For instance, the s21 error can be estimated below 10%
error, which was not the case when attempting to estimate these coefficients at the same
time. It also improves the convergence of higher order and degree coefficients.

7.6.3 Adding the rotational rate of the asteroid in the
estimation

When attempting to estimate the spacecraft’s position and velocity, the rotational rate
of the asteroid is a very important parameter to know. Since gravitational acceleration
depends on where the spacecraft is located with respect to the asteroid’s surface, it is
important to know the relative position of the spacecraft in relation to the asteroid and
therefore to know the asteroid’s dynamics. For the prior estimates, the rotational rate
of the spacecraft was assumed to be known. In real missions, however, this rotational
rate must be estimated, because its dynamics are supposed to be unknown before the
encounter with the asteroid. Together with the estimation of the µ and 2 parameters, the
estimation of the asteroid’s rotational rate is one of the first estimates being conducted.
Once the landmarks are generated on the surface of the asteroid, this rotational rate
can be measured by just measuring the displacement of the landmarks in the camera’s
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(a) Given attitude and rotational rate
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(b) Estimate attitude and rotational
rate

Figure 7.24: Spherical harmonics coefficients estimation errors, with and without the
first-order and degree coefficients in the estimation.

field-of-view. However, far from the asteroid, this process is more efficient, that is, when
the entire surface of the asteroid is present in the camera field-of-view. Using noisy
position and rotational rate as measurements, with σp=100 m and σw= 50 degrees/day,
the estimation process has been carried on a 45 km polar orbit. The estimation was
based on the previous estimation, that is without the µ, first-order and degree coefficients
and J2. The results are shown in Figure 7.25, where we can see that the estimation
performances are reduced only for the 7 and 8th order and degree coefficients. We can
clearly see in these conditions, such as the previous tests, that the higher degrees are
more difficult to estimate. This could be because the estimation time is not sufficient, or
the orbit is not optimal for these coefficients to be estimated.

7.6.4 Conclusion

• Removing the µ and J2 parameters does not influence the estimation results, due
to the fact that these parameters can be estimated quickly and very accurately.

• Removing the first-order and degree coefficient improves the estimation results,
probably due to the fact that they are complicated to estimate when the coverage is
not optimum and the shift in the centre of Figure from the centre of mass is small.

• The integration in the estimation process of the rotation rate and asteroid attitude
reduces the performance slightly, or at least increases the convergence time. How-
ever, using the movement of landmarks in the Navcam field-of-view, the rotational
rate can be estimated early in the mission stages.
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7.7 Mission scenario

Since only a limited set of measurements can be made available for a real mission, the first
step in improving model reality would be to move from a noisy state vector to an ideal yet
real measurement model. Two types of measurements available in real systems are inertial
and relative measurements. The inertial position can be determined through the DSN,
which is the only sensor capable of delivering direct inertial data. The range and range
rate, which are relative quantities, can be determined by the lidar sensor, and the relative
location and attitude can be measured by the navcams and the star trackers. We will
attempt to reproduce the mission stages of the Near-mission to test the software in a real
environment. The orbit was reduced to 50 km after the spacecraft was successfully placed
in orbit at 200 km around Eros, where NLR data was collected. A shape-based spherical
gravity model was calculated with the shape model based on this data, and the coefficients
were used as a-priori coefficients for the process of orbit determination. After the orbit
was reduced to 35 km the gravity coefficients were estimated by the orbit determination
process during 10 days by degree and order 10 in relation to their uncertainties.

Estimating the µ on the first part of the mission, as we have shown before, is the
most important gravitational influence the spacecraft can feel at high altitudes. We
have already shown, however, that the estimation could be done quite accurately for
this parameter by increasing the distance to the centre of Eros, even if the convergence
time increased with the distance. At this distance, radiometric data will give the inertial
position as a measurement. We should also maintain that the estimation can not be done
for such altitudes by ignoring the SRP and the third-body disturbance.

The focus is on estimating the coefficients during the 50 km orbit after this estimate
is carried out. For that, we assume that every 2s, the Lidar and Navcam delivers data,
working along with the radiometric measurements that continuously give measurements
3 hours a day. Figure 7.25a displays the results for this estimation. We can see that the
higher degree coefficients are still to be estimated, although the coefficients up to degree
and order 5 can be estimated quite accurately. For the next estimation step, we will use
this data as a-priori values, which will consist of estimating all degree coefficients up to
degree and order 8 during a 35 km orbit, orbiting for 10 days. In this case, as shown in
Figure 7.25b, we can see that all the coefficients can be estimated. We can see, however,
there are still some coefficients converging. The initial a-priori values for the position
and velocity are initialised close to the real values, with an initial error of 10 m for the
position and 1 m/s for the velocity.

With this spherical harmonics model, the estimated velocity and position are shown
in figure 7.26, where we can see that for the propagation time, the position and velocity
errors are very low. This is mainly due to the fact that the measurements are based
on low noise. We can also observe that the model is still not perfect for estimating the
position and velocity perfectly, although the estimation error is low. This may be because
higher order coefficients are not included in the estimation process or the errors in the
estimated forces of the disturbance are too high.
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(a) 50 km altitude orbit estimation
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(b) 35 km altitude orbit estimation

Figure 7.25: Estimation error for the spherical harmonics coefficients estimated with a 50
km altitude orbit.
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Figure 7.26: Estimation error for the position and velocity with a 30 km orbit.





8
Conclusions, Discussions and

Recommendations

The key objectives of this study are to discuss the research questions formulated in the
introduction. From these questions, several conclusions can be drawn for each question,
using the results of development and simulations. Indeed these questions can not be fully
answered, so certain investigations will need to be carried out to finish the work done
during the study, because of the lack of time. The recommendations will then outline
the remaining work to address the questions thoroughly and to broaden the scope of this
work.

8.1 Conclusions

The software was tested under different conditions in the previous chapter, to evaluate
the performances of the simulator in each of these conditions.

Since the resolution of the spherical harmonics decreases, as the distance to the aster-
oid increases, the high order and degree coefficients are becoming harder to estimate. The
inclination also affects the estimation, due to the fact that the surface area covered by the
spacecraft is larger with a high inclination, and therefore the spacecraft can feel the effect
of every component of the irregular gravity field. We have attempted to remove the coeffi-
cients of first-order and degree spherical harmonics to see any improvement in the results,
which worked, since the software struggled to estimate these coefficients representing the
shift from the centre of gravity to the centre of reference frame, which appeared to be
very small. However, removing the J2 and µ had no effect on the estimation results, as
they are strong effects that can be estimated below 1% error, very quickly. Nonetheless,
adding the asteroid’s rotational rate to the estimation procedure did not drastically re-
duce the performances. Finally, the software was tested with the Near mission scenario
leading to an estimate of all spherical harmonics coefficients up to degree and order 8,
below 10% error.

Based on the previous results and the work accomplished during this thesis, the re-
search questions must be mentioned and answered in this section.

– How to increase the safety of autonomous navigation for asteroid
missions?



8.1. CONCLUSIONS

By attempting to measure as accurately as possible the forces and torques acting on
the dynamics of the spacecraft in this kind of environment, the safety of autonomous nav-
igation can be improved. To prevent major errors in the state prediction, any disturbance
that could have an effect on the spacecraft must be included in the model. As we have
shown, for instance, it is not appropriate to neglect the SRP and third-body disruption,
as it causes significant errors in the µ parameter estimation. The navigation software
should then be able to predict these forces and apply them to the spacecraft dynamical
model. In addition, sensors should be present on the spacecraft to estimate these forces
for this estimation to be performed. The accelerometer will, for instance, be used to effect
the SRP force on the spacecraft during no-thrust manoeuvres.

It is not necessary to know the properties of the asteroid before the encounter to ensure
better dynamic estimation. However, the collection of sensors that must be carried out by
the spacecraft should be sufficient to provide prior characterisation of the asteroid during
the first step of the mission, which is necessary for the rest of the estimations. Navcams are
very effective sensors that have been used in the past, and will be used in future missions.
They are powerful in the sense that, they can be used both for early characterisation
and for accurate navigation close to the asteroid and for landings. When combined with
Lidar data, a full collection of measurements can be created and more measurements
can be given to the filters. The more measurements are given, the better the estimation
would be as long as the information given to the filter is not redundant. However, the
estimation can be conducted using only Lidar data, navcams and star-tracker, along with
radiometric-measurements.

The last factor to be taken into account to improve the safety of navigation and the
precision of the predictions is the gravity field of the target asteroid. It must be taken
into account that, while we have used a spherical harmonics model, this gravity field
model cannot be used for the last mission phase corresponding to the landing phase. The
Spherical Harmonics gravity model is valid only outside the sphere of reference and often
diverges close to the surface. For this reason, another solution must be explored for the
last mission phase We have seen that although the polyhedron gravity field modelling is
very accurate, the spherical gravity harmonics model is more than adequate to describe
the field of gravity even for irregular bodies during interesting mission phases, and has
the advantage of being computationally effective, which is not the case for the polyhedron
model.

Consequently, three aspects must be taken into consideration to improve the safety of
navigation. The sensors should provide measurements as accurately as possible, providing
as much environmental information as possible, so that the filter can estimate the state
and velocity with a high accuracy. The gravity field of the asteroid must be included
in the estimation process, with the spherical harmonics model up and to the maximum
degree and order and only before the landing phase, to reduce the errors of the estimated
acceleration and thus improve the accuracy of the dynamical model. The last phase, i.e.,
the landing phase, must be analysed separately and a different way of estimating the
coefficients of gravity must be used to prevent divergences. The last factor to be taken
into account is the disturbances arising from other bodies, such as the Sun or others
massive bodies in the asteroid environment.

(a) What is the influence of an irregular gravity field on the mo-
tion of a spacecraft in the vicinity of asteroids?
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The influence of the irregular gravitational field can be seen in the dynamics of the
spacecraft, with a highly irregular gravitational field, the dynamics of the spacecraft will
be affected and may lead to unstable orbits. The problem in a highly irregular gravity
field is that the errors introduced in the dynamics may be too strong to estimate the
position and velocity of the next step. That is why we are using a spherical harmonics
model to characterise Eros gravity field, to allow an estimation of the state at each time
step. However, we know the farther we are from the asteroid, the less the spacecraft will
be affected by irregularities and therefore by high order and degree of spherical harmonics.
Consequently, we can start by estimating only the µ gravitational parameter far away from
the centre of Eros, without taking into consideration the higher order and the degree of
the spherical harmonics.

The same procedure can be used to estimate the value of the J2 coefficients by getting
closer to the surface when the µ parameter has been accurately estimated. However, in
our case, the shape of Eros allowed the characterisation of all coefficients up to degree and
order, but we must take into account that the gravitational field of the target asteroid may
be more regular and therefore the effect of the gravitational coefficients may have too little
effect to be estimated with the same estimation time. In the reverse situation, the shape
may be more irregular, and therefore the effects of higher order and degree coefficients
may be as strong as the effect of J2, which could strongly impact the estimation of this
coefficient by proceeding step-by-step. For a larger picture, if we do not know the shape
of the target asteroid at all a step-by-step solution must be avoided and a simultaneous
estimation of all the coefficients preferred.

(b) What is the impact of the gravitational modelling on the nav-
igation accuracy?

The gravity field model has a major effect on navigation safety in such a way that if the
gravity field is not correctly modelled, the acceleration acting on the spacecraft cannot be
accurately determined and thus, location and velocity cannot be predicted with adequate
accuracy. As we have seen before in the case of very irregular bodies such as Eros, the
simple point mass gravity model, which may be appropriate for orbiting planets, is not
for this type of body. For low altitude orbits, the errors in the gravity field and thus
the acceleration felt by the spacecraft using this model can be up to 30% of the actual
acceleration value, which is too high to consider this model. However, more refined models
can be used, such as the polyhedron and spherical harmonics, which as discussed above,
can be used for computational efficiency in different mission phases.

However, some aspect that needs to be discussed is the gravity resolution. In our
case, we computed the differences in propagated states that could occur by using different
degrees of expansion for our spherical harmonics model. We concluded that the model
of spherical harmonics up to degree and order 8 was sufficient to con of these coefficients
without too much error in the dynamical model . However, this degree was also chosen
because the increase in the degree of expansion increases the number of coefficients to
be estimated and increases the computational time. By choosing a too high degree of
expansion, the computational time may be too long for the estimation process to be
carried out in-real time, and the estimation time may be too long to estimate all these
degrees and order coefficients, without the assurance of any improvement in the estimation
of the state of the spacecraft. As previously discussed, this resolution is also dependent
on the target asteroid. If the body appears to be regular in shape, it may not be necessary
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to extend the spherical harmonics to a high degree, because the higher degree and order
of the spherical harmonics coefficients will require a long estimation time, although they
will not really affect the dynamics of the spacecraft. To reduce the computational time,
a trade-off must be made on the basis of the first data obtained at the arrival of the
different sensors.

(c)How can the gravity field be autonomously estimated using only
on-board data and measurements?

Using the correct set of measurement data, the field of gravity can be estimated using
the spherical harmonics expansion. Measurements are used by an Unscented Kalman Fil-
ter to correct the state of the spacecraft and parameters that need to be estimated on
the basis of a given analytical state transition and measurement model. The Unscented
Kalman Filter is much easier to implement than the Extended Kalman Filter for a large
number of parameters that need to be estimated, since no Jacobian computation and
measurement matrices are required. The difference in the performances, however, has
not been shown to be significant. A particle swarm optimiser is used to estimate the
covariance matrix using an off-line Kalman filter prior to estimation. The Navigation
Filter was evaluated during a simulated-Near Mission Scenario, where the gravitational
coefficients were estimated at order and degree 8 for a 35 km orbit, based on the a-priori
coefficients determined during the preceding 50 km orbit.

8.2 Discussion

The results we have found, although very promising, need to be put in context, and will
be discussed in this section, assessing their limitations, impact and significance.

We have seen that in the case of the Near Shoemaker mission, we were able to estimate
the spherical harmonic coefficients to degree and order 8 below 10 percent error, at the
same time as estimating the state of the spacecraft below 10 m error for the position
and 0.01 m/s error for the velocity. In the work of Miller et al. (2002), we have seen
that during the Near-mission, they were able to estimate the coefficients relative to their
uncertainty up to degree and order 10. We could have increased the order coefficients to
this degree and even higher, but the limitation was motivated by the limited CPU we
have and the time we could afford for each estimate to be made. However, this does not
mean that this model is not capable of estimating higher degree and order coefficients.
We just decided to limit the estimation for practical reasons.

We have decided to estimate the coefficients in the same time than the spacecraft state,
and the two estimates are working in a complementary way. If the spherical harmonics
model is more accurate, the estimation of the state will be more accurate in the next
estimation step, which will contribute to the estimation of the coefficients, and so on.
This loop is beneficial for both state and parameter estimates. This method works well
and makes it possible to estimate the spherical harmonics gravity at the same time as
the state vectors, which is a step further in making navigation fully autonomous, because
even if we do not know the shape of the target asteroid, this estimation can still be made
and allow us to predict the negative effects that the field of gravity may have on the
dynamics of the spacecraft.
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We have also seen that the range has a major impact on the estimation of the gravity
field coefficients. For example, the spherical harmonics coefficients on a 100 km orbit,
were only estimated up to order and degree 4, while reducing the altitude to a 45 km orbit,
the estimation could be conducted up to degree and order 8, for the same propagation
time. This is a very important drawback in the use of spherical harmonics as a model for
the body’s gravity field. As the resolution of the expansion of the harmonics decreases
with the distance to the centre, the spacecraft should be closer to the asteroid surface
to feel higher order and degree coefficients. However, if the spacecraft is too close, the
spherical harmonics cannot be used any longer due to the differences in its model when
entering the Brillouin sphere. The maximum order and the degree to which the spherical
harmonics coefficients are to be estimated should be chosen according to the orbit altitude
at which these parameters are to be estimated. However, the closer we get, the higher
the perturbations will be and the more difficult it will be to estimate the state. If the
degree of expansion is too important, the estimated time will be increased and the higher
coefficients will not be estimated. On the contrary, if the degree of expansion is chosen
to be too small, errors will be introduced in the estimation, since the perturbations that
will not be taken into account by the model will interfere with the estimation process.
It is therefore important to analyse and carefully choose the degree of expansion. In
addition, the inclination should be chosen on the basis of the rotational dynamics of the
asteroid in the order to cover the maximum surface area. It has been shown that, for our
spacecraft around Eros, an inclination of 90◦ leads to better results in the estimation for
the spherical harmonics coefficients. It is therefore important to optimise the trajectory of
the spacecraft, based on the first data we get from the asteroid, to improve the estimation.
If the optimisation of the orbit is not carried out the estimation process will not be ideal.

Another important aspect that needs to be discussed is the navigation sensors. For
most simulations, we have chosen to use only the noisy position as a measure for the
estimation process to be performed. However, this was chosen because the implementation
of the range and range rate as measurements did not improve the performance of the filter.
However, the last simulation was performed using the modelled sensors. We have seen
that although the transition from ideal measurement to sensors still leads to accurate
estimation, it affects the estimation time and the estimation of the state. This is due to
the fact that we use a more complex model that outputs measurements at different rates,
and sometimes no measurements are given to the filter that needs to be taken the last
step without improving the results. It must be understood that the improvement of the
measurement model can give different results with this estimation process and therefore
this filter must be tested with different and more complex sensors models to really test
the behaviour of this navigation filter in a real environment

The assumptions that we made at the beginning of the thesis must also be discussed.
We assumed that the SRP was estimated earlier in the mission and therefore a small
error value with the SRP was given to the estimation filter. We have seen that, ignoring
the SRP in the estimation process led to divergences in the µ estimation. Therefore, if
the µ could not be estimated accurately, the spherical harmonics coefficients estimation
could not be conducted properly. Taking into account this disturbance, however, the
µ parameter could be estimated with a maximum error of 0.2%. It would have been
interesting to see if the filter could be able to estimate this force at the beginning, because
we have chosen a small error for the SRP, which in reality, might not be possible. It is
exactly the same process with a rotational rate. Although we have seen its effect on the
estimation process, it would have been interesting to see if, along with the SRP estimate,
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the estimation of coefficients would still have been possible under these conditions. In
other words, by increasing the accuracy of the models, the simulated-real-world model,
and the navigation filters, the actual performance of the filters can be assessed.

This thesis work can be added to previous works, such as the work of Razgus (2016),
who explored the implementation of a dual quaternion method for relative asteroid nav-
igation. It allows a precise characterization of the asteroid’s gravity field and thus to
decreases the errors in the acceleration model and in the state estimation. This thesis
completes his extensive work on the modelling of the navigation system around an aster-
oid, by improving the precision of the gravity field, and hence by increasing the model
and estimation accuracy. This work is one step forward in trying to make the navigation
around asteroids more robust and reliable, and hence to increase the navigation safety.

8.3 Recommendations

For time purposes, some investigations or improvements in the models could not be carried
out. However, these objectives and considerations will remain as recommendations for
future work:

• This software must be evaluated in other settings, around other bodies, to deter-
mine its efficiency in different scenarios. Because the simulation of the gravity field
depends on the shape of the asteroid, we should expect that this model is also
suitable for other environments. However, the degree of expansion of the spherical
harmonics must be tested and adjusted, if necessary, depending on the shape and
density of the orbiting asteroid.

• The last phase of the mission must be investigated by testing different techniques for
estimating the near-surface gravity field. Polyhedron modelling may be the solution
for this estimation method, but other techniques may be envisaged to increase
computational efficiency, such as Mascon-spherical modelling coupled harmonics, or
the dynamic Brillouin Sphere Radius technique for computing spherical harmonics
close to the surface.

• This model should be included in a full GNC system to evaluate its performance in
a real mission when the manoeuvres are executed.

• Gravitational accuracy must be increased to see up to which order the model is ca-
pable of estimating the coefficients of spherical harmonics and with which accuracy.
Depending on the distance, an investigation may be conducted into the limits of
this estimation process in the case of Eros or other scenarios.

• The measurement model must be enhanced to include real-sensor effects such as bias
and misalignment. Models of the sensors must be refined to obtain measurements
that are as realistic as possible, including, for example, pointing errors or range
errors due to the presence of surface features occulting the line of sight of the
sensors. In this conditions, the performances of the filters must decrease.

• The image processing part should be included in the Navcam model. The land-
mark tracking phase must be carried out at the beginning of the mission and not
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randomly generated on the surface for more realistic conditions. Simultaneous lo-
calization and mapping methods should be explored to determine its effect on the
estimation.

• A different set of sensors can be used to test the efficiency of the filter under these
new conditions. The sensors can only be reduced to optical navigation, which is a
very promising technique. We have shown that the filter can operate with only one
noisy inertial state vector measurement, so this technique needs to be investigated
to see whether it is possible to reduce the number of sensors on-board without
reducing the performances.

• The given constant values for this model such as the SRP and the rotational rate
must be included in the navigation filter to see if it is still possible to estimate the
coefficients when these constants are not given.

• The torque and force model of the spacecraft must be enhanced to provide the con-
trol forces and torques that could be used to control the attitude of the spacecraft,
and to guide the sensors to the surface. This could increase the efficiency of the
filter in the sense that it would keep the asteroid from being out of the sensor LOS.
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A
EKF Equations

A.1 Point mass Gravity

The calculation for the point mass gravity acceleration was made using the main formula:

||Fg|| = −
µ

d2
(A.1)

with d the distance to the centre of Eros, µ its main gravitationnal parameter. The state
space equation can be written as:ẋ

ẍ
µ̇

 = F

x
ẋ
µ

+

ν1

ν2

ν3

 (A.2)

With ν1, ν2, ν3 the values of the process noise.

The jacobian matrix, for this scenario can be witten as:

F =


03×3 I3×3 03×1

(∂ẍ
∂x

)
3×3

03×3 03×1

01×3 01×3 0

 (A.3)

And the process noise matrix is:

Q = E[νkν
T
j ] =


I3×3 ∗ ν2

1 03×3 03×1

03×3 I3×3 ∗ ν2
2 03×1

01×3 01×3 ν2
3

 (A.4)



A.1. POINT MASS GRAVITY

For the first scenario, the measurements are the real state with added Gaussian noise,
therefore the measurement matrix is the following:

H =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (A.5)

If µ1,µ2,µ3 are the measurement noise acting on the position, velocity and acceleration
respectively, the noise measurement matrix can be written as:

R = E[σkσ
T
j ] =


I3×3 ∗ σ2

1 03×3 03×1

03×3 I3×3 ∗ σ2
2 03×1

01×3 01×3 σ2
3

 (A.6)

The value of the Q matrix is given after optimisation by the PSO. The values of the
R matrix are depending on the noise values chosen during the simulations. For example,
if we chose the case where x0=[250000 0 0] m, when choosing σ1 = σp=1 km where only
the noisy position is given as a measurement, the matrices are reduced to:

H =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 (A.7)

R = E[σkσ
T
j ] =

σ2
p 0 0

0 σ2
p 0

0 0 σ2
p

 (A.8)

and the process covariance matrix after optimisation is given by:

Q =


I3×3 ∗ 1e− 14 03×3 03×1

03×3 I3×3 ∗ 1e− 12 03×3

03×3 03×3 1e− 18

 (A.9)
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A.2. J2 PERTURBATION

A.2 J2 perturbation

The state-space model that has been used in the Kalman Filter when adding J2 and the
rotational rate to the model is the following:



ẋ

v̇

ẇ

µ̇

J̇2


=



03×3 I3×3 03×3 03×1 03×1

(∂F
∂x

)
3×3

(∂F
∂v

)
3×3

( ∂F
∂w

)
3×3

(∂F
∂µ

)
3×1

( ∂F
∂J2

)
3×1

03×3 03×3 03×3 03×1 03×1

01×3 01×3 01×3 01×1 01×1

01×3 01×3 01×3 01×1 01×1





x

v

w

µ

J2


+



ν1

ν2

ν3

ν4

ν5


(A.10)

with x the position vector, x the velocity, w the rotation rate of the asteroid, µ the
gravitational parameter and J2 the perturbation due to the C2,0 harmonic coefficient. the
ν coefficients are corresponding to the process noise. The measurement equation when
taking into account only the position noise for the Kalman filter is the following:

zk =
[
I3×3 03×3 03×3 03×1 03×1

]


x
v
w
µ
J2

+

σpσp
σp

 (A.11)

with σp the measurement noise acting on the position.

The acceleration due to J2 in spherical coordinates is the following:

aJ2,r = 3µJ2R
2
er
−4(−1

2
+

3

2
sin2 δ) (A.12)

aJ2,δ = −µJ2R
2
er
−4(3 sin δ cos δ) (A.13)

aJ2,λ = 0 (A.14)

which can be transformed into Cartesian coordinates:

aJ2 = −3

2
µJ2

R2
E

r5

(1− 5 z
2

r2
)x

(1− 5 z
2

r2
)y

(3− 5 z
2

r2
)z

 (A.15)

Taking into account the rotation of the asteroid, new terms have to be included in the
expression of the acceleration, which is, in Cartesian coordinates:

a = −GM
r3

r− 2w × v −w ×w × r− aJ2 (A.16)
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A.2. J2 PERTURBATION

Therefore, the partial derivatives of the Jacobian matrix are the following:

∂Fx
∂x

=w2
y −

mu

r3
+ w2

z +
3µx2

r5
+
∂aJ2,x
∂x

(A.17)

∂Fx
∂y

=
3µxy

r5
− wxwy +

∂aJ2,x
∂y

(A.18)

∂Fx
∂z

=
3µxy

r5
− wxwz +

∂aJ2,x
∂z

(A.19)

∂Fy
∂x

=
3µxy

r5
− wxwy +

∂aJ2,y
∂x

(A.20)

∂Fy
∂x

=w2
x −

mu

r3
+ w2

z +
3µy2

r5
+
∂aJ2,y
∂y

(A.21)

∂Fy
∂z

=
3µyz

r5
− wywz +

∂aJ2,y
∂z

(A.22)

∂Fz
∂x

=
3µxz

r5
− wxwz +

∂aJ2,z
∂x

(A.23)

∂Fz
∂z

=
3µyz

r5
− wywz +

∂aJ2,z
∂y

(A.24)

∂Fz
∂z

=w2
x −

mu

r3
+ w2

y +
3µz2

r5
+
∂aJ2,z
∂z

(A.25)

(A.26)

∂F

∂V
=

 0 2wz −2wy
−2wz 0 2wx
2wy −2wx 0

 (A.27)

∂F

∂w
=

 −wyy − wzz 2wyx− 2Vz − wxy 2Vy + 2wzx− wxz
2Vz − wyx+ 2wxy −wxx− wzz 2wzy − 2vx − wyz
2wxz − wzx− 2Vy 2Vz − wzy + 2wyz −wxx− wyy

 (A.28)
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e

r5

(1− 5 z
2

r2
)x

(1− 5 z
2

r2
)y

(3− 5 z
2

r2
)z

 (A.29)

∂F

∂µ
= − ~r

r3
− 3

2
J2
R2
e

r5
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2
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)x

(1− 5 z
2

r2
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(3− 5 z
2

r2
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 (A.30)
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A.3. SPHERICAL HARMONICS COEFFICIENTS MODEL

Again, the R and Q matrices are determines each scenario, depending on the on the
initial conditions and the PSO optimisation for the Q matrix. For the case x0 =[100000
0 0] m, and a noisy position measurement with σp=1 km, the covariance matrix after
optimisation is:

Q =



I3×3 ∗ 1e− 13 03×3 03×3 03×1 03×1

03×3 I3×3 ∗ 1e− 10 03×3 03×1 03×1

03×3 03×3 I3×3 ∗ 1e− 12 03×1 03×1

01×3 01×3 01×3 1e− 16 0

01×3 01×3 01×3 0 1e− 18


(A.31)

A.3 Spherical harmonics coefficients model

The state-space model that has been used in the Kalman Filter when adding all the
spherical harmonics coefficients is the following:



ẋ

v̇

ẇ

µ̇

ċij

ṡij


=



03×3 I3×3 03×3 03×1 03×m 03×n

(∂F
∂x

)
3×3

(∂F
∂v

)
3×3

( ∂F
∂w
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3×3

(∂F
∂µ
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3×1

( ∂F
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3×m

( ∂F
∂sij

)3×n

03×3 03×3 03×3 03×1 03×m 03×n

01×3 01×3 01×3 01×1 01×m 01×n

01×3 01×3 01×3 01×1 01×m 01×n
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w

µ

cij

sij


+



ν1

ν2

ν3

ν4

ν5

ν6


(A.32)

with cij and sij vectors containing the spherical harmonics coefficients, and m and n being
the size of these vectors, respectively. The measurement equation becoming:

zk =
[
I3×3 03×3 03×3 03×1 03×m 03×n

]


x
v
w
µ
cij

sij

+

σpσp
σp

 (A.33)

with σp the measurement noise acting on the position. Increasing the order and degree
of expansions, the size of the Jacobian matrix increases and that is why we will prefer
the UKF over the EKF for high degree of expansions.

119



A.3. SPHERICAL HARMONICS COEFFICIENTS MODEL

On the same way than the last models, for the case x0 =[25000 0 0] m, and a noisy
position measurement with σp=1 km, the covariance matrix after manual optimisation is:

Q =



I3×3∗1e−13 03×3 03×3 03×1 03 03×n

03×3 I3×3∗1e−10 03×3 03×1 03×m 03×n

03×3 03×3 I3×3∗1e−12 03×1 03 03×n

01×3 01×3 01×3 1e−16 01×m 01×n

0m×3 0m×3 0m×3 0m×1 Im×m∗1e−18 0m×n

0n×3 0n×3 0n×3 0n×1 0n×m In×n∗1e−18


(A.34)
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B
Spherical harmonics coefficients

The spherical harmonics coefficients of the Near-Shomaker mission up to degree and order
15, from the NLR data, are shown in Table B.1



Table B.1: Spherical harmonics coefficients of 433 Eros up to degree and order 15

m n Cij Sij

0 0 1.000000000000e0 0.000000000000e0
1 0 1.175785831520e-03 0.000000000000e0
1 1 -3.484427594460e-04 8.766452698130e-05
2 0 -5.285148878740e-02 0.000000000000e2
2 1 1.021293512930e-04 8.314827416250e-02
2 2 1.171641181310e-05 -2.819769459150e-02
3 0 -1.746658679040e-03 0.000000000000e5
3 1 4.086789748400e-03 -8.401928754980e-04
3 2 3.400820184730e-03 -1.049252521580e-02
3 3 2.127432677370e-03 -1.221642051680e-02
4 0 1.307711276510e-02 0.000000000000e9
4 1 -1.449369221770e-04 -3.130233427200e-04
4 2 1.647971980510e-04 -1.946510011750e-04
4 3 -1.764730392110e-02 1.769372863880e-02
4 4 4.623965128100e-03 -9.118275274890e-03
5 0 8.040269731590e-04 0.000000000000e14
5 1 -2.791765238870e-03 3.601526439980e-03
5 2 -1.230910225660e-03 5.901588590910e-04
5 3 -1.003790649660e-03 -7.741235325160e-04
5 4 4.497119857680e-04 -1.034639930470e-02
5 5 4.645819165710e-03 -5.986302199180e-03
6 0 -4.958280336910e-03 0.000000000000e20
6 1 -5.848388650290e-05 -5.656243124620e-03
6 2 -8.779840037550e-05 1.798612884550e-03
6 3 6.600756525270e-03 -5.628527194580e-04
6 4 -1.188912547480e-03 -1.202848311210e-04
6 5 2.893725631600e-04 5.187143981030e-03
6 6 1.860196354340e-04 -1.562296163960e-03
7 0 -3.923399201210e-04 0.000000000000e27
7 1 1.811938547760e-03 4.075777475970e-04
7 2 5.261744188700e-04 3.843931902200e-03
7 3 4.969228567990e-04 2.035935441050e-03
7 4 -2.347349608900e-04 1.502211084770e-04
7 5 -2.476609205240e-03 -4.499749592270e-04
7 6 -1.458303912990e-03 -6.790061431970e-03
7 7 -3.417036641460e-04 -2.244364637360e-03
8 0 2.332698296190e-03 0.000000000000e35
8 1 1.176328666590e-04 3.886108808310e-04
8 2 3.362497962950e-05 3.491867096780e-05
8 3 -3.122792657720e-03 -2.236538379940e-03
8 4 3.431369303920e-04 4.701611646030e-06
8 5 -2.243887071000e-04 -5.127049850290e-04
8 6 -7.063776582180e-05 7.874768865870e-05
8 7 2.686346867920e-03 2.381956825870e-03
8 8 -4.162893880770e-04 1.330995240810e-03
9 0 2.083755917150e-04 0.000000000000e44
9 1 -1.178840644000e-03 -9.789857034040e-04
9 2 -2.566713654180e-04 -1.426858610010e-04
9 3 -2.722648598350e-04 2.435952047480e-04

m n Cij Sij

9 4 1.209458385260e-04 2.551528527300e-03
9 5 1.442991842250e-03 1.032029657740e-03
9 6 7.053099613340e-04 9.283364693910e-05
9 7 2.131043153390e-04 -2.054462267160e-04
9 8 -2.107677526960e-04 -3.722311837610e-03
9 9 -1.918873227880e-03 -9.675531421480e-04
10 0 -1.248967639670e-03 0.000000000000e54
10 1 -1.160925394350e-04 1.264722906180e-03
10 2 -7.213596367630e-06 1.993112878460e-04
10 3 1.685644566410e-03 3.359059776390e-04
10 4 -8.994391355250e-05 -8.480033301550e-05
10 5 1.654276532790e-04 -1.197818966110e-03
10 6 1.014086290020e-05 -7.489964576750e-04
10 7 -1.483105545530e-03 -3.676819780660e-04
10 8 5.471732160300e-05 1.743637426720e-04
10 9 -2.489579760670e-04 1.728715263910e-03
10 10 1.741299162170e-05 1.940078250460e-03
11 0 -1.190283726000e-04 0.000000000000e65
11 1 7.760862570840e-04 -1.364432003100e-04
11 2 1.388126009180e-04 -1.285874753440e-03
11 3 1.614103760450e-04 -6.192102507220e-04
11 4 -6.351910587980e-05 -1.185901948620e-04
11 5 -8.899570169650e-04 1.247571451850e-04
11 6 -3.845559889400e-04 1.466165690390e-03
11 7 -1.434581493120e-04 6.444114454580e-04
11 8 1.133263943250e-04 1.381854523050e-04
11 9 1.079663667450e-03 -8.158184226540e-05
11 10 5.484046400350e-04 -1.775104869060e-03
11 11 1.240210000940e-04 -8.301376620890e-04
12 0 7.256931959170e-04 0.000000000000e77
12 1 9.643829496850e-05 -2.115488306640e-04
12 2 -3.341237746430e-06 7.152461372720e-05
12 3 -9.862806858110e-04 7.197569750460e-04
12 4 9.846923705680e-06 4.740876399370e-04
12 5 -1.193356283570e-04 2.497341740410e-04
12 6 1.356511759680e-05 -1.234149507820e-04
12 7 8.852545661540e-04 -8.145742379970e-04
12 8 4.139273803930e-05 -8.917948715270e-04
12 9 1.611677244440e-04 -2.421305769220e-04
12 10 -3.435167880620e-05 1.658720480310e-04
12 11 -7.734284897900e-04 1.340420577700e-03
12 12 -1.963347146390e-04 1.682031157840e-03
13 0 7.172376069870e-05 0.000000000000e90
13 1 -5.166324062220e-04 4.002311551290e-04
13 2 -8.113006587390e-05 1.104653039030e-04
13 3 -1.010131602060e-04 -8.207930629620e-05
13 4 3.474784511650e-05 -7.666716222020e-04
13 5 5.692056052810e-04 -4.546803398150e-04
13 6 2.274234109390e-04 -1.381178917270e-04
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m n Cij Sij

13 7 1.000384750630e-04 6.375096615200e-05
13 8 -6.437517725010e-05 7.520359785560e-04
13 9 -6.517574800310e-04 5.685814553720e-04
13 10 -3.341832259600e-04 1.800024772190e-04
13 11 -1.009113138600e-04 -3.898895816870e-05
13 12 8.223254404290e-05 -7.584317051630e-04
13 13 7.286727562360e-04 -9.974333266110e-04
14 0 -4.442046152000e-04 0.000000000000e104
14 1 -7.422871498740e-05 -4.518013990110e-04
14 2 6.557752099840e-06 -3.122583053580e-04
14 3 6.068552961990e-04 -1.660095915440e-04
14 4 1.352618296030e-05 8.126598527880e-05
14 5 8.500564310010e-05 4.661723912530e-04
14 6 -1.993821554100e-05 5.201175967790e-04
14 7 -5.525476490290e-04 1.814477497610e-04
14 8 -5.876528447840e-05 -1.056713705550e-04
14 9 -1.066563549550e-04 -5.646551560880e-04
14 10 3.514842922550e-05 -7.836203122960e-04
14 11 4.904225162360e-04 -1.672522769340e-04
14 12 1.565736315110e-04 1.072588566830e-04
14 13 1.365026688050e-04 8.818490908810e-04
14 14 -5.525236769910e-05 1.270255444990e-03
15 0 -4.502685443070e-05 0.000000000000e119
15 1 3.461437350270e-04 5.748970216570e-05
15 2 4.998984139680e-05 4.450894420060e-04
15 3 6.562157430730e-05 3.166778688250e-04
15 4 -2.016101130070e-05 1.144734222110e-04
15 5 -3.720133629400e-04 -5.024679798710e-05
15 6 -1.416386791910e-04 -4.122582779140e-04
15 7 -7.072101740780e-05 -3.993979434370e-04
15 8 3.903365889700e-05 -1.521715266520e-04
15 9 4.105566819000e-04 3.682439339500e-05
15 10 2.132337704300e-04 3.479838528430e-04
15 11 7.836539956400e-05 5.755960747180e-04
15 12 -5.309839556230e-05 1.884659869080e-04
15 13 -4.412537861560e-04 -2.866030659860e-05
15 14 -2.658668277550e-04 -2.986297437300e-04
15 15 -9.099504643860e-05 -1.088018942010e-03
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