
ALMA MATER STUDIORUM – UNIVERSITY OF BOLOGNA

SCHOOL OD ENGINEERING AND ARCHITECTURE

DICAM - Department of Civil, Chemical, Environmental, and Materials Engineering

MASTER’S DEGREE IN CHEMICAL AND PROCESS ENGINEERING

MASTER’S THESIS
in

Dynamics And Control Of Chemical Processes M

Reduced order modelling of combustion using
convolutional neural network

CANDIDATE: SUPERVISOR:
 Prof.
Fabiola Amaducci Alessandro Paglianti

 CO-SUPERVISRO
 Prof.

 Alessandro Parente

Academic Year 2019/2020

Session II, October 2020

Alla mia Mamma, al mio Bà...

e a tutti i ragazzi che finiscono ingegneria senza bere ca↵è

Abstract

It is well known that CFD simulations of a complex combustion system, such

as Moderate or Intense Low-oxygen Dilution (MILD) combustion, requires consid-

erable computational resources. This precludes various applications including the

use of CFD in real time control systems. The idea of a reduced order model (ROM)

was born from the desire to overcome this obstacle. A ROM, if properly instructed,

returns the output of a requested CFD simulation in extremely short time. This

one is an ideal mechanism with two basic gears: the input size reduction technique

and the interpolation method. This project proposes a study on the applicability

of convolutional neural network (CNN) as a dimensionality reduction technique.

The code written for this purpose will be presented in detail, as well as pre and

post processing. A sensibility analysis will be carry out to find out which parame-

ters to adjust and how in order to achieve the optimum. Finally, the network will

be compared in its peculiarity and its results with Principal Component Analysis

(PCA), the technique used by the BURN group of Libre University of Bruxelles for

the same purpose. Moreover with the desire to improve, we went further by trying

to overcome the limits dictated by the rules of a legitimate comparation between

PCA and CNN. Lastly, the author considers necessary to provide the theoretical

basis in order to enrich and support what has just been described. Therefore, you

will also find introductions / insights on MILD combustion, CFD of a combustion

system, neural networks and the aspects related to them.

i

Contents

Abstract i

1 Introduction 1

1.1 MILD combustion . 1

1.2 CFD of a MILD combustion system 5

1.3 Reduced order model . 13

2 Methods 19

2.1 Neurons . 22

2.2 Activation function . 25

2.3 Autoencoder . 31

2.3.1 Autoencoder and PCA 32

2.4 Learning method . 35

2.4.1 Cost function . 36

2.4.2 Optimisation strategy 38

2.5 Convolutional neural network 47

3 Test case 55

3.1 The furnace . 55

3.2 CFD of BURN’s combustion chamber 58

3.3 Preprocessing . 61

iii

iv Contents

3.3.1 Dataset . 61

3.3.2 Code for preprocessing 62

3.4 The core of the project: CNN 69

3.5 Post-processing . 74

4 Results 79

4.1 Sensibility analysis . 80

4.1.1 Normalisation and activation function of final layer . . 81

4.1.2 Learning rate . 85

4.1.3 Batch size . 87

4.1.4 Patience . 88

4.1.5 Cost function . 90

4.1.6 Pooling . 92

4.1.7 Optimiser . 93

4.1.8 Numpy seed . 94

4.1.9 Activation function . 96

4.1.10 Number of filters . 100

4.1.11 Number of convolutional layers 101

4.1.12 Symmetry . 102

4.1.13 Layout . 104

4.2 Optimised CNN . 108

Conclusion 117

A PCA - Principal component analysis 119

B Scripts 123

B.1 Code for preprocessing . 123

B.1.1 CNN5 del err.py . 123

Index v

B.1.2 CNN5read.py . 126

B.1.3 test read.py . 130

B.2 Code for the core of the project 133

B.2.1 CNN5.py . 133

B.3 Code for post-processing . 138

B.3.1 CNN5load.py . 138

B.3.2 CNN5plot.py . 146

Bibliography 153

List of Figures

1.1 Conceptual drawing of the PaSR model 10

1.2 Illustrative example of PCA. 17

2.1 Visual cortex . 19

2.2 Example of Non-deep and deep neural network 21

2.3 Neuron . 22

2.4 NN for identification of numbers(a) 24

2.5 NN for identification of numbers (b) 24

2.6 NN for identification of numbers (c) 24

2.7 Binary Step Function . 26

2.8 Linear Activation Function . 26

2.9 Sigmoid activation function 28

2.10 Hyperbolic Tangent activation function 29

2.11 ReLU (Rectified Linear Unit) activation function 29

2.12 Leaky ReLU activation function 30

2.13 Conceptual scheme of an autoencoder 31

2.14 Autoencoder architecture . 32

2.15 2D examples . 34

2.16 3D examples . 35

2.17 MAE and MSE . 38

vii

viii LIST OF FIGURES

2.18 Notation of weights . 39

2.19 Chain rule scheme . 41

2.20 Chain scheme (b) . 42

2.21 Gradient descent . 44

2.22 Stochastic gradient descent . 45

2.23 Performance chart . 47

2.24 Pixel of an image . 49

2.25 Conceptual schema of convolutional operation 50

2.26 Convolutional filter (a) . 51

2.27 Multiplications between the filter and pixel values (a) 51

2.28 Multiplications between the filter and pixel values (b) 52

2.29 Pooling layer . 53

3.1 Plant scheme (a) and furnace 3D model (b) with positions of

measuring . 56

3.2 BURN group’s Furnace . 57

3.3 Complete 3D mesh . 58

3.4 Considered domain . 59

3.5 Function to import csv . 62

3.6 Example of an original temperature field, simulation 1 63

3.7 First script(a) and (b) . 64

3.8 First script(c) and (d) . 64

3.9 Second script (a) . 65

3.10 Second script (b) . 66

3.11 Second script (c) . 66

3.12 Original mesh (plot of temperature field simulation 1) 67

3.13 Second script (d) . 68

3.14 Griddata - 0.0067 mesh . 68

Index ix

3.15 Third script (a) and (b) . 69

3.16 Third script (c) . 70

3.17 Third script (d) . 70

3.18 Third script (e) . 71

3.19 Third script (f) . 73

3.20 Result of third script (g) . 73

3.21 Fourth script (a) . 74

3.22 Original image . 75

3.23 Reconstructed image . 75

3.24 Fourth script (b) . 76

3.25 Parity plot for test simulations 77

3.26 Fourth script (c) . 78

3.27 Fourth script (d) . 78

4.1 Reduced mesh (quotes in meters) 80

4.2 Graphs of results for normalisation (a) 84

4.3 Graphs of results for normalisation (b) 84

4.4 Graphs of results (epochs) . 84

4.5 Graphs of results for learning rate 86

4.6 Graphs of results for batch size 88

4.7 Graphs of results for patience 90

4.8 Graphs of results for cost function 91

4.9 Graphs of results for pooling 93

4.10 Graphs of results for optimiser 94

4.11 Graphs of results for numpy seed 96

4.12 Graphs of results for AF norm A 97

4.13 Graphs of results for AF norm C 98

4.14 Graphs of results for number of filters 101

x LIST OF FIGURES

4.15 Graphs of results for number of conv layers 102

4.16 Graphs of results for symmetry 103

4.17 Visual representation of the di↵erence between B and C 105

4.18 Graphs of results for layout (part A) 106

4.19 Graphs of results for layout (part B) 107

4.20 Graphs of results for layout (part C) 108

4.21 Graphs of results for optimisation (dim code 36) 111

4.22 Graphs of results for code dimension analysis 112

4.23 Graphs of results for number of training sims analysis 114

4.24 Graphs of results for di↵erent couple of training sims 116

A.1 Data for PCA example . 120

A.2 Projection . 120

A.3 Distances . 121

A.4 Scores . 121

A.5 Variations . 122

A.6 Scree plot . 122

A.7 Multidimensional dataset . 122

List of Tables

3.1 DoE . 61

4.1 Fixed parameters for normalisation and final activation func-

tion . 83

4.2 Results for normalisation sensibility analysis 84

4.3 Fixed parameters for learning rate 86

4.4 Results for learning rate sensibility analysis 86

4.5 Fixed parameters for learning rate 87

4.6 Results for batch size sensibility analysis 88

4.7 Fixed parameters for learning rate 89

4.8 Results for patience sensibility analysis 90

4.9 Fixed parameters for learning rate 91

4.10 Results for cost function sensibility analysis 91

4.11 Fixed parameters for learning rate 92

4.12 Results for pooling sensibility analysis 92

4.13 Fixed parameters for learning rate 94

4.14 Results for optimiser sensibility analysis 94

4.15 Fixed parameters for learning rate 95

4.16 Results for numpy seed sensibility analysis 95

4.17 Fixed parameters for learning rate 97

xi

xii LIST OF TABLES

4.18 Results for activation function sensibility analysis (norm A) . 97

4.19 Fixed parameters for learning rate 98

4.20 Results for activation function sensibility analysis (norm C) . . 99

4.21 Fixed parameters for studies of CNN architecture 99

4.22 Results for number of filters sensibility analysis 100

4.23 Results for number of conv layers sensibility analysis 102

4.24 Results for symmetry sensibility analysis 104

4.25 Results for layout (part A) sensibility analysis 105

4.26 Results for layout (part B) sensibility analysis 106

4.27 Results for layout (part C) sensibility analysis 107

4.28 Fixed parameters for optimised CNN 108

4.29 Results for optimised CNN (reduced mesh) 109

4.30 Results for optimised CNN (full mesh) 110

4.31 Results for optimised CNN (reduced mesh) - dim code 36 . . . 111

4.32 Results for code dimension analysis 112

4.33 Results for number of training sims analysis 114

4.34 Results for di↵erent couple of training sims 115

Chapter 1

Introduction

Energy is undoubtedly the single most important factor impacting the

prosperity of our society. The need for innovation is particularly important

in combustion, considering that the energy derived from burning fossil fuels

(coal, petroleum or natural gas) supplies over two thirds of the total world

energy needs. Thus, new breakthroughs in clean energy are needed to provide

our society with the necessary resources in a way that also protects the

environment and addresses the climate change issue. A certain number of new

combustion technologies have been proposed in recent years. Among them,

Moderate or Intense Low-oxygen Dilution (MILD) combustion is certainly

one of the most promising. This one features high fuel flexibility, increased

e�ciency and low pollution emissions. Even if, unfortunately, information in

this field are still sparse.

1.1 MILD combustion

A complete definition of MILD is given by Cavaliere:

A combustion process is named Mild when the inlet temperature of the re-

1

2 1. Introduction

actant mixture is higher than mixture self-ignition temperature whereas the

maximum allowable temperature increase with respect to inlet temperature

during combustion is lower than mixture self-ignition temperature.

This means that process evolves in a rather narrow temperature range,

which could be placed in an intermediate region between the very fast ki-

netics of the oxidative undiluted conditions and the relatively slow kinetics

linked to low temperature self-ignition regimes. For sure a di↵erence is: in

Mild Combustion the process cannot be sustained without preheating the

reactants.

The narrow temperature range, under which the process proceeds, allows

design, optimisation and adjustment in the process by fine tuning external

parameters. These parameters provide controllable shifts of internal param-

eters in the reactor. In contrast traditional combustion processes are di�cult

to control because they proceed along temperature excursions of thousands of

degrees. Kinetic can change during the completion of the process from low

to intermediate or high temperature regimes, the physical parameter, like

di↵usion, surface tension, can also change abruptly from one to the other.

In contrast, Mild Combustion mode is characterised by ’mild’ changes and

ensures a more gradual evolution.

The definition of Mild Combustion given here is unambiguous because

criteria which should be fulfilled to include a process in Mild Combustion

are well defined in unequivocal way. Mild Combustion has to be considered

a new combustion regime. It is neither a deflagration nor a detonation nor a

di↵usion flame. It is a combustion process which is a superdiluted explosion

or a continuous auto-ignition/explosion. The fluid-dynamic local conditions

and thermodynamic constraints under which Mild Combustion develops are

quite straightforward. This mode of combustion is achieved through the

1.1 MILD combustion 3

strong exhaust gas and heat recirculation, achieved by means of the internal

aerodynamics of the combustion chamber in conjunction with high-velocity

burners. Heat recovery by preheating the oxidant stream can also help in

improving thermal e�ciency and maintaining the MILD regime.

Mild is the acronym of moderate or intense low-oxygen dilution which

is exactly one of the most typical conditions for which the process can be

obtained. The relevance of this condition is due to its relatively simple feasi-

bility and that it may be tuned in such a way that it prevents from soot and

NOx formation.

MILD is a flameless combustion, it’s referred to the outstanding charac-

teristic that no visible emission is detectable in oxidation regions.

In summary, MILD combustion is characterised by elevated reactant tem-

perature and low temperature increase, intensive reactant and product mix-

ing, as well as no audible or visible flame, under ideal conditions. Moreover,

MILD combustion delivers very low NOx and CO emissions and high e�-

ciency, with a large flexibility of fuel types. The system is characterised by

a more uniform temperature field than in traditional non-premixed combus-

tion, and by the absence of high temperature peaks, thus suppressing NO

formation through the thermal mechanism, while ensuring complete combus-

tion and low CO emissions. This uniform field makes the process very unique

in the material treatment field because this ensures temperature homogeneity

and control on the material surface. Some applications in the steel treatment

testifies the feasibility in exploiting such characteristic of the process. The

homogeneity makes possible also to control both the combustion process it-

self and the addition of any chemical which can be beneficial in oxidation

process or in its application. In other words the Mild Combustion makes

the combustion chamber more similar to other chemical reactors, which are

4 1. Introduction

temperature controlled with the consequent benefit to adjust and tune the

temperature in a convenient window.

However, what makes such technology very attractive is the large fuel

flexibility, being suited for, industrial wastes, biogas and low-BTU fuels.

These non-conventional fuels are blends of CH4, CO, H2, N2 and CO2 in

variable proportions. In normal non-premixed flame, the generation of a

stable flame can be di�cult in presence of highly fluctuating compositions and

low CH4/H2 contents. Flameless combustion can be a solution, since there

is no need to stabilise a flame front, which can turn out to be complicated

when the LHV of the burnt fuels is subjected to wide variation.

Usefulness of a combustion process has to be shown along the years and

economic constrains sometime obscure long-time convenience. However, this

mode has great potentials. This is linked to the fact that combustion process

can be restricted to relatively low maximum temperature and temperature

increase when Mild Combustion is adopted. The limitation of the maximum

temperature can be exploited to limit soot and NOx production as it has been

just mentioned. Furthermore, the maximum temperature can be adjusted in

such a way that it is lower than that a high temperature metallic material

can resist. For example: in the field of combustion engines this leads to an

extremely useful freedom degree in the design of a combustion chamber.

MILD combustion technology has been demonstrated for many industrial

applications. It was first introduced in industrial furnaces for methane com-

bustion and later extensively investigated for other gaseous fuels like hydro-

gen and ethanol. Experiments and simulations on MILD oxidation burner

have been executed, showing the e↵ects of burner configuration and firing

mode on e�ciency and emissions. An oxygen enhanced regenerative burner

operated in MILD combustion mode has been evalueted. An energy recovery

1.2 CFD of a MILD combustion system 5

ratio above 80% and NOx emissions below 5 ppm were achieved. Further-

more, prevaporised liquid fuels burning in a reverse-flow MILD combustor

under elevated pressures have been studied. They concluded that combus-

tion stability is largely dependent on fuel type and the NOx emission is highly

influenced by the operating conditions of pressure, jet velocity and carrier

gas. MILD technology can be utilised in gas turbines as well. Experimental

and numerical studies on gas turbine under MILD condition, using gaseous

fuel are conducted. The e↵ect of pressure, mixing on combustion stability

was analysed, indicating that mixing is the key parameter to control and

stabilize MILD combustion. Recently, the possibility of using liquid biofuels,

diesel and kerosene fuels under MILD condition for gas turbine applications

is evaluated. They stated that MILD combustion can potentially substitute

conventional gas turbines. Furthermore, experts analysed the potential of

oxy-MILD combustion for large scale pulverised coal boilers. Preliminary

simulations showed the possibility of e�ciency increase of more than 3%.

The MILD combustion concept was also extended to hybrid solar thermal

devices, which combine concentrated solar radiation with combustion. The

integration of MILD combustion in a hybrid solar receiver can lead to in-

creased thermal performances with respect to conventional flames.

1.2 CFD of a MILD combustion system

In recent years, attention has been paid to MILD combustion modelling,

due to the very strong turbulence/chemistry interactions of such a combus-

tion regime.This interaction definitely comes from strong mixing, the reduced

temperature level typical of this combustion mode and slower reactions (due

to the dilution of reactants). There is not a clear separation between large

6 1. Introduction

and small scales of turbulence, and reaction can occur over a wide range of

scales. Therefore, the chemical reactions proceed in a thick reaction zone,

comparable to the integral length scale, leading to a modification of the

characteristic scales of the reaction structures. As a consequence, both phe-

nomena must be considered (models based on the scale separation between

turbulence and chemistry will fail in predicting the main features of such a

combustion regime). Therefore, models that account for finite-rate chem-

istry must be considered. Furthermore, the usage of detailed kinetic scheme

appears mandatory.

In this context the system is solved using Unsteady Reynolds Averaged

Navier-Stokes (URANS) simulations in combination with finite-rate chem-

istry. The Partially-Stirred Reactor (PaSR) model is chosen for turbu-

lence/chemistry interactions. In PaSR, the interaction between turbulence

and chemistry is represented with a factor K, which is defined as the ratio

between the chemical time scale and the sum of mixing and chemical scales.

PaSR models the combustion process as a sequence of reaction and mixing

processes in locally uniform regions. Both the chemical and mixing time

scales are included in the model explicitly, allowing more comprehensive de-

scriptions on turbulence/chemistry interactions. Therefore, its performances

strongly depend on the accurate estimation of mixing and chemical time

scales.

Turbulence model

In the context of compressible URANS simulations, the Favre-aver- aged

(denoted with ⇠) governing equations are solved:

@⇢

@t
+

@(⇢euj)

@xj
= 0 (1.1)

1.2 CFD of a MILD combustion system 7

@(⇢euj)

@t
+

@(⇢eujeui)

@xj
= � @p

@xi
+

@

@xj

⇣
⌧ij � ⇢]u00

i u
00
j

⌘
(1.2)

@(⇢eh)
@t

+
@(⇢eheuj)

@xj
=

@

@xj

⇢↵

@eh
@xj

� ⇢]u00
jh

00

!
� @qrj

@xj
+ Shc (1.3)

@(⇢eYi)

@t
+

@(⇢eYieuj)

@xj
=

@

@xj

 ✓
⇢Dm,i +

µy

Sct

◆
@ eYi

@xj

!
+ !̇i (1.4)

where:

• ⇢ is density.

• u is velocity.

• p is pressure.

• h is enthalpy.

• ↵ is thermal di↵usivity.

• Sct is turbulent Schmidt number

• Dm,i is molecular di↵usion coe�cient for species i in the mixture

Reynolds average conveniently removes fluctuating components from the

flow field variables without explicitly defining the spatial length scale used in

the averaging operation. Averaging can be performed to extract the large-

scale dynamics of the flow field. The key to simulating such large-scale

dynamics is to average over the small-scale fluctuations and model the non-

linear influence from the small-scale fluctuations, in the governing equations,

that can alter the large-scale fluid motion Kajishima [8].

The standard k � " model is chosen as turbulence model. It’s a two-

equation turbulence model and it allows the determination of both, a turbu-

lent length and time scale by solving two separate transport equations. The

8 1. Introduction

standard- model in ANSYS Fluent falls within this class of models and has

become the workhorse of practical engineering flow calculations in the time

since it was proposed by Launder and Spalding. Robustness, economy, and

reasonable accuracy for a wide range of turbulent flows explain its popular-

ity in industrial flow and heat transfer simulations. It is a semi-empirical

model, and the derivation of the model equations relies on phenomenolog-

ical considerations and empiricism. The standard-model is a model based

on model transport equations for the turbulence kinetic energy and its dis-

sipation rate. The model transport equation for K is derived from the exact

equation, while the model transport equation for " is obtained using physical

reasoning and bears little resemblance to its mathematically exact counter-

part. In the derivation of the model, the assumption is that the flow is fully

turbulent, and the e↵ects of molecular viscosity are negligible. The standard -

model is therefore valid only for fully turbulent flows. The turbulence kinetic

energy and its rate of dissipation are obtained from the following transport

equations:

@(⇢k)

@t
+

@(⇢kui)

@xi
=

@

@xj

✓
µ+

µt

�k

◆
@k

@xj

�
+Gk +Gb � ⇢"� YM + Sk (1.5)

@(⇢")

@t
+

@(⇢"ui)

@xi
=

@

@xj

✓
µ+

µt

�"

◆
@"

@xj

�
+C1"

"

k
(GK +C3"Gb)�C2"⇢

"
2

k
+S"

(1.6)

where:

• ek is turbulent kinetic energy.

• e" is dissipation rate.

• Gk is represents the generation of turbulence kinetic energy due to the

mean velocity gradients.

1.2 CFD of a MILD combustion system 9

• Gb is the generation of turbulence kinetic energy due to buoyancy.

• YM is represents the contribution of the fluctuating dilatation in com-

pressible turbulence to the overall dissipation rate.

• C1", C2", C3" are constants.

• �k�" are the turbulent Prandtl numbers for k and " , respectively .

• Sk, S" and are user-defined source terms

It is based on the eddy viscosity assumption. The unresolved turbulence

stresses ⇢]u00
i u

00
j are modelled with the product of an eddy viscosity µt and

mean flow strain rate S
⇤
ij . The eddy viscosity µt in standard k � " model is

estimated as:

µt = ⇢Cµ

ek2

e" (1.7)

where:

• Cµ is a constant.

Combustion model

Di↵erent combustion models exist in the framework of RANS (Reynolds-

averaged Navier-Stokes), for example Eddy Dissipation Concept (EDC) model

and a newer version of that where is showed that adjusting the EDC coe�-

cients Ctau and Cy from their default value results in significantly improved

performance under MILD combustion. Afterwards, Parente proposed func-

tional expression showing the dependency of the EDC coe�cients on dimen-

sionless flow parameters, such as Reynolds and Damköhler number. But

beside the EDC model, the Partially Stirred Reactor (PaSR) combustion

model was proposed for MILD combustion. It was found that EDC fails in

10 1. Introduction

providing a reasonable estimation of the ignition region, while improved pre-

dictions can be obtained using the PaSR model. So PaSR model has been

used in this project.

In the PaSR model, the computational cell is split into two locally uni-

form zones: one where reactions take place, and another characterized by

only mixing. The final species concentration of the cell is determined from

the mass exchange between the two zones, driven by the turbulence. A con-

ceptual drawing of the PaSR model is shown in figure 1.1 .

Figure 1.1: Conceptual drawing of the PaSR model

The drawing in figure 1.1 refers to one computational cell, in which Y
0

i is

the initial ith species mass fraction in the non-reactive region, eYi is the final

averaged ith species mass fraction in the cell and Y
⇤
i is the ith species mass

fraction in the reactive zone. K is the mass fraction of the reaction zone in

the computational cell:

K =
⌧C

⌧C + ⌧mix
(1.8)

where ⌧C and ⌧mix are the characteristic chemical and mixing time scales in

each cell, respectively.

The mean source term provided to the species transport equation can be

expressed as:

!̇i = K
e⇢(fY ⇤

i � Y
0

i)

⌧ ⇤
(1.9)

1.2 CFD of a MILD combustion system 11

where ⌧
⇤ represents the residence time in the reactive structure. In the

present work, it’s equals to the mixing time scale. In order to get the value

of Y ⇤
i , a time-splitting approach is applied. The reactive zone is modelled as

an ideal reactor evolving from Y
0

i , during a residence time ⌧
⇤:

dY
⇤
i

dt
=

!̇i

⇢
(1.10)

The term !̇i is the instantaneous formation rate of species i. The final

integration of dY ⇤
i

dt is Y ⇤
i .

⌧mix can be estimated following di↵erent approaches.

• Kolmogorov time scale: In conventional combustion systems, it is often

assumed that reactions happen at the dissipation scales, of the order

of the Kolmogorov one1. However, in MILD combustion, reactions can

occur over a wide range of flow scales, and the use of the Kolmogorov

mixing time scale could lead to inaccurate predictions of temperature

and species mass fractions. ⌧mix = (⌫/")1/2

• Integral time scale: ⌧mix = k/"

• fraction of integral time scale: ⌧mix = Cmixk/"

• Geometric mean of Kolmogorov and integral time scales: To provide

a more accurate evaluation of the mixing time, the whole spectrum of

time scales is proposed to consider. A simple approach to achieve this

is to take only the two most important time scales, via the geometrical

mean of the Kolmogorov and integral time scales.

• Dynamic time scale: the three ways of estimating mixing scales intro-

duced above can be regarded as global approaches. A more sophisti-

1
Kolmogorov microscales are the smallest scales in turbulent flow ⌧mix = (⌫/")1/2

12 1. Introduction

cated approach is based on the automatic definition of ⌧mix based on

local properties of the flow field using a dynamic approach.

In our project, Integral time scale with Cmix = 0.5 has been used (how-

ever, despite satisfying predictions, this approach has several drawbacks. In-

deed, Cmix is not a function of local variables, being arbitrarily chosen and

constant in every cell of the domain. This implies that a model sensitivity

must be always carried out to use this model, since no a priori method can

be used to infer the value of Cmix.

⌧C can be evaluated with these approaches:

• Chemical time scale estimation from Jacobian matrix eigenvalues: us-

ing the eigenvalues of the Jacobian matrix of the chemical source terms.

After the decomposition of the Jacobian matrix, the chemical time scale

is estimated with the inverse of the eigenvalues. After removing the dor-

mant species (characterised by infinite time scale values), the slowest

chemical time scale is chosen as leading scale for the evaluation of the

PaSR parameter K.

• Chemical time scale estimation from formation rates: the decomposi-

tion of the source term Jacobian matrix is accurate but time consuming,

especially when large scale simulations with much detailed mechanism

is used. The formation rate based characteristic time scale evaluation

is a simplified approach. Instead of getting the chemical time scale

for each species from the Jacobian matrix decomposition, the ratio of

species mass fraction and formation rate in the reactive structure is

directly used, approximating the Jacobian diagonal terms.

• Chemical time scale estimation from reaction rates: Another simplified

1.3 Reduced order model 13

method is based on the reaction rate. Similar to the two approaches

above.

The decomposition of the source term Jacobian matrix is the most ac-

curate and time consuming method for the evaluation of the chemical time

scale. The approach based on the formation rates provides the best compro-

mise between accuracy and computational cost, while the approach based on

reaction rates may lead to inaccurate results as it tends to over-predict the

chemical time scales Parente [9]. For these reasons, in our project a chemical

time scale estimation from formation rates has been used.

Kinetic mechanism

A sensitivity study was been carried out to select a kinetic scheme, com-

paring the KEE (17 species and 58 reactions) and GRI-2.11 (31 species and

175 reactions) mechanisms. Being the di↵erence between the two schemes

below 3%, KEE was selected for its lower computational cost.

1.3 Reduced order model

Detailed numerical simulations of detailed combustion systems require

substantial computational resources, In many engineering applications, com-

plex physical systems can only be described by high-fidelity expensive simu-

lations. The coupling of Computational Fluid Dynamics (CFD) and detailed

chemistry is computationally demanding, mainly because of the large number

of species and the wide range of chemical times typically involved in complex

chemistry, even due to the non-linearity of these problems. Changing the

operating conditions, namely the model’s input parameters, can drastically

change the state of the considered system. Complete knowledge about the

14 1. Introduction

investigated system’s behaviour for a full range of operating conditions can

therefore only be achieved by running these expensive simulations several

times with di↵erent inputs, until enough observations of the system’s state

are obtained. We focus on MILD, these combustion systems fall in this cate-

gory as they are characterized by very complex physical interactions, between

chemistry, fluid-dynamics and heat transfer processes. During the last years,

several techniques have been proposed for reducing the computational cost

because the use of CFD tools in real time is still unrealistic due to the reasons

listed above.

One of these techniques is reduced order model. The key feature of re-

duced order models is their capability for drastically reducing the compu-

tational cost, while maintaining a su�cient accuracy from the engineering

point of view. ROM represents the behaviour of complex reacting systems

in a wide range of conditions, without the need for expensive Computational

Fluid Dynamics (CFD) simulations.

In other words: a specific computationally expensive CFD simulation or

computer code, referred to as Full-Order Model (FOM) is treated as a black

box that generates a certain output y (e.g. the temperature field) given a

set of input parameters x (e.g. the equivalence ratio) and indicated by ⌥:

y = ⌥(x) (1.11)

The evaluation of the function ⌥ usually requires many hours of computa-

tional time. After enough observations of the FOM’s output are available,

y(xi) 8i = 1, ...,M , a ROM can be trained and the output y⇤ for a particu-

lar set of unexplored inputs x⇤ can be predicted without the need to evaluate

⌥(x⇤). The function ⌥ is therefore approximated by a new function whose

evaluation is very cheap compared to ⌥:

1.3 Reduced order model 15

y⇤ = ⌥(x⇤) ⇡ (x⇤) (1.12)

In this context, the availability of physics-based reduced-order models

(ROMs) becomes very attractive, to embed the critical aspects of a detailed

simulations into simplified relationships between the inputs and outputs that

can be used in real time. The development of virtual models, also referred

to as digital twins, of industrial systems opens up a number of opportu-

nities, such as the use of data to anticipate the response of a system and

brainstorm malfunctioning, and the use of simulations to develop new tech-

nologies, i.e. virtual prototyping. A definition of digital twins is an integrated

multi-physics, multi-scale, probabilistic simulation of an as-built system, en-

abled by digital thread, that uses the best available models, sensor information,

and input data to mirror and predict activities/performance over the life of

its corresponding physical twin. Combining CFD simulations with real-time

data coming from sensors of a real industrial system to foresee a change in

its state is possible only if the prediction of the system’s state based on the

operating conditions reported by these sensors becomes instantaneous. To

do so, a set of training simulations must be generated beforehand, for a wide

enough range of possible operating conditions. A physics-based ROM can be

then developed in two steps:

• use unsupervised learning to extract the key latent features in the data.

• find a response surface by a supervised learning technique.

Once the mapping between inputs and outputs is embedded in a ROM,

the system state can be predicted for new operating conditions, based on real-

time data coming from sensors. Without run another new CFD simulation

and very quickly.

16 1. Introduction

Parente et al. 2020 have developed a ROM based on the Kriging-PCA

approach. In that work, the combination of Principal Component Analy-

sis (PCA) with Kriging has been considered to identify accurate low-order

models. PCA is used to identify and separate invariants of the system, the

PCA modes, from the coe�cients that are instead related to the character-

istic operating conditions. Kriging is then used to find a response surface for

these coe�cients. In this section we will see a little explanation of PCA and

Kriging.

PCA

Principal Component Analysis (PCA) o↵er the potential of preserving

the physics of the system while reducing the size of the problem. PCA is a

statistical technique used to find a set of orthogonal low-dimensional basis

functions, called Principal Components (PCs), to represent an ensemble of

high-dimensional data. In other words from the data-set Y of available simu-

lations, PCA is able to extract a set of basis functions � = � (�1,�2, ...,�q),

with q < N usually, called PCA modes or PC that are invariant with respect

to the input parameters x. A set of coe�cients a(x) = a1(x), a2(x), ..., aq(x),

called PCA scores (or coe�cients) and depending on x, is consequently found.

An illustrative example is reported in Figure 1.2, where a temperature

spatial field is represented as a set of coe�cients a1, a2...aq that weight a set

of basis functions, i.e. the PCs. These coe�cients are less in number than

the original number of variables as q < N and can be interpolated in order to

acquire knowledge about the system’s state for any unexplored point x⇤ 2D.

In order to have more info about PCA see Appendix A.

1.3 Reduced order model 17

Figure 1.2: Illustrative example of PCA.

Kriging

Kriging is an interpolation method in which every realization a(x) is

expressed as a combination of a trend function and a residual:

a(x) = µ(x) + s(x) = f
T (x)� + z(x) (1.13)

The trend function µ(x) is a low-order polynomial regression and provides

a global model in the input space. The residuals z(x) are modelled by a

Gaussian process with a kernel or correlation function that depends on a

set of hyper-parameters to be evaluated by Maximum Likelihood Estimation

(MLE).

This approach can faithfully reproduce the temperature and chemical

species fields in a reacting flow simulation.

Now we want to go forward, we ask ourself if there is or not another

way to create a digital twin and if it would work better or not. With this

purpose, in this project we want to explor a di↵erent way to reduce the size

of simulation image. Instead of using PCA, we will use Convolutional neural

network (CNN). CNN will be explained more deeper in Chapter 2.

18 1. Introduction

Chapter 2

Methods

In each hemisphere of our brain, humans have a primary visual cortex,

also known as V1, containing 140 million neurons, with tens of billions of

connections between them. And yet human vision involves not just V1, but

an entire series of visual cortices - V2, V3, V4, and V5 - doing progressively

more complex image processing. We carry in our heads a supercomputer.

We humans are stupendously, astoundingly good at making sense of what

our eyes show us. But nearly all that work is done unconsciously. And so we

don’t usually appreciate how tough a problem our visual systems solve.

Figure 2.1: Visual cortex

19

20 2. Methods

The di�culty of visual pattern recognition becomes apparent if you at-

tempt to write a computer program. Simple intuitions about how we recog-

nise shapes turn out to be not so simple to express algorithmically. When you

try to make such rules precise, you quickly get lost in a morass of exceptions

and caveats and special cases.

Machine learning, a branch of artificial intelligence, to which neural net-

works belong, arises from this question: could a computer go beyond what

we know how to order it to perform and learn on its own how to perform

a specified task? Could a computer surprise us? Rather than programmers

crafting data-processing rules by hand, could a computer automatically learn

these rules by looking at data? This question opens the door to a new pro-

gramming paradigm. In classical programming, the paradigm of symbolic

AI artificial intelligence, humans input rules (a program) and data to be

processed according to these rules, and out come answers. With machine

learning, humans input data as well as the answers expected from the data,

and out come the rules. These rules can then be applied to new data to

produce original answers. A machine-learning system is trained rather than

explicitly programmed. It’s presented with many examples relevant to a task,

and it finds statistical structure in these examples that eventually allows the

system to come up with rules for automating the task. Following, a practical

concept to implement machine learning is presented.

Artificial Neural Network or ANN is a computational model that consists

of several processing elements that receive inputs and deliver outputs based

on their predefined activation functions. It is inspired by the way the bio-

logical nervous system such as brain process information. It is composed of

large number of highly interconnected processing elements (neurons) working

in unison to solve a specific problem. Neurons are organized into layers that

21

have a specific role. In its simplest form, an ANN can have only three layers

of neurons: the input layer (where the data enters the system), the hidden

layer (where the information is processed) and the output layer (where the

system decides what to do based on the data). But ANNs can get much

more complex than that, and include multiple hidden layers. With these

base concepts, we can talk about Deep Learning. It’s nothing but a specific

sub-field of machine learning we were talking about before: a new take on

learning representations from data that puts an emphasis on learning suc-

cessive layers of increasingly meaningful representations. The deep in deep

learning isn’t a reference to any kind of deeper understanding achieved by

the approach; rather, it stands for this idea of successive layers of representa-

tions. How many layers contribute to a model of the data is called the depth

of the model. Other appropriate names for the field could have been layered

representations learning and hierarchical representations learning. This kind

of ANN is called a deep neural network (Fig 2.2). We will see a more detailed

discussion about these arguments in the next sections.

Figure 2.2: Example of Non-deep and deep neural network

22 2. Methods

2.1 Neurons

The following diagram represents the general model of a neuron which is

inspired by a biological neuron.

Figure 2.3: Neuron

Rosenblatt proposed a simple rule to compute the output. He introduced

weights, w1, w2, ...wn real numbers expressing the importance of the respec-

tive inputs to the output. Weight shows the strength of a particular input

node and ideally they can be seen as the values assigned to the bonds that

connect neurons. The neuron’s output called activation (in this case 0 or 1)

is determined by whether the weighted sum ⌃jwjxj is less than or greater

than some threshold value. Just like the weights, the threshold is a real num-

ber which is a parameter of the neuron. To put it in more precise algebraic

terms:

output =

8
><

>:

0 �! if ⌃jwjxj  threshold

1 �! if ⌃jwjxj > threshold
(2.1)

By varying the weights and the threshold, we can get di↵erent models

of decision-making. The condition ⌃jwjxj threshold is cumbersome, and we

can make two notational changes to simplify it.

2.1 Neurons 23

• The first change is to write ⌃jwjxj as a dot product, w · x ⌘ ⌃jwjxj,

where w and x are vectors whose components are the weights and in-

puts, respectively.

• The second change is to move the threshold to the other side of the

inequality, and to replace it by what’s known as the neuron’s bias,

b ⌘ �threshold. Using the bias instead of the threshold, the neuron

rule can be rewritten:

output =

8
><

>:

0 �! if ⌃jwjxj + b  0

1 �! if ⌃jwjxj + b > 0
(2.2)

When you compute a weighted sum like this you might come out with any

number. So what is common to do is apply an activation function �(⌃jwjxj+

b) that compresses the real output into the wanted range. In the previous

example Eq 2.2, a Threshold Activation Function (Binary step function) was

applied. Depending on the result obtained by the function, the neuron will

be more or less activated. For example, we have a neural network used to

classify numbers from 0 to 9, as in Fig 2.4. Let’s focus our attention to the

first neuron (Fig. 2.5), it has the responsibility to identify the presence of a

circle. it’s connected to all neurons of the previous layer but through di↵erent

weight for each one. In particular this neuron will be activated only if the

previous neurons with biggest weight are active. In Fig 2.6 neuron activation

to identify the 9 number is shown.

24 2. Methods

Figure 2.4: NN for identification of numbers(a)

Figure 2.5: NN for identification of numbers (b)

Figure 2.6: NN for identification of numbers (c)

2.2 Activation function 25

2.2 Activation function

Neural network activation functions (also known as Transfer Function)

are a crucial component of deep learning. Activation functions determine the

output of a deep learning model, its accuracy, and also the computational

e�ciency of training a model, moreover it can make or break a large scale

neural network. Activation functions also have a major e↵ect on the neural

network’s ability to converge and the convergence speed, or in some cases,

activation functions might prevent neural networks from converging in the

first place.

Activation functions are mathematical equations that determine the out-

put of a neural network. The function is attached to each neuron in the

network, and determines whether it should be activated (fired) or not, based

on whether each neuron’s input is relevant for the model’s prediction. Ac-

tivation functions also help normalize the output of each neuron to a range

between 1 and 0 or between -1 and 1. An additional aspect of activation

functions is that they must be computationally e�cient because they are

calculated across thousands or even millions of neurons for each data sam-

ple. Modern neural networks use a technique called backpropagation to train

the model (further on we will see this concept better) , which places an in-

creased computational strain on the activation function, and its derivative

function. Following, some of the most common activation functions.

Binary Step Function

A binary step function is a threshold-based activation function. If the

input value is above or below a certain threshold, the neuron is activated

and sends exactly the same signal to the next layer.

26 2. Methods

Figure 2.7: Binary Step Function

The problem with a step function is that it does not allow multi-value

outputs (for example, it cannot support classifying the inputs into one of

several categories).

Linear Activation Function

A = cx (2.3)

Figure 2.8: Linear Activation Function

It takes the inputs, (applies the weighted sum from neurons), and creates

an output signal proportional to the input. In one sense, a linear function is

2.2 Activation function 27

better than a step function because it allows multiple outputs, not just yes

and no. However, a linear activation function has two major problems:

• Not possible to use backpropagation (gradient descent) to train the

model, the derivative of the function is a constant, and has no relation

to the input, X. So it’s not possible to go back and understand which

weights in the input neurons can provide a better prediction.

• All layers of the neural network collapse into one with linear activa-

tion functions, no matter how many layers in the neural network, the

last layer will be a linear function of the first layer (because a linear

combination of linear functions is still a linear function). So a linear

activation function turns the neural network into just one layer.

Modern neural network models use non-linear activation functions. They

allow the model to create complex mappings between the network’s inputs

and outputs, which are essential for learning and modelling complex data,

such as images, video, audio, and data sets which are non-linear or have

high dimensionality. Almost any process imaginable can be represented as

a functional computation in a neural network, provided that the activation

function is non-linear. Non-linear functions address the problems of a linear

activation function listed above.

Sigmoid activation function

�(x) =
1

1 + exp(�x)
(2.4)

28 2. Methods

Figure 2.9: Sigmoid activation function

Sigmoid activation function has these advantages:

• Smooth gradient, preventing jumps in output values.

• Output values bound between 0 and 1, normalizing the output of each

neuron.

• Clear predictions. For X above 2 or below -2, tends to bring the Y

value (the prediction) to the edge of the curve, very close to 1 or 0.

This enables clear predictions.

But it has also some disadvantages:

• Vanishing gradient. For very high or very low values of X, there is

almost no change to the prediction, causing a vanishing gradient prob-

lem. This can result in the network refusing to learn further, or being

too slow to reach an accurate prediction.

• Outputs not zero centered.

• Computationally expensive

2.2 Activation function 29

Hyperbolic Tangent activation function

f(x) = tanh(x) =
2

1 + exp(�2x)
� 1 (2.5)

Figure 2.10: Hyperbolic Tangent activation function

This activation function has the same advantages and disadvantages of

the previous one. In addiction it has the zero centered advantage that makes

it easier to model inputs that have strongly negative, neutral, and strongly

positive values.

ReLU (Rectified Linear Unit) activation function

f(x) = max(0, x) (2.6)

Figure 2.11: ReLU (Rectified Linear Unit) activation function

30 2. Methods

Sigmoid activation function has these advantages:

• Computationally e�cient. allows the network to converge very quickly

• Non-linear. Although it looks like a linear function, ReLU has a deriva-

tive function and allows for backpropagation.

The disadvantage is the Dying ReLU problem. When inputs approach

zero, or are negative, the gradient of the function becomes zero, the network

cannot perform backpropagation and cannot learn.

Leaky ReLU activation function

f(x) = max(0.1 ⇤ x, x) (2.7)

Figure 2.12: Leaky ReLU activation function

The added advantage of this activation function is preventing dying ReLU

problem. This variation of ReLU has a small positive slope in the negative

area, so it does enable backpropagation, even for negative input values. With

the disadvantage that obtain inconsistent results for negative value is possi-

ble.

2.3 Autoencoder 31

2.3 Autoencoder

An autoencoder neural network is an unsupervised Machine Learning al-

gorithm that applies backpropagation, setting the target values to be equal

to the input. It compresses the input into a lower-dimensional code and then

reconstructs the output from this representation. The code is a compact

summary or compression of the input, also called the latent-space represen-

tation.

Figure 2.13: Conceptual scheme of an autoencoder

The autoencoder architecture consists of 3 components: encoder, code

and decoder. The encoder, which is a fully-connected ANN, compresses the

input and produces the code, the decoder then reconstructs the input only

using this code. The goal is to get an output identical with the input. Note

that the decoder architecture is the mirror image of the encoder. This is

not a requirement but it’s typically the case. The only requirement is the

dimensionality of the input and output needs to be the same. Anything in

the middle can be played with.

32 2. Methods

Figure 2.14: Autoencoder architecture

Autoencoders are mainly a dimensionality reduction (or compression)

algorithm with a couple of important properties:

• Data-specific: Autoencoders are only able to meaningfully compress

data similar to what they have been trained on. Since they learn fea-

tures specific for the given training data, they are di↵erent than a

standard data compression algorithm.

• Lossy: The output of the autoencoder will not be exactly the same as

the input, it will be a close but degraded representation.

• Unsupervised: autoencoders are considered an unsupervised learning

technique since they don’t need explicit labels to train on.

In order to train and test autoencoder, define a cost function and a learn-

ing method is necessary. We will go deeper into them in the Section 2.4.

Now we will talk a little bit about a comparison between autoencoder and

PCA.

2.3.1 Autoencoder and PCA

There are a few ways to reduce the dimensions of large data sets to ensure

computational e�ciency such as backwards selection, removing variables ex-

2.3 Autoencoder 33

hibiting high correlation, high number of missing values but by far the most

popular is principal components analysis. But a relatively new method of

dimensionality reduction is the autoencoder. To summarise, PCA essentially

learns a linear transformation that projects the data into another space,

where vectors of projections are defined by variance of the data. By restrict-

ing the dimensionality to a certain number of components that account for

most of the variance of the data set, we can achieve dimensionality reduction.

Autoencoders are neural networks that can be used to reduce the data into a

low dimensional latent space by stacking multiple non-linear transformations

(layers).

If we want to do a comparison:

• PCA is essentially a linear transformation but Autencoders are capa-

ble of modelling complex non linear functions. A linearly activated

Autoencoder approximates PCA. Mathematically, minimizing the re-

construction error in PCA modeling is the same as a single layer linear

Autoencoder. An Autoencoder extends PCA to a nonlinear space.

• PCA features are totally linearly uncorrelated with each other since

features are projections onto the orthogonal basis. But autoencoded

features might have correlations since they are just trained for accurate

reconstruction.

• PCA is able to recognize features that are invariant in space, on the

contrary autoencoders learn how to recognize this feature regardless of

where it is in the image.

• PCA is faster and computationally cheaper than autoencoders.

• Autoencoder is prone to overfitting due to high number of parameters

(though regularization and careful design can avoid this).

34 2. Methods

• Autoencoders are usually used for large datasets.

Apart from the consideration about computational resources, the choice

of technique depends on the properties of feature space itself. If the features

have non-linear relationship with each other than autoencoder will be able to

compress the information better into low dimensional latent space leveraging

its capability to model complex non-linear functions.

With the following examples, the writer is sure that the di↵erence between

PCA and autoencoder will be clear. Here we construct two dimensional

feature spaces with linear and non-linear relationship between them (with

some added noise).

Figure 2.15: 2D examples

It is evident if there is a non linear relationship (or curvature) in the fea-

ture space, autoencoded latent space can be used for more accurate recon-

2.4 Learning method 35

struction. Where as PCA only retains the projection onto the first principal

component and any information perpendicular to it is lost. A similar conclu-

sion is possible to obtain conducting experiments in 3D. In case of a curved

surface two dimensional PCA is not able to account for all the variance and

thus loses information. The projection to the plain that covers the most of

variance is retained and other information is lost, thus reconstruction is not

that accurate.

Figure 2.16: 3D examples

2.4 Learning method

In neural networks, parameters are used to train the model and make

predictions. There are two types of parameters:

• Hyperparameters are external parameters set by the operator of the

neural network, for example, selecting which activation function to use

or the batch size used in training.

• Model parameters are internal to the neural network, for example, neu-

36 2. Methods

ron weights.

It is needless to say the network is going to perform pretty horribly on a

given training example initialising all weights and biases totally randomly.

So, first you define a cost function and then an optimisation strategy aim at

minimising the cost function.

2.4.1 Cost function

Cost function is a function that measures the performance of a Machine

Learning model for given data. Cost Function quantifies the error between

predicted values and expected values (called loss) and presents it in the form

of a single real number. The loss function (or error) is for a single training

example, while the cost function is over the entire training set (or mini-batch

for mini-batch gradient descent).

Broadly, loss functions can be classified into two major categories depend-

ing upon the type of learning task we are dealing with Regression losses and

Classification losses. In classification, we are trying to predict output from

set of finite categorical values i.e Given large data set of images of hand writ-

ten digits, categorizing them into one of 0-9 digits. Regression, on the other

hand, deals with predicting a continuous value. Following, we will present

some regression cost function. We’ll use a
l
j to denote the activation for the

j
th neuron in the lth layer and we will call the desired output with symbol y.

Mean Absolute Error/L1 Loss

MAE =

Pn
i=1

|ai � yj|
n

(2.8)

It’s measured as the average of sum of absolute di↵erences between predic-

2.4 Learning method 37

tions and actual observations. MAE needs complicated tools such as linear

programming to compute the gradients. MAE is robust to outliers since it

does not make use of square. MAE doesn’t add any additional weight to the

distance between points, the error growth is linear.

Mean Bias Error

MBE =

Pn
i=1

(ai � yj)

n
(2.9)

This is much less common in machine learning domain as compared to it’s

counterpart. This is same as MSE with the only di↵erence that we don’t take

absolute values. Clearly there’s a need for caution as positive and negative

errors could cancel each other out.

Mean Square Error/Quadratic Loss/L2 Loss

MSE =

Pn
i=1

(ai � yj)2

n
(2.10)

As the name suggests, Mean square error is measured as the average of

squared di↵erence between predictions and actual observations. It’s only

concerned with the average magnitude of error irrespective of their direction.

However, due to squaring, predictions which are far away from actual values

are penalized heavily in comparison to less deviated predictions. MSE errors

grow exponentially with larger values of distance. It’s a metric that adds

a massive penalty to points which are far away and a minimal penalty for

points which are close to the expected result. Error curve has a parabolic

shape. Plus MSE has nice mathematical properties which makes it easier to

calculate gradients. Following, a figure that explains the di↵erent behaviour

of MAE and MSE.

38 2. Methods

Figure 2.17: MAE and MSE

Mean Absolute Percentage Error

MA%E =

Pn
i=1

|(ai�yj)|
yi

n
⇤ 100 (2.11)

Mean Squared Logarithmic Error

MA%E =

Pn
i=1

(log(yj + 1)� log(ai + 1)2

n
(2.12)

2.4.2 Optimisation strategy

At the base of optimization strategies there is often backpropagation

which is useful for calculating the gradient of the cost function.

The backpropagation algorithm was originally introduced in the 1970s,

but its importance wasn’t fully appreciated until a famous 1986 paper by

David Rumelhart, Geo↵rey Hinton, and Ronald Williams. That paper de-

scribes several neural networks where backpropagation works far faster than

earlier approaches to learning, making it possible to use neural nets to solve

problems which had previously been insoluble. Today, the backpropagation

algorithm is the workhorse of learning in neural networks.

2.4 Learning method 39

At the heart of backpropagation is an expression for the partial derivative

(@C@w and @C
@b) of the cost function C with respect to any weight w (or bias b)

in the network. The expression tells us how quickly the cost changes when

we change the weights and biases. Let’s begin with a notation which lets

us refer to weights in the network in an unambiguous way. We’ll use w
l
jk to

denote the weight for the connection from the kth neuron in the (l�1)th layer

to the j
th neuron in the l

th layer. So, for example, the diagram below shows

the weight on a connection from the fourth neuron in the second layer to the

second neuron in the third layer of a network.

Figure 2.18: Notation of weights

We use a similar notation for the network’s biases and activations. Ex-

plicitly, we use b
l
j for the bias of the j

th neuron in the l
th layer. And we use

a
l
j for the activation of the j

th neuron in the l
th layer.

a
l
j = �

X

k

w
l
jka

l�1

k + b
l
j

!
(2.13)

Then, we need two assumptions about the cost function:

• it can be written as an average C = 1

nL

P
x Cx over cost functions Cx

for individual training examples, x. Where n is number of neurons in

the last layer.

40 2. Methods

• it can be written as a function of the outputs from the neural network

Let’s consider a network that has only one neuron per layer and, now,

we’ll pay attention only for the last two layers (L � 1 and L). We will call

the desired output with symbol y. Assume a MSE function cost is used. So

we have:

C0(weights, biases) = (aL � y)2 (2.14)

z
L = w

L
a
(L�1) + b

L (2.15)

a
L = �(zL) (2.16)

The gradient, we want to obtain, is

rC =

2

6666666666664

@C
@w1

@C
@b1

...

...

@C
@wL

@C
@bL

3

7777777777775

(2.17)

In order to calculate each element, backpropagation applies the chain

rule.

@C0

@wL
=

@z
L

@wL

@a
L

@zL

@C0

@aL
(2.18)

A simple way to understand what happens in backpropagation is have

a look to Fig 2.19 that shows how weights and bias can influence the cost

function in this simple network.

2.4 Learning method 41

Figure 2.19: Chain rule scheme

Moreover it’s valid:
@z

L

@wL
= a

(L�1) (2.19)

@a
L

@zL
= �

0(zL) (2.20)

@C0

@aL
= 2(aL � y) (2.21)

The previous expression can be written:

@C0

@wL
= a

(L�1)
�
0(zL)2(aL � y) (2.22)

This equation is valid for one training example, but we need to take into

account all training example:

@C

@wL
=

1

n

n�1X

k=0

@Ck

@wL
(2.23)

In a similar way, it’s valid for partial derivatives of cost function respect to

biases and activations.

@C0

@bL
=

@z
L

@bL

@a
L

@zL

@C0

@aL
= �

0(zL)2(aL � y) (2.24)

42 2. Methods

@C0

@aL�1
=

@z
L

@aL�1

@a
L

@zL

@C0

@aL
= w

L
�
0(zL)2(aL � y) (2.25)

If there is also another layer before, we have to do a step back to the

previous layer (Fig 2.20) and it’s easy to find the following expressions:

@C0

@wL�1
=

@z
L�1

@wL�1

@a
L�1

@zL�1

@z
L

@aL�1

@a
L

@zL

@C0

@aL
(2.26)

@C0

@bL�1
=

@z
L�1

@bL�1

@a
L�1

@zL�1

@z
L

@aL�1

@a
L

@zL

@C0

@aL
(2.27)

Figure 2.20: Chain scheme (b)

To generalise, in a real neural network we have more neurons per layer and

more layers. The influence of weights and biases (through multiple paths)

on cost function must be taken into account. The following expressions are

the generalisation of the previous ones:

C0 =
nL�1X

j=0

(alj � yj)
2 (2.28)

z
l
j = w

l
j,0a

l�1

0
+ w

l
j,1a

l�1

1
+ ...+ b

l
j (2.29)

2.4 Learning method 43

a
l
j = �(zlj) (2.30)

@C0

@w
L
jk

=
@z

L
j

@w
L
jk

@a
L
j

@z
L
j

@C0

@a
L
j

(2.31)

@C0

@b
L
j

=
@z

L
j

@b
L
j

@a
L
j

@z
L
j

@C0

@a
L
j

(2.32)

The equations of backpropagation are:

@C0

@w
l
jk

= a
l�1

k �
0
(zlj)

@C

@a
l
j

(2.33)

@C0

@b
l
j

= �
0
(zlj)

@C

@a
l
j

(2.34)

with l = 0, ...N � 1:

@C

@a
l
j

=

8
>>>>><

>>>>>:

Pnl+1�1

j=0
w

l+1

jk �
0
(zl+1

j) @C
@al+1

j

or

@C
@alj

= 2(aLj � yj)

(2.35)

Backpropagation results are then used by an

Coming back to the overall procedure, the aim of training algorithm is to

minimise the cost C(w, b) as a function of the weights and biases. In other

words, we want to find a set of weights and biases which make the cost as

small as possible. We’ll do that using an algorithm. There are di↵erent types

of optimisers, we present only a few ones:

Gradient descent

The way the gradient descent algorithm works is to repeatedly compute

the gradient of cost function (with backpropagation), and then to move in

the opposite direction, falling down the slope of the valley. If we had only

two variable, we can visualize it like this:

44 2. Methods

Figure 2.21: Gradient descent

We’ll use Eq.2.36 to compute a value for�⌫, then move the ball’s position

⌫ by that amount:

⌫ 7�! ⌫
0
= ⌫ � ⌘rC (2.36)

where ⌘ is learning rate: the smaller ⌘ is and more accurate we are. At the

same time, we don’t want ⌘ to be too small, since that will make the changes

�⌫ tiny, and thus the gradient descent algorithm will work very slowly.

Stochastic gradient descent

An idea called stochastic gradient descent can be used to speed up learn-

ing. The idea is to estimate the gradient rC by computing rC for a small

sample of randomly chosen training inputs (mini-batch). By averaging over

this small sample it turns out that we can quickly get a good estimate of

the true gradient rC, and this helps speed up gradient descent, and thus

learning. A visual example in Fig.2.22.

2.4 Learning method 45

Figure 2.22: Stochastic gradient descent

It’s possible to assert:

• SGD helps us to avoid the problem of local minima.

• SGD is much faster than Gradient Descent because it is running each

row at a time and it doesn’t have to load the whole data in memory

for doing computation.

• SGD is generally noisier than typical Gradient Descent, it usually took

a higher number of iterations to reach the minima, because of its ran-

domness in its descent. Even though it requires a higher number of

iterations to reach the minima than typical Gradient Descent, it is still

computationally much less expensive than typical Gradient Descent.

Adam

Adam is an adaptive learning rate method, which means, it computes

individual learning rates for di↵erent parameters. Its name is derived from

adaptive moment estimation, and the reason it’s called that is because Adam

46 2. Methods

uses estimations of first and second moments of gradient to adapt the learning

rate for each weight of the neural network.

Adam is combining the advantages of two other extensions of stochastic

gradient descent. Specifically:

• Adaptive Gradient Algorithm (AdaGrad) that maintains a per-parameter

learning rate that improves performance on problems with sparse gra-

dients (e.g. natural language and computer vision problems).

• Root Mean Square Propagation (RMSProp) that also maintains per-

parameter learning rates that are adapted based on the average of re-

cent magnitudes of the gradients for the weight (e.g. how quickly it

is changing). This means the algorithm does well on online and non-

stationary problems (e.g. noisy).

When Adam was first introduced, people got very excited about its power.

The method is straightforward to implement, is computationally e�cient, has

little memory requirements, is invariant to diagonal rescaling of the gradi-

ents, and is well suited for problems that are large in terms of data and/or

parameters. The method is also appropriate for non-stationary objectives

and problems with very noisy and/or sparse gradients. Some very optimistic

charts huge performance gains in terms of speed of training, one is the fol-

lowing:

2.5 Convolutional neural network 47

Figure 2.23: Performance chart

However, after a while people started noticing that despite superior train-

ing time, Adam in some areas does not converge to an optimal solution, so

for some tasks. A lot of research has been done since to analyse the poor

generalization of Adam trying to get it to close the gap with SGD.

2.5 Convolutional neural network

A variation of the neural networks is the convolution neural network.

ConvNets, as they are sometimes known o↵er some significant advantages

over normal neural nets. The traditional issue is that with big images, with

many color channels, is that it quickly becomes computationally infeasible to

train some models. What CNN tries to do is transform the images into a form

which is easier to process, while still retaining the most important features.

This is done by passing a filter over the initial image which conducts matrix

(filter) multiplication over a subsection of the pixels in the initial image, it

48 2. Methods

iterates through subsets until it has considered all subsets. The filter aims

at capturing the most crucial features, while allowing the redundant features

to be eliminated. This passing of a filter over the initial pixels is known as

the Convolution Layer.

CNNs do take a biological inspiration from the visual cortex. The visual

cortex has small regions of cells that are sensitive to specific regions of the

visual field. This idea was expanded upon by a fascinating experiment by

Hubel and Wiesel in 1962 where they showed that some individual neuronal

cells in the brain responded (or fired) only in the presence of edges of a cer-

tain orientation. For example, some neurons fired when exposed to vertical

edges and some when shown horizontal or diagonal edges. Hubel and Wiesel

found out that all of these neurons were organized in a columnar architec-

ture and that together, they were able to produce visual perception. This

idea of specialized components inside of a system having specific tasks (the

neuronal cells in the visual cortex looking for specific characteristics) is one

that machines use as well, and is the basis behind CNNs. Following, a more

detailed overview of what CNNs do.

The first layer in a CNN is always a Convolutional Layer. First thing to

make sure you remember is what the input to this conv layer is. Like we

mentioned before, the input is a (for example imagine a 2D picture with a

dimension of 32 x 32 (x 3 color channel)) array of pixel values. This is easy to

accept from the moment you understand that the computer sees the images

as a set of numbers to which a color scale is then assigned (Fig. 2.24) .

2.5 Convolutional neural network 49

Figure 2.24: Pixel of an image

Now, the best way to explain a conv layer is to imagine a flashlight that is

shining over the top left of the image. Let’s say that the light this flashlight

shines covers a 5 x 5 area. And now, let’s imagine this flashlight sliding across

all the areas of the input image. In machine learning terms, this flashlight

is called a filter(or sometimes referred to as a neuron or a kernel) and the

region that it is shining over is called the receptive field. Now this filter is

also an array of numbers (the numbers are called weights or parameters). A

very important note is that the depth of this filter has to be the same as the

depth of the input, so the dimensions of this filter is 5 x 5 x 3. Now, let’s

take the first position the filter is in for example. It would be the top left

corner. As the filter is sliding, or convolving, around the input image, it is

multiplying the values in the filter with the original pixel values of the image

(aka computing element wise multiplications). These multiplications are all

summed up (mathematically speaking, this would be 75 multiplications in

total). So now you have a single number. Remember, this number is just

representative of when the filter is at the top left of the image. Now, we

repeat this process for every location on the input volume. (Next step would

be moving the filter to the right by 1 unit, then right again by 1, and so

on). Every unique location on the input volume produces a number. After

50 2. Methods

sliding the filter over all the locations, you will find out that what you’re

left with is a 28 x 28 x 1 array of numbers, which we call an activation map

or feature map. The reason you get a 28 x 28 array is that there are 784

di↵erent locations that a 5 x 5 filter can fit on a 32 x 32 input image. These

784 numbers are mapped to a 28 x 28 array.

Figure 2.25: Conceptual schema of convolutional operation

Each of these filters can be thought of as feature identifiers like straight

edges, simple colours, and curves. Think about the simplest characteristics

that all images have in common with each other. Let’s say our first filter is 7

x 7 x 3 and is going to be a curve detector. (ignore the fact that the filter is

3 units deep and only consider the top depth slice of the filter and the image,

for simplicity.)As a curve detector, the filter will have a pixel structure in

which there will be higher numerical values along the area that is a shape of

a curve.

2.5 Convolutional neural network 51

Figure 2.26: Convolutional filter (a)

When we have this filter at the top left corner of the input volume, it is

computing multiplications between the filter and pixel values at that region.

Basically, in the input image, if there is a shape that generally resembles the

curve that this filter is representing, then all of the multiplications summed

together will result in a large value.

Figure 2.27: Multiplications between the filter and pixel values (a)

When the filter reaches another part of the image that does not have a

feature similar to the filter, it happens as in the figure 2.28.

52 2. Methods

Figure 2.28: Multiplications between the filter and pixel values (b)

The value is much lower. This is because there wasn’t anything in the

image section that responded to the curve detector filter. The output of

this conv layer is an activation map. So, in the simple case of a one filter

convolution (and if that filter is a curve detector), the activation map will

show the areas in which there at mostly likely to be curves in the picture.

In this example, the top left value of our 26 x 26 x 1 activation map (26

because of the 7x7 filter instead of 5x5) will be 6600. This high value means

that it is likely that there is some sort of curve in the input volume that

caused the filter to activate. The top right value in our activation map will

be 0 because there wasn’t anything in the input volume that caused the filter

to activate (or more simply said, there wasn’t a curve in that region of the

original image). This is just a filter that is going to detect lines that curve

outward and to the right. We can have other filters for lines that curve to

the left or for straight edges. The more filters, the greater the depth of the

activation map, and the more information we have about the input volume.

Pooling layer

After the convolution layer comes the pooling layer, where the spatial size

of the convoluted features will be attempted to be reduced. The reduction

2.5 Convolutional neural network 53

in complexity, sometimes known as dimensionality reduction will decrease

the computational cost of performing analysis on the data set, allowing the

method to be more robust. In this layer, a kernel once again passes over

all subsets of pixels of the image. There are two types of pooling kernels

which are commonly used. The first one is Max Pooling, which retains the

maximum value of the subset. The alternative kernel is average pooling,

which does exactly what you’d expect: it retains the average value of all the

pixels in the subset. After the pooling phase, the information will hopefully

be compressed enough to be used in a regular neural network model.

Figure 2.29: Pooling layer

54 2. Methods

Chapter 3

Test case

3.1 The furnace

The experimental facility consists of a 20 kW nominal power flameless

unit, which has a configuration similar to industrial furnaces, in terms of

injection profiles, air excess, fuel and air velocity and internal load. It has

an integrated metallic finned heat exchanger to extract energy from the flue

gases and pre-heat the combustion air. The chamber is made of stainless

steel and has a cubic internal section of 700 mm on each side. It is equipped

with a ceramic fiber insulation to reduce the heat loss and the external wall

temperature of the combustion chamber. Fuel and air are fed co-axially into

the combustion chamber through separated jets. The fuel is fed centrally,

whereas air is fed through a coaxial gap (OD of 8.2 and 32 mm respectively).

The burner can be characterized by a recirculation degree. The combustion

chamber is equipped with an air cooling system consisting of four cooling

tubes (OD 80 mm), with a length of 630 mm inside the furnace. Varying

the air flow allows the combustion chamber to operate at di↵erent stable

conditions, thus simulating the e↵ect of a variable load. On each vertical

55

56 3. Test case

wall of the combustion chamber, an opening is available for measurements.

Two sides are equipped with a 150x150 mm quartz windows allowing optical

access to the in order to detect the chemiluminescent self-emission of OH*.

The window can be placed in up to four di↵erent positions along the opening

length, allowing a complete access to the reactive zone for optical measure-

ments. The openings on the other two sides are closed with an insulated

plate coupled with six thermocouple ports, at a related distance of 100 mm.

In particular, cold-junction compensated K-type thermocouples are used, in

order to measure the wall temperature profile along the height of the fur-

nace. Cooling air inlet/outlet, combustion air and flue gases temperatures

are also measured by K-type thermocouples. The furnace temperature (Tf),

used as set-point for the burner on/o↵ regulation and the flue-gases tempera-

ture (Tfg) are given by two shielded N-type thermocouples positioned on the

central plane and shifted of 250 mm respect the axis, on the top and bottom

wall of the chamber, respectively. They are immersed 20 and 40 mm inside

the flow field, respectively.

Figure 3.1: Plant scheme (a) and furnace 3D model (b) with positions of

measuring

3.1 The furnace 57

Figure 3.2: BURN group’s Furnace

58 3. Test case

3.2 CFD of BURN’s combustion chamber

Like said before, we need some start data-set useful to training the neural

network and to validate it. To generate the samples, CFD simulations were

carried out by BURN group using the commercial software Ansys Fluent

19.1. A constant heat power of 20 kW was fixed, while the cooling flow rate

was set to reach a furnace outlet temperature of Tout=1000°C. Furthermore,

the four sides of the furnace were closed with insulated plates. Moreover, a

45° degrees angular sector of the 3D geometry of the furnace was considered,

as a result of the symmetry of the problem. The computational grid was first

created with tetrahedrons and then converted into polyhedrons. The cooling

and window surfaces are modelled as constant negative heat flux surfaces,

whose values are set in accordance to the furnace energy balance, while on

the lateral wall a conduction/convection condition towards the laboratory

air is set. In figures 3.3 and 3.4, there is a representation of the 3D furnace

mesh and of the only a 45 degrees angular sector considered in simulations.

Figure 3.3: Complete 3D mesh

3.2 CFD of BURN’s combustion chamber 59

Figure 3.4: Considered domain

The standard k-" model was used in combination with the PaSR model

for turbulence-chemistry interactions. Following, a Cmix of 0.5 was set for

the determination of an appropriate mixing scale in a static approach and a

chemical time scale estimation from formation rates in the PaSR approach.

A sensitivity study was carried out to select a kinetic scheme, comparing

the KEE (17 species and 58 reactions) and GRI-2.11 (31 species and 175

reactions) mechanisms. Being the di↵erence between the two schemes below

3% KEE was selected for its lower computational cost. The discrete ordinate

(DO) radiation model was used, in combination with the weighted- sum-of-

gray-gases (WSGG) model to take into account the radiation properties of

the reacting mixture.

In the study three input parameters were considered. This means the

digital twin will be able to provide results one time we define these three

input. we don’t need to choose these among a group of values but the con-

tinuity guaranteed by the model (ROM) allows us to choose freely (as far

as admitted). The 3 input parameters considered to generate the simulation

60 3. Test case

samples are:

• fuel composition in mole fractions (mixture of methane/hydrogen)

• equivalence ratio

• air injection geometry

A design of experiments (DoE) was established using latin hypercube

sampling, varying the input parameters in the range 0-100 % (H2 molar

fraction), 0.7-1 (equivalence ratio �) and 16-20-25 mm (air injector size). A

total of 45 simulations were carried out. The variables of interest selected

for the generation of the furnace ROM were the temperature, major species

(CH4, H2, O2, H2O, OH), minor species (CO and OH), and pollutants (NO).

ID sim air mm x fuel eq ratio ID sim air mm x fuel eq ratio

12 16 0.60 0.93 2 20 0.45 0.80

17 16 0.50 0.99 30 20 0.20 0.80

18 16 0.10 0.94 3 20 0.90 0.85

23 16 0.30 0.78 5 20 0 0.72

24 16 0.05 0.83 7 20 0.45 0.72

31 16 0.60 0.75 43 20 0.50 0.95

34 16 0.40 0.90 44 20 0.17 0.73

38 16 0.80 0.96 45 20 0.90 0.70

40 16 0.20 0.73 15 25 0.90 0.74

41 16 0.90 0.87 21 25 0.95 0.90

42 16 0.30 0.97 25 25 0.80 0.76

4 16 0.55 0.86 26 25 0.35 0.73

9 16 0.70 0.78 27 25 0.20 0.76

10 20 0.75 0.98 29 25 0.25 0.85

3.3 Preprocessing 61

11 20 0.30 0.89 32 25 0.40 0.95

13 20 0.95 0.96 33 25 0.80 0.90

14 20 0.10 0.88 37 25 0.65 0.84

16 20 0.85 0.95 39 25 0.45 0.85

19 20 0.15 0.97 6 25 0.70 0.94

1 20 0.60 0.88 8 25 0.65 0.91

20 20 0.35 0.70 46 25 0.11 0.96

22 20 0.80 0.82 47 25 0.54 0.74

28 20 0.50 0.83

Table 3.1: DoE

3.3 Preprocessing

In this section we will see how, starting from the dataset provided by

the Burn research group, the appropriate input to the convolutional neural

network is obtained. In particular, CNN requires in input a matrix of pixels

representative of the CFD simulation. We therefore choose to use a single

channel color representation, this will be directly expressed with the values

of the variable field in the mesh with appropriate normalization.

3.3.1 Dataset

The Burn group of the Libre University carried out 45 CFD simulations

of MILD combustion and validated thanks to experimental tests performed

on the furnace described above. As already mentioned the simulations di↵er

for the variation of at least one of these three parameters: fuel composition

62 3. Test case

in mole fractions (mixture of methane / hydrogen), equivalence ratio and air

injection geometry. See table: 3.1.

Due to the variation of the air injection geometry parameter, the research

team was forced to create three di↵erent meshes so that they are all su�-

ciently accurate. But the results from which our project starts see a unified

mesh and the coordinates associated with it are provided as a csv file in x,

y, z. The fields of the calculated variables are also provided through a csv

file. In particular, each row corresponds to a CFD simulation. It contains the

values of the variables in succession for each grid point (in total 216360). The

header row is shown as an example: T1, T2, T3.....T216360, CH41,CH4216360,

etc

3.3.2 Code for preprocessing

Preprocessing was done by writing two python scripts to be used in suc-

cession. In this section we will only see some glimpses reported but the

complete code is available in the appendix B.

Let’s have a look to the first script (appendix B.1.1). First of all, every

time it will be necessary to import data from a csv file and convert them into

a matrix, the function in the figure 3.5 will be used.

Figure 3.5: Function to import csv

3.3 Preprocessing 63

It can be seen from the first graphical representations of the temperature

field (as well as of the other variables) that there are clearly incorrect grid

points saved in the csv file (see Figure 3.6) because it is physically impossible

that there is a discontinuity (from 400 to 1200 degrees) in furnace. Since it

was not possible to trace the error, here we have chosen to delete the points

with incorrect values from the domain.

Figure 3.6: Example of an original temperature field, simulation 1

To discern between the grid points, reference was made to the temperature

field where the diversity is particularly evident and we deleted all values under

345 K (code in Fig. 3.7 (a)).

Once this is done, the points that belong to the symmetry plane and the

points that are outside the study domain are eliminated. In particular, the

points with negative coordinates are deleted (Code in Fig 3.7 (b)).

64 3. Test case

Figure 3.7: First script(a) and (b)

After carrying out these actions, we obtain a list of grid points that we

consider valid for our study (this list is saved with the name GPindexok).

Three lists (X, Y, Z) of the coordinates of the above mentioned grid points

are created. These are not yet complete, in fact the coordinates of the points

that fill the half pipe excluded from the CFD simulations are added (the

number of grid points added z is also saved) (Code in Fig 3.8 (c)). Now it is

necessary to mirror the grid so as to obtain a new one (representing a quarter

of the furnace) and updating the X, Y, Z lists (Code in Fig 3.8 (d)). The

latter are then saved.

Figure 3.8: First script(c) and (d)

3.3 Preprocessing 65

With the script described above we worked on the grid points. Now we

will work on the values of the variable fields in order to obtain the input

matrix to CNN. Also in this second script (appendix B.1.2) the function

that translates csv into matrices is used and the results obtained from the

previous script are exploited, i.e. the following are imported: the list of

approved grid points indices, the number of points added for the half pipe

and lists X, Y, Z.

Once the matrix containing the values of the selected variable for all 45

simulations has been imported, we eliminate the values corresponding to the

erroneous grid points and those outside the domain with the following script

part.

Figure 3.9: Second script (a)

After doing this, let’s add a uniform value to the cooling half-pipe. Since

the griddata function that we will use later would be disturbed by an evident

discontinuity between the field of the variable in the furnace and the value

linked to the cooling tube and since it has been chosen to have a temperature

of cooling tube uniform with that on the wall of the same, we have assigned

66 3. Test case

as arbitrary value the average of the values in the furnace which we expect

to be very close to that of the pipe wall. The variable field must therefore be

mirrored in accordance with the values of the new grid representing a quarter

of the furnace (Code in Fig 3.10).

Figure 3.10: Second script (b)

Figure 3.11: Second script (c)

3.3 Preprocessing 67

The obtained matrix is specific for the selected field and has a shape of

(n ° sims, n ° grid points). For future purposes it is saved (Code in fig 3.11).

To be more clear about current situation, have a look to the 3D plot of the

matrix refereed to temperature field.

Figure 3.12: Original mesh (plot of temperature field simulation 1)

We have achieved the first fundamental goal of preprocessing. But list

output refers to a non-uniform mesh with 393 810 grid points. The convolu-

tional neural network requires a pixel matrix as input, so we need to create a

uniform parallelepiped mesh (as a matrix). The fineness of the cell has been

chosen so that the number of grid points is similar to the original one, to do

this cell parameter is fixed to 0.0067 (314 920 grid points) and to cover all the

quarter of furnace dimension are (0.35/0.35/0.72 meters). To built the new

mesh we use meshgrid function while we use griddata function to assign the

value of the CFD output variable to each point of the new grid. In griddata

the nearest method is applied, this returns the value at the data point closest

68 3. Test case

to the point of interpolation. Then matrix containing interpolated values on

the new mesh of the variable selected for the 45 simulations is saved. In fig

3.14 you find a 3D plot of the results of griddata function. Plots, shown in

this section,are created through the run of script in appendix B.1.3.

Figure 3.13: Second script (d)

Figure 3.14: Griddata - 0.0067 mesh

3.4 The core of the project: CNN 69

3.4 The core of the project: CNN

To develop our neural network we need two scripts that you will find

in the appendix B.2.1 and B.3.1. First lines of the script CNN5.py have

purpose of avoiding the randomness associated with the packages used, for

this purpose we set the seed of the python numpy package to a value (in

our case 9). Thanks to the next chapter it will be clear to you why in this

chapter there are already proposed values for the parameters over which the

programmer has power, for a brief preview these are the values obtained

following an optimization process.

Field values of the selected variable (in our case temperature) are im-

ported through the file created by the script CNN5read.py. These need a

normalization to help give more accurate results (for example the one de-

fined as C which subtracts the mean and divides by the standard deviation).

(Code in fig. 3.15 (a))

Figure 3.15: Third script (a) and (b)

As already mentioned, we have 45 CFD simulations available. To be con-

sistent with the work done by the BURN group of the Libre university, only

41 of these will be used to train our neural network, while the other 4 we will

be used to test the performance of the network already created. The identi-

fication IDs of the simulations belonging to the test category are: 1,22,28,39.

70 3. Test case

The code in Fig 3.15 (b) is use to divide in two di↵erent array the original

array of the variable values in accord to the two previous categories. Then

the neural network wants that the input array shape explicit the number of

channels. To do this we use the reshape function (code in fig 3.16). In our

case image pixels are represented by a single number, that we identify with

the value of the variable in that grid point but there are other cases (called

rgb) in which three channels are used to describe the colour.

Figure 3.16: Third script (c)

Now let’s get to the heart of our neural network. We rely on the KERAS

library for the construction and training of this. Some packages are then

imported (code in fig. 3.17).

Figure 3.17: Third script (d)

The next step consists in defining neural network architecture. The first

part of the autoencoder will be called ENCODER and it will be developed

and saved separately in order to be implemented and to obtain the CODE i.e.

the reduced version of the input image. On the whole, however, the architec-

ture takes the name of AUTOENCODER and thanks to the implementation

3.4 The core of the project: CNN 71

of this, you get the DECODED i.e. the reconstructed version of the input

image, this will be compared to the original at each epoch (for training) or

each prediction (for test) with the aim of evaluate model accuracy.

The network is created with the Sequential type, this means that it will

be a succession of layers that we are going to add progressively with the .add

command. As it is easy to notice in the code in fig. 3.18 this succession is

constituted for the encoder by layers of conv3D and AveragePooling3D while

the respective opposites (Conv3DTranspose and UpSampling3D) are found

in the second half i.e. the reconstruction.

Figure 3.18: Third script (e)

Let’s focus on the topics of the individual layers. For the Pooling layers,

we have only to decide the pooling size, because we have already decided

Average or Max. For the Conv3D layer you will find:

72 3. Test case

• numbers of filters in a single conv layer. With more filters we usually

have more accuracy.

• size of the kernel (if the input imagine is 3D, the size must be a vector

with 3 elements, so a cube)

• activation function. There are di↵erent activation function as already

anticipated (see section 2.2), we choose Relu.

• paddig: Same padding means the size of output feature-maps are the

same as the input feature-maps

• input shape

In the next part of the script there is network training. In .compile we define:

• the loss function, in our case the mean squared error (see section 2.4.1)

• the type of optimizer used (see section 2.4.2)

• metrics: function that is used to judge the performance of your model.

In general, it could have nothing to do with the minimization performed

by the optimizer.

In .fit we explain what the inputs are and what the outputs must be

compared with (whether they are for training or for testing). Being an au-

toencoder, the reconstructed image must be compared with the original.

Then we decide batch size (i.e. how many sample pass before updating gra-

dient) and epochs (how many cycle with full training dataset execute before

stop the training). Because find exactly when to stop the iteration process

is not easy (we could do error of over-fitting for example...), we decide to

use the function earlystopping. This function monitor a quantity and wait a

3.4 The core of the project: CNN 73

number of epochs (patient) with no improvement after which training will be

stopped. In min mode, training will stop when the quantity monitored has

stopped decreasing. In .fit if shu↵e is true: it will shu✏e your entire dataset

first and then make batches according to the batch size.

Figure 3.19: Third script (f)

In the final part of this script there is the logarithm plot of both mean

squarred error and the value of the loss function for train and test. A typical

result in fig. 3.20. In our case they are the same thing.

Figure 3.20: Result of third script (g)

Now that we have created and trained the autoencoder we can use a

second script (appendix B.3.1) for prediction and post-processing. After

74 3. Test case

loading the array of variable values, we normalize it and extract XtrainN

and XtestN once again. The autoencoder and encoder model are loaded and

the prediction is performed. As in fig. 3.21. It is added that the prediction

was also made for Xtrain but the only one to have importance for the results

and future comparisons is that of Xtest, since only in this last case the data

were not used for training. The same thing is possible to do with encoder,

obtaining the code.

Figure 3.21: Fourth script (a)

3.5 Post-processing

The performed predictions can be plotted to have a visual representation

of the reconstruction. The figure shows the simulation 22 (a zoomed version

of the mesh) in the original and reconstructed version. The plots are obtained

with the compilation of the script in the appendix B.3.2.

3.5 Post-processing 75

Figure 3.22: Original image

Figure 3.23: Reconstructed image

ORIGINAL ARRAY (reduced mesh version)= 24 300 elements

CODE= 72 elements array

[0.29625472 0.37266487 0.28748617 0.14876254 0.7973578 0.5016492

0.14867617 0.29581308 0.19254714 0.16508481 0.33441973 0.3622058

0.24576004 0.5525425 0.45719168 0.47793767 0.21135975 0.4223018

0.39432946 0.73621565 0.7937947 0.85891867 0.29021844 0.3456081

0.46777934 0.6791807 0.85057384 0.98540723 0.22922099 0.2476119

0.51817256 0.6312096 0.7843675 0.97529024 0.13252103 0.18274035

0.5625907 0.57876575 0.693001 0.91976064 0.07688414 0.12832482

0.5860489 0.52292705 0.595112 0.8422132 0.04167599 0.09317081

0.5904275 0.47269222 0.512344 0.7587106 0.02462439 0.06994813

0.6064538 0.44367298 0.43814728 0.6893065 0.01488622 0.04969355

0.70766205 0.40865904 0.33373794 0.61953336 0.00908016 0.03039117

1.131802 0.09281466 0.03220464 0.30793083 0.06209738 0.02896498]

A second script was also written for the post process, which you can find

in the appendix B.3.1. In this second script we will see how to build the

76 3. Test case

parity plot, calculate the percentage error, NRMSE RMSE and R
2. Only

parts of the code relating to test simulations will be reported.

Percentage error and parity plot

The relative percentage error is calculated in the following formula and

the code used to calculate it is shown in fig 3.24.

error = 100 ⇤ abs(Xoriginal �Xpredicted)/Xoriginal (3.1)

Figure 3.24: Fourth script (b)

While, a parity plot is a scatterplot that compares experimental data

against tabulated data. Each point has coordinates (x, y), where x is the

3.5 Post-processing 77

tabulated value, and y is the corresponding experimental value (code in fig

3.26). A line of the equation y = x is added as a reference. When an

experimental value equals a tabulated value, the point will lie on the line.

The parity plot obtained for all the values of the 4 test simulations are in fig

3.25 . Note that in addition to the exact prediction line, lines corresponding

to a percentage error of + 5% and -5% have also been added so as to get an

idea of the goodness of CNN. It is found that only 0.24% of the data are out

of the error range [-5%, + 5%].

Figure 3.25: Parity plot for test simulations

78 3. Test case

Figure 3.26: Fourth script (c)

RMSE, NRMSE, R2

In order to have a single value that can be compared to evaluate the

performance of the neural network it was decided to calculate RMSE (ie

Root Mean Square Error), NRMSE (Normalized Root Mean Square Error)

and R
2 (ie coe�cient of determination). Following, equation for NRMSE

and RMSE. The code is in fig 3.27.

RMSE =
qX

((Xpred �Xorig) ⇤ ⇤2)/Nall�grid�points (3.2)

NRMSE = NRMSE/mean (3.3)

Figure 3.27: Fourth script (d)

Chapter 4

Results

As already mentioned in the previous chapters, there are some parame-

ters of the neural network (ie the hyperparameters) whose value a↵ects the

performance of the autoencoder. In this chapter we will see a sensibility

analysis that will try to highlight the influence of hyperparameters on the

network (if any), all with the aim of creating a high-performance optimized

CNN that can be a valid opponent to the pca (proposed by BURN group).

For the sensibility analysis it was decided to work with temperature filed and

a dense but reduced mesh of the furnace. This has 24 300 grid points and a

dimension of 0.1 * 0.1 * 0.72m (furnace height) as shown in Fig. 4.1. The

author is aware of the fact that changing the initial dataset (i.e. considering

the entire quarter of the furnace) will also change the neural network that is

considered optimized, thus having to repeat a sensibility procedure, but the

choice was made by looking for a compromise between the computational

cost and the reasonableness / realism of the simulation considered. A few

more words about the last concept: mild combustion is characterized by an

almost uniform temperature range in the bulk of the furnace. It was there-

fore decided to reduce the mesh to the only area where there are significant

79

80 4. Results

changes in temperature. It will not be di�cult to accept that the perfor-

mance of the network considering the full quarter furnace will not be overly

di↵erent or in need of major adjustments.

Figure 4.1: Reduced mesh (quotes in meters)

4.1 Sensibility analysis

Now let’s get to the heart of the sensibility analysis, each study will be

presented indicating the values used for the parameters that will not vary and

for what varies, as well as the results in terms of RMSE, NRMSE, R2. The

latter are presented in graphic form, also including the threshold (red line)

corresponding to the error obtained with pca approach. It is emphasized

that at this stage a comparison between them is important and not so much

the evaluation of how optimal they are. Some analysis were performed main-

4.1 Sensibility analysis 81

taining a common architecture (in terms of number of layers, filters etc..),

shown below. If something will change, it will be the author’s responsibility

to indicate it to you.

#--ARCHITECTURE

Determine sample shape

input_img = (X_train_N.shape[1], X_train_N.shape[2],X_train_N.shape[3], X_train_N.shape[4])

encoder = Sequential(name=’ENCODER’)

encoder.add(Conv3D(20, kernel_size=(3,3,3), activation=’relu’, padding=’same’, input_shape=input_img))

encoder.add(MaxPooling3D(pool_size=(3,3,3)))

encoder.add(Conv3D(10, kernel_size=(3,3,3), activation=’relu’, padding=’same’))

encoder.add(MaxPooling3D(pool_size=(5,5,3)))

print(’encoder part architecture’)

encoder.summary()

#---

autoencoder=Sequential(name=’AUTOENCODER’)

autoencoder.add(encoder)

autoencoder.add(UpSampling3D(size=(5, 5, 3)))

autoencoder.add(Conv3DTranspose(10, kernel_size=(3, 3, 3), activation=’relu’, padding=’same’))

autoencoder.add(UpSampling3D(size=(3, 3, 3)))

autoencoder.add(Conv3DTranspose(20, kernel_size=(3, 3, 3), activation=’relu’, padding=’same’))

autoencoder.add(Conv3DTranspose(1, kernel_size=(3, 3, 3), activation=’sigmoid’, padding=’same’))

print(’complete model architecture’)

autoencoder.summary()

4.1.1 Normalisation and activation function of final

layer

The matrix of the values of the output variable (in our case the tempera-

ture) needs normalization before, being sent as input to the neural network.

5 di↵erent types of normalization have been identified which we will indicate

them with letters.

Normalisation A

XN =

✓
X �mean

std
�min

◆
/max (4.1)

82 4. Results

Normalisation B

XN =
X

mean
(4.2)

Normalisation C

XN =
X �mean

std
(4.3)

Normalisation D

XN =
X �mean

std
�min (4.4)

Normalisation E

XN =
X �min

max�min
(4.5)

The choice of normalization also determines the range in which the input

values are found. In other words:

• Norm B: it redistributes in order to have unitary mean.

• Norm C: also called data standardization, is a process of scaling so that

they have a mean value of 0 and a standard deviation of 1.

• Norm D: it maintains the distribution of the normalization C but is

translated to positive values only.

• Norm A: it maintains the distribution of the normalization D but it

redistributes values in a range between zero and one.

4.1 Sensibility analysis 83

• Norm E: it redistributes values in a range between zero and one.

Consequently, it is necessary to carry out an analysis also by varying the

activation function of the last convolutional layer because this determines

the range of reconstructed image values, which will be compared with the

original ones. Below tables for fixed values and the results in tabular and

graphical form. To better see the di↵erence, a graphic version focused on the

best results has also been reported.

Fixed parameters

Batch size 3

Numpy seed 1

Learning rate 0.001

Patience 10

Pooling max

Cost function MSE

Optimizer Adam

Activation Relu

Code dimension 72

Table 4.1: Fixed parameters for normalisation and final activation function

RMSE NRMSE R
2

Norm A

Sigmoid 30.255 0.022 0.913

Linear 28.288 0.021 0.924

Relu 32.176 0.024 0.905

Norm B

Sigmoid 102.593 0.075 0.000

Linear 36.239 0.027 0.893

Relu 36.866 0.027 0.874

Norm C

Sigmoid 71.866 0.053 0.689

Linear 22.168 0.016 0.951

Relu 49.080 0.036 0.849

Norm D

Sigmoid 928.232 0.682 0.000

Linear 39.306 0.029 0.910

Relu 47.231 0.035 0.906

Norm E

84 4. Results

Sigmoid 35.085 0.026 0.904

Linear 32.140 0.024 0.920

Relu 30.574 0.022 0.912

Table 4.2: Results for normalisation sensibility analysis

Figure 4.2: Graphs of results for normalisation (a)

Figure 4.3: Graphs of results for normalisation (b)

Figure 4.4: Graphs of results (epochs)

4.1 Sensibility analysis 85

It is clear that the best activation function for the last layer is linear

in all 5 cases. it is also true that it needs more iterations (epochs) before

reaching convergence (except in case C). It is noted that normalization A and

E perform very well regardless of the activation function but normalization

C with AF linear has the best performance.

4.1.2 Learning rate

The learning rate indicates the step size of change of weights of a deep

neural network at each iteration while moving toward a minimum of a loss

function and is one of hyperparameters most delicate and important to adjust

(tune) to achieve excellent performance on our problem. As said before:

the smaller learning rate is and more accurate we are. At the same time, we

don’t want ⌘ to be too small, since that will make the changes tiny, and thus

the gradient descent algorithm will work very slowly.

The results obtained confirm what we thought, there is an optimal value

for the learning rate, it is not suitable neither to choose one too large nor

one too small. Moreover, for values greater than 0.01, convergence was not

achieved. The learning rate that we consider best for this case is 0.0005,

however probably all values under 0.005 would be good.

In the case of the study of the optimal value for learning rate, a trend

in the epochs necessary for convergence is also noted, therefore a significant

graph is also shown for these. The higher the learning rate, the less time it

takes to reach the end of the process.

Fixed parameters

Batch size 3

Normalisation A

Final AF sigmoid

Numpy seed 1

Patience. 10

Pooling max

86 4. Results

Cost function MSE

Optimizer Adam

Activation Relu

Code dimension 72

Table 4.3: Fixed parameters for learning rate

LR RMSE NRMSE R
2

0.00001 43.556 0.032 0.814

0.0001 35.017 0.026 0.888

0.0005 32.865 0.024 0.909

0.001 37.727 0.028 0.905

0.005 41.858 0.031 0.850

0.01 102.329 0.075 0.031

Table 4.4: Results for learning rate sensibility analysis

Figure 4.5: Graphs of results for learning rate

4.1 Sensibility analysis 87

4.1.3 Batch size

If the size of the sample or complexity of the network are too much and the

epoch cannot be run all together. Epoch is split into batches, and the epoch

is run in two or more iterations. Thus, the batch size defines the number of

samples that will be propagated through the network each iteration.

Advantages of using a batch size less than number of all samples are:

• It requires less memory. Since you train the network using fewer sam-

ples, the overall training procedure requires less memory. That’s es-

pecially important if you are not able to fit the whole dataset in your

machine’s memory.

• Typically networks train faster with mini-batches. That’s because we

update the weights after each propagation.

The disadvantage: the smaller the batch the less accurate the estimate

of the gradient will be.

In the results there is not an excessive di↵erence in accuracy by changing

the size of the batch, however it is considered as an optimal value 3.

Fixed parameters

Normalisation A

Final AF sigmoid

Numpy seed 1

Learning rate 0.001

Patience. 10

Pooling max

Cost function MSE

Optimizer Adam

Activation Relu

Code dimension 72

Table 4.5: Fixed parameters for learning rate

88 4. Results

Batch size RMSE NRMSE R
2

2 27.135 0.020 0.931

3 25.587 0.019 0.940

5 28.019 0.021 0.928

10 40.011 0.029 0.871

15 37.589 0.028 0.900

20 46.217 0.034 0.879

25 43.095 0.032 0.857

30 30.488 0.022 0.909

35 32.796 0.024 0.906

40 79.989 0.059 0.488

Table 4.6: Results for batch size sensibility analysis

Figure 4.6: Graphs of results for batch size

4.1.4 Patience

Patience is the number of epochs with no improvement after which train-

ing will be stopped. We therefore expect that the longer we wait before

settling for the result, the better the accuracy will be. In fact, the curve of

4.1 Sensibility analysis 89

both errors and R2 seems to reach an asymptote. It is therefore stated that

it is necessary to have a high enough number to ensure the optimum. We

choose 15.

Fixed parameters

Batch size 3

Normalisation A

Final AF sigmoid

Numpy seed 1

Learning rate 0.001

Pooling max

Cost function MSE

Optimizer Adam

Activation Relu

Code dimension 72

Table 4.7: Fixed parameters for learning rate

Patience RMSE NRMSE R2

1 81.144 0.060 0.518

2 76.873 0.057 0.514

3 44.890 0.033 0.821

4 44.616 0.033 0.868

5 36.608 0.027 0.901

6 38.961 0.029 0.877

7 35.880 0.026 0.914

8 25.443 0.019 0.938

9 43.982 0.032 0.899

10 37.964 0.028 0.915

11 30.907 0.023 0.926

12 35.029 0.026 0.910

13 25.521 0.019 0.941

14 27.726 0.020 0.939

15 23.806 0.018 0.944

16 25.485 0.019 0.939

17 22.547 0.017 0.950

18 25.975 0.019 0.941

19 23.361 0.017 0.949

20 24.660 0.018 0.947

21 25.055 0.018 0.943

22 23.812 0.018 0.945

23 23.464 0.017 0.946

24 22.718 0.017 0.950

25 22.274 0.016 0.951

26 23.617 0.017 0.946

27 23.691 0.017 0.951

90 4. Results

28 24.800 0.018 0.947

29 21.787 0.016 0.953

30 28.538 0.021 0.950

Table 4.8: Results for patience sensibility analysis

Figure 4.7: Graphs of results for patience

4.1.5 Cost function

The implemented cost functions are: Mean Squared Error, Mean Abso-
lute Error, Mean Absolute Percentage Error and Mean Squared Logarithmic
Error. they will not be further explained here, please refer to the section
2.4.1. The MSE cost function is better in performance, MAE and MSLE are
not too far apart.

Fixed parameters

Batch size 3

Normalisation A

Final AF sigmoid

Numpy seed 1

Learning rate 0.001

4.1 Sensibility analysis 91

Patience. 10

Pooling max

Optimizer Adam

Activation Relu

Code dimension 72

Table 4.9: Fixed parameters for learning rate

Cost function RMSE NRMSE R
2

MSE 27.424 0.020 0.933

MAE 36.592 0.027 0.888

MA%E 49.981 0.037 0.806

MSLE 32.099 0.024 0.902

Table 4.10: Results for cost function sensibility analysis

Figure 4.8: Graphs of results for cost function

92 4. Results

4.1.6 Pooling

As previously explained, max pooling holds the maximum between the

cells belonging to the kernel. While average pooling averages these. Average

pooling is chosen as the best of the two.

Fixed parameters

Batch size 3

Normalisation A

Final AF sigmoid

Numpy seed 1

Learning rate 0.001

Patience. 10

Cost function MSE

Optimizer Adam

Activation Relu

Code dimension 72

Table 4.11: Fixed parameters for learning rate

Filters distribution RMSE NRMSE R
2

20/10-10/20

Max pooling 32.435 0.024 0.905

Average pooling 26.520 0.019 0.932

30/20-20/30

Max pooling 32.549 0.024 0.913

Average pooling 25.974 0.019 0.934

Table 4.12: Results for pooling sensibility analysis

4.1 Sensibility analysis 93

Figure 4.9: Graphs of results for pooling

4.1.7 Optimiser

Among the optimization strategies explained in section 2.4.2, Stochastic

gradient descendent, RMSprop and Adam are studied.

RMSprop and Adam give significantly better results than SGD.We choose

Adam.

Fixed parameters

Batch size 3

Normalisation A

Final AF sigmoid

Numpy seed 1

Learning rate 0.001

Patience. 10

Pooling max

Cost function MSE

94 4. Results

Activation Relu

Code dimension 72

Table 4.13: Fixed parameters for learning rate

Optimiser RMSE NRMSE R
2

SGD 102.657 0.075 0.177

RMS prop 12.674 0.009 0.985

Adam 9.599 0.007 0.991

Table 4.14: Results for optimiser sensibility analysis

Figure 4.10: Graphs of results for optimiser

4.1.8 Numpy seed

Within the optimization procedure there are parameters that require ini-

tialization, but wanting to avoid randomness, the numpy seed is imposed

4.1 Sensibility analysis 95

at a fixed value. It is intuitive that depending on the value assigned to it

the result will be di↵erent, a study is performed to observe how the network

responds by varying the seed..

From the results it is not possible to determine a characteristic trend, it is

therefore believed that each time the CNN optimized for the other parameters

must be subjected to a study of behaviour towards the seed.

Fixed parameters

Batch size 3

Normalisation A

Final AF sigmoid

Learning rate 0.001

Patience. 10

Pooling max

Cost function MSE

Optimizer Adam

Activation Relu

Code dimension 72

Table 4.15: Fixed parameters for learning rate

Numpy seed RMSE NRMSE R
2

1 40.073 0.029 0.903

2 31.901 0.023 0.906

3 28.794 0.021 0.922

4 38.153 0.028 0.912

5 26.686 0.020 0.935

6 39.476 0.029 0.884

7 28.765 0.021 0.922

8 39.055 0.029 0.876

9 29.469 0.022 0.924

10 31.364 0.023 0.921

Table 4.16: Results for numpy seed sensibility analysis

96 4. Results

Figure 4.11: Graphs of results for numpy seed

4.1.9 Activation function

The activation function can impact the network’s ability to converge and

learn for di↵erent ranges of input values, and also its training speed. Since

the activation function is directly related to the distribution of the input

values to the neuron, the behaviour of CNN has been studied both for a

normalization of type A (because we have always used this in the previous

tests) and C (because it is the best normalization).

With normalisation A

Fixed parameters

Batch size 3

Normalisation A

Final AF sigmoid

Learning rate 0.001

4.1 Sensibility analysis 97

Patience. 10

Pooling max

Cost function MSE

Optimizer Adam

Code dimension 72

Table 4.17: Fixed parameters for learning rate

Activation function RMSE NRMSE R
2

Relu 25.991 0.019 0.942

Linear 32.570 0.024 0.896

Tanh 42.100 0.031 0.856

Sigmoid 94.935 0.070 0.447

None 30.669 0.023 0.917

Leaky relu 32.907 0.024 0.898

Table 4.18: Results for activation function sensibility analysis (norm A)

Figure 4.12: Graphs of results for AF norm A

98 4. Results

In the case of normalization A and sigmoid activation function of the last

layer, the only one that gives performances that di↵er greatly from the others

is the sigmoid AF.

With normalisation C and linear final layer

Fixed parameters

Batch size 3

Normalisation C

Final AF linear

Learning rate 0.001

Patience. 10

Pooling max

Cost function MSE

Optimizer Adam

Code dimension 72

Table 4.19: Fixed parameters for learning rate

Figure 4.13: Graphs of results for AF norm C

4.1 Sensibility analysis 99

Activation function RMSE NRMSE R
2

Relu 22.176 0.016 0.952

Linear 25.656 0.019 0.936

Tanh 25.517 0.019 0.946

Sigmoid 25.426 0.019 0.942

None 24.810 0.018 0.946

Leaky relu 22.849 0.017 0.951

Table 4.20: Results for activation function sensibility analysis (norm C)

In the case of C normalization and linear activation function of the last

layer, there are no marked di↵erences, it is advisable to scan which one to

use in each case. We choose relu.

⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠

After carrying out these analysis that share the same architecture, we

question this too. The studies presented to you are based on questions:

Does CNN geometry a↵ect CNN performance? is it possible to identify a

trend? The following table, in which the parameters set are indicated, will

be considered valid for the subsequent section.

Fixed parameters

Batch size 3

Normalisation A

Final AF sigmoid

Numpy seed 1

Learning rate 0.001

Patience. 10

Pooling max

Cost function MSE

Optimizer Adam

Activation Relu

Code dimension 72

Table 4.21: Fixed parameters for studies of CNN architecture

100 4. Results

4.1.10 Number of filters

The number of filters indicates how many features a convolutional layer

looks for. Each filter corresponds to an output feature map so the more filters

a conv layer has, the larger the output size will be. The innermost filters look

for features that are less and less intuitive for the human eye. These tests

follow architecture in section 4.1, the only thing that is changed is the first

value of the convolutional layers or the number of filters of that layer. So for

example if the total number in the table is 30 it means that we have conv

(10 filters) + max pooling + conv (5 filters) + max pooling and mirror.

Number of filters RMSE NRMSE R
2

6 64.133 0.047 0.596

12 41.118 0.030 0.854

18 47.659 0.035 0.799

24 31.538 0.023 0.902

30 33.910 0.025 0.903

60 31.137 0.023 0.916

72 27.571 0.020 0.932

90 36.612 0.027 0.908

120 28.205 0.021 0.924

180 30.854 0.023 0.925

210 29.341 0.022 0.927

240 32.733 0.024 0.903

270 27.668 0.020 0.927

300 29.076 0.021 0.921

330 36.276 0.027 0.939

Table 4.22: Results for number of filters sensibility analysis

4.1 Sensibility analysis 101

Figure 4.14: Graphs of results for number of filters

In the results it is possible to recognize an increasing trend in accuracy

with the increase in the number of filters, but a maximum is reached, which

is maintained once the threshold (in our case) of about 60 filters is exceeded.

Therefore, ensure that we have an architecture with a su�cient number of

filters will be our future responsibility.

4.1.11 Number of convolutional layers

This section is dedicated to understanding whether (with the same num-

ber of total filters in the network) it is better to distribute the filters on more

or less convolutional layers. There are no particular trends, it is therefore

believed that tests have to be made to choose the best configuration for each

specific case.

Number of conv layers RMSE NRMSE R
2

6 30.799 0.023 0.912

102 4. Results

5 81.607 0.060 0.476

4 36.573 0.027 0.896

3 22.910 0.017 0.952

2 22.993 0.017 0.968

1 26.342 0.019 0.940

Table 4.23: Results for number of conv layers sensibility analysis

Figure 4.15: Graphs of results for number of conv layers

4.1.12 Symmetry

This section is dedicated to evaluating the influence of the symmetry of

the neural network with respect to the code on its performance. In other

words, the perfectly symmetrical autoencoder can be seen as a butterfly

(centred in code) and whose wings represent the succession of layers with

4.1 Sensibility analysis 103

more and more filters moving away from the Code. At the extreme point, we

find the butterfly with only one wing (whether it is the coding or decoding

one) which represents a scale in the number of filters on one side (the wing)

while a homogeneity on the other.

Initially, remembering that the autoencoder is a reduction in size with

consequent reconstruction, it was thought that the perfectly symmetrical

structure would be the best but the results show that this is not the case,

moreover a particular trend is not recognizable so also in this case it is good

carry out a targeted analysis for your case study.

Figure 4.16: Graphs of results for symmetry

Layout RMSE NRMSE R
2

104 4. Results

1 7! 98765-55555 38.031 0.028 0.873

2 7! 98765-55556 30.402 0.022 0.926

3 7! 98765-55567 29.573 0.022 0.922

4 7! 98765-55678 30.330 0.022 0.932

5 7! 98765-56789 30.509 0.022 0.910

6 7! 87655-56789 44.242 0.033 0.892

7 7! 76555-56790 22.204 0.016 0.971

8 7! 65555-56791 32.210 0.024 0.940

9 7! 55555-56792 23.072 0.017 0.961

Table 4.24: Results for symmetry sensibility analysis

4.1.13 Layout

The next three subsections are devoted to the study of the arrangement

of the number of filters in a wing of a mirrored architecture.

• Part A studies the importance of symmetry within a wing, using the

first layer of max pooling as the center and varying the number of filters

in the conv layer preceding and in the one following the pooling.

Parts B and C share a mirror architecture with 5 convolutional layers for

each wing. They di↵er because

• Part B starts with a uniform distribution of the number of filters then,

keeping the central layer of the wing fixed, creates an increasingly

marked discontinuity in the number of filters between the central and

the two pairs of layers that flank it.

• Part C instead has a smoother variation in the number of filters.

A visual representation can help you understand the explanation.

4.1 Sensibility analysis 105

Figure 4.17: Visual representation of the di↵erence between B and C

In none of the three cases, as you will notice in the subsections below, is

it possible to identify a trend so it is not possible to make predictions and

choose a good architecture a priori. Remember that the total number of

filters is important but the arrangement of these must be tailored.

Part A

Layout RMSE NRMSE R
2

1 7! 9*conv - 1*conv- mirror 92.448 0.068 0.195

2 7! 8*conv - 2*conv- mirror 89.115 0.066 0.361

3 7! 7*conv - 3*conv- mirror 91.393 0.067 0.244

4 7! 6*conv - 4*conv- mirror 88.645 0.065 0.402

5 7! 5*conv - 5*conv- mirror 88.569 0.065 0.364

6 7! 4*conv - 6*conv- mirror 87.257 0.064 0.337

7 7! 3*conv - 7*conv- mirror 97.110 0.071 0.241

8 7! 2*conv - 8*conv- mirror 88.230 0.065 0.305

9 7! 1*conv - 9*conv- mirror 83.079 0.061 0.455

Table 4.25: Results for layout (part A) sensibility analysis

106 4. Results

Figure 4.18: Graphs of results for layout (part A)

Part B

Layout RMSE NRMSE R
2

1 7! 10/10/10 - 10/10 - mirror 39.890 0.029 0.943

2 7! 12/11/10 - 9/8 - mirror 24.978 0.018 0.950

3 7! 13/12/10 - 8/7 - mirror 17.899 0.013 0.975

4 7! 14/13/10 - 7/6 - mirror 28.726 0.021 0.938

5 7! 15/14/10 - 6/5 - mirror 33.404 0.025 0.949

6 7! 16/15/10 - 5/4 - mirror 24.012 0.018 0.958

7 7! 17/16/10 - 4/3 - mirror 28.027 0.021 0.937

8 7! 18/17/10 - 3/2 - mirror 21.084 0.016 0.969

9 7! 19/18/10 - 2/1 - mirror 26.067 0.019 0.954

Table 4.26: Results for layout (part B) sensibility analysis

4.1 Sensibility analysis 107

Figure 4.19: Graphs of results for layout (part B)

Part C

Layout RMSE NRMSE R
2

1 7! 10/10/10 - 10/10 - mirror 39.890 0.029 0.943

2 7! 12/11/10 - 9/8 - mirror 24.978 0.018 0.950

3 7! 13/12/10 - 9/7 - mirror 18.847 0.014 0.966

4 7! 14/12/10 - 8/6 - mirror 18.680 0.014 0.977

5 7! 15/13/10 - 8/5 - mirror 42.684 0.031 0.913

6 7! 16/13/10 - 7/4 - mirror 32.667 0.024 0.913

7 7! 17/14/10 - 7/3 - mirror 32.662 0.024 0.962

8 7! 18/14/10 - 6/2 - mirror 22.481 0.017 0.965

Table 4.27: Results for layout (part C) sensibility analysis

108 4. Results

Figure 4.20: Graphs of results for layout (part C)

4.2 Optimised CNN

Thanks to the studies carried out in the section 4.1 , it is possible to
identify an optimised convolutional neural network with the following pa-
rameters:

Fixed parameters

Batch size 3

Normalisation C

Final AF linear

Numpy seed 9

Learning rate 0.0005

Patience. 15

Pooling average

Cost function MSE

Optimizer Adam

Activation Relu

Code dimension 72

Table 4.28: Fixed parameters for optimised CNN

4.2 Optimised CNN 109

As already mentioned, the choice of architecture is not dictated by a

specific trend, only for the number of filters it is possible to a�rm a general

principle. So after a few attempts we got good results for the following:

#--ARCHITECTURE

input_img = (X_train_N.shape[1], X_train_N.shape[2],X_train_N.shape[3], X_train_N.shape[4])

encoder = Sequential(name=’ENCODER’)

encoder.add(Conv3D(14, kernel_size=(3,3,3), activation=’relu’, padding=’same’, input_shape=input_img))

encoder.add(Conv3D(12, kernel_size=(3,3,3), activation=’relu’, padding=’same’, input_shape=input_img))

encoder.add(Conv3D(10, kernel_size=(3,3,3), activation=’relu’, padding=’same’, input_shape=input_img))

encoder.add(AveragePooling3D(pool_size=(3,3,3)))

encoder.add(Conv3D(8, kernel_size=(3,3,3), activation=’relu’, padding=’same’))

encoder.add(Conv3D(6, kernel_size=(3,3,3), activation=’relu’, padding=’same’))

encoder.add(AveragePooling3D(pool_size=(5,5,3)))

print(’encoder part architecture’)

encoder.summary()

#---

autoencoder=Sequential(name=’AUTOENCODER’)

autoencoder.add(encoder)

autoencoder.add(UpSampling3D(size=(5, 5, 3)))

autoencoder.add(Conv3DTranspose(6, kernel_size=(3, 3, 3), activation=’relu’, padding=’same’))

autoencoder.add(Conv3DTranspose(8, kernel_size=(3, 3, 3), activation=’relu’, padding=’same’))

autoencoder.add(UpSampling3D(size=(3, 3, 3)))

autoencoder.add(Conv3DTranspose(10, kernel_size=(3, 3, 3), activation=’relu’, padding=’same’))

autoencoder.add(Conv3DTranspose(12, kernel_size=(3, 3, 3), activation=’relu’, padding=’same’))

autoencoder.add(Conv3DTranspose(14, kernel_size=(3, 3, 3), activation=’relu’, padding=’same’))

autoencoder.add(Conv3DTranspose(1, kernel_size=(3, 3, 3), activation=’linear’, padding=’same’))

print(’complete model architecture’)

autoencoder.summary()

CNN results are very satisfying. Think about the fact that PCA has
an NRMSE of 0.01. The author recalls this CNN was made for a reduced
mesh but also that the temperature variation is limited to the volume under
examination. Therefore it can be considered a result worthy of comparison.
In any case, the obtained result for complete mesh is also reported. It is
noted that this has a lower but good accuracy; thus having su�cient time
and computational resources it will be possible to search for the architecture
that meets our needs, reasonably aspiring to a result similar to that for the
reduced mesh.

Dim code RMSE NRMSE R
2

72 9.5993 0.0071 0.9912

Table 4.29: Results for optimised CNN (reduced mesh)

110 4. Results

Dim code RMSE NRMSE R
2

1944 12.0036 0.0092 0.9182

36 12.0036 0.0092 0.9182

6 14.3854 0.0110 0.8765

Table 4.30: Results for optimised CNN (full mesh)

In the table for complete mesh, three tests with di↵erent code dimension

have been presented for the following reasons: 1944 is the dimension obtained

by training exactly the network described above, 36 is the dimension we want

to reach to make a legitimate comparison with PCA as described below and

6 is the dimension to show that CNN does not have the same limitations of

PCA.

36 - Code dimension CNN

Going back to CNN for the reduced mesh, the size of the code we reached

by performing the analysis is 72. The PCA, on the other hand, manages

to reach 40 modes (i.e. m-1 with m number of simulations for training).

Thus, we run test cases to see the performance of a CNN (with optimized

parameters) that arrives to a code of 36 elements. To do this, we manipulate

the size of kernels and the amount of pooling layers. For example ccc333cc556

means 3 conv layers + 1 average pooling layer with kernel 3 3 3 + 2 conv

layer + 1 average (5 5 6) and mirror.

Layout RMSE NRMSE R
2

1 7! ccc 3 3 3 cc 5 5 6 10.6436 0.0078 0.9894

2 7! cc 3 3 3 c 5 5 2 cc 1 1 3 19.7683 0.0145 0.9689

3 7! cc 3 3 3 c 5 5 3 cc 1 1 2 24.7903 0.0182 0.9602

4 7! c 5 5 3 c 1 1 2 c 1 1 3 cc 3 3 1 15.3471 0.0113 0.9778

5 7! ccc 15 15 9 cc 1 1 2 35.8867 0.0264 0.8736

6 7! c 3 3 1 c 1 1 3 c 1 1 2 cc 5 5 3 13.4682 0.0099 0.9862

7 7! c 5 5 1 c 1 1 2 c 1 1 3 cc 3 3 3 12.3828 0.0091 0.9857

4.2 Optimised CNN 111

8 7! ccc 5 5 6 cc 3 3 3 11.0100 0.0081 0.9890

9 7! cc 5 5 3 c 3 3 3 cc 1 1 2 11.7453 0.0086 0.9868

Table 4.31: Results for optimised CNN (reduced mesh) - dim code 36

Figure 4.21: Graphs of results for optimisation (dim code 36)

Even if the size of the code has been reduced to 36, it is possible to reach

a very high accuracy (R2 = 0.9894 and NRMSE = 0.0078) and always better

than PCA accuracy.

Code dimension and accuracy

We want to go further and do some test cases to understand if CNN could

give excellent results even for codes with much smaller dimensions. See the

following considerations (tab. 4.32).

112 4. Results

Code dim Layout RMSE NRMSE R
2

72 ccc 3 3 3 cc 5 5 3 9.5993 0.0071 0.9912

54 ccc 3 3 3 cc 5 5 4 15.1499 0.0111 0.9862

36 ccc 3 3 3 cc 5 5 6 10.6436 0.0078 0.9894

24 ccc 3 3 9 cc 5 5 3 10.7691 0.0079 0.9887

18 cc 3 3 6 c 1 1 3 cc 5 5 3 13.6028 0.0100 0.9853

12 cc 3 3 9 c 1 1 6 cc 5 5 3 11.8877 0.0087 0.9867

6 cc 3 3 6 c 1 1 3 c 5 5 3 c 1 1 4 16.7578 0.0123 0.9734

4 cc 3 3 6 c 1 1 3 cc 5 5 3 (18 17 10 3 2) 14.8703 0.0109 0.9806

Table 4.32: Results for code dimension analysis

Figure 4.22: Graphs of results for code dimension analysis

It is easy to see from the results that the accuracy is very high even if

the code size is definitely less than 36.

4.2 Optimised CNN 113

Number of training simulations

Up to now we have excluded 4 simulations over a total of 45 simulations

performed in order to reserve them for testing, therefore using only 41 sim-

ulations for network training. This was done to have an equal comparison

between convolutional neural network and PCA. Now we want to see if CNN

is able to achieve excellent results excluding more or less simulations from

training (using architecture number 1 of table 4.31).

n°Tsims/45 RMSE NRMSE R2

44 13.4690 0.0100 0.9671

43 9.7857 0.0073 0.9850

42 11.2887 0.0083 0.9851

41 10.6436 0.0078 0.9894

40 23.5759 0.0176 0.9636

39 10.8979 0.0081 0.9871

38 14.7993 0.0110 0.9735

37 14.0888 0.0104 0.9845

36 16.6801 0.0124 0.9698

35 16.9484 0.0125 0.9694

34 13.1715 0.0097 0.9836

33 12.0838 0.0090 0.9825

32 17.2444 0.0129 0.9735

31 13.7219 0.0103 0.9760

30 13.3052 0.0099 0.9781

29 13.7994 0.0103 0.9788

28 15.4626 0.0115 0.9712

27 14.8844 0.0111 0.9741

26 16.0602 0.0120 0.9734

25 21.8316 0.0163 0.9621

24 13.5164 0.0101 0.9778

23 13.9347 0.0104 0.9790

22 13.9186 0.0104 0.9776

21 14.0661 0.0105 0.9774

20 17.1515 0.0128 0.9677

19 16.4944 0.0123 0.9712

18 15.4792 0.0116 0.9725

17 15.4618 0.0115 0.9740

16 17.0356 0.0127 0.9718

15 14.7697 0.0110 0.9756

14 17.1332 0.0128 0.9689

13 21.0428 0.0157 0.9600

12 14.9800 0.0112 0.9743

11 18.1770 0.0136 0.9628

10 23.8475 0.0178 0.9350

9 26.8041 0.0200 0.9252

8 20.8562 0.0156 0.9579

7 17.7008 0.0132 0.9661

114 4. Results

6 26.4253 0.0197 0.9234

5 37.4695 0.0280 0.8664

4 28.9187 0.0216 0.9064

3 30.8710 0.0231 0.8904

2 26.1671 0.0195 0.9195

1 132.6666 0.0990 0.1310

Table 4.33: Results for number of training sims analysis

Figure 4.23: Graphs of results for number of training sims analysis

Convolutional network maintains good performance even with a much

4.2 Optimised CNN 115

lower number of training simulations. This is explained if the features nec-

essary for encoding / decoding can already be captured by looking at the

few simulations used for training. Finally, we performed the next analysis to

understand if the same performances were obtained whatever the simulations

chosen as training or if it was necessary to choose wisely. Not being able to

consider all the possible combinations, only a few are studied. The author

is aware that in this context, couple selection rules are necessary but here

we only want to demonstrate the need to properly select the couple. Indeed,

in the following results it is clearly noted that the attention in the choice is

fundamental for the performance of the network.

Train sims RMSE NRMSE R
2

[1,28] 37.1520 0.0278 0.8618

[45,29] 37.3948 0.0280 0.8477

[3,24] 79.3874 0.0592 0.3205

[18,32] 64.1300 0.0479 0.5416

[5,45] 51.1451 0.0382 0.7447

[6,19] 30.2079 0.0226 0.8979

[2,17] 26.6671 0.0199 0.9212

[26,41] 26.1671 0.0195 0.9195

[37,12] 34.7675 0.0260 0.8687

Table 4.34: Results for di↵erent couple of training sims

116 4. Results

Figure 4.24: Graphs of results for di↵erent couple of training sims

Conclusion

Thanks to this study we have understood that CNN is a valid and usable

input dimensionality reduction technique in the context of CFD on MILD

combustion systems. It is at least as accurate as PCA, which already had

excellent results. We also remember the advantages that CNN has over the

PCA: Autencoders are capable of modelling complex non linear functions,

while the PCA is essentially a linear transformation. PCA is able to recognize

features that are invariant in space, on the contrary autoencoders learn how

to recognize this feature regardless of where it is in the image.

The project did not stop at the only comparison with PCA but went

further. Sensibility analysis has taught us that we could never hope to have

excellent performance if we do not adequately choose the following parame-

ters: activation function of the last layer, normalization, learning rate, batch

size, patience, cost function, type of pooling, optimizer and the total number

of filters. While there are other parameters that must be revised ad hoc such

as numpy seed, activation functions and the architecture (n° of convolutional

layers, kernel, distribution of filters ..).

A further step was taken in wanting to overcome the limits dictated by

the comparison with PCA. Therefore, we found that CNN provides good

results both by reducing the encoded image size and providing fewer training

simulations for the network than PCA as long as these are conscientiously

117

118 Conclusion

chosen.

I conclude by considering the completion of the ROM as a future study,

associating the most suitable interpolation method with the proposed au-

toencoder.

Appendix A

PCA - Principal component

analysis

Mathematical background

In this section, w’ll see some mathematical notations used in PCA.

Given a matrix Y of size (m ⇤ n), Proper Orthogonal Decomposition

(POD) seeks Z of size (m ⇤ q) and A of size (n ⇤ k) with k < n, such that

the functional f(Z,A) = 1kY � ZATk2 is minimized, subject to ATA = I,

where I is the identity matrix. This problem can be solved by computing

the singular value decomposition (SVD) of the matrix Y, which corresponds

to finding the eigenvectors and eigenvalues of the matrix C = 1

m�1
YTY. A

low-rank approximation of Y is found as follows Y ⇡ ZAT = YAAT , where

the columns of A of size (n ⇤ q) are the POD modes and Z of size (m ⇤ k) is

the matrix of POD coe�cients. Each column of Z are the k coe�cients for

the retained k POD modes so that one particular simulation, or row of Y,

can be expressed as y(x) =
Pk

i=1
aizi(x).

119

120 A PCA - Principal component analysis

An easy example

I will present what is behind PCA approach with a 2D example. In Figure

A.1, there is our dataset. We have to shift the data (centring) and we try to

draw a line that fits the data. To do this PCA projects the data onto it and

finds the line that maximised the distances (d1, d2, ...dn) from the projected

points to the origin or better maximised the SS. The line is called PC1 i.e.

first principal component. (Fig.A.3).

d
2

1
+ d

2

2
+ d

2

3
+ = sum of squared distances = SS (A.1)

Figure A.1: Data for PCA example

Figure A.2: Projection

A PCA - Principal component analysis 121

Figure A.3: Distances

Principal components are linear combination of variables. A principal

component corresponds to an eigenvector and the SSPC1 is the eigenvalue

for PC1. The squared root of eigenvalue is the singular value. The propor-

tional contribute (normalised) of each variables in PC1 is called loading score

(Figure A.4). PC2 is perpendicular to PC1. If we rotate everything so that

PC1 becomes horizontal we obtain PCA plot.

Figure A.4: Scores

This is what PCA done using Singular value decomposition (SVD). If

you want to find how much a dataset is influenced by a specific PC you have

to calculate Variation like in figure A.5 obtaining a percentage value. The

graphical representation of these percentages is called Scree plot (Figure A.6

on the left).

122 A PCA - Principal component analysis

Figure A.5: Variations

Figure A.6: Scree plot

In a similar way it is possible to work with multidimensional dataset and

do some consideration like in Figure A.7.

Figure A.7: Multidimensional dataset

Appendix B

Scripts

B.1 Code for preprocessing

B.1.1 CNN5 del err.py

#input: grid points e T field (csv)

#1. remove points with error from grid points

#2. delete points which belong to symmetry plane and out of domain (<0 in the 3 direction)

#3.add point for cooling tube

#4. mirror mesh

#5. save index_ok_npy; n_cooling_npy, GRID_X/Y/Z

import numpy as np

#---

#---INPUT --

#---

FIELD_T=1 #don’t change! #1: T | 2: CH4 | 3: O2 | 4: CO2 | 5: H2O | 6: OH | 7: CO | 8: NO

GRID_CSV=’/Users/Fabi/Desktop/clusterMac/fabiola’

GRID_name=’grid-points.csv’

Y_CSV=’/Users/Fabi/Desktop/clusterMac/fabiola’

Y_name=’Y.csv’

index_ok_npy=’/Users/Fabi/Desktop/my_script_Fabi/gitLab/ulbatmtool/programs/CNN5_folder/GRID/GP_index_ok.npy’

n_cooling_npy=’/Users/Fabi/Desktop/my_script_Fabi/gitLab/ulbatmtool/programs/CNN5_folder/GRID/n_cooling.npy’

n_GP_npy=’/Users/Fabi/Desktop/my_script_Fabi/gitLab/ulbatmtool/programs/CNN5_folder/GRID/n_GP_original.npy’

GRID_X=’/Users/Fabi/Desktop/my_script_Fabi/gitLab/ulbatmtool/programs/CNN5_folder/GRID/X.npy’

GRID_Y=’/Users/Fabi/Desktop/my_script_Fabi/gitLab/ulbatmtool/programs/CNN5_folder/GRID/Y.npy’

GRID_Z=’/Users/Fabi/Desktop/my_script_Fabi/gitLab/ulbatmtool/programs/CNN5_folder/GRID/Z.npy’

summary_GP_txt=’/Users/Fabi/Desktop/my_script_Fabi/gitLab/ulbatmtool/programs/CNN5_folder/GRID/summary_GP.txt’

#---

#---FUCTION --

#---

123

124 B Scripts

#----function: csv --> matrix

def readCSV(path, name):

try:

print(’Reading training matrix..’)

X = np.genfromtxt(path + ’/’ + name, delimiter= ’,’)

except OSError:

print(’Could not open/read the selected file: ’ + name)

exit()

return X

#---

#---START --

#---

#--import GRID POINTS---

GP_mat=readCSV(GRID_CSV,GRID_name)

GP_mat=np.delete(GP_mat, (0), axis=0)

print(f’ max GP dir x: {max(GP_mat[:,0])}’) #0.35

print(f’ max GP dir y: {max(GP_mat[:,1])}’) #0.35

print(f’ max GP dir z: {max(GP_mat[:,2])}’) #0.7000002381

print(f’ min GP dir x: {min(GP_mat[:,0])}’) #0.001760897526

print(f’ min GP dir y: {min(GP_mat[:,1])}’) #-7.347880795e-19

print(f’ min GP dir z: {min(GP_mat[:,2])}’) #-0.149999998

print(f’number of GP is {len(GP_mat)}’) #216360

#-- export

n_GP =len(GP_mat)

np.save(n_GP_npy,n_GP)

#-- import Tmep output ---

arrayYcsv=readCSV(Y_CSV,Y_name)

arrayYcsv=np.delete(arrayYcsv, (0), axis=0)

print(arrayYcsv.shape) #(45, 1730880)

Ytot=arrayYcsv[:,len(GP_mat)*(FIELD_T-1): len(GP_mat) *FIELD_T]

print(f’min Y_tot (ie for all sims) {np.amin(Ytot)}’)

print(f’max Y_tot (ie for all sims) {np.amax(Ytot)}’)

print(f’shape Y_tot: {Ytot.shape}’) #(45, 216360)

#--------------------°°-------------------------
#---modified field--

#---------------------°°--------------------------
#-- identify points corresponding to wrong output

index_err=[]

for s in range(0,Ytot.shape[0],1):

for i in range(0,len(GP_mat),1):

if Ytot[s,i]<=345:

index_err.append(i)

print(f’len index {len(index_err)}’)

GP_index_err=list(set(index_err)) #delate double points

print(f’len GP_index_err :{len(GP_index_err)}’)

print(f’len GP_index (total) :{len(GP_mat)}’)

print(f’%points with error: {len(GP_index_err)/len(GP_mat)*100}’)

GP_index_no_err= list(range(0,len(GP_mat),1))

for i in GP_index_err:

B.1 Code for preprocessing 125

GP_index_no_err.remove(i)

#--- delete points which belong

#to symmetry plane and out of domain (<0 in the 3 direction)

index_ok=[]

for i in GP_index_no_err:

if GP_mat[i,0]!=GP_mat[i,1]:

if GP_mat[i,0]>=0 and GP_mat[i,1]>=0 and GP_mat[i,2]>=0:

index_ok.append(i)

print(f’len index up0:{len(index_ok)}’)

GP_index_ok=list(set(index_ok)) #delete double

print(f’len GP_index_ok :{len(GP_index_ok)}’)

print(f’len GP_index (total) :{len(GP_mat)}’)

print(f’%points ok: {len(GP_index_ok)/len(GP_mat)*100}’)

#-- export

np.save(index_ok_npy,GP_index_ok)

#--- create lists X,Y,Z

list_X=[]

list_Y=[]

list_Z=[]

for g in GP_index_ok:

list_X.append(GP_mat[g,0])

list_Y.append(GP_mat[g,1])

list_Z.append(GP_mat[g,2])

print(f’len list_X with GP_index_ok: {len(list_X)}’)

#-- add point for cooling tube

z=0

for ii in np.arange(0.21,0.29,0.005):

for jj in np.arange(0.21,0.29,0.005):

if (ii-0.25)**2 + (jj-0.25)**2 - 0.04**2 <=0 and ii>=jj:

for kk in np.arange(0.07,0.7,0.01):

list_X.append(ii)

list_Y.append(jj)

list_Z.append(kk)

z=z+1

print(f’points add for semitube : {z}’)

print(f’len list_X with semitube: {len(list_X)}’)

#-- export

np.save(n_cooling_npy,z)

#-- mirror mesh

for jj in range(0,len(list_X),1):

list_X.append(list_Y[jj])

list_Y.append(list_X[jj])

list_Z.append(list_Z[jj])

print(f’len mirror list_X: {len(list_X)}’)

print(f’max of final list_X: {max(list_X)}’)

print(f’max of final list_Y: {max(list_Y)}’)

print(f’max of final list_Z: {max(list_Z)}’)

print(f’min of final list_X: {min(list_X)}’)

print(f’min of final list_Y: {min(list_Y)}’)

126 B Scripts

print(f’min of final list_Z: {min(list_Z)}’)

#--- EXPORT list_X,list_Y,list_Z

np.save(GRID_X,list_X)

np.save(GRID_Y,list_Y)

np.save(GRID_Z,list_Z)

#-- grid plot

from mpl_toolkits.mplot3d import Axes3D

import matplotlib.pyplot as plt

fig = plt.figure(’original’)

ax = fig.add_subplot(111, projection=’3d’)

im=ax.scatter(list_X, list_Y, list_Z, c=’b’, s=1.5)

ax.set_xlabel(’X ’)

ax.set_ylabel(’Y ’)

ax.set_zlabel(’Z ’)

plt.show()

#---

#---SAVE TXT--

#---

with open(summary_GP_txt,’w’) as txt:

txt.write(f’original number of grid points: {len(GP_mat)}\n\n’)

txt.write(f’final number of grid points: {len(list_X)}\n\n’)

txt.write(f’n GP for semitube (cooling): {z}\n\n’)

txt.write(f’max value in X {max(list_X)} in Y {max(list_Y)} in Z {max(list_Z)}\n\n’)

txt.write(f’min value in X {min(list_X)} in Y {min(list_Y)} in Z {min(list_Z)}\n\n’)

txt.write(f’GP_index_ok (good GP - semi mesh) {len(GP_index_ok)}\n\n’)

txt.write(f’%points with error from csv: {len(GP_index_err)/len(GP_mat)*100}\n\n’)

txt.write(f’max of final list_X: {max(list_X)}\n\n’)

txt.write(f’max of final list_Y: {max(list_Y)}\n\n’)

txt.write(f’max of final list_Z: {max(list_Z)}\n\n’)

txt.write(f’min of final list_X: {min(list_X)}\n\n’)

txt.write(f’min of final list_Y: {min(list_Y)}\n\n’)

txt.write(f’min of final list_Z: {min(list_Z)}\n\n’)

txt.close()

B.1.2 CNN5read.py

use after CNN5_del_err

1. read X,Y,Z data and field (es.T)

2. delete: wrong variable values, var. values with coordinate <0

and which belong to simmetry plane (in according to CNN5_del_err)

3. add a value for cooling semi-tube and it mirrors the mesh

4. for a choosen field (including all sims), it creates a matrix (that is an

interpolation of original mesh on a uniform PP mesh). This one is

good for CNN input

This one is a matrix which element are values of the field

(as colour of a 3D image)

NOTA= value for cooling tube = mean

NOTA2= this scripts is usefull to create OUT, the second part (ARRAy_Y creation)

B.1 Code for preprocessing 127

#is possible to do in another script (light_griddata.py)

#---

#---INPUT --

#---

FIELD=1 #1: T | 2: CH4 | 3: O2 | 4: CO2 | 5: H2O | 6: OH | 7: CO | 8: NO

cell= 0.0067 # dim cell in meters

#existing file

Y_CSV=’/Users/Fabi/Desktop/clusterMac/fabiola’

Y_name=’Y.csv’

index_ok_npy=’/Users/Fabi/Desktop/my_script_Fabi/gitLab/ulbatmtool/programs/CNN5_folder/GRID/GP_index_ok.npy’

n_cooling_npy=’/Users/Fabi/Desktop/my_script_Fabi/gitLab/ulbatmtool/programs/CNN5_folder/GRID/n_cooling.npy’

n_GP_npy=’/Users/Fabi/Desktop/my_script_Fabi/gitLab/ulbatmtool/programs/CNN5_folder/GRID/n_GP_original.npy’

GRID_X=’/Users/Fabi/Desktop/my_script_Fabi/gitLab/ulbatmtool/programs/CNN5_folder/GRID/X.npy’

GRID_Y=’/Users/Fabi/Desktop/my_script_Fabi/gitLab/ulbatmtool/programs/CNN5_folder/GRID/Y.npy’

GRID_Z=’/Users/Fabi/Desktop/my_script_Fabi/gitLab/ulbatmtool/programs/CNN5_folder/GRID/Z.npy’

#path

OUT_T=’/Users/Fabi/Desktop/my_script_Fabi/gitLab/ulbatmtool/programs/CNN5_folder/OUT/OUT_T.npy’

OUT_CH4=’/Users/Fabi/Desktop/my_script_Fabi/gitLab/ulbatmtool/programs/CNN5_folder/OUT/OUT_CH4.npy’

OUT_O2=’/Users/Fabi/Desktop/my_script_Fabi/gitLab/ulbatmtool/programs/CNN5_folder/OUT/OUT_O2.npy’

OUT_CO2=’/Users/Fabi/Desktop/my_script_Fabi/gitLab/ulbatmtool/programs/CNN5_folder/OUT/OUT_CO2.npy’

OUT_H2O=’/Users/Fabi/Desktop/my_script_Fabi/gitLab/ulbatmtool/programs/CNN5_folder/OUT/OUT_H2O.npy’

OUT_OH=’/Users/Fabi/Desktop/my_script_Fabi/gitLab/ulbatmtool/programs/CNN5_folder/OUT/OUT_OH.npy’

OUT_CO=’/Users/Fabi/Desktop/my_script_Fabi/gitLab/ulbatmtool/programs/CNN5_folder/OUT/OUT_CO.npy’

OUT_NO=’/Users/Fabi/Desktop/my_script_Fabi/gitLab/ulbatmtool/programs/CNN5_folder/OUT/OUT_NO.npy’

cell_folder=f’/Users/Fabi/Desktop/my_script_Fabi/gitLab/ulbatmtool/programs/CNN5_folder/cell{cell}’

ARRAY_Y_npy= cell_folder+’/ARRAY_Y’+f’/ARRAY_FIELD{FIELD}.npy’

#------

import numpy as np

#---

#---FUCTION --

#---

csv ---> np.array

def readCSV(path, name):

try:

print(’Reading training matrix..’)

X = np.genfromtxt(path + ’/’ + name, delimiter= ’,’)

except OSError:

print(’Could not open/read the selected file: ’ + name)

exit()

return X

#--------------------------°°-----------------
#---START ---

#------------------------°°---------------------
#--

#--import grid --

#--

n_GP_original = np.load(n_GP_npy)

list_X = np.load(GRID_X)

list_Y = np.load(GRID_Y)

128 B Scripts

list_Z = np.load(GRID_Z)

GP_index_ok = np.load(index_ok_npy)

z = np.load(n_cooling_npy)

#--

#---OUTPUT ---

#---

###########--------------------- import output field ---

arrayYcsv=readCSV(Y_CSV,Y_name)

arrayYcsv=np.delete(arrayYcsv, (0), axis=0) #delete header

print(arrayYcsv.shape) #(45, 1730880)

#Ytot = array with results (of my field) of all 45 sims

Ytot=arrayYcsv[:,n_GP_original*(FIELD-1): n_GP_original *FIELD]

print(Ytot.shape) #(45, 216360)

###########---------delete wrong output and output out of domain (see CNN5_del_err) -------

Ytot_light=np.zeros((Ytot.shape[0], len(GP_index_ok)))

i_ok=0

for g in GP_index_ok:

Ytot_light[:,i_ok]=Ytot[:,g]

i_ok=i_ok+1

print(f’shape Ytot_light array {Ytot_light.shape}’) #(45, 190479)

print(f’min Ytot_light array (min value of selected field among all simulations): {np.amin(Ytot_light)}’)

print(f’max Ytot_light array (max value of selected field among all simulations): {np.amax(Ytot_light)}’)

############--------------add a value in cooling tube (semi)----------------------------------

value=np.mean(Ytot_light)

semi_tube=np.zeros((Ytot.shape[0], z))

semi_tube=semi_tube+value

Ytube=np.concatenate((Ytot_light,semi_tube),axis=1)

print(f’shape Ytube array {Ytube.shape}’)

############-------------------------- mirror ---

val=Ytube.shape[1] #GP index ok+z

Ymirror=np.zeros((Ytot.shape[0], val*2))

for ii in range(0,val,1):

Ymirror[:,ii]=Ytube[:,ii]

Ymirror[:,val+ii]=Ytube[:,ii]

print(f’shape Ymirror array {Ymirror.shape}’) #(45 , val*2)

#############---------------------------array to list --

list_output=Ymirror.tolist()

print(f’len list_output {len(list_output)}’) #45 each of which has val*2 GP

##############-------------------EXPORT list_output---

1: T | 2: CH4 | 3: O2 | 4: CO2 | 5: H2O | 6: OH | 7: CO | 8: NO

if FIELD==1:

list_output_T=list_output

np.save(OUT_T,list_output_T)

if FIELD==2:

list_output_CH4=list_output

np.save(OUT_CH4,list_output_CH4)

if FIELD==3:

list_output_O2=list_output

np.save(OUT_O2,list_output_O2)

B.1 Code for preprocessing 129

if FIELD==4:

list_output_CO2=list_output

np.save(OUT_CO2,list_output_CO2)

if FIELD==5:

list_output_H2O=list_output

np.save(OUT_H2O,list_output_H2O)

if FIELD==6:

list_output_OH=list_output

np.save(OUT_OH,list_output_OH)

if FIELD==7:

list_output_CO=list_output

np.save(OUT_CO,list_output_CO)

if FIELD==8:

list_output_NO=list_output

np.save(OUT_NO,list_output_NO)

#---

#-- MESH and GRIDDATA----------------------------------

#---

#§§§§§§§§§------ create meshgrid parallelepipedo PP uniform (one for all field)-----------------

#NOTA: it’s bigger than 35,35,70 to become more easy to manage in CNN

x = np.arange(0, 0.36, cell)

y = np.arange(0, 0.36, cell)

z = np.arange(0, 0.72, cell)

xx, yy, zz = np.meshgrid(x,y,z)

print(f’shape di xx è {xx.shape}, yy è {yy.shape}, zz è {zz.shape}’)

#§§§§§§§§---Array of interpolated values (over uniform mesh) of output field (GRIDDATA)--------

from scipy.interpolate import griddata as gd

ARRAY_GD=np.zeros((len(list_output),xx.shape[0],xx.shape[1],xx.shape[2]))

print(f’shape array_Ygd before {ARRAY_GD.shape}’)

for sim in range(0,len(list_output),1):

list_1output=list_output[sim]

array_Y_gd = gd((list_X,list_Y,list_Z), list_1output, (xx,yy,zz), method=’nearest’)

ARRAY_GD[sim]=array_Y_gd

print(f’shape array_Ygd {array_Y_gd.shape}’) #follow meshgrid es.(35,35,70)

print(f’shape array_Ygd after {ARRAY_GD.shape}’)

#§§§§§§§§----------------------EXPORT ARRAY_Y --

1: T | 2: CH4 | 3: O2 | 4: CO2 | 5: H2O | 6: OH | 7: CO | 8: NO

if FIELD==1:

ARRAY_T=ARRAY_GD

np.save(ARRAY_Y_npy,ARRAY_T)

print(f’ARRAY_T shape {ARRAY_T.shape}’)

if FIELD==2:

ARRAY_CH4=ARRAY_GD

np.save(ARRAY_Y_npy,ARRAY_CH4)

print(f’ARRAY_CH4 shape {ARRAY_CH4.shape}’)

if FIELD==3:

ARRAY_O2=ARRAY_GD

np.save(ARRAY_Y_npy,ARRAY_O2)

print(f’ARRAY_O2 shape {ARRAY_O2.shape}’)

130 B Scripts

if FIELD==4:

ARRAY_CO2=ARRAY_GD

np.save(ARRAY_Y_npy,ARRAY_CO2)

print(f’ARRAY_CO2 shape {ARRAY_CO2.shape}’)

if FIELD==5:

ARRAY_H2O=ARRAY_GD

np.save(ARRAY_Y_npy,ARRAY_H2O)

print(f’ARRAY_H2O shape {ARRAY_H2O.shape}’)

if FIELD==6:

ARRAY_OH=ARRAY_GD

np.save(ARRAY_Y_npy,ARRAY_OH)

print(f’ARRAY_OH shape {ARRAY_OH.shape}’)

if FIELD==7:

ARRAY_CO=ARRAY_GD

np.save(ARRAY_Y_npy,ARRAY_CO)

print(f’ARRAY_CO shape {ARRAY_CO.shape}’)

if FIELD==8:

ARRAY_NO=ARRAY_GD

np.save(ARRAY_Y_npy,ARRAY_NO)

print(f’ARRAY_NO shape {ARRAY_NO.shape}’)

B.1.3 test read.py

#script usefull to test CNN5_read

#---

#--INPUT--

#---

FIELD=1

sim=1

cell=0.0067 #according to CNN5_read

#don’t modify

GRID_X=’/Users/Fabi/Desktop/my_script_Fabi/gitLab/ulbatmtool/programs/CNN5_folder/GRID/X.npy’

GRID_Y=’/Users/Fabi/Desktop/my_script_Fabi/gitLab/ulbatmtool/programs/CNN5_folder/GRID/Y.npy’

GRID_Z=’/Users/Fabi/Desktop/my_script_Fabi/gitLab/ulbatmtool/programs/CNN5_folder/GRID/Z.npy’

OUT_T=’/Users/Fabi/Desktop/my_script_Fabi/gitLab/ulbatmtool/programs/CNN5_folder/OUT/OUT_T.npy’

OUT_CH4=’/Users/Fabi/Desktop/my_script_Fabi/gitLab/ulbatmtool/programs/CNN5_folder/OUT/OUT_CH4.npy’

OUT_O2=’/Users/Fabi/Desktop/my_script_Fabi/gitLab/ulbatmtool/programs/CNN5_folder/OUT/OUT_O2.npy’

OUT_CO2=’/Users/Fabi/Desktop/my_script_Fabi/gitLab/ulbatmtool/programs/CNN5_folder/OUT/OUT_CO2.npy’

OUT_H2O=’/Users/Fabi/Desktop/my_script_Fabi/gitLab/ulbatmtool/programs/CNN5_folder/OUT/OUT_H2O.npy’

OUT_OH=’/Users/Fabi/Desktop/my_script_Fabi/gitLab/ulbatmtool/programs/CNN5_folder/OUT/OUT_OH.npy’

OUT_CO=’/Users/Fabi/Desktop/my_script_Fabi/gitLab/ulbatmtool/programs/CNN5_folder/OUT/OUT_CO.npy’

OUT_NO=’/Users/Fabi/Desktop/my_script_Fabi/gitLab/ulbatmtool/programs/CNN5_folder/OUT/OUT_NO.npy’

cell_folder=f’/Users/Fabi/Desktop/my_script_Fabi/gitLab/ulbatmtool/programs/CNN5_folder/cell{cell}’

ARRAY_Y_npy= cell_folder+’/ARRAY_Y’+f’/ARRAY_FIELD{FIELD}.npy’

#----- pkgs

import numpy as np

from mpl_toolkits.mplot3d import Axes3D

import matplotlib.pyplot as plt

B.1 Code for preprocessing 131

print(f’field= {FIELD} where 1: T | 2: CH4 | 3: O2 | 4: CO2 | 5: H2O | 6: OH | 7: CO | 8: NO’)

print(f’simulation number {sim}’)

#---

#--- meshgrid --

#---

#---- MESHGRID parallelepipedo PP

x = np.arange(0, 0.36, cell)

y = np.arange(0, 0.36, cell)

z = np.arange(0, 0.72, cell)

xx, yy, zz = np.meshgrid(x,y,z)

fig = plt.figure(’plot mesh PP’)

ax = fig.add_subplot(111, projection=’3d’)

ax.scatter(xx, yy, zz, s=1)

ax.set_xlabel(’X Label’)

ax.set_ylabel(’Y Label’)

ax.set_zlabel(’Z Label’)

#plt.show()

#---

#--ARRAY_Y (griddata) --------------------------------------

#---

#-------------------IMPORT ARRAY IN OUTPUT A CNN5 READ

print(’load array...’)

1: T | 2: CH4 | 3: O2 | 4: CO2 | 5: H2O | 6: OH | 7: CO | 8: NO

if FIELD==1:

ARRAY_T = np.load(ARRAY_Y_npy)

print(’field=T’)

print(f’shape ARRAY_T {ARRAY_T.shape}’)

ARRAY_Y=ARRAY_T

if FIELD==2:

ARRAY_CH4=np.load(ARRAY_Y_npy)

print(’field=CH4’)

print(f’ARRAY_CH4 shape {ARRAY_CH4.shape}’)

ARRAY_Y=ARRAY_CH4

if FIELD==3:

ARRAY_O2=np.load(ARRAY_Y_npy)

print(’field=O2’)

print(f’shape ARRAY_O2 {ARRAY_O2.shape}’)

ARRAY_Y=ARRAY_O2

if FIELD==4:

ARRAY_CO2=np.load(ARRAY_Y_npy)

print(’filed=CO2’)

print(f’ARRAY_CO2 shape {ARRAY_CO2.shape}’)

ARRAY_Y=ARRAY_CO2

if FIELD==5:

ARRAY_H2O=np.load(ARRAY_Y_npy)

print(’field=H2O’)

print(f’ARRAY_H2O shape {ARRAY_H2O.shape}’)

ARRAY_Y=ARRAY_H2O

if FIELD==6:

132 B Scripts

ARRAY_OH=np.load(ARRAY_Y_npy)

print(’filed=OH’)

print(f’ARRAY_CH4 shape {ARRAY_OH.shape}’)

ARRAY_Y=ARRAY_OH

if FIELD==7:

ARRAY_CO=np.load(ARRAY_Y_npy)

print(f’ARRAY_CO shape {ARRAY_CO.shape}’)

ARRAY_Y=ARRAY_CO

if FIELD==8:

ARRAY_NO=np.load(ARRAY_Y_npy)

print(f’ARRAY_NO shape {ARRAY_NO.shape}’)

ARRAY_Y=ARRAY_NO

print(f’shape ARRAY_Y {ARRAY_Y.shape}’)

print(f’min value of ARRAY_Y (so of all simulations - griddata value) is {np.amin(ARRAY_Y)}’)

print(f’max value of ARRAY_Y (so of all simulations - griddata value) is {np.amax(ARRAY_Y)}’)

#------------------------------GRIDDATA: estrarre la griddata e fare il plot di conferma

array_Y_gd=ARRAY_Y[sim-1]

print(f’shape array_Ygd {array_Y_gd.shape}’)

print(f’number of grid points (griddata)= {array_Y_gd.shape[0]*array_Y_gd.shape[1]*array_Y_gd.shape[2]}’)

print(f’min value of ARRAY_Y_gd (so of the {sim} simulation - griddata value) is {np.amin(array_Y_gd)}’)

print(f’max value of ARRAY_Y_gd (so of the {sim} simulation - griddata value) is {np.amax(array_Y_gd)}’)

from scipy.interpolate import griddata as gd

fig = plt.figure(’interpolazione’)

ax = fig.add_subplot(111, projection=’3d’)

im=ax.scatter(xx, yy, zz, c=array_Y_gd, cmap=’jet’, vmin=np.amin(array_Y_gd), vmax=np.amax(array_Y_gd),s=1)

ax.set_xlabel(’X Label’)

ax.set_ylabel(’Y Label’)

ax.set_zlabel(’Z Label’)

cax = fig.add_axes([0.05, 0.1, 0.02, 0.8])

fig.colorbar(im, orientation=’vertical’, cax=cax)

#plt.show()

#---

#--ORIGINAL---

#---

#---------------------------------REAL: plot del reale output

print(’load list X,Y,Z ...’)

list_X = np.load(GRID_X)

list_Y = np.load(GRID_Y)

list_Z = np.load(GRID_Z)

print(’load list_output_X ...’)

1: T | 2: CH4 | 3: O2 | 4: CO2 | 5: H2O | 6: OH | 7: CO | 8: NO

if FIELD==1:

list_output_T = np.load(OUT_T)

list_output=list_output_T

if FIELD==2:

list_output_CH4 = np.load(OUT_CH4)

list_output=list_output_CH4

if FIELD==3:

list_output_O2 = np.load(OUT_O2)

B.2 Code for the core of the project 133

list_output=list_output_O2

if FIELD==4:

list_output_CO2 = np.load(OUT_CO2)

list_output=list_output_CO2

if FIELD==5:

list_output_H2O = np.load(OUT_H2O)

list_output=list_output_H2O

if FIELD==6:

list_output_OH = np.load(OUT_OH)

list_output=list_output_OH

if FIELD==7:

list_output_CO = np.load(OUT_CO)

list_output=list_output_CO

if FIELD==8:

list_output_NO = np.load(OUT_NO)

list_output=list_output_NO

print(f’min value of list_output (so of all simulation - real value) is {np.amin(list_output)}’)

print(f’max value of list_output (so of all simulation - real value) is {np.amax(list_output)}’)

list_1output=list_output[sim-1]

print(f’len(list_1output) (so number of real grid point) : {len(list_1output)}’)

print(f’min value of list_1output (so of {sim} simulation - real value) is {min(list_1output)}’)

print(f’max value of list_1output (so of {sim} simulation - real value) is {max(list_1output)}’)

fig = plt.figure(’original’)

ax = fig.add_subplot(111, projection=’3d’)

im=ax.scatter(list_X, list_Y, list_Z, c=list_1output, cmap=’jet’, ...

vmin=min(list_1output), vmax=max(list_1output),s=1)

ax.set_xlabel(’X Label’)

ax.set_ylabel(’Y Label’)

ax.set_zlabel(’Z Label’)

cax = fig.add_axes([0.05, 0.1, 0.02, 0.8])

fig.colorbar(im, orientation=’vertical’, cax=cax)

plt.show()

B.2 Code for the core of the project

B.2.1 CNN5.py

#use after CNN5read.py

you obtain autoencoder and encoder

#--- pkgs

from numpy.random import seed

seed(9) #avoid different solution for the same architecture

import os

import time

Day= time.strftime("_%d_%m_%Y")

print(f’Today is {Day}’)

134 B Scripts

Time= time.strftime("_%H_%M_%S")

print(f’Time is {Time}’)

import numpy as np

#---

#--INPUT--

#---

FIELD=1

Norm=’C’

cell=0.0067

row_train=[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,23,24,25,26,27,29,30,31,32,33,34,35,36,37,38,

40,41,42,43,44,45]

row_test=[1,22,28,39]

epochs=500

batch_size=3

#don’t modify

#---

cell_folder=f’/Users/Fabi/Desktop/my_script_Fabi/gitLab/ulbatmtool/programs/CNN5_folder/Scell{cell}’

autoencoder_path_folder=cell_folder+’/AUTOENCODER’+f’/AUTOENCODER_{FIELD}/AUTOENCODER_{FIELD}_’

+str(FIELD)+Day+Time

results_file=cell_folder+f’/AUTOENCODER/AUTOENCODER_{FIELD}/results.txt’

row_train_npy=cell_folder+f’/AUTOENCODER/AUTOENCODER_{FIELD}/AUTOENCODER_{FIELD}_’+str(FIELD)

+Day+Time+’/row_train.npy’

row_test_npy=cell_folder+f’/AUTOENCODER/AUTOENCODER_{FIELD}/AUTOENCODER_{FIELD}_’+str(FIELD)

+Day+Time+’/row_test.npy’

ARRAY_Y_npy= cell_folder+’/ARRAY_Y’+f’/ARRAY_FIELD{FIELD}.npy’

#---

norm_folder= cell_folder+’/ARRAY_Y’+f’/Norm{Norm}’

Mean_npy= norm_folder+f’/mean/mean_{FIELD}.npy’

Std_npy= norm_folder+f’/std/std_{FIELD}.npy’

#---

#---START --

#---

os.mkdir(autoencoder_path_folder)

os.chdir(autoencoder_path_folder)

print(f’os get dir: {os.getcwd()}’)

#---

#--get input field--

#---

print(f’field= {FIELD} where 1: T | 2: CH4 | 3: O2 | 4: CO2 | 5: H2O | 6: OH | 7: CO | 8: NO’)

print(’load array...’)

1: T | 2: CH4 | 3: O2 | 4: CO2 | 5: H2O | 6: OH | 7: CO | 8: NO

if FIELD==1:

ARRAY_T = np.load(ARRAY_Y_npy)

print(f’shape ARRAY_T {ARRAY_T.shape}’)

ARRAY_Y=ARRAY_T

if FIELD==2:

ARRAY_CH4=np.load(ARRAY_Y_npy)

print(f’ARRAY_CH4 shape {ARRAY_CH4.shape}’)

ARRAY_Y=ARRAY_CH4

B.2 Code for the core of the project 135

if FIELD==3:

ARRAY_O2=np.load(ARRAY_Y_npy)

print(f’shape ARRAY_O2 {ARRAY_O2.shape}’)

ARRAY_Y=ARRAY_O2

if FIELD==4:

ARRAY_CO2=np.load(ARRAY_Y_npy)

print(f’ARRAY_CO2 shape {ARRAY_CO2.shape}’)

ARRAY_Y=ARRAY_CO2

if FIELD==5:

ARRAY_H2O=np.load(ARRAY_Y_npy)

print(f’ARRAY_H2O shape {ARRAY_H2O.shape}’)

ARRAY_Y=ARRAY_H2O

if FIELD==6:

ARRAY_OH=np.load(ARRAY_Y_npy)

print(f’ARRAY_CH4 shape {ARRAY_CH4.shape}’)

ARRAY_Y=ARRAY_OH

if FIELD==7:

ARRAY_CO=np.load(ARRAY_Y_npy)

print(f’ARRAY_CO shape {ARRAY_CO.shape}’)

ARRAY_Y=ARRAY_CO

if FIELD==8:

ARRAY_NO=np.load(ARRAY_Y_npy)

print(f’ARRAY_NO shape {ARRAY_NO.shape}’)

ARRAY_Y=ARRAY_NO

print(f’shape ARRAY_Y {ARRAY_Y.shape}’)

print(f’{len(row_train)} sims over { ARRAY_Y.shape[0]} for training’)

print(f’{len(row_test)} sims over { ARRAY_Y.shape[0]-len(row_train)} for test ’)

print(f’min value of ARRAY_Y (so of all simulations - griddata value) is {np.amin(ARRAY_Y)}’)

print(f’max value of ARRAY_Y (so of all simulations - griddata value) is {np.amax(ARRAY_Y)}’)

#-- normalization

MEAN=np.mean(ARRAY_Y)

print(f’mean= {MEAN}’)

STD=np.std(ARRAY_Y)

print(f’std={STD}’)

ARRAY_Y_N=(ARRAY_Y-MEAN)/STD

print(f’shape ARRAY_Y_N {ARRAY_Y_N.shape}’)

print(f’min value of ARRAY_Y_N (so of all simulations - griddata value) normalized is {np.amin(ARRAY_Y_N)}’)

print(f’max value of ARRAY_Y_N (so of all simulations - griddata value) normalized is {np.amax(ARRAY_Y_N)}’)

#--------------EXPORT normalization -----------------------

np.save(Mean_npy,MEAN)

np.save(Std_npy,STD)

#-- define X_train and X_test

X_train_N=np.zeros((len(row_train),ARRAY_Y_N.shape[1], ARRAY_Y_N.shape[2],ARRAY_Y_N.shape[3]))

jj=0

for i in row_train:

X_train_N[jj]= ARRAY_Y_N[i-1]

jj=jj+1

X_test_N=np.zeros((len(row_test),ARRAY_Y_N.shape[1], ARRAY_Y_N.shape[2],ARRAY_Y_N.shape[3]))

jj=0

136 B Scripts

for i in row_test:

X_test_N[jj]= ARRAY_Y_N[i-1]

jj=jj+1

print(f’shape X_train_N {X_train_N.shape}’) #(41, 54, 54, 108)

print(f’shape X_test_N {X_test_N.shape}’) #(4, 54, 54, 108)

X_train_N = np.reshape(X_train_N, (X_train_N.shape[0], X_train_N.shape[1], X_train_N.shape[2],X_train_N.shape[3], 1))

X_test_N = np.reshape(X_test_N, (X_test_N.shape[0], X_test_N.shape[1], X_test_N.shape[2],X_test_N.shape[3], 1))

print(f’reshape X_train_N {X_train_N.shape}’) #(41, 54, 54, 108, 1)

print(f’reshape X_test_N {X_test_N.shape}’) #(41, 54, 54, 108, 1)

print(f’min value of X_train_N (so of all train simulations) normalized is {np.amin(X_train_N)}’)

print(f’max value of X_train_N (so of all train simulations) normalized is {np.amax(X_train_N)}’)

print(f’min value of X_test_N (so of all test simulations) is {np.amin(X_test_N)}’)

print(f’max value of X_test_N (so of all test simulations) is {np.amax(X_test_N)}\n’)

#--------------EXPORT dataset -----------------------

np.save(row_train_npy,row_train)

np.save(row_test_npy,row_test)

#---

#--START CNN AUTOENCODER-----------------------------------

#---

#---pkgs

import os

os.environ [’KMP_DUPLICATE_LIB_OK’] = ’True’

import keras

from keras.models import Sequential

from keras.layers import Conv3D, UpSampling3D, Conv3DTranspose, AveragePooling3D

from keras.metrics import MeanSquaredError

from keras.callbacks import EarlyStopping

from keras.callbacks import TensorBoard

import numpy as np

import matplotlib.pyplot as plt

#--ARCHITECTURE

input_img = (X_train_N.shape[1], X_train_N.shape[2],X_train_N.shape[3], X_train_N.shape[4])

encoder = Sequential(name=’ENCODER’)

encoder.add(Conv3D(14, kernel_size=(3,3,3), activation=’relu’, padding=’same’, input_shape=input_img))

encoder.add(Conv3D(12, kernel_size=(3,3,3), activation=’relu’, padding=’same’, input_shape=input_img))

encoder.add(Conv3D(10, kernel_size=(3,3,3), activation=’relu’, padding=’same’, input_shape=input_img))

encoder.add(AveragePooling3D(pool_size=(3,3,3)))

encoder.add(Conv3D(8, kernel_size=(3,3,3), activation=’relu’, padding=’same’))

encoder.add(Conv3D(6, kernel_size=(3,3,3), activation=’relu’, padding=’same’))

encoder.add(AveragePooling3D(pool_size=(5,5,3)))

print(’encoder part architecture’)

encoder.summary()

#---

autoencoder=Sequential(name=’AUTOENCODER’)

autoencoder.add(encoder)

autoencoder.add(UpSampling3D(size=(5, 5, 3)))

autoencoder.add(Conv3DTranspose(6, kernel_size=(3, 3, 3), activation=’relu’, padding=’same’))

autoencoder.add(Conv3DTranspose(8, kernel_size=(3, 3, 3), activation=’relu’, padding=’same’))

autoencoder.add(UpSampling3D(size=(3, 3, 3)))

B.2 Code for the core of the project 137

autoencoder.add(Conv3DTranspose(10, kernel_size=(3, 3, 3), activation=’relu’, padding=’same’))

autoencoder.add(Conv3DTranspose(12, kernel_size=(3, 3, 3), activation=’relu’, padding=’same’))

autoencoder.add(Conv3DTranspose(14, kernel_size=(3, 3, 3), activation=’relu’, padding=’same’))

autoencoder.add(Conv3DTranspose(1, kernel_size=(3, 3, 3), activation=’linear’, padding=’same’))

print(’complete model architecture’)

autoencoder.summary()

#--OPTIMIZATION

autoencoder.compile(loss=keras.losses.MeanSquaredError(),

optimizer=keras.optimizers.Adam(lr=0.0005),

metrics=[’mean_squared_error’])

print(’fine opt’)

#--TRAINING

earlyStopping = EarlyStopping(monitor=’val_loss’, patience=15, verbose=1, mode=’min’)

history=autoencoder.fit(X_train_N, X_train_N,

epochs=epochs, #epoch refers to one cycle through the full training dataset

batch_size=batch_size, #

shuffle=True,

validation_data=(X_test_N, X_test_N),

callbacks=[TensorBoard(log_dir=’/tmp/autoencoder’), earlyStopping])

#--SAVE

encoder.save(’encoder’)

autoencoder.save(’autoencoder’)

print(’encoder and autoencoder saved’)

#---

#--PLOT MSE AND LOSS---------------------------------------

#---

print(history.history.keys())

summarize history for mean_squared_error

plt.figure(’summarize history for mean_squared_error’)

plt.plot(history.history[’mean_squared_error’])

plt.plot(history.history[’val_mean_squared_error’])

plt.title(’model mean_squared_error’)

plt.ylabel(’log mean_squared_error’)

plt.xlabel(’epoch’)

plt.yscale(’log’)

plt.xticks(np.arange(0, epochs, 0.1*epochs))

plt.grid(axis=’x’, color=’0.95’)

plt.legend([’train’, ’test’], loc=’upper right’)

plt.savefig(’plot_mean_squared_error.pdf’)

#plt.show()

summarize history for loss

plt.figure(’summarize history for loss’)

plt.plot(history.history[’loss’])

plt.plot(history.history[’val_loss’])

plt.title(’model loss’)

plt.ylabel(’log loss’)

plt.xlabel(’epoch’)

plt.yscale(’log’)

plt.xticks(np.arange(0, epochs, 0.1*epochs))

138 B Scripts

plt.grid(axis=’x’, color=’0.95’)

plt.legend([’train’, ’test’], loc=’upper right’)

plt.savefig(’plot_loss.pdf’)

#plt.show()

#---

#---SAVE TXT--

#---

with open(’summary.txt’,’w’) as txt:

txt.write(f’os get dir: {os.getcwd()}\n\n’)

txt.write(f’sim for train: {len(row_train)}\n’)

txt.write(f’sim for train: {row_train}\n\n’)

txt.write(f’sim for test: {len(row_test)}\n’)

txt.write(f’sim for test: {row_test}\n\n\n’)

txt.write(f’epochs: {epochs}\n\n’)

txt.write(f’batch_size: {batch_size}\n\n’)

autoencoder.summary(print_fn=lambda x: txt.write(x + ’\n’))

encoder.summary(print_fn=lambda x: txt.write(x + ’\n\n\n’))

txt.close()

B.3 Code for post-processing

B.3.1 CNN5load.py

use after CNN5.py

---- prediction

load array and normalisation

define X_train and X_test (normalised and not) and flatten for plot

load of autoencoder and encoder

predict X_train_N and X_test_N wit autoencoder, then the "decoded" will be denormalised and flattened

---- post-prediction

parity plot (normaliseded and not)

NMRSE, RMSE , R^2 (normalised and not) -->plot

%relative error (only for not normalised) --> plot

#--- pkgs

import os

import numpy as np

from numpy.random import seed

seed(9) #avoid different solution for the same architecture

import os

os.environ [’KMP_DUPLICATE_LIB_OK’] = ’True’

import keras

from keras.metrics import MeanSquaredError

import matplotlib.pyplot as plt

#---

#--INPUT--

#---

B.3 Code for post-processing 139

FIELD=1

cell=0.0067

Norm=’C’

#to be the same of CNN5

row_train=[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,23,24,25,26,27,29,30,

31,32,33,34,35,36,37,38,40,41,42,43,44,45]

row_test=[1,22,28,39]

name_autoencoder_folder= ’/AUTOENCODER_1_1_17_08_2020_16_59_13’

#don’t modify

#---

cell_folder=f’/Users/Fabi/Desktop/my_script_Fabi/gitLab/ulbatmtool/programs/CNN5_folder/Scell{cell}’

autoencoder_path_folder= cell_folder+f’/AUTOENCODER/AUTOENCODER_{FIELD}’ + name_autoencoder_folder

autoencoder_name=’autoencoder’

encoder_name=’encoder’

row_train_npy=autoencoder_path_folder+’/row_train.npy’

row_test_npy=autoencoder_path_folder+’/row_test.npy’

ARRAY_Y_npy= cell_folder+’/ARRAY_Y’+f’/ARRAY_FIELD{FIELD}.npy’

#---

norm_folder= cell_folder+’/ARRAY_Y’+f’/Norm{Norm}’

Mean_npy= norm_folder+f’/mean/mean_{FIELD}.npy’

Std_npy= norm_folder+f’/std/std_{FIELD}.npy’

#---

#--START--

#---

os.chdir(autoencoder_path_folder)

print(f’os get dir: {os.getcwd()}’)

print(f’field= {FIELD} where 1: T | 2: CH4 | 3: O2 | 4: CO2 | 5: H2O | 6: OH | 7: CO | 8: NO’)

#---

#--ORIGINAL---

#---

print(’load array...’)

1: T | 2: CH4 | 3: O2 | 4: CO2 | 5: H2O | 6: OH | 7: CO | 8: NO

if FIELD==1:

ARRAY_T = np.load(ARRAY_Y_npy)

print(f’shape ARRAY_T {ARRAY_T.shape}’)

ARRAY_Y=ARRAY_T

if FIELD==2:

ARRAY_CH4=np.load(ARRAY_Y_npy)

print(f’ARRAY_CH4 shape {ARRAY_CH4.shape}’)

ARRAY_Y=ARRAY_CH4

if FIELD==3:

ARRAY_O2=np.load(ARRAY_Y_npy)

print(f’shape ARRAY_O2 {ARRAY_O2.shape}’)

ARRAY_Y=ARRAY_O2

if FIELD==4:

ARRAY_CO2=np.load(ARRAY_Y_npy)

print(f’ARRAY_CO2 shape {ARRAY_CO2.shape}’)

ARRAY_Y=ARRAY_CO2

if FIELD==5:

140 B Scripts

ARRAY_H2O=np.load(ARRAY_Y_npy)

print(f’ARRAY_H2O shape {ARRAY_H2O.shape}’)

ARRAY_Y=ARRAY_H2O

if FIELD==6:

ARRAY_OH=np.load(ARRAY_Y_npy)

print(f’ARRAY_CH4 shape {ARRAY_CH4.shape}’)

ARRAY_Y=ARRAY_OH

if FIELD==7:

ARRAY_CO=np.load(ARRAY_Y_npy)

print(f’ARRAY_CO shape {ARRAY_CO.shape}’)

ARRAY_Y=ARRAY_CO

if FIELD==8:

ARRAY_NO=np.load(ARRAY_Y_npy)

print(f’ARRAY_NO shape {ARRAY_NO.shape}’)

ARRAY_Y=ARRAY_NO

print(f’shape ARRAY_Y {ARRAY_Y.shape}’)

print(f’{len(row_train)} sims over { ARRAY_Y.shape[0]} for training’)

print(f’{len(row_test)} sims over { ARRAY_Y.shape[0]-len(row_train)} for test ’)

print(f’min value of ARRAY_Y (so of all simulations - griddata value) is {np.amin(ARRAY_Y)}’)

print(f’max value of ARRAY_Y (so of all simulations - griddata value) is {np.amax(ARRAY_Y)}’)

#-- normalization

MEAN=np.load(Mean_npy)

STD=np.load(Std_npy)

print(f’mean= {MEAN}’)

print(f’std={STD}’)

ARRAY_Y_N=(ARRAY_Y-MEAN)/STD

print(f’shape ARRAY_Y_N {ARRAY_Y_N.shape}’)

print(f’min value of ARRAY_Y_N (so of all simulations - griddata value) normalized is {np.amin(ARRAY_Y_N)}’)

print(f’max value of ARRAY_Y_N (so of all simulations - griddata value) normalized is {np.amax(ARRAY_Y_N)}’)

#-- define X_train and X_test (normalised)

row_train=np.load(row_train_npy)

row_test=np.load(row_test_npy)

X_train_N=np.zeros((len(row_train),ARRAY_Y_N.shape[1], ARRAY_Y_N.shape[2],ARRAY_Y_N.shape[3]))

jj=0

for i in row_train:

X_train_N[jj]= ARRAY_Y_N[i-1]

jj=jj+1

X_test_N=np.zeros((len(row_test),ARRAY_Y_N.shape[1], ARRAY_Y_N.shape[2],ARRAY_Y_N.shape[3]))

jj=0

for i in row_test:

X_test_N[jj]= ARRAY_Y_N[i-1]

jj=jj+1

print(f’shape X_train_N {X_train_N.shape}’)

print(f’shape X_test_N {X_test_N.shape}’)

X_train_N = np.reshape(X_train_N, (X_train_N.shape[0], X_train_N.shape[1],

X_train_N.shape[2],X_train_N.shape[3], 1))

X_test_N = np.reshape(X_test_N, (X_test_N.shape[0], X_test_N.shape[1], X_test_N.shape[2],X_test_N.shape[3], 1))

print(f’reshape X_train_N {X_train_N.shape}’)

print(f’reshape X_test_N {X_test_N.shape}’)

B.3 Code for post-processing 141

print(f’min value of X_train_N (so of all train simulations) normalized is {np.amin(X_train_N)}’)

print(f’max value of X_train_N (so of all train simulations) normalized is {np.amax(X_train_N)}’)

print(f’min value of X_test_N (so of all test simulations) is {np.amin(X_test_N)}’)

print(f’max value of X_test_N (so of all test simulations) is {np.amax(X_test_N)}\n’)

#de-normalization for postprocessing

X_train= X_train_N*STD +MEAN #de-norm

X_test= X_test_N*STD +MEAN #de-norm.

print(f’min value of X_train_N (so of all train simulations) is {np.amin(X_train)}’)

print(f’max value of X_train_N (so of all train simulations) is {np.amax(X_train)}’)

print(f’min value of X_test (so of all test simulations) is {np.amin(X_test)}’)

print(f’max value of X_test (so of all test simulations) is {np.amax(X_test)}\n’)

#flatten for postprocessing

X_train_N_1D=X_train_N.flatten()

X_test_N_1D=X_test_N.flatten()

X_train_1D=X_train.flatten()

X_test_1D=X_test.flatten()

print(f’shape X_train_N_1D: {X_train_N_1D.shape}’)

print(f’shape X_test_N_1D: {X_test_N_1D.shape}’)

print(f’shape X_train_1D: {X_train_1D.shape}’)

print(f’shape X_test_1D: {X_test_1D.shape}\n’)

#---

#---AUTOENCODER PREDICTION----------------------------------

#---

#---LOAD AUTOENCODER AND ENCODER

from keras.models import load_model

print(’autoencoder loading..’)

autoencoder = load_model(autoencoder_name, custom_objects={’mean_squared_error’: ’mean_squared_error’})

autoencoder.summary()

print(’encoder loading..’)

encoder = load_model(encoder_name, custom_objects={’mean_squared_error’: ’mean_squared_error’})

encoder.summary()

#---

#---- PREDICTION AUTOENCODER

print(’now i will predict’)

X_train_pred_N = autoencoder.predict(X_train_N)

X_test_pred_N = autoencoder.predict(X_test_N)

print(’autoencoder used\n’)

print(f’shape X_train_pred_N: {X_train_pred_N.shape}’)

print(f’shape X_test_pred_N: {X_test_pred_N.shape}’)

print(f’min value of X_train_pred_N (so of all train simulations) normalized is {np.amin(X_train_pred_N)}’)

print(f’max value of X_train_pred_N (so of all train simulations) normalized is {np.amax(X_train_pred_N)}’)

print(f’min value of X_test_pred_N (so of all test simulations) normalized is {np.amin(X_test_pred_N)}’)

print(f’max value of X_test_pred_N (so of all test simulations) normalized is {np.amax(X_test_pred_N)}\n’)

#----- de-normalization for post processing

X_test_pred=X_test_pred_N*STD +MEAN

X_train_pred=X_train_pred_N*STD +MEAN

print(f’min value of X_train_pred (so of all train simulations) is {np.amin(X_train_pred)}’)

print(f’max value of X_train_pred (so of all train simulations) is {np.amax(X_train_pred)}’)

print(f’min value of X_test_pred (so of all test simulations) is {np.amin(X_test_pred)}’)

142 B Scripts

print(f’max value of X_test_pred (so of all test simulations) is {np.amax(X_test_pred)}\n’)

#----- flatten of predicted for post-processing

print(’flatten...’)

X_test_pred_N_1D=X_test_pred_N.flatten()

X_train_pred_N_1D=X_train_pred_N.flatten()

print(’flatten (normalized value) ...’)

X_test_pred_1D=X_test_pred.flatten()

X_train_pred_1D=X_train_pred.flatten()

print(f’shape X_test_pred_1D: {X_test_pred_1D.shape}’)

print(f’shape X_train_pred_1D: {X_train_pred_1D.shape}’)

#---

#---POST PREDICTION---

#---

#-------------------------------------parity plot--------------------------------------

#---train

plt.figure(f’Parity plot train’)

plt.scatter(X_train_1D, X_train_1D, color=’r’,s=2)

plt.scatter(X_train_1D, X_train_pred_1D, color=’b’, marker=’X’,s=2)

plt.title(’parity plot train’)

plt.ylabel(’X (predicted)’)

plt.xlabel(’X (experimental)’)

lineStart = min(X_train_1D)

lineEnd = max(X_train_1D)

plt.plot([lineStart, lineEnd], [lineStart, lineEnd], ’k-’, color = ’r’,lw=1) #line X_test/X_test

Max_xP=np.amax(ARRAY_Y)

plt.plot([0, Max_xP*1.05], [0, Max_xP], ’k-’, color = ’k’,lw=1) #+5%

plt.plot([0, Max_xP*0.95], [0, Max_xP], ’k-’, color = ’k’,lw=1) #-5%

#plt.show()

plt.savefig(’parity_plot_train.pdf’)

#---test

plt.figure(f’Parity plot test’)

plt.scatter(X_test_1D, X_test_1D, color=’r’,s=2)

plt.scatter(X_test_1D, X_test_pred_1D, color=’b’,s=2)

plt.title(’parity plot test ’)

plt.ylabel(’X (predicted)’)

plt.xlabel(’X (experimental)’)

lineStart = min(X_test_1D)

lineEnd = max(X_test_1D)

plt.plot([lineStart, lineEnd], [lineStart, lineEnd], ’k-’, color = ’r’,lw=1) #line X_test/X_test

Max_xP=np.amax(ARRAY_Y)

plt.plot([0, Max_xP*1.05], [0, Max_xP], ’k-’, color = ’k’,lw=1) #+5%

plt.plot([0, Max_xP*0.95], [0, Max_xP], ’k-’, color = ’k’,lw=1) #-5%

#plt.show()

plt.savefig(’parity_plot_test.pdf’)

#----------------------------------PercentageError_test---

#NOTA: the script assigns automatically zero value for error to grid points=0

ZERO=0

for e in X_test_1D:

if e==0:

B.3 Code for post-processing 143

ZERO=ZERO+1

print(f’zeri={ZERO}, i.e. how many points we do not see the real relative error because they are zeros’)

#---calculate perc. relative error

err_perc_test=[]

for ii in range(0, len(X_test_1D),1):

if X_test_1D[ii]==0:

err_perc_test.append(0)

else:

err_perc_test.append(100 * abs(X_test_1D[ii] - X_test_pred_1D[ii]) / X_test_1D[ii])

err_perc_train=[]

for ii in range(0, len(X_train_1D),1):

if X_train_1D[ii]==0:

err_perc_train.append(0)

else:

err_perc_train.append(100 * abs(X_train_1D[ii] - X_train_pred_1D[ii]) / X_train_1D[ii])

#----PercentageError_test plot

gp_test=np.arange(0,len(err_perc_test),1)

plt.figure(’PercentageError_test’,figsize=(10,4))

plt.plot(gp_test, err_perc_test, ’o-’, color=’b’)

plt.plot([0, len(err_perc_test)], [5, 5], ’k-’, color = ’k’,lw=1) #+5%

plt.plot([0, len(err_perc_test)], [-5, -5], ’k-’, color = ’k’,lw=1) #-5%

plt.title(’PercentageError_test’)

plt.ylabel(’PercentageError’)

plt.xlabel(’grid points’)

plt.xticks(np.arange(0, len(err_perc_test), len(err_perc_test)/len(row_test)))

plt.grid(axis=’x’, color=’k’)

plt.savefig(’PercentageError_test.pdf’)

#----PercentageError_train plot

gp_train=np.arange(0,len(err_perc_train),1)

plt.figure(’PercentageError_train’,figsize=(15,4))

plt.plot(gp_train, err_perc_train, ’o-’, color=’c’)

plt.plot([0, len(err_perc_train)], [5, 5], ’k-’, color = ’k’,lw=1) #+5%

plt.plot([0, len(err_perc_train)], [-5, -5], ’k-’, color = ’k’,lw=1) #-5%

plt.title(’PercentageError_train’)

plt.ylabel(’PercentageError’)

plt.xlabel(’grid points’)

plt.xticks(np.arange(0, len(err_perc_train), len(err_perc_train)/len(row_train)))

plt.grid(axis=’x’, color=’k’)

plt.savefig(’PercentageError_train.pdf’)

#-- number of grid points with >5% error

limit=5 #% limit in error perc

out_err=0

tot=0

for ii in err_perc_test:

tot=tot+1

if ii>limit:

out_err=out_err+1

print(f’out_err={out_err}’)

print(f’tot={tot}’)

144 B Scripts

print(f’% point with more than 5% of error= {out_err*100/tot} ’)

#-------------------------------------- RMSE, NRMSE , R2 -------------------------------------

#----RMSE, NRMSE , R2 (over all sims)

mse_test= sum((X_test_pred_1D-X_test_1D)**2)/len(X_test_pred_1D)

mse_train= sum((X_train_pred_1D-X_train_1D)**2)/len(X_train_pred_1D)

RMSE_test=(mse_test)**(1/2)

RMSE_train=(mse_train)**(1/2)

print(f’RMSE_test {RMSE_test}’)

print(f’RMSE_train {RMSE_train}’)

NRMSE_test=RMSE_test/np.mean(X_test_1D)

NRMSE_train=RMSE_train/np.mean(X_train_1D)

print(f’NRMSE_test: {NRMSE_test}’)

print(f’NRMSE_train: {NRMSE_train}’)

R2_test= np.corrcoef(X_test_1D, X_test_pred_1D)[0,1]**2

R2_train= np.corrcoef(X_train_1D, X_train_pred_1D)[0,1]**2

print(f’R2_test {R2_test}’)

print(f’R2_train {R2_train}’)

#-- RMSE, NRMSE , R2 for each simulation

RMSE_test_sims=np.zeros((len(row_test)))

NRMSE_test_sims=np.zeros((len(row_test)))

R2_test_sims=np.zeros((len(row_test)))

for s in range(0,len(row_test),1):

X_test_sim=X_test[s]

X_test_pred_sim=X_test_pred[s]

X_test_sim_1D=X_test_sim.flatten()

X_test_pred_sim_1D= X_test_pred_sim.flatten()

mse=sum((X_test_pred_sim_1D-X_test_sim_1D)**2)/len(X_test_pred_sim_1D)

RMSE_test_sims[s]=(mse)**(1/2)

NRMSE_test_sims[s]=RMSE_test/np.mean(X_test_sim_1D)

R2_test_sims[s]= np.corrcoef(X_test_sim_1D, X_test_pred_sim_1D)[0,1]**2

print(f’RMSE_test_sims{RMSE_test_sims}’)

print(f’NRMSE_test_sims{NRMSE_test_sims}’)

print(f’R2_test_sims{R2_test_sims}’)

RMSE_train_sims=np.zeros((len(row_train)))

NRMSE_train_sims=np.zeros((len(row_train)))

R2_train_sims=np.zeros((len(row_train)))

for s in range(0,len(row_train),1):

X_train_sim=X_train[s]

X_train_pred_sim=X_train_pred[s]

X_train_sim_1D=X_train_sim.flatten()

X_train_pred_sim_1D= X_train_pred_sim.flatten()

mse=sum((X_train_pred_sim_1D-X_train_sim_1D)**2)/len(X_train_pred_sim_1D)

RMSE_train_sims[s]=(mse)**(1/2)

NRMSE_train_sims[s]=RMSE_train/np.mean(X_train_sim_1D)

R2_train_sims[s]= np.corrcoef(X_train_sim_1D, X_train_pred_sim_1D)[0,1]**2

print(f’RMSE_train_sims{RMSE_train_sims}’)

print(f’NRMSE_train_sims{NRMSE_train_sims}’)

print(f’R2_train_sims{R2_train_sims}’)

#---plot for test

B.3 Code for post-processing 145

plt.figure(’RMSE - NRMSE - R2 for simulations test’)

sim_test=np.arange(0,len(row_test),1)

plt.plot(sim_test, RMSE_test_sims, ’o-’, color=’b’)

plt.plot(sim_test, NRMSE_test_sims, ’o-’, color=’g’)

plt.plot(sim_test, R2_test_sims, ’o-’, color=’c’)

plt.title(’RMSE - NRMSE - R2 for simulations test’)

plt.legend([’RMSE’, ’NRMSE’, ’R2’], loc=’upper left’)

#plt.ylabel(’MeanAbsolutePercentageError’)

plt.xlabel(’simulations’)

plt.savefig(’RMSE_NRMSE_R2_test.pdf’)

#---plot for train

plt.figure(’RMSE - NRMSE - R2 for simulations train’)

sim_train=np.arange(0,len(row_train),1)

plt.plot(sim_train, RMSE_train_sims, ’o-’, color=’b’)

plt.plot(sim_train, NRMSE_train_sims, ’o-’, color=’g’)

plt.plot(sim_train, R2_train_sims, ’o-’, color=’c’)

plt.title(’RMSE - NRMSE - R2 for simulations train’)

#plt.ylabel(’MeanAbsolutePercentageError’)

plt.xlabel(’simulations’)

plt.legend([’RMSE’, ’NRMSE’, ’R2’], loc=’upper left’)

plt.savefig(’RMSE_NRMSE_R2_train.pdf’)

#plt.show()

#---

#----------------------------POST PREDICTION for normalized value---

#---

#-------------------------------------parity plot (norm)--------------------------------------

#----parity plot (norm)

#---test

plt.figure(f’Parity plot test (norm)’)

plt.scatter(X_test_N_1D, X_test_N_1D, color=’r’,s=2)

plt.scatter(X_test_N_1D, X_test_pred_N_1D, color=’b’,s=2)

plt.title(’parity plot test(norm) ’)

plt.ylabel(’X (predicted)’)

plt.xlabel(’X (experimental)’)

#plt.legend([’experimental’, ’prediction’], loc=’upper left’)

lineStart = min(X_test_N_1D)

lineEnd = max(X_test_N_1D)

plt.plot([lineStart, lineEnd], [lineStart, lineEnd], ’k-’, color = ’r’,lw=1) #line X_test/X_test

Max_N_xP=np.amax(ARRAY_Y_N)

plt.plot([0, Max_N_xP*1.05], [0, Max_N_xP], ’k-’, color = ’k’,lw=1) #+5%

plt.plot([0, Max_N_xP*0.95], [0, Max_N_xP], ’k-’, color = ’k’,lw=1) #-5%

plt.savefig(’parity_plot_test_norm.pdf’)

#plt.show()

#----train

plt.figure(f’Parity plot (norm)’)

plt.scatter(X_train_N_1D, X_train_N_1D, color=’r’,s=2)

plt.scatter(X_train_N_1D, X_train_pred_N_1D, color=’k’, marker=’X’,s=2)

plt.title(’parity plot train (norm) ’)

plt.ylabel(’X (predicted)’)

146 B Scripts

plt.xlabel(’X (experimental)’)

#plt.legend([’experimental’, ’prediction’], loc=’upper left’)

lineStart = min(X_train_N_1D)

lineEnd = max(X_train_N_1D)

plt.plot([lineStart, lineEnd], [lineStart, lineEnd], ’k-’, color = ’r’,lw=1) #line X_test/X_test

Max_N_xP=np.amax(ARRAY_Y_N)

plt.plot([0, Max_N_xP*1.05], [0, Max_N_xP], ’k-’, color = ’k’,lw=1) #+5%

plt.plot([0, Max_N_xP*0.95], [0, Max_N_xP], ’k-’, color = ’k’,lw=1) #-5%

plt.savefig(’parity_plot_train_norm.pdf’)

#plt.show()

#---

#---ENCODER PREDICTION--------------------------------------

#---

#---- PREDICTION ENCODER (for all: train and test)

print(’encoder result’)

X_train_code_N = encoder.predict(X_train_N)

X_test_code_N = encoder.predict(X_test_N)

print(’encoder used\n’)

print(f’shape X_train_code_N: {X_train_code_N.shape}’)

print(f’shape X_test_code_N: {X_test_code_N.shape}’)

#de-normalization (forse non serve)

X_train_code=X_train_code_N*STD +MEAN

X_test_code=X_test_code_N*STD +MEAN

#---

#---SAVE TXT ---

#---

#---SAVE ARCHITECTURE parameters and results in txt

with open(’summary.txt’,’a+’) as txt:

txt.write(f’print of CNN5load.py\n\n’)

txt.write(f’RESULT\n\n’)

txt.write(f’RMSE_test: {RMSE_test}\n’)

txt.write(f’NRMSE_test: {NRMSE_test}\n’)

txt.write(f’R2_test: {R2_test}\n\n’)

txt.write(f’RMSE_train: {RMSE_train}\n’)

txt.write(f’NRMSE_train: {NRMSE_train}\n’)

txt.write(f’R2_train: {R2_train}\n\n\n’)

txt.write(f’RMSE_test_sims{RMSE_test_sims}\n’)

txt.write(f’NRMSE_test_sims{NRMSE_test_sims}\n’)

txt.write(f’R2_test_sims{R2_test_sims}\n\n’)

txt.write(f’RMSE_train_sims{RMSE_train_sims}\n’)

txt.write(f’NRMSE_train_sims{NRMSE_train_sims}\n’)

txt.write(f’R2_train_sims{R2_train_sims}\n\n\n’)

txt.close()

B.3.2 CNN5plot.py

use after CNN5.py

- plot of original field (CNN input)

B.3 Code for post-processing 147

- autoencoder prediction and decoded plot for one sim

- parity plot and calcul of errors for one sim

- encoder prediction (code) and print code

#--- pkgs

import os

import numpy as np

from numpy.random import seed

seed(9)

import os

os.environ [’KMP_DUPLICATE_LIB_OK’] = ’True’

import keras

from keras.metrics import MeanSquaredError

import matplotlib.pyplot as plt

#---

#--INPUT--

#---

FIELD=1

sim=22

cell= 0.0067 # dim cell in meters

hx=0.1

hy=0.1

hz= 0.72

Norm=’C’

name_autoencoder_folder= ’/AUTOENCODER_1_1_17_08_2020_11_35_11’

#don’t modify

#---

cell_folder=f’/Users/Fabi/Desktop/my_script_Fabi/gitLab/ulbatmtool/programs/CNN5_folder/Scell{cell}’

autoencoder_path_folder= cell_folder+f’/AUTOENCODER/AUTOENCODER_{FIELD}’ + name_autoencoder_folder

autoencoder_name=’autoencoder’

encoder_name=’encoder’

ARRAY_Y_npy= cell_folder+’/ARRAY_Y’+f’/ARRAY_FIELD{FIELD}.npy’

#---

norm_folder= cell_folder+’/ARRAY_Y’+f’/Norm{Norm}’

Mean_npy= norm_folder+f’/mean/mean_{FIELD}.npy’

Std_npy= norm_folder+f’/std/std_{FIELD}.npy’

#---

#--START--

#---

os.chdir(autoencoder_path_folder)

print(f’os get dir: {os.getcwd()}’)

print(f’field= {FIELD} where 1: T | 2: CH4 | 3: O2 | 4: CO2 | 5: H2O | 6: OH | 7: CO | 8: NO’)

#---

#--ORIGINAL---

#---

#---

#--input simulation --

#---

print(’load array...’)

1: T | 2: CH4 | 3: O2 | 4: CO2 | 5: H2O | 6: OH | 7: CO | 8: NO

148 B Scripts

if FIELD==1:

ARRAY_T = np.load(ARRAY_Y_npy)

print(f’shape ARRAY_T {ARRAY_T.shape}’)

ARRAY_Y=ARRAY_T

if FIELD==2:

ARRAY_CH4=np.load(ARRAY_Y_npy)

print(f’ARRAY_CH4 shape {ARRAY_CH4.shape}’)

ARRAY_Y=ARRAY_CH4

if FIELD==3:

ARRAY_O2=np.load(ARRAY_Y_npy)

print(f’shape ARRAY_O2 {ARRAY_O2.shape}’)

ARRAY_Y=ARRAY_O2

if FIELD==4:

ARRAY_CO2=np.load(ARRAY_Y_npy)

print(f’ARRAY_CO2 shape {ARRAY_CO2.shape}’)

ARRAY_Y=ARRAY_CO2

if FIELD==5:

ARRAY_H2O=np.load(ARRAY_Y_npy)

print(f’ARRAY_H2O shape {ARRAY_H2O.shape}’)

ARRAY_Y=ARRAY_H2O

if FIELD==6:

ARRAY_OH=np.load(ARRAY_Y_npy)

print(f’ARRAY_CH4 shape {ARRAY_CH4.shape}’)

ARRAY_Y=ARRAY_OH

if FIELD==7:

ARRAY_CO=np.load(ARRAY_Y_npy)

print(f’ARRAY_CO shape {ARRAY_CO.shape}’)

ARRAY_Y=ARRAY_CO

if FIELD==8:

ARRAY_NO=np.load(ARRAY_Y_npy)

print(f’ARRAY_NO shape {ARRAY_NO.shape}’)

ARRAY_Y=ARRAY_NO

print(f’shape ARRAY_Y {ARRAY_Y.shape}’)

print(f’min value of ARRAY_Y (so of all simulations) is {np.amin(ARRAY_Y)}’)

print(f’max value of ARRAY_Y (so of all simulations) is {np.amax(ARRAY_Y)}\n’)

#-- extrapolation of my sim

ARRAY_SIM=ARRAY_Y[sim-1]

print(f’min value of ARRAY_SIM (so of my simulation) is {np.amin(ARRAY_SIM)}’)

print(f’max value of ARRAY_SIM (so of my simulations)is {np.amax(ARRAY_SIM)}\n’)

#-- normalization

MEAN=np.load(Mean_npy)

STD=np.load(Std_npy)

print(f’mean= {MEAN}’)

print(f’std={STD}’)

ARRAY_SIM_N=(ARRAY_SIM-MEAN)/STD

print(f’shape ARRAY_SIM_N {ARRAY_SIM_N.shape}’)

print(f’min value of ARRAY_SIM_N (so of my simulation) normalized is {np.amin(ARRAY_SIM_N)}’)

print(f’max value of ARRAY_SIM_N (so of my simulations) normalized is {np.amax(ARRAY_SIM_N)}\n’)

#--reshape

B.3 Code for post-processing 149

ARRAY_SIM_N = np.reshape(ARRAY_SIM_N, (1, ARRAY_SIM_N.shape[0], ARRAY_SIM_N.shape[1], ARRAY_SIM_N.shape[2], 1))

#--flatten for postprocessing

ARRAY_SIM_1D=ARRAY_SIM.flatten()

ARRAY_SIM_N_1D=ARRAY_SIM_N.flatten()

print(f’shape ARRAY_SIM_N_1D: {ARRAY_SIM_N_1D.shape}\n’)

#---

#--PLOT - ARRAY_SIM original----------------------------------

#---

#---- MESHGRID PP

x = np.arange(0, hx, cell)

y = np.arange(0, hy, cell)

z = np.arange(0, hz, cell)

xx, yy, zz = np.meshgrid(x,y,z)

fig = plt.figure(’plot of mesh PP’)

ax = fig.add_subplot(111, projection=’3d’)

ax.scatter(xx, yy, zz,s=1.5)

ax.set_xlabel(’X ’)

ax.set_ylabel(’Y ’)

ax.set_zlabel(’Z ’)

#plt.show()

#---plot of original

print(’plot of original ’)

print(f’number of grid points (input value)= {ARRAY_SIM.shape[0]*ARRAY_SIM.shape[1]*ARRAY_SIM.shape[2]}’)

from scipy.interpolate import griddata as gd

fig = plt.figure(’plot of original ’)

ax = fig.add_subplot(111, projection=’3d’)

im=ax.scatter(xx, yy, zz, c=ARRAY_SIM, cmap=’jet’, vmin=np.amin(ARRAY_SIM), vmax=np.amax(ARRAY_SIM),s=1.5)

ax.set_xlabel(’X’)

ax.set_ylabel(’Y’)

ax.set_zlabel(’Z’)

cax = fig.add_axes([0.05, 0.1, 0.02, 0.8])

fig.colorbar(im, orientation=’vertical’, cax=cax)

#plt.show()

#---plot of original (norm)

print(’plot of original (norm)’)

print(f’number of grid points (input value)= {ARRAY_SIM_N.shape[0]*ARRAY_SIM_N.shape[1]*ARRAY_SIM_N.shape[2]}’)

from scipy.interpolate import griddata as gd

fig = plt.figure(’plot of original (norm)’)

ax =fig.add_subplot(111, projection=’3d’)

im=ax.scatter(xx, yy, zz, c=ARRAY_SIM_N, cmap=’jet’, vmin=np.amin(ARRAY_SIM_N), vmax=np.amax(ARRAY_SIM_N),s=1.5)

ax.set_xlabel(’X’)

ax.set_ylabel(’Y’)

ax.set_zlabel(’Z’)

cax = fig.add_axes([0.05, 0.1, 0.02, 0.8])

fig.colorbar(im, orientation=’vertical’, cax=cax)

#plt.show()

#---

#---AUTOENCODER PREDICTION----------------------------------

#---

150 B Scripts

#---LOAD AUTOENCODER AND ENCODER

from keras.models import load_model

print(’autoencoder loading..’)

autoencoder = load_model(autoencoder_name, custom_objects={’mean_squared_error’: ’mean_squared_error’})

autoencoder.summary()

print(’encoder loading..’)

encoder = load_model(encoder_name, custom_objects={’mean_squared_error’: ’mean_squared_error’})

encoder.summary()

#---

#---- PREDICTION AUTOENCODER

print(’now i will predict’)

ARRAY_SIM_pred_N = autoencoder.predict(ARRAY_SIM_N)

print(’autoencoder used\n’)

print(f’shape ARRAY_SIM_pred_N: {ARRAY_SIM_pred_N.shape}’)

print(f’min value of ARRAY_SIM_pred_N (so of my pred sim) normalized is {np.amin(ARRAY_SIM_pred_N)}’)

print(f’max value of ARRAY_SIM_pred_N (so of my pred sim) normalized is {np.amax(ARRAY_SIM_pred_N)}\n’)

#--- de-normalization

ARRAY_SIM_pred= ARRAY_SIM_pred_N*STD +MEAN

print(f’shape ARRAY_SIM_pred: {ARRAY_SIM_pred.shape}’)

print(f’min value of ARRAY_SIM_pred (so of my pred sim) is {np.amin(ARRAY_SIM_pred)}’)

print(f’max value of ARRAY_SIM_pred (so of my pred sim) is {np.amax(ARRAY_SIM_pred)}\n’)

#flatten for postprocessing

ARRAY_SIM_pred_1D=ARRAY_SIM_pred.flatten()

ARRAY_SIM_pred_N_1D=ARRAY_SIM_pred_N.flatten()

print(f’shape ARRAY_SIM_pred_N_1D: {ARRAY_SIM_pred_N_1D.shape}’)

#---

#--PLOT - prediction ---------------------------------------

#---

#---normalized value plot

from scipy.interpolate import griddata as gd

fig = plt.figure(’prediction with normalization’)

ax = fig.add_subplot(111, projection=’3d’)

im=ax.scatter(xx, yy, zz, c=ARRAY_SIM_pred_N, cmap=’jet’, vmin=np.amin(ARRAY_SIM_pred_N),

vmax=np.amax(ARRAY_SIM_pred_N),s=1.5)

ax.set_xlabel(’X ’)

ax.set_ylabel(’Y ’)

ax.set_zlabel(’Z ’)

cax = fig.add_axes([0.05, 0.1, 0.02, 0.8])

fig.colorbar(im, orientation=’vertical’, cax=cax)

#plt.show()

#---plot (without normalization)

fig = plt.figure(’prediction’)

ax = fig.add_subplot(111, projection=’3d’)

im=ax.scatter(xx, yy, zz, c=ARRAY_SIM_pred, cmap=’jet’, vmin=np.amin(ARRAY_SIM_pred),

vmax=np.amax(ARRAY_SIM_pred),s=1.5)

ax.set_xlabel(’X ’)

ax.set_ylabel(’Y ’)

ax.set_zlabel(’Z ’)

cax = fig.add_axes([0.05, 0.1, 0.02, 0.8])

B.3 Code for post-processing 151

fig.colorbar(im, orientation=’vertical’, cax=cax)

#plt.show()

#---

#----------------------------------POST PREDICTION for 1 simulation ----------------------------------

#---

#---------------------------parity plot: 1 sim--------------------------------------

#----parity plot with normalization

plt.figure(f’Parity plot with normalized value’)

plt.scatter(ARRAY_SIM_N_1D, ARRAY_SIM_N_1D, color=’r’,s=2)

plt.scatter(ARRAY_SIM_N_1D, ARRAY_SIM_pred_N_1D, color=’b’,s=2)

plt.title(’parity plot with normalized value’)

plt.ylabel(’X (predicted)’)

plt.xlabel(’X (experimental)’)

lineStart = min(ARRAY_SIM_N_1D)

lineEnd = max(ARRAY_SIM_N_1D)

Max_N_xP= max(ARRAY_SIM_N_1D)

plt.plot([lineStart, lineEnd], [lineStart, lineEnd], ’k-’, color = ’r’,lw=1) #line X_test/X_test

plt.plot([0, Max_N_xP*1.05], [0, Max_N_xP], ’k-’, color = ’k’,lw=1) #+5%

plt.plot([0, Max_N_xP*0.95], [0, Max_N_xP], ’k-’, color = ’k’,lw=1) #-5%

plt.savefig(f’parity_plot_sim{sim}_norm.pdf’)

#plt.show()

----parity plot

plt.figure(f’Parity plot’)

plt.scatter(ARRAY_SIM_1D, ARRAY_SIM_1D, color=’r’,s=2)

plt.scatter(ARRAY_SIM_1D, ARRAY_SIM_pred_1D, color=’b’,s=2)

plt.title(’parity plot ’)

plt.ylabel(’X (predicted)’)

plt.xlabel(’X (experimental)’)

lineStart = min(ARRAY_SIM_1D)

lineEnd = max(ARRAY_SIM_1D)

Max_xP=max(ARRAY_SIM_1D)

plt.plot([lineStart, lineEnd], [lineStart, lineEnd], ’k-’, color = ’r’,lw=1) #line X_test/X_test

plt.plot([0, Max_xP*1.05], [0, Max_xP], ’k-’, color = ’k’,lw=1) #+5%

plt.plot([0, Max_xP*0.95], [0, Max_xP], ’k-’, color = ’k’,lw=1) #-5%

plt.savefig(f’parity_plot_sim{sim}.pdf’)

plt.show()

#---RMSE, NRMSE , R2 -------------------------------------

#----RMSE, NRMSE , R2

mse_sim= sum((ARRAY_SIM_pred_1D-ARRAY_SIM_1D)**2)/len(ARRAY_SIM_pred_1D)

RMSE_sim=(mse_sim)**(1/2)

print(f’RMSE_sim {RMSE_sim}’)

NRMSE_sim=RMSE_sim/np.mean(ARRAY_SIM_1D)

print(f’NRMSE_sim: {NRMSE_sim}’)

R2_sim= np.corrcoef(ARRAY_SIM_1D, ARRAY_SIM_pred_1D)[0,1]**2

print(f’R2_sim {R2_sim}’)

#---

#---------------------------------------ENCODER PREDICTION--

#---

#---- PREDICTION ENCODER

152 B Scripts

print(’now i will code’)

ARRAY_SIM_code_pred_N = encoder.predict(ARRAY_SIM_N)

print(’encoder used\n’)

print(f’shape ARRAY_SIM_code_pred_N: {ARRAY_SIM_code_pred_N.shape}’)

print(ARRAY_SIM_code_pred_N)

#--flatten for postprocessing

ARRAY_SIM_code_pred_N_1D=ARRAY_SIM_code_pred_N.flatten()

print(f’shape ARRAY_SIM_code_pred_N_1D: {ARRAY_SIM_code_pred_N_1D.shape}’)

print(ARRAY_SIM_code_pred_N_1D)

Bibliography

[1] Aversano G., Bellemans aA., Li Z., Coussement A., Gicquel O., and

Parente A. Application of reduced-order models based on PCA, Krig-

ing for the development of digital twins of reacting flow applications.

Computers and Chemical Engineering, 121:422?441, 2019.

[2] Aversano G., Ferrarotti M., Parente A. Digital twin of a MILD combus-

tion furnace: reduced-order model development from CFD simulations

[3] Cavaliere A. and de Joannon M. Mild combustion. Prog. Energy Com-

bust. Sci., 30:329 366, 2004.

[4] Chollet Francois, Deep learning with python

[5] Ferrarotti M., Furst M., Cresci E., De Paepe W., and Parente A. Key

Modeling Aspects in the Simulation of a Quasi-industrial 20 kW Moder-

ate or Intense Low-oxygen Dilution Combustion Chamber. Energy Fuels,

32(10):10228 10241, 2018.

[6] Ferrarotti M., Li Z., and Parente A. On the role of mixing models in the

simulation of mild combustion using finite rate chemistry combustion

models. Proceedings of the Combustion Institute, 37(4):4531 4538, 2019

[7] Ferrarotti M. Lupant D., Parente A. Analysis of a 20 kW flameless

furnace fired with natural gas

153

154 BIBLIOGRAPHY

[8] Kajishima, Takeo, Taira, Kunihiko. (2017). Reynolds-Averaged Navier

Stokes Equations. 10.1007/978-3-319-45304-07

[9] Li, Z.; Ferrarotti, M.; Cuoci, A.; Parente, A. Finite-rate chemistry mod-

elling of non conventional combustion regimes using a partially stirred

reactor closure: Combustion model formulation and implementation de-

tails. Appl. Energy 2018, 225, 637 655.

[10] Nielsen Michael, Neural Networks and Deep Learning.

[11] Parente A, Malik MR, Contino F., Cuoci A, Dally BB. Extension of the

eddy dissipation concept for turbulence/chemistry interactions to MILD

combustion. Fuel 2015;163:98 111

Sitography

1. https://missinglink.ai/guides/neural-network-concepts/7-types-

neural-network-activation-functions-right/ (august 2020)

2. https://adeshpande3.github.io/A-Beginner%27s-Guide-To-

Understanding-Convolutional-Neural-Networks/ (august 2020)

3. https://towardsdatascience.com/adam-latest-trends-in-deep-

learning-optimization-6be9a291375c (august 2020)

4. https://towardsdatascience.com/applied-deep-learning-part-3-

autoencoders-1c083af4d798 (august 2020)

5. https://towardsdatascience.com/autoencoders-vs-pca-when-to-

use-which-73de063f5d7 (august 2020)

6. https://towardsdatascience.com/classification-using-neural-

networks-b8e98f3a904f (august 2020)

BIBLIOGRAPHY 155

7. https://towardsdatascience.com/coding-deep-learning-for-

beginners-linear-regression-part-2-cost-function-49545303d29f

(august 2020)

8. https://towardsdatascience.com/common-loss-functions-in-

machine-learning-46af0↵c4d23 (august 2020)

9. https://machinelearningmastery.com/adam-optimization-

algorithm-for-deep-learning/ (august 2020)

10. https://missinglink.ai/guides/neural-network-

concepts/hyperparameters-optimization-methods-and-real-world-

model-management/ (august 2020)

11. https://towardsdatascience.com/introduction-to-artificial-neural-

networks-ann-1aea15775ef9 (august 2020)

Acknowledgements

Caro lettore,

è arrivato il momento di scriverti una seconda volta. Ora però ti scrivo con la

consapevolezza che si chiude un percorso durato cinque anni che mi ha regalato

esperienze uniche.

Come già ti ho raccontato nella nostra prima chiacchierata, i miei genitori

sono stati molto preziosi per me in questo viaggio, ti dirò di più, mi sono stati

vicino e hanno creduto in me quando tracciavo la rotta.. tanto pianificata quanto

improvvisata. Grazie perché mi avete dato la grinta nei momenti più stanchi e

avete ristabilito l’equilibrio in quelli più burrascosi. Grazie perché con me siete

arrivati in questo porto, consapevoli che presto ripartiremo.

Sai com’è.. i viaggi più belli non si fanno mai da soli... grazie ragazzi di

aver condiviso con me questi anni, ricorderò per sempre le nostre risate, le foto in

laboratorio, i dibattiti sui cappelletti o tortellini, i pranzi appollaiati sulle scale o

quelli “illegali” nella mensa, le partite a briscola e le curiosità su San Severo, le

bonarie litigate per capire chi fosse l’amico del giaguaro, le news in tempo reale

sul fuggitivo a Cento, le corse al posto per evitare la chiamata alla lavagna, le

indicazioni per la TA- AMOIL e le (chiamiamole) riflessioni sulla “probabilità di

morteee!!!” Ah ah ah . Ad ognuno di loro tengo in modo unico ma in questa

sede ti racconterò qualcosa di più su una ragazza.. l’altro membro, oltre a me,

della coppia scoppiata! E’ stato fin da subito un bel rapporto che si è distinto

con tutta naturalezza da ciò che ci veniva presentato mentre ancora sondavamo il

157

terreno universitario. Un rapporto che è cresciuto grazie alle esperienze a↵rontate

assieme, districandoci tra integrali e calcolatrici ;) una ragazza dalle sembianze

docili che nasconde una personalità determinata e grintosa, una ingegnerAAAA di

tutto rispetto della quale avrò sempre un dolce ricordo...

Come non parlare poi dei ragazzi e le ragazze extra-uni! Ognuno a modo suo

ha colorato le mie giornate, portando aria nuova, creando uno scambio di pensieri a

dir poco frizzante. Un grazie lo dedico alle due ragazze con cui spesso ho condiviso

una bella coppa di gelato da Babbi guarnita di molte chiacchiere e risate, capaci

di fare luce su altri due mondi tanto diversi quanto interessanti (vi ho stupito con

l’inverno eh) ah ah ah. Grazie perché avete sempre dimostrato di esserci.Un

altro di cui ti vorrei parlare è il ragazzo con la bici senza freni, si tratta di una

persona tutt’altro che scontata, capace di ascoltarti e stupirti ma anche di farti

ridere con i suoi, ormai celebri, interventi: “Lo denuncio!” e di farti preoccupare

decidendo di andare da solo in mezzo ai monti per provare l’ebbrezza di dormire

con gli orsi! (sa vut fe! L’è iccè) grazie perché hai condiviso con me pensieri e

parole... Poi c’è il suo socio in a↵ari.. l’eterno innamorato che passa dal citare

versi da Nero Bali alle massime del suo zio giapponese, dall’essere il tipo perfetto

per fare “balotta” al pisolino pomeridiano con la sua copertina, dall’essere Cracco

2.0 al “trituro i findus perché non li so cucinare” ah ah ah . Ti ringrazio per essere

stato la persona con cui piacevolmente poter condividere il racconto della giornata

ad ogni cena passata assieme...

In ultimo devi sapere che c’è stata un’altra persona che ha lasciato un segno...

Sono sempre bastate poche parole perché lei capisse come mi sentivo. E la ringrazio

per averne invece usate tante.. per essersi messo nei miei panni e per avermi preso

per mano a ritrovare le fila dei miei pensieri. Grazie.

