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Abstract

In the past years, optical diffraction tomography (ODT) has been used both
in cell imaging and to investigate the three-dimensional refractive index (RI)
of large-scale (millimetre-sized) samples. In this technique, the projections
at different illumination angles are acquired through digital holography (DH)
and used to estimate the complex wave fields, which can be refocused with the
aid of numerical diffraction algorithms. However, real extended specimens
may not completely lie on a single plane. In this case, the (refocused) pro-
jections retain a certain amount of defocus which will affect the tomographic
reconstruction.

For this reason, this thesis aims to study the spatial resolution of an ODT
system when a point-like object is allowed to go in and out of focus and is
reconstructed without numerical refocusing. Two-dimensional rotation and
computational Fourier optics will be used to track and model defocus and
lenses during the simulation of the projections. Spatial resolution will be
assessed both qualitatively and quantitatively by numerically computing the
full width at half maximum (FWHM) in relation to the maximum defocus
to which a simulated point was subjected during acquisition.

Lastly, deconvolution is used to remove unwanted blur.
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Chapter 1

Introduction

In the past years, optical diffraction tomography (ODT) has been employed
in the investigation of the refractive index of millimetre-sized samples. Large
specimens, however, seldom lie on a single image plane. Therefore, it is of
interest to study the resolution of an ODT imaging system to attempt to
improve it or to give a measure of the accuracy of any spatial measurement.
Restoration of blurred images, if successful, improves spatial resolution and
thus leads to more precise quantitative measurements.

Researchers at the Delft University of Technology (TU Delft) published
a few papers on ODT in which they used the Mach-Zehnder interferometer
during acquisition. The scope of this thesis is the investigation of the spatial
resolution of an ODT system based on the Mach-Zehnder interferometer and
the restoration of the reconstructed images.

Due to the COVID-19 crisis started in March 2020, we were unable to
perform any experimental work in the laboratory, but all was not lost for
this project. In fact, thanks to the theory of Fourier optics, it is possible to
perform computer simulations of the key components in the interferometer
and to analyse the results. We would like to remark that this thesis will
focus on the effect of diffraction, interference and ideal lenses on the system
and will assume an ideal, perfect detector that collects all the incoming light
without any loss or noise. We will assume that all the other components—
i.e. mirrors, beam splitter and beam expander—will not introduce additional,
unwanted effects that might change the results.

This thesis is composed of two main parts. The first provides the theoret-
ical background behind the computational work. The Fourier transform and
its properties play a major role in this part, so they will be introduced first.
Then, the model for image formation and the theory behind image restora-
tion will be described. Computed tomography, which is the technique used
to reconstruct three-dimensional objects from their two-dimensional projec-
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tions, will be explained in detail. Light waves will be described next with
particular focus on diffraction, interference and lenses. Then, two chapters
will deal with holography and ODT to outline the key components and lim-
itations behind these techniques.

The second part of this thesis focuses on the methods used for the prac-
tical application of the theory and the results obtained from the simulation
work and deconvolution. In this part, the results of the optimisation of the
processing pipeline are also presented.
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Part I

Theoretical Background
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Chapter 2

Fourier Transform

The Fourier transform is a powerful tool used to decompose a signal into its
frequencies for either processing or analysis.

Let f be a real-valued or complex-valued integrable function such that
f : RN → R or f : RN → C, where N is a positive integer. Let x and ξ be
N -dimensional vectors. Then, the N -dimensional Fourier transform of f is

Ff (ξ) =

∫
RN
f (x) e−i2πx·ξdx (2.1)

where x · ξ here is the Euclidean dot product and is sometimes written as
〈x, ξ〉. The dot product is also called scalar product and inner product. In
this thesis, these terms will be used interchangeably.

For the sake of completeness, the expression for Euclidean dot product in
RN is reported below

x · y =
N−1∑
i=0

xiyi (2.2)

for any vectors x and y in RN . It is worth mentioning that it is positive
definite and the right side of Equation (2.2) is 0 if x and y are perpendicular
[1]. The norm, or length, of a vector x is

‖x‖ =
√

x · x (2.3)

Let F be a function such that F : RN → C and F (ξ) = Ff (ξ). The
inverse N -dimensional Fourier transform of F is defined as

F−1F (x) =

∫
RN
F (ξ) ei2πx·ξdξ (2.4)
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Please note that the inverse Fourier transform of F can be written as a
Fourier transform,

F−1F (x) =

∫
RN
F (ξ) ei2πx·ξdξ =

∫
RN
F (ξ) ei2πx·ξdξ

=

∫
RN
F (ξ) e−i2πx·ξdξ = F

{
F
}

(x) = FFf(x)

(2.5)

where the horizontal bar is used for the conjugation and the equivalence
between the the two lines holds because ξ ∈ RN and because for any z, w ∈ C

z = z (2.6a)

zw = z w (2.6b)

z ± w = z ± w (2.6c)

Furthermore, with similar reasoning, we see that

FFf(x) =

∫
RN
e−i2πx·ξ

(∫
RN
f (x) e−i2πx·ξdx

)
dξ

=

∫
RN
ei2πx·ξ

(∫
RN
f (x) e−i2πx·ξdx

)
dξ

= F−1{Ff}(x)

(2.7)

Since this thesis mostly deals with images, image processing and com-
puted tomography, we will present the expressions for the one- and two-
dimensional Fourier transforms, their discrete formulae, and a few important
properties.

2.1 One-Dimensional Fourier Transform

Let f : R→ C and F : R→ C be integrable functions. The one-dimensional
Fourier transform of f is

Ff (u) =

∫ +∞

−∞
f (x) e−i2πxudx (2.8)

and inverse is

F−1F (x) =

∫ +∞

−∞
F (u) ei2πxudu (2.9)
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2.1.1 Properties

The Fourier transform has a few basic properties that are commonly used
in signal processing and are therefore reported here for the one-dimensional
case for the sake of completeness. Please keep in mind that they are valid
for the N -dimensional transform as well.

Let f(x), F (u) and h(x) be complex-valued integrable functions.
Some of the most important properties [2] of the Fourier transform are:

• linearity—the Fourier transform is linear,

F {af (x) + bh (x)} = aFf (u) + bFh (u) (2.10)

where a and b are scalars in C.

• shift—any translation or time-shift by a constant a ∈ R introduces a
phase shift in the frequency domain,

F {f (x− a)} = Ff (u) e−i2πua (2.11)

and multiplying f by ei2πax shifts the frequencies by a ∈ R,

F
{
f (x) ei2πax

}
= Ff (u− a) (2.12)

• scaling—any scaling in the real domain stretches (or shrinks) the fre-
quency spectrum accordingly and modifies the amplitude,

F {f (ax)} =
1

|a|Ff
(u
a

)
(2.13)

If a = −1, we are simply reversing the direction, and F{f(−x)} =
Ff(−u).

• Conjugation—the Fourier transform of the conjugate of f(x) is the
conjugate of the Fourier transform of f(−x), or

Ff(u) = Ff(−u) (2.14)

Equation (2.14) can be combined with (2.13) into

F{f(−x)} = Ff(u) (2.15)

Furthermore, from Equations (2.7) and (2.15), we get

FFf(x) = f(−x) (2.16)
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• Fourier inversion theorem—if, in addition to the previous hypothe-
ses, f is continuous at x, and F (u) = Ff (u), then

f (x) = F−1F (x) = F−1Ff (u) (2.17)

• convolution—the convolution of two functions f and h is the inverse
Fourier transform of the product of the Fourier transforms of f and h,
or

(f ∗ h) (x) =

∫
R
f (t)h (x− t) dt = F−1 {Ff (u)Fh (u)} (2.18)

However, the convolution of discrete signals via discrete Fourier trans-
form is not as straightforward as Equation (2.18).

2.1.2 One-Dimensional Discrete Fourier Transform

Let {fn} be a sequence of N samples acquired at equally-spaced points xn,
where xn could be a set of points on a line or a time sequence. The One-
Dimensional (1D) Discrete Fourier Transform (DFT) of a discrete signal {fn}
is [3]

Fm =
N−1∑
n=0

fne
−i2π nm

N , m = 0, 1, ..., N − 1 (2.19)

and its inverse (1D-IDFT) can be written as [3]

fn =
1

N

N−1∑
m=0

Fme
i2π nm

N , n = 0, 1, ..., N − 1 (2.20)

Computer implementations of the 1D-DFT and 1D-IDFT, however, are
not done through a straightforward implementation of the naive algorithms
in Equations (2.19) and (2.20) as it does not scale well with the number of
samples. Indeed, the computation of fhe DFT of a signal of length N has a
complexity of O(N2).

To compute the DFT, we generally use the Fast Fourier Transform (FFT),
which exploits properties of the DFT to reduce the number of complex mul-
tiplications during its computation [4]. Common algorithms are the radix-n
(n integer), mixed-radix and prime-factor FFT. An additional speed-up can
be achieved as well via parallelisation and vectorisation [4].

It is worth mentioning that all the radix-n implementations have their
own requirements, which is N = np with n, p ∈ N. This, however, is not a
limitation as the signal can be zero-padded (or zero-extended) to the nearest
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power of p greater than N and then sent to the FFT routine. This decreases
the performance but provides better results than the DFT thanks to the
huge speed-up the FFT provides: indeed, the radix-2 algorithm has a com-
putational complexity of O(N logN). Please note that zero-padding before
applying the Fourier transform interpolates the Fourier spectrum.

The implementation of the IDFT is usually done via FFT since the con-
jugate of the DFT of the conjugate of the sequence {Fm} divided by N is
the IDFT of Fm, or

1

N

N−1∑
n=0

Fne
−i2π nm

N =
1

N

N−1∑
n=0

Fne
i2π nm

N = IDFT{Fm}

which is the discrete version of Equation (2.5). The first equivalence follows
from Equation (2.6), and the second is simply the definition of IDFT in
(2.20).

Convolution

There are two types of convolution: linear and cyclic (or circular).
Let f and h be two sequences of length N and L. To convolve f and

h via linear convolution using the FFT, both signals must be padded to at
least N +L− 1, then Equation (2.18) can be used to compute the convolved
signal.

On the other hand, to convolve two signals, f and h, of length N via
cyclic convolution, Equation (2.18) can be directly applied.

Please note that the considerations made here for the discrete convolution
can be extended to any dimension.

2.2 Two-Dimensional Fourier Transform

Let f : R2 → C be an integrable function. The two-dimensional Fourier
transform and of f and its inverse are defined as

F (u, v) = Ff (u, v) =

∫ ∫
R2

f (x, y) e−i2π(ux+vy)dxdy (2.21a)

f (x, y) = F−1F (x, y) =

∫ ∫
R2

F (u, v) ei2π(xu+yv)dudv (2.21b)

from Equations (2.1) and (2.4) where x = (x, y) ∈ R2 and ξ = (u, v) ∈ R2.
The 2D Fourier transform can be simplified if f is separable. We will say

that f is separable in Cartesian coordinates if

f (x, y) = fX (x) fY (y) (2.22)
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where fX and fY are integrable functions that depend only on one coordinate
(x and y, respectively). In that case, the x and y coordinates can be separated
when we integrate and we have

Ff (u, v) = FfX (u)FfY (v) (2.23)

On the other hand, f will be separable in the polar coordinates (r, θ) if

f (r, θ) = fr (r) fθ (θ) (2.24)

where fr depends only on the radial coordinate r and fθ on the angular co-
ordinate θ. In this case, two-dimensional operations can be still obtained via
a series of one-dimensional operations, although it is not trivial [2]. Further-
more, if f does not depend on θ, we will say that f is circularly symmetric
and write

f (r, θ) = fr (r) (2.25)

For this particular class of functions, the Fourier transform and its inverse
are equivalent [2], and we have

F−1Ff(r) = FFf(r) = f(r) (2.26)

2.2.1 Two-Dimensional DFT

Let us sample f into NxM samples f(n,m), and let F (u, v) be its 2D discrete
Fourier transform. Then, the 2D-DFT and its inverse are defined as

F (u, v) = 2D-DFT{f (n,m)} =
N−1∑
n=0

M−1∑
m=0

f (n,m) e−i2π(
un
N

+ vm
M ) (2.27a)

f (n,m) = 2D-IDFT{F (u, v)} =
1

NM

N−1∑
u=0

M−1∑
v=0

F (u, v) ei2π(
un
N

+ vm
M ) (2.27b)

The 2D-DFT and its inverse can be computed via FFT.

2.3 Power Spectrum

The Power Spectrum is often used in signal processing to analyse a signal
based on its frequency content. Let N ∈ N. The power spectrum of an
integrable function f : RN → C is

PS = |Ff |2 (2.28)
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However, when the visualisation of the power spectrum is required, it is com-
mon to display the common—base-10—logarithm of this expression because
it can span several orders of magnitude and the DC term is often much larger
than the rest of the spectrum.

In practice, the power spectrum of f gives the distribution over the fre-
quency space and can be used to analyse the input, as shown in Fig. 2.1.

In particular, in Fig. 2.1, since the DC term can be computed by summing
all the samples and the function is a sinusoidal oscillating about 0, we expect
that the value of the power spectrum at 0 Hz will be 0. Furthermore, the
function oscillates at a know frequency (1 Hz), and we see two peaks in its
power spectrum, one for 1 Hz and one for −1 Hz.

Fig. 2.1: Example of the power spectrum usefulness with a simple sinusoidal func-
tion oscillating at a known frequency.

Equation (2.28) can be rewritten to offer more insight on the meaning of
the power spectrum:

|Ff |2 = FfFf = F{f(x) ∗ f(−x)} (2.29)

where x ∈ RN and the last equivalence follows from Equation (2.15). The
convolution in the Fourier transform in the last equivalence of Equation (2.29)
is the cross-correlation of f with itself, also known as autocorrelation. There-
fore, the autocorrelation of f is the inverse Fourier transform of the power
spectrum of f , or

f(x) ∗ f(−x) = F−1
{
|Ff |2

}
(2.30)
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Please note that if f : R2 → R and Equation (2.25) holds (i.e. f is circularly
symmetric), then f(x, y) = f(−x,−y) and f ∗ f = F−1{|Ff |2}, which also
implies that the Fourier transform of f is real-valued. Indeed, we have

f : R2 → R, fr : R→ R | f(r, θ) = fr(r)⇒ Ff = Ff (2.31)

where (r, θ) is the set of polar coordinates. The relation in (2.31) follows
from Equations (2.15) and (2.29).
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Chapter 3

Image

For the scope of this thesis, we will define an image as the interaction of a
source with an object and the apparatus used for recording, and we will limit
our discussion to transmission imaging. We will call the source-apparatus
system the imaging system and say that it transforms an input I into an
output O via an operator S, or

O (x, y) = S{I (ξ, η)} (3.1)

where (x, y) and (ξ, η) are the coordinates on the detector and on the object
respectively. If S is known, Equation (3.1) can be used to predict the effect
of the system on any ideal input.

An imaging system is said to be linear if, for any constants α, β ∈ C and
inputs I1 and I2, we have [2]

S{αI1 (ξ, η) + βI2 (ξ, η)} = αS{I1 (ξ, η)}+ βS{I2 (ξ, η)} (3.2)

In that case, Equation (3.1) can be rewritten via a superposition integral
[2, 3], namely

O (x, y) =

∫ ∫
R2

I (ξ, η)h (x, y; ξ, η) dξdη (3.3)

where h (x, y; η, ξ) is the function that describes the effect of the system on the
input and is sometimes called impulse response or, in optics, point spread
function (PSF). If h(x, y; ξ, η) depends only on the distances (x− ξ) and
(y − η) between the points, we will say that the PSF is space-invariant—or,
sometimes, shift-invariant—and write

O (x, y) =

∫ ∫
R2

I (ξ, η)h (x− ξ, y − η) dξdη

= (I ∗ h) (x, y)

(3.4)
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which is the convolution of the impulse response with the input. Equation
(3.4) implies that the input I (η, ξ) can theoretically be recovered, providing
that h is known. In that case, we will say that we deconvolve O with h to
find I.

The effect of noise into the output image has been neglected until now.
However, real images are often affected by random fluctuations. To consider
this, we use an additive model and write

Õ (x, y) = O (x, y) + n (x, y) (3.5)

where n (x, y) represents the noise of the image and O (x, y) can be com-
puted with Equation (3.1) or any valid simplified formula depending on the
assumptions on the imaging system.

3.1 Digital Images

Nowadays, image processing is mostly done with a computer because it offers
a much bigger variety of operations. Furthermore, digital images are not
subject to corruption due to physical damage and can be copied and stored
without difficulty.

Any physical image can be described as a matrix of N rows and M
columns. Let us define the row index i = 0, 1, ..., N − 1 and the column
index j = 0, 1, ...,M − 1. The indices i and j represent the y and x coordi-
nates at which the input is sampled.

Furthermore, we assume two constant sampling intervals: one between
any two adjacent rows i and i+ 1 (pixel height, ∆y), and the other between
two adjacent columns j and j + 1 (pixel width, ∆x). It is common, but not
required, that the pixel height and width are identical. These two numbers
limit the spatial resolution of the system but do not entirely describe it.

3.2 Linear Imaging System: a Vector-Matrix

Formulation

Let S be a linear operator for which Equation (3.3) is satisfied for any input-
output pair f, g : R2 → C. The discrete signals of f and g can be represented
by two N ×M matrices, which can be translated to two vectors f ,g ∈ CQ

with Q = NM and N,M ∈ N.
Since S is a linear operator, we can write Equation (3.3) for a discrete

signal as a matrix-vector product,

g = Hf (3.6)
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where H is a complex-valued matrix with Q rows and Q columns, and it
represents the linear transformation caused by the system S. Therefore, H
has Q2 elements.

Real systems, however, are also characterised by the presence of noise.
Following Equation (3.5) and using n as the vector representation of the
matrix that describes the noise, we have

g = Hf + n (3.7)

Straightforward implementation of the linear equations above is not rec-
ommended, however, and it is instead discouraged due to the large computa-
tional and memory requirements. Indeed, for an image with 512× 512 = 218

pixels, H is defined as a matrix with 236 elements. Please note that nowadays
it is not uncommon to find detectors and cameras with larger dimensions that
even reach tens of millions of pixels.

Space-Invariant Blurring

To express a space-invariant linear system as the one in Equation (3.4) for a
discrete signal as in Equation (3.6), we have to write a matrix H that defines
the convolution with a two-dimensional kernel h. First, however, we have
to define a set of matrices called Toeplitz matrices and a special subset, the
circulant matrices.

Let T be a Q × Q matrix, where Q is a positive integer. T is called a
Toeplitz matrix if

T =


t0 t−1 . . . t−(Q−1)

t1 t0 . . . t−(Q−2)
...

. . .

tQ−1 t0

 (3.8)

The elements in T can also be expressed as ti,j = ti−j provided ti−j ∈ {tq |
−(Q− 1) ≤ q ≤ Q− 1}.

A particular kind of Toeplitz matrices are the circulant matrices, for
which we have

C =


c0 cQ−i . . . c1

c1 c0 . . . c2
...

. . . . . .
...

cQ−i . . . c1 c0

 (3.9)

Please note that the transpose of this matrix can be considered a circulant
matrix as well.

Let A be a block matrix composed of matrix blocks Ai,j. If the blocks are
arranged following the scheme in Equation (3.8) where each element ti,j is
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now a block matrix, then A is called block-Toeplitz matrix. Furthermore, if
each individual block Ai,j is also a Toeplitz matrix, then A is a doubly block-
Toeplitz matrix. Analogously, a block matrix whose blocks follow the scheme
for the circulant matrix (see Equation (3.9)) is called block-circulant, and if
each block is also circulant we have a block-circulant matrix with circulant
blocks, or a doubly-circulant matrix.

These kinds of matrices can be used to describe a linear space-invariant
imaging system as a linear operator. Therefore, they can represent the con-
volution with one- and two-dimensional kernels. Now, we will describe how
this matrices can be constructed for a two-dimensional kernel.

For a linear convolution with a two-dimensional PSF, we first need to
extend the two-dimensional signal and kernel by using the same consideration
previously made for the DFT or FFT. Then for each row of the kernel we
write a Toeplitz block and arrange all the blocks into a doubly block-Toeplitz
matrix.

To construct a KxK Toeplitz block G from a row a of length K extracted
from the zero-padded kernel, we can use the scheme in Equation (3.8):

Step 1: the first column (i = 0) of G to aᵀ, which is the transpose of a;

Step 2: for each column i = 1, 2, ..., K − 1, do a circular shift by i elements on
aᵀ and use the new column vector to fill the i-th column of G.

For a cyclic (circular) convolution with a two-dimensional PSF, we use
a doubly block-circulant matrix: i.e. a block matrix C whose blocks are
arranged according to (3.9) and are circulant matrices as well. The construc-
tion of the matrix is similar, but zero-padding is not performed if both the
kernel and the signal have the same length (in both dimensions).

Convolution with a one-dimensional PSF can be constructed in a similar
fashion. The resulting matrix, however, will not be a block matrix.

A doubly block-circulant matrix is sometimes used instead of H for a
space-invariant PSF as it offers important properties in optimisation prob-
lems and the matrix-vector product Hf is represented by a cyclic convolu-
tion with a two-dimensional PSF. Please note, however, that, for discrete
signals, Equation (3.4) can be efficiently computed by exploiting (2.18) and
the 2D-FFT routines, and matrix-vector notation is generally useful for fur-
ther insight in the imaging model or to find a solution to deconvolution with
linear algebra notation, which may then be translated into a series of Fourier
transforms in this case.
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3.3 Spatial Resolution

From Nyquist’s theorem, if a signal g(t) is sampled at discrete intervals,
the signal is correctly represented by the sampled sequence if and only if
the maximum frequency in g(t) is not higher than half the sample rate fs
detectable by the detector, or

ug,max ≤
1

2
fs (3.10)

where ug,max is the maximum frequency in g(t) and fs can be computed as

fs =
1

τ
(3.11)

where τ is the sampling interval. Therefore, the Nyquist frequency is

fN =
1

2τ
(3.12)

where τ can be either the pixel width or the pixel height, depending on the
spatial direction.

If Equation (3.10) is not followed, the digital signal will be distorted
by aliasing due to the inability to detect and represent the correct frequen-
cies. Digital images are, of course, affected by this theorem as they are
two-dimensional discrete signals. However, Nyquist’s theorem is not suffi-
cient to describe spatial resolution and represents only the upper limit of the
detector.

Generally, the resolution of the system is computed from its PSF. Indeed,
this particular function is used to compute two important metrics—the full
width at half maximum (FWHM), which is the width of the PSF at half
peak value, and the modulation transfer function (MTF) which is calculated
as the modulus of the Fourier transfer of the PSF, or

MTF (u, v) = |Fh (u, v)| (3.13)

where u and v are the discrete spatial frequencies and are usually computed
as

u =
m

M∆x
, v =

n

N∆y
(3.14)

where M and N are, respectively, the detector width and height in pixels,
and m,n ∈ Z : |m| ≤M/2, |n| ≤ N/2.

The MTF is usually normalised, i.e. the maximum value (DC term) is
1, and thus we will work with normalised MTFs. Fh is sometimes called
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transfer function of the system. We will usually denote such a function with
H.

The MTF of the system is the product of all the MTFs of the elements of
the apparatus. In the spatial domain, this means that the PSF of the system
is the convolution of the PSFs of all of its parts.

This has some interesting consequences. Unless the normalised MTF of
a component is 1 for all the frequencies, that component will degrade the
spatial resolution of the whole system, which means that, in general, the
resolution worsens as the number of parts increases. If one element in the
apparatus has an MTF that quickly goes to 0, the MTF of the whole system
will quickly reach 0, cutting all the high frequencies.

Furthermore, the broadness of the MTF affects the sharpness of the edges.
Indeed, a broader MTF will have sharper edges because these generate higher
frequencies in the Fourier transform. For this reason, sharpness is also af-
fected by how quickly the MTF reaches 0. Indeed, the MTF practically
weights the contribution of each set of frequencies (u, v) of the input image.

3.4 Image Restoration

Restoration is the process of improving any degraded image Õ by filtering it.
It may be used to remove outliers and noise or recover an estimate Î of the
real input I by taking the imaging system into account. In this section, we
will focus on image deconvolution.

Please note that, throughout this section, the coordinates will be dropped
in the notation and that for any f, g : R2 → C integrable, we will Ff(u, v) =
Ff and Fg(u, v) = Fg. Furthermore, any operation between the Fourier
transforms of f and g will be considered frequency-wise unless otherwise
stated. For example, FfFg = Ff(u, v)Fg(u, v).

3.4.1 Inverse Filtering

Inverse filtering is the easiest deconvolution routine we can employ to recover
the image, and is modelled as

Î = F−1

{
FÕ
H

}
= F−1

{
FÕ
Fh

}
(3.15)

where the deconvolution is performed by exploiting Equation (2.18). How-
ever, substituting Õ with Equation (3.5) and using the linearity of the Fourier
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transform (2.10), we find that

F Î =
FO
H

+
N

H
= FI +

N

H
(3.16)

where N = Fn is the Fourier transform of the noise in the image. This leads
to the conclusion that inverse filtering of a real image will never recover the
original image I because noise is not taken into account [3]. Preprocessing the
image with some de-noising algorithm might improve Î, but direct inversion
is usually avoided.

3.4.2 Richardson-Lucy Deconvolution

Richardson-Lucy’s [5] algorithm is an iterative routine that can be used to
deconvolve an image. For any iteration k = 1, ..., N , the estimate of I is

Îk = Îk−1

((
Õ

Îk−1 ∗ h

)
∗ hm

)
(3.17)

where hm is the mirrored PSF on both axes—namely, hm(x, y) = h(−x,−y);
we invert the spatial direction to obtain hm. Î0 is a uniform image.

For any convolution, we can use Equation (2.18), which relates the con-
volution to a series of Fourier transforms. Please note that the PSF h is
usually real-valued and therefore h(−x,−y) = h(−x,−y). in this case, the
convolution with hm is simply a multiplication with the conjugate Fourier
transform of H in the Fourier domain.

Moreover, please note that if h is circularly symmetric (i.e. it follows
Equation (2.25)), hm = h. If the PSF is not only circularly symmetric but
also real-valued, then we also have (2.31).

In Equation (3.17), we see that the new estimate Îk is computed by
multiplying the current estimate Îk−1 with a correction factor, which depends
on the degraded image and the estimated degraded image.

We can further analyse the correction factor. From Õ

Îk∗h
, we can see that

the output is compared against the blurred estimate. If the PSF h closely
describes the effect of the system on the input and noise is negligible, then we
expect that the comparison of the blurred image against the blurred estimate
will be constant when Îk is a scaled version of the true input I, namely I = cÎk
with c ∈ C. In that case, the correction factor is a constant. This can easily
be verified in the one-dimensional case, and the result can be extended to
the n-dimensional case. Indeed, if f : R→ C and f(x) = c, we have

(f ∗ h)(t) = c

∫ +∞

−∞
h(x)dx = const
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where we have exploited the commutativity of the convolution,

(f ∗ h)(t) =

∫ +∞

−∞
f(x)h(t− x)dx =

∫ +∞

−∞
f(t− x)h(x)dx = (h ∗ f)(t)

From this reasoning, it follows that, under these conditions, if we reach
a scaled version of I at the iteration k̃, we expect that the estimate Ik will
only be rescaled ∀k > k̃.

Unfortunately, Richardson-Lucy’s deconvolution algorithm has two inher-
ent drawbacks. The first is caused by the division in the correction factor.
In fact, if Õ(x, y) is zero for some (x, y) ∈ R2, then we have the undefined
case 0

0
as Ik approximates the true input I with increasing precision. This

problem, however, may be circumvented by adding a small constant to Õ
and remembering that the convolution follows Equation (3.2) since it is lin-
ear and that the convolution with a constant is a constant. Therefore, this
operation does not change the system, which can still be described by the
same PSF.

The second drawback is similar to that for the inverse filter. While
Richardson-Lucy’s deconvolution attempts to reconstruct the input itera-
tively from a known PSF, it does not take the effect of noise into account.

3.4.3 Wiener Filtering

Wiener filtering, or Minimum Mean Square Error Filtering, is a type of in-
verse filtering that incorporates noise into the algorithm and attempts to
minimise an error measure that is given by the expected value of (I − Î)2,
where I and Î are, as usual, the true image and its estimate.

We will use the same notation that was introduced in (3.4) and (3.5). Let
Sn = |Fn|2 and SI = |FI|2, and let H be the Fourier transform of the PSF.

Then, the Fourier transform of the estimate Î of the true image is [3]

F Î =
HSI

SI |H|2 + Sn
FÕ =

=
1

H

|H|2
|H|2 + Sn/SI

FÕ
(3.18)

which means that the deconvolution of a noisy signal can be written as a
convolution with a pseudo-inverse kernel. In fact, if we define k = F−1K

such that K = 1
H

|H|2
|H|2+Sn/SI

, then the Wiener filter in Equation (3.18) can be
written as

Î = Õ ∗ k (3.19)
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by applying the inverse Fourier to both sides of (3.18) and using (2.18) and
the commutativity of the convolution.

This result has also been used by Xu et al. [6] to build a deep convolutional
neural network for image deconvolution.

Equation (3.18) depends on the spectrum of the true image, which is
generally not known nor is Sn. In those cases, the Wiener filter cannot be
estimated directly, and we may approximate it by substituting Sn/sI with a
constant q ∈ R,

F Î =
1

H

|H|2
|H|2 + q

FÕ (3.20)

This approximation, however, might not be a suitable option.
Another approach to improve Equation (3.20) is the Constrained Least

Squares (CLS). Let f, g be an input-output pair and f and g their vector
representation for which (3.5) and (3.7) are valid. Let M and N be the image
width and height in pixels, respectively. To tackle this problem, we start by
expressing the system with Equation (3.7) and by defining a criterion, or a
measure of smoothness, depending, for example, on the Laplacian,

J =
M−1∑
x=0

N−1∑
y=0

|∇2f(x, y)|2 (3.21)

that must be minimised and is subject to the constraint

‖g −Hf‖2 = ‖n‖2 (3.22)

where n is the vector representation of the noise in the image.
The Laplacian operator can be written as a matrix,

L =

 0 −1 0
−1 4 −1
0 −1 0

 (3.23)

and the Fourier transform of f̂ , which the estimate of f , is given by [7]

F f̂ =
H

|H|2 + γ|Fp|2Fg (3.24)

where p is an N×M matrix that is 0 everywhere except in the central region
in which L has been embedded [3]. Furthermore, γ is a parameter that must
be adjusted to satisfy the constraint (3.22) and may be computed iteratively.

Please note that (3.20) and (3.24) both reduce to inverse filtering when
the constant (namely, q or γ) is set to 0.
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3.4.4 Blind Deconvolution

Sometimes the PSF is not known or cannot be estimated. For example,
we might have only partial or no information about the imaging system, or
the sample might have accidentally moved during its acquisition. Therefore,
algorithms that assume complete knowledge of the impulse response of the
system cannot be employed to retrieve the true signal.

However, all is not lost. Let us assume that the blur is space-invariant. In
fact, there are some strategies that aim to find a pair of functions I and h that
satisfies either Equation (3.4) or (3.5). Those are grouped under the label
blind deconvolution or blind image restoration. When partial information
of the PSF is available and incorporated into the restoration algorithm, we
sometimes talk about semi-blind deconvolution.

The main requirement on I and h for a successful blind deconvolution
is that both the input and the PSF must be irreducible. To justify this
limitation, let us consider a set of functions f1, f2, ..., fN with N ∈ N and
N > 1. Now, if I (or alternately h) can be expressed as f1 ∗ f2 ∗ ... ∗ fN , then
the blind deconvolution algorithm cannot retrieve I and h unambiguously
as any combination is a valid solution. This is straightforward from the
associativity of the convolution,

(f1 ∗ ... ∗ fN) ∗ h = f1 ∗ (f2 ∗ ... ∗ fN ∗ h)

= (f1 ∗ ... ∗ fn) ∗ (fn+1 ∗ ... ∗ fN ∗ h)

for any n ∈ N such that 1 < n < N .
However, even under the assumption of irreducibility of I and h, blind

deconvolution is not without limitation. In fact, it is an ill-posed problem,
as a small perturbation in the measured data may drastically change the
result, and the solution might not be unique. Furthermore, even in this
case noise prevents exact image restoration because—at best—only statistical
information about noise is known.

The expected output of blind deconvolution is a shifted and scaled version
of the true image,

Î(x, y) = qI(x− a, y − b) , q, a, b ∈ R (3.25)

where the three constants may be retrieved by employing additional con-
straints [8]. For example, it is not uncommon to introduce further limitations
on the image and the PSF such as non-negativity or to restrict the restora-
tion algorithm to certain regions by introducing the supports of the image
and the PSF.

While there are many approaches to this problem, as shown in Kundur’s
review [8], we will focus on two iterative algorithms to provide a better insight
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on the method. While both will use an alternating minimisation technique,
one will attempt to minimise a global cost function, while the other comes
from a modification of Richardson-Lucy’s deconvolution.

Deconvolution via Simulated Annealing

Simulated Annealing (SA) [9] is an optimisation techniques that originates
from statistical mechanics considerations and aims to minimise a cost func-
tion. Its strength relies in its ability to escape local minima by jumping to a
state with higher cost depending on pseudo-random processes as the system
is cooled.

Let k be a positive integer representing the iteration, xk−1,xk ∈ RM

(with M ∈ N) be the state of the system at the previous and at the cur-
rent iterations respectively. Let J : RM → R be the chosen cost function,
T0 be the initial temperature and f(T ) a cooling schedule such that f(T )
is a monotonically decreasing function. The temperature must always be
positive.

Let d be a positive small real number that will be used to stochastically
update the state.

Now, we have to define two integers, Nc and Ns, which represent the num-
ber of cycles and the number of scans, respectively. The former represents
the number of times the temperature of the system has to be updated, and
the latter defines the number of scans at constant temperature.

Then, the algorithm can be summarised into few steps:

Step 1: the initial state x0 is loaded from an available guess or generated ran-
domly. Set nc = 0, ns = 0 and tc = T0;

Step 2: increase nc by 1 and update tc according to f(tc−1);

Step 3: increase ns by 1;

Step 4: generate M pseudo-random number uniformly distributed in [−d, d]
and store them in n ∈ RM . Define xk = xk−1 + n;

Step 5: define the variation of cost ∆J := J(xk) − J(xk−1). If ∆J ≤ 0 (i.e.
if the current cost is smaller than that of the previous state) accept
the new state. Otherwise, generate a pseudo-random number r from

a uniform distribution in [0, 1]. If r ≤ e−
∆J
tc accept the new state;

otherwise, reject it and set xk = xk−1.

Step 6: if ns < Ns, jump to Step 3. Otherwise, go to the next step;
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Step 7: if nc < Nc, set ns = 0 and jump to Step 2. Otherwise, stop.

As it can clearly be seen from Step 5 of the algorithm, the probability of
jumping to a state with higher cost depends on the temperature of the current
cycle. Therefore, early cycles will have a higher chance to make this jump.
Furthermore, this probability is intimately linked to the initial temperature
T0. In fact, we can see that the probability of the jump tends to 1 (certain
event) if T0 tends to infinity, which implies that the initial parameter must
be calibrated.

SA is guaranteed to converge provided that the temperature does not
decrease any faster than [10]

Tk =
T0

ln(k + 1)
, k = 1, 2, ... (3.26)

which, unfortunately, might be quite slow.
To overcome this drawback, it is not uncommon to prefer a faster schedule

like
Tk = αTk−1 , k = 1, 2, ... (3.27)

which, however, may lead to a local minimum and thus fail to reach an
optimal solution.

In 1990, McCallum [11] applied SA to blind image deconvolution with
a few variations. He limited the variation of the state to the pixels within
the supports for the estimate of the true image f̂ and the PSF ĥ in order to
reduce the number of variables that has to be optimised.

Furthermore, McCallum adopted an alternating minimisation strategy by
updating first f̂ and then ĥ at each scan. The constraints on f̂ and ĥ were
incorporated in the algorithm just before the evaluation of the cost, thus
making this method very flexible.

However, the choice of T0 and d is not straightforward and wrong values
may lead to local minima or require a larger number of iterations to converge
to the optimal solution.

The computational time for the algorithm is very high, which makes it
impractical for images of average size [8].

(Semi-)Blind Richardson-Lucy Deconvolution

McCallum’s SA blind deconvolution provides an example of iterative algo-
rithm that requires the definition of a cost function. However, there are other
options that lift this requirement.

Fish et al. [12] introduced a blind image restoration algorithm based on
Richardson-Lucy’s deconvolution. Even in this case, the estimate of the PSF
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and the true image are updated alternately. However, differently from other
cases, each update may take several iterations.

Let K be the number of iterations of the algorithm, and let J be the
number of iterations for a single update.

Let g be the degraded image. Let f̂ and ĥ be the estimate of the true
image and the PSF, and let f̂0 and ĥ0 be the initial guesses. These could
either be uniform images or images obtained from partial knowledge of the
true image and PSF.

Since at each iteration the algorithm must produce an estimate in an
iterative fashion, when this is the case, we will write the second index after a
semicolon. Furthermore, we will consider f̂k;0 = f̂k−1;J , which implies f̂1;0 =

f̂0. Now we can define the estimates at the k-th iteration with k = 1, 2, ..., K.
Then, for j = 0, 2, ..., J − 1, we first produce an estimate of the PSF at

the k-th iteration,

ĥk;j+1(x, y) =

((
g(x, y)

ĥk,j(x, y) ∗ f̂k−1(x, y)

)
∗ f̂k−1(−x,−y)

)
ĥk;j(x, y) (3.28)

Now, we drop the second index on ĥk,J(x, y) and write ĥk(x, y). For
j = 0, 2, ..., J − 1, we produce an estimate for the true image at the k-th
iteration,

f̂k;j+1(x, y) =

((
g(x, y)

f̂k;j(x, y) ∗ ĥk(x, y)

)
∗ ĥk(−x,−y)

)
f̂k;j(x, y) (3.29)

Equations (3.28) and (3.29) lead to a few interesting considerations.
First, the structure of both equations is exactly the one from Richardson-

Lucy’s deconvolution, and therefore all the remarks done previously on Richardson-
Lucy’s algorithm are still valid. Secondly, the first equation is an attempt
to deconvolve the PSF from an estimate of the true image, while the sec-
ond equation, like Richardson-Lucy’s deconvolution, aims to restore the true
image with the estimate of the PSF.

3.4.5 Space-Variant Deconvolution

Sometimes, the blur is not constant over the image and varies with the pixel
location instead, which renders Equation (3.4) invalid. In these cases, we
say that the PSF is space-variant, and we describe the system with the
superposition integral in Equation (3.3). For this reason, usual deconvolution
methods cannot be applied directly. However, it is still possible to retrieve
an estimate of the true image.
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Nagy and O’Leary’s Space-Variant Deconvolution

Nagy and O’Leary [13] proposed a solution to this problem. They assumed
that an image that was degraded by space-variant blur could be split into p
subregions and that the PSF of each region was roughly space-invariant and
could be measured. In this case, the system can be represented and restored
with a series of Fourier transform.

Let H be a matrix that represents the impulse response of the system, f
the vector representation of the true image and g the degraded image, which
is measured. Let the matrix representation of g and f be two N×M matrices
with N,M ∈ N. Then, exploiting the matrix-vector notation in Equation
(3.6) for the linear systems like (3.3), Nagy and O’Leary’s assumption on H
can be easily rewritten as

H =

p∑
k=1

DkHk (3.30)

where each Hk is either a doubly block-Toeplitz or doubly block-circulant
matrix and each Dk is a diagonal matrix with non-negative diagonal entries
such that

∑p
k=1 Dk = I where I is the identity matrix.

Equation (3.6) now becomes

g =

p∑
k=1

DkHkf (3.31)

which can be rewritten as a weighted sum of p two dimensional convolutions
by exploiting the associativity of matrix multiplication.

From Equation (3.31), it can be see that the k-th convolution Hkf is
masked with a diagonal matrix Dk. Indeed, each element on the diagonal
of Dk represents a pixel in the image. If that element is 0, then the k-th
convolution will not affect it. The constraint on the non-negativity of the
coefficients in Dk and the sum to the identity can also be interpreted as a
linear interpolation of the convolutions, which may improve the results on
the outer borders of each region.

It can be verified that each Dk can be represented either as a vector
like f by considering only the elements on the diagonal or as an image by
rearranging the elements on the diagonal into an N×M matrix. For the sake
of simplicity, let dk be the vector generated by collecting the elements on the
diagonal of Dk, and let gk = Hkf . Then, the matrix-vector multiplication
of Dk with Hkf can be easily computed with an element-wise (Hadamard)
product of Dk with gk, which is commonly denoted with dk�gk. Alternately,
if gk(x, y) is the image whose vector representation is gk and dk(x, y) is image
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that generates dk, then

dk � gk = dk(x, y)gk(x, y)

Now, using f(x, y) and hk(x, y) for the image and the PSF respectively, we
can rewrite the k-th element of the sum in the right-hand side of Equation
(3.31) as

DkHkf = dk(x, y) (f ∗ hk) (x, y) (3.32)

The computation of (3.31) can be easily parallelised, as each DkHkf does
not depend on any of the other contribution in the summation. Further
optimisation is provided by Nagy and O’Leary in [13].

Now, since we have a way to represent the system either via linear algebra
manipulation, we can write an estimate of the true image via an optimisation
routine like the conjugate gradient method. Furthermore, since we have a
direct relation between the matrix-vector multiplications and the convolution
via Fourier transform, initial optimisation is straightforward.

Lauer’s Space-Variant Deconvolution

Another option for space-variant image restoration is provided by Lauer [14].
Equation (3.3) is rewritten as

g(x, y) =

∫ ∫
R2

f(ξ, η)h(x, y, x− ξ, y − η)dξdη

where g, f and h are the degraded image, the input and the space-variant
PSF, respectively. The PSF is rewritten as

h(x, y, ξ, η) =
+∞∑
i=1

ai(ξ, η)hi(x, y) (3.33)

where the {hi} are orthogonal PSF components and each ai describes the
variation of the i-th component of the PSF in the image.

Now, the superposition integral can be rewritten as

g(x, y) =
+∞∑
i=1

(∫ ∫
R2

f(ξ, η)ai(ξ, η)hi(x− ξ, y − η)dξdη

)
(3.34)

which implies that each element in the outer summation is generated by
a space-invariant imaging system with PSF hi. Here f(ξ, η)ai(ξ, η) can be
interpreted as the input image for the i-th contribution to the summation in
(3.34), which implies that the true image f(ξ, η) is either weighted or masked
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by ai(ξ, η) at each location. Furthermore, from Equation (3.34), we see that
each PSF hi is now space-invariant.

To compute each hi, we use the Karhunen-Loève decomposition (or, some-
times, transform), which is based on the covariance matrix of p PSF obser-
vations that are distributed over the image. Let h̃i be the i-th observation
of the PSF such that each h̃i is normalised to a common value, it is centred
and all the h̃i have the same shape, i.e. they are all N ×M matrices with
N,M ∈ N. Let h̃i be the vector representation of h̃i.

Let C be the p×p covariance matrix generated from the PSF observations.
Please note that the covariance matrix is Hermitian and thus is diagonalisable
and has real eigenvalues. If the PSFs are real, then the covariance matrix is
symmetric.

Let λi and xi be the eigenvalues and eigenvectors of C. Then, we define
the eigen-PSF—or the basis functions for the PSF—as

hi =

p∑
j=1

xi,jh̃j (3.35)

where xi,j is the j-th element of the i-th eigenvector.
Please note that sometimes the PSF may be described by p̃ < p eigen-

PSFs, which can significantly increase performance especially when p̃ � p.
The choice of p̃ can be done by sorting the eigenvalues λi and assessing their
magnitude.

Choices for the model of ai(ξ, η) are driven by the context [14]. Re-
normalisation of the PSF is also possible.

Each of the p̃ deconvolutions in Equation (3.34) may be performed via
Richardson-Lucy’s deconvolution as suggested by Lauer [14].
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Chapter 4

Computed Tomography

Computed Tomography (CT) is an inverse problem that aims to reconstruct
an object from a set of its projections. While it is possible to develop a
solution for thee-dimensional objects, we will work in two dimensions for the
sake of simplicity. Furthermore, the idea behind it will be explained using a
non-diffracting incident parallel beam.

Let f(x, y) be a function that describes a sample, and let Pθ(t) be the
projection of that sample along one direction. Here the subscript θ repre-
sents the angle at which the projection has been acquired, which is the angle
between the detector line and the coordinate system of the object. Since
f(x, y) is two-dimensional, then its projection is one-dimensional. The rela-
tion between f(x, y) and Pθ(t) is given by [15]

Pθ(t) =

∫
(t,θ)line

f(x, y)ds

=

∫ +∞

−∞

(∫ +∞

−∞
f(x, y)δ(x cos θ + y sin θ − t)dx

)
dy

(4.1)

where the first equivalence implies that the projection of an object is the path
integral through the object and the coordinates (x, y) and (t, s) are related
by the rotation matrix in two dimensions,[

t
s

]
=

[
cos θ sin θ
− sin θ cos θ

] [
x
y

]
(4.2)

where θ is the angle of rotation. The projections can be generated by rotating
either the imaging system (as it is done in medical imaging) or the object.
For a visual representation please see Fig. 4.1.

For X-ray computed tomography, Pθ(t) is related to the attenuation of the
incident beam within a sample, and f(x, y) represents the mass attenuation
coefficient.
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Fig. 4.1: Coordinate system and formation of the projection.

If the refractive index is the quantity of interest (namely, f(x, y)), then
the projection is the phase accumulated as the light beam travels through
the sample, and the refractive index can be calculated from the projected
phase.

The set of projections Pθ(t) is the sinogram of the object. When we have
a finite number of projections, the sinogram can be represented by a matrix
whose rows represent the projections of the object at different angles. Please
note that if the detector is two-dimensional (e.g. an M ×N matrix), each of
its rows represents the projection of a different slice.

Let S be the number of projections. Stacking all the images into a three-
dimensional S×M×N array, we can see that each sinogram can be obtained
by reslicing the dataset. Let A(i, j, k) be the three-dimensional array, where
i represents the projection number, j the row and k the column of the image.
Then, the sinogram for the j-th row is obtained by taking all the elements
with fixed j in the array.

Radon Transform of a Circle

The projection of a uniform circle is offered as an example in order to offer
some insight on the calculation of the path integral through an object. A
uniform circle of radius r is defined by a function f : R2 → R such that

f(x, y) =

{
µ if

√
x2 + y2 ≤ r

0 otherwise
(4.3)
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or alternatively by f : Ω → R such that ∀(x, y) ∈ Ω f(x, y) = µ. In this
case, the domain of f (namely, Ω) is {(x, y) ∈ R2 | x2 + y2 ≤ r2}.

Please note that Equation (4.3) is circularly symmetric because Equation
(2.25) holds. Furthermore, the radius is constant during any rotation. From
this considerations, we can say that the projection of a circle centred in the
origin is the same for all angles of rotation. Therefore, we can take θ = 0,
which implies (t, s) = (x, y) and ds = dy to simplify the calculation.

Since the f(x, y) is 0 outside of the circle, in those regions its projection
will be 0, and the projection for the position x must be calculated in the
range from −r to r. By inverting

√
x2 + y2 = r, the integration over y is

restricted to the interval [−
√
r2 − x2,

√
r2 − x2], and we have

Pθ(t) = P0(x) =

{
µ
∫ √r2−x2

−
√
r2−x2 dy if − r ≤ x ≤ r

0 otherwise

=

{
2µ
√
r2 − x2 if − r ≤ x ≤ r

0 otherwise

(4.4)

4.1 Filtered Back Projection

Fig. 4.2: Fourier’s slice theorem links the two dimensional Fourier transform of
the object to the one-dimensional Fourier transform of the sample.

In theory, if an infinite number of positions and projections are available,
the inverse Radon transform yields the object itself. However, this is not
feasible in practice. Filtered Back Projection (FBP) is an algorithm that
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aims to reconstruct the object given a set of S projections, each with N
pixels and each generated by an incident parallel beam.

The groundwork behind FBP is Fourier’s slice theorem, which states that
the one-dimensional Fourier transform of the projection of a sample at the
angle θ yields the values of a line subtending the angle θ with the u-axis in
the two-dimensional Fourier transform Ff(u, v) of the object [15]. A visual
explanation of the theorem is shown in Fig. 4.2.

Fig. 4.3: The arcs between two samples became larger as the distance from the
centre increases. In the Fourier domain, this means that the high frequencies are
under-sampled. Reconstruction without filtering yield severe blurring, hence the
name Filtered Back Projection.

However, it is still not enough to obtain a good estimate of the object.
Indeed, if we simply collected all the lines and put them together in the
Fourier domain, we would have a situation similar to Fig. 4.3. This means
that the dimension of the arc that must be interpolated in the frequency
domain increases with the radius r. This dependence is linear. Indeed, for a
fixed angular step ∆θ, the length a of an arc of a circle of radius r is given
by

a = ∆θr (4.5)

The introduction of a filter helps to fix this problem. This operation
can be seen as weighting the frequencies, which helps reduce errors [15].
Traditionally, the kernel used to filter the projections, is the Ram-Lak filter,
which is best known as ramp filter due to its shape in the Fourier domain,

k(ω) =

{
|ω| if |ω| ≤ 1

2τ

0 otherwise
(4.6)
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where ω is the frequency and τ is the sampling interval—namely, the one-
dimensional pixel size.

Such a kernel tends to favour the high frequency components of the
Fourier transform of the object and to diminish the importance of the low
frequencies. This improves the edges as they are related to the high frequency
content of the Fourier transform. However, this part of the spectrum is often
associated with noise as well. Therefore, the application of the ramp filter
may worsen the quality of noisy images. To fix this, there are two strategies:
the filtered Fourier transform could be smoothed with a windowing function
(e.g. the Hamming window) or the projection may be filtered with a softer
kernel, which initially behaves roughly like a ramp, reaches a peak for a cer-
tain frequency and slowly decreases to diminish the importance of the higher
frequencies or to cut them off. Please note, however, that the employment of
either solutions smooths the image and thus introduces additional blurring
which worsens spatial resolution.

The reconstruction of the object from its projections can be performed
either in the spatial or in the frequency domain, however it is more accurate
to interpolate in the former [15]. Interpolation is usually necessary since
it is likely that the projection of the point through (4.2) does not lie to
a measured sample on the detector line. However, linear interpolation is
usually sufficient.

Let k be the chosen kernel (e.g. the ramp filter) and w the smoothing
window. For any projection Pθ(t) acquired at an angle θ, we define the
filtered projection Qθ(t) as

Qθ(t) = F−1{F{Pθ}F{k}w}(t) (4.7)

Please remember that w is optional and leaving it out is equivalent to defining
w(ω) = 1 for all the frequencies.

Equation (4.7) can be further simplified to Qθ(t) = (Pθ ∗ k̃)(t) if we define
the kernel as k̃ = F−1{F{k}w}.

Given the filtered projection Qθ(t), the object f(x, y) is defined as

f(x, y) =

∫ π

0

Qθ (t(θ)) dθ

=

∫ π

0

Qθ(x cos θ + y sin θ)dθ

(4.8)

where Equation (4.2) has been used. The integration is carried out only
from 0 to π because the projections generated from π to 2π do not yield
new information, as they can be obtained by mirroring the projections with
respect to the centre of rotation.
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The discrete version of Equation (4.8) is

f(x, y) =
π

S

S−1∑
i=0

Qθi(x cos θi + y sin θi) (4.9)

where S is the number of projections, the origin of the coordinate system is
at the centre of the slice (centre of the reconstruction), and x and y are the
sampled coordinates such that for any m,n = 0, 1, ..., N − 1 we have

x = m− c y = c− n

Here (c, c) is the centre of the slice. Please note that the x and y coordinates
of the centre are identical because the reconstructed slice is a square of side
N . Furthermore, if we have a constant angular step, then we can rewrite
the i-th angle of acquisition as θi = i∆θ = iφ

S
where φ is the whole angular

interval. For example, if we acquire 1800 projection in the range form 0 to
π, then ∆θ = 0.1◦ (≈ 1.745 · 10−3 rad).

Thus, the FBP algorithm for the spatial domain can be summarised into
the following steps

Step 1: filter all the projections with a kernel k and apply the smoothing win-
dow if needed;

Step 2: for each pixel, sum the projections over all angles according to Equation
(4.9). This step usually requires interpolation. Please note that the
multiplication by the constant normalisation factor can be done after
the summation step as it is suggested by Equation (4.9).

The algorithm can be easily implemented using parallel computing be-
cause all the projections in the sinogram can be filtered independently and
all the pixels of the reconstructed slice can be computed in parallel.

Furthermore, we define the circle of reconstruction as that circle for which
we have

√
x2 + y2 ≤ τ N

2
provided that the origin is at the centre of the

reconstructed slice and that τ is the pixel size in the detector line. Values
outside of the circle of reconstruction will be missing in some projection and,
hence, cannot be accurately reconstructed. Therefore, they are often ignored
during FBP, which speeds up the computation.

4.1.1 Practical Considerations for a CT System

From Equations (4.2) and (4.9), we see that the object rotates about an
axis or that, alternately, the system rotates about the object. However, it
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must be stressed that the axis of rotation must be orthogonal to the incident
parallel beam. If either were tilted, then the projections on the detector row
would not represent a single slice and points from the object would move
onto different lines, as shown in Fig. 4.4. In other words, we can say that
the projections at two angles of acquisition are generated from two different
objects when the rotation axis is tilted. Therefore, alignment of the system
is of the utmost importance.

Fig. 4.4: When the rotation axis is tilted with respect to incident parallel beam,
the projections of the object at two different angles does not come from the same
slice.

On the other hand, it is not required that the centre of rotation lies at the
centre of the detector width as it can be retrieved via human inspection or
algorithms [16,17]. This displacement can be removed by adding or removing
enough columns in the sinogram, thus changing the number of samples along
the detector line. It is also possible to introduce the displacement in the
reconstruction algorithm following a similar approach to the one used for fan
beam FBP by Gullberg et al. in [18].

Fig. 4.5: Ideal circle from Equation (4.3). Here, r = 64, µ = 4. The image is a
square of side N = 512.
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Ideally, the higher the number of projections the better the reconstructed
slice is. However, this is often impractical due to the large dimension of the
datasets, the difficulty to acquire images at different angles or the rotation
stage limits. A good rule of thumb is that the number of projections and the
samples on the detector line should be of the same order of magnitude.

As an example, we offer the reconstruction of a uniform, noise-free circle
from Equation (4.3), which is show in Fig. 4.5. The number of pixels on the
detector row was set to 512, and the projection were generated by stacking
(4.4) into a sinogram. Please note that this is possible because the projection
for a circle centred in the centre of reconstruction is the same for all angles
and therefore we only need to compute it once.

The circle was reconstructed with 3, 9, 18, 30, 90 and 180 projections,
and the results are shown in Fig. 4.6.

(a) 3 projections. (b) 9 projections. (c) 18 projections.

(d) 30 projections. (e) 90 projections. (f) 180 projections.

Fig. 4.6: Reconstruction of a circle with different number of projections.

Please note that if the number of projections is too low the circle cannot
be properly reconstructed. While the object can be guessed from as low as
9 views, the edges are still approximated and the radial lines in the back-
ground pattern are still evident. Increasing the number of projections greatly
improves the situation and reduces this undesired artefacts.
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4.2 Diffraction Tomography

The basis for diffraction tomography is Fourier’s diffraction theorem. Like
Fourier’s slice theorem, it links the Fourier transform of a projection to the
Fourier transform of the object itself. However, in this case the Fourier trans-
form of the projection acquired by illuminating a weakly diffracting object
with an incident plane wave at an angle θ is a semicircular arc that passes
through the origin in the Fourier domain and has the line which subtends
θ with the u-axis as a tangent [19]. Please note that it is recommended to
acquire the projections from all angles and not limit the acquisition to the
half-plane (i.e. acquiring only from the angle interval [0, π]).

Fig. 4.7: Fourier’s diffraction theorem.

One approach for the reconstruction of the object from the diffracted
waves is the interpolation in the Fourier domain. However, first the Fourier
transform of the projection must be weighted by applying either the first Born
approximation or the first Rytov approximation. Then, the coordinates of
the point on the arc are retrieved, and all the point on the two-dimensional
grid in the Fourier domain are computed via interpolation. Indeed, usually
the samples on the arc might not lie exactly at the position at which the grid
is sampled. Furthermore, interpolation must be used to retrieve the missing
frequencies on the grid. The object is found by taking the two-dimensional
inverse Fourier transform [19,20].

43



44



Chapter 5

Light Waves

In physics, light can be described either with massless particles called photons
or with wave theory, depending on the application. The former model is
often used for the modelling of X-rays and γ-rays, while the latter can be
employed to describe the behaviour of visible light. For this reason, the
electromagnetic (EM) waves in the visible spectrum are also sometimes called
light waves. Furthermore, in this case it is common to consider only the
electric component in the treatment.

A wave is a solution to the partial differential equation

∇2ψ − 1

v2

∂2ψ

∂t2
= 0 (5.1)

where ψ is the wave, v is its speed, and ∇2 is the Laplacian, which is defined
as

∆ = ∇2 =
N∑
i=1

∂2

∂x2
i

(5.2)

for a function with N independent variables. For the wave equation, the
Laplacian is used on the spatial coordinates.

Using Maxwell’s equations for the EM field in the vacuum, we can find a
similar expression for the electric field,

∇2E− 1

c2

∂2E

∂t2
= 0 (5.3)

where E is a three-dimensional vector representing the electric field and c =
1√
ε0µ0

is the speed of light in the vacuum. The constants ε0 and µ0 are

permittivity and permeability of free space.
E vibrates perpendicularly to the direction of propagation. In many

application, however, its vibrations are limited to a single line and always
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in a plane perpendicular to the propagation direction, in which case the EM
wave is said to be linearly polarised and can be treated with a scalar wave
equation,

∇2E − 1

c2

∂2E

∂t2
= 0 (5.4)

It can be verified that the plane wave

E(r; t) = E0e
i(k·r−ωt+φ0) (5.5)

is a solution to the wave equation in (5.4). In Equation (5.5), E0 ∈ R is the
amplitude of the wave, and the argument of the exponential is called phase.
Please note, however, that, for certain processes, the phase will be defined
by

φ = k · r + φ0 (5.6)

The vector quantity r = (x, y, z) ∈ R3 is the set of coordinates, φ0 is
the initial phase (or phase constant), ω is the angular frequency, and k =
(kx, ky, kz) is the wave vector, whose modulus is the wave number k

|k| = k =
2π

λ
(5.7)

where λ is the wavelength.
Furthermore, ω is related to the frequency ν of the light wave by

ω = 2πν (5.8)

For any EM wave in free space, we have

λν = c (5.9)

which means that we can determine the wavelength if the frequency is known,
and vice versa.

Alternately, we can use the opposite sign convention and write the plane
wave as

E(r; t) = E0e
i(−k·r+ωt−φ0) (5.10)

and change the sign to the phase definition in Equation (5.6). This is the
convention used by Schnars in [21]. In general, all the results and consider-
ations made for one sign convention can be adapted to the other with little
difficulty.

Many books of Fourier optics and holography [2,22,23] use the convention
in (5.5).
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Please note that it is usually possible to change the coordinate system in
order to have the direction of propagation parallel to the z-axis and write
E(z; t) = E0e

i(kz−ωt+φ0).
Since detectors usually measure the intensity, we introduce the intensity

for any EM wave as

I = |E|2 = EE (5.11)

5.1 Electromagnetic Spectrum

It is easy to see that there are an infinite number of pairs λ, ν for which
Equation (5.9) holds. The term electromagnetic spectrum is used to describe
the range of frequencies and wavelengths covered by EM radiation and to
compartmentalise it according to properties, use or method of production.
An example is shown in Fig. 5.1.

Fig. 5.1: Electromagnetic spectrum.

In particular, we distinguish

• radio waves—which are most notably used in radios and televisions;

• microwaves—which are employed in microwave ovens, Wi-Fi and radars;

• infrared (IR)—which is just below the visible light and is employed in
night and thermal vision;

• visible light—which comprises EM waves with wavelength between
about 700 nm (red) and about 400 nm (violet). It is the only range of
the EM spectrum that is visible to the human eye. EM waves in this
range are called light waves;
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• ultraviolet (UV)—which is responsible for sunburn. It is also the first
region of the EM spectrum for which we have ionising radiation, which
is harmful to humans. Indeed radiation becomes harmful when the
energy of the photons is greater than 10 eV. Please note that photon
energy is defined as J = hν, where h = 6.626 · 10−34 m2kgs−1 is the
Planck constant;

• X-rays—X-rays have great penetrating power that makes them useful
for diagnostic, non-invasive medical imaging (e.g. radiography and CT)
and therapy but are a type of ionising radiation and thus harmful to
biological tissues. They are generated from the interaction of electron
or photons with atoms;

• γ-rays—γ-rays are also used in medical imaging (e.g. SPECT and
PET). The X- and γ-ray energy ranges partially overlap, and the only
difference between these two types of radiation lies in their origin. In-
deed, γ-rays are generated by radioactive decay: the nucleus release a
γ photon to de-excite.

5.2 Interference

Let us consider a set of N waves, where N is a positive integer such that
N ≥ 2. Let Ej(r; t) be the solution to the wave equation (5.3) for the j-th
wave in the set. The spatial superposition

E(r; t) =
N∑
j=1

Ej(r; t) (5.12)

is called interference and is a solution to the wave equation itself since a
linear combination of solutions to (5.3) is also a solution.

For the sake of simplicity, let E1 and E2 be two monochromatic waves
that are solutions to Equation (5.4). Let En = ane

iφn with an, φn ∈ R,
n = 1, 2. We can compute the resulting complex amplitude and intensity
with Equations (5.12) and (5.11) respectively,

I = (E1 + E2)(E1 + E2)

= a2
1 + a2

2 + a1a2

(
ei(φ1−φ2) + e−i(φ1−φ2)

)
= a2

1 + a2
2 + 2a1a2 cos (φ1 − φ2)

(5.13)

where the second equivalence is obtained through straightforward algebraic
manipulations and the last holds because the cosine is even and the sine is
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odd. Indeed, from Euler’s formula, we have

eiφ + e−iφ = cosφ+ i sinφ+ cos(−φ) + i sin(−φ)

= cosφ+ i sinφ+ cosφ− i sinφ

= 2 cosφ

(5.14)

Since the cosine oscillates between −1 and 1 with a period of 2π, and since
cos 0 = 1 and cosπ = −1, we see that we have a maximum if ∆φ = φ1−φ2 is
an even integer multiple of π and a minimum if it is an odd integer multiple
of π.

When the intensity I reaches a maximum, we will say that we have a
constructive interference and that the condition for this case is

∆φ = 2mπ m ∈ Z (5.15)

On the other hand, when I reaches a minimum, we will say that we have
a destructive interference, which happens when

∆φ = (2m+ 1)π m ∈ Z (5.16)

On a detector, constructive and destructive interference appears as a
series of bright and dark lines—or fringes—respectively and forms the inter-
ference pattern [21].

Please note that if a1 = a2, then the minimum intensity will be 0 and the
maximum intensity will be 4a2

1.

5.3 Spatial and Temporal Coherence

Real sources are, in general, extended and not monochromatic, which poses
limitations on any experiment based on interference. The extension of a
source is related to the spatial coherence of a wave, while the existence of
non-monochromatic waves is related to its temporal coherence.

5.3.1 Spatial Coherence

Spatial coherence is the degree of correlation between two spatially distinct
points of the same wave field. It also describes the ability of a wave to
interfere.

Let us consider the system in Fig. 5.2, which describes Young’s interfer-
ence experiment with two slits a1 and a2 on and an extended source S of size
h. Please note that the source need not be placed on axis, but this placement
simplifies the explanation and does not incur in loss of generality.
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Fig. 5.2: Set-up for Young’s experiment with an extended source S.

An extended source can be considered as a superposition of point sources
located at different positions within S. From the figure, it is clear that r1 6= r2

unless we consider an on-axis point source, which implies that the phases φ1

and φ2—respectively at the location a1 and a2—will generally be different.
The interaction of the wave generated by the source S with the slits a1 and a2

will generate two spherical waves, which will interfere on the screen, creating
a fringe pattern. The fringe visiblity, which describes the degree of spatial
coherence between the sources located at a1 and a2, is defined as [24]

γ =
Imax − Imin
Imax + Imin

(5.17)

where Imax and Imin are, respectively, the maximum and minimum intensities
detected on the screen. Please note that here γ is exactly the Michelson
contrast and is defined in the interval [0, 1]. If γ = 0, all the contrast on the
screen is lost, which, in this case, means that no fringe is visible. If γ = 1,
then the minimum intensity is 0 and Imin 6= Imax.

To improve the description, let us first consider an extended source that
lies entirely on the optical axis (i.e. a segment). In this case, φ1 and φ2 are
the same for all the points in the source. This means that extending the
source along the axis does not change the phase relation between a1 and a2.

On the other hand, we exploit the geometry of the system to describe the
phase difference between two points on an extended source perpendicular
to the optical axis. If d is small, we can describe the path difference as
r2 − r1 ≈ d sin θ, where θ is the angle shown in Fig. 5.3. Here, we can put
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Fig. 5.3: Geometry of the system in Fig. 5.2.

the centre of the source on the optical axis. Furthermore, since L is usually
large, we can write sin θ ≈ h

2
1
L

= h
2L

.
Since there is a linear relation of the type φ = kr between the path length

and the phase, we can write

φ2 − φ1 = kd sin θ = k
dh

2L
=
πdh

λL
(5.18)

where the last equivalence holds because k is the wavenumber.
Now, the limiting source size h can be calculated by considering that

the two ends of the segment perpendicular to the optical axis will produce
contributions that cancel out if S is too large, which implies that there is a
certain hlim that describes the limiting size of the source, which is defined by

(φ2 − φ1)u − (φ2 − φ1)d = π

where the subscripts u and d are used for the point-source above and below
the optical axis, respectively [24]. Therefore, we can write hlim as

hlim =
λL

2d
(5.19)

and introduce the coherence distance dk through the relation [21]

dkh

2L
=
λ

2
(5.20)

Therefore, the spatial coherence depends on the wavelength of the impinging
light wave and on the interferometer geometry. In particular, we can say
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that it decreases with the wavelength and that hlim and dk are inversely
proportional. Experiments based on interference should not be attempted
without first ensuring that the system follows the spatial coherence condition
[24]

λL

hd
≤ 2 (5.21)

which can be found by considering that if h is suitable, then h ≤ hlim.

5.3.2 Temporal Coherence

As mentioned above, real sources are not perfectly monochromatic. We define
the temporal coherence as a measure of the correlation between a light wave
and a time-delayed copy of itself. Let us suppose that we have a source
that emits light with wavelength λ ± ∆λ. Let two waves with wavelength
λ and λ + ∆λ interfere constructively. There is a critical length L, called
coherence length, above which this no longer happens. We can now introduce
the coherence time τ [21],

τ =
L

c
(5.22)

which is the time interval in which the wave propagates.

5.4 Diffraction

In optics, when the quantity of interest is the spatial distribution of the wave,
it is generally accepted to drop the temporal component in Equation (5.5)
and write

E(r) = ei(kr+φ0) (5.23)

For this reason, Equation (5.23) will be used hereafter unless otherwise
stated.

Now, let us consider a plane wave impinging on an opaque screen with
one or more holes, like the one in Fig. 5.4, or—vice versa—a transparent
screen with some opaque obstacles.

If the size of the obstacle and the wavelength have the same order of
magnitude, then the interaction between the impinging plane wave and the
obstacle will generate a pattern of alternating dark and bright regions called
diffraction. We will also say that the wave is diffracted by the obstacle.

Diffraction is described by Huygens’ principle, which states that we can
consider every point of a wave front as a source of (secondary) spherical waves
and that we can obtain the wave field through the superposition of all the
secondary spherical waves, as shown in Fig. 5.5.
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Fig. 5.4: A plane wave impinging on an opaque screen with a hole.

Fig. 5.5: Each point of the leftmost wave front can be seen as a source of secondary
spherical waves. Their superposition generates the wave field.

Therefore, each point within the hole in Fig. 5.4 can be seen as a source
of spherical waves.

The mathematical behaviour of diffraction is described by the Fresnel-
Kirchhoff integral,

U1(x, y) = − i
λ

∫ +∞

−∞

∫ +∞

−∞
U(ξ, η)

eikρ
′

ρ′
Q(θ, θ′)dξdη (5.24)

where λ is the wavelength of the impinging light wave, U(ξ, η) is the wave
field at the aperture (or obstacle) plane and k is the wavenumber. To explain
the meaning of Q(θ, θ′) and ρ′, we first have to introduce the geometry of the
system in Fig. 5.6.

The coordinates in the source plane are not important here, so they have
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Fig. 5.6: Geometry of the acquisition system for a diffraction experiment.

been dropped for readability. In Fig. 5.6, S is the source, d is the recording—
or, sometimes, reconstruction—distance, which is the distance between the
aperture and the detector planes. The distance between the hole (or obstacle)
and any point of the detector plane is ρ′ and can be calculated as

ρ′ =
√

(ξ − x)2 + (η − y)2 + d2 (5.25)

The angles θ′ and θ are the angle that the straight lines passing through
SA and AB form with the normal n to the aperture plane. Q(θ, θ′) is the in-
clination factor and is used to exclude propagation in the backward direction
since it does not happen experimentally [21]. This factor is written as

Q(θ, θ′) =
1

2
(cos θ + cos θ′) (5.26)

Please note that in most practical cases θ, θ′ ≈ 0, and therefore Q(θ, θ′) ≈
1.

There are other expression for scalar diffraction, for example the two
Rayleigh-Sommerfeld diffraction solutions [2],

U1(x, y) = − i
λ

∫ +∞

−∞

∫ +∞

−∞
U(ξ, η)

eikρ
′

ρ′
cos θdξdη (5.27a)

U1(x, y) = − i
λ

∫ +∞

−∞

∫ +∞

−∞
U(ξ, η)

eikρ
′

ρ′
dξdη (5.27b)

which are valid for an infinitely distant point source that therefore produces
normally impinging plane waves onto the aperture plane. Please note that
under this hypothesis, the inclination factor (5.26) for the Fresnel-Kirchhoff
integral in Equation (5.24) becomes

Q(θ, θ′) =
1

2
(1 + cos θ) (5.28)

54



In this case, the Fresnel-Kirchhoff integral is an average of the two Rayleigh-
Sommerfeld solution [2].

Please note that different sign conventions leads to slightly different ex-
pressions as in [22] and [21]. In the following section, the expressions for both
sign conventions will be presented.

5.4.1 Numerical Diffraction

Equation (5.24) is hard to evaluate directly even with the aid of a computer.
It is, however, possible, to approximate or rewrite the diffraction equation

in order to exploit existing fast routines for simulation or computation.

The Fresnel Transform

Let us consider the first Rayleigh-Sommerfeld solution in (5.27a). Alter-
nately, we can consider a source for which Q(θ, θ′) ≈ 1 since it is valid in
most practical cases or the second Rayleigh-Sommerfeld solution (5.27b).

First, the cosine in (5.27a) can be rewritten as

cos θ =
d

ρ′
(5.29)

for the geometry in Fig. 5.6.
For the calculation below, we will work under the hypothesis that the

paraxial approximation is valid. The paraxial approximation states that the
maximum angle generated from the hole (or obstacle) and the detector is
small. In other words, (x− ξ) and (y − η) must be small with respect to d.

If x, y, ξ, η � d, Equation (5.25) can be expanded in a Taylor series,

ρ′ ≈ d+
(ξ − x)2 + (η − x)2

2d
+

1

8

((ξ − x)2 + (η − y)2)
2

d3
+ ... (5.30)

and the last explicit term in Equation (5.30) can be neglected provided that
it is much smaller than the wavelength, or

1

8

((ξ − x)2 + (η − y)2)
2

d3
� λ (5.31)

In this case, we can define a distance ρ as

ρ = d+
(ξ − x)2 + (η − y)2

2d
(5.32)

We will also assume that we can approximate the ρ′ in the denominator
with d [2].
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Direct substitution into the diffraction equation leads to

U1(x, y) = − i

λd
eikd

∫ ∫
R2

U(ξ, η)ei
k
2d((ξ−x)2+(η−y)2)dξdη (5.33)

which is a two-dimensional convolution. Further optimisation can be achieved
by explicitly computing the quadratic term,

U1(x, y) = − i

λd
eikdei

k
2d(x2+y2)

×
∫ ∫

R2

U(ξ, η)ei
k
2d(ξ2+η2)e−i

k
d
xξ−i k

d
yηdξdη

(5.34)

Equation (5.34) is called the Fresnel transform due to its relation to the
Fourier transform.

Before delving further into this relation, we first introduce E(ξ, η) =
U(ξ, η) and do the conjugate of U1,

O(x, y) =
i

λd
e−ikde−i

k
2d

(x2+y2)

×
∫ ∫

R2

E(ξ, η)e−i
k
2d(ξ2+η2)ei

k
d

(xξ+yη)dξdη
(5.35)

which is the result in [21].

Temporarily neglecting all the terms outside of the integral in Equation
(5.34), we see that the field U(ξ, η) is first multiplied by a quadratic phase
and then Fourier transformed with the frequencies

u =
x

λd
v =

y

λd
(5.36)

where the identity in Equation (5.7) has been exploited to match the integral
in (5.34) with the 2D Fourier transform in (2.21).

The Fresnel transform can either be computed via a 2D Fourier transform
or its inverse depending on whether we are using the + or − sign convention
for the phase generated from the spatial components.

The detector (or the screen) usually records the intensity of the diffracted
wave, or |U1(x, y)|2. From Equation (5.34), we see that the phase terms
outside of the integral can be dropped and we have

|U1(x, y)|2 =
1

λ2d2

∣∣∣F {U(ξ, η)ei
k
2d

(ξ2+η2)
}∣∣∣2 (5.37)
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Fraunhofer Diffraction

The Fraunhofer diffraction is a further approximation of the Fresnel trans-
form for which the quadratic phase within the integral is very small, namely
[2, 22,23]

d� k (ξ2 + η2)max
2

(5.38)

where the subscript max is here used to indicate the maximum possible value
of ξ2 + η2, which is related to the dimension of the aperture. We will call the
approximation in (5.38) the Fraunhofer approximation.

Please note that the this approximation requires a large recording distance
with respect to the dimension of the aperture and is thus valid only in the
far field.

The diffraction equation becomes

U1(x, y) = − i

λd
eikdei

k
2d

(x2+y2)

∫ ∫
R2

U(ξ, η)e−i(
kx
d
ξ+ ky

d
η)dξdη (5.39)

Following the same considerations previously made for the Fresnel transform,
we can rewrite U1 for the other sign convention as

O(x, y) =
i

λd
e−ikde−i

k
2d

(x2+y2)

∫ ∫
R2

E(ξ, η)ei(
kx
d
ξ+ ky

d
η)dξdη (5.40)

Angular Spectrum Method

From the first Rayleigh-Sommerfeld solution (5.27a) and the expressions for
ρ′ (5.25) and cos θ (5.29), we see that we can rewrite the solution as a con-
volution,

U1(x, y) = F−1 {FUFh} (x, y) (5.41)

where the kernel h is defined as [22,23]

h(ξ, η; d) = −id
λ

eikr

r2
(5.42)

with r =
√
d2 + ξ2 + η2.

Further optimisation is possible because, for any d sufficiently distant
from the aperture, the analytical expression of H(u, v) = Fh(x, y) is known
[22] and is

H(u, v; d) =

{
eikd
√

1−λ2(u2+v2) if
√
u2 + v2 ≤ 1

λ

0 otherwise
(5.43)
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We see that the only requirement introduced here not to filter the Fourier
domain with a low-pass filter is that

√
u2 + v2 ≤ λ−1 where u and v are the

spatial frequencies.
The transfer function in Equation (5.43) is sometimes rewritten as [2]

H(u, v; d) = eikd
√

1−λ2(u2+v2)circ
(
λ
√
u2 + v2

)
(5.44)

where circ(r) is defined as [22]

circ(r) =

{
1 if r ≤ 1

0 otherwise
(5.45)

Therefore, we can write

U1(x, y) = F−1 {F{U}H} (x, y) (5.46)

To obtain the result for the other sign convention (i.e. the one used by
Schnars [21]), we have to change the sign of the phase of U and H.

This numerical diffraction approach is known as angular spectrum method
or, sometimes, convolution approach [21].

5.5 Lenses in Coherent Imaging

We define a lens as a piece of dense material with refractive index (RI) n > n0,
where n0 is the RI of the surrounding medium, which is usually air. Usually,
lenses are made of glass and n ≈ 1.5. In this section, we will assume n0 = 1
as this is valid in most practical cases.

A lens is considered thin if the change of direction introduced by the
passage of light through it is negligible. In this case, it simply produces a
phase delay due to the difference in RI.

As an example, we present a lens in Fig. 5.7. If it is thin, we expect that
the phase delay due to the lens material and thickness will be kn∆(x, y).
However, the lens does not have uniform thickness. We can write the total
phase delay as [2]

φ = kn∆(x, y)− k(∆0 −∆(x, y)) (5.47)

where the last term in right-hand side of the equation is due to the the
propagation in air. Therefore, for an incoming wave U(x, y) we can write

Ũ(x, y) = U(x, y)eik∆0eik(n−1)∆(x,y) (5.48)
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Fig. 5.7: Front (left image) and lateral (right image) view of a lens. Please note the
maximum thickness ∆0 = ∆1 + ∆2 + ∆3 for the whole lens and the lens thickness
∆(x, y).

From Fig. 5.7, it is hinted that we can rewrite the thickness function
∆(x, y) as a sum of three components, d1(x, y), d2(x, y) and d3(x, y). Fol-
lowing the geometry in the figure and assuming that the rays of light travel
from the left to the right, we can define two numbers Rl > 0, Rr < 0 that
will be used to take into account the two arcs of circumference that delimit
the lateral profile of the lens. Please note that |Rl| and |Rr| are the radii for
the leftmost and rightmost arcs, respectively.

First, the thickness function due to the central section of the lens is
constant. Therefore,

d2(x, y) = ∆2 (5.49)

For d1(x, y), we use Rl and write [2]

d1(x, y) = ∆1 −Rl

(
1−

√
1− x2 + y2

R2
l

)
(5.50)

To describe d3(x, y), we simply substitute ∆2 to ∆1 and −Rr to Rl (re-
membering that (−Rr)

2 = R2
r) in Equation (5.50).

Now we can write

∆(x, y) = d1(x, y) + ∆2 + d3(x, y) (5.51)
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The expression for the total phase delay is still too complicated but can
be simplified with the introduction of the paraxial approximation, i.e. con-
sidering only those rays that lie close to the axis of the lens. In this case, x
and y are sufficiently small, and it is possible to expand d1(x, y) and d3(x, y)
into Taylor series to the first order by using

√
1 + a ≈ 1 + a

2
+ ...

Therefore, the thickness function in paraxial approximation becomes [2]

∆(x, y) = ∆0 −
x2 + y2

2

(
1

Rl

− 1

Rr

)
(5.52)

where we have exploited ∆0 = ∆1 + ∆2 + ∆3 from the geometry in Fig. 5.7.
Now, we can compute the total phase delay and drop the constant terms

as they will be unimportant. For an incoming wave U(x, y), we write

Ũ(x, y) = U(x, y)e−i
k
2f

(x2+y2) (5.53)

where f is called focal length and is defined as

1

f
= (n− 1)

(
1

Rl

− 1

Rr

)
(5.54)

In real lenses, or when the paraxial approximation is not valid, the wave
front after the lens will depart from the predicted spherical behaviour. In
that case, we will say that the system has aberrations. In this thesis, we will
only consider ideal lenses and neglect all aberrations.

Real lenses have a finite aperture, which introduces the pupil function,
P (x, y). P (x, y) can be interpreted as a mask to the incoming wave. If the
point is outside the lens pupil, then it is neglected. In practice, we can write

P (x, y) =

{
1 in the aperture

0 otherwise
(5.55)

The pupil is usually either circular or rectangular. In the former case, we
will use the circ function in (5.45) to describe it, while in the latter we will
use two one-dimensional rect functions,

rect(t) =

{
1 if |t| ≤ 1

2

0 otherwise
(5.56)

To take the pupil into account we simply multiply (5.53) by P (x, y), or

Ũ(x, y) = U(x, y)P (x, y)e−i
k
2f

(x2+y2) (5.57)
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5.5.1 Fourier Transforming Properties of a Lens

Depending on whether the incoming planar wave field is transformed into a
converging or diverging spherical wave, lenses are said to be either converging
or diverging.

We will consider a converging lens in a coherent imaging system for this
section. Let U(ξ, η) be the incoming wave field generated by an input placed
at distance d from the lens. The quantity of interest is the wave field at a
distance f behind the lens.

Let us now consider the wave at after the lens. By direct substitution in
the Fresnel transform and some geometrical considerations [2], we have

Uf (x, y) = − i

λf
ei

k
2f (1− d

f )(x2+y2)

×
∫ ∫

R2

U(ξ, η)P (ξ +
d

f
x, η +

d

f
y)e−i

k
2f

(xξ+yη)dξdη

(5.58)

where the quadratic phase terms within the integral cancel out.
The effect introduced by the limited extent of the pupil is known as vi-

gnetting. If we can neglect the pupil function (i.e. if P (ξ, η) = 1 everywhere)
and place the input at d = f , then we see that the output wave field is
proportional to the Fourier transform of U(ξ, η). Indeed, if P (ξ, η) = 1, we
have

Uf (x, y) = − i

λf
ei

k
2f (1− d

f )(x2+y2)

∫ ∫
R2

U(ξ, η)e−i
k
2f

(xξ+yη)dξdη (5.59)

If d = f the quadratic phase in the exponential in front of the integral van-
ishes, leaving only the Fourier transform of U(ξ, η) multiplied by a constant
factor.

Furthermore, if the input is placed at d = f , then the phase term outside
of the integral disappears, which leaves only the Fourier transform multiplied
by the constant term − i

λf
.

5.5.2 Pupil Transfer Function

We now seek an expression for the pupil function in the Fourier domain as
it simplifies computation and offer further insight.

First, we consider the notation in Fig. 5.8.
We can rewrite the imaging system as [2, 22]

Ud(x, y) = (Ug ∗ h) (x, y) (5.60)
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Fig. 5.8: Geometry of the system that we will use. U0 is the wave field at the
object plane, and Ud is the wave field at z2 behind the lens.

where h is the impulse response and Ug is the ideal field magnified according
to geometrical optics,

Ug(x, y) =
1

|M |U0

( x
M
,
y

M

)
(5.61)

Here, M is the magnification. Practically, the magnified field is blurred by
the convolution kernel, which describes the effect of diffraction and the lens.
Furthermore, magnification also changes the perceived sampling interval—
and thus the Nyquist frequency. We have

∆x′ =
∆x

M
∆y′ =

∆y

M
(5.62)

where ∆x and ∆y are the physical sampling intervals along the x and y
directions of the detector.

It is known that the condition for the best focus in presence of a lens is
given by the so called classical lens law, which is

1

z1

+
1

z2

=
1

f
(5.63)

Under this condition, we can write

h(x, y) =

∫ ∫
R2

P (λz2u, λz2v)e−i2π(ux+vy)dudv

= F {P (λz2u, λz2v)} (x, y)

(5.64)

with u and v defined according to (5.36).
Let us denote the Fourier transform of h with H. We will say that H is

the transfer function of the lens. We can compute it explicitly without any
loss of generality. Indeed,

H(u, v) = FF {P (λz2u, λz2v)} (u, v)

= P (−λz2u,−λz2v)
(5.65)
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where the last equivalence follows directly from (2.16). Considering the usual
shapes of the pupil, which are defined by the circ and rect function, we see
that P (u, v) = P (−u,−v).

Then, we can rewrite Equation (5.60) as

Ud(x, y) = F−1{F{Ug}H}(x, y) (5.66)

The lens pupil is essentially a mask that completely cuts all the frequen-
cies above a certain cut-off frequency. Therefore, we can say that the pupil
transfer function H(u, v) is an ideal low-pass filter.

The expression for the cut-off frequency is [22]

f0 =
w

λz2

(5.67)

where w is the radius of the lens aperture—i.e. the radius of the circumference
in the rightmost image in Fig. 5.7.

If the paraxial approximation is valid, we can define the f-number f/#
as

f/# =
z2

2w
(5.68)

and the numerical aperture NA as

NA ≈ 1

2f/#
(5.69)

Thus, for coherent imaging systems, the cut-off frequency can be ex-
pressed without knowing the geometry of the lens aperture,

f0 =
1

2λf/#
≈ NA

λ
(5.70)

For a circular pupil we therefore write [22]

H(u, v) = circ

(√
u2 + v2

f0

)
(5.71)

The resolution of a system with lenses is limited by diffraction. If it is close
to the theoretical limits introduced by the physics behind this phenomenon,
we will say that the system is diffraction limited.
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Practical Considerations for Optical Simulations Based on Lenses

The formulae in (5.66) and (5.67) form the basis for the simulation of an
ideal lens, i.e. a lens whose imaging performance can completely be ascribed
to the shape of its pupil. Such a lens does not produce any aberration.

We must, however, introduce an inherent limitation to the simulation
approach. Let us introduce the sampling intervals ∆x and ∆y and assume
that, for simplicity, ∆x = ∆y.

Real detectors do not measure Ud(x, y) directly but record its intensity.
Now, since I(x, y) = |U(x, y)|2, theoretically the maximum frequency of the
intensity can be at most twice the one found in U(x, y) [22]. This can be
easily seen by considering a cosine wave cos(kx) and exploiting the properties
of the exponential and Euler equation. We have

ei2θ =
(
eiθ
)2

with θ = kx. Now, considering only the real parts, we have

cos(2θ) = 2 cos2 θ − 1

Therefore, to simulate a lens, we require that

2f0 ≤ fN (5.72)

where fN = 1
2∆x

is the Nyquist frequency as defined by (3.12). This condition
ensures that the frequencies in the model will be all contained in a circle of
radius fN in the Fourier domain of the blurred image.

5.5.3 Rayleigh Criterion for Resolution

Under ideal imaging conditions, the intensity of a focused diffracted circular
aperture can be computed analytically as [22]

I(x, y) =

(
w2

λz

)2
J1

(
2π w

λz

√
x2 + y2

)
w
λz

√
x2 + y2

2

(5.73)

This expression is used to generate the Airy disk—or Airy pattern—which
describes the best focus PSF of an optical system. In the expression, z is
the recording distance, w is the aperture radius, λ is the wavelength of the
incident light wave and J1 is the Bessel function of the first kind of order
one.

Equation (5.73) is valid if w2

λz
< 0.1.
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Fig. 5.9: On the left, the Airy pattern with w = 1.375 µm, z = 47.85 µm and
λ = 633 nm. On the right, the line profile of the airy pattern passing through
y = 0 (central row).

Fig. 5.10: Cube root of the intensity in the left image in Fig. 5.9 to enhance the
visualisation of the Airy pattern.

The Airy pattern for w = 1.375 µm, z = 47.85 µm and λ = 633 nm
is shown as an example in Fig. 5.9 and Fig. 5.10, where the grey levels
have been rescaled by applying the cube root to the airy pattern for better
visualisation. The pixel size in the image is ∆x = ∆y = 1.375 µm.

The Rayleigh criterion is defined by the first zero of the Bessel function
J1(a), which is observed when the a = 1.22π. To simplify calculations, we
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can set y = 0 and find the half-diameter δ of the disk

δ = 0.61
λz

w
= 0.61

λ

NA
(5.74)

δ is also the distance for which two diffracted point disturbances are barely
resolved.

5.6 Imaging With Lenses and Defocus

Sometimes, the imaging system in Fig. 5.8 is not perfectly focused. In those
cases, we can introduce a third variable d, which is the lens-detector distance,
and isolate the effect of the lens and defocus into a kernel,

h(x, y; d) = − 1

λ2z1d

∫ ∫
R2

P (ξ, η)e
ik
(

1
d
− 1
z2

)
(ξ2+η2)

e−i
k
d

(ξx+ηy)dξdη (5.75)

where we have used the same notation introduced in Fig. 5.8.
Equation (5.75) can be interpreted as the PSF of a defocused imaging

system without aberrations. If the pupil is circularly symmetric, the Fourier
transform can be rewritten as

F{g(r, θ)} = 2π

∫ +∞

0

rgR(r)J0(2πrρ)dr

for any g : R2 → C, gR : R→ C such that g is circularly symmetric, namely
g(r, θ) = gR(r), where (r, θ) are polar coordinates [2].
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Chapter 6

Holography

Holography is an application of coherent imaging that requires the measure-
ment of the intensity of the interference pattern of a background reference
wave and the wave diffracted by the object. Reconstruction of the hologram
from the photographic film can be achieved by illuminating the film with the
same reference wave used during acquisition.

Mathematically, we can represent the intensity on the detector as

I(x, y) = |UR(x, y) + UO(x, y)|2

= |UR(x, y)|2 + |UO(x, y)|2 + UR(x, y)UO(x, y)

+ UR(x, y)UO(x, y)

(6.1)

where UR(x, y) and UO(x, y) are the complex-valued reference and object
wave.

Borrowing the result for the interference of two waves in Equation (5.13),
we can rewrite the intensity in (6.3) as

I(x, y) = A(x, y) +B(x, y) cos (∆φ(x, y)) (6.2)

where A(x, y) = |UR(x, y)|2+|UO(x, y)|2, B(x, y) = 2|UR(x, y)||UO(x, y)|, and
∆φ(x, y) is the phase difference between the two waves. Please note that the
phase is encoded into the intensity.

Illuminating the film with the same illumination wave—or reference wave—
gives

ψ(x, y) = UR(x, y)I(x, y)

= UR(x, y)|UR(x, y)|2 + UR(x, y)|UO(x, y)|2

+ UR(x, y)UR(x, y)UO(x, y) + UR(x, y)UR(x, y)UO(x, y)

(6.3)

The first two terms, UR(x, y)|UR(x, y)|2 + UR(x, y)|UO(x, y)|2, constitute the
DC component or zero-order term of the hologram. The twin image—or
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virtual image—is represented by |UR(x, y)|2UO(x, y) and is reconstructed in
Equation (6.3). The last term, UR(x, y)UR(x, y)UO(x, y), represents the dis-
torted real image. To reconstruct an undistorted real image, we simply have
to illuminate the plate with UR(x, y).

6.1 Hologram Recording and Reconstruction

Traditionally, holograms were recorded using the in-line hologram acquisition
method. In this experimental approach, the reference wave UR(x, y) travels
in the same direction of the optical axis, which is perpendicular to the photo-
graphic film (or, later, a detector). The object is placed between the coherent
light source and photographic film and diffracts the incoming reference wave.
This diffracted wave interferes with UR(x, y) on the recording medium.

Reconstruction via illumination with the reference wave produces a twin
image at a distance d behind the photographic plate and a real image at a
distance d in front of the plate.

Nowadays, the photographic film has been replaced by a detector (e.g.
CMOS, CCD) and the holograms are reconstructed numerically [25–27].
However, in in-line holography, we have a superposition of the DC term
and the twin and real images, limiting resolution and overall image quality.

Another approach to holography is off-axis holography [28]. In this tech-
nique, the reference and object waves are separate and tilted with respect
to each other. In particular, the reference beam is tilted with respect to the
detector by a certain angle θ. The choice of the tilt angle is limited by the
Nyquist frequency of the recording medium to avoid aliasing [21].

It has been shown that off-axis holography produces an almost homoge-
neous pattern onto the photographic plate and is less sensitive to film im-
perfections or damage [28], while these defects cause loss of details in other
holographic techniques. This property is still present with digital images ac-
quired in off-axis configuration, as most of the image can be deleted without
corrupting the reconstructed hologram significantly. It may also be said that
the information about the object is encoded in each and every point of the
hologram.

In this configuration, the zero-order term and the twin and real images
are spatially separated. However, if digital reconstruction is chosen, only one
of the two images will be focused after reconstruction, while the other will
be out-of-focus. Furthermore, in off-axis digital holography it is also possible
to suppress the zero-order term [29,30].

There is another approach to digital holography, known as Phase Shifting
(PS) Digital Holography (DH) [31,32], in which either the reference or the ob-

68



ject wave are phase stepped with the aid of a piezoelectric transducer (PZT)
and the phase-shifted digital holograms are linearly combined to obtain the
complex wave field. This method automatically removes the zero-order term
and the twin image. The wave field can be refocused with any numerical
diffraction algorithm such as (5.34), (5.39) and (5.46) provided the approxi-
mations hold.

PS-DH can be obtained with as few as three holograms. Due to the
simplicity of the method, we will now introduce the 4-step PS-DH with a
phase step of π

2
. The dataset is composed of four holograms, and, assuming

that the PZT shifts the reference beam, we have

In(x, y) = |UR(x, y)ein
π
2 + UO(x, y)|2 n = 0, 1, 2, 3 (6.4)

where we have used the same notation introduced in (6.1).
We can shift a wave with

E(x, y) = I0(x, y)− I2(x, y) + i (I1(x, y)− I3(x, y)) (6.5)

and obtain the complex object wave with

UO(x, y) =
E(x, y)

4UR(x, y)
(6.6)

Please note that 4UR(x, y) can be obtained by removing the object and
measuring the phase-stepped object-free interference patterns on the detector
with PS-DH. Equation (6.5) applied to these four reference holograms should
give 4UR(x, y).

If we only have the first three In, we can still obtain the object wave with

UO(x, y) =
1− i

4UR(x, y)
(I0(x, y)− I2(x, y) + i (I1(x, y)− I2(x, y))) (6.7)

Please note that, in theory, acquisition of a digital hologram at the best
focus condition is not a requirement because it can always be refocused nu-
merically.

6.2 Phase Unwrapping

It has been shown that Quantitative Phase Imaging (QPI) is feasible with
digital holography [33, 34]. However, we have to remember that the phase
is not measured directly but has to be extracted from the reconstructed
complex wave field U(x, y) as

φw(x, y) = arctan

(={U(x, y)}
<{U(x, y)}

)
(6.8)
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where < and = are used to extract the real and imaginary part of U(x, y),
respectively. Alternately, φw(x, y) can be obtained from the two-argument
arctangent arctan 2, which maps φw(x, y) into [−π, π] instead of [−π

2
, π

2
].

From now on, we will always assume that the extracted phase φw(x, y) will
be mapped to the interval [−π, π].

Please note that φw(x, y) is usually not the real phase of the wave field but
only its wrapped phase. In fact, it is not possible to extract the true phase
with an inverse trigonometric function because the complex exponential has
from 2π ambiguity,

eiφ = ei(φ+2nπ) ∀n, φ | n ∈ Z, φ ∈ R (6.9)

From Equation (6.9), we notice that if there is a constant φ0 ∈ R for
which the true phase φ(x, y) of the wave field is completely defined in an
interval [φ0, φ0 + 2π[, then we can say that the wrapped phase is equal to the
true phase up to a constant.

Unfortunately, it is not uncommon to have a true phase that spans tens of
π. In this case, the true phase must be retrieved from the wrapped phase, and
we say that the phase has to be unwrapped. This problem and the algorithms
that attempts to provide a solution to it are called phase unwrapping. Several
solutions are available [35–38].

(a) True phase. (b) Wrapped phase. (c) Comparison of the true and
the unwrapped phases.

Fig. 6.1: Please note that phase unwrapping fails to retrieve the true phase be-
cause the information of the true phase discontinuity has already been lost during
wrapping, as it can be clearly seen in Fig. 6.1b.

Phase unwrapping has inherent limitations. In particular, if the true
phase, φ(x, y), of two adjacent points differs by at least 2π, then in general
it is not possible to estimate it via phase unwrapping. This is true regardless
of whether the phase distribution is continuous or presents discontinuities.
To illustrate this problem, we offer the one-dimensional phase distribution
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in Fig. 6.1a. Please note that the information about the true value of the
jump is lost during wrapping as it is greater than 2π (Fig. 6.1b) and that the
unwrapping algorithm therefore fails to recover the true phase (Fig. 6.1c).

6.3 Simulation of an Hologram

The simulation of an hologram follows straightforwardly from the theory on
diffraction [39,40].

In fact, if the wave at the object plane—or any other plane—is known,
the diffracted wave at any recording distance can be computed numerically
with, for example, the Fresnel transform in (5.34) or the angular spectrum
method in (5.46) by computing (5.44) with the imaging system parameters.

Furthermore, the effect of an ideal lens can be simulated by clipping the
Fourier domain according to Equation (5.66) with the lens transfer function
(5.65), which is completely determined by the lens pupil. The problem of
magnification is solved by Equation (5.61).

The true problem is now the simulation of the object wave, which can, in
general, be written as

UObj(x, y) = U0(x, y)e−a(x,y)eiφ(x,y) (6.10)

where U0 is the incident beam at the object plane, which is also used as
a reference wave for in-line holography. If the hologram is acquired with
PS-DH and the incoming reference beam is split into two beams of half the
initial intensity each, then the reference and incident beams will be identical
up to the phase.

The function φ : R2 → R is the phase accumulated by the object wave,
while a : R → [0, 1] represents the attenuation of the incident wave. Please
note that if a(x, y) = 0 and φ(x, y) 6= 0, then we have a pure phase object.
Analogously, if φ(x, y) = 0 and a(x, y) 6= 0, then only the attenuation is of
interest, and we have a pure amplitude object.

Please note that when a(x, y) = 0 and φ(x, y) = 0, we either have the
undisturbed incident wave or no object at all. This means that we can rewrite
the object wave as

UObj(x, y) = U0(x, y) + U1(x, y) (6.11)

where U1(x, y) contains all and only the effects ascribed to the object and
vanishes where the incident wave is left undisturbed or there is no object.

UO(x, y) can be calculated via analytical formulae or models, if available,
or via simulation.
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To get the hologram, we have to take the intensity of the interference
pattern according to (6.1). Please note that we simply take the intensity
of the numerically diffracted UObj(x, y) in in-line holography. In off-axis
holography and in PS-DH, we have to add the reference wave to UObj(x, y)
before computing the intensity.

Please note that if the chosen acquisition strategy is the PS-DH, it is also
possible to retrieve the object wave by employing the correct phase shifting
formula. Therefore, if UObj(x, y) is the quantity of interest, we can skip the
calculation of the intensity.
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Chapter 7

Optical Diffraction Tomography

Optical Diffraction Tomography (ODT) is a phase-contrast tomographic tech-
nique that aims to reconstruct the three-dimensional RI distribution of a
sample. The projections are acquired through digital holography and pro-
cessed to produce the sinograms of the phase distribution of the object. It has
found applications in cell imaging [41,42] and the investigation of large-scale
(millimetre-size) samples [43–45].

CT reconstruction can be performed with FBP [44] and diffraction to-
mography [43,46].

7.1 Apparatus

The highly configurable Mach-Zehnder interferometer, shown in Fig. 7.1, is
an excellent choice for an application like ODT.

A monochromatic light beam is produced by the laser (L) and is expanded
by the beam expander (BE) before being split into two waves: one for the
reference arm and one for the object arm.

On the reference arm, the beam is guided via mirrors (M) and phase
shifted by a piezoelectric transducer (PZT) by steps of π

2
before being mag-

nified.

On the sample arm, the incoming beam is diffracted by the sample (S)—
which is placed on the rotating stage (RS) to allow illumination at different
angles for tomography. The diffracted wave is magnified by the magnifying
object (MO) and interferes with the reference wave on the second beam
splitter (BS).

The intensity of the interference pattern is recorded by the detector (D),
which is placed after the tube lens (TL).

The acquisition of three or more holograms phase stepped by π
2

makes
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Fig. 7.1: A Mach-Zehnder interferometer for ODT via PS-DH. In figure: L = laser;
BE = beam expander, BS = beam splitter; S = sample; RS = rotating stage; MO
= magnifying object; M = mirror; PZT = piezoelectric transducer; TL = tube
lens; D = detector.

the reconstruction of the complex wave field possible via linear combination.
The apparatus in Fig. 7.1 is a 4f system due to the MO and TL between

the sample and the detector. Remembering the effect of the lens on an
incoming wave (5.58) and neglecting the pupil as in (5.59), we notice that
if we place the sample at the focal length of the MO, the detector at the
focal length of the TL and the MO and TL at twice the focal length from
each other, we effectively measure the intensity of FFU(x, y) = U(−x,−y),
which is the inverted image.

7.2 Sample Placement and Rotation

The sample does not need to be placed at the best focus plane as it can be
refocused numerically.

In particular, off-centre placement of the sample has shown to improve
the Signal-to-Noise Ratio (SNR) of the reconstructed slice [47]. Please note
that this changes the recording distance, which, however, does not need to
be measured because it can be computed via focus scanning.

Numerical focus scanning consist in propagating a complex wave by a set
of distances {dn} and evaluating the focus of the whole input or a Region
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of Interest (ROI) at each recording distance with a metric. The recording
distance that offers the best focus according to the metric is kept. It has
been shown that the variance of the absolute value of the wave field is a good
metric for ODT [44].

Focus scanning is inherently computationally taxing, especially if it has
to be performed on all the projections. Fortunately, it is possible to find a
general expression for the reconstruction distance by exploiting the geometry
in Fig. 7.1 and introducing the coordinate system as in Fig. 7.2, where we
assume that z is the optical axis.

Fig. 7.2: Coordinate system of the rotating sample (S). The origin is in the centre
of rotation, which is the centre of the rotating stage (RS).

In general, we expect that the plane of best focus will be at a distance d0

from the centre of rotation. If the plane in which lies the centre of rotation
(i.e. z = 0) and the plane of best focus coincide, we have d0 = 0.

Now, physically, the sample rotates about the centre of the RS, which
means that it moves either closer or further away from focus. If d0 = 0, there
will be two points in which the object will be at focus. If d0 6= 0, the object
might never be fully focused depending on r and d0.

From Fig. 7.2, it is clear that the recording distance d depends on the
projection of r (the distance of the sample from the centre of rotation) onto
the optical axis z. The most general expression for the recording distance is

d(θ; d0, r, b, θ0) = r sin (bθ + θ0) + d0 (7.1)

where b is the scale factor on the angle θ and θ0 is the angle at the initial
position of the sample. This angle is 0 only when the object lies on the x-axis
at the beginning of the acquisition.
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The strategy to speed up the focus scanning is [44]:

Step 1: extract a subset of complex wave fields from the dataset of complex
wave fields recorded at all angles. Please note that the complex-valued
images in this subset must be distributed over the interval [0, 2π] more
or less uniformly. For example, we may extract one image every 2π

10
rad;

Step 2: choose two numbers db, de ∈ R | db < de such that the true recording
distance should be in the the range [db, de]. Select a number of steps
N and sample the interval [db, de] into N steps;

Step 3: for every wave fieldW (x, y) and for every sampled distance d̃, propagate
W (x, y) by d̃ with a numerical diffraction routine and evaluate the focus
with the focus metric. Store the results;

Step 4: for every wave field, find the best focus by studying the collected results.
In practice, there should be a criterion—based on the result of the
metric—that determines whether a recording distance refocuses more
than another one. Therefore, for each wave field, any distance d̃ is
compared against all the others. The best one according to the criterion
is kept;

Step 5: fit the distances estimated from the previous step with (7.1).

For ODT images, the expected recording distance can be found as the
distance for which the variance of the absolute value of the wave field (or of
a ROI of the wave field) is minimum [44].

7.3 Phase-Refractive Index Relation

In ODT, the phase is retrieved from the complex wave field of the object and
unwrapped. Then, phase sinograms are formed from the processed projec-
tions and reconstructed via a reconstruction algorithm of choice. This implies
that the reconstructed slices measures the phase distribution and not the RI.
Fortunately, it is possible to retrieve the variation of RI via normalisation.
In fact, if φ(x, y) is the value of a pixel in a reconstructed slice, its RI is [47]

∆n(x, y) =
1

k∆x
φ(x, y) =

λ

2π∆x
φ(x, y) (7.2)

were k is the wave number, λ is the wavelength of the incident plane wave
and ∆x is the sampling interval.
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The true refractive index can be retrieved via

n(x, y) = n0 + ∆n(x, y) (7.3)

where n0 is the RI of the surrounding medium.
If the specimen spans several slices, then phase and RI in Equations (7.2)

and (7.3) will also depend on z. The expressions remain otherwise unchanged.
Previously, the limitations of phase unwrapping and QPI have been shown

for a two dimensional phase distribution. Similar considerations are also true
for ODT, where the processed projections measure the accumulated phase
within the sample. This, theoretically, limits the kind of samples that can
be imaged via ODT either to those with very small thickness or to those
very small ∆n with respect to the surrounding medium. Fortunately, it is
possible to lower the RI of a specimen via optical clearing and to place it in a
similarly refracting medium during acquisition. This last technique is called
refractive index matching.
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Part II

Methods and Results
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Chapter 8

Optical Diffraction Tomography
Processing Pipeline

The reconstruction pipeline for an ODT dataset acquired with four-step
phase-shifting digital holography of an off-centre specimen can be summarised
into

1. focus scanning of a subset of the dataset and fit to obtain the recon-
struction distance at all angles;

2. numerical propagation to focus holograms;

3. phase extraction and unwrapping;

4. sinogram generation via reslicing of the image stack;

5. parallel beam FBP of the sinograms.

Due to the large amount of required memory for a naive implementation,
a pipeline that used batch processing was implemented in Python and C++
to fix this limitation. To offer a gauge to estimate the required memory,
we would like to remark that the wave field associated to a simple 12 MPx
image (i.e. an image acquired by a detector with 4096×3072 pixels) requires
192 megabytes of RAM just to be loaded: indeed, each pixel is a complex
number that requires 16 bytes to be represented with double floating point
precision. If the precision is lowered, it still requires 96 megabytes.

Almost everything in the list was implemented in Python using optimised
libraries like numpy, scipy and scikit-image. However, the FBP routine was
re-implemented in C++ to improve its performance. The sinogram genera-
tion was also written in C++.
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The pipeline was parallelised using joblib for Python and openMP for
C++.

Numerical propagation was coded using the angular spectrum method
(Equations (5.43) and (5.46)), which works even for short recording distances
unlike the Fresnel transform (Equation (5.34)). The phase unwrapping was
performed via Ghiglia-Romero’s unweighed least squares algorithm [36]. Fo-
cus scanning is performed by numerically propagating the wavefront, mea-
suring the focus with a metric and comparing the results [48]. In the case of
ODT (i.e. pure phase-objects) correct reconstruction distance can be deter-
mined as the minimum of the the variance of the modulus of the wave [44,47].
Focus scanning can be performed on a subset of the original dataset and fit
the results with a sinusoidal function to improve speed [44].

Type Description

CPU Intel core i5-8250U @ 1.60 GHz, turbo boost 3.40 GHz, 4C/8T
OS Windows 10

RAM 24 (8+16) GB DDR4 2400 MHz
Storage 128 GB SSD (OS) + 1 TB HDD (5400 rpm)

Table 8.1: Laptop data sheet.

The pipeline was tested on a Dell Inspiron 7570 laptop whose specifica-
tions are reported in Tab. 8.1. Due to the lack of proper ventilation of the
system, the speed was measured on a subset of the images to avoid thermal
throttling, which would influence the quantitative comparison of the results.
The C++ source code was fed to the Visual Studio 16 (2019) generator via
CMake 3.17 and compiled with the Microsoft Visual Studio compiler, which
restricted openMP support to the version 2.0.

Part Old pipeline (s) New pipeline (s)

Refocusing and phase unwrapping 8.2± 0.3 7.80± 0.04
FBP 40.0± 1.2 34.0± 0.4

Table 8.2: Results, per image, with 8 threads in all tests. Projection height=3072
pixels, width=4096 pixels. Number of projections=1440.

Since the fit is not always required and can be performed once and
reloaded later, only the numerical propagation, together with phase unwrap-
ping, and the FBP were timed. The performance of the new pipeline was
compared to the old Matlab script and the average result per image is shown
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in Tab. 8.2. To obtain the results in Tab. 8.2, a subset of 40 images of
size 3072x4096 pixels was used for the first part, and it was executed a few
times so as to generate an average result. FBP was tested using a Ram-Lak
(ramp) filter and 1440 projections generated by a Shepp-Logan phantom of
size a 4096x4096 pixels.

In particular, speed-up was significant in the routines written from scratch
in C++. On the other hand, the use of some built-in functions prevented
joblib from using the threading parallel back-end during phase unwrapping,
which limited the performance improvement.

Please note, however, that the new pipeline introduces several differences
with respect to the old script:

• parallelisation of the first three steps is done on the batch and not
on the single image. This should improve performance, but requires
a larger memory usage per batch. However, the batch size is user-
defined. Please note that the parallelisation on the image is limited by
the number of pixels, while the parallelisation on the batch is limited
on the batch size, and speed-up is determined by the load. FBP is
parallelised n the sinogram instead;

• batch processing is done with frequent input-output operations to the
hard-disk drive (HDD), which is slower than keeping everything in
RAM and introduces the explicit sinogram generation step, which is
simply a selection of a matrix from the 3D array in the old script.
This choice, however, stores all the steps into the HDD. Therefore, the
reconstruction could be restarted from any key step (fit parameters, un-
wrapped phase, sinogram). To achieve the same flexibility, data must
be written to disk even in the old script;

• since everything is done via batch processing, there is no need to down-
scale the unwrapped phase via interpolation in order to fit all the pro-
jections into RAM or to cut regions of interest (ROIs) from the projec-
tions by manually changing the script;

• the number of projections is not limited by the RAM size. Since we
can avoid storing all the projections in RAM, the memory usage is
proportional to the batch size.

For example, for 1440 phase projections of shape 4092 × 3072 pixels,
we would need 67.5 gigabytes if each pixel is represented by a single
precision (32-bit) floating point number. Please keep in mind that, in
this case, 1440 projections are less than recommended and that this is
the minimum required memory to store them in RAM. Any operation
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on the data will likely require additional memory. In this case, we
did not consider 16-byte complex numbers because we can process one
image at a time. On the other hand, if we work in batches, we first
process complex-valued images simultaneously and then extract the
phase into 32-bit float arrays. In the first part, for a batch of a 40
images we require 7.5 gigabytes for loading, while in the latter only 1.85
gigabytes are needed. Any processing likely increases memory usage,
although it still remains much lower than the naive implementation;

• the variables are not hard-coded, and the pipeline can be run from
command line with custom parameters.

The parallel beam FBP algorithm strongly depends on the number of
pixels on the detector width and the number of acquired projections.

8.1 Complexity of Filtered Back Projection

(a) Computational time with respect to the number
of pixel on a detector row.

(b) Computational time for a detector row of 2048
pixels with respect to the number of projections.

Fig. 8.1: Running time of FBP.

Let N be the number of pixels on a detector row and S be the num-
ber of acquired projections. The slice reconstructed via FBP is a square
image of side N , and therefore it has N2 pixels. Since—for each pixel in
the reconstruction—we get the position on the detector line and combine
all the projections, we expect that the complexity of the FBP is O(N2S).
Please note, however, that the algorithm has additional checks and does not
reconstruct pixels outside of the circle of reconstruction—i.e. pixels whose
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distance from the centre of the slice is bigger than N , which means that only

π
(
N
2

)2
pixels will be computed.

To get an estimate of the performance of the algorithm, we set the number
of threads to 8 and do two experiments. In the first experiment, we set the
number of projections to 900 and set N = 26+j, j = 0, 1, ..., 5. We then
generate a Shepp-Logan phantom in a square image of side N .

For the second experiment, we set N to 2048 and generate the Shepp-
Logan phantom. We vary S from 360 to 2060 in steps of 50, and let the
phantom rotate over 2π.

For both experiments, we measure the running time and plot it against
the variable of interest in Fig. 8.1a and Fig. 8.1b respectively.

From the results in Fig. 8.1, we see a linear proportionality between the
number of projections and the running time. However, the dependence on
the number of pixels is slightly off.

8.2 Noise Introduced by FBP

Fig. 8.2: A sinogram of the Shepp-Logan phantom generated from 1460 projections
onto a detector row of 2048 pixels.

FBP is a numerical algorithm that uses FFT, linear interpolation, sums
and multiplication of floating point numbers. Therefore, it introduces inac-
curacies. We use a 2048x2048 Shepp-Logan phantom and vary the number
of projections from 360 to 2060 in steps of 50 to test the algorithm. The
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acquisition of the phantom is performed over 2π, although acquisition in the
interval [0, π] is sufficient in parallel beam FBP.

The Shepp-Logan phantom was chosen for this simulations because it is
possible to write the analytical expression for the sinogram, and thus we
avoid its generation via discrete Radon transform.

For an ellipse of major axis A, minor axis B, coordinates of the centre cx
and cy and measurable quantity ρ, we let α the tilt angle between the major

axis and the x-axis and set s =
√
c2
x + c2

y and γ = tan−1
(
cy
cx

)
.

Let t be the position on the detector and let t = 0 be its centre. If θ
is the angle of rotation, then let φ = θ − α and t̃ = t − s cos(γ − θ), then
the projection of an ellipse for the coordinates (t, θ) in the sinogram is given
by [15]

Pθ(t) = Pφ(t̃) =

{
2ρAB
a2(φ)

√
a2(φ)− t̃2 if |t̃| ≤ a(φ)

0 otherwise
(8.1)

where a2(φ) = A2 cos2 φ+B2 sin2 φ.
An example of sinogram for the Shepp-Logan phantom is shown in Fig.

8.2.

Fig. 8.3: Top row: comparison of the ideal image (left), the image reconstructed
from 360 projection (centre) and from 2060 projections (right). Bottom row: the
line profile extracted from the dashed line.
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Fig. 8.3 shows a comparison of the quality of the reconstruction with
respect to noise when the number of projections increases. The leftmost
column is the ground truth. Please note the stark improvement between
S = 360 and S = 2060. Since the CT aims to reconstruct the true values
that describe the object, an improvement in noise can easily be translated in
an improvement in SNR (Signal-to-Noise Ratio).

(a) Background noise when varying the number of
projections.

(b) Noise in tissue when varying the number of pro-
jections.

Fig. 8.4: Noise behaviour dependence on the number of projections for (a) the
background and (b) tissue.

To offer a more quantitative description of the behaviour of noise when
the number of projections is increased, we can take the standard deviation
of several ROIs (Regions of Interest) within the same material and plot the
results against the number of projections. For our test, we took 10 ROIs of
about 100 × 100 pixels from the background and the dark grey tissue (true
grey level = 0.2 in Fig. 8.3). The results for the background and the tissue
are shown in Fig. 8.4a and Fig. 8.4b respectively. The measured data points
were fitted with f(x) = a√

x
+ b, and the goodness of fit is evaluated via r2

and mean squared error. A similar behaviour was observed with real ODT
data [44].

Please note that here r2 can be used because the model is linear in the
parameters a and b. Furthermore, while still present with S = 2060 projec-
tions, noise in tissue is decreased roughly by a factor of 5 with respect to
S = 360. That means that if the estimates of the grey level of the tissue are
roughly the same, the SNR for S = 2060 is about 5 times the one obtained
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with only 360 projections.
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Chapter 9

Simulated PSF

Real, extended objects seldom lie on a single plane. Therefore, only a part
of a sample can be focused at a time. This is a known problem in optics
applications. For example, simulations based on the beam shape have been
used in THz CT [49] and optical projection tomography (OPT) [50], and
simulation of points and deconvolution has been also applied in OPT [51] to
model and correct space-variant blur.

In coherent imaging the blur depends on the distance from the plane of
best focus. Therefore, we expect non-constant blur throughout the image of
the sample. While this problem is hard to tackle in general, in the case of a
point-like object, we can greatly simplify calculations and models.

This chapter is split into two section: the first deals with the model itself
and the second provides the results obtained from the simulation.

9.1 The Model

Let us suppose that we have a plane wave UL(x, y) that has to be propagated
in free space by a distance z = z0 + z1. Then the propagation in free space
can be always written via a convolution,

UL(x, y; z0 + z1) = UL(x, y; 0) ∗ h(x, y; z0 + z1)

= UL(x, y; 0) ∗ h(x, y; z0) ∗ h(x, y; z1)
(9.1)

It can be shown that the second equivalence holds either by using the an-
gular spectrum method or the operator notation for the Fresnel transform
in [2]. Therefore, the propagation in free space by z can always be split in n
convolutions with n ∈ N arbitrarily large.

In the case at hand, it is most convenient to define a quantity U0(x, y)
that represents the incident plane wave at the focused plane and work directly
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with it. In this case, working with the incident plane wave at the origin is
not necessary and can be avoided throughout calculations as (9.1) is valid.

To simplify calculations, we will assume that the incident plane wave will
move along the optical axis—i.e. it is constant if the position on the optical
axis is fixed or,

U0(x, y; z) = U0(z) = u0e
i(kz+φ0) (9.2)

with the usual notation. For simplicity we can either drop the constant φ0

or incorporate it in u0 as it does not provide any insight on the model.
A point-like object is small enough to lie on a single plane, so we can al-

ways refocus it with numerical diffraction. Therefore, we start by considering
an object wave at the object plane as

UObj(x, y; z) = U0(x, y; z) + U1(x, y) (9.3)

where U1(x, y) is a point disturbance at z. To consider any diffraction effect,
we simply convolve UObj with a convolution kernel by a distance zd and write

UObj(x, y; z + zd) = UObj(x, y; z) ∗ h(x, y; zd)

= U0(x, y; z) ∗ h(x, y; zd) + U1(x, y) ∗ h(x, y; zd)
(9.4)

due to the linearity of the convolution.
If we now consider that U0(x, y; z) is constant if z is fixed, we see that the

first term of Equation (9.4) is constant and describes the background wave
and that the object wave is computed as the interference of the diffracted
disturbance with the uniform background. Furthermore, if we put an in-
finitely large blocking plate at the disturbance plane and we left a hole at
the coordinates of the disturbance, we would have the diffraction by a hole,
whose PSF is determined by the airy pattern.

In the case at hand, however, we do not block the incoming wave and
thus we have a non-zero background. This causes the diffracted wave field
to oscillate about the background U0(x, y; z + zd) based on the distance zd.
This comes straightforwardly from the considerations made to reach Equation
(9.3).

We introduce the point disturbance U1(x, y) at the object plane as

U1(x, y) =

{
u1e

iφ1 − U0(x, y; z) if (x, y) = (x̂, ŷ)

0 otherwise
(9.5)

where (x̂, ŷ) is the location of the point disturbance, u1 ∈ C and φ1 ∈ R.
In particular, if the object is a pure amplitude object, then there is no

phase change, i.e. φ1 = kz+φ0. On the other hand, for a pure phase object,
u1 = u0 and we only have a phase change.
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Lenses must be considered explicitly. In fact, most ODT systems rely
on magnification and lenses. The expression for the kernel for the defocus
with a lens is given by (5.75). This equation is based on the lens-detector
distance, but it is valid even if we consider the lens-object distance.

Please note that the convolution of a point disturbance in background-
free space with the impulse response is simply the shifted and scaled impulse
response. Therefore, Equation (5.75) could be used to compute the point
object analytically. However, the integral in (5.75) is not straightforward or
easy to compute.

Fortunately, the expression of the focused wave after a lens is known and
can be computed by clipping the frequency domain of the wave according to
(5.66) if the pupil is known. As circular pupils are common, we will assume
that the pupil function is given by Equation (5.71).

Now, we know that we can add any amount of defocus with an arbitrary
number of convolutions according to (9.1).

Let P : R2 → R be the circular pupil function in the Fourier domain and
H : R2 → C be the transfer function for the angular spectrum method from
Equation (5.44).

Then, the simulation of the wave field is given by

U(x, y) = F−1 {F{UObj(x, y; z)}P (u, v)H(u, v; zd)} (9.6)

where H(u, v; zd) can be either the transfer function of the angular spectrum
method or the Fresnel propagator in the frequency domain.

Hereafter, we will always assume that UObj is the ideal, focused image
and therefore drop the parameter z.

For the simulation of the whole acquisition process, we should add a
reference wave and phase step it to produce PS-DH and then recover U(x, y).
However, this step can be skipped as PS-DH should recover an ideal signal
up to round-off errors as it comes from analytical considerations.

The amplitude of U(x, y) can be calculated by taking the absolute value
of the wave field, while the phase can be retrieved by unwrapping φw(x, y) =
arctan 2 (=U(x, y),<U(x, y)).

Please note that during normal ODT reconstruction, we would refocus
the wave fields. However, since real extended objects may not lie on a single
plane and cannot be refocused completely, there will be no refocusing step
during the simulation.

9.1.1 Point Coordinates During Rotation

Now that the model for the diffraction by a point disturbance U1(x, y) for a
single projection is defined, the object must be allowed to rotate about a cen-
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tre of rotation during the acquisition of the tomographic dataset. Therefore,
x̂ and zd vary during acquisition, while ŷ is constant, in compliance with the
rotation about the y-axis.

To simulate the one-dimensional projection of the point disturbance, we
will simulate the two-dimensional projection of the three-dimensional model
and then take the line at y = ŷ. Stacking all the one-dimensional projections
of the rotating sample together generates the sinogram of the object.

For simplicity, we put the in-focus plane at the centre of rotation of the
CT system and we set the coordinate system for defocus as the one in Fig.
9.1.

Fig. 9.1: The model for the simulation. The sample (S) is a point disturbance and
is placed on the rotating stage (RS). z is the optical axis and the x-axis is parallel
to the detector. S is located at ŷ

The point disturbance is ideally bound to a circumference of radius r that
is centred in the centre of rotation, which is now the origin. Therefore, we
can model the defocus as the projection onto the optical axis, z, and the
position on the detector line as the projection on the x-axis.

For the reconstruction of the phase, we will use FBP. Please note that, in
FBP, the contributions of all the projections are summed. This implies that,
ideally, all the point on the circumference will contribute to the determination
of any point on that circumference, or, more practically, that the spread of
the point at a certain distance r in the slice is independent of the initial
angle. Therefore, we do not have to generate the sinogram for all the points
in the circle of reconstruction, but we can simply generate only the points
with initial coordinates (x0, z0) = (r, 0) (i.e. θ = 0 at the beginning of the
acquisition).

If the detector has N pixels, with N ∈ N, then we will simulate the
distances

rk = k∆x k ∈ N ∪ {0} | k ≤ N

2
(9.7)
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where we have assumed that x = 0 is the centre of the detector line, which
means that the centre of rotation is at the centre of the slice and FBP does
not have to take additional displacement into account.

Please note that point disturbances at different locations will be simulated
individually.

Hypothesising constant angular step ∆θ = 2π
S

, where S is a positive
integer that represents the number of projections, then the angle of rotation
at the j-th projection is

θj = j∆θ j = 0, 1, ..., S − 1 (9.8)

Exploiting the initial condition on the coordinates, we have, for the k-th
radial distance rk, (x0, z0)k = (rk, 0) and, for any projection,

xj = rk cos θj (9.9a)

zd;j = −rk sin θj (9.9b)

which comes from Equation (4.2).

9.1.2 Relation Between F-Number and Sampling In-
terval

Remembering the condition for a correct simulation of a lens in (5.72), we
can write

f0

fN
≤ 1

2
(9.10)

where f0 is the cut-off frequency and fN is the Nyquist frequency as defined
by (3.12). This inequality suggests that we should work with the normalised
frequencies, i.e. multiply all the frequencies u and v by 1

fN
in order to rescale

each axis in the Fourier domain to [−1, 1], which means that the true value
of the Nyquist frequency is unimportant.

We can explicitly calculate the left-hand side of (9.10) by substituting f0

with (5.70), which is valid under the the paraxial approximation. Thus, we
have

1

λ

∆x

f/#
≤ 1

2
(9.11)

where λ is the wavelength of the incident light wave, f/# is the f-number of
the lens and ∆x is the sampling interval. We have assumed, for simplicity,
that pixel height and pixel width are equal.

Please note that λ in the inequality in (9.11) is usually constant. We are
mostly interested to the term ∆x

f/#
. To justify this interest, please consider
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the transformations

f/#M =
f/#

M
(9.12a)

∆xM =
∆x

M
(9.12b)

for a certain positive real number M . Substitution in (9.11) yields the
same result as before since f/# and ∆x are rescaled by the same constant.
However, the implication of these substitutions are of the utmost importance.
In fact, (9.11) and (9.12) imply that we can either swap the lens and the
detector with another set with the same ∆x

f/#
without affecting the result of

the simulation. Or, alternately, change the lens and the magnification and
keep the same detector. The result will not change.

This, of course, corroborates the statement made before: we can easily
work with normalised frequencies and ideally remove all references to ∆x and
f/# as the results depend only on the radius f0

fN
in the frequency domain.

This implies that we could analyse the output of the simulation in the spatial
domain by using the pixel as a unit of measurement.

However, we will offer the results in the usual units to offer more physical
insight.

9.2 Results

Before starting the simulation, we can compare (5.75) and (9.6) to verify the
validity of the latter.

We choose a square detector of side N = 512 pixels and sampling interval
∆x = ∆y = 5.5 µm. We set the wavelength of the incident light wave to
λ = 633 nm. Now we have set the parameters that are easily kept constant,
but we have to choose an f/# that follows the condition in (5.72). We can
rearrange the relation to isolate the f-number and obtain

f/# ≥ 2∆x

λ
(9.13)

which puts a constraints on the minimum f/# allowed in the simulation.
Using the chosen parameters, we see that f/# & 17.378, so we set f/# =
17.4. In this set-up, the detector side is L = N∆x ≈ 2.816 mm.

For the analytical formula, we also have to find the lens parameter that
give the chosen f/# according to (5.68) and follow the paraxial approxima-
tion, which can be interpreted as sin θ ≈ θ. We choose w = 3.5 mm, which
entails z2 = 2wf/# ≈ 0.1218 m. We compute the defocus for S = 1024
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points on the optical axis as zd;i = i∆x for i = 0, 1, ..., S − 1. For the com-
putational formula in (9.6), we will use di = zd;i, while for the analytical
formula in (5.75) we set di = z2 + zdi . Then, we compute the intensity.

Since it is very difficult to compute (5.75), we use an approximation to the
analytical formula valid for the optical axis and in presence of small amount
of defocus, which is therefore applicable in our case. Indeed, we know that
the largest zd;i is (S − 1)∆x ≈ 5.6265 mm. Direct comparison shows that
this value is much smaller than z2. Therefore, we can use

I(0, 0; di) =

(
πw2

λ2z1z2

)2

sinc2

(
w2

2λz2

(
1− di

z2

))
(9.14)

where we used the same notation introduced in (5.63), (5.68) and (5.75).
The normalised results are shown in Fig. 9.2. The two computed inten-

sities seem to be in agreement with each other.

Fig. 9.2: Plot of the numerical (simulated) solution for defocus and the analytical
solution on the optical axis. The measured quantity is the intensity.

9.2.1 Comparison of the Pure Phase and Pure Ampli-
tude Models

While it is true that ideally we should not need to use a phase unwrapping
routine for the pure phase object it might not always be true. Further-
more, computing the absolute value is usually much faster than finding the
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(wrapped) phase on a common CPU. Therefore, we are interested in com-
paring the pure phase and the pure amplitude model.

For the first simulation, we set the pixel width and height to 5.5 µm,
the wavelength λ to 633 nm and the f/# to 17.4. The detector width was
512 pixels, and the height was 128 pixels. We generated 256 initial positions
according to (9.7) and acquired 360 projections for each point. Each point
was generated along the central line of the detector.

For the amplitude model, when each projection was generated, the central
line was extracted and its absolute value was computed and stored into the
appropriate sinogram.

For the phase model, after the wave field was computed, we extracted
the phase and unwrapped it, then we extracted the central line and stored it
into the sinogram.

All the sinograms were fed to the FBP routine.

Sinogram Comparison

The first step is the sinogram comparison. Here, we expect that the two
models will produce remarkably different results. Indeed, in the pure am-
plitude model the phase is discarded and we only take the absolute value of
the amplitude into account. For this reason, we expect a constant uniform
background across all the projections.

However, this is usually not true for the pure phase model. This is already
hinted by the expression of the background wave (9.2). Since the object wave
UObj(x, y) is computed as interference of the undisturbed background and the
diffracted wave (see (9.3)), we expect some variation on the background.

(a) Sinogram for the pure amplitude object with
initial position (x0, z0) = (220∆x, 0).

(b) Sinogram for the pure phase object with initial
position (x0, z0) = (220∆x, 0).

Fig. 9.3: Comparison of the sinograms for the two different models.
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According to the results for a point at the initial position (x0, z0) =
(220∆x, 0) in Fig. 9.3, our expectations are satisfied. However, at first sight,
it appears that the phase sinogram does not contain any information about
the diffracted wave. Fortunately, this is not true. To illustrate this point, we
plot the rows number 120, 180 and 220 from 9.3b in Fig. 9.4.

(a) Line profile of the row number
120.

(b) Line profile of the row number
180.

(c) Line profile of the row number
220.

Fig. 9.4: Plots of different rows of the sinogram.

Please note how the background level changes across the projections. The
non-sinusoidal background behaviour in the pure phase model is most likely
caused by the fact that at each projection the variation of the phase is many
times 2π and thus the background wave is not sampled correctly. This is
usually not a problem and is rarely observed in experimental ODT since
the wave field is refocused. However, background variations are sometimes
present even in that case.

The diffracted point behaves similarly in the sinogram of the pure am-
plitude model. Indeed, the peaks and the wells are clearly visible in Fig.
9.3a. Since this pattern looks periodic and the peak (or the well) is always
located on the point coordinates, we expect a “destructive” effect at the true
object position when all the projections are combined during FBP. It is of
the utmost importance to remark that this splitting may appear only when
the maximum defocus is large enough because we have to reach zd values for
which we are near a minimum in the impulse response of the system. Indeed,
if the defocus is too small, we would expect to see only one blurred point.

Reconstructed Slices

The slices reconstructed from the sinograms in Fig. 9.3 are shown in Fig. 9.5.
The hypothesised split for large radial distances is clearly visible here. Please
note that the major difference in the two images lies in the background. In
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fact, the background in the slice of the amplitude model is minimum at the
centre of the slice and slowly increases with the radial distance. On the other
hand, the background of the phase model is mostly constant. We would like
to emphasise that the background phase was not corrected before the recon-
struction and that its disappearance is most likely due to the combination of
all the background values, which, assuming phase unwrapping left the phase
unchanged, were distributed in [−π, π].

If we work with the amplitude model, we will show the (reconstructed)
absolute amplitude. On the other hand, if we work with the phase model,
we will show the (reconstructed) phase.

(a) The slice reconstructed from the sinogram of
the pure amplitude point at (x0, z0) = (220∆x, 0).

(b) The slice reconstructed from the sinogram of
the pure phase point at (x0, z0) = (220∆x, 0).

Fig. 9.5: Comparison of the pure amplitude and the pure phase models. Please
note that the two point-like objects behave similarly and the major difference lies
in the background.

To analyse the models further, we selected a ROI (Region of Interest)
centred in the point in four simulated slice for each model. The radial dis-
tances of the point are given by rn = 70n∆x for n = 0, 1, 2, 3. The ROIs are
shown in Fig. 9.6. Even here the two models behave very similarly. The grey
level of the point object decreases as its spread and its radial distance from
the centre increase. At first sight the spread along the radial direction is
approximately constant, while the tangential PSF varies significantly across
the image. Therefore, we can say that the PSF of the system is space-variant.

To quantitatively describe the similarities—or dissimilarities—of the two
models, we have to compute the FWHM.
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(a) rn = 0∆x. (b) rn = 70∆x. (c) rn = 140∆x. (d) rn = 210∆x.

(e) rn = 0∆x. (f) rn = 70∆x. (g) rn = 140∆x. (h) rn = 210∆x.

Fig. 9.6: Comparison of the PSF at different radial distances. The top row shows
the pure amplitude points, while the bottom row contains the results for the pure
phase model.

PSF FWHM Analysis

Normally, if the PSF has been either measured or simulated, then the FWHM
is estimated through fitting or analytical knowledge of the function. In this
case, however, neither solution can be applied.

However, all is not lost. We can analyse the FWHM along the radial and
the tangential directions.

Now, if h is a real-valued continuous function that is defined on an interval
[a, b] with a, b,∈ R and a < b, and if h(x1)h(x2) < 0 for some x1 and x2 such
that a ≤ x1 < x2 ≤ b, then according to Bolzano’s theorem there should be
a coordinate xs ∈ [x1, x2] for which h(xs) = 0. This xs is the zero-crossing,
or root, of h.

We take the line profile of the PSF along either direction. Then, provided
we have taken the line passing through the maximum, the PSF will have a
background grey level, b, and a peak p. Here b < p. Now, the FWHM in
the chosen direction is the width of the one-dimensional PSF h(x) at half
the maximum height. We can translate this to h̃(x) = h(x) − 1

2
(p − b) = 0.

This means that the coordinates of the points on the PSF that determine
the FWHM are roots of h̃ and that we can use a root-finding algorithm to
find the FWHM.
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Our choice is Newton’s method,

xn+1 = xn −
h̃(xn)

h̃′(xn)
n ∈ N ∪ {0} (9.15)

where h̃′ is the first derivative of h̃ and x0 is the initial guess for the root,
which can be computed as the lower bound to the interval within which we
are certain that we have a zero-crossing. In the discrete case, the function
is translated by a sequence of h̃i such that h̃i = h(xi) and xi < xi+1 for
any i ∈ N ∪ {0}. Therefore, the set of lower bounds to the roots of h is
Ω = {xi ∈ R | h̃(xi)h̃(xi+1) < 0}.

We are interested only on the minimum and the maximum of xi over Ω
because we only have one PSF. Applying Netwon’s method to both values
will produce two real values, xl and xu, such that xl < xu and

FWHM = xu − xl (9.16)

The functions h̃ and h̃′ (9.15) can be calculated with linear or cubic interpo-
lation.

Please note that this method can be used in this case only because noise
is negligible. In fact, numerical differentiation of noisy data amplify noise. In
some cases, real data may be smoothed with a sliding window (e.g., moving
average or any smoothing kernel). However, in that case, the measured
FWHM will also depend on the smoothing introduced by the window.

Moreover, we see that the PSF along the radial direction changes the
position of the peak, which can be estimated as the argument of the maximum
value in the image: i.e. the set of coordinates for which we have a maximum.
Unfortunately, this may lead to erroneous calculation of the spread when the
splitting is incomplete. Since this is the peak moves along the tangential
direction, the FWHM of the tangential PSF is not affected by this effect.

To compute the FWHM, we extracted a 30x30 square ROI centred on
the point-like object for each image. Then, we applied the steps described in
this section.

For Newton’s method, we set the number of iterations to 100 and the
tolerance to t = 10−12. According to the algorithm used, if xn+1 and xn
are more than one tolerance apart after the maximum number of iterations,
the routine throws an error; on the other hand, the maximum number of
iterations may not be reached. Indeed, the estimated value of the root is
returned as soon as the condition on the tolerance is met for the first time.

The results are plotted in Fig. 9.7.
The behaviour of the two models is qualitatively similar. However, they

are clearly not identical. Furthermore, the spatial resolution in the pure phase
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Fig. 9.7: FWHM of the pure phase and the pure amplitude points. While the
results for the two models are similar, they are not identical. Moreover, the pure
phase model seems to produce better images overall with respect to spatial resolu-
tion. In both cases, the radial FWHM is mostly larger than the Rayleigh criterion,
which for f/# = 17.4 and λ = 633 nm is ∼ 13.4 µm.

(a) At rk = 129∆x, in the amplitude model, we fail
to detect the full spread of the radial PSF. We also
expect this behaviour for other radial distances rj
near rk provided rj ≤ rk.

(b) At rk = 123∆x, in the phase model, we fail to
detect the full spread of the radial PSF. We also
expect this behaviour for other radial distances rj
near rk provided rj ≤ rk.

Fig. 9.8: ROI of the PSF at the (erroneously detected) minimum radial FWHM.
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images is better overall. Excluding the dip in the radial FWHM curve, the
FWHM is mostly worse than the Rayleigh criterion, which is δ = 1.22λf/# ≈
13.4 µm. Here, the Rayleigh criterion has been chosen because it is already
used to describe the resolution in the projections. Since FBP combines these
projections, we expect that the resolution should not be better than the
Rayleigh criterion.

To explain the abrupt change in the radial FWHM, we take a look at
rk = 129∆x for the amplitude model and rk = 123∆x for the phase model,
which are the coordinates for the minima in the radial FWHM curves.

The example in Fig. 9.8 corroborates our assumption. Indeed, in both
cases, the peak value is near the waist of the PSF. We therefore caution not
to take the results around these two minima as a ground truth as in these
cases the spread is ambiguously defined.

The plot in Fig. 9.7 confirms that the PSF is space variant along the
tangential direction but seems also to disprove our hypothesis on the radial
PSF. In fact, it seems that there might be variations even along this direction.
However, due to the inherent problem with the numerical method used to
detect the radial FWHM, we prefer not to make any assumption beyond
stating that, if it varies, it varies slowly.

Other fluctuations on the results is likely due to the round-off errors
introduced by numerical method and finite precision.

9.2.2 Different F-Numbers

In practice, we always try to obtain images with the best possible resolution
achievable from the apparatus. In our case, the simulation was limited by
the condition (5.72).

However, additional insight might be provided by simulating lenses with
larger f/#. Additionally to the simulation already performed, we simulate
two other f-numbers. We kept ∆x and λ constant and set the other param-
eters according to Tab. 9.1.

f/# N (pixels) M (pixels) S

25 1024 256 720
35 2048 512 1440

Table 9.1: Parameters for the simulations. N and M are the detector width and
height respectively, and S is the number of projections.

For f/# = 25, we simulated all the points according to rk in Equation
(9.7). For f/# = 35, we only simulated a point every 10 pixels.
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The Rayleigh criterion for f/# = 25 yields δ ≈ 19.3 µm. If f/# = 35,
we have δ ≈ 27.0 µm.

Fig. 9.9: FWHM for f/# = 25.

Fig. 9.10: FWHM for f/# = 35.

The FWHM for f/# = 25 is shown in Fig. 9.9, while the FWHM for
f/# = 35 is offered in Fig. 9.10. Please note that, aside from the obvious
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scaling along the r and FWHM axes, the trend at different f-numbers seems
mostly identical. This scaling along the radial direction is likely due to the
depth of focus, which is proportional to 1

NA2 .
Please note that Fig. 9.9 and Fig. 9.10 are offered here to show that,

despite the different f/#, the behaviour of the FWHM along the radial and
tangential directions is qualitatively similar to the one in Fig. 9.7, although
they are rescaled. This is expected and comes from the radius of the circu-
lar pupil transfer function in the Fourier domain. Indeed, the smaller the
radius, the broader the PSF. For the same reason, a larger defocus distance
is required to achieve similar FWHM curves and PSF splitting.
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Chapter 10

ODT PSF Deconvolution

The PSF in ODT is space-variant, and therefore the linear imaging system
cannot be expressed via the convolution in Equation (3.4), which means that
a simple deconvolution routine cannot correct for blurring. However, the
PSF along a circumference of radius r is constant. Our system, therefore,
has a space-variant PSF with space invariant regions in which it has constant
shape but varying orientation.

A transformation of the reconstructed image in polar coordinates pro-
duces images in which each row contains information about the radial di-
rection and each column represents the angular coordinate at a fixed radial
distance, which in our case, is the tangential direction. Therefore, if we trans-
formed the reconstructed image into polar coordinates, we would generate
an image in which each column has its own space invariant tangential PSF.

Now, assuming that the radial PSF is roughly space invariant, we can
deconvolve the transformed image by using line-by-line one-dimensional de-
convolution and revert back to Cartesian coordinates. The deconvolution of
each column removes tangential blur, while the deconvolution of each row
corrects for the radial PSF.

In some cases, there might be some artefacts on the border of the image
in the polar coordinates (r, θ). However, these defects will be located around
the central line of the slice in Cartesian coordinates. This is due to the fact
that, for θ = ±π, the points in the circle lie on the central line in the left
half of the image.

Thankfully, we can easily remove this kind of artefact. Let I(x, y) be
the image in Cartesian coordinates. To fix this problem, we also generate
an image by inverting the x-axis in I(x, y), i.e. Ĩ(x, y) = I(−x, y). Now,
transforming both images into polar coordinates and deconvolving before
reverting them back to Cartesian coordinates generates two images with the
same type of artefact, but in different regions since the inversion of the x-axis

105



introduced a shift in the angular coordinate. For simplicity, now the same
notation can be used for the deconvolved images. Now we invert the x-axis
of Ĩ(x, y) again and call the new image A(x, y). Summing the left half of
A(x, y) and the right half of I(x, y) completely removes the artefact as we
are only keeping the unaffected regions.

To improve the results of image restoration, if N is the side of the square
slice, then, in the polar transformed image, the number of pixel on the radial
direction is R = N

2
and on the tangential direction we have M = 4N . This is

because of the behaviour of the arc length with respect to the radius of the
circumference, as shown in Equation (4.5) and Fig. 4.3.

10.1 Pure Amplitude Model

(a) Test image for f/#1. The side of the image is
N = 512 pixels.

(b) Test image for f/#2. The side of the image is
N = 1024 pixels.

(c) ROI of the test image in Fig. 10.1a. (d) ROI of the test image in Fig. 10.1b.

Fig. 10.1: The top row shows the test images used, while the bottom row shows
the respective ROI that contains all the points. Please note that the image in Fig.
10.1a is four times as small as Fig. 10.1b.

For the pure amplitude model, we constructed two images: one for f/#1 =
17.4 and one for f/#2 = 25.

In the first image, we took the simulated images for a point located on the
x-axis at xk = rk = 10k∆x—with rk ≤ N∆x—and we summed these images
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together. In the second, we used xk = 20k∆x and xk ≤ N∆x instead, but
we left the procedure unvaried.

The test images are shown in Fig. 10.1. Please note that the images look
the same size, but they have been rescaled to fit in the figure. In fact, Fig.
10.1a is four times as small as Fig. 10.1b.

(a) ROI after the deconvolution of the test image for f/#1.

(b) ROI after the deconvolution of the test image for f/#2.

Fig. 10.2: The same ROIs used in Fig. 10.1, but taken from the deconvolved
images. Again, the images have been rescaled to fit the page. Indeed, Fig. 10.2a
is smaller than Fig. 10.2b by a factor of 2 on both sides.

(a) Blurred point at
(40∆x, 0).

(b) Blurred point at
(100∆x, 0).

(c) Blurred point at
(140∆x, 0).

(d) Blurred point at
(200∆x, 0).

(e) Deconvolved point at
(40∆x, 0).

(f) Deconvolved point at
(100∆x, 0).

(g) Deconvolved point
at(140∆x, 0).

(h) Deconvolved point at
(200∆x, 0).

Fig. 10.3: ROIs extracted from the test image generated for f/#1 = 17.4. The
top row shows the blurred points, while the bottom row offers the results after
deconvolution.

Deconvolution was performed on both the tangential and the radial di-
rections by using Richardson-Lucy’s deconvolution algorithm for the one-
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dimensional case. The number of iterations for the tangential direction was
set to 150, while for the radial direction we only did 50 iterations.

The results—shown only for the ROIs—is offered in Fig. 10.2, after being
corrected for the outliers. The deconvolution algorithm introduces ripple-like
fluctuations near the centre of the slice (left side in images in Fig. 10.2a).
Furthermore, each point object is surrounded by a ring that is darker than
the background. While Richardson-Lucy’s algorithm introduces artefacts in
the images, it also decreases blurring significantly on both the tangential and
the radial directions.

To offer a fairer comparison, we take four 13x13 ROIs centred in the point
at 40, 100, 140 and 200 pixels from the centre of the slice in all the images.
The comparison of the simulated points and the results of the deconvolution
routine for f/#1 is shown in Fig. 10.3. Please note that the spatial resolution
has not been brought down to a single pixel, although blurring is significantly
reduced along both directions. Nonetheless, the spread along the tangential
direction is still, in general, worse than that along the radial direction.

Since radial blurring is visibly less severe than the one in the tangential
direction, we offer a visual comparison of the line profile of the central line
in the selected ROI (Fig. 10.1c and 10.2a). In these ROIs, the point starts
to split at the radial distance rs ≈ 130∆x. Since we have a point every 10
pixels, we decided to limit the line profile to the region for which r ≤ 135∆x
in order to show the point at rs.

Fig. 10.4: Radial line profile for r ≤ 135∆x. Please note that the restored peaks
are higher and narrower than the blurred ones. The line profile of the restore data
was misaligned by one pixel and has been shifted to compare the pixels.
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The line profile is shown in Fig. 10.4. Here the restored peaks have
clearly higher grey levels and are narrower than their blurred counterpart.
Furthermore, although it is more visible in Fig. 10.1c and 10.3, even here it
is possible to see that the grey levels of the restored peaks does not decreases
as the radial distance from the centre of the slice increases as it was the case
for the degraded image.

The restored peaks for r = 0∆x and r = 10∆x are problematic; in fact,
direct comparison with Fig. 10.3 shows that they could easily be confused
with—and may be—artefacts.

In Fig. 10.5 are shown the line profiles for the blurred and restored
points shown in Fig. 10.3. Please note the shape of the restored points in
comparison with the original PSFs.

Fig. 10.5: Tangential blurring from Fig. 10.3: on the left, we have the tangential
PSFs for the degraded points, while on the right we have the tangential PSFs after
restoration.

Unfortunately, the region around the centre of the slice, which is on the
left side of the ROI, could not be corrected properly. This might be due
to the very low number of samples along the circumferences at low radial
distance in the original image.

The comparison of the ROIs for f/#2 is shown in Fig. 10.6. Please note
that even in this case the blur is significantly reduced, although it remains
consistently worse than the one in the bottom row of Fig. 10.3. We suspect
that, if the initial image is too degraded and has lost most of the information
about the high spatial frequencies during image formation, complete restora-
tion may not be possible with common algorithms like Richardson-Lucy’s.
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(a) Blurred point at
(40∆x, 0).

(b) Blurred point at
(100∆x, 0).

(c) Blurred point at
(140∆x, 0).

(d) Blurred point at
(200∆x, 0).

(e) Deconvolved point at
(40∆x, 0).

(f) Deconvolved point at
(100∆x, 0).

(g) Deconvolved point
at(140∆x, 0).

(h) Deconvolved point at
(200∆x, 0).

Fig. 10.6: ROIs extracted from the test image generated for f/#2 = 25. The
top row shows the blurred points, while the bottom row offers the results after
deconvolution.

10.2 Pure Phase Model

For the pure phase model, we only tested a single image composed by the
sum of the points with the same strategy described for f/#1 in the pure
amplitude model. Even in this case, the f-number was f/# = 17.4. The test
image, alongside the ROI, is shown in Fig. 10.7.

Line-by-line deconvolution via Richardson-Lucy’s algorithm failed regard-
less of the number of iterations during the test, even when we tried to skip
the radial direction, so we decided to use a one-dimensional Wiener decon-
volution routine in polar coordinates.

The results of the line-by-line deconvolution along the tangential direction
is shown in Fig. 10.8. Please note that the spread along the radial direction
remains unchanged because we did not correct for radial blur. On the other
hand, tangential blur is significantly reduced. The point at rk = 0 pixels
from the centre of the slice could not be restored and generated a NaN, so
we set it to 0 and ignored it. This is not a problem when the object is placed
off-centre during acquisition, which is recommended to improve the SNR [47].

Unfortunately, even with Wiener deconvolution, correction for radial blur
failed to produce good results. This may be due to the errors introduced in
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(a) Test image for the phase model with f/# = 17.4.

(b) ROI that contains the point objects in the test image.

Fig. 10.7: Test image (top) and ROI (bottom) for the pure phase model with
f/# = 17.4.

(a) ROI from the test image.

(b) ROI after restoration.

Fig. 10.8: The ROI from the test image (top) and the restored ROI (bottom)
via one-dimensional Wiener deconvolution. The top image is the same as the one
provided in Fig. 10.7.

previous steps or to the suboptimal value of the tuning parameter for the
deconvolution algorithm.
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Chapter 11

Conclusion

The reconstruction software was optimised by lifting some of the most strin-
gent limitations in the old script and introducing more flexibility at the cost
of larger storage requirements. Moreover, moderate speed-up has been ob-
served.

Resolution in ODT was modelled and simulated with the aid of compu-
tational Fourier optics strategies for scalar diffraction by a point-like objects.
Spatial resolution was assessed qualitatively and quantitatively by using nu-
merical routines to estimate the FWHM for each point and was verified to be
space variant with space invariant regions in both the pure phase model and
the pure amplitude one. Their comparison shows that, while similar, these
two models are not identical.

The models are simple and flexible. For this reason, they can easily be
adapted to a real case scenario to generate ideal PSFs for the deconvolution
of real datasets, which—if successful—will allow for more reliable spatial
measurements of the specimens.

Image restoration was used to correct for blur. For this part, line-by-line
deconvolution in polar coordinates was chosen because it offered a simpler
definition of the regions regions with space invariant PSFs. Simple deconvo-
lution routines show that the tangential blur is greatly improved during this
step, although the centre of the image cannot be determined. In general,
this is not not a problem as it is preferred to place the specimen off-centre
because it improves the SNR.

Unfortunately, while there is great improvement, the spatial resolution of
the reconstructed slices did not reach the size of a single pixel. This is partic-
ularly true if the acquisition parameters are not close to the diffraction limit.
In fact, deconvolution of test images obtained for large f-numbers showed
that blur was still evident. This is likely caused by the lack of frequency
content in the slice caused by the pupil transfer function.
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Future developments could lead to experimental works either to prove
or to disprove this model. Another option could be the study of more so-
phisticated algorithms for optimal image deconvolution. Should these steps
succeed, ODT will become suitable for the acquisition and quantitative anal-
ysis of samples that are either not perfectly focused or too large to be fo-
cused. Furthermore, the accuracy of the model for ODT of the PSF with
the Mach-Zehnder interferometer may be improved by considering noise and
detector efficiency, introducing the effect of the other components in the
Mach-Zehnder interferometer and including aberrations.
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[46] Paul Müller, Mirjam Schürmann, and Jochen Guck. ODTbrain: A
Python library for full-view, dense diffraction tomography. BMC Bioin-
formatics, 16(1):1–9, 2015.

[47] Julianna Kostencka, Tomasz Kozacki, Micha l Dudek, and Ma lgorzata
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