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Summary

This thesis work proposes a method for the simulation of the dynamic interaction
between vehicle and railway track. The model has been designed to take into account
the complexity of wheel−rail contact, railpad and ballast, with low computational
requirements.

A modal description of the rails and the sleepers is presented, imposing the cou-
pling between these elements and the vehicle by means of the associated interaction
forces. This provides a model with a reduced number of coordinates and therefore
a low computational cost is achieved.

It is shown that this model also enables to incorporate the associated nonlinear
characteristics between the different elements by means of a simple formulation.

In the development of the following work several commercial softwares have been
used:

• Mathematica: for a quick analysis of beams vibrational modes.

• Matlab : for the development of the track interaction program.

• c++ : for the .exe final program

• Excel, Latex and others less important ones.

The five working months work have been divided in two parts:

1. development of the track interaction program with the use of Matlab GUI
(graphical user interface); This part took half of the total time due to the
need of having a program capable of analyzing a wide range of interaction
problems, with different kinds of rails, sleepers, ballasts, vehicles etc.

2. once tested the program, lots of simulations have been run and their results
have been carefully analyzed.
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Chapter 1

Introduction

1.1 Track interaction theoretical model

Railways are experiencing a significant set of problems associated with dynamic
interaction of the vehicle-track system. These problems mainly stem from existing
wheel and track defects and they affect acoustic emissions, track maintenance and
the reliability of the vehicle rolling elements.

In order to study these problems, models have been developed to make possible
the simulation of the dynamic response of vehicle-track interaction. Only simple
models, which consider the rail as a beam resting on an elastic foundation, have an
analytical solution.

This simplicity is lost when the rail is considered as having discrete supports
and when nonlinearities are associated with the properties of ballast, railpads and
wheel-rail contact.

Several authors have proposed methodologies for studying vehicle-track dynam-
ics.

Perhaps, the most commonly studied problems concern the formation of irregu-
lar wear (corrugation) on wheels and rails, and the dynamic response to wheelflat
impact (part of the wheel tread is worn off due to unintentional sliding as caused by
locked brakes or by low wheel-rail friction). In these two cases the frequency range
considered is similar, so the basic dynamic model characteristics are the same for
both problems.

1.1.1 Model Introduction

In this paper, a method for calculating the dynamic response of the vehicle-track
system is developed to take into account complex models of wheel-rail contact,
railpads and ballast at low computational cost.
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1 – Introduction

Figure 1.1. Total Track-Way model

The rails and the sleepers are described by their modal coordinates. Wheel-rail,
rail-sleeper and sleeper-ballast interactions are modelled using space coordinates
and they are coupled to the modal models of rail and sleeper by means of the
corresponding interaction forces. The overall model is described by a reduced number
of coordinates. In addition, the most significant nonlinearities of the problem can
be included easily.

Different types of irregularities can be imposed to the wheels; non-linear forces
can be assigned to the springs of to the dumpers that describe the interaction be-
tween ballast and sleepers or between sleepers and rails (the last due to the presence
of pads between the two elements).

Moreover it is interesting to describe the effects generated by the crossing over
different structures like bridges.

The program developed with Matlab wants to give to the operator the possibility
of studying all of these different interaction problems but in doing so it want to
preserve a low computational cost that permits to normal notebooks to run such
simulations.

In doing so it consider different mathematic models for the different parts 1 using

1see figure (1.1)
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a substructuring approach:

• VEHICLE : it consists of three parts:

1. the Carriage

2. the Bogies

3. the Wheel-sets

Every single element is treated with a lumped element model. The simplifying
assumptions in this domain are:

– all objects are rigid bodies with all the mass concentrated in the center
of gravity ;

– all interactions between rigid bodies take place
via kinematic pairs (joints), springs and dampers.

Therefore the lumped elements mathematical model, is that in which the in-
ertial, elastic and dumping properties of the physic continuous system are
concentrate in different single components; doing so the model consist of rigid
masses treatable as point masses and interlinked with springs and dumpers
without a mass. Increasing the number of masses the model would better rap-
resent the real system, but obviosly this would lead to a more complicate model
and so a less computationally efficient one.

• RAILS AND SLEEPERS : they are modelled with the continuous Euler beam
theory or with the Timoshenko’s one , thus described by their modal proper-
ties, and they are connected to each other through linear and non linear forces,
resulting from the pads, as well as with the Vehicle wheel-sets and with the
ballast. They also have two different possibilities for boundary conditions:

1. free-free B.C.

2. continuos B.C.

• BALLAST : it is modelled with a discrete series of forces resulting from a
discrete series of supports. All the forces consist of two components, a linear
one and an optional non-linear (in the program “user choice”):

– Linear component: it depends on the damping effect, proportional to
the displacement velocity and on the elastic one, proportional to the
displacement; this last component could be replaced by a uniform Winkler
stiffness under each sleeper as it will be shown later.

3
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– Non linear-component: it depends on user choice and takes ito account
all the possible non linear effects deriving from the ballast properties.

• UNDERLYING STRUCTURE : it is an optional element of the model that
could represent a bridge or a viaduct with which the vehicle-track system
interacts. In this work it has been studied with a mono-dimensional model,
using also in this case, both Euler beam theory and Timoshenko one.

Its boundary conditions are those of pinned-pinned beam.

Finally it is important to note that all this thesis work and specially the program
developed has been done respecting a modular approach, that is, giving the possi-
bility of future improvements or in general new developments, taking special care
on the usability of it, being the last goal achieved through the use of user friendly
GUIs (graphical user interfaces).
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Chapter 2

Mechanical vibrations

2.1 Fundamentals of mechanical vibrations

Vibration refers to mechanical oscillations about an equilibrium point. The oscil-
lations may be periodic such as the motion of a pendulum or random such as the
movement of a tire on a gravel road.

Vibration is occasionally “desirable”. For example the motion of a tuning fork,
the reed in a woodwind instrument or harmonica, or the cone of a loudspeaker is
desirable vibration, necessary for the correct functioning of the various devices.

More often, vibration is undesirable, wasting energy and creating unwanted
sound-noise. For example, the vibrational motions of engines, electric motors, or
any mechanical device in operation are typically unwanted. Such vibrations can be
caused by imbalances in the rotating parts, uneven friction, the meshing of gear
teeth, etc. Careful designs usually minimize unwanted vibrations.

The study of sound and vibration are closely related. Sound, or “pressure waves”,
are generated by vibrating structures (e.g. vocal cords); these pressure waves can
also induce the vibration of structures (e.g. ear drum). Hence, when trying to reduce
noise it is often a problem in trying to reduce vibration.

2.1.1 Types of vibrations

Mainly vibrations can be divided in two types:

• FREE VIBRATIONS

• FORCED VIBRATIONS

Free vibration occurs when a mechanical system is set off with an initial input
and then allowed to vibrate freely. Examples of this type of vibration are pulling a
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2 – Mechanical vibrations

child back on a swing and then letting go or hitting a tuning fork and letting it ring.
The mechanical system will then vibrate at one or more of its “natural frequency”
and damp down to zero.

Forced vibration is when an alternating force or motion is applied to a mechanical
system. Examples of this type of vibration include a shaking washing machine due
to an imbalance, transportation vibration (caused by truck engine, springs, road,
etc.), or the vibration of a building during an earthquake. In forced vibration the
frequency of the vibration is the frequency of the force or motion applied, with order
of magnitude being dependent on the actual mechanical system characteristics.

2.1.2 Modeling Vibrating Systems

It is known that Continuous Elastic bodies possess infinite DOFs(i.e, number of
independent coordinates to completely describe motion). Considering that an ana-
lytical solution for these physical systems exists only for a few ones, specially those
very simple, it is necessary to find a way to model those complicate systems with a
simpler mathematical model, that brings to a low cost computational problem but
at the same time resemble enough the real one.

In doing so lots of methods have been developed like the lumped elements, the
FEM (finite element method), spectral model and the Frequency response or modal
model) one. Obviously the use of one of these models doesn’t preclude the use of the
others in fact these methods are often used together to obtain more accurate results.
In general, they model a finite number of DOFs (within the boundary wavelengths
of interest) and accept a certain degradation in accuracy. Giving an accurate de-
scription of each one would be too long but in this section a small presentation of
each one will be given.

2.2 Lumped element model

Figure 2.1. mass-spring-damper model

The lumped element model (also called lumped parameter model, or lumped
component model) simplifies the description of the behaviour of spatially distributed
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2 – Mechanical vibrations

physical systems into a topology consisting of discrete entities that approximate the
behaviour of the distributed system under certain assumptions. It is useful in elec-
trical systems (including electronics), mechanical multibody systems, heat transfer,
acoustics, etc.

Mathematically speaking, the simplification reduces the state space of the system
to a finite number, and the partial differential equations (PDEs) of the continuous
(infinite-dimensional) time and space model of the physical system into ordinary
differential equations (ODEs) with a finite number of parameters.

The simplifying assumptions in this domain are:

• all objects are rigid bodies;

• all interactions between rigid bodies take place via kinematic pairs (joints),
springs and dampers.

In figure 2.1 it is shown a single degree of freedom system (SDOF) of a lumped
elements model and obviously the following considerations can be extended to a multi
degree of freedom one (MDOF). The various elements are so treated like perfect ones
and the deriving mathematical model is the following (fig 2.1):

Let:
k = spring stiffness constant [N/m]
c = damping coefficient (of a viscous damper) [Ns/m]
m = mass of the element (or equivalent one) [kg]
F = External force [N ]

Then, the equilibrium of all forces brings to:

mẍ+ cẋ+ kx = F (2.1)

Assuming the external force equal to zero we obtain a free-vibration case other-
wise the problem refers to a forced one. The solution of this equation gives the law
of motion of the body.

If we know the mass and stiffness of the system we can determine the undamped
natural frequency that is the frequency at which the system will vibrate once it is
set in motion by an initial disturbance, using the following formula.

fn =
1

2π

√

k

m
[Hz] (2.2)
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2 – Mechanical vibrations

Note that the angular frequency ωn(ωn = 2πfn) with the units of radians per
second is often used in equations because it simplifies the equations, but is normally
converted to “standard” frequency (units of Hz or equivalently cycles per second)
when stating the frequency of a system.

Every vibrating system has one or more natural frequencies that it will vibrate
at once if it is disturbed. This simple relation can be used to understand in general
what will happen to a more complex system once we add mass or stiffness. For
example, the above formula explains why when a car or truck is fully loaded the
suspension will feel “softer” than unloaded because the mass has increased and
therefore reduced the natural frequency of the system.

Others important definitions in vibrations field are:

• Critical damping cc = 2
√
km : it is the value of the damping where the system

no longer oscillates (if the damping is increased past critical damping the
system is called overdamped).

• Damping ratio (damping factor or % critical damping) ζ =
c

2
√
km

: it is the

ratio of the actual damping over the amount of damping required to reach
critical damping.

• Phase shift φ : it is the shift between the phase of the exciting force and the
system response.

• ω : it is the applied force angular frequency (as for the system, f is used for the
“standard” one ) : the frequencies of the external force acting on the system .

With this new assumption the equilibrium equation (2.1) becomes:

ẍ+ 2ζωẋ+ ω2x = F (2.3)

It is also important to notice that usually these systems are linearized and doing
so it is possible to use the superposition principle1.

The solution of the homogeneous equation (that means of the unforced system)
of this mass-spring-damper model brings to:

x(t) = e−ζωt(C1e
iωt
√

1−ζ2

+ C2e
−iωt
√

1−ζ2

) (2.4)

That can also be written as:

1In physics and systems theory, the superposition principle, also known as superposition prop-
erty, states that, for all linear systems, the net response at a given place and time caused by
two or more stimuli is the sum of the responses which would have been caused by each stimulus
individually
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2 – Mechanical vibrations

x(t) = Xe−ζωt cos
(

√

1− ζ2ωnt− φ
)

(2.5)

2.2.1 Damped and undamped natural frequencies

Figure 2.2. undamped oscillaory motion

In figure 2.2 it is represented the plot of a Simple harmonic motion, that means
that is neither driven nor damped. Its motion is periodic-repeating itself in a sinu-
soidal fashion with constant amplitude.

A Simple harmonic motion SHM can serve as a mathematical model of a variety
of motions, such as a pendulum with small amplitudes and a mass on a spring. It
also provides the basis of the characterization of more complicated motions through
the techniques of Fourier analysis.

In addition to its amplitude, the motion of a simple harmonic oscillator is char-
acterized by its period T, the time for a single oscillation, its frequency, f , the

reciprocal of the period f =
1

T
(i.e. the number of cycles per unit time), and its

phase, φ, which determines the starting point on the sine wave. The period and
frequency are constants determined by the overall system, while the amplitude and
phase are determined by the initial conditions (position and velocity) of the system.

In practice all systems are damped, which means that the energy is dissipated,
and the amplitude of the motion gradually gets smaller and smaller until it stops
altogether.

Damping can be therefore introduced in the model from various sources but is
hard to model accurately.

As aforementioned, one mathematical model is that of viscous damping in which
a force, that is proportional to the velocity of the mass and which opposes its motion,
is considered.
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2 – Mechanical vibrations

The major points to note from the solution equation (2.5) are the exponential
term and the cosine function:

• The exponential term defines how quickly the system “damps” down (the
larger the damping ratio, the quicker it damps to zero).

• The cosine function is the oscillating portion of the solution, but the frequency
of the oscillations is different from the undamped case.

As aforementioned the frequency in this case is called the “damped natural
frequency”, fd, and is related to the undamped natural frequency by the following
formula:

fd =
√

1− ζ2fn (2.6)

Equation (2.6) is clearly shows how the damped natural frequency is less than the
undamped natural frequency, but it important to remember that for many practical
cases the damping ratio is relatively small and hence the difference is negligible.
Therefore the damped and undamped descriptions are often dropped when stating
the natural frequency (e.g. with 0.1 damping ratio, the damped natural frequency
is only 1 % less than the undamped).

The plots in figure 2.3 present how 0.1 and 0.3 damping ratios effect how the sys-
tem will “ring” down over time. What is often done in practice is to experimentally
measure the free vibration after an impact (for example by a hammer) and then
determine the natural frequency of the system by measuring the rate of oscillation
as well as the damping ratio by measuring the rate of decay. The natural frequency
and damping ratio are not important only in free vibration, but also characterize
how a system will behave under forced vibration.

2.2.2 Forced Vibrations

In this section it will be described the behavior of the spring mass damper model
when an harmonic force is added in the form below. Such a force could be generated,
for example, by a rotating imbalance, where, obviously, the angular frequency of the
applied force would be the angular velocity of the rotational motion.

The force expression in this last case is:

F = F0 cos (2πft) (2.7)

If we again sum the forces on the mass we get the following ordinary differential
equation:

mẍ+ cẋ+ kx = F0 cos (2πft) (2.8)
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2 – Mechanical vibrations

Figure 2.3. damped oscillaory motion with different damping ratios ζ

where in (2.8) 2πf = ω with ω = applied force angular frequency.
The steady state solution of this problem can be written as: 2

x(t) = X cos (2πft− φ) (2.9)

The result states that the mass will oscillate at the same frequency, f, of the
applied force, but with a phase shift φ.

The amplitude of the vibration “X” is defined by the following formula:

X =
F0

k

1
√

(1− r2)2 + (2ζr)2
. (2.10)

Where “r” is defined as the ratio of the harmonic force frequency over the un-

damped natural frequency of the mass-spring-damper model : r =
f

fn

2A system in a steady state has numerous properties that are unchanging in time. This implies

that for any property p of the system, the partial derivative with respect to time is zero:
∂p

∂t
= 0
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2 – Mechanical vibrations

Finally the phase shift , φ, is defined by the following formula.

φ = arctan

(

2ζr

1− r2

)

. (2.11)

Figure 2.4. Forced Vibration Response

The plot of these functions, called “the frequency response of the system”,
presents one of the most important features in forced vibration.

In a lightly damped system when the forcing frequency nears the natural fre-
quency (r ≈ 1) the amplitude of the vibration can get extremely high.

This phenomenon is called resonance (subsequently the natural frequency of a
system is often referred to as the resonant frequency). In rotor bearing systems any
rotational speed that excites a resonant frequency is referred to as a critical speed.

If resonance occurs in a mechanical system it can be very harmful-leading to
eventual failure of the system. Consequently, one of the major reasons for vibration
analysis is to predict when this type of resonance may occur and then to determine
what steps to take to prevent it from occurring.

As the amplitude plot shows, adding damping can significantly reduce the mag-
nitude of the vibration.

Also, the magnitude can be reduced if the natural frequency can be shifted away
from the forcing frequency by changing the stiffness or mass of the system.

If the system cannot be changed, perhaps the forcing frequency can be shifted
(for example, changing the speed of the machine generating the force).

The following statements hold always good in vibration studies:

• At a given frequency ratio, the amplitude of the vibration, X, is directly pro-
portional to the amplitude of the force F0 (e.g. if you double the force, the
vibration doubles)

12



2 – Mechanical vibrations

• With little or no damping, the vibration is in phase with the forcing frequency
when the frequency ratio r ≤ 1 and 180 degrees out of phase when the fre-
quency ratio r ≥ 1

• When r ≪ 1 the amplitude is just the deflection of the spring under the static
force F0. This deflection is called the static deflection δst. Hence, when r ≪ 1
the effects of the damper and the mass are minimal.

• When r ≫ 1 the amplitude of the vibration is actually less than the static
deflection δst. In this region the force generated by the mass (F = ma) is
dominating because the acceleration seen by the mass increases with the fre-
quency. Since the deflection seen in the spring, X, is reduced in this region, the
force transmitted by the spring (F = kx) to the base is reduced. Therefore the
mass-spring-damper system is isolating the harmonic force from the mounting
base-referred to as vibration isolation. Interestingly, more damping actually
reduces the effects of vibration isolation when r ≫ 1 because the damping
force (F = cv) is also transmitted to the base.

2.2.3 Mechanical Resonance

Mechanical resonance is the tendency of a mechanical system to absorb more en-
ergy when the frequency of its oscillations matches the system natural frequency
of vibration (its resonance frequency or resonant frequency) than it does at other
frequencies.

It may cause violent swaying motions and even catastrophic failure in improperly
constructed structures including bridges, buildings, and airplanes, a phenomenon
known as resonance disaster.

There could be many sources for vibration.
If any source creates a vibration frequency that is equal to or nearly equal to a

part resonant frequency, that part will resonate.
For example, the vibrations of even a fairly well-balanced part can be magnified

by the structure in which it is assembled. Anyone who has driven an automobile
knows that it will vibrate more at a certain speed than at others. According to the
formula, centrifugal force varies as the square of rpm.

The vibration amplitude not only increases with rpm, but it suddenly rises at
a much higher rate when passing through the responding part resonance or critical
speed and then smoothed out as the rpm passes beyond.

This results from vibration at a frequency from any source, such as misalignment,
unbalance, gearmesh, electrical hum, etc., that matches the natural frequency or
resonant frequency of either a part or total spring system.

To visualize what happens, consider a simple flat spring with a weight mounted
at one end (similar to a diving board). When the spring is deflected, by pulling down
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2 – Mechanical vibrations

on the weight, and then let it go, the spring oscillates and the spring-and-weight
system vibrates at its natural frequency.

If only a single impulse is given, the amplitude of the vibration usually progres-
sively decreases with time, due to friction and other energy losses.

If for continuous periodic impulses, the timing or direction of the impulses did
not coincide with its natural frequency, the result would be an out-of-tune vibration
that does not build up.

If, on the other hand, the timing and direction of the impulses coincided with the
spring natural frequency, the result would be a tuned vibration and a progressively
larger and larger amplitude with each added cycle.

The amplitude finally reaches a maximum (due to friction or viscous damping
forces).

Resonance magnifies the amplitude of vibrations in relatively undamped systems
anywhere from 5 to 10 and sometimes 20 times over that of non-resonant vibrations.

Damping often reduces the magnification, but even with this reduction, the am-
plitude is still large enough to cause excessive wear and sometimes even fracture.

Typically, systems have either more damping or are only partially resonant, with
the resulting magnification for example, being only 2 to 5 times what it would have
been if completely non-resonant.

Resonance is simple to understand if you view the spring and mass as energy
storage elements-with the mass storing kinetic energy and the spring storing poten-
tial energy. When the mass and spring have no force acting on them they transfer
energy back and forth at a rate equal to the natural frequency. In other words, if
energy is to be efficiently pumped into both the mass and spring the energy source
needs to feed the energy in at a rate equal to the natural frequency.

The damper, instead of storing energy, dissipates energy. Since the damping force
is proportional to the velocity, the more the motion, the more the damper dissipates
the energy.

Therefore a point will come when the energy dissipated by the damper will
equal the energy being fed in by the force. At this point, the system has reached its
maximum amplitude and will continue to vibrate at this level as long as the force
applied stays the same.

If no damping exists, there is nothing to dissipate the energy and therefore,
theoretically, the motion will continue to grow on into infinity.

2.3 Frequency response or modal model

In this section a brief description of the Frequency response or modal model will be
given, but we will not focus too much on this because only basic knowledge will be
necessary to understand obtained results for the system under study.
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Figure 2.5. Frequency response model

The solution of a vibration problem can be seen as an input/output relation
where the force is the input and the output is the vibration.

If we represent the force and vibration in the frequency domain (magnitude and
phase) we can write the following relation:

X(ω) = H(ω) ∗ F (ω) (2.12)

where the following mathematical notation is used:

• X(ω) : Fourier Trasform3 of the system response (output signal).

• F (ω) : Fourier Trasform of the Applied external forces (input signal).

• H(ω) : Frequency Response Function (FRF) 4.

All these variables are represented with complex numbers and so in general
composed by two parts, a real component and an imaginary one or they can be

3In mathematics, the Fourier transform is the operation that decomposes a signal into its
constituent frequencies.Actually it takes a signal, as a function of time (time domain), and breaks it
down into its harmonic components as a function of frequency (frequency domain). More precisely,
the Fourier transform transforms one complex-valued function of a real variable (time in vibrational
studies) into another (frequency in vibrational studies)

4Frequency Response Function (FRF) is the measure of any system output spectrum in response
to an input signal.
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2 – Mechanical vibrations

represented by their magnitude and their phase (this last one is more representative
in vibrational matters).

For the single DOF system mass-spring-damper the FRF is described by the
following complex quantity:

H(ω) =
X(ω)

F (ω)
=

1

k
√

(1− r2)2 + i(2ζr)2
where r =

f

fn

=
ω

ωn

(2.13)

As aforementioned FRF can be also represented with its magnitude and phase
components:

• The magnitude formula was presented earlier and is:

|H(ω)| =
∣

∣

∣

∣

∣

X(ω)

F (ω)

∣

∣

∣

∣

∣

=

1

k
√

(1− r2)2 + (2ζr)2
(2.14)

• The phase formula is :

Ph(H(ω)) = arctan
2ζr

1− r2
(2.15)

Figure 2.3 shows the resulting vibrations for a mass-spring-damper system with
a mass of 1 kg, spring stiffness of 1.93 Nmm and a damping ratio of 0.1.

It also shows the time domain representation of the resulting vibration. This is
done by performing an inverse Fourier Transform that converts frequency domain
data to time domain. In practice, this is rarely done because the frequency spectrum
provides all the necessary information.

The frequency response function (FRF) does not necessarily have to be calculated
from the knowledge of the mass, damping, and stiffness of the system, but can be
experimentally measured .

For example, if a known force is applied, the frequency sweeped and then the
resulting vibration measured , the frequency response function can be calculated
and the system characterized.

This technique is used in the field of experimental modal analysis to determine
the vibration characteristics of a structure and obviosly to verify the accuracy of the
mathematical model implemented.
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2.4 Multiple degrees of freedom models

Clearly real life problems can’t be studied often with a SDOF model but to reach
a certain accuracy of results MDOF multiple degree of freedom models have been
studied and implemented.

This last matter will not be handled in this paper but a few lectures on this issue
are here recommended for a better understanding of the work that is treated in next
chapters.

It is only remembered that a general MDOF mathematical model can always be
expressed like this:

[M ] {ẍ}+ [C] {ẋ}+ [K] {x} = {f} (2.16)

where symmetrical matrices [M ], [C] and [K] and vectors {x} and {f} represents:

• [M ] : Mass matrix

• [C] : Damping matrix

• [K] : Stiffness matrix

• {x} : displacements vector

• {f} : force vector

Moreover it is important to notice that the dimension of the complete mathe-
matical problem is equal to the number N of DOF considered, that means that the
order of all the matrices is N x N and for the vectors N x 1.

Actually we study an infinite physical space, whose basis has infinite members,
with a mathematical subspace whose basis consists of those N mode shapes taken
into consideration.

The mathematical problem is an eigenvalues one, where the natural frequen-
cies of the real system are provided exactly by the eigenvalues of the mathemat-
ical one (i.e. ω2

1,ω
2
2 ... ω2

N) and eigenvectors represent the mode shapes
[

φ
]

=
[{

φ1

}{

φ2

}

· · ·
{

φN

}]

.
In solving these kinds of problems lots of different mathematical ways have been

followed; because of the big size of these problems (as aforementioned a real system
has theoretically ∞ DOF ) the focus of the solver is on the reduction of it without
big losses in accuracy and this mathematical operation is called modal truncation.

We considered only those modes shapes whose natural frequencies are in the
range of interest of our problem, and mainly mechanical one is that of low-medium
frequencies.
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A big mathematical system to solve leads to more expensive computational prob-
lems that means long resolution times.

Furthermore lots of numerical problems can derived from a bad formulated math-
ematical model but, as aforementioned, this kind of issues will be not discussed in
this paper.

2.4.1 FRF in multiple degrees of freedom systems

In this short section the definition of the frequency response function for a multiple
degrees of freedom system is pointed out.

For these models the FRF, as well as the others quantities, is described by a N
x N matrix [H(ω)], where N is the number of degree of freedom considered.

The Hij(ω) component represents “the response of the i-degree of freedom pro-
voked by an unit harmonic force on the j-degree of freedom ” and in a damped model
case is expressed by the following relation:

Hij(w) =
N
∑

r=1

φirφjr

(ω2
nr
− ω2) + i(2ζrωnr

ω)
(2.17)

where

• φkl : is the k-component of the l-mode shape.

• ωnr
: is the r natural fraquency.

• ζr : is the r-damping ratio.

2.5 Finite Element method FEM

The finite element method (FEM) is a numerical technique for finding approximate
solutions of partial differential equations (PDE) as well as of integral equations.

The solution approach is based either on eliminating the differential equation
completely (steady state problems), or rendering the PDE into an approximating
system of ordinary differential equations, which are then numerically integrated
using standard techniques such as Euler method, Runge-Kutta, etc.

The goal of modal analysis in structural mechanics is to determine the natural
mode shapes and frequencies of the studied system during free vibration, that is
its modal properties, in order to have the possibility of studying the response to
whatever kind of exciting force.

It is common to use the finite element method (FEM) to perform this analy-
sis because, like other calculations using the FEM, the object analyzed can have
arbitrary shape and the results of the calculations are often accurate enough.
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Figure 2.6. discretized model and FEM analysis results

The types of equations which arise from modal analysis are those typical of
eigensystems as outlined before.

It is also possible to test a physical object to determine its natural frequencies
and mode shapes. This is called an Experimental Modal Analysis.

The results of the physical test can be used to calibrate a finite element model,
thus establishing if the underlying assumptions made were correct (for example, cor-
rect material properties and boundary conditions were used) and using for example
an updating technique it is possible to improve the Finite element model.

2.5.1 Geometry mesh

In finite elements analysis the system geometry is broken into discrete elements
interconnected at discrete node points; this operation is called mesh that therefore
is a discretization of a continuous domain into a set of discrete sub-domains, usually
called elements (see fig. 2.6).

The governing equations are solved in these sub-domains and must satisfy the
boundary conditions (coherence equations) due to the close elements or to the con-
strains and the forces acting on the system.

It is also important to notice that using an appropriate mesh yields to less
computationally expensive problems, thickening the discretization in those parts
that are more complicated or important thus arising the accuracy (increasing the
number of DOF) only there (see fig: 2.7).
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Figure 2.7. 2D geometry mesh: mesh is denser around the object of interest

2.6 Spectral Analysis

Spectral methods are a class of techniques used in applied mathematics and scientific
computing to numerically solve certain partial differential equations (PDEs), often
involving the use of the Fast Fourier Transform. Where applicable, spectral methods
have excellent error properties, with the so called “exponential convergence” being
the fastest possible.

The spectral method and the finite element method are closely related and built
on the same ideas; the main difference between them is that the spectral method
approximates the solution as linear combination of continuous functions that are
generally nonzero over the domain of solution (usually sinusoids or Chebyshev poly-
nomials), while the finite element method approximates the solution as a linear
combination of piecewise functions that are nonzero on small subdomains.

Because of this, the spectral method takes on a global approach while the finite
element method consists of a local approach. This is part of why the spectral method
works best when the solution is smooth.

Moreover in the spectral method the basis of the mathematical space doesn’t
consist of the eigenvectors5 of a mathematical sub-space resulting from the finite
number of DOF used, as in the FEM model, but contains some eigen-functions of
the total, infinite mathematical space and doing so it introduces less error in the
formulation of the problem.

For these reasons a spectral model can be considered a particular case of a modal
model that can be used only for simple cases and simple geometries.

5in large problems only some eigenvectors of the sub-space are considered, using a modal trun-

cation analysis, already discussed in section 2.4, and decreasing the accuracy of the model.
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2 – Mechanical vibrations

It is also important to notice that in vibration problems this last method has
not encountered yet good results, apart from few simple cases.

Notwithstanding the last consideration, this last mathematical method will be
used to model rails, sleepers and underlying structure of the trail-way studied, using
a mathematical space whose basis is given by the Euler-Bernoulli beam theory or
Timoshenko one.
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Chapter 3

Mathematical Model definition

3.1 Substructuring Techniques

3.1.1 Substructuring analysis benefits

In order to have the possibility of studying a vehicle-track system dynamic response
it is important to develop a good analytical model as well detailed as simple to solve
with a low cost computational problems.

The goals to achieve to obtain a good model are:

• build up a good mathematic model whose governing equations reflect well the
real system and are as simple as possible to solve;

• obtain a modular model, that is obtaining a model in which all single compo-
nents are independent of each other. This will permit model future improve-
ments or developments without the need of building up a new one;

• finally the model must obviously be usefull for the analysis or design of track
or vehicle elements.

As anticipated in the introduction chapter 1.1, the vehicle model has been con-
sidered like spatial (or physical) with a lumped element model approach, with the
inertial properties centered in the centers of gravity of the wheel-sets, of the bogies
and of the carriage. This choice is due to the fact that the elasticity properties of
the vehicle elements have a small effect on the vertical dynamics of the medium
frequencies.

For this reason it is possible to consider the elements like rigid bodies with point
of reference coordinates in their modeling.

Thanks to this modeling choice a sensible reduction of the DOF of the problem
was possible without a relevant loss in accuracy regarding vertical dynamics.
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3 – Mathematical Model definition

Figure 3.1. Substructuring of a conventional track over ballast. Substructures:
Rails and sleepers over ballast

The track is a structure whose dimensions are bigger than those of the vehicle.
It is a continuous system with a considerable length; for this reason the dimension
of its mathematical model could be problematic because it is necessary to correctly
represent the deformation of whatever point on it.

To obtain good results FEM programs could be used but this would lead to high
cost computationally problems.

A very important simplification of the problem can be obtained when constant
properties are considered for the ballast along the track-way or at least if it is
modelled through the use of discrete lumped elements.

So, from a longitudinal point of view, the system is composed by two rails sup-
ported by equidistant sleepers.

Considering then that rails and sleepers can be modelled as simple beams, a
great simplification of the model can be achieved, this because of the simplicity of
these elements and also because in this way their dynamic characterization is the
same.

A substructuring approach leads so to considerable benefits, also in the develop-
ment of the problem, because it permits to treat independently the different struc-
tures, using also more than one of the methods introduced in the previous chapter,
and to assembly the total model only in the end, thanks to appropriate constraint
equations.

3.1.2 Modal reduction

After obtaining the dynamical properties of the different structures another impor-
tant step is to reduce the dynamic model order, that is to eliminate some degrees
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3 – Mathematical Model definition

of freedom of the different structures, doing it in spatial or modal coordinates, ob-
viously depending on which mathematical model have been chosen for each one.

To make this reduction first of all it must be considered in which range of fre-
quencies the structure will be mainly excited from applied forces, in order to operate
with a modal truncation analysis, because this is the range of natural frequencies
from which the total response will depend on.

After this, surely others considerations must be kept in mind in operating a DOF
reduction and lots of methods have been developed for this, but they will not be
treated here for obvious reasons.

3.1.3 Chosen model

Figure 3.2. Dynamic model of the interactive vehicle/track-structure system

In figure 3.2 it is possible to see the general form of the model used1 for the
vehicle-track-structure system where all the interconnection between different struc-
tures and also the reference system are shown.

1Actually the vehicle and also other subparts can vary in dimension depending on the level of
system complexity required
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It should be noticed already that the program has been developed with the
possibility of changing the complexity of this model, and for this reason the user
is asked to chose the number of degrees of freedom for the various parts of the
vehicle/es 2 as well as the number of sleepers and the number of modal shapes with
which modeling the various beams etc. etc.

Finally it is reminded that a modular approach was used in this work and so the
program offers also the possibility of getting the problem more complicate, giving
the possibility of assigning to the vehicle more degrees of freedom of those necessary
in this specific work, this made in case future developments would need them.

All of this has been done to permit an increasing in the future of the DOF of
rails and sleepers, for instance in order to studying also transversal vibrations.

3.2 Analysis of the Substructures

Figure 3.3. global reference system

In next sections the dynamic governing equations of each structure of the total
system are developed. First of all are described the substructures studied with a
modal approach, more precisely a spectral one, that in this case are the sleepers
and the rails; the following describes those ones modelled with physical coordinates,
here, vehicle components.

2it is also possible to run less computationally expensive simulations with only half of the total
vehicle as well as one quarter of the same, removing DOF from the various parts
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Finally the constraint equations of the interconnection elements between different
parts are developed.

In figure 3.3 the global reference system is shown. During the course of this chap-
ter the meaning of all necessary variables will be defined but it is here anticipated
that in general:

• Superscripts of the main variable stands for the element to which the property
refers to or that applies it.

• Subscripts stand for the numeration of the various components related to each
other.

• Terms in brackets, obviously ,stand for the function independent variables.

For instance, F p
r,s(t) is the time dependent load that p-rail-pad applies on r-rail

from s-sleeper.

3.3 Elements studied with modal coordinates

In this thesis work, as aforementioned , a spectral model, that it is a particular case
of a modal approach, was used for rails and sleepers.

Their model scheme are shown in figures 3.4 3.5.

3.3.1 Rails

In figure 3.4(a) it is shown a single rail placed on different sleepers with a two
wheelsets bogie over it. In figure 3.4(b) it is shown a possible deformation of the rail
due to actuating forces.

The displacement of the neutral axis in respect of the unloaded equilibrium
position of this element is defined by the variable vr(x,t), where x is the longitudinal
distance of the considered section from one of the rail extremes and t the time.

The positive direction of the x-axis in given by the train direction of motion.
The forces that produce the rail deformation arise from the rail-sleepers and

rail-vehicle interactions and more exactly from the railpads3 and wheels.
The following mathematical notation will be used for these contact forces:

• F p
r,s(t) : is the force that p-railpad applies on rail r from sleeper s and it is

composed by two components:

3they are usually called railway fastening setting pads but to be brief they will be here addressed
to with “railpads”
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(a)

(b)

Figure 3.4. (a) graphical representation of a two wheelset bogie on a conventional
track over ballast;(b) rail free body graphic and acting forces

– a linear one, given by the stiffness force and a damping one;

– a non linear that is user-choice.

• F c
r,a(t) : is the contact force on r -rail arising from the respective wheel of the

a-wheelset that has been modelled with an hertzian contact force.

As illustrated in figure 3.4(b) all the forces have been considered positive if
upward. The application points of the forces correspond to the connection points
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of the rails with the others substructures. The x-coordinate of railpad connection
points doesn’t depend on time t and coincides with relative sleeper x-position.

The distance between the application point of this force and the left extreme
of the rail is given by xS

s variable, where superscript S suggests that it refers to
a sleeper connection point and subscript s points out which one it is considered
assuming values from 1 to Ns that is the total number of sleepers.

On the contrary the contact position between wheel and rail depends on time t
and is function of train velocity V. The distance from the left rail extreme and the
application point of the relative force is:

xW
a (t) = xW

a0
+

∫ t

0

V (t)dt (3.1)

where:

• superscript W reminds that x refers to a wheelset coordinate ;

• subindex a refers to which wheelset is considered and assumes values from 1
to Nax, number of vehicle wheelsets;

• xW
a0

is the initial position (t = 0) of the a-wheelset.

For these reasons the rail deformation is in general a function of x distance and
time t, while in connection coordinates it is only function of t and is given by:

• vr,a(t) for a-wheel and r -rail contact point;

• vr,Nax+s(t) for r -rail and s-sleeper contact point4.

3.3.2 Sleepers

As for the rail, in figure 3.5(a) it is shown a singular sleeper placed over the ballast
that supports two transversal rails, symmetrically placed over it.

The vertical deflection of the s-sleeper is given by us(y,t) function, where y
transversal coordinate of the system is positive in the leftward sense relative to the
Vehicle direction of motion.

The forces acting on the sleeper isolated from the other substructures are shown
in figure 3.5(b) and are:

• F p
s,r(t) (r = 1,2) : this is the force caused by the rail r and transmitted through

railpads (superscript p) to sleeper s for each rail r ;

4in this way there will be Nax + Ns rail deformation v values for each time t and the pads
numeration will follow continuously the wheels one.
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(a)

(b)

Figure 3.5. (a) graphical representation of a sleeper on a convencional track over
ballast;(b) rail free body graphic and acting forces

• F b
s (y,t) : this represents the pressure distribution due to the presence of the

ballast function of the y transversal position and of the time t.

The second forces have a difficult behaviuor to model because the ballast proper-
ties are usually non-linear and also not well known. A cb viscous damping coefficient
more a non-linear user choice function have been used to model the damping and
non linear properties added by the ballast.

Whereas for the stiffness properties two different mathematical models have been
implemented in the program:
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1. the use of Winkler Foundation model5 (see Annex B ) ;

2. a simple distribution of discrete springs with a constant or variable k coeffi-
cient.

Figure 3.6. Sleeper over ballast model: discrete distribution of punctual forces
more eventual elastic Winkler Fundation

The forces due to rails interactions and transmitted through railpads are applied
at a constant yR

r position from the left sleeper extreme, positions that are so inde-
pendent from time t. Moreover these forces have the same module of those applied
to the rails through the railpad in figure 3.4, that is F P

s,r(t) = −F P
r,s(t) .

The complex of forces acting on the sleeper are illustrated in figure 3.6 where al
the single F b

s,r can include the stiffness component or not depending on the model
chosen by the user.

The deformation value is a time function and is given by:

• us,r(t) for connection points between rail r and sleeper s ;

• us,Nr+b(t) for the application point of punctual force F b
s,b(t) on sleeper s.

5this model can not be used when a case of vehicle-track-structure interaction is studied
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3.3.3 Underlying structure

When an interaction with an underlying structure is simulated, this last subpart is
modelled by its modal coordinates, that is its modal shapes and natural frequencies.

These properties can be obtained with a simple pinned-pinned beam (using an
Euler approach) or with a FEM simulation of the structure that obviously would
led to more accurate results.

Using a mono-dimensional approach with NBr degrees fo freedom means that
the structure would have only the possibility of a vertical displacement wBr(x,t) and
so the distribution of ballast forces represented in figure 3.6 would depend also from
this further displacement as illustrated in figure 3.7.

Figure 3.7. Sleeper over ballast on an underlying structure model

Doing so both sides of interconnection elements will move; at the bridge side it
moves of a y independent value wBr

s (t) while at the sleeper one of a y-dependent
value us(y,t).

3.3.4 Vibration mode shapes

Rails, sleepers and optional underlying structure dynamic behaviour equations, as
aforementioned , are introduced in the model through their modal coordinates using
a spectral approach. The mathematical relation between the modal coordinates and
physical ones is given by the modal transformation expressed, in equations (3.2),
(3.3) and (3.4) respectively for rails, sleepers and substructure:
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vr(x,t) =
Nmr
∑

m=−1

φm(x)qR
r,m(t)6 (3.2)

us(y,t) =
Nms
∑

n=−1

ψn(y)qS
s,n(t)6 (3.3)

wb(x,t) =

NmBr
∑

l=1

ϕl(x)q
Br
l (t)7 (3.4)

where the used variables have the following meaning:

• φm(x) and qR
r,m represent respectively the mth-vibration shape for the un-

damped problem and the relative modal coordinate (amplitude) of the same
mode m of the rail r ;

• ψn(y) and qS
s,n represent respectively the nth-vibration shape for the undamped

problem and the relative modal coordinate (amplitude) of the same mode n
of the sleeper s ;

• ϕl(x) and qS
l represent respectively the lth-vibration shape for the undamped

problem and the relative modal coordinate (amplitude) of the same mode l of
the underlying structure;

It is very important to notice that, in both cases, modes of vibration φm(x),
ψm(y) and ϕl(x) are function only of the space variable and, considering an Euler-
Bernoulli theory, depend only on the main length of the structure modelled as a
beam; for this reason their expression is the same for every rail or sleeper considered
and do not depend on beam physical properties.

On the other hand modal coordinates qR
r,m, qS

s,n and qS
l depend only on the t time

variable and doing so the problem has been splitted in two independent parts, using
the separation of variables mathematic method.

Watching carefully equations (3.2), (3.3) and (3.4) it can be seen what afore-
mentioned in section 2.6, that the function space of rails, sleepers or underlying
structure possible deformations can be described using a mathematical basis made
by the respective mode shapes.

6m and n numerations start from -1 in free-free beam case whereas in the continuous one they
start from 0 as described later in this subsection

7in this last case the beam can’t have rigid body modes
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It will be sufficient to linearly combine the basis members, using appropriate
coefficients, to obtain a representation of the total space8, and in the studied system
these coefficients are the modal coordinates.

It is important to notice that a physical space basis would have an infinite order
but using a modal truncation analysis only Nmr, Nms and NmBr members (modes)
of the total infinite basis are used for rails, sleepers and bridge, respectively.

Notice that this mathematical choice is possible because in reality only a finite
number of vibration modes contributes to the system response and generally in
mechanical systems these are those at low frequencies.

System range of interest is more or less from 0 to maximum 4000 Hz and so, in
the model here considered, only those modes whose natural frequencies fall in this
range are taken into consideration.

(a) (b)

Figure 3.8. First four mode shapes for a free-free constrained monodimensional
beam, 2 rigid body modes (-1 & 0) and 2 flexural ones (1 & 2)

To obtain these mode shapes lots of mathematical models have been developed,
analytical, numerical and also experimental ones.

Generally, vibration modes are divided in two categories:

• rigid body modes

• flexural modes

8In mathematics, a basis function is an element of a particular basis for a function space. Every
function, in the function space, can be represented as a linear combination of the basis functions,
just as every vector in a vector space can be represented as a linear combination of the basis
vectors.
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In this thesis work, both an Euler-Bernoulli approach and a Timoshenko one have
been used to obtain Rails and sleepers mode shapes, and in addition two different
boundary conditions (B.C.) have been implemented for each beam theory :

1. free-free beam boundary conditions

2. continuous beam boundary conditions

Comparisons of the results have been analyzed as described in later chapters and
in general it is important to notice that, especially in the rails case, both kinds of
B.C. give rise to significant results only away from extremes, this due to obvious
reasons.

In figure 3.8(a) the first four modes of a free-free constrained beam are shown,
and in figure 3.8(b) are plotted the respective functions calculated with matlab.

This beam theory, with both boundary conditions models are carefully explained
in Annex A Here it is only remembered that for a continuous monodimensional beam
only one of the two rigid body modes is possible, obviously the rigid translation.

In the system analyzed a free-free model is preferable for sleepers, that in fact do
not have constrains at the extremes, while the continuous one is better for rails to
prevent oscillating waves from turning back at the rigth extreme thus influencing rail
dynamics under the vehicle load (with a continuous model the wave would restart
from the left extreme and due to the damping effect it would fade away before
reaching the first wheelset of the train).

Concerning the mode shapes of the bridge a pinned-pinned beam has been used
where no rigid body modes are possible.

The numeration followed for these beam modes is:

• m = −1,0,...Nm for the free-free beam;

• m = 0,1,...Nm for the continuous beam;

• m = 1,...Nm for the pinned-pinned beam;

reserving, in doing so, the positive values for the flexure mode shapes.

Using a Real damping approach the mode shapes of the beam are obtained con-
sidering that they are the same that would have an undamped beam, and after
obtaining these modes a certain degree of damping will be introduced in the model
considering a constant modal damping coefficient for each vibration mode : ζm for
rails, ξn for sleepers and µl for the structure.
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3.3.5 Governing differential equations in modal coordinates

The governing equations of the dynamic behaviour of rth rail, sth sleeper and of the
bridge, considering natural vibration modes and modal damping, are:

q̈R
r,m(t) + 2ζmλmq̇

R
r,m(t) + λ2

mq
R
r,m(t) = fR

r,m(t) where m = −19,0,1,...,Nmr (3.5)

q̈S
s,n(t) + 2ξnωnq̇

S
s,n(t) + ω2

nq
S
s,n(t) = fS

s,n(t) where n = −19,0,1,...,Nms (3.6)

q̈Br
l (t) + 2µlτlq̇

Br
l (t) + τ 2

l q
Br
l (t) = fBr

l (t) where l = 1,...,NmBr (3.7)

where the meaning of all used variables is:

• λm, ωn and τl are respectively the mth rails natural angular frequency, the nth
sleepers and the lth underlying structure one;

• ζm, ξn and µ are the modal damping coefficients relative to the mth rail mode
shape, to the nth of the sleepers and to the lth of the underlying structure;

• fR
r,m(t), fR

r,m(t) and fR
l (t) are the modal forces relative to the mth rail mode

shape, to the nth sleeper mode and to the lth mode of the underlying structure;

fR
r,m(t), fR

r,m(t) and fBr
l (t) modal forces can be obtained from those deriving from

the wheel contact, the railpads and the ballast using the modal transformations
defined by equations (3.8) (3.9) (3.10)

fR
r,m(t) =

Nax
∑

a=1

F c
r,a(t)φm(xW

a (t)) +
Ns
∑

s=1

F p
r,s(t)φm(xS

s ) (3.8)

fS
s,n(t) =

Nr
∑

r=1

F p
s,r(t)ψn(yR

r ) +

Nb
∑

b=1

F b
s,b(t)ψn(yS

b ) (3.9)

fBr
l (t) =

Ns
∑

s=1

F b′

s,br(t)ϕl(x
Br
s ) (3.10)

where:

• φ(xW
a (t)), φm(xS

s ) are the values of the mth rail mode evaluated in the appli-
cation points of the two forces F c

r,a(t) and F p
r,s(t) ;

9here also m and n numerations start from -1 in free-free beam case whereas in the continuous
one they start from 0
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• ψ(yR
r ) and ψm(yS

b ) are the values of the nth sleeper mode evaluated in the
application points of the two forces F p

s,r(t) and F b
s,b(t) ;

• ϕl(x
Br
s ) is the value of the l -mode of the underlying structure evaluated in

application points of F b′

s,b(t) forces, that actually coincide with sleepers x-
positions.

In equation (3.10) the F b′

s,b(t) force acting on br -underlying structure point is the

sum of all the forces F b
s,b(t) exchanged between sleeper interconnection elements and

the structure; in fact the force deriving from a set of springs connected in parallel
is equal to the sum of the single forces.

With all these assumptions it can be built up a model for a convencional track
and for a specific case of Nr rails, Ns sleepers and an optional underlying structure,
there will be Nr differential equations systems for the rails represented by the (3.8)
equations system, Ns for the sleepers represented by the (3.9) and an optional last
system for the underlying structure (3.10).

3.4 Elements modelled with physical coordinates

In this section the vehicle modeling used in this track interaction study is described.
In these kinds of problems lots of vehicles types have been used and usually they

consist of a single bogie with two wheelsets that supports the weight of the Carriage
but, as it will be discussed in the program chapter, the software developed gives to
the user the possibility of choosing which model to use that, as a matter of fact, can
choose the number of any element as well as all the main properties of each one and
also their degrees of freedom.

Using a Lumped element approach all the elements of the vehicle ( Carriages, bo-
gies and sleepers ) have been treated like rigid bodies with a punctual mass centered
on the center of gravity; the suspensions have been modelled with linear springs and
viscous dampers place between wheelsets and bogies (primary suspensions ) and
between bogie and Carriage ( secondary suspensions ).

In figure 3.9 is shown a possible vehicle configuration with :

• 2-degrees of freedom carriage.

• 3-degrees of freedom bogie.

• 2-degrees of freedom wheelsets.

Considering that, studying only vertical dynamics, different carriages would not
interact with the others a total model could be considered that of 1 carriage (3 DOF),
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Figure 3.9. Rail Vehicle representation and lumped element modeling

2 bogies (3 DOF) and 4 sleepers (2 DOF) with a total of 12 primary suspensions
and 4 secondary ones.

With this consideration, figure 3.9 shows half of the total model and the program
gives also the possibility of studying only one quarter in order to reduce problem
size.

Notice that, in the future, it would be interesting to continue in developing the
program to permit the analysis of transversal dynamics and, for this reason, the
vehicle can already assume lots of others configurations that in this particular study
are useless but have been implemented anyway because of the modular approach
used.

Using the small displacement theory, the reference coordinates are punctual ones
and for the total vehicle case are illustrated in the following vector :

w(t) = [zW
1 ϑW

1 zW
2 ϑW

2 ... zB
1 ϑB

1 ϕB
1 ... zC

1 ϑC
1 ϕC

1 ] (3.11)

where:

• zW
a and ϑW

a are respectively the vertical displacement and the roll (rotation
around x-axis) of ath wheelset (a = 1,...Nax where Nax is the total number of
wheelsets);

• zB
bo, ϑ

B
bo and ϕB

bo are respectively the vertical displacement, the roll (the rotation
around x-axis) and the pitch (rotation around y-axis) of the bo-th bogie (bo =
1,...,Nbo where Nbo is the total number of bogies used in the model);
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• zC
ca, ϑ

C
ca and ϕC

ca are respectively the vertical displacement, the roll rotation
and the pitch one of the ca-th Carriage (ca = 1,...,Nca where Nca is the total
number of carriages used in the model that in general is one10);

The positive sense of displacements and rotations is that of the arrows illustrated
in figure 3.3.

3.4.1 Equation of motion

The equation of motion of the vehicle in matrix form is:

Mẅ + Dẇ + Kw = Fext + Fc (3.12)

where M, D and K are respectively the mass matrix, the viscous damping matrix
and the stiffness one; Fext is the external forces vector, like the weight and possible
suspensions non-linear components could be.

Finally Fc includes the forces acting over the DOF of the model due to the forces
transmitted in the contact between wheelsets and rails F c

a,1(t) and F c
a,2(t) that have

the same module and opposite verse of the forces acting on the rail in figure 3.4(b).

3.5 Constraint equations

In prior section total system coordinates, for all different substructures, have been
defined; at the same time also their governing equations of the dynamic behaviour
were established and all of this brings to a system of second order ordinary differ-
ential equation ODE.

To complete the model, as aforementioned , it is necessary to establish the in-
teraction relationships between the different subparts, that could be defined with
specific constraint equations.

In the track system, the contact between wheelsets and rails, the rails fixing
points and the ballast dynamic characteristics (apart from the linear stiffness if a
Winkler’s one is used ) will establish the relative movement constraints between
vehicle, rails, sleepers and bridge or undeformable ground.

It is important also to notice that the ballast mass contribution is considered
included in its dynamic properties while the platform is considered with an infinite
mass and infinitely rigid differently from the bridge that has its own mode shapes.

10for the half model case or the 1/4 one the number of carriages is 1 and its mass decreases (1/2
or 1/4) as well as for the bogie which mass halves in the 1/4 model case
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3.5.1 Wheel-rail contact

The mathematical model chosen for the wheel-rail contact is that called hertzian
contact. This model is actually well studied and tested for this kind of contact.

The hertzian contact mathematical expression used is :

F c
r,a(t) = kHδ

3/2
r,a (t) (3.13)

where the following notation was used:

• F c
r,a(t) is the contact force that acts between a-wheelset and r -rail;

• kH is the stiffness of the equivalent contact spring whose S.I. unit is [N/m3/2];

• δr,a(t) is the indentation or penetration distance between the bodies considered
as rigid ones and due to the deformation on the contact zone.

The value of kH depends on the elastic and geometrical properties of the contact
bodies.

The mathematical indentation expression is:

δr,a(t) = za,r(t)− vr,a(t)− irrr,a(t) (3.14)

where:

• za,r(t) is the contact point vertical position of the a-wheelset wheel which rests
on r -rail;

• va,r(t) = vr(x
W
a (t),t) is the vertical position of r -rail contact point with a-

wheelset wheel;

• irrr,a(t) is the irregularities component of a-wheelset wheel and r -rail contact
surface.

Wheel and rail imperfections are accounted for by an irregularity function, which
is defined as the vertical wheel displacement assuming no loss of contact and un-
deformable wheel and track. A characteristic type of irregularity is associated with
the wheelflat.

There are many types of irregularities functions irrr,a(t) that can be introduced
in the system, and it is also important to notice that rails imperfections actuate
only in discrete points (i.e.railway joints) or are distributed along the all path (i.e.
rail corrugation ) while wheels ones have obviously a periodic effect on the system;

Bearing in mind that a fresh flat is reshaped into a rounded flat shortly after being
formed, a cosine function to represent the irregularity function for a rounded flat is
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Figure 3.10. N lobes polyganal wheel examples

Figure 3.11. Rails imperfections examples

often adopted. In figures 3.10 3.11 some types of irregularities functions commonly
used respectively for rails and wheels are shown .

Let:

• H : irregularity amplitude;

• R : Wheel radius;

• Sign(x) : x-signus (-1, 0 or 1 depending on whether x is negative, zero, or
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positive.)

We can then write the mathematical expressions of the irregularities shown in
figures 3.10 3.11 as follows:

• N lobes polygonal wheel function:

irr(x) = Hcos

(

2πx

2πR/N

)

(3.15)

• Rail corrugation:

irr(x) = Hsin

(

2πx

L

)

(3.16)

• Railway joints:

irr(x) = H(1− Sign(x))sin

(

πx

L

)

(3.17)

In the track program a N lobes polygonal wheel function has been implemented
giving the possibility to the user to analyze the influence of wheel imperfections
on the studied system (a wheel with one globe could for instance represents an
eccentricity due to the wheel assembly).

3.5.2 Fastening elements: Railpads or fasteners

As aforementioned , sleepers and rails are connected together through fastenings or
rail pads.

Generally inertial properties of these elements are neglectables compared to those
of the other ones, so to model their influence on the system it is sufficient to consider
their elastic and damping characteristics sometimes also considering some kinds of
non-linear bahaviours.

The goal of modelling these interaction forces has been achieved using the fol-
lowing formula for railpads forces:

F p
s,r(t) = kpχs,r(t) + cpχ̇s,r(t) + hp(χs,r(t),χ̇s,r(t)) (3.18)

where:

• F p
s,r(t) is the interaction force between s-sleeper and r -rail;
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• χs,r(t),χ̇s,r(t) are the relative displacement and the velocity of s-sleeper and
r -rail force application points;

• hp(χs,r(t),χ̇s,r(t)) is a non-linear function that could represent possible non
linearities of this rail-sleeper interaction.

Relative displacement formula is :

χs,r(t) = vr,Nax+s(t)− us,r(t) = vr(x
S
s (t)− us(y

R
r ,t)) (3.19)

where in equation (3.19) vr(x
S
s (t)) and us(y

R
r ,t) are functions of the modal coor-

dinates through equations (3.2) and (3.3).

3.5.3 The ballast

The last component of the system is the ballast11. It forms the track-bed upon which
railway sleepers are laid.

It is typically made of crushed stone, although ballast has sometimes consisted
of other, less suitable materials and for all these reasons it represents a very difficult
sub-system to model.

Mainly in the program three different ways of modelling have been followed:

1. A discrete series of lumped elements have been used; the inertial properties are
neglectables and so as well as for the railpads the elements consist of a series
of springs and viscous dampers modelled with constant k and c coefficients.

2. To the same discrete series of elements above it has been given the possibility
of varying in the properties having each element a different ki stiffness and a
ci damping coefficient.

3. Finally a continuous constant Winkler stiffness12 has been implemented with
regard to the elastic properties and a discrete series of dampers has been used
to model damping effect.

In all three cases the non linear characteristics have been included in a last non
linear term, function of the displacements of forces application points.

The formula used for a general case of a track interaction with another structure
as a bridge may be, modelled with a discrete series of elements, is given below; it
is important to note that in the case of a normal ballast on the ground it would be

11The term ballast comes from a nautical term for the stones used to stabilize a ship.
12The Winkler model is obviously not available in bridge interaction program
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sufficient to consider it infinitely rigid (zero displacement at springs bootom side )
while using a Winkler approach removes the elastic term13.

F b
s,b(t) = kbυs,b(t) + cbυ̇s,b(t) + gb(υs,b(t),υ̇s,b(t)) (3.20)

where:

• F b
s,b(t) is the interaction force between the s-sleeper and the b-discrete point

below the ballast; it could represents the b-point of the bridge structure or of
the infinite rigid ground.

• kb represents the stiffness of the spring connected to sleeper s14.

• cb is the viscous damping coefficient used to model ballast damping.

• gp(υs,b(t),υ̇s,b(t)) is a non-linear function that represents ballast non linear
effects.

Relative displacement formula, in this second case, is :

νs,b(t) = us,Nr+b(t)− ws,b(t) = us(y
S
b (t)− wb(x

B
b ,t)) (3.21)

where in equation (3.21) us,Nr+b(t) and ws,b(t) and their time derivatives are
the displacements and the velocities of forces application points; it is important to
notice that using a mono-dimensional model for the bridge means having a constant
ws,b(t) for each s-sleeper (Nr + b)-point while is not so for the sleeper displacement
us,Nr+b(t) that may vary in different points of each s-sleeper being a function of
y-coordinate.

Finally, as aformentioned, for a common ballast over infinite rigid ground, it is
sufficient to require that the ws,b(t) term is equal to zero.

3.6 Time resolution dynamic model

In the following section a dynamic model of time resolution will be described.
The governing equations discussed in the previous section will be assembled and

the obtained system will be solved with some kind of numerical integration method.
The equations to assembly are:

• Dynamic behaviour governing equations

13In this case elastic component of the force would be introduced directly in the natural frequen-
cies of the sleepers

14in a Winkler model this term would disappear.
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1. Vehicle equations (3.12)

2. Rails equations (3.5)

3. Sleepers equations (3.6)

4. Underlying structure equations (3.7)

• Constraint equations of interconnection elements are instead:

1. wheel-rail contact equations (3.13)

2. Rail fasteners equations (3.18)

3. Ballast equations (3.20)

It is important to notice that instead of equations (3.13), (3.18) and (3.20), their
modal expressions, given by equations (3.8),(3.9) and (3.10) and obtained through
the modal trasformation, will be used in the total modal system.

The set of independent coordinates that describes univocally the movement of
whatever point of the total vehicle-track system consists of reference points w vector
of the vehicle and modal coordinates qR

r , qS
s and qBr vectors respectively for rails,

sleepers and the underlying structure.

the mathematical expressions of above-mentioned vectors are given by equations
(3.22), (3.23), (3.24) and (3.25) shown below:

w =


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← wheelset 1 vertical displacement
← wheelset 1 x-rotation
← wheelset 2 vertical displacement
← wheelset 2 x-rotation

← bogie 1 vertical displacement
← bogie 1 x-rotation
← bogie 1 y-rotation

← carriage 1 vertical displacement
← carriage 1 x-rotation
← carriage 1 y-rotation

(3.22)
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qR
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← rail r modal coordinate 0 (vertical displacement15)
← rail r modal coordinate 1
← rail r modal coordinate 2
← rail r modal coordinate 3

← rail r modal coordinate Nmr

(3.23)
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← sleeper s modal coordinate -1 (vertical displacement16)
← sleeper s modal coordinate 0 (rigid rotation)
← sleeper s modal coordinate 1
← sleeper s modal coordinate 2
← sleeper s modal coordinate 3

← sleeper s modal coordinate Nms

(3.24)

qBr =


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← Underlying structure modal coordinate 117

← Underlying structure coordinate 2
← Underlying structure coordinate 3

← Underlying structure coordinate Nms

(3.25)

This set of coordinates is then grouped in one vector x that defines univocally
all degrees of freedom associated with the dynamic interaction model.

x =
{

wT |qRT

1 qRT

2 |qST

1 . . .qST

Ns
|qBrT

}

(3.26)

In this way the total dimension of the problem can be calculated as follows:

DOF = (2 ·Nax + 3 ·Nbo + 3 ·Nca) +Nr ·Nmr +Ns ·Nms +NmBr (3.27)

15it is assumed that a continuous beam has been used to model the rail because in this case the
first and only rigid body mode is that of vertical displacement

16it is assumed that a free-free beam has been used to model the sleeper because in this case the
first rigid body mode is that of vertical displacement (-1) and the second is the rigid rotation (0)

17the underlying structure does not have rigid body modes because its model is that of pinned-
pinned beam
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where

• DOF = system total degrees of freedom ;

• Nax, Nbo, Nca are, respectively, the number of wheelsets, the number of bogies
and the number of carriages;

• Nr and Ns are respectively the number of rails (2) and the number of sleepers;

• Nmr, Nms and NmBr are the number of modes used to model rails, sleepers
and the underlying structure.

Notice finally that when the vehicle is made up with two or only one wheelset,
respectively half or a quarter of an entire vehicle, the number of DOF of each part
should be reduced to 3 for the bogie and 2 for the carriage in the half-vehicle case
and 2 for the bogie and 2 for the carriage in the 1/4 case, this due to obvious
considerations as it will be shown later on.

3.6.1 Mathematical system

The system of second order ordinary differential equations (second-order ODE) that
governs the dynamic behaviour of the total system can be expressed in matricial
form as follows:


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





M 0 0 0 ... 0 0
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(3.28)

46



3 – Mathematical Model definition

For short it is possible to refer to equation (3.28) as:

Mtotẍ(t) + Dtotẋ(t) + Ktotx(t) = f(x,t) (3.29)

There are many ways to solve this system and those used in this work will be
discussed in later chapters.

Once obtained the x vector at each instant of simulation time it is possible to
trace the values of all the quantities of interest for the design and the analysis of each
system part, as interaction forces and moments as well as main stress components.

Finally it is important to notice that in equations (3.28) and (3.29) the non-linear
components of the system affect only the right term f(x,t), that is the force one and
this leads to a great simplification in the resolution of the problem.

An usual form for solving such differential equations systems through numerical
integration is to consider a new set of equations whose dimension is the double of
the originary one.

In this way it is possible to rearrange the second order problem in a first order
one.

Let:

y =

{

wT ... qRT

1 qRT

2

... qST

1 · · ·qST

Ns
| ẇT ... q̇RT

1 q̇RT

2

... q̇ST

1 · · · q̇ST

Ns

}T

(3.30)
It is so possible to rewrite system (3.29) as:

[

Dtot Mtot

Mtot 0

]

ẏ(t) +

[

Ktot 0
0 -Mtot

]

y(t) =

{

f(x,t)
0

}

(3.31)

Thus the problem is a first order one and to solve it lots of numerical methods
have been already implemented in lots of different program languages as Matlab is.

Another way to solve the original system (3.29) is to use a second order numerical
method and its definition and implementation took a large part of this thesis work.

The chosen second order method is described in annex C.

3.7 Achievable magnitudes of interest

In such systems as those here analyzed, interesting magnitudes to obtain are those
necessary for the calculation and the design of each single subpart, as deriving loads
from interconnection elements and periodical stresses necessary for fatigue studies.

Some magnitudes are for instance:

• Movement and acceleration of each vehicle part and of each track point.

47



3 – Mathematical Model definition

• Interaction forces between different substructures (wheel-rail contact, railpad
transmitted ones, pressure over the ballast, forces transmitted through vehicle
suspension ect. ect. ).

• Shear forces and bending moments in rails and sleepers.

Each of these values can be derived from total system x-vector (equation 3.26)
that in fact constitutes system state of phase.

To obtain whatever system point movement it is necessary to consider to which
substructure the point belongs and so four cases are possible:

• the point belongs to the vehicle: its movement can be so calculated considering
the point belonging to a rigid body thus obtainable considering body center
of gravity motion whose coordinates are given by the respective components
of x-vector.

• the point belongs to a rail: its movement can be derived making use of relative
modal transformation expressed by equation 3.2;

• the point belongs to a sleeper: its movement can be derived making use of
relative modal transformation expressed by equation 3.3;

• the point belongs to the underlying structure: its movement can be derived
making use of relative modal transformation expressed by equation 3.4.

Finally, concerning interaction forces, it is sufficient to make use of their expres-
sions aforementioned in this chapter.

3.8 Frequency response function calculation

As mentioned in section 2.3 Frequency response function is defined as the relation
existing between a system point movement and the exciting force that provokes it
given by its magnitude and difference of phase.

Making use of a complex notation the harmonic exciting force can be expressed
as f(t) = f̄ eiωt.

In the particular case where the point movement is defined by its displacement
u(t), this relation is called Receptace and its given by the following relation:

α(ω) =
u(t)

f(t)
=
ūeiωt

f̄ eiωt
=
ū

f̄
(3.32)

where in equation 3.32 ū and f̄ are the complex amplitudes of exciting force and
point displacement and ω is system exciting frequency.
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3.32 is thus a complex function whose common representation is given by its
complex components: (magnitude and phase).

In this section it is shown the procedure to obtain the FRF of total system.
For sleepers, rails and the underlying structure the necessary modal coordinates

are already given by equations (3.5), (3.6) and (3.7) respectively.
Considering the vehicle, a further simplification is here made; as for the temporal

model only rigid body modes are considered but from now on the vehicle model will
be reduced to wheelsets; primary suspension forces will then take into account bogies
and carriage forces.

Figure 3.12. Track receptance : relation between U point displacement due to an
harmonic force in point F

Each wheelset is so independent from the others from a dynamic point of view,
but it is anyway possible to study its influence on the track system dynamic prop-
erties.

Obviously a linearization of the model is necessary to study the FRF and so all
non linear components will be here streamlined.

3.8.1 System coordinates

Frequency response function is usefull in physical coordinates: displacement, velocity
and acceleration of total system points. It would be possible to obtain the FRF for
whatever system point, but the points of interests are those of connection between
different parts, that are the DOF used till now , and so these are the points taken
into consideration:

• wheelsets contact points with the rails;

• connections between rails and sleepers;

• connections between sleepers and bellast.
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• Ballast contact points

These coordinates are grouped in three vectors:

• za: it includes vertical displacements of wheels connection points with rails;

• vr: it includes vertical displacements of rails connection points with both
wheelsets and sleepers;

• us: it includes vertical displacements of sleepers connection points with both
rails and ground or structure;

• w: it includes vertical displacements of ballast-sleeper points in the bridge
interaction case;

Thus each of these three vectors can be expressed as:

za =

{

za,1

za,2

}

← Wheelset a contact point with rail 1
← Wheelset a contact point with rail 2

(3.33)

vr =



















































vr,1
...

vr,Nax

· · ·
vr,Nax+1

vr,Nax+2
...

vr,Nax+Ns



















































← Contact point with whellset 1

← Contact point with whellset Nax

← Contact point with sleeper 1
← Contact point with sleeper 2

← Contact point with sleeper Ns

(3.34)
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← Contact point with rail 1
← Contact point with rail 2

← Contact point with ballast discretization point 1
← Contact point with ballast discretization point 2

← Contact point with ballast discretization point Nb

(3.35)
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← Ballast point 1
← Ballast point 2

← Ballast point Ns

(3.36)
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Position coordinates are related to phase space physical coordinates through
modal trasformation as aforementioned in this chapter ((3.2) , (3.3) and (3.4)).

Thus displacements given by equations (3.33), (3.34),(3.35) and (3.36) are related
to modal coordinates of wheelsets, rails, sleepers and structure, respectively, through
equations (3.37), (3.38), (3.39), (3.40) and (3.41) .

vr,a(t) =
Nmr
∑

m=0

φa,mq
R
r,m(t) r = 1, . . . Nr a = 1, . . . ,Nax (3.37)

vr,Nax+s(t) =
Nmr
∑

m=0

φNax+s,mq
R
r,m(t) r = 1, . . . Nr s = 1, . . . ,Ns (3.38)

us,r(t) =
Nms
∑

n=−1

Ψr,nq
S
s,n(t) s = 1, . . . ,Ns r = 1, . . . ,Nr (3.39)

us,Nr+b(t) =
Nms
∑

n=−1

ΨNr+b,nq
S
s,n(t) s = 1, . . . ,Ns b = 1, . . . ,Nb (3.40)

ws =

NmBr
∑

l=1

Γs,lq
Br
l (t) s = 1, . . . ,Ns (3.41)

where

φa,m = φm(xW
a ) m = 0, . . . ,Nmr a = 1, . . . ,Nax (3.42)

φNax+s,m = φm(xS
s ) m = 0, . . . ,Nmr s = 1, . . . ,Ns (3.43)

Ψr,n = Ψ(y
R
r ) n = −1, . . . ,Nms r = 1, . . . ,Nr (3.44)

ΨNr+b,n = Ψn(yS
b ) n = −1, . . . ,Nms r = 1, . . . ,Nr (3.45)

Γs,l = Γl(x
S
s ) n = 1, . . . ,NmBr s = 1, . . . ,Ns (3.46)

That are the vibration modes calculated in connection points.

3.8.2 Vehicle model for FRF calculation

Generally in this kind of studies the presence of the vehicle is neglected.
Obviously the system modal properties will be affected by the vehicle and so

it could be interesting to study its influence on the total system analyzing the
differences between FRF in both cases of vehicle presence or not.

The vehicle model used is that of Nax rigid wheelset.
The bogies and carriages are neglected to simplify the model and because of

filtering properties of primary suspension.
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Vehicle modal model consider only rigid body modes that could be obtained from
a modal trasformation of system (3.12). Natural frequencies of rigid body modes are
obviously null and modal damping has here no meaning.

The following considerations would be usefull also when considering wheelset
flexural modes, that could be calculated with a FEM program and introduced in
the model.

The movement of wheels contact points with rails in analogy with rails, sleepers
and the bridge is expressed by the following relation:

za,r(t) =
0
∑

h=−1

Ωr,hq
W
a,h(t) r = 1, . . . ,Nr a = 1, . . . ,Nax (3.47)

where :

• qW
a,−1(t) is a-wheelset vertical movement;

• qW
a,0(t) is a-wheelset x -rotation;

• Ωr,h is h-vibration mode value in the contact point.

As for rails, sleepers and structure wheelset a governing differential equation of
movement, considering natural modes and relative modal damping, is:

q̈W
a,h(t) + 2ηhσhq̇

W
a,h(t) + σ2

hq
W
a,h(t) = fW

a,h(t) h = −1,0 (3.48)

where the used variables have the following meaning:

• σh = 0 is the natural frequency of l -vibration mode (null because it is a rigid
mode);

• ηh is l -relative damping;

• fW
a,h is the hth-modal force

As for equations (3.8),eq:mod-sleeper-transformation and (3.10), modal forces
can be expressed as:

fW
a,h(t) =

Nr
∑

r=1

(

F ext
a,r (t) + F c

a,r(t)
)

Ωr,h (3.49)

where F c
a,r(t) is the linearized r -wheel contact force of wheelset a and F ext

a,r is the
relative external force (weight and primary suspension forces).
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3.8.3 System equations of motion

Vehicle modal transformations can be expressed in matrix form as:

wa = ΩqW
a a = 1, . . . ,Nax

vr = ΦqR
r r = 1, . . . ,Nr

us = Ψ qS
s s = 1, . . . ,Ns

k = Γ qBr

(3.50)

where

• Ω is wheelsets vibration modes matrix (size: 2× 2);

• Φ is rails vibration modes matrix (size: (Nax+Ns)×Nmr);

• Ψ is sleepers vibration modes matrix (size: (Nr +Ns)×Nms);

• Γ is bridge vibration modes matrix (size: Ns ×NmBr);

• qW
a ,q

R
r ,q

S
s and qBr are modal coordinates vectors respectively of wheelsets ,

rails , sleepers and of underlying structure.

Modes Matrices Ω, Φ ,Ψ and Γ are obviously the same for similar elements if
their properties and their number of modes considered is the same.

Considering vectors x and q that group all system coordinates it is possible to
define an extended modal transformation T and so to rewrite system (3.50) as:
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(3.51)
that is

x = Tq (3.52)

Using modal coordinates decouples movement equations of the total system and
the following system of second order differential equations results.

q̈ + dq̇ + kq = f (3.53)

where diagonal matrices d and k are defined as:

d = diag

([

2σρ . . . 2σρ
... 2λζ2λζ

... 2ωξ . . . 2ωξ
... 2µτ

])

(3.54)

k = diag

([

σ2 . . . σ2 ... λ2λ2 ... ω2 . . . ω2 ... τ 2

])

(3.55)

In equations (3.54) and (3.55) the variables used represent:

• σ, λ , ω and τ are diagonal matrices with vehicle, rails, sleepers and bridge
angular natural frequencies values, respectively;

• τ , ζ , ξ and µ are diagonal matrices with vehicle, rails, sleepers and bridge
modal damping coefficients values, respectively;

where the dimensions of the used matrices are:

• σ and τ : 2× 2 ;
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• λ and ζ : Nmr ×Nmr;

• ω and ξ : Nms ×Nms;

• τ and µ : NmBr ×NmBr.

f is then the modal forces vector that can be calculated from system forces
expressed in physical coordinates using the following transformation:

x = Tq (3.56)
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(3.57)

Vector F includes all external and interconnection forces acting on the system
expressed in phisycal coordinates . It is defined , in agreement with the signs of
external forces F ext

a , contact forces F c
r,a, railpads forces F p

r,s and ballast ones F b
s,b, as:
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= −Kinterx−Dinterẋ + Fext (3.58)

where

• Kinter and Dinter are matrices that contain damping and stiffness interaction
terms between different structures;

• x and ẋ are displacements and velocities of FRF points of interest.

• Fext is the external forces vector.

As well known the study of the FRF of a system needs the system to be linear
(the superposition principle is valid only for linear systems and FRF is based on
this principle).

As aforementioned track system interaction forces are non linear so obviously
equations (3.13) , (3.18) and (3.20) non linear terms need to be linearized.

In order to achive this linearization of interaction forces Taylor expansion is used
keeping only the linear term.
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Thus linear interaction forces expressions are :

F cL
r,a = F cL

r,a0
(t) + kHL(za,r(t)− vr,a(t))

F pL
s,r = F pL

s,r0
(t) + kpL(vr,Nax+s

(t)− us,r(t)) + cpL(v̇r,Nax+s
(t)− u̇s,r(t))

F bL
s,b = F bL

s,b0
(t)− kbL(us,Nr+b

(t)− ws(t))− cbL(u̇s,Nr+b
(t)− ẇs(t))

(3.59)

where

• F cL
r,a , F pL

s,r and F bL
s,b are linear interaction forces of wheel contact, railpads and

ballast, respectively;

• F cL
r,a0

, F pL
s,r0

and F bL
s,b0

are static interaction forces;

• kHL = 1.5
√

k2
H · F cL

r,a0
is the linearized hertzian stiffness;

• kpL , cpL , kbL and cbL are elastic and viscous properties of railpad and ballast
and they include non linear terms hp(χs,r(t),χ̇s,r(t)) and gb(νs,b(t),ν̇s,b(t)) of
equations (3.18) and (3.20).

Considering f vector as the sum of the external forces term and an interaction
one and taking in mind the relation between x vector and q, given by equations
(3.56) and (3.57) , it is possible to write the following modal forces expression:

finter + fext = −
(

TTKinterTq + TTDinterTq̇
)

+ TTFext (3.60)

Combining then equations (3.60) and (3.53) and rearranging its terms, it results
the following system of decoupled equations:

q̈ +
(

d + TTDinterT
)

q̇ +
(

k + TTKinterT
)

q = fext (3.61)

3.8.4 FRF receptance matrix

The matrix Hq(ω) whose terms Hq
i,j(ω) relate i -modal coordinate (DOF) response

to an exciting unit harmonic force acting on j -coordinate (DOF) with an angular
frequency ω is called Receptance Matrix and it can be expressed as follows:

Hq(ω) =
[

−ω2I + iω
(

d + TTDinterT
)

+
(

k + TTKinterT
)]

−1
(3.62)

where I is the identity matrix.
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Each Hq
i,j(ω) component is a complex number that relates amplitude and phase

displacement between modal coordinates qi and harmonic force fext
j acting on modal

coordinate qj, and it is a function of ω frequency.
Thus it is possible to write the following relation:

Hq
i,j(ω) =

qi

fext
j

(3.63)

FRF matrix can be expressed also in physical coordinates (Hx(ω)) and it can be
derived from equations (3.56) and (3.60) as follows:

x = Tq = THq(ω)TTFext = Hx(ω)Fext =⇒ Hx(ω) = THq(ω)TT (3.64)

Similarly to modal receptance, Hx
i,j(ω) components relate i physical coordinate

(DOF) response to an unitary harmonic force , of ω frequency , acting on j -physical
coordinate (DOF)
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Chapter 4

The Program developed

4.1 Introduction

A large part of the work was taken up by the definition of the program, built up
with the use of Matlab software.

In total four versions of the program were developed and they permit to study
respectively:

1. Track-vehicle interactions and temporal response of the system when there is
no underlying structure;

2. Track-vehicle interactions and temporal response of the system when there is
an underlying structure (called Bridge in the program but that could represent
whatever structure as, for instance, a viaduct);

3. Frequency response function for the system without underlying structure;

4. Frequency response function for the system with underlying structure.

To develop these programs, as aforementioned, a “modular” approach was used
and, certainly, this gives the possibility of future improvements.

The main features used were Matlab GUIs (Graphical user interfaces) which
make the program more lightweight and easier to use.

It was decided to use this kind of programming approach to permit to everyone
to use the software and making it easier it was reduced the possibility of user inputs
errors.

All the quantities are expressed in the international system units a part from
those few cases where it is differently specified.

In this chapter an accurate description of developed programs is given, this to
permit a better understanding of all the GUI windows used in the program and to
remove all possible doubts.
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4.2 Vehicle-Track Dynamic interactions program

This has been the first program developed and it contains all the main GUIs used.

The other versions have been obtained with simple changes from this first one
and for this reason it will be given an accurate description only for this version,
while for the others, only the main differences will be then described.

4.3 User-defined Input Data

Hereafter all the GUI windows used will be shown and their function, in the defini-
tion of the model parameters, described.

4.3.1 Program welcome GUI

Figure 4.1. Welcome GUI

4.3.2 Load data GUI

Figure 4.2. Load data GUI
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This is the request window for loading old simulations data. Clicking the button
“set up a new set of data” (the default one) will start the input data part of the
program, while clicking the “load an old set of data” button will open a loading
window with all the input files saved in other simulations (fig:4.3).

Figure 4.3. Loading GUI

Obviously, here after, the program is split in two parts. The model set up part
is hereafter described because the only difference in loading an old model is the
possibility of redefining those data that the user wants to change.

An apposite GUI will ask the user to redefine those data that he wants to change
and then to type return in Matlab command window (figure:4.4).
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Figure 4.4. Message box for data redefinition

4.3.3 Problem (Model) size

Figure 4.5. Half of the Vehicle-track model

At this step of the program two GUIs appear simultaneously:

1. an input data GUI (figure: 4.6) ;

2. a figure that represents half of the Vehicle-Track model (figure 4.5) .
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Figure 4.6. Main Model DOF choice

The figure is only explicative while in the input data GUI the operator is asked
to choose the main DOF of the model to study:

• N. of sleepers (NT) : is the number of sleepers in the track way stretch con-
sidered.

• N. of points used for sleeper (NPT): is the number of sleeper discretization
points.

• N. of Rails (NR): is the number of rails; by default it is 2 and it should not
be changed1

• N. of wheel-sets (NEJ): is the number of wheel sets of the Vehicle, that in the
total vehicle are four, in the half model two and so long.

• DOF of wheel-sets (GDLEJ): it is the number of degrees of freedom of each
wheelset, and it should be changed according to the chosen model. The actual
version of program doesn’t permit yet to give more than 2 DOF to wheelsets
because only vertical vibration is taken into account (thus a rigid wheelset
can only have two DOF, rigid vertical traslation and rigid rotation). In future
developments it will be easy to increase the number of DOF of the Vehicle
because its connection matrices are already assebled according to its DOF as
it will be shown later.

• N. of bogies (NB): is the number of Bogies: 2 for the total vehicle, 1 for both
half or a quarter of the vehicle (in the last case it is the mass that halves).

1it could be an input value only in future developments to study smaller models when the
problem is symmetric.
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• DOF of Bogies (GDLB): Similary to wheelsets this value depends on the ve-
hicle model chosen. When 2 or 1 entire bogie is considered its DOF are in the
actual version2 3, as aforementioned in chapter 3, because two rigid vibration
modes are here possible. Considering a quarter of the vehicle needs instead 2
bogie DOF for the same reason of wheelsets.

• N. of carriages (NC): it is the number of carriages (also in this case it is the
mass of the carriage that halves or become a quarter in the half-vehicle model
or in the one quarter one, respectively).

• DOF of carriages (GLDC): it is the number of DOF of each carriage: 3 for the
total model or 2 for the half and for the one quarter ones (Here also all the
considerations done for wheelsets and bogies hold good).

• time discretization step (dt): the integrator implemented, not the matlab one
(see annex C), needs a time discretization with a minimum time step3. The
number of time points will be later calculated in the program following this
relation:

NPtime =
Tf − Ti

dt
+ 1 (4.1)

where Tf and Ti are the initial simulation time and the final one, respectively.

• Distance covered by the train between two saving points [m] (∆s): whichever
solver is used the program will save the solution components every ∆t seconds,
where ∆t is a function of train V velocity and ∆s space discretization.

∆t =
V

∆s

where V is a constant (4.2)

• N. of linear springs (primary suspension) (NRL1): it is the total number of
primary linear springs connecting wheelsets to bogies. As illustrated in figure
4.5, there are two primary suspensions per wheelsets, so the total number is
NRL1 = NEJ ∗NS1, where NS1 is the number of primary suspensions per
wheelsets. NRL1 is not a variable of the system yet, but also here, considering
that in the future it could be possibly interesting to increase the number of
suspensions, the program gives the possibility of changing it.

• N. of linear springs (secondary suspension) (NRL2): it is the total number of
secondary linear springs connecting bogies to carriage. The same considera-
tions above hold good also in this case.

2also here the relative matrix is assembled considering the number of DOF so future improve-
ments are considered.

3it depends time after time by the non-linearity degree of the problem.
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• N. of linear dampers (primary suspension) NAL1 and (secondary suspension)
NAL2 are the dampers to model damping properties of suspensions and all
springs considerations hold true.

4.3.4 Wheels position

Hereafter an half-vehicle model is considered and all the figures below refer to this
case (GUI windows are always the same but the data inside them change obviously
with the model of the vehicle).

Figure 4.7. Wheels position

Referring to figure 4.5 it is possible to better understand this GUI.
It is also important to take in mind that the all problem is studied simmetrically

and that wheel 1 as well as rail 1 are the ones located on y-positive position (on the
left watching the vehicle from the rear).

For each wheelset the user is here asked to enter the values of the x negative
distance (EJE POSi,i = 1 . . . NEJ) from the first wheelset (considering the first
at x = 0 position ) , the y-distance from the middle point between two rails (half
of the distance between two rails) and the x-distance from the respective wheelset
center of gravity; the last value stands for possible misalignments that would provoke
irregularities (actually this value is not so meaningful and normally it is taken equal
to zero).

The program will then locate the last wheelset (the nearest to the beginning
of the way) at five sleepers from the first sleeper, this because with the boundary
conditions chosen to model rails the solution is not very meaningful at the extremes
of the track way.

4.3.5 Rail-Pad properties GUI

The user here should simply chose which kind of pad use, left-clicking on the apposite
check box. Four kind of different values are possible and these are taken from different
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Figure 4.8. Type of railpad (fastner)

references.

4.3.6 Sleeper properties GUI window

This is the GUI window for the sleeper model.
Notice that in this version of the program rails and sleepers properties are the

same for all the components of the track but it could be interesting in future de-
velopments to diversify these properties at least for some components to study the
effect on the total system of this kind of irregularities.

In the upper part of the window there are the check boxes that permit to select
which mathematical model to use in modelling the sleeper.

Thus there are four possibility as said in chapter 3:

1. Free-free constrained Euler-Bernoulli beam;

2. Continuous Euler-Bernoulli beam;

3. Free-free constrained Timoshenk beam;

4. Continuous Timoshenko beam;
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Figure 4.9. Sleeper properties and mathematical model

The user must here only check the respective boxes (one for the method and
one for boundary conditions). The default one is the free-free Euler-Bernoulli beam
because this is the most appropriate and also the one used in Ref. [1] in the already
validated model taken as a started point for this work.

In the low part there are four check boxes beside four list boxes (to view the
values of each list box just left click on the small button with a reverse arrow). The
user must here check the check box relative to the list of values chosen to model the
sleepers or the last one in case that he wants to set new values.

Chosing the last option next GUI will ask for sleeper properties specification as
shown in figure 4.10. Otherwise Sleepers properties would be those specified in the
selected list .
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Figure 4.10. Sleeper properties specification
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4.3.7 Rails properties GUI window

The same done for sleeper is now necessary for Rails and so next two GUIs, 4.11 and
4.12, refer to rails model. The same mathematical models are also here possible but
the default one is the continuous-continuous for the reasons explained in chapter 3.

Figure 4.11. Rails mathematical model

It is important to notice that to appreciate differences between the Euler beam
results and the Timoshenko one it is necessary to consider high frequencies modes,
because at low frequencies the two theories almost approximate each other (see
annex A figure A.2.3).

Notice that for rails it is not asked to enter the length value but the distance
between two sleepers (LV ); this because the total length will be obviously calculated
as

LR = LV ∗NT (4.3)

where NT is the number of sleepers as aforementioned.
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Figure 4.12. Rails properties
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4.3.8 Ballast mathematical model and properties GUI win-
dows

Figure 4.13. Ballast mathematical model

An important component of the track is the ballast. Its mechanical properties are
difficult to appreciate and its mathematical model difficult to define.

This is the main non-linear component of the system and so the user has the
possibility to decide which model to use time after time and, as it will be shown
later in this chapter, it is also possible to insert user-defined non linear components
of ballast connections forces.

As illustrated in figure 4.13 three options have been implemented to model the
ballast:

1. a series of discrete springs (and dampers) with different stiffness kB (and
damping coefficients cB).

2. a series of discrete springs (and dampers) all with the same stiffness kB (and
damping coefficients cB).

3. a Winkler approach to model the stiffness KWT (see annex B) and a series
of dampers with a constant damping coefficient (cB).

71



4 – The Program developed

Choosing option 2 or option 3 the next GUI will ask for constant cB and kB
or KWT , respectively4. Obviously in both cases no irregularities are possible in the
ballast model.

In setting cB and kB values take in mind the number of points used for sleepers
discretization , because here both values refer to each single element ( dimension :
N/m and N/(m/s) ).

Notice that, in the case of vehicle-structure-interaction program, Winkler founda-
tion theory doesn’t make any sense and this for the obvious reason of finite stiffness
of the structure that lay, in this case, under the Winkler foundation. Thus in the
bridge-interaction program the ballast models are only two and all the considerations
here done hold good.

The following show the GUIs arising from the choice of the first ballast model
(figure 4.3.8).

4If a Winkler method is chosen, in the simple Vehicle-track program, automatically kB is set
equal to zero and vice-versa if a set of springs is used.
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(a) General properties

(b) Singular points properties

Figure 4.14. Ballast GUIs

In GUI 4.3.8 it is so possible to set irregularities in the track way ballast, having
the possibility of changing all the connection elements of an entire sleeper or also
one by one each sleeper discretization point.

4.3.9 Simulated temporal space

As aformentioned the train starts from five sleepers from the beginning of the track
way to avoid problems at the extremes. Similarly the simulation should stop when
the first wheelset (the nearest to the end of the way) reaches the last but four sleeper.
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The time at which this happens depends obviously from the start time and from
train velocity.

The way followed in the program definition to stop the simulation at the right
time is illustrated in figure 4.15.

Figure 4.15. Simulated time

The user must enter the values of start time (Tic) and of train velocity (V ),
being the last a constant value and then to press “calculate”.

From these values and considering the rail length and sleepers distance, the
program calculates the maximum final time of the simulation as:

Tfcmax = Tic+
(LR/2− EJEpos1

− LV ∗ 5)

V
(4.4)

where EJEpos1
is exactly the x-position of the first wheelset.

The user can finally change this default final simulation time paying attention
not to increase it (as written in the GUI footnote).
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4.3.10 Other input values

Figure 4.16. Some other input velues

These are other values of interest for the simulation.

• Rotational radius of the wheel [m] Rw : is the radius of the wheels (in meters)
used to calculate optional wheels irregularities (see equation (3.15) chapter 3).

• Primary and secondary suspension stiffness (respectively ks1 and ks2) : are
the values of primary and secondary suspensions stiffness coefficients (misured
in N/m) that will be used in next GUIs to identify the stiffness matrix of the
vehicle.

• Primary and secondary suspension damping coefficient (respectively cs1 and
cs2) : are the values of primary and secondary suspensions damping coefficients
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(misured in N/(m/2)) that will be used in next GUIs to identify the damping
matrix of the vehicle.

• Hertzian spring constant [N/(m3/2)] : is the value of the hertzian contact spring
taken into account to calculate the wheel contact force (see equation (3.13)
chapter 3).

4.3.11 Vehicle matrices: DOF matrix (MAT DOF)

Figure 4.17. DOF matrix

In figure 4.17 it is shown the DOF matrix of the vehicle.
This is an important step in the input part because from the reading of this

matrix the program will opportunely assembly the stiffness and damping matrices
of the vehicle.

For each component of the vehicle there are six degrees of freedom check boxes.
The user should opportunely check, time after time, the right boxes considering

the number of elements chosen in the first GUI 4.3.3.
Figure 4.17 shows the DOF matrix for the case considered till now (2 wheelsets -

1 bogie - half carriage) and the chosen DOF are right those of vertical displacement
(z), rigid rotation around x-axis (rot x) and only for the bogie the third one, that
is the rigid rotation around y-axis ((rot y)).

The program will then calculate the numered matrix as follows: MAT DOF ma-
trix is a a× 6 matrix where a is the number of vehicle elements and 6, the number
of columns, corresponds to the 6 degrees of freedom. To each cell where the degree
of freedom is selected a 1 is inserted in the matrix, while all the others are 0. The
matrix is then numerated (MAT DOF N) from 1 to GDLV where GDLV is the
total number of DOF of the vehicle.
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For instance, the corresponding DOF matrix of figure 4.17 is :

0 0 1 1 0 0
0 0 1 1 0 0
0 0 1 1 1 0
0 0 1 1 0 0

and the respective numerated one is:

0 0 1 2 0 0
0 0 3 4 0 0
0 0 5 6 7 0
0 0 8 9 0 0

In the actual version of the program wheelsets can have at most 2 DOF while Bo-
gies and carriages 3, but the program takes already into consideration the possibility
of future developments.

In doing so it is programmed for assembly all the vehicle matrices considering
this complete DOF numerated matrix.

The vehicles components can all have six space DOF and so their matrices. The
limitation in the program developed is given by rails and sleepers that, instead, take
into account only vertical vibration.

The following GUI window (figure 4.18) is only explicative but it is important
to pay attention to it because it gives the numeration used for vehicle components.

This bodies numeration will be usefull in the understanding of the next GUIs.
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Figure 4.18. Vehicle components numeration

4.3.12 Vehicle matrices: Inertia rigid body properties Ma-
trix (IRBP)

Figure 4.19. Inertia rigid body properties Matrix IRPB

Figure 4.19 shows the input data necessary to assembly the vehicle inertia matrix.
Here also each row corresponds to a vehicle body (wheelset, bogie, carriage) and
each column to an inertia property:

1. Mass [kg];

2. x-x moment of inertia (Ixx);
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3. y-y moment of inertia (Iyy);

4. z-z moment of inertia (Izz).

Obviously the z-z moment of inertia is not a quantity of interest for this work
(rotation around z is never considered as DOF) but as for the other cases future
developments could require it.

Finally the small check box at the right side of the GUI should be checked only
when the user wants to insert different values for vehicle similar components.

In this example the only part of the vehicle repeated is the wheelset so this small
check box is available only for it. As written in the footnote when the check box is
unchecked all the repeated bodies properties are taken equal to the first respective
body (the only active in the GUI).

If the user wants to change one or more properties of all the repeated bodies all
at once it is sufficient to leave unchecked the boxes and to change the property of
the first similar one.

Whereas, if the user wants to diversify similar components, he should insert the
values of the respective entire row , remembering to check also the relative check
box to make the program evaluating it.

4.3.13 Vehicle matrices: Vehicle external forces(Ext F)

Figure 4.20. External constant forces acting on vehicle DOF

GUI window shown in figure 4.20 permits to insert in the model external constant
forces acting on vehicle DOF (the weight is already taken into account in the force
vector assembly using the inertial mass previously defined in GUI 4.19).

Concerning the small check boxes same considerations aforementioned hold true.
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4.3.14 Vehicle matrices: Suspensions matrices (MAT LS K

& MAT LS C )

(a) Vehicle suspensions stiffness coefficients

(b) Vehicle suspensions damping coefficients

Figure 4.21. Vehicle suspensions matrix

In figures 4.21(a) and 4.21(b) the GUIs relative to vehicle suspensions are shown.
The first one shows the matrix pertaining to springs stiffness.
All the necessary information are already in the figure so just notice that, also in

this case, using the check boxes it is possible to make overall changes to the springs
of the system all at once.

It is important to notice that suspensions are divided between primary suspen-
sions and secondary ones, P.S. and S.S. respectively, and the check boxes work
also here only with similar elements. To change all primary suspensions stiffness (or
damping coefficients) it is sufficient to change the first P.S. row, and similarly to
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change all secondary suspensions dampers it is the first secondary suspension line
that should be modified.

Changing all the values of a single row and left clicking the relative right check
box will instead modify the raltive suspension values.

Take in mind that it is possible to change and check only some rows and leave
the others unchecked and equal to the first similar one, but it is not possible to
change only some values for a signle row, because when computed a row needs only
numerical values.

4.3.15 Vehicle matrices: Suspensions connection matrices
(Conn MAT K & Conn MAT C )

(a) Vehicle springs positions

(b) Vehicle dampers positions

Figure 4.22. Vehicle suspensions position
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In figure 4.3.15 are illustrated the GUIs pertaining to connection vectors between
suspension elements.

For each element it is indicated which are the bodies connected5

Notice that both figures 4.22(a) and 4.22(b) have the same values for connection
matrices of springs and dampers. This only means that they are located in the same
position using a lumped element approach, but the model would still work also if
these two elements were split up and located in different positions.

5this is the reason why GUI 4.18 gives the numeration used for vehicle parts.
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4.3.16 Wheels irregularities selection

Figure 4.23. Irregularites selection question dialog box

Figure 4.24. Irregularites parameters definition

Thanks to GUI window 4.23 it is possible to decide, on a case by case basis, if to
study an irregular wheels problem or not.

Parameters required in the case of a positive answer to the question dialog box
4.23 are shown in the next GUI window 4.24 and refer to the irregularity function
described before in chapter 3 , equation (3.15) .
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Each Wheel can have a different number of wheel globes (Ni , i = 1,2) and a
different irregularity amplitude (Hirr i , i = 1,2), thus making the problem asym-
metric.

4.3.17 Numerical integration method

Figure 4.25. Types of integrators implemented in the program

An important matter in defining the program was the choice of the numerical inte-
grator.

As well known, initial value problems for ordinary differential equations (ODEs)
can be numerically integrated using different types of solver. Matlab has some first
order solvers implemented , as for instance Runge-kutta 2-3 or 4-5 order, ODE23
and ODE45 respectively, and some others that on a case by case basis should be
properly chosen (for example considering the degree of stiffness of the system).
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Considering that the total system is described by a second order differential
equations system, the use of these built-in solvers needs a little rearrangement of
the system (3.28) as aforementioned in section 3.6.1 of chapter 3.

The program, as visible in figure 4.25, offers three ways to solve the system:

• Pure method : is the explicit second order method described in annex C;

• Matlab ode15s function : it is a variable order system as written in the second
footnote of the GUI (**);

• Mixed Pure/Ode15s : the built-in ODE15s solver is used to solve the static
problem6 while the explicit second order method is used to solve the dynamic
one.

Obviously it would be interesting to study the efficiency of each solving method
for different kind of problems (different size, linear and non linear problems ect.
ect.).

Mainly, for simple problems, crudely comparing obtained results , the “Mix”
solver seems to be the most efficient but, specially for particular non linear cases,
the accuracy of its results should be thoroughly proved to establish the supremacy
of this method.

6as described later, in order to calculate the initial values of the problem, first the static problem
is solved, and its solution is then used has the initial one for the dynamic problem (train in motion).
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4.3.18 Beams number of modes

Figure 4.26. Number of vibrational modes and spectral damping coefficients used
for each beam

In this small GUI it is possible to establish the number of vibrational modes used for
each beam model (Rails and sleepers here, rails, sleepers and underlying structure
in the bridge interaction program).

Moreover in the same GUI it is asked to enter the values of spectral damping coef-
ficients for each beam modelled track component. These spectral damping values are
constant for all the modes of the same beam, but considering all the simplifications
done till now, this should not influence to much the accuracy of the model.

Getting the right value for spectral damping coefficients is not a simple matter
and so the way followed in this work has been to use small values taken from reference
[2].

Finally, it is important to notice that the number of modes used for rails is
always much larger than the number of sleepers modes. This is obviously due to
their natural frequencies, that, in the case of short sleepers, are higher and more
spaced in respect to those of the same modes of rails.
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4.3.19 Saving GUI

Figure 4.27. Saving GUI

This is the last input GUI and the user should only enter the name of the files
where to save input and output data of the running simulation. Before running the
simulation all the variables set till now are saved in the specified file located in the
input folder.

4.4 Solving part

During the solving part of the program, before starting the solution of the differential
equation system, with whatever solver, two more message boxes (figures 4.28) inform
the user about the possibility of insert a non linear component in the definition of
railpads and of ballast connection forces (equations (3.18) and (3.20) of chapter 3)
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Figure 4.28. Non linear forces

Simultaneously with the messages the program will open, one by one, two Matlab
*.m files, which are precisely the non-linear function definition for pad and ballast.

In order to not consider these non linear components the user should only press
the OK button without changing any thing in the opened .m files.

When a non linear component is required for one or both connection elements
the user should instead insert the force expression, following the legend in the upper
part of the .m files to understand the meaning of the variables.

4.4.1 simulation time

A very important task during the development of the program has been to reduce
the simulation time.

In fact Matlab proved to be a low efficiency programming language at least to
heandle this kind of problems.

Moreover the use of GUIs makes the program even slower, and if in the input
part this slowdown is neither perceptible, during the calculation it is almost not
recommended (for example the using of waitbars or feature to display the simulation
time).

Each of the solvers implemented proved to be, on a case by case basis, more
efficient than the other.

It should be made an accurate analysis with a large use of tests do understand
when to use one instead of the other and the reason why, but this was not the aim
of this work that wanted only to set up the total system and show its behavior in
studying this kind of problems.
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4.4.2 Output data

The output values obtained from each simulation are the total x vector and its
velocity v (see equation (3.26) chapter 3). This two vectors are saved in the file
specified for the output data in GUI 4.27.

From this two values it is obviously possible to go back to all the quantities of
interest as the interaction forces and substructures dynamic behaviour.

At the end of the simulation a last GUI (figure 4.29) permits to see the results
with the plot of the main quantities of interest.

Figure 4.29. Main quantities of interest plot

4.5 Bridge interaction program

As aforementioned, the “Bridge version of the program” and the one discussed till
now are more or less alike. The only difference in GUIs used is the specification of
the bridge mechanical properties and modal ones.

These bridge GUIs are not here discussed because they follow the notation used
till now and are simple to understand.
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4.6 Frequency response function FRF program

For both cases of single track-vehicle problem and the Bridge interaction one, a
small software capable of calculating the respective FRF has been done.

Also in this case the differences in the GUIs used are a few.
Here it is only explained the last GUI of these FRF programs that is shown in

figure 4.29

Figure 4.30. FRF parameters selection

Memory limits prevent the program from calculating the all H(iω) FRF, but
only the Hi,j components that the user wants to.

For this reason the user is asked to enter the range of frequencies in which to
calculate the FRF and also the i and j components of the FRF to calculate;

It is very important to notice that both i and j can assume a single scalar value
or be a vector of values, case in which the FRF is then calculated for all the possible
combinations of i and j vectors components (Hi(1),j(1) , Hi(1),j(2) , Hi(2),j(1) ect.).
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Chapter 5

Simulations results

5.1 Program Validation

Mainly, the program developed follows the procedure described in Ref. [1].

In order to verify the proposed model in the time domain, lots benchmark tests
of moving vehicle on the track should be performed to compare results to those
obtained by already validated methods.

Comparing results obtained from experimentation or at least from similar bench-
marks tests , it could be possible to establish the accuracy of this simplified model
and evaluate the error trend in function of the most important parameters as the
number of modal modes or the theory used. FEM Analysis of more complicated
models could also be used to evaluate the computational efficiency of this simpler
model.

Being not possible to have these tests results the following way has been used.

Results discussed in [1] have been considered holding good also in this work so
that the simple case of Timoshenko free-free Rail and Euler free-free sleeper on a
Winkler foundation is the used one to validate the others. Thus, once demonstrated
the accordance of new model results with the above-mentioned ones the program
has been considered well-functioning.

However to validate the accuracy of the implemented program it should be nec-
essary to run several test simulations with different combinations of mathematical
models and non linear components for both cases of track over a bridge and not.

Obviously this was not possible during this short thesis work, but, in this chapter,
some achived tests results are shown and discussed.

From last GUI , figure 4.29, it is possible at least to see and analyze , the correct
trend of simulation results rather then their accuracy and basically they seem to be
correct.

The following quantities were obtained and analyzed for each simulation, and in
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this chapter some of these results are shown and discussed:

• Rails , Sleepers and Bridge deformations in time;

• DOF x vector progress in time;

• FRF for different models with or without wheelsets.

5.2 Tests results

As aforementioned for both cases of simple vehicle-track system and vehicle-track-
structure one it has been analyzed the temporal response of the non-linear system
and the frequency response function.

In the first case the main output data of interest are the deformations of the
various elements composing the system that are :

• za(x,t) with a = 1,...,Nax;

• vr(x,t) with r = 1,...,Nr;

• us(y,t) with s = 1,...,Nas;

• w(x,t) .

In fact from these variables values it is possible to go back to all the other quanti-
ties of interest in engineering problems as loads, mechanical stresses and interaction
forces.

In the second case of FRF analysis, obviously, the only output is given by the
FRF itself. Thus it was studied the effect of the vehicle as well as others simulation
parameters on system FRF calculated on a rail point1.

Notice that the temporal response model is more accurate than the FRF for
the studied system , this because it takes into account problem non-linearities ,
introducing so less error components in the mathematical model, that is already
greatly simplified.

1It could be interesting to evaluate the FRF also in other track points, as it is possible to do in
the program, but these results are not discussed here.
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5.3 Temporal response

5.3.1 Vehicle-Track system

The parameters used in next simulations were selected from Ref. [1] and are shown
in table 5.3.1 that summarises the mechanical properties of track and vehicle.

The rail is considered mainly as a Rayleigh-Timoshenko beam and the sleepers
are modelled as Euler-Bernoulli beams on a Winkler foundation, but some compar-
isons between different models are also discussed.

Concerning boundary conditions the rail has been studied, mainly, with
a continuous-continuous beam while the sleepers are modelled with a free-free beam
(also in this case some comparisons with other boundary conditions are later ana-
lyzed).

The ballast stiffness is so modelled here as a Winkler foundation while its damp-
ing effect is taken into account through the use of 8 discrete dampers.

A total of 50 Sleepers have been used.
Concerning modal properties, used values are visible in table 5.3.1.
The train Velocity has been set equal to V = 30 m/s and the total time of

simulation is T = 0.8173 s according to equation (4.4).
Considering that in the case of sleepers the difference between the Timoshenko

theory and the Euler-Bernoulli one is small because of the small number of modal
modes considered, the following test simulations were run:

1. A simple problem with the only non-linear component due to wheels-rail con-
tact force ; Sleepers and rail modelled with Euler-Bernoulli beam theory with
free-free and continuous-continuous boundary conditions , respectively.

2. The same simple problem studied always with Euler-Bernoulli theory in sleep-
ers case and with Timoshenko one for rails with the same boundary conditions
as above.

3. Two irregular cases (once deriving from irregular wheels and once fro a ballast
discontinuity), studied with Timoshenko continuous-continuous beam for rails
and Euler free-free beam for sleepers.

The resulting range of frequencies for rails and sleepers is respectively:
Euler modelled Sleepers :

ωn = [0 , 675] Hz

Rails :

2because a Winkler ballat model has been chosen
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Denotation Parameter Value

Track

Er Young’s modulus of rail 207GPa
Ir Rail moment of inertia 3.05× 10−5 m4

Ar Rail cross-sectional area 7.7× 10−3 m2

kr Timoshenko shear coefficient 0.34
ρr Rail density 7860 kg/m3

Lr Rail length 33.32 m
Ns Number of sleeper 50
Es Young’s modulus of sleeper 20 GPa
Is Sleeper moment of inertia 1.18× 10−5 m4

As Slepeer cross-sectional area 0.0157 m2

ρs Sleeper density 2500 kg/m3

Ls Sleeper length 2.36 m
Ds Distance between sleepers 0.68 m
kp Railpad stiffness 200 MN/m
cp Railpad damping 50 kN/m/s
kb Ballast stiffness per rail seat2 0 kN/m2

cb Ballast damping per rail seat 105 kN/m2/s

Vehicle

Nax Number of wheelsets 2
Mc Carriage mass 22× 103 kg
Mb Bogie frame mass 4000 kg
Ib Bogie frame pitch moment of inertia 479.6 kg ·m2

Mw Wheelset mass 1500 kg
Lw Distance between wheels in a single bogie 3 m
kH Constant of Hertzian contact model 72.7 GN/m3/2

ks1 Primary suspension stiffness 1 MN/m
cs1 Primary suspension damping 10 KN/m/s
ks2 Secondary suspension stiffness 3.39 MN/m
cs2 Primary suspension damping 160 KN/m/s
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Denotation Parameter Value

Track

Nmr Total number of Rails modes 101
Nms Total number of sleeper modes 7
ζ Rail modal damping coeff. 0.08
ξ Sleeper modal damping coeff. 0.08

• Euler modelled : λn = [0 , 4573] Hz

• Timoshenko modelled : λn = [0 , 2360] Hz

The range used for sleepers is much smaller than the rails one, but it was proved
that mainly the first 3 or 4 sleeper flexural modes are sufficient to study its defor-
mation because these are the mostly excited modes.

Concerning rails , figure 5.1 illustrates the plot of Timoshenko natural frequencies
versus Euler-Bernoulli ones. As expected, considering a big range of frequencies the
difference between the two models becomes significant.
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Figure 5.1. Timoshenko vs Euler-Bernoulli rails natural frequencies

This huge difference is visible also in the deformation of the variuos elements as
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5 – Simulations results

in the interconnection forces. In figure 5.2 are shown wheels-rail contact forces for
both cases of rails mathematical modeling.

Notice that the system is here symmetric and without any asymmetric distur-
bance also system response is so. Deformation and forces of the right part of track
are so equal to left ones (rail 1 = rail 2, wheel left = wheelset right , ect.).
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Figure 5.2. Timoshenko vs Euler-Bernoulli rails natural frequencies

Euler Rail is so more rigid than Timoshenko one and this results in different
vibration modes for the total structure, that, as aforementioned, in the second case
is less rigid. Contact forces are so bigger in Timoshenko modelled rail, because,
under the action of an equal external force (vehicle weight), a less rigid system will
deform more, as results from figure 5.2.

This was also discussed in Ref. [2] with free-free Timoshenko rail.

Timoshenko beam permits to analyze the influence of some vibration modes that
are not “catched” from Euler theory and so the first model is the considered one
from now on.

In figure 5.3 it is possible to see rail deformation at the time t = 0.4355 s. The
maximum deformation value is of the order of 10−4 m - 10−3 m and actually this is
the order of magnitude expected here and obtained also from Ref. [1].

For the same time instant, in figure 5.4, it is illustrated the deformation of some
sleepers and also in this case the range of deformation amplitude is the expected
one; notice that, as aforementioned , the system response is absolutely symmetric.
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Figure 5.3. Rail deformation at t = 0.4355 s
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Figure 5.4. Sleepers 17 , 24 , 26 , 30 , 37 , deformation at t = 0.4355 s

Using thus Timoshenko theory to model both rails , two more simulations have
been run to analyze the effect of some sorts of irregularities on the Vehicle-track
system.

An irregularity 1 mm , 1 globe wheel function has been used for both wheels of
all wheelsets while in the last simulation ballast properties have been changed for
sleeper 253 (kb25 = 60 MN/m , cb25 = 28000 N/(m/s)).

3As aforementioned in section 4.3.8 to permit an irregular ballast it is not permitted to use
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Figure 5.5 shows so contact forces deriving from both irregularities while figure
5.6 illustrates a zoom of rail deformation in the contact zone.
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Figure 5.5. Wheels-rail contact forces for some irregular systems
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Figure 5.6. Rails deformation for two irregular cases

Finally, considering x-vector components and remembering its definition, given in
equation 3.26, it is possible to plot its components in time and watch their progress.

a Winkler model , and the general values used here for discrete elements of all Ns sleepers are
(kbi = 10 MN/m , cbi = 31000 N/(m/s))

98
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For instance, in figure 5.7 , it is possible to observe carriage z -displacement ( eight-
th x-component for the system considered ) in time for above discussed simple and
irregular problems, and to verify its correct trend.
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Figure 5.7. Carriage vertical displacement in time for the cases of simple problem
(red line), wheels irregularity (blue line) and ballast discontinuity (green line)

5.3.2 Vehicle-Track-Structure system

The same results discussed till now have been obtained for the structure interaction
version of the program and in this subsection temporal response results are discussed.

Vehicle-track simulation parameters are also here those visible in table 5.3.1 while
concerning bridge properties they refers to table 5.3.2.

It is very important to notice that, in this case of track-bridge interaction ,
the ballast can no longer be modelled with a Winkler elastic foundation, and this
because of Winkler theory hypothesis (see annex B).

If a Winkler foundation model were used , elastic component of the interaction
forces acting on the bridge would be annuled and so only damping forces would
reach the structure, thus making bridge response senseless.

For this reason the elastic component of ballast interaction force is here modelled
with a discrete series of eight springs with a stiffness coefficient of k = 10 MN/m,
located in the same positions of relative dampers.

The range of bridge frequencies , using a modal truncation approach , is thus:

τ = [6.02 , 385.28] Hz

3because a Winkler ballast model has been chosen
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Denotation Parameter Value

Physical properties

EBr Young’s modulus of the bridge 50GPa
IBr Bridge moment of inertia 8.26 m4

ABr Bridge cross-sectional area 9.125 m2

ρBr Bridge density 7860 kg/m3

LBr Bridge length 33.32 m

Modal properties

NmBr Number of Bridge modes 8
µ Bridge modal damping coeff. 0.04

Also in this case, as for sleepers, the number of modal modes that take part in
system total response , is much smaller than rails one and also in this case it was
proved that increasing this number of modes doesn’t change perceptibly bridge or
system temporal response.

Obviously , contact forces depend on which beam theory is adopted to model
rails and the results obtained for both theories are almost the same of those deriving
from the simple vehicle-track model, as shown in figure 5.8.

Using, for the same reasons as before , Timoshenko beam theory to model both
rails, similar test simulations were run to verify the good trend of results for the
vehicle-track-structure program and below some deriving results are shown .

Figure 5.9 shows both rail and bridge deformations ate time t = 0.4355 s while
figure 5.10 shows some sleepers deformation at the same temporal instant.

Also in this case two irregular problems were tested and figure 5.11 shows deriving
contact forces.

Finally, figure 5.12 shows differences in rail deformation for the cases of :

• Simple regular problem ;

• Irregular wheel problem ( 1 mm depth , 1 globe wheels );

• Irregular ballast problem (kb25 = 80 MN/m , cb25 = 26000 N/(m/s)).

Obviously the order of magnitude of the total system deformation is here a little
bigger being the system less rigid because of the bridge presence.

100



5 – Simulations results

0.2 0.3 0.4 0.5 0.6 0.7 0.8
7

7.05

7.1

7.15

7.2

7.25

7.3

7.35
x 10

4

t [s]

F
 [

N
]

Wheels−Rail contact forces

 

 

Wheelset 1 − Euler Rail
Wheelset 2 − Euler Rail
Wheelset 1 − Timo Rail
Wheelset 2 − Timo Rail

Figure 5.8. Timoshenko vs Euler-Bernoulli rails natural frequencies
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Figure 5.9. Rail and bridge deformation at t = 0.4355 s

Take in mind that the deformation amplitude is not the only value of interest
but stresses and loads depends on its derivates that near the wheel-rail contact zone
have a very high slope.

For instance, in the case of Euler-Bernoulli beam theory , M(x) bending moment
, Q(x) shear force and σx cross section axial stress can be related to u deflection
with the use of equations (5.1), (5.2) and (5.3).
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Figure 5.10. Sleepers 23 , 27 , 29 , 31 , 33 , deformation at t = 0.4355 s
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Figure 5.11. Wheels-rail contact forces for some irregular systems
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Figure 5.12. Rail and bridge deformation for some irregular cases

5.4 FRF: System Frequency response function

Obtaining an accurate FRF of the system is always a very important goal to achieve
in systems dynamic analysis.

In this work the FRF was obtained for both cases of track over a structure or not
and for each case it was implemented the track alone model and the vehicle-track
one, where in the last case, a simplified model for the vehicle is used.

To insert the vehicle in the FRF model it is then necessary to consider its modal
properties.

To maintain a certain level of simplicity and to be coherent with the temporal
solution problem, the vehicle is modelled with its wheelsets only (1,2 or 4) and for
each wheelset only two vehicle modes are taken into consideration and they are the
two rigid body ones.

Obviously this is a great simplification and it would be interesting to evaluate
the discrepancy in the results comparing this model with a more complicated one
as a FEM one could be.

Notice also that in this kind of studies often the FRF used is the one relative to
the track-alone and this is the one used in Ref. [2] to validate the model used as a
starting point for this work.
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5.4.1 Vehicle-Track system

The track properties are the same as those used in the temporal response program
aforementioned in table 5.3.1. However the number of sleepers used is 25 and consid-
ering that the range of frequencies of interest reaches 4000 Hz, the number of beam
modes is 84 for rails and 14 for sleepers; doing so the maximum frequency, taken
into consideration for both elements, exceed sufficiently the right limit of 4000 Hz.

In order to evaluate the influence of all modal modes, damping is not considered
and the track-receptance is calculated on the first sleeper after the center of the rail,
avoiding so neglecting lots of rail modes as would happen considering the mid rail
point where all odd modes have a zero deflection and so do not take part in FRF
composition.

As aforementioned the starting model of this work was that based on the free-free
Timoshenko beam used for both rails and sleepers.

In figure 5.13 it is shown the FRF obtained for the track-alone system for both
cases of free-free Timoshenko beam and continuous-continuous one and in figure
5.14 it is illustrated a zoom of [100 1000] Hz frequency interval.
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Figure 5.13. FRF for a non-damped model with 25 sleeper bays . Comparison
between a Timoshenko continuous-continuous rail beam and a Timoshenko free-free

one

In order to evaluate vehicle influence on system FRF a more simplified track-
model is used. The number of system DOF must be reduced to decrease the number
of resonances.

To make this comparison a 6 sleepers bays track, with one or two wheelsets
located at x = −0 m and x = −1.5 m from rail center, is used and the FRF is
studied on a rail point located at the fourth sleeper. Rails are modelled with a
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Figure 5.14. FRF for a non-damped model with 25 sleeper bays . Comparison
between a Timoshenko continuous-continuous rail beam and a Timoshenko free-free

one

14 modes continuous-continuous Timoshenko beam while sleepers are studied with
a free-free Euler beam considering 14 modes as well. Figure 5.15 shows obtained
results for this reduced problem.
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Figure 5.15. Vehicle influence on the FRF. Comparison between track-alone sys-
tem, 1 wheelset-track and 2 wheelsets-track system.

Moreover, the same FRF was calculated for 1 wheelset in different positions of
the track and the results are shown in figure 5.16
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Figure 5.16. Vehicle influence on the FRF. Comparison between FRF calculated
for different wheelset positions on the track.

Unfortunately there are not still FEM result for a similar simulation and so
the only conclusions from a coarse analysis of obtained FRF is that the order of
magnitude is the expected one and that the vehicle influence on the total system is
not neglectable in its dynamic properties definition.

5.4.2 Vehicle-Track-Structure system

As for the simple vehicle-track system, hereafter some FRF results obtained for the
structure interaction case are shown and some comparisons with different simulation
parameters and mathematical models are discussed.

First the FRF for a undamped 25 sleepers bay track is calculated using different
rails models (Timoshenko free-free beam and Timoshenko continuous-continuous
beam) and figures 5.17 and 5.18 (being the second a zoom in the range of frequency
100:1000 Hz) show achieved results.

Bridge is obviously treated as a pinned-pinned beam because it is the only model
implemented.

The number of modes used is 84 for rails and 14 for sleepers while only 12 modes
were used for the bridge that has, in fact, very big natural frequencies due to its
physical properties that are the same above mentioned in table 5.3.2.

Afterward the vehicle was insert in the model through the same simplifications
used for the vehicle-track model and the FRF resulting from different run simulations
are shown in figures 5.19 and 5.20 were, in both cases, a very small undamped system
was used to clearly distinguish system different natural frequencies.
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Figure 5.17. FRF for a non-damped model with 25 sleeper bays . Comparison
between a Timoshenko continuous-continuous rail beam and a Timoshenko free-free

one

10
2

10
3

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

frequency [Hz]

H
1

4
,1

4
(ω

)

Track−Structure (without vehicle) FRF

 

 
rail model: Timoshenko free−free beam
rail model: Timoshenko continuous−continuous beam

Figure 5.18. FRF for a non-damped model with 25 sleeper bays . Comparison
between a Timoshenko continuous-continuous rail beam and a Timoshenko free-free

one

The system is here also, as in the vehicle-track case, composed by 6 sleepers bay,
and the FRF is obtained for a point in the first rail ( positive y-position ) located
on the fourth sleeper from track left-end. The number of modes used is chosen,
also here, considering that the range of interest reaches 4000 Hz, and is 14 for both
sleepers and rails while bridge modes number is only 3.
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Whelset number effect is thus visible in figure 5.19 while wheelset position effect
can be derived from the analysis of figure 5.20

10
2

10
3

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

frequency [Hz]

H
1

0
,1

0
(ω

)

H
10,10

(ω) Frequency response function

 

 

without vehicle 
with 1 wheelset (x

wh
 = 0)

with 2 wheelsets (x
wh

 = [0,−1.5])

Figure 5.19. Vehicle influence on the FRF. Comparison between track-alone sys-
tem, 1 wheelset-track and 2 wheelsets-track system.
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Figure 5.20. Vehicle influence on the FRF. Comparison between FRF calculated
for different single-wheelset positions on the track.

108



5 – Simulations results

5.5 Rail models: Euler-Bernoulli and Timoshenko

A goal of this thesis was to show differences between rail models implemented.
As aforementioned, concerning sleepers both models give rise to the same set of

frequencies because of the small number of modes considered.
In this short section it is proved that concerning rail models, instead, from the

two beam theories result two different dynamic characteristics of the system also
using a continuous-continuous beam ( Ref. [1] shows this system behavior for a
free-free beam ).

Moreover it is possible to establish that, at least for simple problems, there
are not big differences in the results obtained with the same model using different
boundary conditions.

It is interesting to prove that discrepancies between Euler-Bernoulli theory and
Timoshenko one become significant only at high frequency values as it is expected
to be.

To verify this model behavior it is sufficient to compare two FRF of the same
system ( the presence of an underlying structure is here neglected being its influence
not important for this last goal ).

Figures 5.21(a) and 5.21(b) show results obtained for the same system once a
bit damped cb 6= 0 and cp 6= 0 and once totally undamped.

Finally, for the four cases of rail model, in figure 5.22 it is shown the contact
force of one wheel for a system without structure, and here also the response doesn’t
depend on the boundary conditions used, but only on the model .

Differences in systems results for different boundary contrained rails, using the
same beam theory, are thus not neglectable only when considering the FRF of a
totally undamped system, becuase, as a little damping factor is insert in the model
this discrepancy is lost.

5.6 conclusions

From the analysis of all run simulations and also from figures 5.21(a) , 5.21(b)
and 5.22 it is possible to establish that concerning temporal solution rail boundary
conditions don’t influence the solution appreciably.

Considering instead the model used, same conclusions as in Ref. [1] can be drawn,
taht is, both the temporal response and FRF of the system change considerably when
considering different beam theories for rails.

Obviously, remember that a good validation of the developed model would need
some experimental results or at least , as aforementioned, some already validated
models comparisons, but notice also that obtained results fit well expected ones.
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Figure 5.21. (a) Comparison between FRF calculated for different Rail models
for the damped system.;(b) Comparison between FRF calculated for different Rail

models for the same system but undamped
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Figure 5.22. Comparison between contact forces calculated for all the possible
rail models combinations .
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Chapter 6

Conclusions

6.1 Summary

This work presents a program for simulations of vehicle-track and vehicle-track-
structure dynamic interaction . The method used is computationally efficient in the
sense that a reduced number of coordinates is sufficient and doesn’t require high
efficiency computers.

The method proposes a modal substructuring approach of the system by mod-
elling rails , sleepers and underlying structure with modal coordinates, the vehicle
with physical lumped elements coordinates and by introducing interconnection ele-
ments between these structures (wheel-rail contact, railpads and ballast) by means
of their interaction forces.

The Frequency response function (FRF) is also calculated for both cases of track
over a structure (a bridge, a viaduct ...) and for the simple vehicle-track program;
for each case the vehicle effect on the FRF is then analyzed through the comparison
of the FRFs obtained introducing or not a simplified vehicle on the system.

Concerning the simple vehicle-track program the used method derives from the
work discussed in Ref. [2] that was validated through the comparison with the
method developed by CHARMEC group in Ref. [3].

Making use of small changes in the mathematical models of the system elements
and implementing new ones, a wider range of problems is made possible to study
and the direct visualization of the results, at the end of each simulation, permits a
better understanding of the problem and to control at least the good trend of the
values obtained more than their accuracy.

Considering instead the bridge interaction program, although the vehicle and the
track are modelled using the same method as for the simple program , to verify the
correctness, or at least the good behaviour of the program in studying this kind of
problems, it would be necessary to validate it with an already validated program or
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through the use of some experimental results.

Using a “user friendly” approach, obtained through the use of Matlab GUIs (
graphical user interfaces ), the program is made available to every kind of user also
with few informatics skills while concerning future developments, a wide range of
possibilities was taken into account using a “modular” approach in developing the
program.

Certainly the use of FEM analysis would be useful to validate achieved results
but for such big systems a FEM model could be very computational expensive and
also concerning experimentation it is surely difficult to have the necessary results.

6.2 Future developments

Vehicles matrices are already implemented considering the possibility of increasing
the number of DOF used , that would permit, with some program changes, to study
also transversal or longitudinal vibration that are obviously very important in this
kind of problems.

As aforementioned, the FRF of the total system (Vehicle-track-structure) needs
a linearization of the model in each subpart and moreover, to insert the vehicle in
the FRF model, it is necessary to making use of further simplifications.

For these reasons the obtained FRFs will be certainly affected by error and in
order to reduce this effect it should be necessary to refine upon the vehicle model.

As described in subsection 3.8.2 of chapter 3.1 the vehicle was implemented in
the FRF model with the use of its wheelsets modal coordinates considering only the
two rigid body modes.

It would be so interesting to reduce the level of this simplification considering
a more complex vehicle model. A possible solution to increase the model accuracy
could be given by the use of FEM analysis in modelling the vehicle.

Obtaining thus vehicle modal properties from a FEM program, it could be possi-
ble to insert them in the track-structure FRF developed program without increasing
too much total system size and so guaranteeing a low computational model and an
high efficient program.

Concerning temporal response an accurate study of ballast properties it is cer-
tainly recommended in order to achieve more accurate results.

As aforementioned the temporal response program already offers the possibility
of considering non-linear interaction forces for this system subpart, but its effect
on system response was not studied in this thesis, specially because of the lack of
information about which non-linear function to use.
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6.3 Achievements

In this thesis work only test simulations were run to verify the correct behaviour of
the program more than its accuracy, needing the last a further specific study aimed
at the comparison with already validated results.

In order to test the program, the run simulations considered only simple prob-
lems, symmetrical and almost regular ( only few vehicle-track irregularities were
introduced ) because this is the normal procedure to follow.

Obtained results are very satisfactory and also concerning program usability the
use of GUIs permitted to achieve the desired results.

It is important to notice that program parameters definition took a large part of
this work and also for this reason the author would like to point out that in such a
short period it would have been difficult to obtain more results than those achieved.

The goal of making possible the study of a very wide range of problems was well
achieved through the implementation of lots of program variables that following an
“user’s choice” approach permit exactly to keep the program as general as possible.

All in all the achievements obtained are in author’s opinion more than satisfac-
tory, hoping that the reader could share this opinion.
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Appendix A

Euler-Bernoulli and Timoshenko
Beam theories

Two mathematical models, namely the shear-deformable (Timoshenko) model and
the shearindeformable (Euler-Bernoulli) model, are presented in this Annex.

In Euler-Bernoulli beam theory, shear deformations are neglected, and plane
sections remain plane and normal to the longitudinal axis. In the Timoshenko beam
theory, plane sections still remain plane but are no longer normal to the longitudinal
axis. The difference between the normal to the longitudinal axis and the plane section
rotation is the shear deformation.

Since the Timoshenko beam theory is higher order than the Euler-Bernoulli
theory, it is known to be superior in predicting the transient response of the beam
and the it is important to notice that superiority of the Timoshenko model is more
pronounced for beams with a low aspect ratio1.

A.1 Euler-Bernoulli theory

Euler-Bernoulli beam theory is a simplification of the linear theory of elasticity which
provides a means of calculating the load-carrying and deflection characteristics of
beams. It covers the case for small deflections of a beam which is subjected to lateral
loads only. It is thus a special case of Timoshenko beam theory which accounts for
shear deformation and is applicable for thick beams.

The main assumption of this method is that shear stress and rotational inertia
do not take part in beam section rotation and doing so it does not account for the

1The aspect ratio of a shape is the ratio of its longer dimension to its shorter dimension. It may
be applied to two characteristic dimensions of a three-dimensional shape, such as the ratio of the
longest and shortest axis, or for symmetrical objects that are described by just two measurements,
such as the length and diameter of a rod

115
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Figure A.1. Schematic of cross-section of a bent beam showing the neutral axis.

effects of transverse shear strain.
It was proved that the use of this theory is limited to those cases in which the

range of frequencies of exciting forces is less than 500 Hz.
Below the governing equation of beam dynamic behaviour is derived and it is

analyzed its solution for different cases.

A.1.1 Equation of motion

Figure A.2. Free body diagram of a differential element of a beam subject to
bending

In figure A.2 it is shown the free body diagram for a differential beam element
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subjected to bending on x-y plane. The element is located over an elastic support
and a p(x,t) force per unit length is acting on it.

The support stiffness constant is kb while M(x,t) and V (x,t) represent the bend-
ing moment and the shear force.

Let:

• ρ : element material density;

• ρA(x)dx
∂2u(x,t)

∂t2
: inertial force acting on differential element;

• A(x) : cross section area.

The forces equilibrium equation along u direction and the moments one in the
direction perpendicular to x-y plane about the point O are:

∂V (x,t)

∂x
+ p(x,t)− kbu(x,t) = ρA(x)

∂2u(x,t)

∂t2
(A.1)

∂M(x,t)

∂x
− V (x,t) = 0 (A.2)

Combining equations (A.1) and (A.2) a unique differential equation for beam
motion is obtained:

∂2M(x,t)

∂x2
+ p(x,t)− kbu(x,t) = ρA(x)

∂2u(x,t)

∂x2
(A.3)

Using then the Navier hypothesis of linear distribution of stresses across the
section it is possible to establish the relationship between the bending moment and
the element deformation, also known as Euler-Bernoulli theory :

M(x,t) = −EI(x)
∂2u(x,t)

∂x2
(A.4)

where E is the Young module of the material and I(x) is the straight cross
section inertia.

From equations (A.3) and (A.4) it derives the motion equation for the lateral
vibrations of an non-uniform beam.

∂2

∂x2

[

E(x)I(x)
∂2u(x,t)

∂x2

]

+ ρA
∂2u(x,t)

∂t2
+ kbu(x,t) = p(x,t) (A.5)

When the section is uniform, that is E and I are constant, the equation turns
into:
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EI
∂4u(x,t)

∂x4
+ ρA

∂2u(x,t)

∂t2
+ kbu(x,t) = p(x,t) (A.6)

that is the partial differential equation of motion of a constant section beam
subjects to bending and over an elastic support.

The general solution to the linear differential equation is the sum of the general
solution of the related homogeneous equation ( p(x,t) = 0 ) and the particular one.

A.1.2 Free Vibration without damping

Let

a2 =
EI

ρA
(A.7)

b2 =
kb

ρA
(A.8)

The free vibration equation derives from equation (A.6) where it is imposed that
p(x,t) = 0

a2
∂4u(x,t)

∂x4
+
∂2u(x,t)

∂t2
+ b2u(x,t) = 0 (A.9)

To solve equation (A.9) it is used the separation of variables method; the motion
of the beam is given by the product of two functions U(x) and q(t), where each one
depends only to one variable, respectively x and t.

This gives rise to:

u(x,t) = U(x)q(t) (A.10)

and combining (A.9) and (A.10)

a2

U(x)

d4U(x)

dx4
+ b2 = −

1

q(t)

d2q(t)

dt2
= ω2 (A.11)

where in equation (A.11) ω2 is a positive constant.
Since U(x) is independent of t , q(t) independent of x and both equal to ω2 the

only possibility is that:

d4U(x)

dx4
− λ4U(x) = 0 (A.12)

d2q(t)

dt2
− ω2q(t) = 0 (A.13)
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where

λ4 =
ω2 − b2
a2

=
ρAω2 − kb

EI
(A.14)

This definition for wave length λ is valid also if kb = 0, that is, when there is not
the elastic support.

The well-known general form of the solution of equation (A.13) is:

q(t) = q1 cosωt+ q2 sinωt (A.15)

where constants q1 and q2 depends from the initial conditions, that usually consist
of u0(x) displacement and v0(x) velocity along all the beam longitude at initial time
t = 0.

Concerning equation (A.12) general solution it is assumed that it is defined as:

U(x) = Cekx where C and k are constants (A.16)

Substituting equation (A.16) in equation (A.12) leads to:

k4 − λ4 = 0 (A.17)

which complex roots are:

k1,2,3,4 =

{

±λ
±iλ

(A.18)

It is so possible to express general solution of equation (A.12) as:

U(x) = C ′

1e
λx + C ′

2e
−λx + C ′

3e
iλx + C ′

4e
−iλx (A.19)

Alternatively, using transcendental functions, it can be written as

U(x) = C1 cos (λx) + C2 sin (λx) + C3 cosh (λx) + C4 sinh (λx) (A.20)

where C1 , C2 , C3 and C4 can be obtained from the boundary conditions of the
beam.

In table A.1 the possible boundary conditions and their mathematical expressions
are defined:

Finally it is important to remember that continuous-continuous boundary con-
ditions require only the conditions at one extreme to be the same as the second.
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Boundary conditions Mathematical expression

Fix extreme
zero displacement

zero rotation

u(x,t)|xextreme
= 0

θ(x,t)|xextreme
= 0

∂u(x,t)

∂x

∣

∣

∣

∣

∣

xextreme

= 0

Free extreme
zero moment

zero shear force

M(x,t)|xextreme
= 0

∂2u(x,t)

∂x2

∣

∣

∣

∣

∣

xextreme

= 0

θ(x,t)|xextreme
= 0

∂3u(x,t)

∂x3

∣

∣

∣

∣

∣

xextreme

= 0

Table A.1. Common boundary conditions in beam elements

A.1.3 characteristic equation and mode shapes of a free-
beam and a continuous one

Considering a beam with a length L with free free boundary conditions or with
continuous-continuous ones, the mathematical expressions of the boundary condi-
tions, in according to table A.1 are

Free-Free beam Continuous beam

∂2u(x,t)

∂x2

∣

∣

∣

∣

∣

x=0

= 0 u(x,t)|x=0 = u(x,t)|x=L

∂2u(x,t)

∂x2

∣

∣

∣

∣

∣

x=L

= 0
∂u(x,t)

∂x

∣

∣

∣

∣

∣

x=0

=
∂u(x,t)

∂x

∣

∣

∣

∣

∣

x=L

∂3u(x,t)

∂x3

∣

∣

∣

∣

∣

x=0

= 0
∂2u(x,t)

∂x2

∣

∣

∣

∣

∣

x=0

=
∂2u(x,t)

∂x2

∣

∣

∣

∣

∣

x=L

∂3u(x,t)

∂x3

∣

∣

∣

∣

∣

x=L

= 0
∂3u(x,t)

∂x3

∣

∣

∣

∣

∣

x=0

=
∂3u(x,t)

∂x3

∣

∣

∣

∣

∣

x=L

(A.21)
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From the above conditions applied to equation (A.20) the following systems of
equations result:

• free-free beam








−1 0 1 0
− cos (λL) − sin (λL) cosh (λL) sinh (λL)

0 −1 0 1
sin (λL) − cos (λL) sinh (λL) cosh (λL)























C1

C2

C3

C4















=















0
0
0
0















(A.22)

• continuous-continuous beam








0 sin (λL) 0 sinh (λL)
sin (λL) 0 − sinh (λL) 0

0 sin (λL) 0 − sinh (λL)
sin (λL) 0 sinh (λL) 0























C1

C2

C3

C4















=















0
0
0
0















(A.23)

Among all the solutions of equations (A.22) and (A.23) the significant one for
dynamic problems is that in which the determinant of the respective matrix is equal
to zero ( the other one is the trivial one C1 = C2 = C3 = C4 that implies absence
of motion). Using this condition it is possible to establish three relationships be-
tween C1 , C2 , C3 and C4 coefficients and one further equation called characteristic
equations.

The characteristic equations of both cases of constrained beam are so :

• free-free beam characteristic equation

cos (λnL) cosh (λnL) = 1 (A.24)

• continuous beam characteristic equation

sin2 (λnL) sinh2 (λnL) = 0 (A.25)

In figure A.1.3 it is shown the characteristic equation for a free-free constrained
beam.

From figure A.3(b) it is possible to see how the total solution of the characteristic
equation for the free-free constrained case is given by the union of solutions of two
components, in fact the characteristic equation could be rewritten as:

−4 cosh2 (λL) sin2 (λL) + 4cos2(λL) sinh2 (λL) = 0 (A.26)
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(a)

(b)

Figure A.3. Plot of the Absolute value of the characteristic equation for a free
free beam

that after some simple mathematical steps becomes:

(cosh (λL) sin (λL)+cos(λL) sinh (λL))∗(cosh (λL) sin (λL)−cos(λL) sinh (λL)) = 0
(A.27)

Solving these equations permits to obtain the values of λnL that accomplishes
the characteristic equation and put these values in equation (A.20) , where C1 , C2

, C3 and C4 coefficients have been substituted by their relationships , leads to the
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natural mode shapes expressions:

• free-free beam natural mode shapes:

Un(x) = Cn [cos (λnx) + cosh (λnx) + C∗

n1(sin (λnx) + sinh ((λnx)))] (A.28)

where C∗

n1 =
cosh (λL)− cos (λL)

sin (λL)− sinh(λL)

• continuous beam natural mode shapes:

Uneven
(x) = Cn ∗ (cosλn(x+ L/2) + C∗

n2 coshλn(x+ L/2)) (A.29)

Unodd
(x) = Cn ∗ (sinλn(x+ L/2) + C∗

n2 sinhλn(x+ L/2)) (A.30)

where C∗

n2 =
sin (λL)

sinh (λL)

where C∗

n2 is a scaling factor used to normalize the modes.
Notice that for each value of λn there are two vibration modes and this means

that their natural frequencies coincide.

A.1.4 Normalization, main properties and natural frequen-
cies

The normalization adopted is in respect of the mass per unit length and can be
expressed as follows:

∫ L

0

U2
n(x)dx = C2

nL =
1

ρA
(A.31)

Moreover it is simple to demonstrate that the mode shapes are perpendicular to
each other, that is:

∫ L

0

Un(x)Um(x)dx = 0 if n 6= m (A.32)

Each mode shape has its own natural frequency of vibration ωn that derives from
equation (A.14) and the values obtained for λ :
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ωn =
√

a2λ4
n + b2 =

√

EI

ρA
λ4

n +
kb

ρA
(A.33)

If the beam is not collocated over an elastic support equation (A.33) becomes
obviously:

ωn =
√

a2λ4
n =

√

EI

ρA
λ4

n (A.34)

Watching more carefully equations (A.24) , (A.25) and (A.34) it is possible to
understand how wave lengths λn depend only on beam length and its boundary
conditions while natural frequencies depend also on the main mechanical properties
of the element.

A.1.5 Rigid body modes

Depending on the boundary conditions, besides flexional vibration modes the beam
has the possibility of rigid body displacements.

For a free-free constrained beam the rigid body modes consist of a rigid lateral
translation and a rigid rotation around the beam center of gravity while for the
continuous-continuous one there is only one mode that is the rigid translation one,
this because of obviously considerations.

The rigid body modes mathematical expressions are:

U−1(x) = C−1 (A.35)

U0(x) = C0(x−
L

2
) (A.36)

where in equations (A.35) and (A.36) the numeration followed is that used for
the free-free beam case (in a continuous beam mode −1 does not exist and so the
first and only rigid mode, mode 0, is that of rigid translation ).

It is simple to demonstrate that both modes respect perpendicularity condition,
as well as the boundary conditions of the beam.

Regarding their natural frequencies, it is possible, going backwards, to calculate
first the rigid body modes wave lengths λ−1 and λ0 and then, using these values, to
calculate their natural frequencies.

d4U−1(x)

dx4
− λ−1U−1(x) = 0⇒ λ−1 = 0 (A.37)
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d4U0(x)

dx4
− λ0U0(x) = 0⇒ λ−1 = 0 (A.38)

And so, using equation (A.33), it is possible to calculate rigid body modes natural
frequencies as:

ωn =
√
b2 =

√

kb

ρA
n = −1,0 (A.39)

that means that for a beam that is not supported by an elastic support ( kb = 0
) the rigid body natural frequencies are null.

λ = 0 is a trivial solution of the characteristic equation and both rigid modes of
the free-free constrained beam are associated to this value, that means that λ = 0
is a double root to which two auto-functions are associated with.

The modes normalization to unit mass per length, like for all the others modes,
can be expressed like this :

∫ L

0

U2
n(x)dx =

1

ρA
n = −1 , 0 (A.40)

And so, C−1 and C0 values are:

∫ L

0

U2
n(x)dx = C2

−1L =
1

ρA
⇒ C−1 =

1

ρAL
(A.41)

∫ L

0

U2
n(x)dx = C2

0L
3/12 =

1

ρA
⇒ C0 =

√

12

ρAL3
(A.42)

Finally, with the use of equations (A.41) and (A.42), the mathematical expres-
sions for rigid body modes become:

U−1(x) =
1

ρAL
(A.43)

U0(x) =

√

12

ρAL3
(x−

L

2
) (A.44)

In figures A.4(a) and A.4(b) are shown the first five modes for both cases of Euler
free-free constrained beam and continuous-continuous one applied, respectively, to
a sleeper and to a rail of the thesis work2 .

2As aforementioned Euler modes depend only on beam length and boundary conditions, thus,
the problem is much simplified
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Figure A.4. Plot of first 5 vibration modes for a free-free constrained beam
(fig (A.4(a))) and for a continuous one (fig(A.4(b))) using the Euler-Bernoulli

approach.
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A.1.6 Pinned-pinned constrained beam

Before discussing the case of forced vibrations, the same mathematical expressions
derived for Euler free-free and continuous beams are obtained for the pinned-pinned
beam case, used in the work to model the underlying structure (a bridge, a viaduct
ect. ect.).

In this last case the boundary conditions are:

pinned-pinned beam

u(x,t)|x=0 = 0

u(x,t)|x=L = 0

∂2u(x,t)

∂x2

∣

∣

∣

∣

∣

x=0

= 0

∂2u(x,t)

∂x2

∣

∣

∣

∣

∣

x=L

= 0

(A.45)

Above boundary conditions expressions bring to the following system of equa-
tions written in matrix form









1 0 1 0
cos (λL) sin (λL) cosh (λL) sinh (λL)
−1 0 1 0

− cos (λL) − sin (λL) cosh (λL) sinh (λL)























C1

C2

C3

C4















=















0
0
0
0















(A.46)

Like other Euler beam cases, the solution of interest for dynamic problems is
the one given by the singularity of this matrix that gives rise to three C coefficients
relationships and one more equation called pinned-pinned characteristic equation,
shown below

sin (λnL) ∗ sinh (λnL) = 0 (A.47)

which solutions with C coefficients relationships , put in equation (A.20) , leads
to natural mode shapes expressions for a pinned-pinned constrained beam

Un(x) = Cn ∗
√

2 sin (λnx) (A.48)

where Cn coefficient depends on which kind of normalization is used, that in
this work, as aforementioned, is to unit mass per unit length and can be obtained
making use of equation (A.31).
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Natural frequencies are here also derivable from equation (A.33) and concerning
rigid body modes, it is important to notice that in pinned-pinned constrained beam
there are no ones, this due to the boundary conditions of this particular case.

In figure A.5 it is possible to see the first five modes for a pinned-pinned beam
used in the program to model the underlying structure.
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Figure A.5. First 5 modes plot for a pinned-pinned constrained beam

A.1.7 Forced vibrations

The second part of the total solution of equation (A.6) is given by the particular one
(p(x,t) 6= 0) that is here obtained making use of a modal superposition approach.

Doing so, the solution is given by a linear combination of the basis terms of the
mathematical infinite space used to describe the physic space of possible deforma-
tions.

u(x,t) =
∞
∑

n=−1

Un(x)qn(t)3 (A.49)

where Un(x) is the nth vibration mode, that depends on beam boundary condi-
tions, and qn(t) its modal coordinate.

Thus, combining equations (A.49) with (A.6) it results:

3from here on a free-free constrained beam is considered and so the numeration of the modes
starts from −1.
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EI
∞
∑

n=−1

∂4U(x)

∂x4
qn(t) + ρA

∞
∑

n=−1

Un(x)
∂2q(t)

∂t2
+ kb

∞
∑

n=−1

Un(x)qn(t) = p(x,t) (A.50)

that after some mathematical manipulations becomes:

d2qn(t)

dt2
+ ω2

nqn(t) = Pn(t) n = −1,0,1, . . . ,∞ (A.51)

where Pn(t) is the nth modal force calculated as:

Pn(t) =

∫ L

0

p(x,t)Un(x)dx (A.52)

In case of punctual forces acting on discrete points , as supposed in the work
done, modal forces can be obtained as follows :

Pn(t) =

Nf
∑

i=1

pi(t)Un(xi) (A.53)

where in equation (A.53) Nf stands for the number of punctual forces pi(t) acting
on xi positions of the beam.

To take into consideration damping properties of the beam it is then possible to
add some sort of modal damping coefficient that for track studies is usually of few
percentage points (0.04 : 0.1). Doing so equation (A.51) becomes

d2qn(t)

dt2
+ 2ζnωn

dqn(t)

dt
+ ω2

nqn(t) = Pn(t) n = −1,0,1, . . . ,∞ (A.54)

Once obtained modal coordinates qn values it is possible to have the system
response through equation (A.49)

Obviously in practical problems it is not possible to have all the infinite members
of the mathematical space, as equations A.49, A.50 and A.51 would need, so it is
necessary some kind of problem size reduction, that in the work done, as aforemen-
tioned in section 2.4, is the modal truncation.

Doing so the physic space of possible deformations is approximated by a math-
ematic subspace where the dimension of the subspace determinates the accuracy of
the solution, that is, a finite number of modes is used to represent system response.

Let Nm be the number of mode shapes chosen.
Doing so the deformation of the beam can be expressed as follows:

u(x,t) =
Nm
∑

n=−1

Un(x)qn(t) (A.55)
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A.1.8 Stresses

Besides deflection, the beam equation describes forces and moments and can thus
be used to describe stresses.

Both the bending moment and the shear force cause stresses in the beam. The
stress due to shear force is maximum along the neutral axis of the beam (when the
width of the beam is constant along the cross section of the beam; otherwise an
integral involving the first moment and the beam’s width needs to be evaluated for
the particular cross section), and the maximum tensile stress is at either the top or
bottom surfaces.

Thus the maximum principal stress in the beam may be neither at the surface
nor at the center but in some general area.

However, shear force stresses are often negligible in comparison to bending mo-
ment stresses and considering the fact that stress concentrations commonly occur
at surfaces, the maximum stress in a beam is likely to be at the surface.

For a one-dimensional linear elastic material, the stress is related to the strain
by σ = Eε where E is the Young’s modulus. Hence the stress in an Euler-Bernoulli
beam is given by

σx = −zE
d2u

dx2
(A.56)

where z is the distance from the neutral axis.
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A.2 Timoshenko beam theory

The Timoshenko beam theory was developed by Ukrainian-born scientist
Stephen Timoshenko in the beginning of the 20th century.

The model takes into account shear deformation and rotational inertia effects,
making it suitable for describing the behaviour of short beams, sandwich compos-
ite beams or beams subject to high-frequency excitation when the wavelength ap-
proaches the thickness of the beam.

The resulting equation is of 4th order, but unlike ordinary beam theory (i.e.
Bernoulli-Euler theory) there is also a second order spatial derivative.

Physically, taking into account the added mechanisms of deformation, effectively
lowers the stiffness of the beam, while the result is a larger deflection under a static
load and lower predicted eigenfrequencies for a given set of boundary conditions.
The latter effect is more noticeable for higher frequencies as the wavelength becomes
shorter, thus decreasing the distance between opposing shear forces.

If the shear modulus of the beam material approaches infinity, thus making the
beam rigid in shear, and if rotational inertia effects are neglected, Timoshenko beam
theory converges towards ordinary beam theory.

Figure A.6. Schematic of cross-section of a bent beam showing the neutral axis.

As aformentioned the main difference between this theory and the
Euler-Bernoulli one is that cross sections do not remain straight and so there are
two independent variables of interest (displacement and rotation) at each point.

Below the governing equation of beam dynamic behaviour is derived and it is
analyzed its solution for different cases.
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A.2.1 Equation of motion

Figure A.7. Free body diagram of a differential element of a Timoshenko beam
subject to bending

In figure A.7 it is shown the free body diagram for a Timoshenko differential
element.

The element is subjected to bending on plane x-u, is collocated over an elastic
support of kb stiffness coefficient and is excited by an external force per unit length
p(x,t), where the bending moment is M(x,t) and the shear force V (x,t).

The total deformation is here split in two components:

• a bending dependent one : uM(x,t);

• a shear dependent one : uS(x,t).

Thus the total deformation can be expressed as:

u(x,t) = uM(x,t) + uS(x,t) (A.57)

The angle of rotation due to the bending moment is then Ψ(x,t) and the shear
dependent one is β(x,t).

The mathematical relations between rotations and deformations are so:

Ψ(x,t) =
∂uM(x,t)

∂x
(A.58)

β(x,t) =
∂uS(x,t)

∂x
(A.59)
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Bending moment M(x,t) and shear force V (x,t) are related to lateral displace-
ment and rotation of the element as follows:

M(x,t) = −EI
∂2uM(x,t)

∂x2
= −EI

∂Ψ(x,t)

∂x
(A.60)

V (x,t) = k′GA
∂uS(x,t)

∂x
= k′GA

(

∂u(x,t)

∂x
−Ψ(x,t)

)

(A.61)

where

• G is the shear modulus;

• E is the Young’s modulus;

• I is the area moment of inertia of the cross-section;

• A is the area of the cross section

• k′ is the Timoshenko constant that depends on the shape of the undeformed
section.

Considering the set of forces and moments acting on the differential element
shown in figure A.7 it is possible to write the following equilibrium relations:

ρA
∂2u(x,t)

∂t2
−
∂V (x,t)

∂x
+ kbu(x,t) = p(x,t) (A.62)

−
∂M(x,t)

∂x
+ V (x,t)− ρI

∂2Ψ(x,t)

∂t2
= 0 (A.63)

where

• ρ is the density of the element material;

• ρAdx
∂2u(x,t)

∂t2
is the translation inertia force acting on the element;

• ρI
∂2Ψ(x,t)

∂t2
is the rotational inertia on x-u plane.

Simplifying equations (A.62) and (A.63) and making use of equations (A.60) and
(A.61), the following system of partial differential equations:

ρA
∂2u(x,t)

∂t2
− k′GA

(

∂2u(x,t)

∂x2
−
∂Ψ(x,t)

∂x

)

+ kbu(x,t) = p(x,t) (A.64)
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EI
∂2Ψ(x,t)

∂x2
+ k′GA

(

∂u(x,t)

∂x
−Ψ(x,t)

)

− ρI
∂2Ψ(x,t)

∂t2
= 0 (A.65)

where the unknown variables are u(x,t) and Ψ(x,t).
As well as for the Euler-Bernoulli case the general solution of the system of equa-

tions (A.64) and (A.65) is the sum of the general solution of the related homogeneous
equations (p(x,t) = 0)and the particular one.

A.2.2 Free vibration

The homogeneous solution of the system defined by equations (A.64) and (A.65)
derives from the new system obtained, requiring the force term to be null p(x,t) = 0.

ρA
∂2u(x,t)

∂t2
− k′GA

(

∂2u(x,t)

∂x2
−
∂Ψ(x,t)

∂x

)

+ kbu(x,t) = 0 (A.66)

EI
∂2Ψ(x,t)

∂x2
+ k′GA

(

∂u(x,t)

∂x
−Ψ(x,t)

)

− ρI
∂2Ψ(x,t)

∂t2
= 0 (A.67)

Also in this case a separation of variables approach is used, thus:

u(x,t) = U(x)q(t) = U(x) (q1 cos (ωt) + q2 sin (ωt)) (A.68)

Let

r2 =
I

A
γ =

EI

k′GAL
λ4 =

ρAω2

EI
κ
kb

EI
(A.69)

Combining equations (A.66) , (A.67) and (A.68) and making use of the defined
coefficients (A.69) gives rise to the following simplified equation:

{

d4U(x)

dx4
+
[

λ4
(

r2 + γ
)

− γκ
] d2U(x)

dx2
−
(

λ4 − κ
) (

1− λ4γr2
)

U(x)

}

q(t) = 0

(A.70)
Considering that q(t) can take whatever value, the required solution to equation

(A.70) is:

d4U(x)

dx4
+
[

λ4
(

r2 + γ
)

− γκ
] d2U(x)

dx2
−
(

λ4 − κ
) (

1− λ4γr2
)

U(x) = 0 (A.71)

Defining then α0 and α1 as
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α1 =
λ4

L2

(

r2

L2
+ γ

)

−
γκL

L2
α0 =

(

λ4

L4
−
κL

L4

)(

1−
λ4γr2

L2

)

(A.72)

it is possible to rewrite equation (A.70) as:

d4U(x)

dx4
+ α1

d2U(x)

dx2
− α0U(x) = 0 (A.73)

whose solution is :

U(x) = C1 cos

(

ax

L

)

+ C2 sin

(

bx

L

)

+ C3 cosh

(

cx

L

)

+ C4 sinh

(

dx

L

)

(A.74)

where C1, C2, C3, C4 constants depend on the boundary conditions of the beam
and a, b, c, d are adimensional wave lengths.

Considering α0 and α1 definitions (equation (A.72)), substituting solution equa-
tion (A.74) in (A.73) and considering that vibration modes, as well as wave lengths,
must be real, it results that:

U(x) = C1 cos

(

ax

L

)

+ C2 sin

(

ax

L

)

+ C3 cosh

(

dx

L

)

+ C4 sinh

(

dx

L

)

(A.75)

where adimensional wave lengths a and d are given by the following relations:

a = L





λ4 (r2 + γ)− γκ
2

+





[

λ4 (r2 + γ)− γκ
2

]2

+
(

λ4 − κ
) (

1− λ4γr2
)





0.5



0.5

(A.76)

d = −L





λ4 (r2 + γ)− γκ
2

+





[

λ4 (r2 + γ)− γκ
2

]2

+
(

λ4 − κ
) (

1− λ4γr2
)





0.5



0.5

(A.77)
Free-free and continuous beam cases
Also in Timoshenko’s method the modal properties of the beam depend on the

boundary conditions, but, differently from Euler case, in Timoshenko’s method also
the others beam mechanical characteristics have an influence on them.
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Possible boundary conditions are the same list in table A.1 but with different
mathematic expressions.

The rotation of the section do not still correspond to the tangent of deflection
curve and as aforementioned, bending moment and shear force are related to dis-
placement and rotation with equations (A.60) and (A.61).

Boundary conditions Mathematical expression

Fix extreme
zero displacement

zero rotation

u(x,t)|xextreme
= 0

Ψ(x,t)|xextreme
= 0

Free extreme
zero moment

zero shear force

M(x,t)|xextreme
= 0

θ(x,t)|xextreme
= 0

Table A.2. Beam common boundary conditions

Using the separation of variables method, as for the displacement u(x,t) (equa-
tion (A.68)), it is possible to write the following relations:

V (x,t) = V (x)q(t) (A.78)

M(x,t) = M(x)q(t) (A.79)

Ψ(x,t) = Ψ(x,t)q(t) (A.80)

Combining opportunely equations (A.66) and (A.67) with equations (A.61) and
(A.68) it is possible to obtain the following expression for the Shear force:

V (x) = −EI
λ4 − κL4

a2d2

[

d3U(x)

dx3
+
a2 − d2

L2

dU(x)

dx

]

(A.81)

where the following relations were considered

a2d2 = L4
(

λ4 − κ
) (

1− λ4γr2
)

(A.82)

a2d2 = L2
[

λ4
(

r2 + γ
)

− γκ
]

(A.83)
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Combining then equations (A.75) and (A.81) the following shear force equation
results:

V (x) = −EI
λ4 − κL
a2d2

(

ad2C1 sin

(

ax

L

)

− ad2C2 cos

(

ax

L

)

+ . . .

. . .+ a2dC3 sinh

(

dx

L

)

+ a2dC4cosh

(

dx

L

))

(A.84)

The rotation due to bending moment Ψ(x) can be obtained substituting equation
(A.84) in equation (A.61) :

Ψ(x) = C1

a′

L
sin

(

ax

L

)

+ C2

a′

L
cos

(

ax

L

)

+ C3

d′

L
sinh

(

dx

L

)

+ C4

d′

L
cosh

(

dx

L

)

(A.85)

where

a′ = a−
γ (λ4 − κ) ∗ L2

a
d′ = d−

γ (λ4 − κ) ∗ L2

d
(A.86)

Finally considering (A.60) and (A.85) it is possible to give the definition of the
bending moment equation:

M(x) =
EI

L2

(

C1aa
′ cos

(

ax

L

)

+ C2aa
′ sin

(

ax

L

)

+ C3dd
′ cosh

(

dx

L

)

+ C4dd
′ sinh

(

dx

L

))

(A.87)

Equations (A.75), (A.84), (A.85) and (A.87) permit to calculate the C coefficients
values that accomplish the boundary conditions.

The characteristic equations for both cases of free-free beam and continuous one
are given below :

• free free constrained beam characteristic equation

2a(λ)2a(λ)′d(λ)2d(λ)′ (1− cosh d cos a(λ)) +

+
(

a(λ)4a(λ)′2 − d(λ)4d(λ)′2
)

sinh d(λ) sin a(λ) = 0 (A.88)
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• continuous-continuous constrained beam characteristic equation

sin

(

a(λ)

2

)

cosh

(

d(λ)

2

)

= 0 (A.89)

In figure A.2.2 the characteristic equations for a free-free Timoshenko beam and
for a continuous one are plotted .

(a)

(b)

Figure A.8. Plot of the characteristic equation for a free-free constrained beam (fig
(A.8(a))) and for a continuous-continuous one (fig (A.8(b))) using the Timoshenko

approach

Once obtained n λn solutions of equations (A.88) or (A.89) it is possible to obtain
the mode shapes of the beam simply applying them to equation (A.75) that is:
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Un(x) = C1n
cos

(

anx

L

)

+ C2n
sin

(

anx

L

)

+ C3n
cosh

(

dnx

L

)

+ C4n
sinh

(

dnx

L

)

(A.90)
and the same for Ψn(x), Mn(x) and Vn(x) through equations (A.84), (A.85) and

(A.87).
In figures A.9(a) and A.9(b) are shown the first five modes for both cases of

Timoshenko free-free constrained beam and continuous-continuous one applied re-
spectively to a sleeper and to a rail of the thesis work4 .

A.2.3 Modes normalization and natural frequencies

Also in the Timoshenko method, modes can be scaled, in fact they still represent
a basis of eigenfunctions for the mathematic space or subspace and so do not have
a fix module (If x is an eigenvector of the matrix A with eigenvalue α, then any
multiple αx is the same eigenvector of A with the same eigenvalue).

The normalization adopted is the same of the Euler case (to unit of mass per
length) but the mathematic relation is different:

∫ L

0

(

ρAU2
n(x) + ρIΨ2

n(x)
)

dx = ρAC2
1n2

∫ L

0

(

U∗
2

n (x) + r2Ψ∗
2

n (x)
)

dx = ρALC2
1nIcn

(A.91)
where:

• Un(x) and Ψn(x) are the nth modes of transversal deformation and of cross
area rotation, respectively defined in equations (A.75) and (A.87);

• r is the rotation radius of the cross section of the beam defined in (A.69);

• U∗
2

n = U2
n/C1n and Ψ∗

2

n = Ψ2
n/C1n

Thus the value of C1n is given by equation (A.92):

C1n =
1

√

ρALIcn

(A.92)

Figure A.2.3 shows the trend of the first 82 modos for a free-free constrained
beam (beam mechanical properties influenced obviously the values of Icn

integral ).

4As aforementioned Timoshenko modes depend on beam length and on boundary conditions,
but, unlike Euler method, they depend also on the main mechanical properties of the material
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Figure A.9. Plot of first 5 vibration modes for a free-free constrained beam (fig
(A.4(a))) and for a continuous-continuous one (fig(A.4(b))) using the Timoshenko

approach
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Figure A.10. Integral Icn
trend for the first 82 vibration modes for a free-free

constrained beam

Finally the expression for the calculation of natural frequencies is:

ωn =

√

EI

ρAL4
λ4

n (A.93)

The natural frequencies obtained with Timoshenko theory are obviously a bit
smaller than the Euler ones and this because The Euler beam is more rigid.

In Euler theory in fact the cross section is supposed to be always perpendicular
to the neutral axis and this makes the beam more rigid and its natural frequencies
higher.

To appreciate this difference it is necessary to consider high frequencies modes
because, because this discrepancy becomes greater with the increasing of the modes
number ,as figure A.2.3 shows.
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Figure A.11. Comparison between Euler-Bernoulli frequencies and Timoshenko
ones for the same beam
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Appendix B

Winkler Foundation

In this short Annex a short introduction to Winkler foundation theory is given.

B.1 Concept of Elastic Foundations

In figure B.1 it is shown a simple case of beam over an elastic foundation and its
simplyfied model.

Figure B.1. Distributed load q(x) acting on an infinite beam over an elastic
foundation of k stiffness

In Winkler method a linear relationship between the force on the foundation
(ff ) and the deflection w is assumed, thus, considering a foundation of k0 stiffness
coefficient [N/m] , it is possible to write the following relation:

ff = k0w (B.1)

Equation (B.1), in the case of a b width beam, become obviously:

p = k0bw (B.2)

where in (B.2) k0 is a stiffness per unit of width [N/m2].
It is important to notice yet an important restriction of the model: the contact

is never broken between beam and foundation and this is a matter of particular
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importance that can be solved only with the use of more complicated models as
those of Elastic solid Foundation.

In figure it is possible to better understand this first restriction of Winkler foun-
dation model compared to more complex ones.

(a)

(b)

Figure B.2. Deflections of foundation models under uniform pressure. No beam
is present.

B.2 Governing Equations For Uniform Straight

Beams on Elastic Foundations

In this section the governing equation for a simple case of beam over an elastic
Winkler foundation is presented.

To obtain the governing equation an Euler-Bernoulli approach will be used.
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Considering the differential element of an uniform beam over an elastic support
and the forces acting on it (fig: B.3), it is possible to write the following equilibrium
equations:

Figure B.3. Beam cross section differential element and forces acting on it.

• forces equilibrium
dV

dx
= −q + kw (B.3)

• moments equilibrium
dM

dx
= V (B.4)

Equations (B.3) and (B.4) opportunely combined, yield to the Euler-Bernoulli
beam governing equation of movement (section A.1 of annex A).

EI
d4w

dx4
+ kw = q(x,t) (B.5)

To solve this equation lots of methods have been developed, as aforementioned
in this thesis work.

Finally it is important to notice that Winkler effect on beam natural frequen-
cies is that of increasing the stiffness of the system, that is, increasing its natural
frequencies of vibration .
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Appendix C

Two step numerical integration
method used

In this Annex the explicit two-step method algorithm used to solve the differential
equations system is developed.

The proposed numerical integration, avoids solving simultaneous linear algebraic
equations in each time step and it is valid for arbitrary damping matrix and diagonal
mass matrix frequently encountered in practical engineering dynamic systems.

Accordingly, computational speeds of this method applied to large system anal-
ysis can be far higher than those of other popular methods.

Accuracy, stability and numerical dissipation have been already investigated in
Ref. [4] and in order to verify its accuracy and correctness linear and non linear
examples were runned and the results carefully analyzed.

The proposed method can be used as fast as economical calculation tools for
solving large-scale nonlinear dynamic problems in engineering.

C.1 introduction

Step-by-step integration algorithms are widely used to solve equations of multi-
degree of freedom systems in structural dynamics, especially in non-linear structural
dynamics.

Discussions on these algorithms can be founded in lots of different technical
journals and books.

However, for large-scale problems, as is frequently the case in modern dynamic
analysis in practical engineering problems, the calculation speed become very low
and the computational cost high. Therefore, it is necessary to develop more efficient
integrations algorithms for large-scale complex system analysis.

Basically there are two general classes of algorithms for dynamic problems:
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• implicit methods;

• explicit methods.

Implicit methods are for instance the Newmark -β method or the Wilson -ϑ
method. These implicit methods are normally more accurate and permit large time
steps but the price to pay for these benefits is an high computational cost when
applying this kind of algorithms to large-scale problems.

On the contrary, explicit schemes tend to be inexpensive.
It was pointed out that if lumped mass and damping matrices are used, an

explicit scheme probably consists of pure vector operations. This is very convenient
for computers with vector processors and the disadvantage of conditional stability
can be partially alleviated through a vectorized implementation.

Thus these explicit algorithms become more competitive on large-scale problems
compared to more stable implicit ones.

Moreover non-linear problems tend to be diffult to analyze for both kinds of
algorithms and specially the time-step needs to be very small in both cases.

In this kind of dynamic problems, an important algorithm is that of the central
differences method that when applied to non-linear structural dynamics is still sup-
posed to solve a set of linear algebraic equations, in each time step, at least as long
as the problem is an ideal one that is:

• the mass matrix is diagonal ;

• the damping matrix can be neglected or is proportional to the mass matrix
and to the stiffness one.

However the second condition is difficult to satisfy for practical engineering prob-
lems, while the first one can be usually observed.

The explicit method used is supposed to be a simple one with at least the same
stability limit as the central difference one, but needs only simple vectors operations
in each step no matter which kind of damping matrix is used.

Its stability and dissipation in non linear cases were proved and its efficiency in
solving the equation system of this thesis work is also good.

C.2 New Explicit integration method algorithm

The matrix equation of linear structural dynamics is :

MẌ + CẊ + KX = F (C.1)

that can be also written as follows:
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MA + CV + KX = F (C.2)

where in equations (C.1) and (C.2) M, C and K are respectively the mass
matrix, the damping matrix and the stiffness one, F is the vector of applied loads
(generally a function of time F = F(t)) and X ,V , A (X,Ẋ , Ẍ) are the vectors of
displacements, velocities and accelerations, respectively.

The initial value problem consists of finding a function X = X(t) which satisfies
equations (C.1) and (C.2) as well as the initial conditions

X(0) = X0 (C.3)

V(0) = V0 (C.4)

where X0 and V0 are given vectors of initial displacements and velocities, re-
spectively.

C.3 Integration scheme

The new explicit scheme for approximate solutions of equations (C.1) and (C.4) is
proposed below:

Xn+1 = Xn + Vn∆t+ (
1

2
+ Ψ)An∆t2 −ΨAn−1∆t

2 (C.5)

Vn+1 = Vn + (1 + ϕ)An∆t− ϕAn−1∆t (C.6)

where Xn,Vn and An are the approximations to X(t = n∆t),V(t = n∆t) and
A(t = n∆t), respectively, ∆t is the time step and Ψ and ϕ are free parameters that
control the stability and numerical dissipation of the algorithm.

Obviously, the above scheme is similar in form to the well-known Newmark
method, in fact the construction of this new scheme is enlightened by the latter.

Substituting equation (C.4) into equation (C.1) at time step t = (n+ 1)∆t

MAn+1 + CVn+1 + KXn+1 = Fn+1 (C.7)

and rearranging the terms yield to:

An+1 = M−1F̃n+1 (C.8)

where
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F̃n+1 = Fn+1 −KXn − (C + K∆t)Vn + . . .

. . .−
[

(1 + ϕ)C +

(

1

2
+ Ψ

)

K∆t

]

An∆t+ (ϕC + ΨK∆t)An−1∆t (C.9)

in which Fn+1 = F [t = (n+ 1)∆t]
To start the integration procedure, one can easily let ϕ = Ψ = 0 at the first time

step and use the initial conditions (C.4) as well as

A0 = M−1 (F0 −CV0 −KX0) (C.10)

Therefore the scheme is self-starting. If the mass matrix is diagonal, as it is
frequently the case in structural dynamics and as it is assumed here to be, the new
integration algorithm is explicit and needs not to solve any equation.

C.4 Stability

To investigate the stability of the new explicit method a linear homogeneous form of
equation (C.7) without damping and for a single-degree of freedom was considered;
the results obtained from Wan-Ming Zhai Ref.[4] are here reported:

an+1 + ω2xn+1 = 0 (C.11)

where k =
√

k/m.
the difference form of equation (C.11) is:

xn+2 +

[(

1

2
+ Ψ

)

Ω2 − 2

]

xn+1 +

[(

1

2
+ ϕ− 2Ψ

)

Ω2 + 1

]

xn + (Ψ− ϕ) Ω2xn−1 = 0

(C.12)
where Ω = ω∆t
The eigenvalue equation of equation (C.12) takes the following form:

λ3 +

[(

1

2
+ Ψ

)

Ω2 − 2

]

+λ2 +

[(

1

2
+ ϕ− 2Ψ

)

Ω2 + 1

]

λ+(Ψ− ϕ) Ω2 = 0 (C.13)

The requirement for stability is |λ| ≤ 1. By use of the transformation

λ =
1 + Z

1− Z (C.14)
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equation (C.13) becomes

[

4 + 2 (ϕ− 2Ψ) Ω2
]

Z3 +
[

4 + (4Ψ− 4ϕ− 1) Ω2
]

Z2 + 2ϕΩ2Z + Ω2 = 0 (C.15)

and then the requirement for stability is simply Re(Z) ≤ 0.
Thus stable steps can be derived and they are shown in table C.1.

ϕ Ψ ∆t

ϕ > 1
2

Ψ < ϕ ∆t ≤
1

ω

√

2ϕ− 1

(ϕ−Ψ)(2ϕ+ 1)

ϕ > 1
2

Ψ ≥ ϕ ∆t ≤
1

ω

√

2

2Ψ− ϕ

ϕ = 1
2

Ψ ≥ 1
2

∆t ≤
2

ω

√

1

4Ψ− 1

0 < ϕ < 1
2

ϕ < Ψ < ϕ+ 1
4

1

w

√

1− 2ϕ

(Ψ− ϕ)(2ϕ+ 1)
≤ ∆t ≤

Min







1

ω

√

2

2Ψ− ϕ ,
2

ω

√

1

4(ϕ−Ψ) + 1







0 < ϕ < 1
2

Ψ ≥ ϕ+ 1
4

1

w

√

1− 2ϕ

(Ψ− ϕ)(2ϕ+ 1)
≤ ∆t ≤

1

ω

√

2

2Ψ− ϕ

Table C.1. Conditions of stability of the new explicit method

It can be seen from table C.1 that the range of stable steps is very wide.
When Ψ = ϕ = 1

2
, the stability limit is ∆t ≤ 2ω, which is the same as that

of the central difference method and these are the coefficients values used in the
track-program.
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It is important to notice that when a non-linear case is treated this minimum
time-step seems to be different from the theoretical one. Before implementing the
integrator some tests have been done and the result was that the best coefficients
to use, considering soltution stability and accuracy were Ψ = ϕ = 1

2
.

C.5 Accuracy

Applying Taylor formula to An−1 it results:

An−1 = An − Ȧn∆t+
1

2
Än∆t2 − . . . (C.16)

where a superposed dot denotes a time derivate as commonly used.

Substituting equation (C.16) into equation (C.6) yields to:

Xn+1 = Xn + Vn∆t+
1

2
An∆t2 + ΨȦn∆t3 − 1

2
ΨÄn∆t4 + O(∆t5) (C.17)

Vn+1 = Vn + An∆t+ ϕȦn∆t3 + O(∆t4) (C.18)

Local truncation errors can be written as

E(X) = (
1

6
−Ψ)Ȧn∆t3 + (

1

24
+

1

2
Ψ)Än∆t4 + O(∆t5) (C.19)

E(V ) = (
1

2
− ϕ)Ȧn∆t2 + (

1

6
+

1

2
ϕ)Än∆t3 + O(∆t4) (C.20)

If Ψ = 1
6

the order of accuracy of E(X) is O(∆t4) and if ϕ = 1
2

the order of
accuracy of E(V ) is O(∆t3).

Otherwise the orders of accuracy decrease to O(∆t3) and O(∆t2), respectively.
Obviously the new explicit integration method has the same order of accuracy as
that of Newmark’s implicit method.

C.5.1 Numerical dissipation

Concerning the numerical dissipation and amplitude decay, here are reported only
the results of the article used [4].

When both ϕ and Ψ are larger than 1
2

or one of them is larger than 1
2

and the
other equals to 1

2
, there will be algorithmic damping to decrease amplitudes, and

when ϕ = Ψ = 1
2

there is no numerical dissipation.
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C.5.2 Stability and Accuracy : examples

It is very important to remember that the minimum time step to reach the stability
of the method can bring to completely wrong results anyway, because it assures that
the solution is stable but it doesn’t consider its accuracy.

Considering the following problem it is possible to better understand the differ-
ence between stability and accuracy of the solution.

ẍ+ kx = f(t)
ẋ(0) = 10
x(0) = 0

(C.21)

where t ∈ [0,20].
Two different simulations were so run:

1. k = 50

2. k(x) =

{

50, if 1.2 ≤ x ≤ 1.2

20, if x ≤ −1.2 ∨ x ≥ 1.2

In the first linear case the minimum theoretical time step is dt = 2
ω

=
√

50 ≈ 0.28
.

Figures C.1(a) and C.1(b) show how this stability condition is here respected
but at the same time the accuracy of the solution is very low, almost making the
solution completely wrong.

Concerning the non-linear problem instead the condition seems to be stable also
for dt values major then the minimum one, and this is illustrated in figure C.2 where
the used dt is major then 2

ω
.

Finally figure C.3 shows that to reach a good level in the accuracy of the solution
it is necessary to consider very small time steps and furthermore this accuracy
decreases with the length of the time interval simulated.

Obviously more accurated analysis would be necessary to define the minimum
time step to achieve a certain grade of accuracy but this is not a goal of the work
done.
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Figure C.1. Minimum time step stability condition for the linear example
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Figure C.2. Minimum time step stability condition for the non-linear example
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Figure C.3. Accuracy of the solution
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