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Turning and turning in a widening gyre
The falcon cannot hear the falconer ;

Things fall apart; the centre cannot hold ;
Mere anarchy is loosed upon the world
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Abstract

In questa tesi tratteremo il problema di costruire una teoria termodinamica per trasfor-
mazioni su un sistema passante per stati di non-equilibrio. Cercando di generalizzare
a sistemi che non sono all’equilibrio, rilasseremo la richiesta che siano in equilibrio
globalmente. Lo stato termodinamico sarà univocamente determinato da un insieme
di parametri termodinamici definiti localmente, della stessa natura e significato fisico dei
parametri usati nella termodinamica classica. Le molteplici assunzioni necessarie al fine
di avere una teoria mesoscopica comunque predittiva verranno giustificate a posteriori,
quando possibile, in base alle predizioni che da tale modello nasceranno. In particolare ci
concentreremo sugli effetti termoelettrici di Thompson, Seebeck e Peltier, esempi storici
di grande rilevanza nel campo della termodinamica del non-equilibrio.
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Introduction

Although the general and consistent formulation of a thermodynamic theory for systems
arbitrarily far from equilibrium is still a work in progress, the theory of linear irreversible
thermodynamics is well established.

Classical statistical mechanics, first elaborated by L. Boltzmann and J. W. Gibbs
managed to ground phenomenological quantities such as Temperature, Entropy and
Heat, and the relations linking them, in the statistical dynamical microscopic description
of a system.

Unfortunately, the predictive power of their theory cannot be turned to the study of
systems out of equilibrium, that is, to the study of irreversible processes, yet this is the
state in which a vast number of interesting systems do dwell, and in particular all living
organisms.

The obstacles faced by theorists who have attempted to bridge the gap are significant.
The foremost conceptual problem appears to be the actual definition of thermodynamic
quantities, such as temperature, entropy and heat. The requirement that a system be in
equilibrium for their definition to be coherent seems, a priori, to cripple any attempt to
build a thermodynamic description of an irreversible process.

Having said that we shall see how, if done carefully, a construction of a theory of
nonequilibrium thermodynamics along classical lines is possible. In particular we shall see
how to skirt the definition problem of thermodynamic variables, provided that systems
be sufficiently near to equilibrium that a local notion of equilibrium can be assigned to
each point in space.

To this end, we shall work in an analogous fashion to the continuum model of fluid
dynamics by defining local flows and fluxes of thermodynamic quantities and developing
balance equations governing their evolution.

From the explicit expression for the rate of change of the entropy we shall observe
that, inside an arbitrary volume element, the entropy of the volume can change for two
reasons: entropy can flow into or out of the volume in the form of a flux, or it can be
produced by a source term, due to irreversible phenomena happening within the volume.

A discussion will ensue on the consequences two important theorems in the theory
of local equilibrium thermodynamics, namely due to Onsager and Curie, which make
use of the system’s spatial (discrete or continuous) symmetries and the invariance of the
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equations of motion under time reversals, to simplify considerably the bulk of differential
equations describing the system’s evolution.

In the final chapter we shall put everything together and see how the theory holds up
when applied to the Peltier and Seebeck effects, two thermoelectric phenomena, which
constituted considerable historic landmarks for the theory of linear irreversible thermo-
dynamics, and especially, for the Onsanger relations.
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Chapter 1

The First Law of Thermodynamics

1.1 Local Equilibrium

To generalize the theory of equilibrium thermodynamics to treat irreversible phenom-
ena we require that the system still retains a notion of equilibrium locally. To present
a concrete example that immediately highlights the similarities with continuum fluid
mechanics, let’s consider a heterogeneous fluid situated in a region of space Ω.

Although a constant value for all the state variables cannot be defined in the entire
mixture, we suppose that it is composed of many regions, sufficiently small and each
of volume dV , such that a well-defined value of temperature T , pressure P , density ρ,
velocity vector ~v and chemical potential µ1 can be ascribed to each at a certain time.

In formal terms, we ask that the system must be characterized by a length scale L,
such that:

L ∼ γ

|∇γ(x, y, z)|
(1.1)

dV ∼ L3 (1.2)

Where γ is any one of the parameters of interest in the local-state description of the
system. The volumes must therefore not exceed this characteristic volume, nor become
too small, when the number of particles contained becomes statistically intractable.

This necessary working hypothesis is actually rather restrictive, as we shall see later
in more detail. For now, it suffices to say that, analogously to the continuum model of
fluid mechanics, the partition volumes dV must satisfy the condition that, for any state
variable we wish to examine, the difference in value that a parameter takes between
contiguous volumes must be negligibly small.

1Naturally in the case of a mixture the chemical potential, density and velocity will refer to the
various µk, ρk and ~vk of each chemical species k, and the total pressure will be, by Dalton’s law, equal
to the sum of the partial pressures.
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In addition, if we are to construct a thermodynamic theory locally, that is, in partial
differential equation form, the state variables must be differentiable functions of the
position x ∈ Ω and of time t ∈ I, and therefore at least class C1(Ω× I).

These are clearly stringent demands, for they imply that the system as a whole be
sufficiently near equilibrium that there be almost no discontinuities2 in the composition
of the system. Moreover the state functions, now defined as densities, will be assumed to
have the same form as the canonical state functions in classical thermodynamics. This
fact of not being arbitrarily far from equilibrium is why this formulation is also known
as Near-Equilibrium Thermodynamics.

At any rate, having now identified the realm of applicability of the theory, we can
move to its mathematical expression, starting with the laws of conservation of energy
and mass in local form, to eventually arrive at a balance equation for the entropy density.

1.2 Conservation of Mass

Let us consider a system consisting on n components among which r chemical reactions
are possible. The rate of change of the mass of component k within a given volume V is
[4]:

d

dt

∫
V

ρk(x, y, z) dV =

∫
V

∂ρk
∂t

dV (1.3)

Where ρk is the density of component k. This quantity is equal to the sum of the
material flow of component k into the volume V through its surface Σ and the total
production of k in chemical reactions occurring inside V :∫

V

∂ρk
∂t

dV = −
∮

Σ

ρk~vk ·d~Σ +
r∑
j=1

∫
V

νkjJj dV (1.4)

Where d~Σ is a vector with magnitude dΣ normal to the surface element and oriented
toward the exterior. The vector ~vk is the velocity of component k’s centre of mass and
νkjJj the production of k per unit volume in the jth chemical reaction. The quantity νkj
divided by the molecular mass Mk of component k is proportional to the stoichiometric
coefficient with which k appears in the chemical reaction j. The coefficients νkj are
counted positive if they appear as products of the reaction and negative if they appear
as reactants. The quantity Jj is called the chemical reaction rate of reaction j, and its
dimensions are of a mass per unit volume and unit time.

2At most the discontinuities can occur over subsets of Ω of zero measure.
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Applying Gauss’ theorem to the surface integral in (1.4), since the relation is valid
for an arbitrary volume V , we obtain:

∂ρk
∂t

= −∇·(ρk~vk) +
r∑
j=1

νkjJj , k = 1, 2, ...n (1.5)

Which has the form of what is known as a balance equation, since it relates the rate
of change of a quantity to the divergence of a flux and to a source term. In this case the
flux is the amount of mass of chemical species k traversing the boundary of the volume
per unit time and unit area, while the source term is evidently the total production of
component k within the volume per unit time, or

∑r
j=1 νkjJj. Since mass is conserved

in each separate chemical reaction we have:

n∑
k=1

νkj = 0 , j = 1, 2, ..., r (1.6)

Given this, by summing the equation over all components k one obtains the law of
conservation of mass for a system of n chemical species undergoing r different chemical
reactions, such that a well-defined density and velocity field exist locally throughout:

∂ρ

∂t
= −∇·(ρ~v) (1.7)

Where ρ is the total density:

ρ =
n∑
k=1

ρk (1.8)

And ~v is the centre of mass velocity of the mixture:

~v =
n∑
k=1

ρk
ρ
~vk (1.9)

The continuity equation (1.7) expresses the fact that the total mass in the system is
conserved. That is, the total mass in any volume element, as defined by (1.8), can only
change if matter flows into (or out of) the volume.
We can rewrite the mass equations in an more succinct way by use of the total time
derivative (i.e. the material derivative):

d

dt
=

∂

∂t
+ ~v · ∇ (1.10)
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Where the term ~v ·∇ is known as the advection term, and by introducing the diffusion
flow ~Jk of substance k with respect to the centre of mass motion of the volume element:

~Jk = ρk(~vk − ~v) (1.11)

Employing both (1.10) and (1.11) the balance equation (1.5) thus becomes:

dρk
dt

= −ρk∇·~v −∇· ~Jk +
r∑
j=1

νkjJj , k = 1, 2, ..., n (1.12)

And equation (1.7):

dρ

dt
= −ρ∇·~v (1.13)

Or in terms of the total specific volume v = ρ−1 and by use of the chain rule as:

ρ
dv

dt
= ∇·~v (1.14)

If we define the mass fractions ck = ρk/ρ and employ them in equation (1.12) along
with (1.13), we turn the balance equation, as promised, into its tersest form:

ρ
dck
dt

= −∇· ~Jk +
r∑
j=1

νkjJj , k = 1, 2, ..., n (1.15)

As a final remark in this section on mass conservation, we seek to derive a result
that shall prove invaluable in all sections to follow. As a consequence of equation (1.13)
and the total derivative operator identity (1.10), for an arbitrary local quantity γ(~r, t)
characterising in some way the local state of the system at the point (~r, t), the following
always holds:

ρ
dγ

dt
=
∂(γρ)

∂t
+∇·(γρ~v) (1.16)

In fact, from the product rule and the total derivative one has:

(i)
d(γρ)

dt
= γ

dρ

dt
+ ρ

dγ

dt

(ii)
d(γρ)

dt
= ∇(γρ) · ~v +

∂(γρ)

∂t
⇒
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γ
dρ

dt
+ ρ

dγ

dt
= ∇·(γρ~v)− γρ∇·~v +

∂(γρ)

∂t
⇒

γ
dρ

dt
+ ρ

dγ

dt
= ∇·(γρ~v) + γ

dρ

dt
+
∂(γρ)

∂t
⇒

ρ
dγ

dt
= ∇·(γρ~v) +

∂(γρ)

∂t
2 .

1.3 Equations of Motion

To arrive at an expression for the law of conservation of energy we naturally begin with
the equations of motion of the system’s centre of mass. In complete analogy to the
continuum model of hydrodynamics, we divide in two the forces acting on our volume
element dV , one due to the pressure tensor P (of rank two) acting on the surface of

the volume Σ, and another due to the forces per unit mass ~Fk exerted on the chemical
component k.
The equations of motion for the centre of mass is thus written as:

ρ
dvi
dt

= −
3∑
j=1

∂Pji
∂xj

+
n∑
k=1

ρkFki , i = 1, 2, 3 (1.17)

Or in the more concise vector notation:

ρ
d~v

dt
= −∇·P +

∑
k

ρk ~Fk (1.18)

From a microscopic point of view, the pressure tensor P is regarded as involving the
short-range interactions between particles, whereas ~Fk contains the external forces as
well as long-range interactions in the system [4]. We restrict our discussion of forces ~Fk
to conservative ones independent of time, i.e. that can be expressed as the gradient of
some potential energy ψk:

~Fk = −∇ψk ,
∂ψk
∂t

= 0 (1.19)
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It is instructive to note that we can rewrite the equation of motion (1.18) with the
help of (1.16) derived at the end of the last section and obtain a balance equation for
the momentum density ρ~v:

∂ρ~v

∂t
= −∇·(ρ~v~v + P ) +

∑
k

ρk ~Fk (1.20)

Where ~v ~v = vivj (i, j = 1, 2, 3) stands for the ordered dyadic product of ~v with itself,
i.e.a 3-dimensional square matrix obtained from the tensor product of the velocity with
itself. Now it is clear that one can interpret the term ρ~v~v + P as a momentum flow
due to P with a convective part3 ρ~v~v, while the quantity

∑
k ρk

~Fk is a source term of
momentum density. Now we seek to derive a balance equation for the kinetic energy of
the centre of mass motion. By taking the equations of motion in component form (1.17)
and contracting both sides with the centre of mass velocity vi one has:

ρ
3∑
i=1

vi
dvi
dt

= −
3∑

i,j=1

vi
∂Pji
∂xj

+
n∑
k=1

3∑
i=1

ρkv
iFki ⇒

ρ
d1

2
v2

dt
= −

3∑
i,j=1

∂(viPji)

∂xj
+

3∑
i,j=1

Pji
∂vi

∂xj
+

n∑
k=1

3∑
i=1

ρkv
iFki ⇒

ρ
d1

2
v2

dt
= −∇·(P~v) + P :∇~v +

∑
k

ρk ~Fk ·~v (1.21)

Where the symbol : stands for the contraction of P and ∇~v over all indices:

P :∇~v ≡
3∑

i,j=1

Pji
∂vi

∂xj

Now, employing yet again the identity (1.16) we can obtain from (1.21) a balance
equation for the kinetic energy density 1

2
ρv2:

∂ 1
2
ρv2

∂t
= −∇·

(
1

2
ρv2~v + P~v

)
+ P :∇~v +

∑
k

ρk ~Fk ·~v (1.22)

3Convective terms in divergences of flux quantities occur throughout the theory, since the rate of
change of a given quantity can also be due to the centre of mass’ own macroscopic flow; for example
in the case of the momentum density, the centre of mass of the volume dV may travel to regions of Ω
where the momentum density takes a different value to that of the volume, leading to net exchange of
that quantity, whether favourable or not.
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Having now derived a balance equation for the kinetic energy of the centre of mass
motion, we want to add the potential energy density contribution and obtain a balance
equation for the total centre of mass energy. Therefore, defining the total potential energy
density as ρψ =

∑
k ρkψk, employing (1.5), (1.11) along the way and remembering that

for each k = 1, 2, ..., n ψk doesn’t depend on time explicitly, we obtain:

∂(ρψ)

∂t
=

n∑
k=1

ψk
∂ρk
∂t

+
n∑
k=1

ρk
∂ψk
∂t

=
n∑
k=1

ψk
∂ρk
∂t

∂ρk
∂t

= −∇·(ρk~vk) +
r∑
j=1

νkjJj , (k = 1, 2, ...n)⇒

∂(ρψ)

∂t
= −

n∑
k=1

∇·(ρk~vk)ψk +
n∑
k=1

r∑
j=1

νkjψkJj ⇒

= −
n∑
k=1

∇·( ~Jk + ρk~v)ψk +
n∑
k=1

r∑
j=1

νkjψkJj ⇒

= −
n∑
k=1

∇·( ~Jkψk + ρkψk~v) +
n∑
k=1

( ~Jk + ρk~vk)·∇ψk +
n∑
k=1

r∑
j=1

νkjψkJj ⇒

∂(ρψ)

∂t
= −∇·

(
ρψ~v +

n∑
k=1

ψk ~Jk

)
−

n∑
k=1

ρk ~Fk ·~v −
n∑
k=1

~Jk · ~Fk +
n∑
k=1

r∑
j=1

νkjψkJj (1.23)

The last term vanishes if the potential energy is conserved in a chemical reaction:∑
k

ψkνkj = 0 , j = 1, 2, ..., r (1.24)

If the property of the particles (i.e. electric charge in an electric field or mass in
gravitational field) responsible for the interaction with a field of force is conserved, then
this happens to be the case [4]. Supposing this is the regime of applicability then equation
(1.23) reduces to:

∂(ρψ)

∂t
= −∇·

(
ρψ~v +

n∑
k=1

ψk ~Jk

)
−

n∑
k=1

ρk ~Fk ·~v −
n∑
k=1

~Jk · ~Fk (1.25)
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Summing together the rates of change for the kinetic energy (1.22) and potential
energy density (1.25) we finally have:

∂ρ(ψ + 1
2
v2)

∂t
= −∇·

[
ρ~v

(
1

2
v2 + ψ

)
+ P~v +

n∑
k=1

ψk ~Jk

]
+ P :∇~v −

n∑
k=1

~Jk · ~Fk (1.26)

Where it becomes clear that this quantity is not conserved after all, since a source
term appears on the right. This immediately tells us that for the law of conservation of
energy to hold there must be a term missing in this expression for the total specific energy ;
it cannot simply be the sum of the specific potential energy and the specific kinetic energy
1
2
v2 + ψ. We identify this missing contribution as being the specific internal energy u,

which we can in fact define as the difference between the total specific energy e, which
must be conserved, and the specific centre of mass energy 1

2
v2 + ψ:

e =
1

2
v2 + ψ + u (1.27)

In fact, the definition we gave of centre of mass energy as the sum of kinetic and
potential terms doesn’t include the microscopic contributions to the total energy of the
system given by heat and interactions between particles occuring internally.

In fact, along with the macroscopic centre of mass kinetic energy described by ~v
and the external forces ~Fk, uncorrelated thermal agitations of the single particles and
short-range interactions are clearly present (i.e intermolecular forces: covalent and ionic
bonds, induced dipole forces and van der Waals forces). Therefore u is the part of the
specific total energy which encodes within it all these contributions and thus plays the
same role here as in equilibrium thermodynamics, where U neither contains a term of
kinetic energy of the centre of mass4 nor any potential energy contributions from external
force fields acting on the system [2].

1.4 Conservation of Energy

The principle of conservation of energy states that the total energy contained within an
arbitrary volume V can only change if energy flows into or out of the volume element
through its boundary ∂V = Σ. Since energy cannot be produced nor erased, it obeys a
balance equation without source terms. Therefore if ~Je represents the energy flux per unit
area and unit time flowing through the boundary of V , the law of energy conservation
can be stated as:

4U is defined in the reference frame where the centre of mass is stationary.
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d

dt

∫
V

ρe dV =

∫
V

∂ρe

∂t
dV = −

∮
Σ

~Je ·d~Σ (1.28)

Where once again e is the energy per unit mass. Given the arbitrariness of the
volume V , Gauss’ theorem allows us to obtain a differential or local expression of the
energy conservation law:

∂ρe

∂t
= −∇· ~Je (1.29)

The total energy flux ~Je includes a convective term ρe~v, an energy flux P · ~v due to
the mechanical work performed on the volume element, a potential energy flux

∑
k ψk

~Jk
due to the diffusion of the different components in the force field, and a “heat flow” ~Jq
[4]:

~Je = ρe~v + P ·~v +
n∑
k=1

ψk ~Jk + ~Jq (1.30)

This expression may be considered as defining the ”heat flow” ~Jq. Consistently with

our usual notion of heat (far from phase transitions), the term ~Jq arises from the gen-
eralized collision processes happening near the boundary Σ of our volume V , however
the heat flux also contains an additional term, given from the material flows of particles
entering or leaving the volume and carrying each a variable amount of specific ”enthalpy”
[4]. If we now combine equations (1.26), (1.29), (1.27) and (1.30) we obtain the balance
equation for the specific internal energy u:{

∂ρu

∂t
=
∂ρe

∂t
−
∂ρ(ψ + 1

2
v2)

∂t
∧ ∂ρe

∂t
= −∇· ~Je ∧

{
∂ρ(ψ + 1

2
v2)

∂t
= −∇ ·

[
ρ~v

(
1

2
v2 + ψ

)
+ P~v +

n∑
k=1

ψk ~Jk

]
+ P :∇~v −

n∑
k=1

~Jk · ~Fk

⇒ ∂ρu

∂t
= −∇ · ~Je +∇ ·

[
ρ~v

(
1

2
v2 + ψ

)
+ P~v +

n∑
k=1

ψk ~Jk

]
− P :∇~v +

n∑
k=1

~Jk · ~Fk ⇒

∂ρu

∂t
= −∇ ·

(
ρe~v + P ·~v +

n∑
k=1

ψk ~Jk + ~Jq

)
+∇ ·

[
ρ~v

(
1

2
v2 + ψ

)
+ P~v +

n∑
k=1

ψk ~Jk

]

− P :∇~v +
n∑
k=1

~Jk · ~Fk
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⇒ ∂ρu

∂t
= −∇·

[
ρ~v

(
e− 1

2
v2 − ψ

)]
−∇· ~Jq − P :∇~v +

n∑
k=1

~Jk · ~Fk

⇒ ∂ρu

∂t
= −∇·(ρu~v + ~Jq)− P :∇~v +

n∑
k=1

~Jk · ~Fk (1.31)

It is apparent that the specific internal energy u cannot be a conserved quantity in
general, since a source term appears on the right-hand side of its balance equation.

The source term is equal but of opposite sign to the source term appearing in the
centre of mass energy balance equation (1.26). This fact confirms what was speculated
in the previous section, that the internal energy can change due to heat flow (gener-
alised collisions occuring on the boundary Σ = ∂V of V leading to energy exchange),
short-range interactions exerting work on the volume element P : ∇~v, work exerted on
the individual chemical species by the specific long-range external forces ~Jk · ~Fk (which
disappear if the volume is closed) and lastly, gain or loss of energy due to the ever-present
convective term ρ(e− 1

2
v2 − ψ)~v.

1.5 Local Expression of the First Law

We are now close to the primary goal of this chapter: the derivation of the first law of
thermodynamics in differential form for quasi-equilibrium systems (i.e. locally in equi-
librium). Assuming we can split the pressure tensor into a scalar hydrostatic part p and
a non-scalar tensor Π5:

P = pI + Π (1.32)

Where I is the 3 × 3 identity matrix. Employing relation (1.16) yet again, we can
recast the balance equation (1.31):

ρ
du

dt
= −∇· ~Jq − p∇·~v − Π : ∇~v +

n∑
k=1

~Jk · ~Fk

ρ
du

dt
= −ρdq

dt
− p∇·~v − Π : ∇~v +

n∑
k=1

~Jk · ~Fk (1.33)

5Assuming that a hydrostatic component of the pressure can be isolated means we choose to limit
the discussion to non-elastic fluids [4]. Naturally, in elastic mediums the pressure tensor is replaced by
the elastic stress tensor and the simplifaction that follows is not applicable.
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Where we have used the fact that when the identity matrix contracts with the gradient
∇ it maps it into the divergence ∇· , in fact (using Einstein’s summation convention):

I : ∇~v = δji ∂jv
i = ∂iv

i = ∇ · ~v (1.34)

And where we have defined the infinitesimal ”heat”dq added per unit mass as:

ρ
dq

dt
= −∇· ~Jq (1.35)

Remembering (1.14) for the specific volume v’s rate of change, we can now finally
express the ”first law of linear irreversible thermodynamics” for non-elastic media in
conservative force fields in differential form:

du

dt
=

dq

dt
− pdv

dt
− vΠ : ∇~v + v

n∑
k=1

~Jk · ~Fk (1.36)
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Chapter 2

The Second Law of
Thermodynamics

2.1 Local Expression of the Second Law

According to the principles of equilibrium thermodynamics, one can introduce for any
system in equilibrium a state function S known as the entropy. In 1865 R. Clausius
discovered that while the amount of heat δQ exchanged by the system with the sur-
roundings as it undergoes an infinitesimal and reversible transformation is not an exact
differential (Q depends on the particular trajectory in state space), when divided by
the absolute temperature T it becomes one [1]. In other words, the line integral of this
quantity along a reversible cycle γ is identically zero:∮

γ

δQ

T
= 0 (2.1)

And that therefore the line integral along any curve Γ will be function only of its
endpoints A and B, thus defining a state function called the entropy S:∫ A

B

δQ

T
= S(A)− S(B) (2.2)

Suppose now that we can always write the differential of the entropy as the sum of
two terms:

dS = dSi + dSe (2.3)

Where dSe is the entropy supplied by the surroundings and dSi the entropy produced
within the system [4]. The second law of thermodynamics states that dSi must be zero
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for reversible (or quasi-static) transformations of the system, and strictly positive for
irreversible ones [5]:

dSi ≥ 0 (2.4)

The entropy supplied dSe however can be negative, positive or null, depending on the
particular interaction between the system and the environment [4]. For an adiabatically
insulated system, δQ will be zero by definition and therefore so will the term dSe, and
we’ll have another well-known restatement of the second law:

dS ≥ 0 for adiabatically closed systems (2.5)

For closed systems, we have according to the theorem of Clausius-Carnot [1]:

dSe =
δQ

T
closed (2.6)

dS ≥ δQ

T
closed (2.7)

It is important to note that clearly for open systems (2.6) and (2.7) cease to be valid,
while (2.3) and (2.4) are of a completely general nature. In complete analogy with the
preceding chapters, we seek to restate (2.3) and (2.4) in integral form, so as to be more
suitable for systems described by extensive state variable that are differentiable functions
of space and time:

S =

∫
V

ρs dV (2.8)

dSe
dt

= −
∮

Σ

~Js,tot ·d~Σ (2.9)

dSi
dt

=

∫
V

σ dV (2.10)

Where s is the entropy per unit mass, ~Js,tot the total entropy flux flowing through
the closed boundary Σ of V , and σ the entropy production within V occurring per unit
volume and unit time i.e the entropy density production rate or entropy source strength
[4]. With the help of Gauss’ theorem, the arbitrariness of the volume V , and these new
definitions, we can rewrite (2.3) and (2.4) in local form like so:∫

V

∂ρs

∂t
dV =

dS

dt
=

dSi
dt

+
dSe
dt

= −
∫
V

∇ · ~Js,tot dV +

∫
V

σ dV ⇒
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∫
V

(
∂ρs

∂t
+∇ · ~Js,tot − σ

)
dV = 0 ⇒

∂ρs

∂t
= −∇ · ~Js,tot + σ (2.11)

σ ≥ 0 (2.12)

Equation (2.11) is formally a balance equation for the rate of change of entropy
density within V , with a source term σ satisfying the local equivalent of (2.4). Invoking
once more relation (1.16) we can rewrite (2.11) in the following way:

ρ
ds

dt
= −∇ · ~Js + σ (2.13)

Where as usual we see the appearance of a convective term:

~Js = ~Js,tot − ρs~v (2.14)

2.2 Entropy Flux Density and Production Rate

Putting everything we have learned in the previous chapters together, we will arrive at
an explicit expression for the entropy balance equation, since at the moment, the entropy
flux ~Js and production rate σ lack a precise expression in terms of the relevant physical
quantities we have introduced thus far. Assuming the system is locally in equilibrium,
and that we have written the entropy per unit mass as a function of the internal energy
density u, the specific volume v = ρ−1 and the mass fractions ck of the k chemical
components:

s = s(u, v, ck) (2.15)

At equilibrium, the total differential of s is written as the Gibbs relation [4]:

Tds = du+ pdv −
n∑
k=1

µkdck (2.16)

Assuming that (2.16) remains valid along the centre of mass motion of the volume
element, we can rewrite the expression in terms of the material derivatives of the entropy
density and the parameters it’s a function of (u, v, µk):
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T
ds

dt
=

du

dt
+ p

dv

dt
−

n∑
k=1

µk
dck
dt

(2.17)

The situations in which this assumption holds can only be identified a posteriori,
in virtue of the validity of the predictions derived from it [4]. In some special cases
the validity of (2.17) can be shown to be valid a priori if the system considered is near
equilibrium. Nearness to equilibrium is rigorously defined in terms of the deviations that
thermodynamic quantities have from their equilibrium values. In some special cases, the
orders of magnitude of these fluctuations are computable and it is in these cases that we
can justify a priori the validity of (2.17) [4]. At any rate, we can now find the explicit
statement of the entropy balance equation by inserting the first law in local form (1.36)
and the expression for the mass fractions rates of change (1.15) into (2.17):

(1.15) ρ
dck
dt

= −∇· ~Jk +
r∑
j=1

νkjJj

(1.36)
du

dt
=

dq

dt
− pdv

dt
− vΠ : ∇~v + v

n∑
k=1

~Jk · ~Fk

(2.17) T
ds

dt
=

du

dt
+ p

dv

dt
−

n∑
k=1

µk
dck
dt

⇒

T
ds

dt
=

dq

dt
− pdv

dt
+ p

dv

dt
−

n∑
k=1

µk
dck
dt
− vΠ : ∇~v + v

n∑
k=1

~Jk · ~Fk ⇒

T
ds

dt
= −v∇· ~Jq −

n∑
k=1

µk
dck
dt
− vΠ : ∇~v + v

n∑
k=1

~Jk · ~Fk ⇒

T
ds

dt
= −v∇· ~Jq −

n∑
k=1

vµk

(
∇· ~Jk +

r∑
j=1

νkjJj

)
− vΠ : ∇~v + v

n∑
k=1

~Jk · ~Fk ⇒

ρ T
ds

dt
= −∇· ~Jq − Π :∇~v +

n∑
k=1

~Jk · ~Fk +
n∑
k=1

µk∇· ~Jk −
r∑
j=1

AjJj (2.18)

Where we have defined the chemical affinities Aj of the reactions j = 1, 2, . . . , r as:
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Aj =
n∑
k=1

νkjµk (2.19)

Now recasting (2.18) in the form of a balance equation of the same form as (2.13):

ρ
ds

dt
= −∇·

(
~Jq −

∑
k µk

~Jk
T

)
− 1

T 2
~Jq · ∇T−

1

T

n∑
k=1

~Jk ·
[
T∇

(µk
T

)
− ~Fk

]

− 1

T
Π :∇~v − 1

T

r∑
j=1

AjJj

Lastly, comparing coefficients with (2.13) yields an explicit expression for the entropy

flux density ~Js and the production rate σ in terms other underlying quantities:

~Js =
1

T

(
~Jq −

n∑
k=1

µk ~Jk

)
(2.20)

σ = − 1

T 2
~Jq · ∇T −

1

T

n∑
k=1

~Jk ·
[
T∇

(µk
T

)
− ~Fk

]
− 1

T
Π :∇~v − 1

T

r∑
j=1

AjJj (2.21)

We can see that entropy is produced and exchanged due to gradients of thermody-
namic parameters (temperature, chemical potential, velocity), divergences of matter and

energy fluxes ~Jk, ~Jq, work per unit time done on the system by external forces, and
changes in chemical potential per unit time due to ongoing chemical reactions.

Although it seems arbitrary how this equation was recast into the divergence of a
flux and a source term, the requirements that the two parts must satisfy determine this
separation uniquely [4].

In fact, the entropy production rate σ needs to be invariant under Galilean trans-
formations, for the notions of reversibility and irreversibility cannot be relative concepts
depending on our frame of reference. In addition, σ should equal zero for systems which
are in equilibrium. The proof of both these statements, which happen to hold for σ, can
be found in the Appendix (A.1).

Finally, summing (2.20) and (2.21) together and integrating over the volume V of a
closed system, keeping in mind the inequality σ ≥ 0, we recover the local equilibrium
equivalent of the Carnot-Clausius theorem (2.7), namely:
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∫
V

ρ
ds

dt
dV =

∫
V

−∇· ~Js dV +

∫
V

σdV

dS

dt
≥ −

∫
V

∇·

(
~Jq −

∑
k µk

~Jk
T

)
dV

dS

dt
≥
∮

Σ

~Jq
T
· d~Σ +

∮
Σ

∑
k µk

~Jk
T

· d~Σ

dS

dt
≥
∮

Σ

~Jq
T
· d~Σ (2.22)

Where we used the fact that if our system, contained in the volume V , is closed, then
by definition ~Jk vanishes on the boundary Σ.

Let us now discuss briefly the nature of these expressions for the entropy flow ~Js and
production rate σ, for they yield rather interesting observations.

Equation (2.20) tells us that the entropy flow into the volume has two contributions,

one is the heat flux ~Jq, as one expects, and the other is due to the diffusion flows of

matter ~Jk. Equation (2.21) on the other hand shows that the entropy production rate
is due to four terms: heat conduction, matter diffusion, gradients in the velocity field
giving rise to viscous flow, and finally, chemical reactions.

The entropy production is in fact a bilinear form, since it is a sum of two-factor
products (each linear in both arguments) of varying tensorial character. What is most
interesting is that the factors belong to two distinct classes. The first type of quantities
appearing in the expression for σ is what De Groot and Mazur call a flow quantity [4]

(chemical reaction rate Jj, viscous pressure tensor or momentum flows Π, heat flow ~Jq,

and diffusion flow ~Jk), the reason for which is rather evident.
The other terms appearing in the bilinear form, those belonging to the second class,

are gradients of intensive state variables (temperature, chemical potential, velocity), gra-

dients of a potential energy in the form of the external force ~Fk, and a linear combination
of state variables µk in the expression for the affinity Aj. These quantities in scalar prod-
uct with the various flows are usually called thermodynamic forces or affinities. What
is key to understand is that, in general, entropy production rate can be expressed as a
bilinear form combining thermodynamic fluxes and their respective ”forces”.

This observation will be invaluable in the next sections where we will postulate that
the entropy production rate can in fact be always expressed as a bilinear form taking as
arguments the various relevant flow quantities present in the system and their respective
affinities.
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Chapter 3

Linear Phenomenological Equations

3.1 Entropy Production and The Linear Laws

Although we can garner qualitatively the meaning of the terms appearing in the entropy
balance equation (2.20)-(2.21), the set of differential equations we need to solve are in a

sense, empty. This is because they contain the irreversible fluxes (i.e. diffusion flows ~Jk,

heat flow ~Jq, chemical reaction rates Jj and momentum flow ∇~v) as unknown quantities,
so even if we specify the boundary and initial conditions of a given physical system, these
equations cannot be solved.

To curb this issue we are required to construct, without a priori justification, a set
of functional relations linking the unknown quantities together. Naturally the simplest
functional form is the linear kind, so we introduce a set of equations known as the
linear phenomenological laws, which allow us to express the unknown flux quantities as
linear combinations of the thermodynamic forces (i.e. chemical affinity Aj, temperature

gradient ∇T , pressure tensor Π and external forces ~Fk). In this way we can reduce the
number of degrees of freedom in the Cauchy problem (2.20-2.21 once we have specified
the relevant boundary conditions) sufficiently to render it solvable, whether analytically
or numerically.

Epistemologically speaking, this is the weak point of the theory of nonequilibrium
thermodynamics that we’re currently examining, in the sense that it this simplification
which generally defines the limits of the theory. It is from this approximation that
the title of linear irreversible thermodynamics stems from, and although stringent, it
shouldn’t come as a surprise. Many laws of this linear nature are known experimentally
to be of great predictive power: Fourier’s law of heat conduction, Fick’s law of diffusion
and Ohm’s law of electric conduction. All of these laws require that the flux quantity
in question (heat, particle diffusion, current) be expressed as the gradient of some cor-
responding quantity (temperature, particle concentration, electric potential) multiplied
by a characteristic constant, to give rise to a solvable differential equation.
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Naturally, an argument from analogy of this kind is rather weak, so we shall need
to verify a posteriori, through comparison with observational evidence, in what class of
situations their use is justified.

At any rate we shall write the linear phenomenological equations in the following
manner:

Ji =
∑
k

LikXk (3.1)

The quantities Lik are called the phenomenological coefficients, while Ji and Xi are
respectively the cartesian components of the independent fluxes and thermodynamic
forces appearing in the expression for the entropy production rate σ (2.21) we saw in the
previous chapter:

σ =
∑
i

JiXi (3.2)

σ =
∑
i

∑
k

LikXkXi (3.3)

Where in (3.3) we simply combined the linear phenomenological laws with (3.1). In
order for the entropy production rate to be non-negative we clearly require that the
matrix Lik is at least non-negative definite, since it defines uniquely the bilinear form
(having chosen the canonical basis in Rn).

To include in this description the possibility of cross-phenomena such as thermal dif-
fusion, i.e. diffusion flows depending on both concentrations and temperature gradients,
we have also supposed in general that each individual flux is a linear combination of all
the thermodynamic forces appearing in the entropy source strength.

While ordinary transport phenomena like heat conduction and electric conduction
are linear in a vast number of cases, it is clearly possible to have irreversible phenomena
which obey non-linear phenomenological laws (e.g. chemical reactions), and if such is
the case, this present formulation cannot in general tackle them. Having said that, if the
system is sufficiently near to equilibrium, the linear relations still function as an excellent
approximation [4].

At any rate, it shall be implicitly supposed that henceforth, we shall only treat those
phenomena which obey linear phenomenological laws.
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3.2 The Curie Principle and Onsanger Reciprocal

Relations

In this section we deal with two of the most fundamental theorems in linear irreversible
thermodynamics, the Curie Principle and the Onsanger Reciprocal Relations. These
theorems, when applicable, simplify considerably the differential equations describing
the evolution of the system’s state [6] [3].

Since their proof is rather involved for a thesis of this length, we shall limit ourselves
to their discussion only and not delve into their rigorous derivation.

The Curie Principle

Let S be a system described locally by N independent thermodynamic parameters
and let the linear phenomenological laws hold as a relation between fluxes (Js, Jv, JT )
and thermodynamic forces (Xs, Xv, XT ):

Js = LssXs + Lsv ·Xv + Lst : XT (3.4)

Jv = LvsXs + Lvv ·Xv + Lvt : XT (3.5)

JT = LtsXs + Ltv ·Xv + Ltt : XT (3.6)

Where Xs is a scalar (rank zero tensor), Xv is a vector (rank one tensor), XT is a
matrix (rank two), and the J quantities have dimensions corresponding to their index
as well. The L quantities on the other hand correspond to linear applications and have
rank determined by the dimension of its domain and codomain1.

If the state of the system is invariant under rotations, i.e. isotropic, then the fluxes
and the thermodynamic forces of different tensorial character do not couple together [4],
and the phenomenological laws (3.4)−(3.7) take the simpler form:

Js = LssXs (3.7)

Jv = Lvv ·Xv (3.8)

JT = Ltt : XT (3.9)

1e.g. Ltt is a rank four tensor, since its application to a rank two tensor yields a rank two tensor as
a result.
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And so the expression for the entropy production rate will reduce to the sum of three
independent product terms, involving only elements taken from the same vector space
(of same dimensionality) and therefore three scalar products defined over R, R3 and the
space of 3× 3 real matrices:

σ = XsLssXs +Xv ·(Lvv ·Xv) +XT : (Ltt :XT ) (3.10)

Where we assumed for simplicity that only one flow quantity of each tensorial rank
is under consideration.

So, according to the Curie Principle if the system is isotropic then fluxes and forces
of different tensorial ranks will not couple together in the phenomenological laws, and
the entropy production will take the highly symmetric form (3.10).

Besides the patent simplifications this principle affords the problem, it also says
something rather remarkable about the mechanisms by which entropy is produced within
an isotropic system’s volume element.

In an isotropic system, scalar fluxes such as the reaction rate are only caused by scalar
thermodynamic forces like the chemical affinity, vectorial fluxes such as heat conduction
are only due to vector forces such as temperature or concentration gradients, and the
momentum flux, i.e. the pressure tensor, is only caused by rank two tensorial forces such
as the gradient of the velocity field.

We only presented here the isotropic case, but other kinds of spatial symmetries can
induce in the phenomenological equations other simplifications. Therefore, strictly speak-
ing, the Curie Principle is much more general than the isotropic case. We only present
here the isotropic case for brevity’s sake, since this is the only case we shall need later on.

The Onsanger Reciprocal Relations

The Onsanger Reciprocal Relations, much like the Curie Principle, function as a
further diminution of the redundant degrees of freedom in the phenomenological laws,
through the symmetry given by the time reversal invariance of the equations of motion [4].
It is well known that in both quantum and classical mechanics, if no external magnetic
field is present and the system is not rotating, the equations of motion in charge of the
time evolution of the system are symmetric with respect to time. That is, the particles
retrace their former path if all velocities have their sign reversed [6].

When time reversal symmetry is valid microscopically, Onsanger’s reciprocal relations
are valid macroscopically. [4] [6] As aforementioned, we shall simply state the content of
this theorem.

We consider a non-rotating, adiabatically insulated system where no external mag-
netic field is present, described by N = n + m independent parameters of two kinds,
(A1, . . . , An) and (B1, . . . , Bm). The A parameters are by definition even functions of
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the particle velocities (e.g. concentrations of chemical species, energy density, mass den-
sity) while the B parameters are odd under reversal of the velocities ~v 7→ −~v (e.g.
momentum density). Since the system is adiabatically insulated, its entropy will rise
due to irreversible processes occurring within, until it reaches equilibrium. We denote
the equilibrium values of the defining parameters by (A0

1, . . . , A
0
n) and (B0

1 , . . . , B
0
m).

The deviations of these parameters from their equilibrium values are then:

αi = Ai − A0
i (3.11)

βi = Bi −B0
i (3.12)

In first approximation, the deviation of entropy for a nonequilibrium state from its
equilibrium value can be written as:

∆S = ∆S(~α, ~β) (3.13)

∆S = −1

2

n∑
i,k=1

Gikαiαk −
1

2

m∑
i,k=1

Hikβiβk (3.14)

Where the matrices G and H constitute together the hessian matrix of ∆S split
into two terms to distinguish the even and odd variables. Naturally both G and H are
positive definite, since at equilibrium the entropy reaches a maximum.

Given that we have carried out a Taylor expansion in (3.14) we already supposed
the system is sufficiently near to equilibrium such that this approximation be valid.
Therefore, finding ourselves in a linear regime, we can further assume that the time
behavior of the state parameters is described sufficiently well by a set of linear ordinary
differential equations with constant coefficients [4]:

dαi
dt

= −
n∑
k=1

M
(αα)
ik αk −

m∑
k=1

M
(αβ)
ik βk i = 1, 2, ..., n (3.15)

dβi
dt

= −
n∑
k=1

M
(βα)
ik αk −

m∑
k=1

M
(ββ)
ik βk i = 1, 2, ...,m (3.16)
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Onsanger’s Theorem simplifies the problem by establishing relations of a symmetric
nature between these coefficients, namely:

n∑
k=1

M
(αα)
ik G−1

kj =
n∑
k=1

M
(αα)
jk G−1

ki i, j = 1, 2, ..., n (3.17)

n∑
k=1

M
(ββ)
ik H−1

kj =
n∑
k=1

M
(ββ)
jk H−1

ki i, j = 1, 2, ...,m (3.18)

m∑
k=1

M
(αβ)
ik H−1

kj = −
n∑
k=1

M
(βα)
jk G−1

ki i = 1, 2, ..., n; j = 1, 2, ...,m (3.19)

Where G−1 and H−1 denote the inverse matrices of G and H, which are always
invertible given their positive definiteness (no eigenvalue of the hessian matrix is zero
therefore neither is its determinant). At the moment these relations seem not to deal
with the phenomenological coefficients Lik relating the thermodynamic forces and the
fluxes in the linear equations (3.1), however we can recast them in a more transparent
manner. To this effect we introduce the following variables, linear combinations of the
deviations αi and βi, by partially deriving the expression for ∆S.

Xi ≡
∂∆S

∂αi
= −

n∑
k=1

Gikαk i = 1, 2, ..., n (3.20)

Yi ≡
∂∆S

∂βi
= −

m∑
k=1

Hikβk i = 1, 2, ...,m (3.21)

Solving for the αi and βi as a function of Xk and Yk we obtain:

αi = −
n∑
k=1

G−1
ik Xk i = 1, 2, ..., n (3.22)

βi = −
m∑
k=1

H−1
ik Xk i = 1, 2, ...,m (3.23)
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And combining these with the expressions for the rates of change of αi and βi (3.15)
and (3.16):

dαi
dt

=
n∑
k=1

L
(αα)
ik Xk +

m∑
k=1

L
(αβ)
ik Yk i = 1, 2, ..., n (3.24)

dβi
dt

=
n∑
k=1

L
(βα)
ik Xk +

m∑
k=1

L
(ββ)
ik Yk i = 1, 2, ...,m (3.25)

Where the coefficients are given by:

L
(αα)
ik =

n∑
j=1

M
(αα)
ij G−1

jk i, k = 1, 2, ..., n (3.26)

L
(αβ)
ik =

m∑
j=1

M
(αβ)
ij H−1

jk i = 1, 2, ..., n k = 1, 2, ...,m (3.27)

L
(βα)
ik =

n∑
j=1

M
(βα)
ij G−1

jk i = 1, 2, ...,m k = 1, 2, ..., n (3.28)

L
(ββ)
ik =

m∑
j=1

M
(ββ)
ij H−1

jk i, k = 1, 2, ...,m (3.29)

In terms of these new quantities the Onsanger relations (3.17) – (3.19) become:

L
(αα)
ik = L

(αα)
ki i, k = 1, 2, ..., n (3.30)

L
(αβ)
ik = −L(βα)

ki i = 1, 2, ..., n k = 1, 2, ...,m (3.31)

L
(ββ)
ik = L

(ββ)
ki i, k = 1, 2, ...,m (3.32)

Where the symmetrical nature of the coefficients, inherited from the time-reversal
symmetry of the equations of motion, is now fully manifest. To summarise, the Onsanger
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reciprocal relations are valid for the coefficients of the phenomenological equations if the
independent ”fluxes” Ji and Ii:

Ji ≡
dαi
dt

i = 1, 2, ..., n (3.33)

Ii ≡
dβi
dt

i = 1, 2, ...,m (3.34)

Are written as linear functions of the independent thermodynamic forces Xi and Yi,
themselves partial derivatives of the entropy deviation ∆S with respect to αi and βi:

Xi =
∂∆S

∂αi
i = 1, 2, ..., n (3.35)

Yi =
∂∆S

∂βi
i = 1, 2, ...,m (3.36)

It is noteworthy, to make a full circle, to see how the derivative of ∆S with respect
to time (i.e. the entropy production rate) looks like as a function of the fluxes (Ii, Ji)
and the thermodynamic forces (Xi, Yi).

Deriving (3.14) with respect to time one obtains:

d∆S

dt
= −

n∑
i=1

n∑
k=1

Gikαk
dαi
dt
−

m∑
i=1

m∑
k=1

Hikβk
dβi
dt

(3.37)

Therefore with (3.20), (3.21), (3.33) and (3.34):

d∆S

dt
=

n∑
i=1

JiXi +
m∑
i=1

IiYi (3.38)

That is, the entropy production is a bilinear form of the fluxes and thermodynamic
forces appearing in the phenomenological equations for which the Onsanger relations
hold [4].
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The Onsanger Relations tell us something physically extraordinary, which can easily
get lost in translation when staring at their mathematical expression. For example, it
is obvious to us already that when both a pressure gradient and a temperature gradient
are present in a system, although one generally causes matter flows and the other heat
flow, cross-phenomena are possible. That is, a temperature gradient on a surface of
constant pressure can lead to matter flow (convection) and likewise, a pressure gradient
at constant temperature can cause heat flow.

What Onsanger’s Theorem therefore states, seemingly against all intuition, is that
whenever this system is microscopically reversible, the heat flow per unit of pressure
difference is precisely equal to the density flow per unit of temperature difference.

3.2.1 Magnetic Fields and Rotating Systems

We saw earlier that we excluded both rotating systems and ones in which an external
magnetic field is present.

Magnetic fields are treated separately because when present, the sign of both the
magnetic field ~B and the velocity ~v need to be reversed in order for the Lorentz force
~F = q( ~E + ~v × ~B) to remain invariant, and for microscopic reversibility to hold.

For rotating systems, the case for the angular velocity is analogous to the magnetic
field, given the expression of the Coriolis force contains a ~v × ~ω term.

In light of these considerations, when either of these situations occur, the Onsanger
relations need to be modified in the following manner [4]:

L
(αα)
ik ( ~B, ~ω) = L

(αα)
ki (− ~B,−~ω) i, k = 1, 2, ..., n (3.39)

L
(αβ)
ik ( ~B, ~ω) = −L(βα)

ki (− ~B,−~ω) i = 1, 2, ..., n k = 1, 2, ...,m (3.40)

L
(ββ)
ik ( ~B, ~ω) = L

(ββ)
ki (− ~B,−~ω) i, k = 1, 2, ...,m (3.41)

Where, in line with conventional notation, ~B stands for the external magnetic field
and ~ω is the angular velocity.

The Onsanger relations in a sense ”break down” when external magnetic fields or
angular velocities are present, for we can only relate the coefficients together in two
distinct physical situations, one in which the external magnetic field or the angular
velocity are oriented a certain way in space and one in which they point in the opposite
direction (their norm obviously kept fixed).
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Chapter 4

Application to Thermoelectric
Phenomena

4.1 The Seebeck, Peltier and Thompson Effects

We now turn our attention to an application of what we have learned, to see if correct
predictions can be made by using linear irreversible thermodynamics as our starting
point.

In particular, we shall derive L. Kelvin’s Relations for Thermoelectric Phenomena,
first discovered by W. Thompson in 1851, they express the functional relationship obeyed
by the Seebeck, Peltier and Thompson coefficients, driving properties of their respective
effects [9].

Thermoelectric effects occur whenever temperature gradients in a thermocouple in-
duce the flow of electric current or the formation of an electric potential (Seebeck Effect);
whenever a current driven through the junction of two different conductors at the same
temperature leads to cooling or heating of the junction (Peltier Effect); whenever a cur-
rent driven through a conductor with a temperature gradient leads to cooling or heating
of the conductor (Thompson Effect) [6].

The Seebeck Effect

The Seebeck Effect was discovered by by J. Seebeck in 1821 when he noticed his
compass needle deflect in the vicinity of a closed circuit composed of two different metal
filaments (A and B), whose junctions he had heated to different temperatures (T and
T + ∆T ).

The temperature gradient present in the circuit thus constructed (known as a ther-
mocouple) had induced an electromotive force, allowing current to flow around the closed
loop and so producing a magnetic field capable of interfering with Seebeck’s compass.
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Figure 4.1: Schematic picture of a Thermocouple.

Seebeck concluded that once the system had reached a stationary state (i.e. no cur-
rent), the difference in electric potential ∆φ across the conducting plates 1 and 2 induced
by the temperature gradient was directly proportional to the difference in temperature
[8], where the proportionality coefficient SAB is now known as the Seebeck coefficient1:

∆φ = SAB ∆T (4.1)

SAB = lim
∆T→0

∆φ

∆T
(4.2)

The Peltier Effect

The Peltier Effect, discovered empirically by Jean-Charles Peltier in 1834, occurs
when a current flows across a junction of two different conductors. Peltier observed that
heat that could not be accounted for only by Joule heating, was being removed or added
at the junction2.

Referring once more to Figure 4.1 of a generic thermocouple, we place a potential
difference generator across the condenser plates, giving rise to a current of intensity i
through the circuit. The two junctions are kept at the same temperature, and the heat
expended at the junctions is measured over time.

The heat ∆Q produced at the junction per unit time (not due to Joule heating) obeys
the following expression, discovered empirically by Peltier himself [7]:

1The Seebeck coefficient is a characteristic property of the types of conductors used, hence the index
AB, and although usually treated as a constant, its value varies with temperature.

2The junction is heated if the current flows in a certain direction, and removed if the current flows
the opposite way.
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∆Q

∆t
= πAB i (4.3)

πAB = lim
∆t→0

lim
i→0

1

i

∆Q

∆t
(4.4)

Where πAB is the Peltier coefficient, a property of the junction of metals A and
B quantifying the amount of heat absorbed (if πAB is positive) or removed (if πAB is
negative) per unit of time per unit of electric current.

At this point an important remark should be made on the Seebeck and Peltier co-
efficients. Both the Seebeck and Peltier effects do not occur if thermocouple is entirely
composed of a single conducting material. The difference in the physical properties be-
tween metals A and B gives rise to a discontinuity in the circuit which proves essential,
without which these thermoelectric phenomena are not present.

This leads us to believe that the Peltier and Seebeck coefficients πAB and SAB need to
vanish at a junction composed of the same metal, since with all else remaining constant
in expressions (4.1) and (4.3), the left hand-side vanishes identically.

So although we have defined these coefficients operationally, and not independently of
metals A and B forming a junction together, it is reasonable to suppose that each material
is characterised by its own coefficients. Furthermore at a junction of two different metals
the discontinuity giving rise to these effects is simply encoded in πAB and SAB in the
following manner:

πAB = πA − πB ⇒ πAA = πBB = 0 (4.5)

SAB = SA − SB ⇒ SAA = SBB = 0 (4.6)

As we shall see, the Seebeck and Peltier effects are inextricably linked, and repre-
sent different manifestations of the same physical reality. A fact discovered by Lord
Kelvin and proved by Lars Onsanger with the help of his reciprocal relations almost
a century later, it became an important landmark for the theory of linear irreversible
thermodynamics.

Before we move to that however, we shall complete the triptych and discuss briefly
the Thompson Effect in thermoelectricity.

The Thompson Effect
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In 1851 W. Thompson (Lord Kelvin) produced a treatise called ”On a mechanical
theory of thermo-electric currents”, where he delved into the recent discoveries made by
Peltier and Seebeck and predicted, alongside the Peltier and Seebeck Effects, a possible
third phenomenon, now aptly named the Thompson Effect.

The Thompson effect or Thompson heating occurs when an electric current flows in
a temperature gradient through a conductor. Heat unaccounted for by Joule heating is
either released or absorbed by the conductor, once more depending on the direction of
current flow with respect to the temperature gradient. Lord Kelvin predicted that for a
current of density ~I flowing through a conductor along a gradient ∇T , a heat production
rate per unit volume q̇ would evolve at a point x of the conductor according to:

q̇(x) = τ ~I(x) · ∇T (x) (4.7)

Where τ is the Thompson coefficient, and in general is a function of both position
(along the conductor) and temperature3. Physically, the Thompson coefficient quantifies
the amount of heat evolved per unit of current density per unit of time per unit of tem-
perature gradient, in the infinitesimal volume around a particular point in the conductor
[9].

Unlike the Seebeck and Peltier effects, the Thompson effect can arise in a single con-
ductor, so long as a temperature gradient is present and a current is forced through it,
so we can immediately attribute a Thompson coefficient to each conducting material.

The Thompson Relations

In 1854, Thompson would elaborate further on the subject of thermoelectric phe-
nomena in his seminal work ”On a Dynamical Theory of Heat”. In this text he found
relationships linking the coefficients of the three effects discussed so far: The Peltier,
Seebeck and Thompson effects. Thompson discovered that all three coefficients were
expressible in terms of a single one, thus demonstrating how all three effects were in fact
different variations of a single underlying interplay between electric currents, temperature
gradients and discontinuities in the makeup of the system [10]:

3For most purposes, when using a homogeneous linear conductor and in certain intervals of temper-
atures τ is assumed to be constant in value.
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(i) τ = − ∂π
∂T
− S (4.8)

(ii) π = −TS (4.9)

Using (4.8) in conjunction with (4.9) we can in fact express the Thompson coefficient
as a function of temperature and the Seebeck coefficient alone:

τ = T
∂S

∂T
(4.10)

4.2 Proof of Thompson’s Relations

In all of the thermoelectric effects listed above, the system in question is patently in a
nonequilibrium state. Thompson was therefore one of the first physicists to delve into
the description of nonequilibrium systems, and was able to prove the first of his relations
(4.8) using only the 1st Law of Thermodynamics [10]. He however was not able to prove
the second of his relations starting from first principles, and rather was forced to make
an additional assumption regarding ”reversible” contributions to the process:

”The electromotive forces produced by inequalities of temperature in a circuit of dif-
ferent metals, and the thermal effects of electric current circulating in it, are subject to
the laws which would follow from the general principles of the thermodynamic theory of
heat if there were no conduction of heat from one part of the circuit to another.”[10]

Thompson treated this statement as a conjecture, its validity needing to be verified
through experiment. Essentially a reflection on the spectral nature of the Peltier and
Seebeck effects, how one is the mirror-image of the other and how each could be reversed
in its effect (direction of current induced in Seebeck, the inversion of heated and cooled
junctions in Peltier) by simply reversing the experimental setup, would lead to the in-
duced symmetry between the Peltier coefficient and the Seebeck coefficient we see in
(4.9) His seemingly reasonable assumption was that these effects marked the reversible
contributions to the thermodynamic transformations the system was undergoing4. Boltz-
mann himself attempted to prove that this assumption was actually a consequence of
more fundamental principles in thermodynamics, but we now know that no basis for this
principle exists [4].

4The irreversible contributions happening alongside would be the flow of heat due to Fourier’s law
of conduction and Joule heating.
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L. Onsager was the first to prove that it is not so-called ”reversible contributions” to
the process, but rather the assumption of microscopic reversibility, which lead to Thom-
spon’s second relation π = −TS [6]. In fact the reciprocal relations, which we saw stated
in general terms in chapter 3, once applied to the instance of a thermocouple will lead
trivially to the proof of Thompson’s relations.

Irreversible Thermodynamics of a Thermocouple

The proof will employ all the theoretical background work we so far have devel-
oped, and therefore the assumptions made in its construction will be required to hold.
The system is locally in equilibrium5 and microscopically reversible, since no external
magnetic field is present and since the laws of motion are time reversible. The linear
phenomenological laws hold since no chemical reactions are occurring [4] (in general a
nonlinear function of the thermodynamic forces) and since, as aforementioned, the linear
laws of heat and electrical conduction (Fourier and Ohm) remain valid in a large class
of physical situations.

We begin our proof with the expression of the entropy production rate in a slightly
different form. Since of little didactic worth, the derivation is given in Appendix A.2:

T σ = − ~Js,tot ·∇T − ~I ·
[
∇
(
µe
ze

)
− ~E

]
(4.11)

Where µe is the chemical potential of the charge carriers and ze is their charge, ~E is
the electric field, ~I is the electric current density and ~Js,tot is equal to the entropy flux

density ~Js plus the convective term ρs~v, where the velocity ~v is the velocity of the charge
carriers as measured in the reference frame given by the metal’s ion lattice.

From inspection of the fluxes ( ~Js,tot, ~I) and thermodynamic forces (∇T , ∇
(
µe
ze

)
− ~E)

present in (4.11), we can immediately write the linear phenomenological equations (3.1)
as:

~Js,tot = −L11∇T − L12

[
∇
(
µe
ze

)
− ~E

]
(4.12)

~I = −L21∇T − L22

[
∇
(
µe
ze

)
− ~E

]
(4.13)

5Temperature, electric and chemical potential are well-defined locally and differentiable functions of
the space coordinates.
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Where we restricted our discussion to only isotropic systems, so that we may use
Curie’s Principle as it was presented in this paper.

The Onsanger relation (3.30) immediately tells us that:

L21 = L12 (4.14)

We can rewrite (4.12) and (4.13) in a more transparent form by solving for ~Js,tot and

~E − ∇
(
µe
ze

)
, yielding, after some reinterpreting of the phenomenological coefficients as

constants we already know the physical meaning of:

~Js,tot = − k
T
∇T +

π

T
~I (4.15)

~E −∇
(
µe
ze

)
= −S∇T +R ~I (4.16)

π = −TS (4.17)

Where k is the thermal conductivity of the medium for vanishing current, R is the
isothermal resistivity, S is called the differential thermoelectric power, we shall see why
momentarily, [4] and has dimensions of an electric field per unit of temperature gradient,
and finally π

T
, the entropy transported at constant temperature per unit time and unit

of electric current. Equation (4.17) is a direct consequence of the Onsanger relation
L12 = L21 and the demonstration is trivial, one needs simply compare coefficients in the

expressions for ~Js,tot and ~E −∇
(
µe
ze

)
in terms of the phenomenological coefficients and

those appearing in (4.15) and (4.16).
Simply from dimensional considerations and comparison with the expressions for the

Seebeck and Peltier effects (4.1) and (4.3), it is reasonable to suppose that π and S are
in fact the Peltier and Seebeck coefficients. This is in fact the case and thus justifies our
use of notation.

To prove the statement that these are in fact the Peltier and Seebeck coefficients we
turn our attention once more to the thermocouple (Figure 4.1). Essentially, a thermo-
couple consists of two homogeneous metal wires of different kinds, A and B connected
together at two junctions j1 and j2, with a condenser with plates 1 and 2 placed in one
of the wires, let’s say A. Each junction is placed in its own heat bath so as to ensure
constant temperature at the respective junction, but with j1 at temperature T and j2 at
temperature T+∆T . As we saw earlier, this is analogous to the setup Seebeck employed.

We are now interested in calculating the difference in electric potential ∆φ across
the plates of the condenser at the stationary state of zero electric current ~I = 0. We
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know, from Maxwell’s equations, that ~E = −∇φ − ∂ ~A
∂t

. That is, that the electric field
is equal to the gradient of the electric potential φ and the partial time derivative of the
vector potential ~A. However, given that the system arrives at a steady-state, the vector
potential ~A does not depend on time explicitly. The derivative term then vanishes and
∇φ = − ~E.

With this in mind the potential difference across the plates is simply given by the
line integral:

∆φ = φ1 − φ2 =

∫ 1

2

∇φ·~dl =

∫ 2

1

~E ·~dl (4.18)

∆φ =

∫ 2

1

∇
(
µe
ze

)
·~dl −

∫ 2

1

S∇T ·~dl (4.19)

Where in (4.19) we have expressed the electric field using (4.16) with ~I = 0.
Now, the first integral on the right hand side is equal to zero, since the chemical

potential is a function of temperature, pressure, and electron concentration only. The
temperature is held constant across the condenser plates by the experimental setup,
the pressure is equal given the system finds itself in mechanical equilibrium and is elec-
troneutral (z = 0), and the concentration of electrons on the plates is virtually the same
[4].

Therefore the chemical potential is constant across the plates, and the first line inte-
gral is zero.

As to the second term on the right hand side, we assume that the coefficient S in each
homogeneous metal wire A and B remains sufficiently constant as to be taken outside the
integral sign, even though for very large temperature differences it is in fact variable. So
we break up the remaining integral in (4.19) and readily obtain the same result obtained,
via experimental means, by Seebeck:

∆φ =

∫ j1

1

−S∇T ·~dl +

∫ j2

j1

−S∇T ·~dl +

∫ 2

j2

−S∇T ·~dl (4.20)

∆φ = −SA [T (j1)− T (1)]− SB [T (j2)− T (j1)]− SA [T (2)− T (j2)] (4.21)

∆φ = (SA − SB)∆T = SAB∆T (4.22)

Where we have labelled j1 the first junction one encounters moving from plate 1 to
plate 2 around the circuit depicted in Figure 4.1, and j2 the other remaining junction. In
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addition we remembered that the condenser plates are at the same temperature T (2) =
T (1) by construction and therefore the two terms containing them cancel each other out.

We now consider the Peltier effect, and in particular the quantification of Peltier
heat, defined as the heat absorbed/released at a junction between two metals A and B
per unit of current across the junctions connecting them. To this end we employ the
complete expression for the entropy balance equation (2.20) and (2.21) we derived in the
chapter 2, but applied to the present case. As we saw then, the balance equation can be
written as:

ρ
ds

dt
= − ~Js + σ (4.23)

Given our expression for the entropy production rate σ for thermoelectric effects is
(4.11), we can explicitly write the balance equation as:

ρ
ds

dt
= −∇· ~Js −

1

T
~Js,tot ·∇T −

1

T
~I ·
[
∇
(
µe
ze

)
− ~E

]
(4.24)

Or alternatively, by using relation (1.16) as:

∂ρs

∂t
= −∇· ~Js,tot −

1

T
~Js,tot ·∇T −

1

T
~I ·
[
∇
(
µe
ze

)
− ~E

]
(4.25)

And after introducing the phenomenological equations (4.15) and (4.16) and the
Onsanger relation (4.17) we obtain:

∂ρs

∂t
=

1

T
∇·(k∇T )−∇·π

~I

T
+
R ~I 2

T
(4.26)

The first term represents entropy change due to heat conduction and has the well-
known form of Fourier’s law, the second term we shall see is directly related to the Peltier
effect, while the third is the expression of Joule heating in a linear conductor (derived
from Ohm’s law) divided by the temperature.

Now, let us consider an experimental setup identical to the one in Figure 4.1 of
thermocouple, save for the fact that the conductor has been replaced by a potential
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difference generator such that current is allowed to flow around the closed circuit, and
only junction j1 is placed in a heat reservoir. At uniform temperature an electric current
is flowing from metal A to metal B.

We suppose that junction j1 where metal A and B meet is represented by an in-
finitesimal volume V of cross sections ΣA and ΣB. We can imagine V as essentially two
adjacent cylinders, since the surface areas of ΣA and ΣB needn’t be equal in general.

Integrating now expression (4.26) over the volume V overlapping j1 and remembering
that j1 is at constant temperature throughout (since in contact with a heat reservoir of
fixed temperature) we obtain the expression for the rate of entropy change in this region
V :

T
dSV
dt

= −
∫
V

∇· π~I dV +

∫
V

R ~I 2 dV (4.27)

Whereupon, applying Gauss’ divergence theorem and treating π as a constant whose
value depends only on the kind of conductor:

T
dSV
dt

= πA

∫
ΣA

~I · ~dΣA − πB
∫

ΣB

~I · ~dΣB +

∫
V

R ~I 2 dV (4.28)

Where πA and πB are the values coefficient π takes in the pure metals A and B and
both ~ΣA and ~ΣB are counted positive in the direction of ~I. Now, in the limit V → 0
(j1 is reduced to a single surface) the volume integral on the right-hand side of (4.28)
vanishes, since both the resistivity R and the current density I remain finite and the
cross sections ΣA and ΣB tend to the common surface Σ of the junction.

We thus find, applying the limit V → 0, that the entropy rate of change for a
discontinuous metal junction through which current flows is:

T
dS

dt
= (πA − πB)

∫
Σ

~I · ~dΣ = (πA − πB) i (4.29)

Where we have labelled i the current intensity flowing through j1.
To support the steady state in which the junction finds itself (constant tempera-

ture), the change in entropy must be compensated by absorbing/releasing heat from/into
the reservoir, giving thus rise to the Peltier effect [4]. In fact, calling πAB the Peltier
heat we defined earlier as the amount of heat per unit time per unit current being ab-
sorbed/released at the junction, we have that:

41



πAB ≡
T

i

dS

dt
= πA − πB (4.30)

Q̇ = (πA − πB) i (4.31)

Remembering the empirically deduced relation due to Peltier (4.3), it is clear that
(4.30) is completely equivalent.

We have therefore, without ambiguity, identified the phenomenological coefficients π
and S as being the same ones appearing in the empirical Peltier and Seebeck equations.
Recalling then the Onsanger relation (4.16), we obtain the exact expression of Thomp-
son’s second relation between the thermoelectric power and the Peltier heat, proving its
validity:

πAB = −T SAB (4.32)

Lastly, let us examine in detail the Thompson effect and prove Thompson’s first
relation (4.8). As we discussed, Thompson heat occurs when a current flows in a tem-
perature gradient. Similarly to the Peltier effect, the entire physics of Thompson heat
is contained in the entropy balance equation (4.26). We can rewrite the second term on
the right hand side of that equation by applying the Leibniz rule of differentiation:

−∇ · π
~I

T
= −

~I

T
· ∇ π +

π~I

T 2
· ∇T (4.33)

Where we remembered to apply the stationarity condition

∇ · ~I = 0

Now, since the Peltier coefficient is a function of both position and temperature, we can
write:

π = π(x, y, z, T ) = π(x, y, z, T (x, y, z)) →

∇π =

[(
∂π

∂x

)
T

+
∂π

∂T

∂T

∂x
,

(
∂π

∂y

)
T

+
∂π

∂T

∂T

∂y
,

(
∂π

∂z

)
T

+
∂π

∂T

∂T

∂z
)

]

∇π = (∇π)T +
∂π

∂T
∇T (4.34)
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Upon inserting (4.34) into (4.33) one obtains:

−∇ · π
~I

T
= −

~I

T
· (∇ π)T −

(
∂π

∂T
− π

T

) ~I

T
· ∇T (4.35)

From which we can immediately see that the term splits into two parts: the first part
tells us that a heat term is present even in the absence of a temperature gradient (Peltier).
The second clearly defines a heat transport due to the mere presence of a current in a
temperature gradient, and is therefore the term corresponding to the Thompson effect.

The Thompson coefficient τ is then naturally (comparing with (4.7) for the sign):

τ =
π

T
− ∂π

∂T
= −S − ∂π

∂T
(4.36)

Where we have used (4.17). This concludes the proof of Thompson’s two relations
for thermoelectric phenomena.
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Conclusion

In this treatise, albeit limited in scope, we have attempted to extend the laws of thermo-
dynamics to systems not in equilibrium, but which maintain nonetheless a local notion
of it. We have seen how in order to construct a coherent theory along these mesoscopic
lines, the thermodynamic parameters used to describe the system’s state locally, need
to possess a certain degree of regularity. The system cannot therefore occupy states
arbitrarily far from equilibrium.

Moreover, we have described how the balance equation for the entropy rate of change
per unit volume is derived and how it constitutes, in this regime of applicability, an
extension to the second law of thermodynamics, and how for a closed system we recover
a generalized version of the Clausius-Carnot theorem. We have discussed the necessity
of introducing the linear phenomenological laws in expressing the flows as linear com-
binations of the thermodynamic forces in order to obtain a solvable set of differential
equations for the system’s evolution. Their existence cannot always be justified a priori
but we have seen how, if chemical reactions (flows which in general are nonlinear func-
tions of the thermodynamic forces) are not present, the constraint on the system not
being arbitrarily far from equilibrium is compatible with this postulate.

We completed the theoretical picture by stating two important theorems in linear
irreversible thermodynamics, due to Curie and Onsanger, which simplify considerably
the computational side of solving the balance equations. The Curie principle exploits the
system’s spatial symmetries to limit the manner in which thermodynamic forces of dif-
ferent tensorial rank can couple together in the phenomenological laws. Concomitantly,
the Onsager relations take advantage of the time-reversal symmetries of the equations
of motions (quantum or classical) in microscopically reversible systems to show that the
matrix of phenomenological coefficients is composed of symmetric and antisymmetric
blocks, thus expressing profound relations among experimentally measurable quantities.

Finally, we saw an example of the application of the theory to the well-known ther-
moelectric effects discovered by Seebeck, Peltier and Lord Kelvin (Thompson). From the
entropy balance equation and the phenomenological laws we discussed and derived in this
paper, we were able to recover the experimental results obtained by the same Seebeck,
Peltier and Kelvin. Something which had already been achieved by Thompson already
in 1854, however not from first principles. The Onsanger relations in the meantime,
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immediately and effortlessly, proved Kelvin’s second relation between the thermoelectric
power and the Peltier heat, a proof which, before the advent of Onsanger’s relations, had
proved impossible to carry out in a rigorous manner.
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Appendix A.1

We seek to prove that the entropy production rate σ is invariant under galilean trans-
formations, that is, transformations of the form

~vk → ~vk + ~V (A.1.1)

Where as usual ~vk is the velocity of the kth chemical component with respect to an
arbitrary inertial reference frame and ~V is a constant vector. As we already discussed,
it is necessary that σ be invariant for Galilean transformations, since a thermodynamic
transformation should seem irreversible irrespective of the observer (inertial). Naturally
we suppose, in considering Galilean and not Lorentz transformations, that the velocities
of all relevant bodies are small compared to the speed of light, and thus the problem
reduces to the non-relativistic case.

Rewriting the expression for the entropy production rate (2.21) here for convenience:

σ = − 1

T 2
~Jq · ∇T −

1

T

n∑
k=1

~Jk ·
[
T∇

(µk
T

)
− ~Fk

]
− 1

T
Π :∇~v − 1

T

r∑
j=1

AjJj (A.1.2)

We can take each term one by one and see how they change under (A.1.1):

~v → ~v
′
=
∑
k

ρk
ρ

(~vk + ~V ) =
∑
k

ρk
ρ
~vk + ~V = ~v + ~V (A.1.3)

~Jk → ~J
′

k = ρk(~v
′

k − ~v
′
) = ρk(~vk + ~V − ~v − ~V ) = ρk(~vk − ~v) = ~Jk (A.1.4)

~F
′

k = −∇ψ′

k = −∇ψk = ~Fk (A.1.5)

The other terms in the expression for σ do not depend on the particular frame of
reference being used. Substituting the above into (A.1.1) and recalling that ~V is constant,
i.e. ∇V = 0, one finds that:

σ
′
= σ (A.1.6)

That is, if a thermodynamic process appears reversible to a particular inertial observer
(σ = 0) so will it for every possible inertial observer, making irreversibility an observer-
independent notion in linear irreversible thermodynamics.
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Appendix A.2

We seek to prove that the entropy production rate

σ = − 1

T 2
~Jq · ∇T −

1

T

n∑
k=1

~Jk ·
[
T ∇

(µk
T

)
− ~Fk

]
− 1

T
Π :∇~v − 1

T

r∑
j=1

AjJj (A.2.1)

can be expressed, for an isotropic, chemically inert, mechanically equilibrated system
immersed in an electric field, as:

T σ = − ~Js,tot ·∇T − ~I ·
[
∇
(
µe
ze

)
− ~E

]
(A.2.2)

We suppose first of all that The force ~Fk a charged particle feels in the presence of
an electric field ~E and a magnetic field ~B is the Lorentz force:

~Fk = zk( ~E + ~v × ~B) (A.2.3)

Where zk is the charge per unit mass of the kth chemical element in the system and
~v is velocity with respect to the reference frame in which the external magnetic field is
stationary.

Since
~Jk = ρk(~vk − ~v)

Then one has that

~Fk = zk( ~E + ~vk × ~B)− zk
ρk

( ~Jk × ~B) (A.2.4)

Meaning that

~Jk · ~Fk = zk ~Jk · ( ~E + ~vk × ~B)− zk
ρk
~Jk · ( ~Jk × ~B) = zk ~Jk · ( ~E + ~vk × ~B) (A.2.5)

Since ~Jk is orthogonal to ~Jk × ~B always.
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Substituting (A.2.5) into (A.2.1) yields:

Tσ = − 1

T
~Jq · ∇T −

n∑
k=1

~Jk ·
[
T ∇

(µk
T

)
− zk( ~E + ~vk × ~B)

]
(A.2.6)

Whereupon, substituting in

T ∇
(µk
T

)
= −µk

T
∇T +∇µk

into (A.2.6)

Tσ = − 1

T
~Jq · ∇T +

n∑
k=1

µk
T
~Jk · ∇T −

n∑
k=1

~Jk ·
[
∇µk − zk( ~E + ~vk × ~B)

]
(A.2.7)

We recall that we defined the entropy flux density ~Js as

~Js =
1

T

(
~Jq −

n∑
k=1

µk ~Jk

)
In terms of the entropy flux density, (A.2.7) becomes

Tσ = − ~Js · ∇T −
n∑
k=1

~Jk ·
[
∇µk − zk( ~E + ~vk × ~B)

]
(A.2.8)

Now we apply a theorem, due to Prigogine, which states that if the system is at
mechanical equilibrium (as we supposed ours is), then the barycentric velocity ~v occurring

in the definition of the diffusion flow ~Jk, can be replaced by an arbitrary velocity ~v a [4].
(A.2.8) thus reads:

Tσ = −
[
~Js + ρs(~v − ~v a)

]
· ∇T −

n∑
k=1

~J a
k ·
[
∇µk − zk( ~E + ~vk × ~B)

]
(A.2.9)

Where
~J a
k = ρk(~vk − ~v a)

And applying once more equation (A.2.5) one gets:

Tσ = −
[
~Js + ρs(~v − ~v a)

]
· ∇T −

n∑
k=1

~J a
k ·
[
∇µk − zk( ~E + ~v a × ~B)

]
(A.2.10)
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This is an incredibly useful and general form for systems in mechanical equilibrium,
for it allows us, for a particular choice of ~v a to eliminate a degree of freedom, anyway
redundant, from our differential equation. In particular, we choose

~v a = ~vn

That is the velocity of the nth chemical component. This nth component could be the
positive ion lattice of a metal, or the neutral solvent in an electrolytic solution. In that
case, we can simplify the problem considerably by choosing a reference system in which
these components are at rest

~v a = ~vn = 0

The fluxes then become simply

~J a
k ≡ ~J r

k = ρk~vk

And expression (A.2.10) becomes

Tσ = − ~Js,tot · ∇T −
n−1∑
k=1

~J r
k ·(∇µk − zk ~E) (A.2.11)

Specialising finally to the case of a metal, as needed in the treatment of the ther-
mocouple, we shall a single type of particle involved, the electron, with the positive ion
lattice remaining by definition immobile. All fluxes will be measured relative to such a
lattice and constitute therefore a perfect model for electron transport in a metal.

Tσ = − ~Js,tot · ∇T − ~J r
e ·(∇µe − ze ~E) (A.2.12)

At last, defining our current density as

~I = ze ~J
r
e

We obtain our desired result, (A.2.2):

Tσ = − ~Js,tot · ∇T − ~I ·
[
∇
(
µe
ze

)
− ~E

]
(A.2.13)

Thus concluding our proof. �
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