ALMA MATER STUDIORUM UNIVERSITÀ DEGLI STUDI DI BOLOGNA

FACOLTA' DI INGEGNERIA

CORSO DI LAUREA SPECIALISTICA IN INGEGNERIA CIVILE

DICAM

Dipartimento di Ingegneria Civile, Ambientale e dei Materiali

TESI DI LAUREA in Progetti di Strutture LS

ANALISI PUSHOVER PER EDIFICI IRREGOLARI IN C.A. AVENTI SOLAI DEFORMABILI

CANDIDATO: *Roberta Belfiore* **RELATORE:**

Chiar.mo Prof. Ing. Marco Savoia

CORRELATORE:

Dott. Ing. Marco Bovo

Anno Accademico 2009-2010

Indice

1 Introduzione	3
2 Analisi Pushover	5
2.1 SISTEMA AD UN GRADO DI LIBERTA'(SDOF)	6
2.2 SISTEMI A MOLTI GRADI DI LIBERTA'(MDOF)	7
2.2.1 CONVERSIONE DI MDOF IN SDOF EQUIVALENTE	10
2.3 DISTRIBUZIONE DELLE FORZE ORIZZONTALI	12
2.4 CURVA DI CAPACITA'	13
2.4.1 METODO N2 CONVENZIONALE	15
2.5 METODO CSM PER LA VALUTAZIONE DEL PUNTO DI FUNZION	AMENTO
3 Caratteristiche dei Solai	23
3.1 SOLAIO INFINITAMENTE RIGIDO	
3.2 SOLAIO DEFORMABILE	
4 II software MidasGen	29
4 Il software MidasGen4.1 MATERIALI	29 29
 4 Il software MidasGen 4.1 MATERIALI 4.1.1 CALCESTRUZZO: KENT & PARK 	29 29 31
 4 Il software MidasGen 4.1 MATERIALI 4.1.1 CALCESTRUZZO: KENT & PARK 4.1.2 ACCIAIO: MENEGOTTO E PINTO 	
 4 II software MidasGen 4.1 MATERIALI 4.1.1 CALCESTRUZZO: KENT & PARK 4.1.2 ACCIAIO: MENEGOTTO E PINTO 4.2 ELEMENTI FINITI 	
 4 II software MidasGen 4.1 MATERIALI 4.1.1 CALCESTRUZZO: KENT & PARK 4.1.2 ACCIAIO: MENEGOTTO E PINTO 4.2 ELEMENTI FINITI 4.3 GESTIONE DEI CARICHI E DELLE MASSE 	
 4 II software MidasGen 4.1 MATERIALI 4.1.1 CALCESTRUZZO: KENT & PARK 4.1.2 ACCIAIO: MENEGOTTO E PINTO 4.2 ELEMENTI FINITI 4.3 GESTIONE DEI CARICHI E DELLE MASSE 4.4 TIPOLOGIE DI ANALISI 	
 4 II software MidasGen 4.1 MATERIALI 4.1.1 CALCESTRUZZO: KENT & PARK 4.1.2 ACCIAIO: MENEGOTTO E PINTO 4.2 ELEMENTI FINITI 4.3 GESTIONE DEI CARICHI E DELLE MASSE 4.4 TIPOLOGIE DI ANALISI 5 Primo caso di studio 	
 4 II software MidasGen 4.1 MATERIALI 4.1.1 CALCESTRUZZO: KENT & PARK 4.1.2 ACCIAIO: MENEGOTTO E PINTO 4.2 ELEMENTI FINITI 4.3 GESTIONE DEI CARICHI E DELLE MASSE 4.4 TIPOLOGIE DI ANALISI 5 Primo caso di studio 5.1 GEOMETRIA DEL MODELLO. 	
 4 II software MidasGen 4.1 MATERIALI 4.1.1 CALCESTRUZZO: KENT & PARK 4.1.2 ACCIAIO: MENEGOTTO E PINTO 4.2 ELEMENTI FINITI 4.3 GESTIONE DEI CARICHI E DELLE MASSE 4.4 TIPOLOGIE DI ANALISI 5 Primo caso di studio 5.1 GEOMETRIA DEL MODELLO. 5.2 PROPRIETA' DEI MATERIALI 	
 4 II software MidasGen 4.1 MATERIALI 4.1.1 CALCESTRUZZO: KENT & PARK 4.1.2 ACCIAIO: MENEGOTTO E PINTO 4.2 ELEMENTI FINITI 4.3 GESTIONE DEI CARICHI E DELLE MASSE 4.4 TIPOLOGIE DI ANALISI 5 Primo caso di studio 5.1 GEOMETRIA DEL MODELLO 5.2 PROPRIETA' DEI MATERIALI 5.3 CALIBRAZIONE DEL MODELLO IN MIDASGEN 	
 4 II software MidasGen 4.1 MATERIALI 4.1.1 CALCESTRUZZO: KENT & PARK 4.1.2 ACCIAIO: MENEGOTTO E PINTO 4.2 ELEMENTI FINITI 4.3 GESTIONE DEI CARICHI E DELLE MASSE 4.4 TIPOLOGIE DI ANALISI 5 Primo caso di studio 5.1 GEOMETRIA DEL MODELLO 5.2 PROPRIETA' DEI MATERIALI 5.3 CALIBRAZIONE DEL MODELLO IN MIDASGEN 5.3.1 MODELLAZIONE SOLAIO 	

5.4 ANALISI DI PUSHOVER	
5.4.1 PUSHOVER IN DIREZIONE X	
5.4.2 PUSHOVER IN DIREZIONE Y	
6 Secondo caso di studio	113
6.1 GEOMETRIA DEL MODELLO	
6.2 PROPRIETA' DEI MATERIALI	
6.3 CALIBRAZIONE DEL MODELLO IN MIDASGEN	120
6.3.1 MODELLAZIONE SOLAIO	121
6.3.2 DISTRIBUZIONE DELLE FORZE ORIZZONTALI	131
6.4 ANALISI DI PUSHOVER	
6.4.1 PUSHOVER IN DIREZIONE X	
6.4.2 PUSHOVER IN DIREZIONE Y	153
7 Conclusioni	163
Bibliografia	

Capitolo 1

Introduzione

Le caratteristiche di irregolarità in pianta ed elevazione di una struttura fanno sì che la risposta strutturale del sistema, sotto l'azione del sisma, non sia caratterizzata da un disaccoppiamento dei modi di vibrare secondo due direzioni ortogonali. Sotto tale condizione perciò, gli spostamenti degli edifici avranno componenti importanti lungo le due direzioni principali di cui, si dovrà tener conto attraverso uno studio tridimensionale della struttura.

Considerare inoltre, l'orizzontamento "infinitamente" rigido nel piano durante l'analisi sismica, garantisce una migliore ridistribuzione delle azioni orizzontali fra gli elementi sismoresistenti, fornendo un'adeguata resistenza nei confronti dei modi traslazionali e torsionali. Se invece si considera il solaio deformabile nel proprio piano allora, è necessario modellare l'orizzontamento tenendo conto delle effettive caratteristiche dello stesso, in termini di distribuzione delle masse e rigidezza.

Nel presente lavoro si affronta l'analisi statica non lineare di due tipologie di strutture, caratterizzate da condizioni di irregolarità diverse e con due ipotesi di partenza differenti: solaio deformabile e "infinitamente" rigido nel piano.

Si è proceduto pertanto nelle analisi in modo separato, come si farebbe se ci si approcciasse al problema durante un'analisi progettuale con obiettivo il confronto a livello di frequenze, massa partecipante e risposta globale del sistema in base alla tipologia di diaframma applicata.

3

Capitolo 2

Analisi Pushover

L'analisi di pushover o analisi di spinta è una procedura statica non lineare impiegata per determinare il comportamento di una struttura a fronte di una determinata azione (forza o spostamento) applicata. Essa consiste nello "spingere" la struttura finché questa collassa o fin tanto che un parametro di controllo specificato a priori, non raggiunge il valore limite prefissato. La "spinta" si ottiene, secondo la procedura di pushover classica, applicando in modo incrementale e monotono un profilo di forze o di spostamenti prestabilito.

Tale analisi è un'alternativa, che pur conservando la notevole semplicità d'uso e di interpretazione dei risultati tipica delle analisi statiche lineari, consente stime più realistiche ed affidabili della risposta strutturale anche in campo non lineare.

In sostanza il pushover è una tecnica di soluzione incrementale che consente di definire un legame scalare forza-spostamento caratteristico per il sistema studiato, detto curva di capacità, il quale permette di ricondurre la ricerca dello spostamento massimo di un sistema soggetto ad una certa azione esterna (denominato MDOF), a quella di un sistema ad un grado di libertà (denominato SDOF).

Nel seguente capitolo si illustrano le procedure per una corretta analisi di spinta nel caso di sistemi SDOF e MDOF; si descrive come determinare il vettore delle forze da applicare al sistema di analisi e una volta tracciata la curva di capacità come valutare il punto di funzionamento della struttura.

2.1 SISTEMA AD UN GRADO DI LIBERTA'(SDOF)

Un sistema SDOF può essere idealizzato come una massa concentrata m sorretta da un elemento privo di massa ma con rigidezza laterale k e collegato ad un elemento (privo di massa e rigidezza) responsabile dello smorzamento (Figura 2.1).

La configurazione deformata (o campo di spostamento) del sistema è definita quindi da un unico parametro che può identificarsi con lo spostamento relativo della massa rispetto al suolo (spostamento orizzontale D_t).

Figura 2.1: Schematizzazione di un sistema ad un grado di libertà (SDOF).

L'analisi di spinta, per questo caso specifico, consiste nell'applicare alla massa del sistema uno spostamento D o una forza F la cui intensità viene gradualmente incrementata nella direzione dell'unico grado di libertà disponibile.

Le espressioni che definiscono la forzante (intesa in senso generalizzato come forza o spostamento) possono esprimersi come:

$$D = \alpha \cdot d$$
$$F = \beta \cdot f$$

Fissato il valore di $d \circ f$, il fattore moltiplicativo $\alpha \circ \beta$ è gradualmente incrementato fino ad un valore finale che permette di investigare il campo di risposta di interesse per il sistema in esame.

Ad ogni valore di α o β corrisponde, quindi, un valore di *D* o *F* che rappresenta lo spostamento o la forza applicati alla massa del sistema.

Il comportamento del sistema è definito da un legame forza-spostamento in cui la forza coincide con il taglio alla base V_b e lo spostamento con quello della massa D_t .

- Analisi a forze imposte:
 Se F è la forza applicata ad m e D lo spostamento di m s prodotto da F, si ha che
 V_b=F e D_t=D.
- Analisi a spostamenti imposti:
 Se D è lo spostamento applicato ad m, F la reazione vincolare risultante, allora D_t=D e V_b=F

2.2 SISTEMI A MOLTI GRADI DI LIBERTA'(MDOF)

Nel caso di sistemi MDOF, l'approccio è simile al caso SDOF con la differenza che alla struttura è applicato un profilo di forze o di spostamenti orizzontali in corrispondenza di ciascun piano e che, per descrivere il comportamento dell'intero sistema in termini di legame forza-spostamento, è necessario scegliere un solo parametro di forza ed un solo parametro di spostamento (figura 2.2).

La scelta di tali parametri non è univoca e può dar luogo a differenti legami forzaspostamento ossia a diversi legami costitutivi del sistema SDOF equivalente dette *"curve di capacità"*.

Solitamente, come parametri di forza e di spostamento, si selezionano il taglio alla base e lo spostamento del baricentro dell'ultimo piano dell'edificio anche se, questa scelta non ha un preciso fondamento teorico ma è rimasto probabilmente come retaggio delle originarie applicazioni di questa tecnica che prevedeva lo studio delle pile da ponte il monitoraggio dello spostamento in sommità. Lo spostamento in sommità, difatti, non è in linea generale un parametro sempre affidabile e rappresentativo.

7

Dove:

Figura 2.2: Schematizzazione dell'applicazione dell'analisi pushover per un sistema MDOF.

In una analisi di spinta basata sugli spostamenti o sulle forze si impone alla struttura, in modo incrementale, un profilo di spostamenti $D = (D_1 D_2 ... D_j ... D_n)^T$ o di forze $F = (F_1 F_2 ... F_j ... F_n)^T$ a livello di piano che possono essere definite da un vettore di forma d o f moltiplicato per un fattore di scala α o β :

$$D = \alpha \cdot d$$
$$F = \beta \cdot f$$

 $\begin{aligned} \boldsymbol{d} &= (d_1 \ d_2 \ \dots \ d_i \ \dots \ d_n)^T & Vettore \ di \ forma \\ D_i &= \alpha \cdot d_i & Spostamento \ del \ piano \ i-esimo \\ \boldsymbol{f} &= (f_1 \ f_2 \ \dots \ f_i \ \dots \ f_n)^T & Vettore \ moltiplicativo \\ F_i &= \beta \cdot f_i & Forza \ di \ piano \ i-esima \end{aligned}$

Per descrivere il comportamento del sistema attraverso un legame scalare forzaspostamento P-U (o curva di capacità) si scelgono comunemente il taglio alla base e lo spostamento D_j del piano *j*-esimo come ad esempio quello in sommità D_t .

$$U = D_j$$
$$P = \mathbf{I}^T \mathbf{F}$$

Considerando che l'obiettivo è di simulare la risposta dinamica della struttura, è necessario capire se l'analisi debba essere condotta applicando un sistema di spostamenti o di forze. Se la struttura avesse un comportamento elastico lineare i due approcci condurrebbero agli stessi risultati ma la presenza di effetti anelastici comporta una sensibile differenza tra le due alternative.

Concettualmente l'analisi dinamica è condotta con forze inerziali per cui l'analisi di spinta a forze imposte sembrerebbe più appropriata, ma in un'analisi dinamica, anche nel caso in cui un modo è predominante rispetto agli altri, l'andamento delle forze di piano non rimane inalterato (ossia non variano proporzionalmente ad un fattore costante), per cui applicare una distribuzione di forze constante non è comunque esatto. Inoltre possono sorgere difficoltà nel condurre analisi anelastiche stabili con controllo di forze, poiché queste non sono in grado di cogliere un eventuale comportamento softening della struttura né di seguire accuratamente risposte associate a rigidezze molto piccole e degradanti, per cui può essere preferibile eseguire analisi a spostamenti impressi. Di contro, lavorando a spostamenti imposti, si vincola la deformata della struttura, per cui si rischia di conseguire campi di forze completamente errati rispetto a quelli attesi in una struttura "libera" di deformarsi a fronte dell'evento sismico e quindi si rischia di giungere a risultati seriamente fuorvianti.

Comunque, l'approccio basato sulle forze è quello che ha attirato maggiormente l'interesse tra ricercatori ed ingegneri professionisti anche perché di facile implementazione su tutti i più comuni programmi di calcolo.

Le analisi condotte e illustrate nei capitoli successivi, in virtù di queste considerazioni, sono state affrontate con un approccio basato su forze imposte.

9

2.2.1 CONVERSIONE DI MDOF IN SDOF EQUIVALENTE

L'analisi pushover non ha un fondamento teorico rigoroso cosicché procedure differenti, che pur conducono a risultati abbastanza diversi tra loro, sono largamente usate ed accettate.

L'assunto di base sul quale poggia l'analisi è che la risposta della struttura sia dominata da un solo modo e che la forma di questo modo resti costante durante la storia temporale della risposta stessa.

Entrambe le assunzioni non sono a rigore esatte, ma numerosi studi hanno mostrato che queste supposizioni conducono a stime abbastanza buone della risposta sismica massima di sistemi MDOF, purché la loro risposta sia dominata da un modo.

La formulazione del sistema SDOF equivalente al sistema MDOF non è unica, ma le assunzioni comuni a tutti gli approcci sono le seguenti:

- Profilo di spostamenti della struttura

• Metodi uni-modali:

L'andamento della deformata del sistema MDOF u è descritto tramite un vettore di forma ϕ la cui ampiezza varia nel tempo per mezzo di una coordinata generalizzata q(t).

• Metodi multi-modali:

L'andamento della deformata del sistema MDOF u è descritto tramite una combinazione lineare di vettori di forma ϕ_m (tra loro ortogonali) la cui ampiezza varia nel tempo tramite le corrispondenti coordinate generalizzate $q_m(t)$.

I vettori di forma adottati nei metodi uni-modali o multi-modali possono essere invarianti e cioè costanti durante l'intera storia temporale indipendentemente dal livello di deformazione (*metodi non adattivi*) o possono essere modificati in funzione delle caratteristiche correnti del sistema (*metodi adattivi*).

- Legame caratteristico forza-spostamento del SDOF equivalente

Il legame forza-spostamento caratteristico del sistema SDOF equivalente viene determinato attraverso una analisi di pushover condotta sul sistema MDOF: il profilo di carico applicato (metodi uni-modali) o i profili di carico applicati (metodi multi-modali) sono proporzionali, attraverso la matrice delle masse M, rispettivamente al vettore di forma Φ o ai vettori di forma Φ_m solitamente normalizzati ad uno spostamento unitario in sommità dell'edificio.

Metodi	Non adattivi	Adattivi
Uni-modali	$\Phi = \text{costante } \forall t$ $q(t)$	$\Phi(t)$ variabile con t q(t)
Multi-modali	$\Phi_{\rm m} = \text{costante } \forall t$ $q_m(t)$	$\Phi_{\rm m}(t)$ variabile con t $q_m(t)$

Tabella: Schema degli approcci per la conversione di sistemi MDOF in sistemi SDOF equivalenti.

Si osserva che si può scegliere una qualunque forma ragionevole per ϕ o ϕ_m ma solitamente si adottano le forme modali del sistema MDOF.

In particolare nei metodi uni-modali $\Phi = \Phi_1$ e rappresenta la prima forma modale.

Nei metodi adattivi è necessario ridefinire i vettori di forma quando si verifica un cambiamento "significativo" delle caratteristiche del sistema resistente a seguito del progredire della plasticizzazione nel sistema stesso.

L'approccio multi-modale è una estensione dell'approccio uni-modale: le relazioni presentate nell'approccio multi-modale per il singolo modo *m*-esimo coincidono con quelle dell'approccio uni-modale.

2.3 DISTRIBUZIONE DELLE FORZE ORIZZONTALI

L'analisi pushover in controllo di forze richiede che la struttura sia sottoposta ad un pattern di forze orizzontali; tali forze sono applicate al centro di massa di ogni piano in corrispondenza dei solai, dove di norma risiede gran parte della massa dell'edificio, allo scopo di simulare le azioni inerziali indotte dal sisma.

Il Decreto Ministeriale del 14 Gennaio 2008 (Norme Tecniche per le Costruzioni) prescrive di usare due distribuzioni di forze orizzontali, una principale ed una secondaria, soltanto se per la struttura in questione sono rispettate le condizioni di applicabilità.

Gruppo 1 - Distribuzioni principali:

- distribuzione proporzionale alle forze statiche, applicabile solo se il modo di vibrare fondamentale nella direzione considerata ha una partecipazione di massa non inferiore al 75% ed a condizione di utilizzare come seconda distribuzione la 2 *a*);
- distribuzione corrispondente ad una distribuzione di accelerazioni proporzionale alla forma del modo di vibrare, applicabile solo se il modo di vibrare fondamentale nella direzione considerata ha una partecipazione di massa non inferiore al 75%;
- distribuzione corrispondente alla distribuzione dei tagli di piano calcolati in un'analisi dinamica lineare, applicabile solo se il periodo fondamentale della struttura è superiore a T_C (periodo corrispondente all'inizio tratto a velocità costante dello spettro di risposta).

Gruppo 2 - Distribuzioni secondarie:

- a) distribuzione uniforme di forze, da intendersi come derivata da una distribuzione uniforme di accelerazioni lungo l'altezza della costruzione;
- b) distribuzione adattiva, che cambia al crescere dello spostamento del punto di controllo in funzione della plasticizzazione della struttura.

L'analisi richiede che al sistema strutturale reale sia associato un sistema strutturale equivalente a un grado di libertà.

In linea teorica le distribuzioni principali hanno lo scopo di modellare la risposta dinamica finché la struttura rimane in campo elastico, mentre quelle secondarie vogliono simulare il comportamento nella fase plastica. La distribuzione uniforme lungo l'altezza, proporzionale alla massa di piano, ha lo scopo di approssimare la risposta strutturale quando si raggiungono grandi deformazioni. In generale è quindi possibile procedere applicando due distribuzioni, una proporzionale alla forma del modo di vibrare e l'altra proporzionale alle masse di piano, a patto che la struttura sia sufficientemente regolare, come implicitamente imposto nelle condizioni di applicabilità.

2.4 CURVA DI CAPACITA'

Il risultato di un'analisi pushover è la definizione della "curva di capacità" o curva di pushover, ossia il legame forza-spostamento della struttura studiata che è generalmente espresso in termini di taglio alla base (V_b) e spostamento in sommità (D_t).

Figura 2.4-1: Curva di capacità per un sistema reale SDOF.

In figura 2.4-1 sono diagrammati i legami forza-spostamento di tre comportamenti caratterizzati da un iniziale andamento elastico lineare fino alla soglia di snervamento (tratto lineare della curva) seguito da un comportamento post critico non lineare che può essere:

- · incrudente (i);
- · perfetto (p);
- · degradante (d).

Considerato un sistema SDOF, l'andamento della curva di capacità è funzione della rigidezza K o della flessibilità K^{-1} del sistema che a loro volta dipendono dalle caratteristiche geometriche e meccaniche del sistema.

Nel caso MDOF la curva (figura 2.4-2) mostra andamenti analoghi caratterizzati dal primo tratto elastico lineare e da un secondo tratto non lineare che sorge in corrispondenza della progressiva plasticizzazione della struttura.

Figura 2.4-2: Curva di capacità per un sistema reale MDOF.

La capacità di resistenza della struttura, in questo caso, dipende dalla capacità di resistenza dei singoli elementi. Tale curva definisce, indipendentemente da qualsiasi richiesta sismica, la capacità della struttura e quindi il suo comportamento in termini di resistenza ed è pertanto un legame semplificato della struttura.

Il comportamento del sistema MDOF è così ricondotto al comportamento di un sistema SDOF che può ragionevolmente definirsi equivalente poiché la curva di capacità è stata tracciata tenendo conto del comportamento dell'intero sistema.

Ogni punto della struttura inoltre definisce uno specifico stato di danno strutturale.

2.4.1 METODO N2 CONVENZIONALE

Nel Testo Unico del 2008 non è mostrato esplicitamente il metodo da eseguire per "linearizzare" la curva di capacità e determinare la risposta massima della struttura in termini di spostamento, ma è soltanto specificato che per eseguire l'analisi è necessario associare al sistema strutturale reale un sistema equivalente ad un grado di libertà.

Il metodo a cui si fa riferimento è quello descritto nell'Eurocodice 8, al quale la normativa italiana consente di far rifermento e che a sua volta si basa sul metodo N2, sigla che richiama il campo non lineare e l'adozione di due modelli, formulato da Peter Fajfar.

Tale metodo si basa sull'assunzione di base che un sistema MDOF possa essere correlato alla risposta di un sistema equivalente SDOF.

Le ipotesi di base del metodo sono:

- Il comportamento del sistema reale MDOF è governato principalmente da un unico modo di vibrare fondamentale;
- La forma del modo principale di vibrare rimane invariata durante l'analisi.

Scelto un punto rappresentativo della struttura, generalmente coincidente con il baricentro dell'ultimo piano dell'edificio, le forze sono scalate, mantenendo invariati i rapporti relativi fra le stesse, in modo da far crescere monotonamente lo spostamento orizzontale del punto di controllo fino ad un valore "sufficiente", tale che, una volta calcolata la domanda in spostamento, questa sia compresa nella curva di pushover così ottenuta.

L'analisi richiede poi che al sistema strutturale reale sia associato un sistema strutturale equivalente ad un grado di libertà (figura 2.4.1).

La forza F* e lo spostamento d* del sistema equivalente sono legati alle corrispondenti

grandezze F_b e d_c del sistema reale MDOF dalle relazioni:

$$F^* = \frac{F_b}{\Gamma}$$
$$d^* = \frac{d_b}{\Gamma}$$

Il passaggio dal sistema reale MDOF a sistema SDOF è caratterizzato dal fattore di partecipazione modale Γ .

$$\Gamma = \frac{\Phi^T \cdot M \cdot \tau}{\Phi^T \cdot M \cdot \Phi}$$

Essendo:

 Φ : forma del modo principale di vibrare normalizzato rispetto allo spostamento del punto di controllo;

M: Matrice delle masse del sistema reale;

 τ : Vettore di trascinamento corrispondente alla direzione del sisma considerata.

Figura 2.4.1: Sistema e diagramma bilineare equivalente.

Alla curva di capacità del sistema equivalente occorre sostituire una curva bilineare avente un primo tratto elastico ed un secondo tratto perfettamente plastico (figura 2.4.1). Si approssima quindi la curva caratteristica forza-spostamento (F*-d*) del sistema equivalente con una bilineare definita in base al criterio di uguaglianza delle aree. Tale approssimazione permette di individuare un ramo elastico con pendenza k*. Inoltre il periodo proprio elastico del sistema SDOF è pari a:

$$T^* = 2\pi \sqrt{\frac{m^*}{k^*}}$$

dove $m^* = \Phi^T \cdot M \cdot \tau$ e k* è la rigidezza del tratto elastico della bilineare.

Se il sistema SDOF ha periodo proprio T* sufficientemente elevato (in particolare nelle norme si richiede T*>Tc), il massimo spostamento raggiunto dal sistema anelastico è pari a quello di un sistema elastico con pari periodo, cioè:

$$d_{max}^* = d_{e,max}^* = S_{De}(T^*)$$

Essendo S_{De} il valore dell'accelerazione spettrale derivante da uno spettro di risposta elastico in corrispondenza del periodo T*.

Se invece il sistema SDOF ha periodo proprio T*<Tc, la risposta in spostamento del sistema anelastico è maggiore di quella del corrispondente sistema elastico e risulta:

$$d_{max}^* = \frac{d_{e,max}^*}{q^*} \left[1 + (q^* - 1) \frac{T_c}{T^*} \right] \ge d_{e,max}^*$$

Essendo

$$q^* = \frac{S_e(T^*) \cdot m^*}{F_y^*}$$

il rapporto tra la forza di risposta elastica e la forza di snervamento del sistema equivalente.

Se $q^* \le 1$ allora si ha:

$$d_{max}^* = d_{e,max}^*$$

Noto d_{max}^* è possibile calcolare lo spostamento effettivo del punto di controllo del sistema MDOF semplicemente invertendo:

$$d_{e,max} = d_{max}^* \cdot \Gamma$$

essendo $d_{e,max}$ lo spostamento massimo richiesto dall'evento sismico di progetto al sistema reale MDOF.

In questo modo è possibile convertire la risposta del sistema equivalente in quella dell'edificio reale.

Nota la domanda di spostamento, d_{max}^* , si può operare il confronto con lo spostamento disponibile e verificare la prestazione strutturale.

La verifica consiste nel controllare che lo spostamento massimo disponibile sia superiore a quello richiesto ovvero:

$$d_{cu} > d_{cmax}$$

oppure:

$$d_u^* > d_{max}^*$$

Una volta noto lo spostamento del punto di controllo si conosce dall'analisi la configurazione deformata ed è quindi possibile eseguire la verifica dell'edificio, in particolare controllando la compatibilità degli spostamenti in quegli elementi che presentano un comportamento duttile e delle resistenze in quegli elementi che hanno un comportamento fragile. Si ricorda che generalmente, nell'analisi pushover, le proprietà degli elementi si basano sui valori medi delle proprietà dei materiali.

2.5 METODO CSM PER LA VALUTAZIONE DEL PUNTO DI FUNZIONAMENTO

Il Metodo dello Spettro di Capacità (*Capacity Spectrum Method o CSM*), è una procedura di analisi statica non lineare per valutare lo spostamento massimo atteso in una struttura per effetto di un evento sismico assegnato.

L'azione sismica (*richiesta sismica*) è definita mediante uno spettro di risposta elastico mentre, il comportamento della struttura è rappresentato da una curva forzaspostamento (*curva di capacità*) che definisce il comportamento del sistema SDOF equivalente alla struttura stessa. Lo spostamento atteso è determinato individuando sulla curva di capacità lo spostamento compatibile con la richiesta sismica. L'individuazione di questo spostamento è perseguita lavorando nello spazio ADRS (*Acceleration Displacement Response Spectrum*) e quindi descrivendo la curva di capacità e lo spettro di risposta in termini di accelerazioni e spostamento spettrali. Nello spazio ADRS lo spettro di risposta e la curva di capacità prendono rispettivamente il nome di spettro di domanda (*Demand Spectrum* o *DS*) e di spettro di capacità (*Capacity Spectrum* o *CS*). Grazie a questa trasformazione di coordinate, il metodo *CSM* fornisce una rappresentazione grafica della prestazione sismica del sistema SDOF equivalente soggetto ad un dato input sismico che viene individuata dall'intersezione dello spettro di capacità con lo spettro di risposta rappresentativo della richiesta indotta dal sisma. Le coordinate di tale punto, detto **punto di funzionamento** (*Performance Point o PP*) della struttura, definiscono l'accelerazione e lo spostamento massimi attesi nel sistema

SDOF.

Il *PP* deve quindi soddisfare due condizioni:

- appartenenza al *CS* per essere rappresentativo del comportamento della struttura ad un certo spostamento;
- appartenenza al DS opportunamente ridotto rispetto allo spettro di risposta elastico al 5% di smorzamento, che rappresenta la domanda non lineare in corrispondenza dello stesso spostamento strutturale.

In generale, l'individuazione del *PP* richiede una procedura iterativa che ricerca il valore dello smorzamento efficace del sistema SDOF equivalente e che si rende necessaria, poiché la capacità di una struttura e la richiesta imposta a questa da un dato sisma non sono tra loro indipendenti; infatti:

- quando una struttura plasticizza per effetto dello spostamento indotto dal sisma, la sua rigidezza decresce e il suo periodo si allunga e quindi, poiché le accelerazioni spettrali dipendono dal periodo, anche la domanda cambia allo snervarsi della struttura;
- quando una struttura plasticizza, in risposta alla richiesta sismica, dissipa energia per smorzamento isteretico e, poiché l'energia dissipata non viene immagazzinata dalla struttura, lo smorzamento produce una riduzione di spostamento.

– Procedura

L'individuazione del punto di funzionamento richiede una procedura iterativa che si articola nei seguenti passi:

1. Definizione della richiesta sismica:

Si definisce lo spettro di risposta elastico al 5% di smorzamento rappresentativo della azione sismica attesa nel sito (Figura 2.5-1).

Figura 2.5-1: Definizione dell'azione sismica con il suo spettro di risposta elastico (ξ =5%) e costruzione della curva di capacità tramite analisi di spinta.

2. Definizione della curva di capacità:

Si costruisce la curva forza - spostamento (V_b-D_t) rappresentativa della capacità del sistema mediante un'analisi di spinta (Figura 2.5-1).

3. Conversione della curva di capacità e della curva di domanda nel dominio spettrale:

Si trasformano lo spettro di risposta elastico e la curva di capacità nel formato ADRS e si diagrammano sullo stesso piano (Figura 2.5-2).

Figura 2.5-2: Conversione nel formato spettrale e scelta di un punto di tentativo d_{ci} .

Figura 2.5-3: Rappresentazione bilineare dello spettro di capacità corrispondente a d_{ci} .

4. Selezione di uno spostamento di tentativo:

Si stabilisce uno spostamento di tentativo del *PP*, d_{Ci} ,(inizialmente, in accordo con l'approssimazione di uguale spostamento, si può assumere $d_{Ci}=d_e$) (Figura 2.5-2). Questo spostamento funge da valore di innesco per la procedura iterativa;

5. *Rappresentazione bilineare dello spettro di capacità:*

Costruzione della curva bilineare spettrale di capacità secondo il criterio di uguale energia (Figura 2.5-3).

6. Linearizzazione equivalente dello spettro di capacità bilineare:

Si assume che la risposta del sistema bilineare, in corrispondenza dello spostamento generico d_{Ci} , sia equivalente a quella di un sistema lineare equivalente caratterizzato da un proprio periodo di vibrazione e da uno smorzamento viscoso. Tali valori sono calcolati sulla base col comportamento isteretico della struttura.

7. Riduzione dello spettro di risposta:

Determinazione della corrispondente curva spettrale di domanda ridotta in funzione dell'energia isteretica dissipata dal sistema rappresentata dallo smorzamento v_{eq} (Figura 2.5-4).

Figura 2.5-4: Determinazione della curva spettrale ridotta con il relativo nuovo punto di funzioname d_{ci} .

8. Individuazione del punto di funzionamento:

Lo spostamento d_{Cj} del punto di funzionamento si ricava come punto di intersezione dello spettro di capacità con lo spettro di domanda ridotto (Figura 2.5-4).

9. Controllo della convergenza:

Se lo spostamento d_{Cj} coincide con d_{Ci} a meno di una tolleranza prefissata (es.5%) allora lo spostamento del *PP* (ossia il massimo spostamento strutturale indotto dall'azione sismica considerata) è $d_{PP}=d_{Cj}$ altrimenti si pone $d_{Ci}=d_{Cj}$ (o si seleziona un nuovo spostamento di tentativo) e si ripete dal passo 5.

10. Valutazione della richiesta sismica globale:

A convergenza avvenuta, si ricava il massimo spostamento in sommità del sistema MDOF.

Capitolo 3

Caratteristiche dei Solai

I solai sono strutture bidimensionali tipicamente caricate ortogonalmente al loro piano per carichi statici che devono assolvere alla funzione di ripartitori delle azioni orizzontali fra le pareti strutturali in seguito ad evento sismico. Pertanto, devono essere ben collegati agli elementi strutturali verticali (setti, pilastri, muri ecc.) e garantire un adeguato funzionamento a diaframma.

Nel seguente capitolo si evidenziano quali sono le caratteristiche che devono essere rispettate al fine di un'adeguata modellazione dei solai e in particolare si illustrano le tecniche di modellazione degli stessi quando si perde la caratteristica fondamentale di diaframma infinitamente rigido, ipotesi base, richiesta al fine di una corretta ridistribuzione delle azioni orizzontali indotte da un evento sismico.

3.1 SOLAIO INFINITAMENTE RIGIDO

Nel paragrafo 7.2 delle Norme Tecniche per le Costruzioni (NTC) sono definiti i criteri generali di progettazione e modellazione delle strutture, in particolare, si specifica quali sono le caratteristiche che devono essere rispettate al fine di poter considerare i diaframmi infinitamente rigidi nel loro piano. "Gli orizzontamenti possono essere considerati infinitamente rigidi nel loro piano, a condizione che siano realizzati in cemento armato, oppure in latero-cemento con soletta in c.a. di almeno 40 mm di spessore, o in struttura mista con soletta in cemento armato di almeno 50 mm di spessore collegata da connettori a taglio opportunamente dimensionati agli elementi

strutturali in acciaio o in legno e purché le aperture presenti non ne riducano significativamente la rigidezza".

Dal punto di vista della regolarità, inoltre, le costruzioni devono avere, quanto più possibile, una struttura iperstatica caratterizzata da regolarità in pianta e in altezza. Se necessario ciò può essere conseguito suddividendo la struttura, mediante giunti, in unità tra loro dinamicamente indipendenti.

Costruzione regolare in pianta

Una costruzione può essere considerata regolare in pianta se sono rispettate le seguenti condizioni:

- a) la configurazione in pianta è compatta e approssimativamente simmetrica rispetto a due direzioni ortogonali, in relazione alla distribuzione di masse e rigidezze;
- b) il rapporto tra i lati di un rettangolo in cui la costruzione risulta inscritta è inferiore a 4;
- c) nessuna dimensione di eventuali rientri o sporgenze supera il 25 % della dimensione totale della costruzione nella corrispondente direzione;
- d) gli orizzontamenti possono essere considerati infinitamente rigidi nel loro piano rispetto agli elementi verticali e sufficientemente resistenti.

Costruzione regolare in altezza

Una costruzione può essere considerata regolare in altezza se sono rispettate le seguenti condizioni:

- e) tutti i sistemi resistenti verticali (quali telai e pareti) si estendono per tutta l'altezza della costruzione;
- f) massa e rigidezza rimangono costanti o variano gradualmente, senza bruschi cambiamenti, dalla base alla sommità della costruzione (le variazioni di massa da un orizzontamento all'altro non superano il 25 %, la rigidezza non si riduce da un orizzontamento a quello sovrastante più del 30% e non aumenta più del 10%); ai fini della rigidezza si possono considerare regolari in altezza strutture dotate di pareti o nuclei in c.a. o pareti e nuclei in muratura di sezione costante sull'altezza o

di telai controventati in acciaio, ai quali sia affidato almeno il 50% dell'azione sismica alla base;

- g) nelle strutture intelaiate progettate in Classe di Duttilità "B" il rapporto tra resistenza effettiva e resistenza richiesta dal calcolo non è significativamente diverso per orizzontamenti diversi (il rapporto fra la resistenza effettiva e quella richiesta, calcolata ad un generico orizzontamento, non deve differire più del 20% dall'analogo rapporto determinato per un altro orizzontamento); può fare eccezione l'ultimo orizzontamento di strutture intelaiate di almeno tre orizzontamenti;
- h) eventuali restringimenti della sezione orizzontale della costruzione avvengono in modo graduale da un orizzontamento al successivo, rispettando i seguenti limiti: ad ogni orizzontamento il rientro non supera il 30% della dimensione corrispondente al primo orizzontamento, né il 20% della dimensione corrispondente all'orizzontamento immediatamente sottostante. Fa eccezione l'ultimo orizzontamento di costruzioni di almeno quattro piani per il quale non sono previste limitazioni di restringimento.

Si riportano a titolo esemplificativo due tipologie di solaio che in conformità alle prescrizione di norma possono considerarsi a diaframma rigido:

- solaio in c.a. (figura 3.1-1).
- solaio in latero-cemento con soletta in c.a. di almeno 4 cm (figura 3.1-2).

Figura 3.1-1: Solaio in c.a.

Figura 3.1-2: Solaio in latero-cemento.

Concludendo, il vantaggio principale del potere considerare i diaframmi infinitamente rigidi risiede nella semplificazione del modello strutturale. Infatti, si ha una riduzione da n gradi di libertà per piano dell'edificio a soli 3 gradi di libertà per piano, con concentrazione delle masse e dei momenti d'inerzia nei centri di gravità di ogni piano; inoltre, se la struttura è anche regolare in pianta si ha una ulteriore semplificazione del modello, risiedente nel fatto che è possibile studiare l'edificio con due modelli piani separati.

3.2 SOLAIO DEFORMABILE

Uno dei principali requisiti per il corretto funzionamento tridimensionale di una costruzione, è la presenza di sistemi resistenti lungo almeno due direzioni che siano capaci di garantire un'adeguata resistenza e rigidezza nei confronti sia dei modi di vibrare traslazionali che dei modi torsionali che nascono a causa delle eccentricità tra il baricentro di massa ed il centro di rigidezza dell'intera struttura o anche solo di una sua porzione.

Tali modi torsionali tendono a sollecitare i diversi elementi strutturali in maniera non uniforme. La norma fissa la necessità di avere orizzontamenti che funzionino da diaframma rigido ai fini delle ripartizioni delle forze sugli elementi verticali che li sostengono. Quando i requisiti di regolarità in pianta e in altezza non sono rispettati e quando la rigidezza del solaio non può considerarsi "infinita", è necessario modellare l'orizzontamento tenendo conto delle effettive caratteristiche dello stesso in termini di distribuzione delle masse e rigidezza.

Le NTC 2008 specificano che per rappresentare la rigidezza degli elementi strutturali si possono adottare modelli lineari, che trascurano le non linearità di materiale e geometriche, e modelli non lineari, che invece le considerano; in ambo i casi si deve tener conto della fessurazione dei materiali fragili.

Caratteristiche dei modelli qui considerati e analizzati sono l'irregolarità in pianta ed elevazione dell'edificio e l'aver assunto deformabili i solai. Pertanto, nel modellare la struttura si dovrà tener conto dell'effettiva distribuzione delle masse e delle rigidezze degli orizzontamenti.

In figura 3.2-1 sono illustrate delle tecniche di modellazione del solaio per metodi agli elementi finiti. Si osserva come sia possibile passare dalla struttura reale a uno schema di bielle equivalenti che riproduce le caratteristiche in termini di massa e rigidezza del solaio o alla schematizzazione tramite elementi lastra.

Figura 3.2-1: Schema di modellazione del solai deformabile.

Si riportano a titolo esemplificativo due tipologie di solaio che in conformità alle prescrizione di norma non possono considerarsi a diaframma rigido e che rientrano nella categoria di orizzontamento deformabile:

- solaio in latero-cemento "rasato" (figura 3.2-2)
- solaio in legno (figura 3.2-3).

Figura 3.2-3: Solaio in legno

I solai delle strutture analizzate, sono stati modellati con elementi di tipo lastra che consentono deformazioni flessionali fuori e nel proprio piano; si è inoltre utilizzato una discretizzazione dell'orizzontamento con un numero di elementi finiti tale per cui la distribuzione discreta delle masse del modello fosse la più rappresentativa possibile della distribuzione continua di massa che è tipica di una struttura reale.

Capitolo 4

II software MidasGen

MidasGen è un codice di calcolo ad elementi finiti di tipo "general pourpose" cioè un software che è stato pensato per l'applicazione del metodo agli elementi finiti per una vasta tipologia di problemi, disponendo di una ampia libreria di elementi finiti, di tipologie di materiale e avendo implementato all'interno un'ampia gamma di analisi. Il software MidasGen è un programma commerciale e, come tale, possiede una qualità superiore nella gestione grafica sia per il pre-processamento, che per il post-processamento. In tale software è però impossibile accedere al codice sorgente delle librerie di materiali ed elementi, pertanto, è possibile usare nelle analisi solamente quelle proprietà per gli elementi finiti che sono definite nella libreria del software.

Il seguente capitolo ha lo scopo di illustrare le caratteristiche del programma finalizzate alla comprensione di come sono state eseguite le analisi di pushover per i modelli strutturali studiati.

4.1 MATERIALI

La libreria dei materiali assegnabili per le analisi lineari prevede le seguente opzioni:

- 1) Steel
- 2) Concrete
- 3) SRC (Steel Reinforced Concrete)
- 4) User Defined (completamente definibile dall'utente)

I materiali usati per l'analisi lineare delle strutture analizzate sono concrete per le travi e pilastri e user defined per il solaio; grazie a questa applicazione è stato possibile lavorare sulla rigidezza del solaio e definire un materiale che avesse le caratteristiche meccaniche desiderate.

Midas tiene conto delle proprietà reologiche dei materiali quali viscosità, ritiro, variazione di resistenza a compressione del calcestruzzo, rilassamento dell'acciaio di precompressione. La libreria dei materiali definiti "plastici" e assegnabili ad elementi finiti per analisi non lineari prevede i seguenti modelli tra le opzioni:

1) Materiale secondo il modello di Von Mises;

- 2) Materiale secondo il modello di Mohr-Coulomb;
- 3) Materiale secondo il modello di Drucker-Prager;
- 4) Materiale secondo il modello Masonry (muratura)

Per quanto concerne la libreria dei materiali isteretici uniassiali e assegnabili a fibre di divisione degli elementi finiti, per analisi non lineari, il software MidasGen prevede i seguenti modelli di legame sforzo deformazione:

Calcestruzzo

1) Kent & Park

- 2) Japanese Concrete Standard Specification
- 3) Japanese Roadway Specification
- 4) Trilinear Concrete
- 5) China Concrete Code
- 6) Mander Model
 - Acciaio
- 1) Menegotto-Pinto
- 2) Bilinear Model
- 3)Asymmetrical Bilinear Steel
- 4) Trilinear Steel

Nella formulazione del modello a fibre, si ipotizza che la sezione di un elemento abbia solo deformazione assiale. Gli elementi sono discretizzati in fibre longitudinali di calcestruzzo e acciaio. La relazione sforzo-deformazione deriva dalla relazione sforzo deformazione delle rispettive fibre.

Gli elementi implementati in MidasGen assumono l'ipotesi base che le sezioni siano perpendicolari all'asse dell'elemento e che si mantengano piane durante l'applicazione dei carichi.

Nelle analisi non lineari svolte, si è scelto di usare modelli a fibre nei quali, in contrasto con gli elementi a plasticità concentrata, per i quali è necessario un'analisi preventiva del comportamento strutturale e quindi individuare le zone in cui la struttura si plasticizzerà per assegnarvi la cerniera, non è necessaria un'analisi preventiva del comportamento strutturare essendo la non linearità del materiale distribuita sull'elemento.

Nei paragrafi successivi si illustrano brevemente i legami costitutivi assegnati ai materiali nelle analisi

4.1.1 CALCESTRUZZO: KENT & PARK

Il modello di Kent e Park (1973) e in seguito esteso da Scott et al. (1982) è un modello raffinato che permette di considerare il contributo offerto dal confinamento della sezione, fattore che nel caso di carichi ciclici risulta molto importante. Tale modello inoltre non tiene in considerazione il modesto contributo a trazione offerto dal calcestruzzo.

Con riferimento alla figura 4.1.1-1 il legame è definito:

$$\varepsilon_c \le \varepsilon_0$$
 $\sigma_c = K f'_c \left[2 \left(\frac{\varepsilon_c}{\varepsilon_0} \right) - \left(\frac{\varepsilon_c}{\varepsilon_0} \right)^2 \right]$

$$\varepsilon_0 \le \varepsilon_c \le \varepsilon_u$$
 $\sigma_c = K f_c' [1 - Z(\varepsilon_c - \varepsilon_0)] \ge 0.2 K f_c'$

Essendo:

 $\varepsilon_0 = 0.0002 \ K$

$$K = 1 + \frac{\rho_x \cdot f_{yh}}{f_c'}$$
$$Z = \frac{0.5}{\frac{3 + 0.29f_c'}{145f_c' - 1000} + 0.75\rho_s\sqrt{\frac{h'}{s_h}} - 0.002K}$$

Figura 4.1.1-1: Diagramma teorico sforzo-deformazione Kent e Park.

- ε_c : deformazione della fibra di calcestruzzo;
- $\sigma_{\rm c}$: sforzo nella fibra di calcestruzzo;
- ε_0 : deformazione per sforzo massimo;
- ε_{u} : deformazione ultima;
- f'_c: resistenza di compressione su cilindri;
- Z: pendenza della curva di softening;
- K: fattore di aumento della resistenza dovuto al confinamento laterale;
- ρ_s : percentuale di staffe;
- h': larghezza del nucleo di cls lato più corto;
- s_K: spaziatura verticale fra le staffe;
- fyh:valore di snervamento delle staffe;

Allo scarico inoltre il percorso seguito è definito dalle equazioni sotto definite; una volta raggiunto il punto (ε_p ,0), la deformazione si muove verso l'origine seguendo proprio l'asse delle ascisse.

$$\begin{pmatrix} \frac{\varepsilon_r}{\varepsilon_0} \end{pmatrix} < 2 \qquad \qquad \frac{\varepsilon_p}{\varepsilon_0} = 0.145 \left(\frac{\varepsilon_r}{\varepsilon_0} \right)^2 + 0.13 \left(\frac{\varepsilon_r}{\varepsilon_0} \right)$$
$$\begin{pmatrix} \frac{\varepsilon_r}{\varepsilon_0} \end{pmatrix} \ge 2 \qquad \qquad \frac{\varepsilon_p}{\varepsilon_0} = 0.707 \left(\frac{\varepsilon_r}{\varepsilon_0} - 2 \right) + 0.834$$

Dove:

 ε_r : deformazione all'inizio dello scarico;

 ε_p : deformazione al punto finale del percorso di scarico.

Il legame sforzo deformazione presente in MidasGen(figura 4.1.1-2) è del tutto analogo a quello descritto fino ad ora; il programma richiede che siano fissati dall'utente i seguenti parametri:

 ε_{c0} : deformazione per sforzo massimo;

- ε_{cu} : deformazione ultima;
- f'_c: resistenza di compressione su cilindri;
- Z: pendenza della curva di softening;
- K: fattore di aumento della resistenza dovuto al confinamento laterale.

Figura 4.1.1-2: Diagramma teorico sforzo-deformazione fornito da MidasGen.

4.1.2 ACCIAIO: MENEGOTTO E PINTO

Il modello di comportamento non lineare usato per l'acciaio da armature è quello elaborato da Menegotto e Pinto (1973) e modificato da Filippou et al. (1983), che include la deformazione isotropa del materiale per effetto dell'incrudimento.

Figura 4.1.2-1: Diagramma teorico sforzo-deformazione Menegotto e Pinto.

Il legame sforzo-deformazione (figura 4.1.2-1) è espresso dalla relazione:

$$\sigma^* = b\varepsilon^* + \frac{(1-b)\varepsilon^*}{(1+\varepsilon^{*R})^{1/R}}$$

Con:

$$\varepsilon^* = \frac{\varepsilon - \varepsilon_r}{\varepsilon_0 - \varepsilon_r}$$
$$\sigma^* = \frac{\sigma - \sigma_r}{\sigma_0 - \sigma_r}$$
$$R = R_0 - \frac{a_1 \xi}{a_2 + \xi}$$

 $R_0 = 20$ $a_1 = 18.5$ $a_2 = 0.15$

- ε : deformazione della fibra di acciaio;
- σ : sforzo nella fibra di acciaio;
- $(\varepsilon_r, \sigma_r)$: punto di scarico, assunto pari a (0,0) nello stato iniziale elastico lineare;
- b: fattore di riduzione della rigidezza;
- ξ : differenza fra il massimo valore della deformazione nella direzione del carico e dello scarico;

Figura 4.1.2-2: Diagramma sforzo-deformazione Menegotto e Pinto fornito da MidasGen.

In figura 4.1.2-2 è illustrato il legame costitutivo così come è fornito dal programma, in particolare, nel codice di calcolo sono richiesti tre parametri al fine di definire il modello e sono:

- fy: valore di snervamento dell'acciaio da armatura;
- E: modulo di elasticità dell'acciaio;
- b: fattore di riduzione della rigidezza dopo lo snervamento.
4.2 ELEMENTI FINITI

La libreria degli elementi finiti fornita da MidasGen comprende i seguenti elementi:

- Truss (elemento biella, reticolare);
- Tension only (elementi resistenti a sola tensione);
- Hook (elementi resistenti a sola tensione con apertura predefinita);
- Cable (funi);
- Compression only (elementi resistenti a sola compressione);
- Gap (elementi resistenti a sola compressione con apertura predefinita);
- General beam (elemento trave/colonna);
- Tapered beam (elemento trave, colonna a sezione variabile con funzioni lineari, quadratiche, cubiche);
- Plate (elemento piastra);
- Plane stress (elemento in stato piano di tensione);
- Plane strain (elemento in stato piano di deformazione);
- Axisymmetric (elemento per problemi di assialsimmetria);
- Wall (elemento setto-muro).

Nei modelli analizzati travi e pilastri sono modellati con *beam element*, tale elemento è usato per modellare elementi prismatici e non prismatici strutturali caratterizzati da una lunghezza relativamente elevata rispetto alla dimensione della sezione; inoltre la teoria con cui è formulato l'elemento è di trave alla Timoshenko con deformazione tagliante considerata.

Per quanto concerne i solai sono stati modellati con *plate element*, elemento piastra sottile o spessa con rigidezza flessionale e membranale differenziata, hanno ortotropia per forma con possibilità di inserire irrigidimenti di qualsiasi forma nelle due direzioni.

4.3 GESTIONE DEI CARICHI E DELLE MASSE

All'interno della sezione static load di Midas è possibile definire e modificare i carichi statici.

I carichi possono essere applicati tramite le seguenti funzioni:

- *Self weingh*: funzione che introduce i pesi propri del modello come carichi applicati:
- *Nodal Body Force*: converte masse nodali e masse strutturali applicate ad un nodo in una forza nodale applicata in una direzione prefissata;
- Nodal Loads: permette di introdurre o modificare carichi concentrati ai nodi (forze o momenti);
- Specified Displacements of Supports: consente di inserire o modificare specifici spostamenti nodali forzati;
- Element beam load: introduce o modifica i carichi sugli elementi trave;
- Line Beam Loads: inserisce il carico in elementi trave disposti lungo una linea diritta;
- *Typical Beam Loads*: inserire carichi tipici di trave risultanti da carichi di piano;
- *Floor Load*: permette di definire il carico di piano e i valori corrispondenti; di assegnare tale carico racchiuso in un poligono e convertirlo in carichi lineari sulle travi;
- Pressure Loads: assegna o modifica carichi come pressioni su facce o spigoli di elementi piani;
- Hydrostatic Pressure Loads: inserisce un carico come pressione idrostatica;
- *Plane Load*: definisci tipo e grandezza di carichi piani;
- *Temperature Load*: consente di quantificare gli stress termici introdotti da variazioni della temperatura in cui si trova a lavorare la struttura;
- *Prestress Load*: consente di inserire o modificare precarichi per aste o altri elementi;

- *Time Loads for Construction Stage*: impone dei carichi dipendenti dal tempo a elementi specifici per tener conto delle proprietà di materiali con caratteristiche dipendenti dal tempo;
- *Creep Coefficient for Construction Stage*: definisce un coefficiente di creep inserito in forma di carico;
- Wind Loads: applica carichi da vento in accordo con gli standard più diffusi;
- *Static Seismic Loads*: permette di definire carichi statici equivalenti a carichi sismici;
- *Initial Forces for Geometric Stiffness*: inserisce forze assiali a membri selezionati per il calcolo di rigidezze utilizzate nelle analisi per grandi spostamenti.

Nei modelli analizzati, al fine di definire i carichi permanenti strutturali e non ed i carichi variabili, si sono sfruttate le funzioni "self weight" per introdurre i pesi propri strutturali, le funzioni "pressure loads" per il carico permanente non struttura e i carichi variabili, mentre i carichi permanenti dovuti ai tamponamenti sono assegnati tramite la funzione "beam loads".

In conformità con NTC, gli effetti dell'azione sismica sono valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali con la relazione:

$$G_1 + G_2 + \sum_j \Psi_{2j} \, Q_{kj}$$

Essendo:

G₁: peso proprio di tutti gli elementi strutturali;

G₂: peso proprio di tutti gli elementi non strutturali;

Q: carichi variabili;

 Ψ_{2j} : coefficiente di combinazione dell'azione.

Grazie alla funzione "loads to masses" di midas è stato possibile convertire i carichi in massa e tener conto degli opportuni coefficienti chiamati in questo caso psi-scale factor.

4.4 TIPOLOGIE DI ANALISI

Le analisi sismiche che possono essere eseguite con il software MidasGen sono:

- analisi statica lineare;
- analisi statica nonlineare Pushover;
- analisi dinamica modale spettrale;
- analisi dinamica time-history lineare e non;
- analisi non lineare per geometria e materiale;
- analisi P-Delta effetti del II ordine (per piccole deformazioni);
- analisi di Buckling;

Nei modelli studiati si è applicata l'analisi modale per valutare i modi principali di vibrare con relative frequenze e masse partecipanti e l'analisi statica non lineare per analizzare la risposta strutturale a seguito di sisma.

L'analisi modale statica è servita nella calibrazione dei modelli, mentre l'analisi modale dinamica per definire le forze orizzontali (si rimanda al capitolo 5 per dettaglio).

Midas fornisce quattro formulazioni generali per l'estrazione degli autovalori:

- 1. *Ritz vectors*: metodo iterativo;
- 2. Subspace iteration: metodo basato su trasformazioni di ortogonalità e similarità;
- 3. Lanczos: metodo per matrici sparse-metodo dell'iterazione del sottospazio;
- 4. *Sturm Check*.

L'estrazione degli autovalori per i modelli analizzati è fatta in accordo con il metodo di Lanczos.

Per quanto concerne le analisi statiche non lineari, Midas permette di eseguirle secondo due modalità diverse:

- In forma semi automatica a valle di una procedura di Design (Pushover);
- Mediante una time history non lineare statica.

La procedura con cui si è svolta l'analisi di pushover nei modelli studiati è la "Time History non lineare statica", consentendo tale procedura l'uso del modello a fibre nella definizione del comportamento non lineare del materiale.

I passi da eseguire per l'analisi non lineare con il modello a fibre in MidasGen sono:

- 1. definizione delle sezione, della geometria del modello, dei materiali a comportamento lineare e dei carichi statici;
- 2. definizione dei materiali a comportamento non lineare "inelastic material properties";
- 3. definizione della geometria della sezione a fibre;
- 4. assegnazione della sezione a fibre agli elementi del modello;
- 5. definizione dei casi di carico "Time-History" e delle relative funzioni temporali.

I primi tre passi sono stati spiegati nei paragrafi precedenti del seguente capitolo; per quanto concerne l'assegnazione della sezione a fibre all'elemento è importante chiarire alcuni punti.

Midas associa a ciascun elemento, con assegnata la propria sezione a fibre una cerniera distribuita a comportamento non lineare e, le caratteristiche di rigidezza sono calcolate in automatico dal programma sulla base della geometria della sezione a fibre. E' importante perciò, per la conformazione del modello, creare una tipologia di sezione differente ogni qual volte che si hanno variazioni della quantità e della disposizione delle armature longitudinali.

Elemento fondamentale dell'analisi è la definizione dei casi di carico; Midas permette di usare due metodologie:

- 1. Non Linear Static;
- 2. Non Linear Direct Integration.

Di seguito è approfondita la prima metodologia poiché è con essa che si sono svolte le analisi. La "Non linear static" ha bisogno della definizione di una funzione "moltiplicazione" che è l'elemento base per la definizione dei carichi nell'analisi non lineare; una volta definita tale funzione è possibile decidere in quanti incrementi di step suddividerla per poi associarla all'opportuno carico.

In un'analisi sismica di tipo pushover si deve tener conto della presenza dei carichi statici (peso proprio, carichi permanenti e variabili, ecc..). Utilizzando gli elementi a fibre di Midas è possibile fare questo seguendo i seguenti step di analisi (figura 4.1-1):

- 1. Creare un Static Load Case per ogni caso di carico statico;
- 2. Definire una funzione moltiplicazione per ciascun carico considerato;
- 3. Creare una *Non Linear Static Time History Analysis* per ogni caso di carico statico attivando l'opzione Subsequent to tra una Time History e l'altra;
- 4. Creare una *Non Linear* Static Time History Analysis per il vettore dei carichi sismici (forze o spostamenti applicati) successiva all'ultimo caso statico.

Seguendo tale procedura si applicheranno dapprima i carichi statici (utilizzando la opportuna funzione "moltiplicatore") e successivamente si eseguirà l'analisi pushover vera e propria.

Figura 4.4-1: Procedura di applicazione dei carichi per l'analisi statica non lineare con Midas.

E' importante osservare come alla fine di ogni assegnazione di carico, esso rimane costante sulla struttura, il che significa che dapprima applico secondo l'opportuno incremento di carico il peso proprio, una volta assegnato esso rimane costante e posso definire grazie alla funzione subseguente to il carico permanente statico e procedere in questo modo per tutta l'assegnazione.

Capitolo 5

Primo caso di studio

5.1 GEOMETRIA DEL MODELLO

Il primo modello studiato è una struttura in calcestruzzo armato con pianta irregolare e di forma ad L caratterizzata da travi principali di lunghezza 5 m o 10 m. L'orditura del solaio è schematizzata in figura 5.1-1 e le travi di collegamento hanno rispettivamente una luce di 6 m e 4 m.

Tale struttura, oltre che da irregolarità in pianta, è caratterizzata da irregolarità in altezza, difatti la porzione di sinistra è costituita da due piani, mentre la porzione di destra ha quattro piani. L'altezza di interpiano è di 3 m ed è la medesima per ogni livello (figura 5.1-2) di solaio.

Figura 5.1-1: Pianta e orditura solaio.

Figura 5.1-2: Prospetto struttura.

5.2 PROPRIETA' DEI MATERIALI

· Caratteristiche dei materiali per le analisi lineari

La struttura studiata è costituita da travi e pilastri in conglomerato cementizio armato. Il calcestruzzo è di classe C 25/30 e possiede le seguenti caratteristiche:

E _c =31.475 MPa	Modulo di elasticità
υ c=0,2	Coefficiente di Poisson
γ =25 KN/m ³	Peso specifico
f _{ck} =30 MPa	Resistenza cubica a compressione
f _{cm} =25 Mpa	Resistenza cilindrica a compressione

La sezione delle travi è 30x50, mentre i pilastri hanno una sezione 30x30 come mostrato in figura 5.1-1.

Figura 5.2-1: Sezioni caratteristiche travi e pilastri.

In conformià con quanto prescritto dalle Norme Tecniche delle Costruzioni; l'acciaio adottato per le barre di armature è il B450C avente le seguenti caratteristiche:

E _s =210.000 MPa	Modulo di elasticità
f _{y nom} =450 MPa	Tensione caratteristica di snervamento
f _{t nom} =540 Mpa	Tensione di rottura

Nella figura 5.2-2 si illustra la tipologia di armatura e la disposizione della stessa nelle sezioni caratteristiche delle travi e dei pilastri.

Figura 5.2-2: Disposizione delle armature nelle sezioni caratteristiche di travi e pilatri.

Caratteristiche dei materiali per le analisi non lineari

Il comportamento non lineare del materiale è caratterizzato dalla legge sforzo deformazione, di seguito sono riportati tali legami con le specifiche caratteristiche.

1) Calcestruzzo non confinato

Il calcestruzzo del copri ferro, esterno alle staffe, è caratterizzato da comportamento non-confinato, il che significa che non può essere considerato come resistente qualora si raggiungano valori di deformazione che superino la deformazione limite che in questo caso specifico è bassa.

Il legame costitutivo è quello di Kent e Park con parametri tipici di un calcestruzzo non confinato (figura 5.2-3), con bassa deformazione ultima e andamento post critico di tipo degradante (Z elevato è rappresentativo di tale comportamento).

Figura 5.2-3: Legame costitutivo e parametri caratteristici del calcestruzzo non confinato.

2) Calcestruzzo confinato

La presenza di armatura induce nel calcestruzzo un miglioramento del comportamento, si ha difatti un considerevole aumento della duttilità del

calcestruzzo confinato a cui corrisponde un notevole incremento della duttilità nelle sezioni inflesse e (soprattutto) presso-inflesse. La legge sforzo deformazione in questo caso è caratterizzata da un basso valore di Z e una deformazione ultima elevata (figura 5.2-4).

Figura 5.2-4: Legame costitutivo e parametri caratteristici del calcestruzzo confinato.

3) Barre di armatura

Il legame sforzo deformazione per le barre di armatura segue la legge di Menegotto-Pinto (figura 5.2-5).

Figura 5.2-5: Legame costitutivo e parametri caratteristici dell'acciaio da armatura.

Fissate le leggi costitutive dei materiali e determinata la percentuale di armatura da assegnare alle diverse sezioni caratteristiche; è possibile definire la geometria delle sezioni a fibre da assegnare nell'analisi non lineare (figura 5.2-6).

Figura 5.2-6: Geometria delle sezioni a fibre per l'analisi non lineare.

5.3 CALIBRAZIONE DEL MODELLO IN MIDASGEN

Note le caratteristiche geometriche e le proprietà dei materiali, si è creato il modello strutturale con il software MidasGEN.

Le travi e i pilastri sono modellati come elementi "beam" e il telaio strutturale si presenta nell'insieme come mostrato in figura 5.3-1.

Figura 5.3-1: Modello 3D del telaio strutturale.

5.3.1 MODELLAZIONE SOLAIO

Il solaio assolve in un'analisi sismica il ruolo di ridistribuire le azioni orizzontali indotte agli elementi verticali; nel caso in esame le caratteristiche di irregolarità rendono necessario uno studio tridimensionale del comportamento strutturale e quindi è importante modellare correttamente l'orizzontamento nel caso in cui esso possa essere considerato "flessibile" nel suo piano.

Attraverso la funzione "user define" di Midas si sono definite le proprietà elastiche iniziali del solaio che sono:

E=31.475 MPa	Modulo di elasticità
∪=0,2	Coefficiente di Poisson
$\gamma = 15 \text{ KN/m}^3$	Peso specifico

Il solaio è stato modellato con elementi "plate" e successivamente, sfruttando l'analisi modale si è determinata la discretizzazione che fosse più rappresentativa possibile della distribuzione delle masse sull'orizzontamento e dei modi di vibrare della struttura. Prima di poter procedere nell'analisi è necessario definire i carichi da applicare.

Carichi permanenti G

Permanenti strutturali (G_1)

- Peso proprio elementi strutturali (travi, pilastri, solaio): calcolato in automatico dal programma grazie alla funzione "self-weight".
- Tamponamenti: assegnati come carichi distribuiti lungo le travi.

 $\gamma = 8 \text{ KN/m}^3$ peso specifico $q = \gamma \cdot b \cdot h_{interpiano} = 8 \cdot 0.3 \cdot 3 = 7.2 \text{ KN/m}$

Permanenti non strutturali (G₂)

Peso proprio elementi non strutturali: 2,00 KN/m² assegnato come carico di pressione sui piani.

Carichi variabili Q

- Sovraccarico per solaio civile abitazione: 2,00 KN/m², assegnato tramite la funzione "preassure load";
- Sovraccarico neve: 1,50 KN/m² assegnato come carico di pressione sui solai di copertura "preassure load".

Una volta definiti, i carichi sono stati convertiti in masse ai nodi sfruttando la funzione "load to mass" di Midas (figura 5.3.1-1). In questa fase si sono pertanto assegnati gli opportuni coefficienti di combinazione dell'azione sismica richiesti dalla norma. In particolare si è considerato:

 $\Psi_{2j} = 0,3$ per la combinazione dei carichi variabili dovuti alla destinazione d'uso del solaio;

 $\Psi_{2i} = 0$ per la combinazione dei carichi variabili legati alla neve.

Figura 5.3.1-1: Esempio di definizione dei carichi in Midas e conversione degli stessi in massa ai nodi.

La struttura è stata vincolata alla base tramite incastri perfetti, e si è svolta l'analisi modale al fine di determinare la discretizzazione del solaio più rappresentativa dei modi di vibrare della struttura e della distribuzione delle masse sul solaio.

Di seguito sono riportate le tipologie di discretizzazione analizzate con i rispettivi risultati dell'analisi modale.

- Caso 1

Figura 5.3.1-2 Caso 1 - Discretizzazione solaio e relariva distribuzione delle masse.

Analizziamo dapprima il Caso 1. Questa distribuzione evidenzia come la massa modale efficace lungo x, e in particolare i modi che hanno massa partecipante maggiore del 5%, sono tre (1, 2, 4); mentre la massa modale lungo y è attivata principalmente da 4 modi (1, 2, 3, 5). Con questa divisione del solaio piuttosto grossolana non si riesce a cogliere la ridistribuzione effettiva di massa sul solaio in quanto, le masse sono applicate sui nodi di collegamento con i pilastri (figura 5.3.1-2).

EIGENVALUE ANALYSIS								
	CASO 1							
Mode	Frequency	Period	MASS(%)	MASS(%)				
No	(Hz)	(sec)	TRAN-X	TRAN-Y				
1	1,1288	0,8859	12,7596	42,5533				
2	1,2984	0,7702	61,9069	14,4217				
3	1,6776	0,5961	1,7679	20,0838				
4	2,8981	0,3451	18,0769	0,0095				
5	3,0056	0,3327	0,2046	16,9903				
6	3,2159	0,311	0,3454	1,6539				
7	5,1477	0,1943	2,347	0,5107				
8	5,3224	0,1879	0,8906	1,8894				
9	5,676	0,1762	0,0304	0,386				
10	6,417	0,1558	1,3783	0,0041				
11	6,5442	0,1528	0,0226	1,242				
12	6,9707	0,1435	0,2692	0,2552				
13	28,3411	0,0353	0,0004	0,0001				
14	32,8751	0,0304	0	0				
15	55,5805	0,018	0	0				
16	58,4538	0,0171	0	0				
17	65,4314	0,0153	0	0				
18	66,0552	0,0151	0	0				
19	70,1556	0,0143	0	0				

Caratteristiche:

Node=32

Plate=8

Beam=56

- Caso 2

Figura 5.3.1-3: Caso 2 -Discretizzazione solaio e relariva distribuzione delle masse .

E	EIGENVALUE ANALYSIS							
	CASO 2							
Mode	de Frequency Period MASS(%) MASS							
No	(Hz)	(sec)	TRAN-X	TRAN-y				
1	1,1721	0,8532	17,8627	49,1143				
2	1,2995	0,7695	57,7317	18,8545				
3	2,1146	0,4729	0,9145	11,0904				
4	2,8978	0,3451	18,4155	0,0111				
5	3,0657	0,3262	0,0056	16,552				
6	3,8701	0,2584	0,1336	0,1195				
7	5,184	0,1929	3,013	0,2154				
8	5,3482	0,187	0,2803	2,6155				
9	6,4079	0,1561	1,4588	0				
10	6,5194	0,1534	0,0331	1,2426				
11	7,2708	0,1375	0,1323	0,1599				
12	8,4186	0,1188	0,0183	0,0243				
13	32,0949	0,0312	0,0004	0,0003				
14	37,6935	0,0265	0	0				
15	62,3085	0,016	0	0,0001				
16	69,0248	0,0145	0	0				
17	71,3533	0,014	0	0				
18	73,7087	0,0136	0	0				
19	82,0972	0,0122	0	0				
20	82,4112	0,0121	0	0				

Caratteristiche:

Node=92

Plate=48

Beam=96

La seconda discretizzazione, permette una migliore ridistribuzione delle masse ai nodi (figura 5.3.1-3); sono comunque importanti i primi 5 modi per una discreta movimentazione delle masse: tre per la componente lungo l'asse x (1, 2, 4) e quattro per la componete lungo l'asse y (1, 2, 3, 5). Il contenuto in frequenza e la percentuale di massa mobilitata sono sensibilmente differenti rispetto al caso 1.

Il modo 1, ad esempio, mobilita per il caso 1 il 42,55% di massa lungo y, mentre nel caso 2 lo stesso modo attiva una percentuale di massa maggiore, cioè il 49,11%.

- Caso 3

Il terzo caso è caratterizzato da una discretizzazione molto fitta, in quanto, il solaio e le relative travi sono suddivisi in un numero elevato di elementi finiti (figura 5.3.1-4), al fine di cogliere al meglio il comportamento effettivo della struttura in termini di ripartizione dei carichi, di trasferimento di masse ai nodi e contenuto in frequenza della stessa. Tale caso è preso come rappresentativo del comportamento effettivo della

struttura, ed è proprio rispetto a tale suddivisione che vengono confrontati i risultati delle analisi modali delle precedenti discretizzazioni.

Si cerca pertanto di cogliere la diversa rappresentazione delle due distribuzioni precedenti rispetto al comportamento "reale" della struttura.

Figura 5.3.1-4: Caso 3 - Discretizzazione solaio e relariva distribuzione delle masse.

0	EIGENVALUE ANALYSIS						
Caratteristicne:	CASO 3						
Node=3204	Mode	Frequency	Period	MASS(%)	MASS(%)		
Plate-2944	No	(Hz)	(sec)	TRAN-X	TRAN-Y		
1 Iate=2)++	1	1,1762	0,8502	18,3162	49,25		
Beam=584	2	1,2984	0,7702	57,1655	19,3085		
	3	2,1955	0,4555	0,9053	11,0427		
	4	2,886	0,3465	18,6263	0,0063		
	5	3,059	0,3269	0,0073	16,0874		
	6	3,9994	0,25	0,1156	0,1349		
	7	5,167	0,1935	3,1585	0,1165		
	8	5,3281	0,1877	0,1701	2,7346		
	9	6,3862	0,1566	1,4399	0,0009		
	10	6,4901	0,1541	0,0065	1,2025		
	11	7,4496	0,1342	0,0814	0,1054		
	12	8,7639	0,1141	0,0071	0,0099		
	13	31,9104	0,0313	0,0004	0,0002		
	14	38,7361	0,0258	0	0		
	15	64,4696	0,0155	0	0,0001		
	16	71,9553	0,0139	0	0		
	17	76,355	0,0131	0	0		
	18	79,8871	0,0125	0	0		
	19	86,8746	0,0115	0	0		
	20	88,4653	0,0113	0	0		

- Confronto dei tre casi

Il controllo della corretta distribuzione delle masse è fatto osservando cosa accade in termini di frequenza ai casi 1 e 2 rispetto al caso 3 ritenuto "esatto".

Si determina l'errore in percentuale come segue:

$$\varepsilon_{fi\%} = \frac{|f_{caso 3}| - |f_{caso i}|}{|f_{caso 3}|}$$

con i = 1, 2.

I calcoli relativi sono riportati nella tabella sottostante.

Mode	f _{caso1} (Hz)	f _{caso2} (Hz)	f _{caso3} (Hz)	ε _{f1} (%)	ε _{f2} (%)
1	1,1288	1,1721	1,1762	4,029927	0,34858
2	1,2984	1,2995	1,2984	0	0,08472
3	1,6776	2,1146	2,1955	23,58916	<mark>3,68481</mark>
4	2,8981	2,8978	2,886	0,419265	0,40887
5	3,0056	3,0657	3,059	1,745669	0,219026

Il caso 1 differisce in maniera rilevante rispetto al caso 3, come si evince analizzando il modo 3, in cui l'errore percentuale commesso è del 23,6%. L'errore invece, per la distribuzione riguardante il caso 2, è notevolmente ridotto (3,7%) ed evidente anche nella rappresentazione delle frequenze in funzione dei modi in figura 5.3.1-4. Il diagramma permette di osservare come le frequenze del caso 2 non differiscano di molto dal caso 3 e quindi è una buona approssimazione dei modi di vibrare della struttura.

Figura 5.3.1-5: Confronto frequenze-modi principali di vibrare per i 3 casi esaminati.

Un ulteriore controllo eseguito nella calibrazione del solaio, è il confronto delle percentuali di masse mobilitate dai primi cinque modi nelle direzioni x e y (figure 5.3.1-6 e 5.3.1-7).

Per entrambe le direzioni, la percentuale di massa partecipante del caso 2 è pressoché coincidente con quella del caso 3; le masse del caso 1 invece sono notevolmente differenti.

Figura 5.3.1-6: Confronto massa partecipante lungo x e modi principali di vibrare per i 3 casi esaminati.

Figura 5.3.1-7: Confronto massa partecipante lungo y e modi principali di vibrare per i 3 casi esaminati.

In conclusione, dal confronto di questi tre casi si è rilevato come la discretizzazione del caso 2 sia sufficientemente precisa e poco difforme nei risultati che si ottengono invece considerando il caso 3 ritenuto rappresentativo del comportamento reale della struttura. Pertanto, nelle successive analisi si è proseguirà con la discretizzazione del caso 2

essendo l'analisi così eseguita computazionalmente meno onerosa rispetto all'uso della mesh del caso 3.

Una volta calibrata la mesh del solaio, si è proceduto a tarare la rigidezza degli elementi orizzontali al fine di poter considerare il comportamento del solaio flessibile.

Punto di partenza è stato creare un modello identico al precedente in termini di caratteristiche geometriche, carichi applicati e materiali, in cui il solaio però è considerato infinitamente rigido. In seguito, si è confrontata la risposta in termini di frequenze con il caso prima riportato.

L'infinita rigidezza nel piano del diaframma si è ottenuta collegando tutti i nodi di un piano ai baricentri geometrici dei piani stessi, ritenendoli coincidenti con i centri di massa, tramite "rigid link" (usando la funzione di Midas che vincola alcuni nodi detti "slave node" ad un nodo detto "master"). Tutti gli attributi del nodo "slave" sono così convertiti in una componente equivalente del nodo "master" (figura 5.3.1-8).

EIGENVALUE ANALYSIS								
Solaio Rigido								
Mode	Frequency		MASS(%)	MASS(%)				
No	(Hz)	Period sec	TRAN-X	TRAN-Y				
1	1,1807	0,847	19,9322	46,7439				
2	1,2991	0,7698	55,5945	20,8696				
3	2,0823	0,4802	1,0025	11,966				
4	2,8935	0,3456	18,4239	0,0192				
5	3,0573	0,3271	0,0104	16,0376				
6	3,8532	0,2595	0,0705	0,0233				
7	5,1742	0,1933	2,8872	0,302				
8	5,3446	0,1871	0,4122	2,5099				
9	6,419	0,1558	1,4337	0,0789				
10	6,5988	0,1515	0,0214	1,2945				
11	7,2994	0,137	0,1885	0,1392				
12	8,4273	0,1187	0,0229	0,0158				

Figura 5.3.1-8: Solaio modellato con rigid link e relativi risultati dell'analisi modale.

Confrontando le frequenze del caso infinitamente rigido con quelle del solaio del caso 2 (figura 5.3.1-8) si osserva una sostanziale vicinanza tra i due. Pertanto, volendo studiare il comportamento di una struttura con solaio flessibile e che si discosta quindi dal caso di struttura con solaio infinitamente rigido, si è agito sul modulo di rigidezza degli

elementi solaio, riducendolo in modo progressivo e tale da ottenere delle frequenze sufficientemente diverse rispetto al caso limite di orizzontamento infinitamente rigido.

Figura 5.3.1-9: Confronto frequenze modi principali di vibrare per il solaio infinitamente rigido e deformabile.

Il modulo elastico del solaio è stato perciò abbattutto ad un valore pari a 1/64 e 1/256 rispetto al valore inizialmente considerato per calibrare la dimension della mesh. Le frequenze e modi di vibrare sono riportate nella tabella sottostante per i due casi rispettivamente.

E _{inizi}	_{iniziale} =31.750 Mpa	
£ (11_)	MASS(%)	MASS(%)
T (HZ)	tran-x	tran-y
1,1721	17,8627	49,1143
1,2995	57,7317	18,8545
2,1146	0,9145	11,0904
2,8978	18,4155	0,0111
3,0657	0,0056	16,552
3,8701	0,1336	0,1195
5,184	3,013	0,2154
5,3482	0,2803	2,6155
6,4079	1,4588	0
6,5194	0,0331	1,2426
7,2708	0,1323	0,1599
8,4186	0,0183	0,0243
32,0949	0,0004	0,0003
37,6935	0	0
62,3085	0	0,0001
69,0248	0	0
71,3533	0	0
73,7087	0	0
82,0972	0	0
82,4112	0	0

Al diminuire del modulo di rigidezza, si osserva un abbassamento delle prime frequenze proprie (figura 5.3.1-10), inoltre si ha anche una ridistribuzione delle masse partecipanti per i vari modi di vibrare; in particolare per i modi principali 1 e 2 si ha un aumento della massa al diminuire del modulo (evidenziato in giallo nella tabella). Il dettaglio dell'andamento frequenze-modi per i primi 5 modi evidenzia come l'abbattimento di 1/256 è quello più significativo al fine dei modi che mobilitano massa partecipante rappresentativa per l'analisi.

Confrontando i risultati dell'analisi modale del solaio deformabile con abbattimento pari a 1/256 (E=122,9 MPa) e quelli del solaio infinitamente rigido si osserva una sostanziale differenza in termini di frequenze (figura 5.3.1-11) pertanto, si è considerato tale modulo nel prosieguo delle analisi perché ritenuto sufficiente a cogliere il comportamento di solaio deformabile.

Figura 5.3.1-11: Confronto frequenze modi principali di vibrare solaio con modulo ridotto e solaio infinitamente rigido.

Figura 5.3.1-12: Confronto massa partecipante lungo x e modi principali di vibrare per il solaio deformabile a modulo ridotto e solaio infinitamente rigido.

Figura 5.3.1-13: Confronto massa partecipante lungo y e modi principali di vibrare per il solaio deformabile a modulo ridotto e solaio infinitamente rigido.

Un successivo controllo riguarda le masse partecipanti del modello a solaio deformabile rispetto al caso di diaframma rigido. Nelle figure 5.3.1-12 e 5.3.1-13 sono illustrati gli andamenti delle masse partecipanti nelle direzioni x e y. Si osserva una percentuale in massa dei modi principali (modo 2 per la direzione x e 1 per la direzione y) maggiore nel solaio deformabile rispetto al caso infinitamente rigido.

Dalla modellazione del solaio è stato possibile calibrare un modello di orizzontamento deformabile che cogliesse la distribuzione delle masse più rappresentativa dei modi di vibrare della struttura e, al tempo stesso un comportamento che fosse sensibilmente diverso rispetto ad caso di diaframma infinitamente rigido.

5.3.2 DISTRIBUZIONE DELLE FORZE ORIZZONTALI

Punto fondamentale per procedere nell'analisi di spinta è la definizione del vettore delle forze orizzontali; data l'irregolarità in pianta ed elevazione della struttura i modi propri di vibrare non sono disaccoppiati lungo due direzioni . In conformità con le NTC 2008 essendo la percentuale di massa partecipante dei modi principali inferiore al 75%, non è

possibile applicare un vettore delle forze derivante da una distribuzione proporzionale alle forze statiche e neanche una distribuzione corrispondente ad un vettore di accelerazioni proporzionale alla forma del modo di vibrare; si è perciò applicato un vettore di forze derivante dalla distribuzione dei tagli di piano calcolati in un'analisi dinamica lineare. Nel modello studiato, essendo l'analisi eseguita a monte del diverso comportamento che può avere una struttura in base al fatto che il diaframma possa considerarsi infinitamente rigido o meno, si è proceduto nell'analisi in modo separato applicando un vettore di forze diverso a seconda della tipologia di diaframma, come si farebbe se ci si approcciasse il problema durante un'analisi progettuale. Le forze d'inerzia perciò sono state determinate dall'analisi dinamica modale considerando un vettore di accelerazione unitaria e costante per ciascuna direzione (x e y) e, determinando le forze associate al modo di vibrare principale per la direzione considerata.

Il software MidasGen dispone della funzione "response spectrum analysis" con cui è possibile definire lo spettro di risposta o le accelerazioni normalizzate in funzione del periodo e associarla ad una direzione al fine di determinare le forze d'inerzia corrispondenti. Una volta definita l'accelerazione, che per il caso in esame è rappresentata in figura 5.3.2-1, viene assegnata nelle direzioni principali di analisi (x e y) al fine di determinare le forze d'inerzia proporzionali ai modi principali per le rispettive direzioni (modo 1 per la direzione y, modo 2 per la direzione x).

Figura 5.3.2-1: Andamento del vettore accelerazione in funzione del periodo.

Di seguito sono definite le forze nodali per i casi considerati e le rispettive rappresentazioni:

Solaio flessibile:

- Azione proporzionale al modo 2 (massa percentuale associata in direzione x)

Il solaio flessibile mobilita il 61,1% di massa in direzione x e tale massa è associata al modo 2, assegnato pertanto il vettore accelerazione in direzione x (load case della tabella) si sono determinate le forze di inerzia relative e rappresentate in figura 5.3.2-2. Nella tabella sottostante sono riportati i valori delle forze per ciascun nodo, si evidenzia il nodo con maggiore sollecitazione cioè il 78 e si riporta il taglio alla base associato a questa configurazione di forze per entrambe le direzioni (x e y).

Capitolo 5

Nodal Inertia force modo 2

Load Case	Mode	Node	FX (kN)	FY (kN)	Load Case	Mode	Node	FX (kN)	FY (kN)
Sisma x	2	1	0,7008	0,2959	Sisma x	2	59	1,2319	0,7106
Sisma x	2	2	0,7008	0,3122	Sisma x	2	60	1,2308	0,7741
Sisma x	2	3	1,351	0,5241	Sisma x	2	61	2,8336	1,2794
Sisma x	2	4	2,0082	0,8243	Sisma x	2	62	2,8395	1,527
Sisma x	2	5	0,9007	0,3706	Sisma x	2	63	2,8441	1,7175
Sisma x	2	6	1,5167	0,6638	Sisma x	2	64	2,4245	1,1405
Sisma x	2	7	1,2039	0,8025	Sisma x	2	65	2,4225	1,3239
Sisma x	2	8	1,2845	0,8022	Sisma x	2	66	2,4253	1,4808
Sisma x	2	9	0	0	Sisma x	2	67	3,1082	2,042
Sisma x	2	10	0	0	Sisma x	2	68	2,6577	1,3115
Sisma x	2	11	0	0	Sisma x	2	69	2,6603	1,5325
Sisma x	2	12	0	0	Sisma x	2	70	2,6629	1,7076
Sisma x	2	13	0	0	Sisma x	2	71	4,9068	2,1833
Sisma x	2	14	0	0	Sisma x	2	72	4,9075	2,4558
Sisma x	2	15	0	0	Sisma x	2	73	4,9068	2,6426
Sisma x	2	16	0	0	Sisma x	2	74	5,2809	2,1157
Sisma x	2	17	0,6119	0,2579	Sisma x	2	75	4,1243	1,9083
Sisma x	2	18	0,6119	0,2844	Sisma x	2	76	4,1234	2,1254
Sisma x	2	19	1,3316	0,4683	Sisma x	2	77	4,1248	2,2877
Sisma x	2	20	3,5793	1,3919	Sisma x	2	78	5,2816	3,0693
Sisma x	2	21	0,8777	0,3266	Sisma x	2	79	4,451	2,2021
Sisma x	2	22	2,9858	1,2439	Sisma x	2	80	4,4528	2,4562
Sisma x	2	23	2,6096	1,7963	Sisma x	2	81	4,4538	2,6256
Sisma x	2	24	2,7881	1,7959	Sisma x	2	82	3,5331	1,5132
Sisma x	2	25	4,8021	1,8604	Sisma x	2	83	3,5329	1,6703
Sisma x	2	26	4,3557	1,8601	Sisma x	2	84	3,5322	1,7884
Sisma x	2	27	4,3604	2,6995	Sisma x	2	85	3,6323	1,4358
Sisma x	2	28	4,8028	2,6987	Sisma x	2	86	4,5539	2,0271
Sisma x	2	29	2,8969	1,1038	Sisma x	2	87	4,5554	2,2254
Sisma x	2	30	2,6362	1,1034	Sisma x	2	88	4,5537	2,3845
Sisma x	2	31	2,637	1,5392	Sisma x	2	89	3,6321	2,0022
Sisma x	2	32	2,8958	1,5389	Sisma x	2	90	3,2155	1,5207
Sisma x	2	33	1,186	0,4208	Sisma x	2	91	3,2161	1,6703
Sisma x	2	34	0,7709	0,3022	Sisma x	2	92	3,2162	1,781
Sisma x	2	35	1,0812	0,4055	Sisma x	2	93	0,7704	0,296
Sisma x	2	36	1,1834	0,4357	Sisma x	2	94	1,0808	0,3951
Sisma x	2	37	3,647	1,4419	Sisma x	2	95	1,182	0,418
Sisma x	2	38	0,7378	0,2815	Sisma x	2	96	0,7714	0,3087
Sisma x	2	39	0,6729	0,2704	Sisma x	2	97	1,0822	0,4167
Sisma x	2	40	0,5316	0,2376	Sisma x	2	98	1,1849	0,4531
Sisma x	2	41	0,7443	0,3112	Sisma x	2	99	0,6718	0,2616
Sisma x	2	42	1,1624	0,4562	Sisma x	2	100	0,6751	0,2791
Sisma x	2	43	0,6174	0,2622	Sisma x	2	101	0,5316	0,2236
Sisma x	2	44	0,5634	0,2287	Sisma x	2	102	0,5316	0,2504
Sisma x	2	45	0,8474	0,338	Sisma x	2	103	0,6176	0,2603
Sisma x	2	46	1,7227	0,7185	Sisma x	2	104	0,5637	0,2254
Sisma x	2	47	0,7576	0,3049	Sisma x	2	105	0,6172	0,2634
Sisma x	2	48	0,3678	0,1526	Sisma x	2	106	0,5632	0,232
Sisma x	2	49	0,5171	0,2264	Sisma x	2	107	0,8474	0,3311
Sisma x	2	50	0,7614	0,3219	Sisma x	2	108	0,8474	0,3439
Sisma x	2	51	1,3146	0,614	Sisma x	2	109	0,3674	0,1499
Sisma x	2	52	1,3142	0,7089	Sisma x	2	110	0,5171	0,2187
Sisma x	2	53	1,3132	0,7789	Sisma x	2	111	0,3685	0,1551
Sisma x	2	54	1,1239	0,5431	Sisma x	2	112	0,517	0,2328
Sisma x	2	55	1,1218	0,6143				Tmax,x	Tmax,y
Sisma x	2	56	1,1213	0,6725				[KN]	[KN]
Sisma x	2	57	1,4354	0,9123				218,1357	107,5019
Sisma x	2	58	1 2329	0.6237					

Figura 5.3.2-2: Distribuzione delle forze orizzontali proporzionali al modo 2.

- Azione proporzionale al modo 1 (massa percentuale associata in direzione y)

Il solaio flessibile mobilita il 52,47% di massa in direzione y e tale massa è associata al modo 1, assegnato pertanto il vettore accelerazione in questa direzione (load case della tabella) si sono determinate le forze di inerzia corrispondenti (figura 5.3.2-3).

La tabella delle forze inerzia associate alla funzione accelerazione in direzione y per ciascun nodo, evidenzia come per tale combinazione di carico il valore assoluto delle forze massime nella direzione y è ancora una volta associato al nodo 78, mentre il valore assoluto di forza massima in direzione x è associato al nodo 79 e sotto tale condizione di carico è diretto nella direzione delle x negative.

Capitolo 5

Load	Mode	Node	FX	FY
Case	wioue	Noue	(kN)	(kN)
Sisma y	1	1	0,0488	0,1559
Sisma y	1	2	0,0488	0,4861
Sisma y	1	3	-0,3672	0,2765
Sisma y	1	4	-0,5454	1,2811
Sisma y	1	5	-0,7207	0,1961
Sisma y	1	6	-1,2143	1,0296
Sisma y	1	7	-0,9637	1,8464
Sisma y	1	8	-0,3494	1,8465
Sisma y	1	9	0	0
Sisma y	1	10	0	0
Sisma y	1	11	0	0
Sisma y	1	12	0	0
Sisma y	1	13	0	0
, Sisma y	1	14	0	0
Sisma v	1	15	0	0
, Sisma v	1	16	0	0
Sisma v	1	17	0.0399	0,1349
Sisma v	1	18	0.0399	0,4526
Sisma v	1	19	-0.3599	0,2456
Sisma y	1	20	-0.9657	2,2084
Sisma y	1	20	-0 6808	0 1721
Sisma y	1	21	-2 3155	1 966
Sisma y	1	22	-2 0197	3 9621
Sisma y	1	23	-0 7523	3,9622
Sicma y	1	27	-1 2088	2 7/20
Sisma y	1	25	-1,2588	2,7429
Sisma y	1	20	-2,9033	2,7435
Sisma y	1	27	1 2021	5,5480
Sisma y	1	20	-1,3031	1 6008
Sisma y	1	29	-0,8024	1,0008
Sisma y	1	21	1 6925	2,0676
Sistild y	1	21	-1,0625	2,0670
Sistild y	1	32	-0,8037	5,0076
Sistild y	1	33	-0,6049	0,2214
Sistila y	1	24	-0,5979	0,5265
Sistild y	1	35	-0,5515	0,4401
Sisma y	1	30	-0,3196	0,4747
Sisma y	1	37	-1,8612	2,2824
Sisma y	1	38	-0,0868	0,1474
Sisma y	1	39	-0,0785	0,2929
Sisma y	1	40	0,0347	0,2564
Sisma y	1	41	-0,0851	0,4949
Sisma y	1	42	-0,6091	0,2412
Sisma y	1	43	-0,4942	0,2771
Sisma y	1	44	-0,2953	0,2416
Sisma y	1	45	-0,2302	0,3584
Sisma y	1	46	-0,9035	1,1151
Sisma y	1	47	-0,0822	0,1607
Sisma y	1	48	-0,0396	0,1612
Sisma y	1	49	0,036	0,2384
Sisma y	1	50	-0,0809	0,501
Sisma y	1	51	-0,357	1,1395
Sisma y	1	52	-0,3571	1,4239
Sisma y	1	53	-0,3571	1,6665
Sisma y	1	54	-0,5904	0,9903
Sisma y	1	55	-0,5903	1,2332
Sisma y	1	56	-0,5903	1,4493
Sisma y	1	57	-0,7558	2,0997

Nodal Inertia force mode 1

Load	Mada	Nada	FX	FY
Case	wode	Node	(kN)	(kN)
Sisma y	1	58	-0,9874	1,1389
Sisma y	1	59	-0,9864	1,4245
Sisma y	1	60	-0,9853	1,6688
Sisma y	1	61	-0,7637	2,3983
Sisma y	1	62	-0,7653	3,0285
, Sisma v	1	63	-0.767	3.5695
Sisma v	1	64	-1.2406	2.0881
Sisma v	1	65	-1.2425	2.623
Sisma y	1	66	-1.2437	3.1008
Sisma v	1	67	-1.5935	4,5054
Sisma y	1	68	-2 0612	2 4005
Sisma y	1	69	-2.0622	3 0306
Sisma y	1	70	-2.0626	3 5741
Sismay	1	70	_1 3277	3,5741
Sismay	1	71	-1,3277	1 / 1201
Sisma y	1	72	1 2205	4,4291 E 096
Sisma y	1	73	-1,3303	3,080
Sisma y	1	74	1 0144	2 1647
Sisma y	1	75	-1,9144	3,1047
Sisilid y	1	70	-1,9145	5,6549
Sisma y	1	77	-1,9148	4,4215
Sisma y	1	/8	-2,4525	6,3097
Sisma y	1	/9	-3,0273	3,6372
Sisma y	1	80	-3,0268	4,4292
Sisma y	1	81	-3,0257	5,0926
Sisma y	1	82	-0,979	2,4562
Sisma y	1	83	-0,9796	2,9333
Sisma y	1	84	-0,98	3,3532
Sisma y	1	85	-1,6297	2,0826
Sisma y	1	86	-2,0422	3,2792
Sisma y	1	87	-2,0427	3,9086
Sisma y	1	88	-2,0421	4,4805
Sisma y	1	89	-1,6297	3,9908
Sisma y	1	90	-2,0536	2,4534
Sisma y	1	91	-2,0531	2,9333
Sisma y	1	92	-2,0524	3,356
Sisma y	1	93	-0,5975	0,2371
Sisma y	1	94	-0,551	0,3209
Sisma y	1	95	-0,3194	0,344
Sisma y	1	96	-0,5983	0,4195
Sisma y	1	97	-0,5519	0,5594
Sisma y	1	98	-0,3199	0,6047
Sisma y	1	99	-0,0788	0,2133
Sisma y	1	100	-0,0779	0,3721
Sisma y	1	101	0,0347	0,1856
Sisma y	1	102	0,0347	0,3264
Sisma y	1	103	-0,4942	0,205
Sisma y	1	104	-0,2953	0,1794
Sisma y	1	105	-0,4941	0,3484
Sisma y	1	106	-0,2952	0,3034
Sisma y	1	107	-0,2303	0,2656
Sisma y	1	108	-0,2302	0,4498
Sisma y	1	109	-0,0398	0,1196
Sisma y	1	110	0,036	0,1766
Sisma y	1	111	-0,0394	0,2023
Sisma y	1	112	0,036	0,2991
			Tmax,x	Tmax,y
			[KN]	[KN]
			-99,0562	187,4577

Figura 5.3.2-3: Distribuzione delle forze orizzontali proporzionali al modo 1.
Solaio infinitamente rigido:

- Azione proporzionale al modo 2 (massa percentuale associata in direzione x)

Il solaio rigido mobilita il 55,6% di massa in direzione x ed è associata al modo 2; assegnato pertanto il vettore accelerazione in direzione x (load case della tabella) si sono determinate le forze di inerzia relative e rappresentate in figura 5.3.2-4. Nella tabella sottostante sono riportati i valori delle forze per ciascun nodo, anche per questo caso il nodo maggiormente sollecitato è il 78 ma in questo caso l'intensità della forza lungo x cala mentre aumenta il contributo della forza lungo y.

Figura 5.3.2-4: Distribuzione delle forze orizzontali proporzionali al modo 2.

<u> </u>										
Load	Mode	Node	FX	FY		Load	Mode	Node	FX	FY
Case			(kN)	(kN)		Case			(kN)	(kN)
Sisma x	2	1	0,7641	0,339		Sisma x	2	59	1,1159	0,7876
Sisma x	2	2	0,7641	0,398		Sisma x	2	60	1,1159	0,8381
Sisma x	2	3	1,2716	0,602		Sisma x	2	61	2,6007	1,5296
Sisma x	2	4	1,8902	1,049		Sisma x	2	62	2,6007	1,642
Sisma x	2	5	0,8136	0,427		Sisma x	2	63	2,6007	1,7544
Sisma x	2	6	1,3716	0,844		Sisma x	2	64	2,1406	1,3279
Sisma x	2	7	1.0926	0.87		Sisma x	2	65	2.1406	1.4254
Sisma x	2	8	1.2113	0.87		Sisma x	2	66	2.142	1.5242
Sisma x	2	9	0	0		Sisma x	2	67	2,7449	2 0781
Sisma y	2	10	0	0		Sisma y	2	68	2,7445	1 5296
Sicmay	2	10	0	0		Sicma v	2	60	2,331	1,5250
Ciemo v	2	11	0	0		Sisma x	2	70	2,331	1 7544
Sistild X	2	12	0	0		Sistild X	2	70	2,551	1,7544
Sisma x	2	13	0	0		Sisma x	2	/1	4,4939	2,4711
Sisma x	2	14	0	0		Sisma x	2	/2	4,4939	2,6278
Sisma x	2	15	0	0		Sisma x	2	/3	4,4939	2,7845
Sisma x	2	16	0	0		Sisma x	2	74	4,7932	2,5763
Sisma x	2	17	0,7239	0,311		Sisma x	2	75	3,7379	2,1452
Sisma x	2	18	0,7239	0,369		Sisma x	2	76	3,7379	2,2812
Sisma x	2	19	1,2315	0,565		Sisma x	2	77	3,7379	2,4173
Sisma x	2	20	3,294	1,795		Sisma x	2	78	4,7932	3,2742
Sisma x	2	21	0,7725	0,395		Sisma x	2	79	4,1178	2,4711
Sisma x	2	22	2,6211	1,594		Sisma x	2	80	4,1178	2,6278
Sisma x	2	23	2,2823	1,828		Sisma x	2	81	4,1178	2,7845
Sisma x	2	24	2.5464	1.828		Sisma x	2	82	3.2552	1.726
Sisma x	2	25	4.4001	2.266		Sisma x	2	83	3.2552	1.8266
Sisma x	2	26	4 0318	2 266		Sisma x	2	84	3 2552	1 9272
Sisma y	2	20	4,0318	2,200		Sisma y	2	85	3 3/3/	1 7338
Sicmay	2	27	4,001	2,00		Sicma v	2	86	4 1780	2 2011
Sisma x	2	20	2,4001	1 222		Sicma v	2	00	4,1789	2,3011
Sisma x	2	29	2,0094	1,333		Sisma x	2	07	4,1709	2,4555
Sisma x	2	30	2,4714	1,555		Sisma x	2	00	4,1703	2,3094
SISIIId X	2	31	2,4714	1,005		SISIIId X	2	69	3,3434	2,1031
Sisma x	2	32	2,6694	1,663		Sisma x	2	90	3,0137	1,726
Sisma x	2	33	1,0513	0,508		Sisma x	2	91	3,0137	1,8266
Sisma x	2	34	0,6776	0,379		Sisma x	2	92	3,0137	1,9272
Sisma x	2	35	0,9556	0,506		Sisma x	2	93	0,6776	0,363
Sisma x	2	36	1,0919	0,548		Sisma x	2	94	0,9556	0,4839
Sisma x	2	37	3,2227	1,852		Sisma x	2	95	1,0919	0,5243
Sisma x	2	38	0,7648	0,339		Sisma x	2	96	0,6776	0,3956
Sisma x	2	39	0,6951	0,337		Sisma x	2	97	0,9556	0,5275
Sisma x	2	40	0,6286	0,295		Sisma x	2	98	1,0919	0,5714
Sisma x	2	41	0,7648	0,403		Sisma x	2	99	0,6951	0,3226
Sisma x	2	42	1,0544	0,525		Sisma x	2	100	0,6951	0,3516
Sisma x	2	43	0,558	0,318		Sisma x	2	101	0,6286	0,2823
Sisma x	2	44	0,5107	0,276		Sisma x	2	102	0,6286	0,3077
Sisma x	2	45	0,7976	0,41		Sisma x	2	103	0,558	0,3054
Sisma x	2	46	1,565	0,913		Sisma x	2	104	0,5107	0,2651
Sisma x	2	47	0,7633	0,35		Sisma x	2	105	0,558	0,3307
Sisma x	2	48	0.3697	0.184		Sisma x	2	106	0.5107	0.2871
Sisma x	2	49	0.5636	0,272		Sisma x	2	107	0.7976	0,3938
Sisma x	2	50	0.7633	0.41		Sisma x	2	108	0.7976	0.4264
Sismax	2	51	1 2371	0.737		Sisma v	2	109	0 3697	0 1768
Sisma v	2	51	1 2371	0 789		Sisma v	2	110	0 5626	0 2612
Sigman	2	52	1 2271	0,700		Sigma	2	111	0,3030	0,2012
Sicma v	2	55	1,23/1	0,030		Sigma	2	112	0,3097	0,1914
Sigma v	2	54	1,0213	0,04		Sigma	2	112	0,5036	0,2028
Sistia X	2	55	1,0213	0,084		Sisma X	2	113	0	0
Sisma x	2	56	1,0213	0,728		sisma x	2	114	0	0
Sisma x	2	57	1,3097	0,989				IOTALE	Tmax,x [KN]	Tmax,y
Sisma x	2	58	1,1159	0,737						[KN]
									201.0761	120.84

Nodal Inertia force mode 2

La tabella evidenzia come il valore del taglio massimo alla base segue la tendenza del nodo maggiormente sollecitato, difatti, il taglio in x cala mentre quello in y cresce.

- Azione proporzionale al modo 1 (massa percentuale associata in direzione y)

Figura 5.3.2-5: Distribuzione delle forze orizzontali proporzionali al modo 1.

Il solaio rigido mobilita il 52,47% di massa in direzione y, relativa al modo 1; assegnato pertanto il vettore accelerazione in questa direzione (load case della tabella) si sono determinate le forze di inerzia corrispondenti (figura 5.3.2-3).

Capitolo 5

Load Case	Mode	Node	FX (kN)	FY (kN)	Load Case	Mode	Node	FX (kN)	FY (kN)
Sisma y	1	1	-0,0009	0,1447	Sisma y	1	59	-1,0286	1,2768
Sisma y	1	2	-0,0009	0,4425	Sisma y	1	60	-1,0286	1,5336
Sisma y	1	3	-0,4238	0,2567	Sisma y	1	61	-0,8661	2,1467
Sisma y	1	4	-0,63	1,1662	Sisma y	1	62	-0,8661	2,6964
Sisma y	1	5	-0,7499	0,1821	Sisma y	1	63	-0,8661	3,2461
Sisma y	1	6	-1,2642	0,9382	Sisma y	1	64	-1,3245	1,8636
Sisma y	1	7	-1,0071	1,7529	Sisma y	1	65	-1,3245	2,3408
Sisma y	1	8	-0,4037	1,7529	Sisma y	1	66	-1,3252	2,8197
Sisma y	1	9	0	0	Sisma y	1	67	-1,6984	4,2254
Sisma y	1	10	0	0	Sisma y	1	68	-2,1853	2,1467
Sisma y	1	11	0	0	Sisma y	1	69	-2,1853	2,6964
Sisma y	1	12	0	0	Sisma y	1	70	-2,1853	3,2461
Sisma y	1	13	0	0	Sisma y	1	71	-1,5472	3,2651
Sisma y	1	14	0	0	Sisma y	1	72	-1,5472	3,9606
Sisma y	1	15	0	0	Sisma y	1	73	-1,5472	4,6561
Sisma y	1	16	0	0	Sisma y	1	74	-2,6514	2,8604
Sisma y	1	17	0,0035	0,1296	Sisma y	1	75	-2,0676	2,8344
Sisma y	1	18	0,0035	0,4158	Sisma y	1	76	-2,0676	3,4382
Sisma y	1	19	-0,4101	0,2357	Sisma y	1	77	-2,0676	4,042
Sisma y	1	20	-1,097	2,0228	Sisma y	1	78	-2,6514	5,9573
Sisma y	1	21	-0,7242	0,165	Sisma y	1	79	-3,2164	3,2651
Sisma y	1	22	-2,4573	1,7959	Sisma y	1	80	-3,2164	3,9606
Sisma y	1	23	-2,1397	3,7165	Sisma y	1	81	-3,2164	4,6561
Sisma y	1	24	-0,8481	3,7165	Sisma y	1	82	-1,1429	2,2315
Sisma y	1	25	-1,5149	2,5159	Sisma y	1	83	-1,1429	2,6679
Sisma y	1	26	-3,1492	2,5159	Sisma y	1	84	-1,1429	3,1043
Sisma y	1	27	-3,1492	5,2398	Sisma y	1	85	-1,7777	1,9148
Sisma y	1	28	-1,5149	5,2398	Sisma y	1	86	-2,2219	2,975
Sisma y	1	29	-0,9372	1,4721	Sisma y	1	87	-2,2219	3,5569
Sisma y	1	30	-1,7961	1,4721	Sisma y	1	88	-2,2219	4,1387
Sisma y	1	31	-1,7961	2,9036	Sisma y	1	89	-1,7777	3,7768
Sisma y	1	32	-0,9372	2,9036	Sisma y	1	90	-2,1902	2,2315
Sisma y	1	33	-0,6505	0,2122	Sisma y	1	91	-2,1902	2,6679
Sisma y	1	34	-0,6352	0,3045	Sisma y	1	92	-2,1902	3,1043
Sisma y	1	35	-0,5913	0,4059	Sisma y	1	93	-0,6352	0,2246
Sisma y	1	36	-0,3637	0,4398	Sisma y	1	94	-0,5913	0,2994
Sisma y	1	37	-1,9941	2,0873	Sisma y	1	95	-0,3637	0,3244
Sisma y	1	38	-0,1212	0,1415	Sisma y	1	96	-0,6352	0,3843
Sisma y	1	39	-0,1102	0,2706	Sisma y	1	97	-0,5913	0,5124
Sisma y	1	40	0,003	0,2368	Sisma y	1	98	-0,3637	0,5552
Sisma y	1	41	-0,1212	0,4539	Sisma y	1	99	-0,1102	0,1996
Sisma y	1	42	-0,6456	0,2238	Sisma y	1	100	-0,1102	0,3416
Sisma y	1	43	-0,5143	0,2533	Sisma y	1	101	0,003	0,1747
Sisma y	1	44	-0,3127	0,2199	Sisma y	1	102	0,003	0,2989
Sisma y	1	45	-0,2658	0,3265	Sisma y	1	103	-0,5143	0,1891
Sisma y	1	46	-0,9583	1,0153	Sisma y	1	104	-0,3127	0,1641
Sisma y	1	47	-0,1236	0,1492	Sisma y	1	105	-0,5143	0,3175
Sisma y	1	48	-0,0599	0,1466	Sisma y	1	106	-0,3127	0,2756
Sisma y	1	49	-0,0007	0,2166	Sisma y	1	107	-0,2658	0,2438
Sisma y	1	50	-0,1236	0,456	Sisma y	1	108	-0,2658	0,4093
Sisma y	1	51	-0,4123	1,02	Sisma y	1	109	-0,0599	0,1094
Sisma y	1	52	-0,4123	1,2768	Sisma y	1	110	-0,0007	0,1617
Sisma y	1	53	-0,4123	1,5336	Sisma y	1	111	-0,0599	0,1837
Sisma y	1	54	-0,6254	0,8855	Sisma y	1	112	-0,0007	0,2715
Sisma y	1	55	-0,6254	1,1084	Sisma y	1	113	0	0
Sisma y	1	56	-0,6254	1,3313	Sisma y	1	114	0	0
Sisma y	1	57	-0,802	1,993				Tmax,x	Tmax,y
Sisma y	1	58	-1,0286	1,02				[KN]	[KN]
								-108.08	171 0607

Nodal Inertia force modo 1

La tabella delle forze inerzia associate alla funzione accelerazione in direzione y per ciascun nodo, evidenzia come per tale combinazione di carico il valore assoluto delle forze massime nella direzione y è ancora una volta associato al nodo 78, mentre il valore assoluto di forza massima in direzione x è associato al nodo 79 e sotto tale condizione di carico è diretto nella direzione delle x negative. Rispetto alle forze del solaio deformabile, le azioni corrispondenti ai nodi maggiormente associati e i tagli massimi alla base del solaio infinitamente rigido crescono in valore assoluto in direzione x e calano lungo y.

5.4 ANALISI DI PUSHOVER

Una volta definite le proprietà per travi e pilastri e modellato il comportamento del solaio, si può procedere con l'analisi statica non lineare.

La non linearità nell'analisi è data dalla non linearità del materiale che costituisce il modello e in particolare, nel caso in esame si è assegnata la non linearità ai soli elementi "beam", mentre il solaio è ipotizzato a comportamento elastico lineare durante tutta l'analisi di spinta. Definita la geometria della sezione a fibre, è necessario assegnarla agli opportuni elementi del modello.

Di seguito sono evidenziati gli elementi del modello con le rispettive sezioni a fibre.

- Assegnazione della sezione a fibre per i pilastri

- Assegnazione della sezione alle travi principali di sinistra

In figura sono evidenziati in arancione gli elementi della trave principale di sinistra per i quali si è assegnata una sezione a fibre con armatura definita in precedenza e caratteristica della sezione di appoggio. In verde invece sono evidenziati gli elementi per i quali si è assegnata la sezione a fibre con armatura definita per la sezione di mezzeria.

- Assegnazione della sezione alle travi principali di destra

Nelle figure sono evidenziati in rosso gli elementi della trave principale di destra per i quali si è assegnata una sezione a fibre con armatura definita in precedenza per la sezione di appoggio. In giallo chiaro i corrispondenti elementi della sezione di mezzeria.

Definite le proprietà non lineari, si procede nell'assegnazione dei carichi statici e delle forze di pushover per l'analisi non lineare.

Seguendo pertanto la procedura illustrata nel paragrafo 4.4, si definisce per ciascun carico una funzione "moltiplicatore".

Carichi statici

Di seguito sono illustrate le funzioni "moltiplicatore" definite per l'assegnazione dei carichi statici nell'analisi sismica ed è bene notare come esse siano create in accordo con i criteri di combinazione dell'azione sismica con le altre azioni definiti nelle NTC.

Figura 5.4-1: Funzione moltiplicatore associata ai carichi permanenti.

La figura 5.4-1 mostra l'andamento della funzione moltiplicazione assegnata ai carichi permanenti, è una funzione che va da 0 ad 1 in un secondo, gli incrementi di carico in cui è stata suddivisa sono 10 (figura 5.4-2) e nella definizione della "Time History load case" si sono assegnati dapprima i pesi propri degli elementi (P.P.), poi i pesi

permanenti non strutturali (G1k) ed infine, i pesi permanenti dovuti ai tamponamenti (G2k).

Figura 5.4-2: Time-History funzione moltiplicatore carichi permanenti.

Figura 5.4-3: Funzione moltiplicatore associata ai carichi variabili.

In figura 5.4-3 è illustrato l'andamento della funzione moltiplicatore relativa ai carichi variabili presenti nella combinazione sismica.

La funzione va da 0 a 0,3 in un secondo, tale valore è in accordo la combinazione dei carichi variabili associati alla destinazione d'uso. Gli incrementi in cui si è suddivisa la funzione sono 3 ed è associata al carico statico Q1k.

Il carico variabile legato alla neve (Q2k) non è stato assegnato perché nella combinazione sismica a tale carico corrisponde un fattore di combinazione pari a zero e pertanto l'azione da neve non entra nell'analisi sismica.

• Carichi sismici

I vettori delle forze orizzontali, sia per l'analisi lungo x che lungo y, sono quelli definiti nel paragrafo 5.3 del seguente capitolo. L'analisi di spinta è eseguita nelle due direzioni (x e y) sia per il solaio flessibile che per il caso di solaio infinitamente rigido al fine di monitorare la risposta della struttura e confrontare il diverso comportamento della stessa a seconda della tipologia di solaio considerata; pertanto, le analisi condotte sono 4:

- 2 pushover in direzione x;
- 2 pushover in direzione y

5.4.1 PUSHOVER IN DIREZIONE X

Nel pushover in direzione x le forze applicate sono quelle associate al secondo modo di vibrare della struttura e mobilitano massa partecipante maggiore lungo x; essendo la struttura irregolare in pianta ed elevazione, i modi non sono disaccoppiabili secondo due direzioni ortogonali, pertanto gli spostamenti nodali dei solai avranno componenti importanti lungo le due direzioni considerate.

Nella scelta della funzione moltiplicatore associata al sisma si è proceduto per tentativi, infatti, dapprima si è assegnata una funzione con i rispettivi incrementi di step e

successivamente si è incrementato il carico fino all'ultimo step tale da garantire ancora la convergenza dell'analisi.

Di seguito sono illustrate le funzioni moltiplicatore del carico sismico per il solaio deformabile e per il solaio infinitamente rigido.

Figura 5.4.1-1: Funzione moltiplicatore associata al sisma per il caso di solaio deformabile.

La figura 5.4.1-1 mostra l'andamento della funzione moltiplicatore associata al vettore dei carichi orizzontali del solaio deformabile. Va da 0 ad 1 in 1 secondo e da 1 ad 1,3 in 0,5 secondi. E' stata suddivisa in 90 parti a cui corrispondono i 90 step di incremento di carico. Il secondo tratto della funzione è caratterizzato da incrementi di carico minori (figura 5.4.1-2) al fine di studiare meglio il comportamento della struttura nel ramo di deformazione post critico.

cton	incremento	ston	incremento		step	incremento	ston	incremento
step	carico	step	carico			carico	step	carico
1	0,01666667	24	0,4		47	0,7833333	70	1,1
2	0,03333333	25	0,4166667		48	0,8	71	1,11
3	0,05	26	0,4333333		49	0,8166667	72	1,12
4	0,06666667	27	0,45		50	0,8333333	73	1,13
5	0,08333333	28	0,4666667		51	0,85	74	1,14
6	0,1	29	0,4833333		52	0,8666667	75	1,15
7	0,1166667	30	0,5		53	0,8833333	76	1,16
8	0,1333333	31	0,5166667		54	0,9	77	1,17
9	0,15	32	0,5333333		55	0,9166667	78	1,18
10	0,1666667	33	0,55		56	0,9333333	79	1,19
11	0,1833333	34	0,5666667		57	0,95	80	1,2
12	0,2	35	0,5833333		58	0,9666667	81	1,21
13	0,2166667	36	0,6		59	0,9833333	82	1,22
14	0,2333333	37	0,6166667		60	1	83	1,23
15	0,25	38	0,6333333		61	1,01	84	1,24
16	0,2666667	39	0,65		62	1,02	85	1,25
17	0,2833333	40	0,6666667		63	1,03	86	1,26
18	0,3	41	0,6833333		64	1,04	87	1,27
19	0,3166667	42	0,7		65	1,05	88	1,28
20	0,3333333	43	0,7166667		66	1,06	89	1,29
21	0,35	44	0,7333333		67	1,07	90	1,3
22	0,3666667	45	0,75		68	1,08		
23	0,3833333	46	0,7666667		69	1,09		

Figura 5.4.1-2: Funzione incremento di carico per il caso di solaio deformabile.

La funzione moltiplicatore associata al vettore forze orizzontali della struttura caratterizzata da orizzontamento infinitamente rigido è rappresentata in figura 5.4.1-3. Si va da 0 a 1,5 in un secondo e la funzione è stata suddivisa in 45 parti a cui corrispondono i 45 step di incremento di carico (figura 5.4.1-4).

Figura 5.4.1-3: Funzione moltiplicatore associata al sisma per il caso di solaio infinitamente rigido.

Ston	incremento	Ston	incremento	
Jieh	di carico	Step	di carico	
1	0,03333333	24	0,8	
2	0,06666667	25	0,8333333	
3	0,1	26	0,8666667	
4	0,1333333	27	0,9	
5	0,1666667	28	0,9333333	
6	0,2	29	0,9666667	
7	0,2333333	30	1	
8	0,2666667	31	1,033333	
9	0,3	32	1,066667	
10	0,3333333	33	1,1	
11	0,3666667	34	1,133333	
12	0,4	35	1,166667	
13	0,4333333	36	1,2	
14	0,4666667	37	1,233333	
15	0,5	38	1,266667	
16	0,5333333	39	1,3	
17	0,5666667	40	1,333333	
18	0,6	41	1,366667	
19	0,6333333	42	1,4	
20	0,6666667	43	1,433333	
21	0,7	44	1,466667	
22	0,7333333	45	1,5	
23	0 7666667	 •		

Figura 5.4.1-4: Funzione incremento di carico per il caso di solaio infinitamente rigido.

Definiti gli incrementi di carico per il sisma è possibile svolgere l'analisi e studiarne i risultati.

La figura 5.4.1-5 mostra l'andamento della deformata complessiva della struttura sotto l'azione del sisma massimo (corrispondente all'ultimo step di carico della struttura) per il caso di solaio deformabile (a) e infinitamente rigido (b). Per entrambi i casi il nodo con massima deformazione è il 32 cerchiato in nero in figura. Il caso (a) evidenzia un deformata complessiva maggiore rispetto al caso (b) si è pertanto deciso di monitorare i nodi 32, 20 e 24 (evidenziati nelle figure) al fine di cogliere la risposta globale del sistema e analizzare le differenze di comportamento per le due tipologie di solaio.

Per i nodi monitorati si è tracciata la curva di capacità, in particolare, si è diagrammato l'andamento del taglio massimo alla base lungo x per il corrispettivo spostamento, il taglio massimo alla base in direzione y per il rispettivo spostamento e il momento torcente massimo alla base per la rotazione corrispettiva.

Figura 5.4.1-5: Deformata complessiva della struttura con solaio deformabile (a) e diaframma infinitamente rigido (b).

Figura 5.4.1-6: Curve taglio spostamento per il nodo 32; andamento per la direzione x (a) e andamento per la direzione y (b).

In figura 5.4.1-6 sono tracciate le curve di capacità, taglio massimo alla basespostamento del nodo 32 per il caso di solaio deformabile e infinitamente rigido.

Sia per lo spostamento in x che quello in y la curva presenta una primo tratto caratterizzato da elevata pendenza, che rispecchia in comportamento rigido del solaio, il ramo post critico è incrudente con una grande deformazione per piccolo incremento di taglio. Il solaio deformabile è caratterizzato da un primo tratto lineare a cui segue un comportamento incrudente e un successivo cambio di pendenza della curva. A parità di taglio imposto inoltre il solaio deformabile presenta spostamenti maggiori sia per il caso (a) che per (b).

Nella figura 5.4.1-7 e 5.4.1-8 sono rappresentate le curve di pushover dei nodi 24 e 20 facenti riferimento al secondo livello della struttura; per entrambe si evidenzia una pendenza della curva del solaio infinitamente rigido più accentuata e quindi si conferma, anche in questo caso, una rigidezza maggiore della risposta strutturale, inoltre le deformate del solaio rigido, a parità di taglio massimo impresso alla base, sono più basse.

Gli andamenti delle curve per la struttura caratterizzata dal solaio deformabile evidenziato un leggero cambio di pendenza (cerchi neri nelle figure) che può essere legato alla formazione di microfessure e conseguente calo di rigidezza nella risposta del sistema.

Figura 5.4.1-7: Curve taglio spostamento per il nodo 32; andamento per la direzione x (a) e andamento per la direzione y (b).

Figura 5.4.1-8: Curve taglio spostamento per il nodo 20; andamento per la direzione x (a) e andamento per la direzione y (b).

Al fine di monitorare il comportamento del solaio in corrispondenza del secondo livello di piano si sono tracciate le time history degli spostamento lungo x e y dei nodi 24 e 20. La figura 5.4.1-9 rappresenta l'andamento degli spostamenti lungo x nel tempo per i solaio deformabile (a) e solaio rigido (b).

Mentre il solaio rigido evidenzia una coincidenza degli spostamenti tipica di questa tipologia di orizzontamento, il solaio deformabile mostra una risposta diversa dei nodi 24 e 20, infatti il nodo 24 ha uno spostamento maggiore rispetto al nodo 20 e nel complesso le deformazioni sono maggiori rispetto al caso (b).

Per quanto concerne la time-history degli spostamenti lungo y (figura 5.4.1-10) si osserva subito una comportamento diverso dei punti monitorati sia per il caso (a) che (b) . E' bene notare che ancora una volta gli spostamenti del solaio deformabili sono maggiori rispetto al caso rigido.

(b)

Figura 5.4.1-10: Time history degli spostamenti lungo y per i solaio deformabile (a) e solaio rigido (b).

Figura 5.4.1-11: Curva momento rotazione per il nodo 32.

Figura 5.4.1-11: Curva momento rotazione per il nodo 24.

Figura 5.4.1-13: Curva momento rotazione per il nodo 20.

Un successivo controllo eseguito è quello del momento torcente massimo alla base rispetto alla sua rotazione.

I momenti alla base della struttura sono stati determinati dalla combinazione del contributo legato ai tagli e momenti torcenti agenti sui pilastri in accordo con la relazione:

$$M_t = \sum_i (T_{x,i} \cdot b_{x,i} + T_{y,i} \cdot b_{y,i}) + M_i$$

Essendo:

 $T_{x,i}$ e $T_{y,i}$: Tagli massimi agenti alla base dei singoli pilastri i in direzione x e y;

 $b_{x,i}$ e $b_{y,i}$: bracci calcolati rispetto al baricentro delle masse della struttura;

 M_i : Momento torcente agente sul singolo pilastro i.

Le rotazioni nodali dei punti non sono controllate poiché derivano da una condizione di equilibrio imposta sui tagli, ne consegue che i digrammi momento rotazione per le diverse tipologie di diaframma sono sensibilmente diversi.

5.4.2 PUSHOVER IN DIREZIONE Y

Nel pushover in direzione y le forze applicate sono quelle associate al primo modo di vibrare della struttura e mobilitanti massa partecipante maggiore lungo y; essendo la struttura irregolare in pianta ed elevazione, i modi non sono disaccoppiabili secondo due direzioni ortogonali, pertanto gli spostamenti nodali dei solai avranno componenti importanti lungo le due direzioni considerate.

Di seguito sono illustrate le funzioni moltiplicatore del carico sismico per il solaio deformabile e per il solaio infinitamente rigido.

Figura 5.4.2-1: Funzione moltiplicatore associata al sisma per il caso di solaio deformabile.

La figura 5.4.2-1 mostra l'andamento della funzione moltiplicatore associata al vettore dei carichi orizzontali del solaio deformabile. Va da 0 ad 2 in 1 secondo. E' stata suddivisa in 60 parti a cui corrispondono i 60 step di incremento di carico (figura 5.4.2-2).

cton	incremento	cton	incremento
step	di carico	step	di carico
1	0,03333333	31	1,033333
2	0,06666667	32	1,066667
3	0,1	33	1,1
4	0,1333333	34	1,133333
5	0,1666667	35	1,166667
6	0,2	36	1,2
7	0,2333333	37	1,233333
8	0,2666667	38	1,266667
9	0,3	39	1,3
10	0,3333333	40	1,333333
11	0,3666667	41	1,366667
12	0,4	42	1,4
13	0,4333333	43	1,433333
14	0,4666667	44	1,466667
15	0,5	45	1,5
16	0,5333333	46	1,533333
17	0,5666667	47	1,566667
18	0,6	48	1,6
19	0,6333333	49	1,633333
20	0,6666667	50	1,666667
21	0,7	51	1,7
22	0,7333333	52	1,733333
23	0,7666667	53	1,766667
24	0,8	54	1,8
25	0,8333333	55	1,833333
26	0,8666667	56	1,866667
27	0,9	57	1,9
28	0,9333333	58	1,933333
29	0,9666667	59	1,966667
30	1	60	2

Figura 5.4.2-2: Funzione incremento di carico per il caso di solaio deformabile.

La funzione moltiplicatore associata al vettore forze orizzontali della struttura caratterizzata da orizzontamento infinitamente rigido è rappresentata in figura 5.4.2-3. Si va da 0 a 1 in un secondo, da 1 a 1,25 in 0,5 secondi e da 1,25 a 1,27 in 0,5 secondi. La funzione è stata suddivisa in 90 parti a cui corrispondono i 90 step di incremento di carico (figura 5.4.2-4).

Figura 5.4.2-3: Funzione moltiplicatore associata al sisma per il caso di diaframma rigido.

stop	incremento	stan	incremento di	stan	incremento	stan	increment
step	di carico	step	carico	step	di carico	step	o di carico
1	0,02222222	26	0,5777778	51	1,066667	76	1,257556
2	0,04444444	27	0,6	52	1,077778	77	1,258444
3	0,06666667	28	0,6222222	53	1,088889	78	1,259333
4	0,08888889	29	0,6444444	54	1,1	79	1,260222
5	0,1111111	30	0,6666667	55	1,111111	80	1,261111
6	0,1333333	31	0,6888889	56	1,122222	81	1,262
7	0,1555556	32	0,7111111	57	1,133333	82	1,262889
8	0,1777778	33	0,7333333	58	1,144444	83	1,263778
9	0,2	34	0,7555556	59	1,155556	84	1,264667
10	0,2222222	35	0,7777778	60	1,166667	85	1,265556
11	0,2444444	36	0,8	61	1,177778	86	1,266444
12	0,2666667	37	0,8222222	62	1,188889	87	1,267333
13	0,2888889	38	0,8444444	63	1,2	88	1,268222
14	0,3111111	39	0,8666667	64	1,211111	89	1,269111
15	0,3333333	40	0,8888889	65	1,222222	90	1,27
16	0,3555556	41	0,9111111	66	1,233333		
17	0,3777778	42	0,9333333	67	1,244444		
18	0,4	43	0,9555556	68	1,250444		
19	0,4222222	44	0,9777778	69	1,251333		
20	0,4444444	45	1	70	1,252222		
21	0,4666667	46	1,011111	71	1,253111		
22	0,4888889	47	1,022222	72	1,254		
23	0,5111111	48	1,033333	73	1,254889		
24	0,5333333	49	1,044444	74	1,255778		

Figura 5.4.2-4: Funzione incremento di carico per il caso di solaio rigido.

Definiti gli incrementi di carico per il sisma è possibile svolgere l'analisi e studiarne i risultati.

La figura 5.4.2-5 mostra l'andamento della deformata complessiva della struttura sotto l'azione del sisma massimo (corrispondente all'ultimo step di carico della struttura) per il caso di solaio deformabile (a) e infinitamente rigido (b). Il nodo avente massima deformazione nel caso di orizzontamento deformabile è l'89 evidenziato in nero in (a).

La deformata con diaframma rigido evidenzia uno spostamento massimo in corrispondenza del nodo 31 (cerchiato in b).

Il caso (a) evidenzia un deformata complessiva maggiore rispetto al caso (b) si è pertanto deciso di monitorare i nodi 31, 22 e 23 (evidenziati in figura) al fine di cogliere la risposta globale del sistema e analizzare le differenze di comportamento per le due tipologie di solaio.

Come per il caso di pushover in x, per i nodi monitorati si è tracciata la curva di capacità per taglio massimo alla base-spostamento in entrambe le direzioni e momento torcente massimo alla base-rotazione.

Figura 5.4.2-5: Deformata complessiva della struttura con solaio deformabile (a) e diaframma infinitamente rigido (b).

Figura 5.4.2-6: Curve taglio spostamento per il nodo 31; andamento per la direzione x (a) e andamento per la direzione y (b).

Figura 5.4.2-7: Curve taglio spostamento per il nodo 23; andamento per la direzione x (a) e andamento per la direzione y (b).

Figura 5.4.2-8: Curve taglio spostamento per il nodo 22; andamento per la direzione x (a) e andamento per la direzione y (b).

Le figure 5.4.2-6, 5.42-7 e 5.4.2-8 mostrano una risposta strutturale del modello con orizzontamento deformabile, sia lungo x che lungo y, caratterizzato da un primo tratto elastico con pendenza della curva rivelante fino al raggiungimento del punto critico della struttura a seguito del quale si ha un ramo incrudente quasi perfettamente plastico e un ramo finale rettilineo che indica il raggiungimento della completa plasticizzazione per il calcestruzzo e resistenza delle sole barre di acciaio.

La risposta del modello con diaframma rigido è caratterizzata per i vari nodi da un primo tratto elastico lineare con pendenza della curva maggiore rispetto al caso di solaio deformabile e quindi anche per il modello con azioni proporzionali al modo 1 la risposta del sistema è rigida. Il ramo post critico è di tipo perfettamente plastico; le curve mostrano, infatti, un tipico comportamento elasto-perfettamente plastico. E' da notare inoltre, come lungo la direzione x la risposta strutturale di (a) è caratterizzata da un punto critico ben più elevato rispetto al caso (b).

Al fine di monitorare il comportamento del solaio in corrispondenza del secondo livello di piano si sono tracciate le time history degli spostamento lungo x e y dei nodi 24 e 20. La figura 5.4.1-9 rappresenta l'andamento degli spostamenti lungo x nel tempo per i

solaio deformabile (a) e solaio rigido (b).

Mentre il solaio rigido evidenzia una coincidenza degli spostamenti lungo x tipica di questa tipologia di orizzontamento, il solaio deformabile mostra una risposta lievemente diversa dei nodi 22 e 23, infatti il nodo 22 ha uno spostamento assoluto maggiore rispetto al nodo 23 e nel complesso le deformazioni sono maggiori rispetto al caso (b).

Per quanto concerne la time-history degli spostamenti lungo y (figura 5.4.2-10), anche per questa seconda distribuzione di carico si osserva subito una comportamento diverso dei punti monitorati sia per il caso (a) che (b).

(a)

Figura 5.4.2-9: Time history degli spostamenti lungo x per i solaio deformabile (a) e solaio rigido (b).

(a)

(b)

Figura 5.4.2-10: Time history degli spostamenti lungo y per i solaio deformabile (a) e solaio rigido (b).

Figura 5.4.2-11: Curva momento rotazione per il nodo 31.

Figura 5.4.2-12: Curva momento rotazione per il nodo 23.

Figura 5.4.1-13: Curva momento rotazione per il nodo22.

L'andamento delle curve momento rotazione per i vari punti monitorati mostra una rigidezza torsionale maggiore per la struttura caratterizzata da diaframma rigido, anche in questo caso però monitorare le rotazioni non è semplice poiché esse derivano da una condizione di equilibrio imposta sui tagli.

Capitolo 6

Secondo caso di studio

6.1 GEOMETRIA DEL MODELLO

Il secondo modello studiato è una struttura in calcestruzzo armato caratterizzata da pianta rettangolare con apertura nel centro, le travi principali hanno luci di 5 e 3 m mentre le travi di collegamento hanno luci rispettivamente di 5 e 6 m e l'orditura del solaio e schematizzata in figura 6.1-1.

Anche per il secondo modello di studio le caratteristiche di irregolarità sono presenti, infatti osservando le sezioni A-A e B-B (figura 6.1-2 e 6.1-3) si nota come una porzione di edificio sia caratterizzata da soli due livelli di piano mentre un'altra è caratterizzata da quattro piani.

Figura 6.1-1: Pianta e orditura solaio.

Figura 6.1-2: Sezione A-A.

Figura 6.1-3: Sezione B-B.

6.2 PROPRIETA' DEI MATERIALI

· Caratteristiche dei materiali per le analisi lineari

La struttura studiata è costituita da travi e pilastri in conglomerato cementizio armato. Il calcestruzzo è di classe C 25/30 e la sezione delle travi è 30x50, mentre i pilastri hanno una sezione 30x30 come mostrato in figura 6.1-1.

Figura 6.2-1: Sezioni caratteristiche travi e pilastri.

L'acciaio adottato per le barre di armature è ancora una volta il B450C.

Nella figura 6.2-2 si illustra la tipologia di armatura e la disposizione della stessa nelle sezioni caratteristiche delle travi e dei pilastri.

Figura 6.2-2: Disposizione delle armature nelle sezioni caratteristiche di travi e pilatri.

Caratteristiche dei materiali per le analisi non lineari

Le caratteristiche del materiale per l'analisi non lineare sono le medesime del modello 1 analizzato nel capito 5, pertanto si riportano solo brevemente i parametri caratteristici delle leggi sforzo deformazione.

1) Calcestruzzo non confinato

Figura 6.2-3: Legame costitutivo e parametri caratteristici del calcestruzzo non confinato.

2) Calcestruzzo confinato

3) Barre di armatura

Figura 6.2-5: Legame costitutivo e parametri caratteristici dell'acciaio da armatura.

Fissate le leggi costitutive dei materiali e determinata la percentuale di armatura da assegnare alle diverse sezioni caratteristiche; è possibile definire la geometria delle sezioni a fibre per l'analisi non lineare (figura 6.2-6).

Figura 6.2-6: Geometria delle sezioni a fibre per l'analisi non lineare.

6.3 CALIBRAZIONE DEL MODELLO IN MIDASGEN

Note le caratteristiche geometriche e le proprietà dei materiali, si è creato il modello strutturale con il software MidasGEN.

Le travi e i pilastri sono modellati come elementi "beam" e il telaio strutturale si presenta nell'insieme come mostrato in figura 6.3-1.

Figura 6.3-1: Modello 3D del telaio strutturale.

6.3.1 MODELLAZIONE SOLAIO

Il solaio è stato modellato con elementi "plate" e attraverso la funzione "user define" di Midas si sono definite le proprietà elastiche iniziali dello stesso che sono:

E=122,9 MPa	Modulo di elasticità
∪=0,2	Coefficiente di Poisson
γ =15 KN/m ³	Peso specifico

Per le proprietà elastiche del solaio si sono sfruttati i risultati del primo modello di studio, pertanto l'orizzontamento deformabile è stato modellato con le proprietà caratteristiche del solaio deformabile del primo caso di studio (E abbattuto di 1/256).

In modo analogo al primo caso di studio si procede nel determinare la mesh che fosse più rappresentativa possibile della distribuzione delle masse sull'orizzontamento e dei modi di vibrare della struttura.

Prima di poter procedere nell'analisi è necessario definire i carichi da applicare.

Carichi permanenti G

Permanenti strutturali (G₁)

- Peso proprio elementi strutturali (travi, pilastri, solaio): calcolato in automatico dal programma grazie alla funzione "self-weight".
- Tamponamenti: assegnati come carichi distribuiti lungo le travi.

 γ =8 KN/m³ peso specifico $q = \gamma \cdot b \cdot h_{interpiano} = 8 \cdot 0.3 \cdot 3 = 7.2 KN/m$

Permanenti non strutturali (G_2)

Peso proprio elementi non strutturali: 2,00 KN/m² assegnato come carico di pressione sui piani.

Carichi variabili Q

- Sovraccarico per solaio civile abitazione: 2,00 KN/m², assegnato tramite la funzione "preassure load";
- Sovraccarico neve: 1,50 KN/m² assegnato come carico di pressione sui solai di copertura "preassure load".

Definiti, i carichi sono stati convertiti in masse ai nodi sfruttando la funzione "load to mass" di Midas e in questa fase si sono pertanto assegnati gli opportuni coefficienti di combinazione dell'azione sismica richiesti dalla norma.

In particolare si è considerato:

 $\Psi_{2j} = 0,3$ per la combinazione dei carichi variabili dovuti alla destinazione d'uso del solaio;

 $\Psi_{2i} = 0$ per la combinazione dei carichi variabili legati alla neve

La struttura è stata vincolata alla base tramite incastri perfetti, e si è svolta l'analisi modale al fine di determinare la discretizzazione del solaio più rappresentativa dei modi di vibrare della struttura e della distribuzione delle masse sul solaio. - Caso 1

Caratteristiche:

Node=280

Plate=292

Beam=180

(a)

(b)

Figura6.3.1-1: Caso1-Discretizzazione solaio (a) e relariva distribuzione delle masse (b).

		6/100	-	
Mode No	f [Hz]	Period sec	MASS(%) TRAN-X	MASS(%) TRAN-Y
1	1,4158	0,7063	61,4446	6,9294
2	1,5136	0,6607	9,5972	71,3755
3	1,933	0,5173	9,4885	3,77
4	3,3213	0,3011	13,7843	0,2669
5	3,4842	0,287	0,1924	12,1926
6	3,9184	0,2552	0,1126	1,3749
7	4,0316	0,248	1,3692	0,1461
8	5,1372	0,1947	0,0111	0,0692
9	5,5102	0,1815	0,7224	0,0005
10	5,8059	0,1722	0,7721	0,0045
11	5,9785	0,1673	1,4074	0,3974
12	6,0097	0,1664	0,1945	2,6996
13	6,582	0,1519	0,0648	0,0374
14	6,7576	0,148	0,499	0,0646
15	6,9531	0,1438	0,0482	0,4406
16	7,0553	0,1417	0,0206	0,0906
17	7,3991	0,1352	0,0001	0,0964
18	7,6399	0,1309	0,0119	0,0002
19	7,8414	0,1275	0,0033	0,0001
20	8,3014	0,1205	0,0024	0,0032

EIGENVALUE ANALYSIS

Analizzando il Caso 1, questa distribuzione evidenzia come la massa modale efficace lungo x, e in particolare i modi che hanno massa partecipante maggiore del 5%, sono quattro (1, 2,3,4); mentre la massa modale lungo y è attivata principalmente da 3 modi (1, 2, 5). I modi principali sono 1 per la direzione x e mobilita il 61,44 % di massa e il modo 2 in direzione y che mobilita il 71,38 % di massa.

- Caso 2

(b) Figura6.3.1-2: Caso2-Discretizzazione solaio (a) e relariva distribuzione delle masse (b).

	EIGENVALUE ANALYSIS										
	Caso 2										
Mode No	Period (sec) No	Frequency (Hz) No	TRAN-X MASS(%)	TRAN-Y MASS(%)							
1	0 7058	1 4169	62 2863	6 747							
2	0.6609	1.513	9.2255	71,7465							
3	0.5126	1.9507	9.059	3.5828							
4	0,3011	3,3214	13,8353	0,3483							
5	0,2872	3,4822	0,2765	12,2112							
6	0,2545	3,9293	0,0563	1,3032							
7	0,2473	4,044	1,261	0,1144							
8	0,1948	5,1331	0,0129	0,0728							
9	0,1805	5,5402	1,0026	0,0007							
10	0,1717	5,824	0,8971	0,0039							
11	0,1672	5,9816	0,1153	2,8388							
12	0,1661	6,0209	1,1196	0,2639							
13	0,1518	6,5863	0,0849	0,0303							
14	0,1482	6,7454	0,4632	0,078							
15	0,1441	6,94	0,036	0,516							
16	0,1393	7,1781	0,046	0,0152							
17	0,1356	7,3746	0	0,0871							
18	0,1307	7,6502	0,0095	0,0003							
19	0,1263	7,9154	0,0026	0,0001							
20	0,1206	8,2906	0,0007	0,0031							

Il secondo caso è caratterizzato da una discretizzazione molto fitta, in quanto, il solaio e le relative travi sono suddivise in un numero elevato di elementi finiti (figura 6.3.1-2), al fine di cogliere al meglio il comportamento effettivo della struttura in termini di ripartizione dei carichi, di trasferimento di masse ai nodi e contenuto in frequenza della stessa. Tale caso è preso come rappresentativo del comportamento effettivo della struttura, ed è proprio rispetto a tale suddivisione che vengono confrontati i risultati della precedente discretizzazione.

- Confronto dei due casi

Il controllo della corretta distribuzione delle masse è fatto osservando cosa accade in termini di frequenza al caso 1 rispetto al 2 ritenuto "esatto" per i primi cinque modi, caratteristici in termini di percentuale di massa della struttura.

Si determina l'errore in percentuale come segue:

S	$ f_{caso 2} - f_{caso 1} $
ε _f % –	f _{caso 2}

f _{caso1} (Hz)	f _{caso1} (Hz)	ε _f (%)
1,4158	1,4169	0,077634
1,5136	1,513	0,039656
1,933	1,9507	0,907367
3,3213	3,3214	0,003011
3,4842	3,4822	0,057435

Figura6.3.1-3: Confronto frequenze-modi principali di vibrare per i 2 casi esamina

L'errore percentuale del caso 1 rispetto al 2 è notevolmente ridotto (<1%) ed è evidente anche nella rappresentazione delle frequenze in funzione dei modi in figura 6.3.1-4. Il diagramma permette di osservare come le frequenze del caso 1 siano sostanzialmente coincidenti con quelle del caso 2. Lo stesso riscontro si ha confrontando le masse partecipanti, il contenuto in massa per i due casi è coincidente (figura 6.3.1-5). Pertanto si può considerare il caso 1 rappresentativo della discretizzazione del solaio e proseguire nelle analisi con tale mesh.

(a)

- Solaio infinitamente rigido

Calibrata la mesh del solaio, si è proceduto a tarare la rigidezza degli elementi orizzontali, pertanto, si sono confrontanti i risultati dell'analisi modale del solaio deformabile precedentemente definito con i risultati di un modello con orizzontamento "infinitamente" rigido al fine di coglierne le differenze.

EIG	EIGENVALUE ANALYSIS										
Solaio infinitamente rigido											
Mode	E [H4]	Period	TRAN-X	TRAN-Y							
No	ו נוזצן	(sec)	MASS(%)	MASS(%)							
1	1,4391	0,6949	55,1678	11,6475							
2	1,5331	0,6523	15,0766	67,2913							
3	1,9602	0,5101	12,1649	3,9011							
4	3,4012	0,294	11,0556	0,0237							
5	3,6154	0,2766	0,1158	13,1739							
6	4,2076	0,2377	2,5329	0,0416							
7	6,1903	0,1615	0,6602	2,5823							
8	6,2231	0,1607	2,6661	0,696							
9	6,934	0,1442	0,0812	0,1422							
10	7,3798	0,1355	0,3277	0,2897							
11	7,6942	0,13	0,1183	0,2107							
12	8,5305	0,1172	0,0329	0							
13	120,6906	0,0083	0	0							
14	146,9136	0,0068	0	0							

- Confronto solaio deformabile e infinitamente rigido

Figura6.3.1-6: Confronto frequenze modi principali di vibrare solaio deformabile e solaio infinitamente rigido.

Confrontando i risultati dell'analisi modale del solaio deformabile con quelli del diaframma infinitamente rigido si osserva una sostanziale differenza in termini di frequenze (figura 6.3.1-6). I modi del solaio deformabile hanno un contenuto in frequenza minore rispetto al caso di orizzontamento rigido.

Figura 6.3.1-7: Confronto massa partecipante lungo x e modi principali di vibrare per il solaio deformabile e infinitamente rigido.

Figura 6.3.1-8: Confronto massa partecipante lungo x e modi principali di vibrare per il solaio deformabile e infinitamente rigido.

Un successivo confronto riguarda le masse partecipanti del modello a solaio deformabile rispetto al caso di diaframma rigido. Nelle figure 6.3.1-7 e 5.3.1-8 sono illustrati gli andamenti delle masse partecipanti nelle direzioni x e y. Si osserva una percentuale in massa dei modi principali (modo 1 per la direzione x e 2 per la direzione y) maggiore nel solaio deformabile rispetto al caso infinitamente rigido.

6.3.2 DISTRIBUZIONE DELLE FORZE ORIZZONTALI

Il vettore delle forze orizzontali da applicare alla struttura, deriva dalla distribuzione dei tagli di piano calcolati in un'analisi dinamica lineare. In modo analogo al primo caso di studio, si è proceduto nell'analisi in modo separato applicando un vettore di forze diverso a seconda della tipologia di diaframma. Le forze d'inerzia perciò sono state determinate dall'analisi dinamica modale considerando un vettore di accelerazione unitaria e costante per ciascuna direzione (x e y) e, determinando le forze associate al modo di vibrare principale per la direzione considerata.

Di seguito sono definite le forze nodali per i casi considerati e le rispettive rappresentazioni:

Solaio flessibile:

- Azione proporzionale al modo 1 (massa percentuale associata in direzione x)

Il solaio flessibile mobilita il 61,44% di massa in direzione x e tale massa è associata al modo 1, assegnato pertanto il vettore accelerazione in direzione x (load case della tabella) si sono determinate le forze di inerzia relative e rappresentate in figura 6.3.2-1. Nella tabella sottostante sono riportati i valori delle forze per ciascun nodo, si evidenziano i nodi con forza maggiore applicata cioè il 68 (cerchio giallo) per la direzione x e il 64 (cerchio arancione) per la direzione y; inoltre, si riporta il taglio alla base associato a questa configurazione di forze per entrambe le direzioni (x e y).

Figura 6.3.2-1: Distribuzione delle forze orizzontali proporzionali al modo 1.

	Nodal Inertia force									
	Mada	Nodo	FX	FY	Nada	FX	FY	Nada	FX	FY
Load Case	wode	Node	(kN)	(kN)	Node	(kN)	(kN)	Node	(kN)	(kN)
sisma x	1	1	0,1789	0,0968	102	0,1513	-0,4263	214	1,232	-0,9693
sisma x	1	2	0,1789	-0,2164	103	0,4603	-0,5477	215	2,059	-1,8868
sisma x	1	3	0,1789	-0,3959	105	0,1512	-0,5151	216	3,2337	-1,056
sisma x	1	4	0,1788	-0,7117	106	0,38	-0,7852	217	2,4961	-0,9117
sisma x	1	5	0,7616	0,1446	107	0,9283	0,1284	218	1,9359	-0,8036
sisma x	1	6	0,7617	-0,3235	108	0,851	-0,0092	219	2,4966	-1,1037
sisma x	1	7	0,7617	-0,5906	110	0,851	-0,1078	220	1,9354	-0,9703
sisma x	1	8	0,7616	-1,0623	112	0,9273	-0,2875	221	3,2319	-1,8865
sisma x	1	9	1,4093	0,1557	114	0,9836	-0,5239	222	2,434	-0,6336
sisma x	1	10	1,4094	-0,3487	115	0,9291	-0,4898	223	2,824	-0,8575
sisma x	1	11	1,5389	-0,6343	117	0,9291	-0,5887	224	2,0322	-0,6709
sisma x	1	12	1,5388	-1,1398	119	0,9859	-0,9421	225	2,8241	-1,0406
sisma x	1	13	2,0062	0,1446	120	1,4913	0,1287	226	2,034	-0,8087
sisma x	1	14	2,007	-0,3242	121	1,2125	-0,0088	227	3,3975	-1,571
sisma x	1	15	2,0075	-0,5911	123	1,2129	-0,1023	228	4,6758	0,0804
sisma x	1	16	2,0076	-1,0592	125	1,4933	-0,2881	229	3,8531	-0,145
sisma x	1	17	1,6311	0,0964	126	1,5511	-0,5243	230	2,7985	-0,1184
sisma x	1	18	1,631	-0,2167	127	1,2134	-0,4534	231	3,2467	-0,1558
sisma x	1	19	1,631	-0,3958	129	1,2133	-0,549	232	3,853	-0,364
sisma x	1	20	1,631	-0,7086	131	1,5494	-0,9406	233	2,7959	-0,2847
sisma x	1	21	0	0	132	1,6577	0,1066	234	3,2468	-0,3646
sisma x	1	22	0	0	133	1,379	-0,0042	235	3,3493	-0,5392
sisma x	1	23	0	0	135	1,3794	-0,0959	236	1,6942	-0,2839
sisma x	1	24	0	0	137	1,1877	-0,172	237	1,2184	-0,2227
sisma x	1	25	0	0	138	0,8277	-0,1401	238	1,4029	-0,2876
sisma x	1	26	0	0	140	0,6824	-0,1413	239	1,6942	-0,3453
sisma x	1	27	0	0	141	0,8277	-0,1706	240	1,2176	-0,2702
sisma x	1	28	0	0	143	0,6825	-0,1711	241	1,4032	-0,3468
sisma x	1	29	0	0	144	1,1867	-0,3139	242	2,3117	-0,4214
sisma x	1	30	0	0	145	1,3793	-0,4257	243	1,6742	-0,331
sisma x	1	31	0	0	147	1,3789	-0,5173	244	1,9482	-0,4235
sisma x	1	32	0	0	149	1,6557	-0,7823	245	2,3117	-0,5006
sisma x	1	33	0	0	150	0,9922	-0,0053	246	1,6738	-0,3917
sisma x	1	34	0	0	151	0,9913	-0,0746	247	1,9484	-0,5011
sisma x	1	35	0	0	152	0,8934	-0,0066	248	3,3475	-0,9036
sisma x	1	36	0	0	153	0,8939	-0,0896	249	3,8533	-1,1989
sisma x	1	37	0	0	154	0,5558	-0,0063	250	2,7947	-0,9383
sisma x	1	38	0	0	155	0,5556	-0,0899	251	3,4651	-1,2761
sisma x	1	39	0	0	156	0,2295	-0,0056	252	3,8533	-1,4366
sisma x	1	40	0	0	157	0,2294	-0,0748	253	2,7969	-1,1165
sisma x	1	41	0,156	0,0795	158	3,407	0,1877	254	3,4655	-1,5248
sisma x	1	42	0,2035	-0,2615	159	2,8242	-0,0233	255	4,6715	-2,1484
sisma x	1	43	0,2034	-0,4788	160	2,0378	-0,0225	256	4,5394	-1,508
sisma x	1	44	0,1559	-0,6581	161	3,3135	-0,0488	257	2,718	-1,1252
sisma x	1	45	0,8144	0,137	162	2,8241	-0,2023	258	2,8179	-1,3751
sisma x	1	46	0,9616	-0,4077	163	2,0352	-0,1577	259	2,7176	-1,3401
sisma x	1	47	1,5743	-1,215	164	3,3139	-0,2842	260	2,8179	-1,6333
sisma x	1	48	1,4355	-1,9792	165	2,4381	-0,3499	261	4,5381	-2,581
sisma x	1	49	1,4212	0,1472	166	1,4951	0,1157	262	3,1467	-1,5045
sisma x	1	50	1.4211	-0.3743	167	1.5789	-0.0241	263	1.8837	-1.1253

					_	-	-		-	-
sisma x	1	51	3,2628	-1,2757	168	1,4684	-0,0314	264	1,6135	-1,3001
sisma x	1	52	3,2629	-2,2848	169	1,58	-0,1674	265	1,8832	-1,3413
sisma x	1	53	3,6924	0,2287	170	1,4684	-0,2044	266	1,6137	-1,5372
sisma x	1	54	3,6918	-0,5892	171	1,4976	-0,2955	267	3,144	-2,584
sisma x	1	55	4,1281	-1,1922	172	0,9019	0,1152	268	2,6569	0,0014
sisma x	1	56	4,1328	-2,1258	173	0,9521	-0,0219	269	2,4073	-0,1247
sisma x	1	57	3,3413	0,1693	174	0,841	-0,0257	270	2,804	-0,1593
sisma x	1	58	3,3385	-0,4416	175	0,9521	-0,1667	271	2,0415	-0,1282
sisma x	1	59	3,3385	-0,7996	176	0,842	-0,193	272	2,4073	-0,2559
sisma x	1	60	3,3411	-1,4239	177	0,9019	-0,2923	273	2,8039	-0,3201
sisma x	1	61	1,9656	-1,261	178	0,1372	-0,1096	274	2,0416	-0,255
sisma x	1	62	1,9663	-2,1675	179	0,137	-0,1335	275	3,4964	-0,5983
sisma x	1	63	4,6671	-1,8234	180	0,2285	-0,3331	276	1,4443	-0,2759
sisma x	1	64	4,6672	-3,1269	181	0,2282	-0,4027	277	1,6802	-0,347
sisma x	1	65	3,8409	0,0732	182	0,5895	-0,4	278	1,225	-0,2769
sisma x	1	66	3,8387	-0,68	183	0,5901	-0,4836	279	1,4443	-0,3238
sisma x	1	67	5,7313	-1,7008	184	0,9285	-0,3999	280	1,68	-0,4059
sisma x	1	68	5,736	-2,9076	185	0,9281	-0,4833	281	1,2251	-0,3238
sisma x	1	69	4,5585	0,0727	186	0,9906	-0,3332	282	3,4954	-0,9656
sisma x	1	70	4,5551	-0,6801	187	0,9913	-0,4023	283	2,4074	-0,7564
sisma x	1	71	4,5553	-1,1399	188	0,5937	-0,1098	284	2,8031	-0,9503
sisma x	1	72	4,5588	-1,947	189	0,5935	-0,1336	285	3,5741	-1,3257
sisma x	1	73	1,1243	-0,6796	190	0,3828	0,096	286	2,4074	-0,8975
sisma x	1	74	1,1243	-1,1342	191	0,4038	-0,0184	287	2,8029	-1,1212
sisma x	1	75	2,8556	-1,1198	192	0,1586	-0,0157	288	3,5744	-1,5692
sisma x	1	76	2,8556	-1,8659	193	0,4039	-0,1372	289	2,6552	-1,219
sisma x	1	77	2,0083	0,0013	194	0,1586	-0,1091	290	2,6012	-0,88
sisma x	1	78	2,621	-0,4916	195	0,5041	-0,3187	291	2,7455	-1,1408
sisma x	1	79	4,0766	-1,2334	196	0,2895	-0,1551	292	2,9499	-1,4241
sisma x	1	80	3,4649	-1,7418	197	0,2417	-0,1956	293	2,7454	-1,3467
sisma x	1	81	2,3682	0,0011	198	0,0951	-0,1562	294	2,9499	-1,6786
sisma x	1	82	3,0903	-0,4916	199	0,29	-0,1879	295	2,6012	-1,4641
sisma x	1	83	3,0904	-0,7934	200	0,2411	-0,2382	296	1,8655	-0,8787
sisma x	1	84	2,3683	-1,0096	201	0,0951	-0,1895	297	1,969	-1,1404
sisma x	1	85	0,3834	0,1069	202	0,501	-0,5833	298	1,1473	-0,8558
sisma x	1	86	0,4603	-0,0079	203	1,2415	-1,2213	299	1,9688	-1,3472
sisma x	1	88	0,1513	-0,0082	204	0,4023	-0,5942	300	1,1473	-1,0052
sisma x	1	89	0,4603	-0,1021	205	0,1585	-0,4736	301	1,8652	-1,4657
sisma x	1	91	0,1513	-0,0958	206	1,2434	-1,4647		Tmax,x	Tmax,y
sisma x	1	92	0.2748	-0.1717	207	0.4021	-0.7181		[KN]	[KN]
sisma x	1	93	0,2739	-0,3138	208	0,1585	-0,5722		474,5066	-159,349
sisma x	1	94	0,259	-0,1401	209	0,38	-0,7954			
sisma x	1	96	0,0908	-0,1405	210	2,053	-1,0515			
sisma x	1	97	0,259	-0,1694	211	1,9699	-0,984			
sisma x	1	99	0,0908	-0,1701	212	1,2304	-0,8028			
sisma x	1	100	0.4604	-0.4549	213	1.9699	-1.1803			
			-,	-,		/	,			

- Azione proporzionale al modo 2 (massa percentuale associata in direzione y)

Il solaio flessibile mobilita il 71,38% di massa in direzione y e tale massa è associata al modo 2, assegnato pertanto il vettore accelerazione in questa direzione (load case della tabella) si sono determinate le forze di inerzia corrispondenti (figura 6.3.2-2). La tabella delle forze inerzia associate alla funzione accelerazione in direzione y per ciascun nodo, evidenzia come per tale combinazione di carico la forza massima è associata al nodo 64 (cerchiato in giallo).

Figura 6.3.2-2: Distribuzione delle forze orizzontali proporzionali al modo 2.

Nodal Inertia force										
Load Case	Mode	Node	FX (kN)	FY (kN)	Node	FX (kN)	FY (kN)	Node	FX (kN)	FY (kN)
sisma y	2	1	0,4993	1,0768	102	0,422	1,1004	214	0,799	2,1534
sisma y	2	2	0,4993	1,1676	103	0,4168	1,194	215	1,3397	3,6339
sisma y	2	3	0,4991	1,2617	105	0,4217	1,121	216	1,387	3,4268
sisma y	2	4	0,4986	1,3337	106	0,5332	1,4712	217	0,861	2,4125
sisma y	2	5	0,6899	1,6081	107	0,6035	1,4267	218	0,8283	2,1145
sisma y	2	6	0,6897	1,7426	108	0,4258	1,0769	219	0,8611	2,4584
sisma y	2	7	0,6896	1,8842	110	0,4258	1,1118	220	0,8251	2,1586
sisma y	2	8	0,6896	1,9902	112	0,5972	1,5454	221	1,3744	3,6471
sisma y	2	9	0,7051	1,7267	114	0,6345	1,6727	222	0,6744	2,0507
sisma y	2	10	0,7051	1,8698	115	0,4746	1,2519	223	0,6169	2,2689
sisma y	2	11	0,7861	2,0248	117	0,4746	1,2794	224	0,5624	1,7655
sisma y	2	12	0,7861	2,1375	119	0,6392	1,7654	225	0,6173	2,3098
sisma y	2	13	0,669	1,6045	120	0,5999	1,4252	226	0,562	1,8035
sisma y	2	14	0,6696	1,7393	121	0,4044	1,0009	227	0,937	3,0459
sisma y	2	15	0,6698	1,8816	123	0,4045	1,0287	228	1,3547	3,4509
sisma y	2	16	0,6697	1,991	125	0,6061	1,5439	229	0,87	2,7946
sisma y	2	17	0,3525	1,0731	126	0,6399	1,6714	230	0,8108	2,1841
sisma y	2	18	0,3525	1,1644	127	0,4048	1,1704	231	1,1833	2,7899
sisma y	2	19	0,3526	1,2588	129	0,4047	1,1908	232	0,8703	2,9245
sisma y	2	20	0,353	1,3335	131	0,6368	1,7659	233	0,8097	2,286
sisma y	2	21	0	0	132	0,4501	1,1849	234	1,1831	2,923
sisma y	2	22	0	0	133	0,298	0,9407	235	0,9694	2,843
sisma y	2	23	0	0	135	0,2981	0,9634	236	0,3697	1,2162
sisma y	2	24	0	0	137	0,3211	0,9235	237	0,3382	0,954
sisma y	2	25	0	0	138	0,1789	0,6062	238	0,484	1,2107
sisma y	2	26	0	0	140	0,2277	0,6062	239	0,3697	1,2687
sisma y	2	27	0	0	141	0,1789	0,6234	240	0,3378	0,9897
sisma y	2	28	0	0	143	0,2277	0,6246	241	0,4841	1,2678
sisma y	2	29	0	0	144	0,3211	0,9986	242	0,5225	1,8697
sisma y	2	30	0	0	145	0,2983	1,0988	243	0,4853	1,4639
sisma y	2	31	0	0	147	0,2984	1,1168	244	0,7095	1,8705
, sisma y	2	32	0	0	149	0,446	1,4714	245	0,5227	1,921
sisma y	2	33	0	0	150	0,2688	0,7346	246	0,4857	1,5016
, sisma y	2	34	0	0	151	0,2682	0,7548	247	0,7093	1,924
sisma y	2	35	0	0	152	0,3603	0,8839	248	0,9719	3,0731
sisma y	2	36	0	0	153	0,3619	0,908	249	0,8723	3,3794
sisma y	2	37	0	0	154	0,3606	0,885	250	0,8107	2,6342
sisma v	2	38	0	0	155	0.3589	0.9087	251	1.2606	3.598
, sisma y	2	39	0	0	156	0,3196	0,7358	252	0,8729	3,4307
sisma v	2	40	0	0	157	0.3196	0.7562	253	0.8101	2.6821
sisma y	2	41	0,4306	0,9566	158	0,9477	2,3015	254	1,2603	3,6558
, sisma v	2	42	0,5621	1.379	159	0,6164	1,8389	255	1,3509	4,5211
, sisma v	2	43	0,562	1,5521	160	0,5658	1,4349	256	2,0419	5,1401
, sisma v	2	44	0.43	1.2657	161	1.142	2,5938	257	1,2218	3.1609
sisma v	2	45	0,7277	1.6519	162	0,6164	1.893	258	1,5592	3.8513
, sisma v	2	46	0,8585	2.1454	163	0,5645	1,4836	259	1,2203	3.2179
sisma v	2	47	1,4055	3.9463	164	1,1424	2,6837	260	1,5592	3.9261
sisma v	2	48	1,2826	3.8086	165	0.6761	1.8277	261	2,0359	5,4224
sisma v	2	49	0,7116	1.7741	166	0,6097	1,3965	262	2,1972	5,1435
sisma v	2	50	0.7115	1,9542	167	0.6457	1.5335	263	1.3182	3,1629

sisma y 2 52 1,7115 4,4084 169 0,6493 1,585 265 1,32 sisma y 2 53 1,2724 2,7845 170 0,7352 1,9794 266 1,57	06 3,2174 38 3,7077
sisma y 2 53 1 2724 2 7845 170 0 7352 1 9794 266 1 51	38 3,7077
sisma y 2 54 1,2732 3,0738 171 0,6171 1,5394 267 2,20	81 5,4174
sisma y 2 55 1,4242 3,8613 172 0,5877 1,3906 268 0,78	42 2,0603
sisma y 2 56 1,4254 4,1178 173 0,6178 1,5269 269 0,55	44 1,8284
sisma y 2 57 0,7294 2,0877 174 0,7514 1,7636 270 0,82	79 2,2927
sisma y 2 58 0,7285 2,3089 175 0,6133 1,5764 271 0,75	75 1,827
sisma y 2 59 0,7288 2,5871 176 0,7519 1,8258 272 0,55	46 1,9154
sisma y 2 60 0,7306 2,7627 177 0,5776 1,5328 273 0,82	77 2,4
sisma y 2 61 1,8446 4,3137 178 0,1911 0,4767 274 0,75	73 1,9154
sisma y 2 62 1,8443 4,5419 179 0,1909 0,4887 275 1,03	17 3,1102
sisma y 2 63 2,5823 6,2257 180 0,3191 0,8582 276 0,3	33 1,223
sisma y 2 64 2,5824 6,5615 181 0,3195 0,8739 277 0,49	62 1,5331
sisma y 2 65 1,4001 3,128 182 0,381 1,0291 278 0,45	41 1,2233
sisma y 2 66 1,3983 3,5858 183 0,3822 1,0478 279 0,33	32 1,2514
sisma y 2 67 2,0858 5,788 184 0,3826 1,0285 280 0,49	64 1,5675
sisma y 2 68 2,0856 6,115 185 0,3818 1,0475 281 0,4	54 1,2525
sisma y 2 69 1,0291 3,1284 186 0,2677 0,8567 282 1,0	33 3,3267
sisma y 2 70 1,0293 3,5862 187 0,2675 0,8728 283 0,55	59 2,186
sisma y 2 71 1,0304 3,8754 188 0,1607 0,4756 284 0,82	86 2,7354
sisma y 2 72 1,0331 4,0987 189 0,1607 0,4877 285 1,32	37 3,8266
sisma y 2 73 1,0643 2,3504 190 0,5176 1,1558 286 0,55	62 2,2192
sisma y 2 74 1,064 2,476 191 0,5464 1,2645 287 0,82	83 2,7847
sisma y 2 75 1,6172 3,8679 192 0,4379 1,0036 288 1,32	35 3,8882
sisma y 2 76 1,6172 4,0773 193 0,5462 1,3076 289 0,78	45 2,6696
sisma y 2 77 0,7452 1,7068 194 0,4379 1,0392 290 1,19	32 3,036
sisma y 2 78 0,9719 2,5553 195 0,6806 1,6791 291 1,25	92 3,2846
sisma y 2 79 1,5103 4,251 196 0,2584 0,6702 292 1,67	07 4,0935
sisma y 2 80 1,2827 3,8125 197 0,3268 0,8439 293 1,25	84 3,3437
sisma y 2 81 0,5453 1,7067 198 0,2628 0,6691 294 1,67	07 4,1698
sisma y 2 82 0,7123 2,5553 199 0,2588 0,7044 295 1,19	14 3,2023
sisma y 2 83 0,7132 2,7328 200 0,3266 0,8766 296 1,33	66 3,0377
sisma y 2 84 0,5474 2,2115 201 0,2627 0,701 297 1,42	15 3,2851
sisma y 2 85 0,533 1,1884 202 0,68 1,8925 298 1,0	86 2,4538
sisma y 2 86 0,4169 1,002 203 1,1087 3,2097 299 1,41	22 3,3424
sisma y 2 88 0,4222 0,9395 204 0,5461 1,5654 300 1,08	59 2,5021
sisma y 2 89 0,4169 1,0309 205 0,4376 1,2499 301 1,33	77 3,2008
sisma y 2 91 0,4223 0,966 206 1,1106 3,2854 Tmax,	x Tmax, y
sisma y 2 92 0,3827 0,9257 207 0,5462 1,5981 [KN	[KN]
sisma y 2 93 0,3816 1,0005 208 0,4374 1,2764 202,12	76 551,1972
sisma y 2 94 0,2344 0,6076 209 0,5164 1,53	
sisma y 2 96 0,2534 0,6074 210 1,3189 3,4199	
sisma y 2 97 0,2344 0,6267 211 1,0332 2.568	
sisma y 2 99 0,2533 0,6255 212 0,7938 2,1097	
sisma y 2 100 0,4168 1,1704 213 1,0332 2,6333	

Solaio infinitamente rigido:

- Azione proporzionale al modo 1 (massa percentuale associata in direzione x)

Il solaio rigido mobilita il 55,17% di massa in direzione x e tale massa è associata al modo 1, assegnato pertanto il vettore accelerazione in questa direzione (load case della tabella) si sono determinate le forze di inerzia corrispondenti (figura 6.3.2-3).

La tabella delle forze inerzia associate alla funzione accelerazione in direzione x per ciascun nodo, evidenzia come per tale combinazione di carico la forza massime nella direzione x è ancora una volta associata al nodo 68 e il valore assoluto di forza massima in direzione y è associato al nodo 64 e sotto tale condizione di carico è diretto nella direzione delle x negative. Rispetto alle forze del solaio deformabile, le azioni corrispondenti ai nodi maggiormente associati e i tagli massimi alla base del solaio infinitamente rigido crescono in valore assoluto in direzione y e calano lungo x.

Figura 6.3.2-3: Distribuzione delle forze orizzontali proporzionali al modo 1.

Nodal Inertia force mx										
Load Case	Mode	Nodo	FX	FY	Nodo	FX	FY	Nodo	FX	FY
LOad Case	wode	Node	(kN)	(kN)	Node	(kN)	(kN)	Node	(kN)	(kN)
sisma x	1	1	0,1617	0,0179	102	0,1368	-0,4965	214	1,0616	-1,115
sisma x	1	2	0,1617	-0,2951	103	0,4282	-0,6238	215	1,7766	-2,1496
sisma x	1	3	0,1617	-0,4828	105	0,1368	-0,5848	216	2,7977	-1,2988
sisma x	1	4	0,1618	-0,7963	106	0,3512	-0,8783	217	2,2534	-1,0779
sisma x	1	5	0,7087	0,0266	107	0,8773	0,0236	218	1,6717	-0,9456
sisma x	1	6	0,7084	-0,4404	108	0,823	-0,0837	219	2,2534	-1,2711
sisma x	1	7	0,7084	-0,7206	110	0,823	-0,1847	220	1,6717	-1,115
sisma x	1	8	0,7087	-1,1882	112	0,8773	-0,3908	221	2,7977	-2,1496
sisma x	1	9	1,3633	0,0286	114	0,8773	-0,6395	222	2,2345	-0,7773
sisma x	1	10	1,3633	-0,4732	115	0,823	-0,5684	223	2,6557	-1,0104
sisma x	1	11	1,3633	-0,7743	117	0,823	-0,6694	224	1,8592	-0,788
sisma x	1	12	1,3633	-1,2761	119	0,8773	-1,0539	225	2,6557	-1,1915
sisma x	1	13	1.8302	0.0266	120	1.3746	0.0236	226	1.8592	-0.9292
sisma x	1	14	1,8293	-0,4404	121	1,1057	-0,078	227	3,1113	-1,7913
sisma x	1	15	1,8293	-0,7206	123	1,1057	-0,1721	228	4,3273	-0,1389
sisma x	1	16	1.8302	-1.1882	125	1.3746	-0.3908	229	3.6604	-0.3362
sisma x	1	17	1.5396	0.0179	126	1.3746	-0.6395	230	2.5858	-0.2621
sisma x	1	18	1.5384	-0.2951	127	1.1057	-0.5297	231	2.9712	-0.3362
sisma x	1	19	1,5384	-0.4828	129	1,1057	-0.6238	232	3.6604	-0.5659
sisma x	1	20	1 5396	-0 7963	131	1 3746	-1 0539	232	2 5858	-0 4413
sisma x	1	20	1,3330	0,7505	131	1 5254	0 0197	233	2,5050	-0 5659
sisma x	1	22	0	0	132	1 3012	-0.0731	235	3 1078	-0 7457
sisma x	1	22	0	0	135	1 3012	-0 1613	235	1 5934	-0 3672
sisma x	1	23	0	0	135	1 0955	-0 2339	230	1 1155	-0 2864
sisma x	1	25	0	0	138	0 7807	-0 1815	238	1 2675	-0 3672
sisma x	1	26	0	0	140	0,7007	-0 1815	230	1 5934	-0.4324
sisma x	1	20	0	0	140	0,0213	-0 2132	235	1 1155	-0 3372
sisma x	1	27	0	0	141	0,7007	-0 2132	240	1 2675	-0.4324
sisma x	1	20	0	0	143	1 0955	-0 3827	241	2 1962	-0 5601
sisma v	1	30	0	0	1/15	1 3012	-0 /965	242	1 5515	-0.4368
sisma x	1	30	0	0	143	1 3012	-0 5848	243	1 7827	-0 5601
sisma x	1	32	0	0	149	1 5254	-0 8783	244	2 1962	-0 6428
sisma v	1	32	0	0	150	0 0115	-0.057	245	1 5515	-0 5012
sisma v	1	3/	0	0	150	0,0115	-0,057	240	1 7827	-0,5012
sisma v	1	35	0	0	152	0,9119	-0,1230	247	3 1078	-0,0420
sisma x	1	35	0	0	152	0,0214	-0,0004	240	3,1070	_1 /299
sisma v	1	30	0	0	153	0,8214	-0.0684	249	2 5858	-1,4300
sisma x	1	20	0	0	155	0,5242	-0,0084	250	2,3636	-1,122
sisma x	1	20	0	0	155	0,3242	-0,131	251	2 6604	1 6695
sisilia x	1	39	0	0	150	0,2096	-0,057	252	3,0004	1 2012
sisilia x	1	40	0 1452	0.0210	157	2 1112	-0,1236	200	2,3030	1 7700
sisme ::		41	0,1403	0,0219	450	3,1113	0,0521	254	3,1095	-1,//99
sistiid X	1	42	0,1897	-0,30	159	2,0557	-0,1411	255	4,32/3	1 2025
sisma x		43	0,1897	-0,5931	160	1,8592	-0,1101	256	4,0055	-1,8935
sisma x		44	0,1453	-0,7523	161	2,9949	-0,2001	257	2,3935	-1,3464
sisma x		45	0,764	0,0378	162	2,6557	-0,3222	258	2,4546	-1,64/1
sisma x		46	0,8991	-0,5598	163	1,8592	-0,2513	259	2,3935	-1,5614
sisma x		4/	1,4647	-1,5024	164	2,9949	-0,4569	260	2,4546	-1,91
sisma x	1	48	1,3295	-2,25/3	165	2,2345	-0,4/18	261	4,0055	-2,9728
sisma x	1	49	1,4767	0,0404	166	1,4181	0,0317	262	2,7104	-1,8935

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											
sisma x 1 51 2,7693 -1,5725 168 1,5254 -0,1474 264 1,4199 -1,551 sisma x 1 52 2,7693 -2,6027 169 1,4256 -0,2692 265 1,619 -1,554 sisma x 1 53 3,3379 0,0631 172 0,906 0,0317 268 2,473 -0,1179 268 2,473 -0,1376 270 2,6063 -0,1375 sisma x 1 55 3,728 -2,4236 173 0,9479 -0,1179 269 2,2191 -0,254 sisma x 1 58 3,144 -0,9501 175 0,9479 -0,2692 271 1,8786 -0,254 sisma x 1 60 3,1423 -1,6241 177 0,9006 -0,3996 273 2,6663 -0,375 sisma x 1 61 1,7305 -2,4938 179 0,1259 -0,1463 277 1,5638 -0,456 277 1,5638 -0,456 277 1,5638 -0,456 2,771 1,5638 -	sisma x	1	50	1,4767	-0,5089	167	1,4926	-0,1179	263	1,6196	-1,3464
sisma x 1 52 2,7693 -2,6027 169 1,4926 -0,2692 265 1,6196 -1,5614 sisma x 1 53 3,3361 -0,7949 171 1,4181 -0,3396 266 1,4191 -1,7897 sisma x 1 55 3,728 -1,4636 172 0,9006 0,0317 268 2,4763 -0,139 sisma x 1 56 3,728 -2,4236 173 0,9479 -0,1170 206 2,2919 -0,254 sisma x 1 58 3,144 -0,5951 175 0,9479 -0,2692 271 1,8786 -0,254 sisma x 1 61 1,7305 -1,5884 178 0,1259 -0,1415 274 1,8786 -0,3917 sisma x 1 64 4,0658 -3,594 181 0,2098 -0,456 277 1,5638 -0,455 sisma x 1 67 5,2436 -2,1338 184 0,8214 -0,4647 281 1,272 -0,463 sisma x 1 <td>sisma x</td> <td>1</td> <td>51</td> <td>2,7693</td> <td>-1,5725</td> <td>168</td> <td>1,5254</td> <td>-0,1474</td> <td>264</td> <td>1,4199</td> <td>-1,551</td>	sisma x	1	51	2,7693	-1,5725	168	1,5254	-0,1474	264	1,4199	-1,551
sismax 1 53 3,3379 0,0631 170 1,5254 -0,3366 266 1,4199 -1,7987 sismax 1 55 3,728 -1,436 172 0,9006 0,0317 268 2,4763 -0,138 sismax 1 55 3,728 -1,436 173 0,9479 -0,1179 269 2,2919 -0,254 sismax 1 57 3,142 0,9551 1775 0,9479 -0,2692 271 1,876 -0,254 sismax 1 60 3,142 -0,5951 177 0,9006 -0,396 273 2,2663 -0,4986 sismax 1 61 1,7305 -1,5844 1778 0,1259 -0,1415 274 1,876 -0,3917 sismax 1 63 4,0658 -2,9266 180 0,2088 -0,3872 276 1,3751 -0,4673 sismax 1 63 3,5156 -0,1259 182 0,5242 -0,4647 278 1,1272 0,4673 sismax 1 <t< td=""><td>sisma x</td><td>1</td><td>52</td><td>2,7693</td><td>-2,6027</td><td>169</td><td>1,4926</td><td>-0,2692</td><td>265</td><td>1,6196</td><td>-1,5614</td></t<>	sisma x	1	52	2,7693	-2,6027	169	1,4926	-0,2692	265	1,6196	-1,5614
sismax 1 54 3,3361 -0,7949 171 1,4181 -0,3996 267 2,7104 -2,9728 sismax 1 55 3,728 -1,4636 172 0,9006 0,0317 268 2,4763 -0,133 sismax 1 57 3,142 0,9473 174 0,7881 -0,1376 270 2,6063 -0,3175 sismax 1 58 3,14 -0,99806 176 0,7881 -0,3142 2,2919 -0,3917 sismax 1 60 3,1423 -1,6241 177 0,9006 -0,3996 273 2,6063 -0,4896 sismax 1 63 4,0658 -2,9226 180 0,2098 -0,456 277 1,5638 -0,4926 sismax 1 64 4,0658 -3,594 181 0,2098 -0,456 277 1,5638 -0,456 sismax 1 67 5,2462 -3,3317 183 0,5242 -0,4647 281 1,1272 -0,4169 sismax 1 67	sisma x	1	53	3,3379	0,0631	170	1,5254	-0,3366	266	1,4199	-1,7987
sismax 1 55 3,728 -1,4636 172 0,9006 0,0317 268 2,4763 -0,138 sismax 1 56 3,728 -2,4236 173 0,9479 -0,1179 269 2,2019 -0,254 sismax 1 58 3,144 -0,5951 175 0,9479 -0,2642 271 1,8786 -0,254 sismax 1 60 3,142 -1,6241 177 0,9006 -0,3996 273 2,6063 -0,4896 sismax 1 62 1,7305 -2,4938 179 0,1259 -0,1415 274 1,8786 -0,3917 sismax 1 63 4,0658 -3,5994 181 0,2098 -0,4647 276 1,3751 -0,4659 sismax 1 66 3,5156 -0,1259 182 0,5242 -0,4647 278 1,1272 -0,4679 sismax 1 68 5,2462 -3,3517 185 0,8214 -0,5472 281 1,1272 -0,4169 sismax 1	sisma x	1	54	3,3361	-0,7949	171	1,4181	-0,3996	267	2,7104	-2,9728
sisma x 1 56 3,7298 -2,4236 173 0,9479 -0,1179 269 2,2919 -0,254 sisma x 1 57 3,142 0,0473 174 0,7881 -0,1375 5,9479 -0,2662 271 1,8786 -0,254 sisma x 1 59 3,14 -0,9806 176 0,7881 -0,3141 272 2,2919 -0,3917 sisma x 1 60 3,142 -1,6241 177 0,9006 -0,3996 273 2,6663 -0,4896 sisma x 1 61 1,7305 -2,4938 179 0,1259 -0,1663 275 3,2582 -0,8273 sisma x 1 64 4,0658 -3,5994 181 0,2098 -0,4647 278 1,1272 -0,3673 sisma x 1 66 3,513 -0,9407 183 0,5242 -0,4647 281 1,1272 -0,4163 sisma x 1 67 5,2436 -2,1338 184 0,8214 -0,4647 280 1,5136 0,6151 <t< td=""><td>sisma x</td><td>1</td><td>55</td><td>3,728</td><td>-1,4636</td><td>172</td><td>0,9006</td><td>0,0317</td><td>268</td><td>2,4763</td><td>-0,138</td></t<>	sisma x	1	55	3,728	-1,4636	172	0,9006	0,0317	268	2,4763	-0,138
sisma x 1 57 3,1423 0,0473 174 0,7881 -0,1376 270 2,6063 -0,3175 sisma x 1 58 3,144 -0,5951 175 0,9479 0,2692 271 1,8786 -0,254 sisma x 1 60 3,1423 -1,6241 177 0,9006 -0,3996 273 2,6063 -0,4896 sisma x 1 61 1,7305 -1,5884 178 0,1259 -0,1163 275 3,2582 -0,8273 sisma x 1 62 4,0658 -3,5934 180 0,2098 -0,456 277 1,5638 -0,4559 sisma x 1 66 3,513 -0,9407 183 0,5242 -0,4547 280 1,5538 -0,521 sisma x 1 67 5,2436 -2,1338 184 0,8214 -0,4647 280 1,5638 -0,521 sisma x 1 69 4,331 -0,1259 186 0,9115 -0,4647 282 3,2852 1,2147 5,3183 -0,4464 <td< td=""><td>sisma x</td><td>1</td><td>56</td><td>3,7298</td><td>-2,4236</td><td>173</td><td>0,9479</td><td>-0,1179</td><td>269</td><td>2,2919</td><td>-0,254</td></td<>	sisma x	1	56	3,7298	-2,4236	173	0,9479	-0,1179	269	2,2919	-0,254
sisma x 1 58 3,14 -0,9951 175 0,9479 -0,2692 271 1,8786 -0,254 sisma x 1 60 3,1442 -0,2641 177 0,9066 -0,3896 273 2,2603 -0,4896 sisma x 1 61 1,7305 -2,4938 179 0,1259 -0,1663 275 3,2582 -0,8273 sisma x 1 63 4,0658 -2,2926 180 0,2098 -0,4663 277 1,558 -0,4563 sisma x 1 66 3,5156 -0,1259 182 0,5242 -0,4647 278 1,1272 -0,3673 sisma x 1 66 5,2462 -3,3517 185 0,8214 -0,4647 280 1,513 -0,456 sisma x 1 67 5,2462 -3,3517 185 0,8214 -0,4647 280 1,513 -0,9451 sisma x 1 70 4,3278 -0,9407 187 0,9115 -0,456 283 2,2919 -0,1513 sisma x	sisma x	1	57	3,1423	0,0473	174	0,7881	-0,1376	270	2,6063	-0,3175
sisma x 1 59 3,14 -0,9806 176 0,7881 -0,3141 272 2,2919 -0,3917 sisma x 1 60 3,1423 -1,6241 177 0,9006 -0,3996 273 2,6063 -0,4896 sisma x 1 61 1,7305 -1,5884 179 0,1259 -0,1415 274 1,876 -0,3917 sisma x 1 63 4,0658 -2,2926 180 0,2098 -0,3872 276 1,3751 -0,3673 sisma x 1 66 3,5135 -0,9407 183 0,5242 -0,4647 278 1,1272 -0,6733 sisma x 1 66 3,5135 -0,9407 183 0,5242 -0,5472 281 1,1272 -0,4769 sisma x 1 67 5,2436 -2,1338 184 0,8214 -0,6467 280 1,5136 -0,521 sisma x 1 67 4,321 -0,1259 186 0,9115 -0,4361 2813 2,2528 -1,2141 sisma x	sisma x	1	58	3,14	-0,5951	175	0,9479	-0,2692	271	1,8786	-0,254
sisma x 1 60 3,1423 -1,6241 177 0,9006 -0,3996 273 2,6063 -0,4896 sisma x 1 61 1,7305 -2,4938 179 0,1259 -0,1415 274 1,8786 -0,3877 sisma x 1 62 1,7305 -2,4938 179 0,1259 -0,1663 275 3,2582 -0,8273 sisma x 1 64 4,0658 -2,2926 180 0,2028 -0,3872 276 1,3751 -0,3673 sisma x 1 66 3,5156 -0,1259 182 0,5242 -0,4647 280 1,5638 -0,521 sisma x 1 66 5,2462 -3,3517 185 0,8214 -0,4647 280 1,5638 -0,212 sisma x 1 67 4,3278 -0,4296 188 0,5469 -0,1415 284 2,6063 -1,1438 sisma x 1 71 4,3278 -1,4296 188 0,5469 -0,1415 284 2,6063 -1,1438 sisma x	sisma x	1	59	3,14	-0,9806	176	0,7881	-0,3141	272	2,2919	-0,3917
	sisma x	1	60	3,1423	-1,6241	177	0,9006	-0,3996	273	2,6063	-0,4896
	sisma x	1	61	1,7305	-1,5884	178	0,1259	-0,1415	274	1,8786	-0,3917
	sisma x	1	62	1,7305	-2,4938	179	0,1259	-0,1663	275	3,2582	-0,8273
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	sisma x	1	63	4,0658	-2,2926	180	0,2098	-0,3872	276	1,3751	-0,3673
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	sisma x	1	64	4,0658	-3,5994	181	0,2098	-0,456	277	1,5638	-0,459
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	sisma x	1	65	3.5156	-0.1259	182	0.5242	-0.4647	278	1.1272	-0.3673
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	sisma x	1	66	3.513	-0.9407	183	0.5242	-0.5472	279	1.3751	-0.4169
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	sisma x	1	67	5.2436	-2.1338	184	0.8214	-0.4647	280	1.5638	-0.521
sisma x 1 69 4,331 -0,1259 186 0,9115 -0,3872 282 3,2582 -1,2147 sisma x 1 70 4,3278 -0,9407 187 0,9115 -0,456 283 2,2919 -0,9151 sisma x 1 71 4,3278 -1,4296 188 0,5469 -0,1415 284 2,6063 -1,1438 sisma x 1 72 4,331 -2,246 189 0,5459 -0,163 285 3,2875 -1,6014 sisma x 1 73 0,9779 -0,3571 190 0,3551 0,00264 286 2,2919 -1,0529 sisma x 1 76 2,5099 -1,411 192 0,1477 -0,0786 288 3,2875 -1,8424 sisma x 1 76 2,5099 -2,1611 193 0,3738 -0,2244 289 2,4763 -1,1439 sisma x 1 78 2,4119 -0,6797 195 0,4673 -0,246 292 2,5926 -1,7158 sisma x <td< td=""><td>sisma x</td><td>1</td><td>68</td><td>5.2462</td><td>-3.3517</td><td>185</td><td>0.8214</td><td>-0.5472</td><td>281</td><td>1.1272</td><td>-0.4169</td></td<>	sisma x	1	68	5.2462	-3.3517	185	0.8214	-0.5472	281	1.1272	-0.4169
sisma x 1 70 4,3278 -0,9407 187 0,9115 -0,456 283 2,2919 -0,9151 sisma x 1 71 4,3278 -1,4296 188 0,5469 -0,1415 284 2,6063 -1,1438 sisma x 1 72 4,331 -2,246 189 0,5469 -0,1663 285 3,2875 -1,6014 sisma x 1 74 0,9779 -0,8571 190 0,3738 -0,0983 287 2,6063 -1,316 sisma x 1 75 2,5099 -1,411 192 0,1477 -0,0786 288 3,2875 -1,8424 sisma x 1 76 2,5099 -2,611 193 0,3738 -0,2244 289 2,4763 -1,4138 sisma x 1 77 1,848 -0,1144 194 0,1477 -0,1795 290 2,3238 -1,1078 sisma x 1 78 2,4119 -0,6797 197	sisma x	1	69	4.331	-0.1259	186	0.9115	-0.3872	282	3.2582	-1.2147
sismax 1 71 4,3278 -1,4296 188 0,5469 -0,1415 284 2,6063 -1,1438 sismax 1 72 4,331 -2,246 189 0,5469 -0,1663 285 3,2875 -1,6014 sismax 1 73 0,9779 -0,8571 190 0,3551 0,0264 286 2,2919 -1,0529 sismax 1 74 0,9779 -1,3127 191 0,3738 -0,0983 287 2,6063 -1,1438 sismax 1 76 2,5099 -1,411 192 0,1477 -0,0786 288 3,2875 -1,8424 sismax 1 77 1,8483 -0,1144 194 0,1477 -0,0786 288 3,2875 -1,8424 sismax 1 78 2,4119 -0,6797 195 0,4673 -0,4381 291 2,4458 -1,3726 sismax 1 80 3,1868 -2,0197 197 0,2243 -0,2557 293 2,4458 -1,5791 sismax 1 <td>sisma x</td> <td>1</td> <td>70</td> <td>4.3278</td> <td>-0.9407</td> <td>187</td> <td>0.9115</td> <td>-0.456</td> <td>283</td> <td>2.2919</td> <td>-0.9151</td>	sisma x	1	70	4.3278	-0.9407	187	0.9115	-0.456	283	2.2919	-0.9151
sisma x 1 72 4,331 -2,246 189 0,5459 -0,1663 285 3,2875 -1,6014 sisma x 1 73 0,9779 -0,8571 190 0,3551 0,0264 286 2,2919 -1,0529 sisma x 1 74 0,9779 -1,3127 191 0,3738 -0,0983 287 2,6063 -1,316 sisma x 1 75 2,5099 -1,411 192 0,1477 -0,0786 288 3,2875 -1,6424 sisma x 1 76 2,5099 -2,1611 193 0,3738 -0,2244 289 2,4763 -1,4139 sisma x 1 77 1,8483 -0,1144 194 0,1477 -0,0786 288 3,2875 -1,6178 sisma x 1 78 2,4119 -0,6797 195 0,4673 -0,4381 291 2,4458 -1,5759 sisma x 1 80 3,1868 -2,0197 197 0,2243 -0,2046 294 2,5926 -1,7158 sisma x <	sisma x	1	71	4.3278	-1.4296	188	0.5469	-0.1415	284	2.6063	-1.1438
sismax 1 73 0.9779 -0.8571 190 0.3551 0.0264 286 2,2919 -1,0529 sismax 1 74 0.9779 -1,3127 191 0.3738 -0.0983 287 2,6063 -1,316 sismax 1 75 2,5099 -1,411 192 0,1477 -0,0786 288 3,2875 -1,8424 sismax 1 76 2,5099 -2,1611 193 0,3738 -0,2244 289 2,4763 -1,4139 sismax 1 77 1,8483 -0,1144 194 0,1477 -0,1795 290 2,3238 -1,078 sismax 1 78 2,4119 -0,6797 195 0,4673 -0,4381 291 2,4458 -1,3726 sismax 1 80 3,1868 -2,0197 197 0,2243 -0,2557 293 2,4458 -1,5791 sismax 1 81 2,2548 -0,1144 198 0,0866 -0,2046 294 2,5926 -1,974 sismax 1	sisma x	1	72	4,331	-2.246	189	0.5469	-0.1663	285	3,2875	-1.6014
sisma x 1 74 0,9779 -1,3127 191 0,3738 -0,0983 287 2,6063 -1,316 sisma x 1 75 2,5099 -1,411 192 0,1477 -0,0786 288 3,2875 -1,8424 sisma x 1 76 2,5099 -2,1611 193 0,3738 -0,2244 289 2,4763 -1,4139 sisma x 1 77 1,8483 -0,1144 194 0,1477 -0,1795 290 2,3238 -1,078 sisma x 1 78 2,4119 -0,6797 195 0,4673 -0,4381 291 2,4458 -1,3726 sisma x 1 79 3,7504 -1,5519 196 0,2702 -0,2046 292 2,5926 -1,974 sisma x 1 81 2,2548 -0,1144 198 0,0886 -0,2406 294 2,5926 -1,974 sisma x 1 82 2,9424 -0,6797 199 0,2702 -0,2409 295 2,3238 -1,6667 sisma x <	sisma x	1	73	0.9779	-0.8571	190	0.3551	0.0264	286	2.2919	-1.0529
sisma x 1 75 2,5099 -1,411 192 0,1477 -0,0786 288 3,2875 -1,8424 sisma x 1 76 2,5099 -2,1611 193 0,3738 -0,2244 289 2,4763 -1,4139 sisma x 1 77 1,8483 -0,1144 194 0,1477 -0,1795 290 2,3238 -1,1078 sisma x 1 78 2,4119 -0,6797 195 0,4673 -0,4381 291 2,4458 -1,3726 sisma x 1 79 3,7504 -1,5519 196 0,2702 -0,2046 292 2,5926 -1,7158 sisma x 1 80 3,1868 -2,0197 197 0,2243 -0,2557 293 2,4458 -1,5791 sisma x 1 82 2,9424 -0,998 200 0,2243 -0,3011 296 1,6172 -1,1078 sisma x 1 84 2,2548 -1,1714 201 0,0886 -0,2409 297 1,7021 -1,3726 sisma x	sisma x	1	74	0.9779	-1.3127	191	0.3738	-0.0983	287	2.6063	-1.316
sisma x 1 76 2,509 -2,1611 193 0,3738 -0,2244 289 2,4763 -1,4139 sisma x 1 77 1,8483 -0,1144 194 0,1477 -0,1795 290 2,3238 -1,1078 sisma x 1 78 2,4119 -0,6797 195 0,4673 -0,4381 291 2,4458 -1,3726 sisma x 1 79 3,7504 -1,5519 196 0,2702 -0,2046 292 2,5926 -1,7158 sisma x 1 80 3,1868 -2,0197 197 0,2243 -0,2046 294 2,5926 -1,974 sisma x 1 81 2,2548 -0,1144 198 0,0886 -0,2040 294 2,5926 -1,974 sisma x 1 83 2,9424 -0,6797 199 0,2702 -0,2409 297 1,7021 -1,1378 sisma x 1 84 2,2548 -1,1714 201 0,0886 -0,2409 297 1,7021 -1,3726 sisma x	sisma x	1	75	2,5099	-1.411	192	0.1477	-0.0786	288	3.2875	-1.8424
sisma x 1 77 1,8483 -0,1144 194 0,1477 -0,1795 290 2,3238 -1,1078 sisma x 1 78 2,4119 -0,6797 195 0,4673 -0,4381 291 2,4458 -1,3726 sisma x 1 79 3,7504 -1,5519 196 0,2702 -0,2046 292 2,5926 -1,7158 sisma x 1 80 3,1868 -2,0197 197 0,2243 -0,2557 293 2,4458 -1,5791 sisma x 1 81 2,2548 -0,1144 198 0,0886 -0,2046 294 2,5926 -1,974 sisma x 1 82 2,9424 -0,6797 199 0,2702 -0,2409 295 2,3238 -1,6967 sisma x 1 83 2,9424 -0,998 200 0,2243 -0,3011 296 1,6172 -1,1078 sisma x 1 84 2,2548 -1,1714 201 0,0886 -0,2409 297 1,7021 -1,3726 sisma x	sisma x	1	76	2,5099	-2.1611	193	0.3738	-0.2244	289	2.4763	-1.4139
sisma x 1 78 2,4119 -0,6797 195 0,4673 -0,4381 291 2,4458 -1,3726 sisma x 1 79 3,7504 -1,5519 196 0,2702 -0,2046 292 2,5926 -1,7158 sisma x 1 80 3,1868 -2,0197 197 0,2243 -0,2557 293 2,4458 -1,5791 sisma x 1 81 2,2548 -0,1144 198 0,0886 -0,2046 294 2,5926 -1,974 sisma x 1 82 2,9424 -0,6797 199 0,2702 -0,2409 295 2,3238 -1,6967 sisma x 1 83 2,9424 -0,998 200 0,2243 -0,3011 296 1,6172 -1,1078 sisma x 1 84 2,2548 -1,1714 201 0,0886 -0,2409 297 1,7021 -1,3726 sisma x 1 85 0,3512 0,0197 202 0,4673 -0,7219 298 0,9978 -1,0295 sisma x	sisma x	1	77	1.8483	-0.1144	194	0.1477	-0.1795	290	2.3238	-1.1078
sisma x 1 79 3,7504 -1,5519 196 0,2702 -0,2046 292 2,5926 -1,7158 sisma x 1 80 3,1868 -2,0197 197 0,2243 -0,2557 293 2,4458 -1,5791 sisma x 1 81 2,2548 -0,1144 198 0,0886 -0,2046 294 2,5926 -1,974 sisma x 1 82 2,9424 -0,6797 199 0,2702 -0,2409 295 2,3238 -1,6967 sisma x 1 83 2,9424 -0,6797 199 0,2702 -0,2409 295 2,3238 -1,6967 sisma x 1 83 2,9424 -0,998 200 0,2243 -0,3011 296 1,6172 -1,1078 sisma x 1 84 2,2548 -1,1714 201 0,0886 -0,2409 297 1,7021 -1,3726 sisma x 1 86 0,4282 -0,078 203 1,153 -1,441 299 1,7021 -1,5791 sisma x <	sisma x	1	78	2.4119	-0.6797	195	0.4673	-0.4381	291	2.4458	-1.3726
sisma x 1 80 3,1868 -2,0197 197 0,2243 -0,2557 293 2,4458 -1,5791 sisma x 1 81 2,2548 -0,1144 198 0,0886 -0,2046 294 2,5926 -1,974 sisma x 1 82 2,9424 -0,6797 199 0,2702 -0,2409 295 2,3238 -1,6967 sisma x 1 83 2,9424 -0,998 200 0,2243 -0,3011 296 1,6172 -1,1078 sisma x 1 84 2,2548 -1,1714 201 0,0886 -0,2409 297 1,7021 -1,3726 sisma x 1 84 2,2548 -1,1714 201 0,0886 -0,2409 297 1,7021 -1,3726 sisma x 1 85 0,3512 0,0197 202 0,4673 -0,7219 298 0,9978 -1,0295 sisma x 1 86 0,4282 -0,078 203 1,153 -1,441 299 1,7021 -1,5791 sisma x <t< td=""><td>sisma x</td><td>1</td><td>79</td><td>3,7504</td><td>-1.5519</td><td>196</td><td>0.2702</td><td>-0.2046</td><td>292</td><td>2.5926</td><td>-1.7158</td></t<>	sisma x	1	79	3,7504	-1.5519	196	0.2702	-0.2046	292	2.5926	-1.7158
sisma x 1 81 2,2548 -0,1144 198 0,0886 -0,2046 294 2,5926 -1,974 sisma x 1 82 2,9424 -0,6797 199 0,2702 -0,2409 295 2,3238 -1,6967 sisma x 1 83 2,9424 -0,998 200 0,2243 -0,3011 296 1,6172 -1,1078 sisma x 1 84 2,2548 -1,1714 201 0,0886 -0,2409 297 1,7021 -1,3726 sisma x 1 84 2,2548 -1,1714 201 0,0886 -0,2409 297 1,7021 -1,3726 sisma x 1 85 0,3512 0,0197 202 0,4673 -0,7219 298 0,9978 -1,0295 sisma x 1 86 0,4282 -0,078 203 1,153 -1,441 299 1,7021 -1,5791 sisma x 1 89 0,4282 -0,1721 205 0,1477 -0,5629 301 1,6172 -1,6967 sisma x <t< td=""><td>sisma x</td><td>1</td><td>80</td><td>3,1868</td><td>-2.0197</td><td>197</td><td>0.2243</td><td>-0.2557</td><td>293</td><td>2.4458</td><td>-1.5791</td></t<>	sisma x	1	80	3,1868	-2.0197	197	0.2243	-0.2557	293	2.4458	-1.5791
sisma x 1 82 2,9424 -0,6797 199 0,2702 -0,2409 295 2,3238 -1,6967 sisma x 1 83 2,9424 -0,998 200 0,2243 -0,3011 296 1,6172 -1,1078 sisma x 1 84 2,2548 -1,1714 201 0,0886 -0,2409 297 1,7021 -1,3726 sisma x 1 84 2,2548 -1,1714 201 0,0886 -0,2409 297 1,7021 -1,3726 sisma x 1 85 0,3512 0,0197 202 0,4673 -0,7219 298 0,9978 -1,0295 sisma x 1 86 0,4282 -0,078 203 1,153 -1,441 299 1,7021 -1,5791 sisma x 1 88 0,1368 -0,0731 204 0,3738 -0,7035 300 0,9978 -1,1845 sisma x 1 91 0,1368 -0,1613 206 1,153 -1,6993 302 0 0 0 0 0	sisma x	1	81	2,2548	-0.1144	198	0.0886	-0.2046	294	2.5926	-1.974
sisma x 1 83 2,9424 -0,998 200 0,2243 -0,3011 296 1,6172 -1,1078 sisma x 1 84 2,2548 -1,1714 201 0,0886 -0,2409 297 1,7021 -1,3726 sisma x 1 84 2,2548 -1,1714 201 0,0886 -0,2409 297 1,7021 -1,3726 sisma x 1 85 0,3512 0,0197 202 0,4673 -0,7219 298 0,9978 -1,0295 sisma x 1 86 0,4282 -0,078 203 1,153 -1,441 299 1,7021 -1,5791 sisma x 1 88 0,1368 -0,0731 204 0,3738 -0,7035 300 0,9978 -1,1845 sisma x 1 89 0,4282 -0,1721 205 0,1477 -0,5629 301 1,6172 -1,6967 sisma x 1 91 0,1368 -0,1613 206 1,153 -1,6993 302 0 0 0 0 0	sisma x	1	82	2,9424	-0.6797	199	0.2702	-0.2409	295	2.3238	-1.6967
sisma x 1 84 2,2548 -1,1714 201 0,0886 -0,2409 297 1,7021 -1,3726 sisma x 1 85 0,3512 0,0197 202 0,4673 -0,7219 298 0,9978 -1,0295 sisma x 1 86 0,4282 -0,078 203 1,153 -1,441 299 1,7021 -1,5791 sisma x 1 88 0,1368 -0,0731 204 0,3738 -0,7035 300 0,9978 -1,1845 sisma x 1 89 0,4282 -0,1721 205 0,1477 -0,5629 301 1,6172 -1,6967 sisma x 1 91 0,1368 -0,1613 206 1,153 -1,6993 302 0 0 0 sisma x 1 92 0,2522 -0,2339 207 0,3738 -0,8296 303 0 <td>sisma x</td> <td>1</td> <td>83</td> <td>2,9424</td> <td>-0.998</td> <td>200</td> <td>0.2243</td> <td>-0.3011</td> <td>296</td> <td>1.6172</td> <td>-1.1078</td>	sisma x	1	83	2,9424	-0.998	200	0.2243	-0.3011	296	1.6172	-1.1078
sisma x 1 85 0,3512 0,0197 202 0,4673 -0,7219 298 0,9978 -1,0295 sisma x 1 86 0,4282 -0,078 203 1,153 -1,441 299 1,7021 -1,5791 sisma x 1 88 0,1368 -0,0731 204 0,3738 -0,7035 300 0,9978 -1,1845 sisma x 1 89 0,4282 -0,1721 205 0,1477 -0,5629 301 1,6172 -1,6967 sisma x 1 91 0,1368 -0,1613 206 1,153 -1,6993 302 0 0 0 sisma x 1 92 0,2522 -0,2339 207 0,3738 -0,8296 303 0	sisma x	1	84	2.2548	-1.1714	201	0.0886	-0.2409	297	1.7021	-1.3726
sisma x 1 86 0,4282 -0,078 203 1,153 -1,441 299 1,7021 -1,5791 sisma x 1 88 0,1368 -0,0731 204 0,3738 -0,7035 300 0,9978 -1,1845 sisma x 1 88 0,1368 -0,0731 204 0,3738 -0,7035 300 0,9978 -1,1845 sisma x 1 89 0,4282 -0,1721 205 0,1477 -0,5629 301 1,6172 -1,6967 sisma x 1 91 0,1368 -0,1613 206 1,153 -1,6993 302 0 0 0 sisma x 1 92 0,2522 -0,2339 207 0,3738 -0,8296 303 0 <td< td=""><td>sisma x</td><td>1</td><td>85</td><td>0.3512</td><td>0.0197</td><td>202</td><td>0.4673</td><td>-0.7219</td><td>298</td><td>0.9978</td><td>-1.0295</td></td<>	sisma x	1	85	0.3512	0.0197	202	0.4673	-0.7219	298	0.9978	-1.0295
sisma x 1 88 0,1368 -0,0731 204 0,3738 -0,7035 300 0,9978 -1,1845 sisma x 1 89 0,4282 -0,1721 205 0,1477 -0,5629 301 1,6172 -1,6967 sisma x 1 91 0,1368 -0,01613 206 1,153 -1,6993 302 0 0 sisma x 1 92 0,2522 -0,2339 207 0,3738 -0,8296 303 0 0 0 sisma x 1 93 0,2522 -0,3827 208 0,1477 -0,6638 304 0 0 0 sisma x 1 94 0,2408 -0,1815 209 0,3551 -0,908 305 0 0 0 sisma x 1 94 0,2408 -0,1815 210 1,7766 -1,2988 Tmax,x Tmax,y sisma x 1 96 0,0821 -0,2132 211 1,6718 -1,1567 [KN] [KN] sisma x 1 97	sisma x	1	86	0.4282	-0.078	203	1,153	-1.441	299	1.7021	-1.5791
sisma x 1 89 0,4282 -0,1721 205 0,1477 -0,5629 301 1,6172 -1,6967 sisma x 1 91 0,1368 -0,1613 206 1,153 -1,6993 302 0 0 sisma x 1 92 0,2522 -0,2339 207 0,3738 -0,8296 303 0 0 0 sisma x 1 93 0,2522 -0,3827 208 0,1477 -0,6638 304 0 0 0 sisma x 1 94 0,2408 -0,1815 209 0,3551 -0,908 305 0 0 0 sisma x 1 96 0,0821 -0,1815 210 1,7766 -1,2988 Tmax,x Tmax,y sisma x 1 97 0,2408 -0,2132 211 1,6718 -1,1567 [KN] [KN] sisma x 1 99 0,0821 -0,2132 212 1,0616 -0,9456 434,818 -197,789 sisma x 1 99 0,4282	sisma x	1	88	0.1368	-0.0731	204	0.3738	-0.7035	300	0.9978	-1.1845
sisma x 1 91 0,1368 -0,1613 206 1,153 -1,6993 302 0 0 sisma x 1 92 0,2522 -0,2339 207 0,3738 -0,8296 303 0 0 0 sisma x 1 93 0,2522 -0,2339 207 0,3738 -0,8296 303 0 0 0 sisma x 1 93 0,2522 -0,3827 208 0,1477 -0,6638 304 0 0 0 sisma x 1 94 0,2408 -0,1815 209 0,3551 -0,908 305 0 0 0 sisma x 1 96 0,0821 -0,1815 210 1,7766 -1,2988 Tmax,x Tmax,y sisma x 1 97 0,2408 -0,2132 211 1,6718 -1,1567 [KN] [KN] sisma x 1 99 0,0821 -0,2132 212 1,0616 -0,9456 434,818 -197,789 sisma x 1 100 0,4282	sisma x	1	89	0.4282	-0.1721	205	0.1477	-0.5629	301	1.6172	-1.6967
sisma x 1 92 0,2522 -0,2339 207 0,3738 -0,8296 303 0 0 sisma x 1 93 0,2522 -0,3827 208 0,1477 -0,6638 304 0 0 0 sisma x 1 94 0,2408 -0,1815 209 0,3551 -0,908 305 0 0 0 sisma x 1 96 0,0821 -0,1815 210 1,7766 -1,2988 Tmax,x Tmax,y sisma x 1 97 0,2408 -0,2132 211 1,6718 -1,1567 [KN] [KN] sisma x 1 99 0,0821 -0,2132 212 1,0616 -0,9456 434,818 -197,789 sisma x 1 100 0,4282 -0,5297 213 1,6718 -1,364 4	sisma x	1	91	0.1368	-0.1613	206	1.153	-1.6993	302	0	0
sisma x 1 93 0,2522 -0,3827 208 0,1477 -0,6638 304 0 0 sisma x 1 94 0,2408 -0,1815 209 0,3551 -0,908 305 0 0 sisma x 1 96 0,0821 -0,1815 210 1,7766 -1,2988 Tmax,x Tmax,y sisma x 1 97 0,2408 -0,2132 211 1,6718 -1,1567 [KN] [KN] sisma x 1 99 0,0821 -0,2132 212 1,0616 -0,9456 434,818 -197,789 sisma x 1 100 0,4282 -0,5297 213 1,6718 -1,364	sisma x	1	92	0,2522	-0,2339	207	0,3738	-0,8296	303	0	0
sisma x 1 94 0,2408 -0,1815 209 0,3551 -0,908 305 0 00 sisma x 1 96 0,0821 -0,1815 210 1,7766 -1,2988 Tmax,x Tmax,x Tmax,x sisma x 1 97 0,2408 -0,2132 211 1,6718 -1,1567 [KN] [KN] sisma x 1 97 0,0821 -0,2132 212 1,0616 -0,9456 434,818 -197,789 sisma x 1 100 0,4282 -0,5297 213 1,6718 -1,364 -1,364	sisma x	1	93	0,2522	-0,3827	208	0,1477	-0,6638	304	0	0
sisma x 1 96 0,0821 -0,1815 210 1,7766 -1,2988 Tmax,x Tmax,y sisma x 1 97 0,2408 -0,2132 211 1,6718 -1,1567 [KN] [KN] sisma x 1 99 0,0821 -0,2132 212 1,0616 -0,9456 434,818 -197,789 sisma x 1 100 0,4282 -0,5297 213 1,6718 -1,364	sisma x	1	94	0,2408	-0,1815	209	0,3551	-0.908	305	0	0
sisma x 1 97 0,2408 -0,2132 211 1,6718 -1,1567 [KN] [KN] sisma x 1 99 0,0821 -0,2132 212 1,0616 -0,9456 434,818 -197,789 sisma x 1 100 0,4282 -0,5297 213 1,6718 -1,364	sisma x	1	96	0.0821	-0.1815	210	1.7766	-1.2988		Tmax.x	Tmax.v
sisma x 1 99 0,0821 -0,2132 212 1,0616 -0,9456 434,818 -197,789 sisma x 1 100 0,4282 -0,5297 213 1,6718 -1,364	sisma x	1	97	0,2408	-0,2132	211	1,6718	-1,1567		[KN]	[KN]
sisma x 1 100 0,4282 -0,5297 213 1,6718 -1,364	sisma x	1	99	0,0821	-0,2132	212	1,0616	-0,9456		434.818	-197.789
	sisma x	1	100	0,4282	-0,5297	213	1,6718	-1.364			

- Azione proporzionale al modo 2 (massa percentuale associata in direzione y)

Il solaio rigido mobilita il 67,29% di massa in direzione y e tale massa è associata al modo 2, assegnato pertanto il vettore accelerazione in questa direzione (load case della tabella) si sono determinate le forze di inerzia corrispondenti (figura 6.3.2-4).

La tabella delle forze inerzia associate alla funzione accelerazione in direzione y per ciascun nodo, evidenzia come per tale combinazione di carico, la forza massima è ancora una volta associata al nodo 64 sia per il contributo in direzione x che quello in y. Rispetto alle forze del solaio deformabile, le azioni corrispondenti ai nodi maggiormente associati e i tagli massimi alla base del solaio infinitamente rigido crescono lungo x e calano lungo y.

Figura 6.3.2-4: Distribuzione delle forze orizzontali proporzionali al modo 2.

Load Case	Mode	Node	FX	FX FY	Node	FX	FY	Node	FX	FY
			(kN)	(kN)		(kN)	(kN)		(kN)	(kN)
sisma y	2	1	0,5699	1,1606	102	0,4818	0,9919	214	0,8884	1,8601
sisma y	2	2	0,5696	1,1668	103	0,5081	1,0601	215	1,4868	3,1184
sisma y	2	3	0,5696	1,1707	105	0,4818	0,9937	216	1,467	3,1019
sisma y	2	4	0,5701	1,178	106	0,6252	1,2993	217	0,9925	2,116/
sisma y	2	5	0,841	1,7328	107	0,7408	1,5369	218	0,8766	1,8565
sisma y	2	6	0,8406	1,7416	108	0,5378	1,1255	219	0,9925	2,1204
sisma y	2	7	0,8406	1,7473	110	0,5378	1,1276	220	0,8766	1,8601
sisma y	2	8	0,841	1,7578	112	0,7408	1,5454	221	1,467	3,1184
sisma y	2	9	0,8908	1,8609	114	0,7408	1,5506	222	0,8671	1,8565
sisma y	2	10	0,8908	1,8712	115	0,5378	1,1355	223	0,9199	1,9842
sisma y	2	11	0,8908	1,8774	117	0,5378	1,1376	224	0,7214	1,5474
sisma y	2	12	0,8908	1,8878	119	0,7408	1,5591	225	0,9199	1,9878
sisma y	2	13	0,8179	1,7328	120	0,7306	1,5369	226	0,7214	1,5501
sisma y	2	14	0,8175	1,7416	121	0,4942	1,0488	227	1,2073	2,5987
sisma y	2	15	0,8175	1,7473	123	0,4942	1,0508	228	1,7565	3,7351
sisma y	2	16	0,8179	1,7578	125	0,7306	1,5454	229	1,3022	2,8912
sisma y	2	17	0,5417	1,1612	126	0,7306	1,5506	230	1,0496	2,2547
sisma y	2	18	0,5413	1,1668	127	0,4942	1,0581	231	1,3897	2,8912
sisma y	2	19	0,5413	1,1707	129	0,4942	1,0601	232	1,3022	2,9204
sisma y	2	20	0,5417	1,178	131	0,7306	1,5591	233	1,0496	2,2774
sisma y	2	21	0	0	132	0,601	1,2807	234	1,3897	2,9204
sisma y	2	22	0	0	133	0,4578	0,9832	235	1,2615	2,7646
sisma y	2	23	0	0	135	0,4578	0,985	236	0,5519	1,1859
sisma y	2	24	0	0	137	0,4316	0,9249	237	0,4329	0,9248
sisma y	2	25	0	0	138	0,2747	0,5928	238	0,5582	1,1859
sisma y	2	26	0	0	140	0,2779	0,5928	239	0,5519	1,1872
sisma y	2	27	0	0	141	0,2747	0,5934	240	0,4329	0,9258
sisma y	2	28	0	0	143	0,2779	0,5934	241	0,5582	1,1872
sisma y	2	29	0	0	144	0,4316	0,928	242	0,7813	1,7803
sisma y	2	30	0	0	145	0,4578	0,9919	243	0,6298	1,3883
sisma y	2	31	0	0	147	0,4578	0,9937	244	0,8338	1,7803
sisma y	2	32	0	0	149	0,601	1,2993	245	0,7813	1,7908
sisma y	2	33	0	0	150	0,3591	0,7667	246	0,6298	1,3965
sisma y	2	34	0	0	151	0,3591	0,7681	247	0,8338	1,7908
sisma y	2	35	0	0	152	0,4366	0,9201	248	1,2615	2,8138
sisma y	2	36	0	0	153	0,4366	0,9218	249	1,3022	3,0313
sisma y	2	37	0	0	154	0,4427	0,9201	250	1,0496	2,3639
sisma y	2	38	0	0	155	0,4427	0,9218	251	1,4825	3,2337
sisma y	2	39	0	0	156	0,3736	0,7667	252	1,3022	3,0605
sisma y	2	40	0	0	157	0,3736	0,7681	253	1,0496	2,3867
sisma y	2	41	0,5296	1,0763	158	1,2073	2,5629	254	1,4825	3,2648
sisma y	2	42	0,6911	1,412	159	0,9199	1,9674	255	1,7565	4,0322
sisma y	2	43	0,6911	1,4166	160	0,7214	1,5342	256	2,2587	4,7015
sisma y	2	44	0,5296	1,0913	161	1,3191	2,7892	257	1,3497	2,8367
sisma y	2	45	0,9031	1,8558	162	0,9199	1,9709	258	1,7112	3,4701
sisma y	2	46	1,0629	2,1957	163	0,7214	1,537	259	1,3497	2,864
sisma y	2	47	1,7314	3,5883	164	1,3191	2,7942	260	1,7112	3,5035
, sisma v	2	48	1,5717	3,2746	165	0,8671	1,8505	261	2,2587	4,8386
, sisma v	2	49	0,9536	1,9857	166	0,7436	1,559	262	2,4232	4,7015
, sisma v	2	50	0.9536	1.9964	167	0.7827	1.6438	263	1.448	2.8367

Capitolo 6

sisma v	2	50	0.9536	1.9964	167	0.7827	1.6438	263	1.448	2.8367
sisma y	2	51	1,7882	3,7558	168	0,985	2,0548	264	1,7247	3,2677
sisma y	2	52	1,7882	3,7758	169	0,7827	1,6467	265	1,448	2,864
sisma y	2	53	1,4702	3,1031	170	0,985	2,0585	266	1,7247	3,2992
sisma y	2	54	1,4694	3,1181	171	0,7436	1,5673	267	2,4232	4,8386
sisma y	2	55	1,642	3,4956	172	0,7537	1,559	268	1,0266	2,1899
sisma y	2	56	1,6428	3,5159	173	0,7932	1,6438	269	0,8281	1,8683
sisma y	2	57	1,0884	2,3236	174	0,9317	1,9178	270	1,0805	2,3352
sisma y	2	58	1,0876	2,3344	175	0,7932	1,6467	271	0,9008	1,8683
sisma y	2	59	1,0876	2,3419	176	0,9317	1,9212	272	0,8281	1,8926
sisma y	2	60	1,0884	2,3561	177	0,7537	1,5673	273	1,0805	2,3655
sisma y	2	61	2,1018	3,944	178	0,2242	0,4623	274	0,9008	1,8926
sisma y	2	62	2,1018	4,059	179	0,2242	0,4628	275	1,3507	2,995
sisma y	2	63	2,8344	5,6926	180	0,3736	0,7735	276	0,4969	1,1588
sisma y	2	64	2,8344	5,8586	181	0,3736	0,775	277	0,6483	1,4484
sisma y	2	65	1,6444	3,3864	182	0,4427	0,9282	278	0,5405	1,1588
sisma y	2	66	1,6432	3,4875	183	0,4427	0,9299	279	0,4969	1,1675
sisma y	2	67	2,4526	5,2982	184	0,4366	0,9282	280	0,6483	1,4593
sisma y	2	68	2,4538	5,4554	185	0,4366	0,9299	281	0,5405	1,1675
sisma y	2	69	1,5408	3,3864	186	0,3591	0,7735	282	1,3507	3,0631
sisma y	2	70	1,5396	3,4875	187	0,3591	0,775	283	0,8281	1,9847
sisma y	2	71	1,5396	3,5496	188	0,2155	0,4623	284	1,0805	2,4806
sisma y	2	72	1,5408	3,6558	189	0,2155	0,4628	285	1,5764	3,473
sisma y	2	/3	1,1856	2,1615	190	0,6357	1,2991	286	0,8281	2,0089
sisma y	2	74	1,1856	2,2417	191	0,6691	1,3698	287	1,0805	2,5109
sisma y	2	75	1,7935	3,5584	192	0,5383	1,0959	288	1,5764	3,5154
sisma y	2	70	1,7955	3,0903	195	0,0091	1,5722	209	1,0200	2,4144
sisma y	2	77	1 1565	2,0145	194	0,000	1,0979	290	1,5459	2,7957
sisma y	2	70	1,1000	2,4000	195	0,000	1,7105	291	1,4105	2,9707
sismay	2	80	1,7983	3,9137	190	0,3194	0,0000	292	1,6520	3,7211
sismay	2	81	0.81/17	1 81/13	197	0,4013	0,8237	293	1,4105	3 7665
sisma y	2	82	1 0632	2 4608	199	0,323	0,0000	295	1 3459	2 8973
sisma y	2	83	1,0632	2,5169	200	0.4015	0.8266	296	1,4702	2,7937
sisma y	2	84	0.8147	2,0003	201	0.323	0.6613	297	1,5474	2,9767
sisma y	2	85	0.6252	1.2807	202	0.8365	1.724	298	1.2097	2.2327
sisma y	2	86	0.5081	1.0488	203	1.363	2.8298	299	1.5474	3.013
sisma v	2	88	0.4818	0.9832	204	0.6691	1.3815	300	1.2097	2.26
sisma v	2	89	0.5081	1.0508	205	0.5383	1.1053	301	1.4702	2.8973
sisma y	2	91	0,4818	0,985	206	1,363	2,8348	302	0	0
, sisma y	2	92	0,449	0,9249	207	0,6691	1,384	303	0	0
sisma y	2	93	0,449	0,928	208	0,5383	1,1073	304	0	0
, sisma y	2	94	0,2858	0,5928	209	0,6357	1,3173	305	0	0
sisma y	2	96	0,2891	0,5928	210	1,4868	3,1019		Tmax,x	Tmax,y
sisma y	2	97	0,2858	0,5934	211	1,0796	2,2714		[KN]	[KN]
sisma y	2	99	0,2891	0,5934	212	0,8884	1,8569		245,8191	519,503
sisma y	2	100	0,5081	1,0581	213	1,0796	2,2755			
6.4 ANALISI DI PUSHOVER

L'analisi statica non lineare è stata impostata in maniera analoga al primo caso di studio; si sono pertanto assegnate le sezioni a fibre per i rispettivi elementi e si sono assegnati i carichi statici.

I vettori delle forze orizzontali, sia per l'analisi lungo x che lungo y, sono quelli definiti nel paragrafo 6.3 del seguente capitolo. L'analisi di spinta è eseguita nelle due direzioni (x e y) sia per il solaio flessibile che per il caso di solaio infinitamente rigido al fine di monitorare la risposta della struttura e confrontare il diverso comportamento della stessa a seconda della tipologia di solaio considerata; pertanto, le analisi condotte sono 4:

- 2 pushover in direzione x;
- 2 pushover in direzione y

6.4.1 PUSHOVER IN DIREZIONE X

Nel pushover in direzione x le forze applicate sono quelle associate al primo modo di vibrare della struttura e mobilitano massa partecipante maggiore lungo x; essendo la struttura irregolare in pianta ed elevazione, i modi non sono disaccoppiabili secondo due direzioni ortogonali, pertanto gli spostamenti nodali dei solai avranno componenti importanti lungo le due direzioni considerate.

Di seguito sono illustrate le funzioni moltiplicatore del carico sismico per il solaio deformabile e per il solaio infinitamente rigido.

La figura 6.4.1-1 mostra l'andamento della funzione moltiplicatore associata al vettore dei carichi orizzontali del solaio deformabile. Va da 0 a 1,5 in 1 secondo e da 1,5 a 1,55 in 0,5 secondi ed è stata suddivisa in 120 parti a cui corrispondono i 120 incrementi di carico della funzione (figura 6.4.1-2).

Figura 6.4.1-1: Funzione moltiplicatore associata al sisma per il caso di solaio flessibile.

Stan	Incremento	Ston	Incremento								
Step	di carico	Jiep	di carico								
1	0,01875	21	0,39375	41	0,76875	61	1,14375	81	1,50125	101	1,52625
2	0,0375	22	0,4125	42	0,7875	62	1,1625	82	1,5025	102	1,5275
3	0,05625	23	0,43125	43	0,80625	63	1,18125	83	1,50375	103	1,52875
4	0,075	24	0,45	44	0,825	64	1,2	84	1,505	104	1,53
5	0,09375	25	0,46875	45	0,84375	65	1,21875	85	1,50625	105	1,53125
6	0,1125	26	0,4875	46	0,8625	66	1,2375	86	1,5075	106	1,5325
7	0,13125	27	0,50625	47	0,88125	67	1,25625	87	1,50875	107	1,53375
8	0,15	28	0,525	48	0,9	68	1,275	88	1,51	108	1,535
9	0,16875	29	0,54375	49	0,91875	69	1,29375	89	1,51125	109	1,53625
10	0,1875	30	0,5625	50	0,9375	70	1,3125	90	1,5125	110	1,5375
11	0,20625	31	0,58125	51	0,95625	71	1,33125	91	1,51375	111	1,53875
12	0,225	32	0,6	52	0,975	72	1,35	92	1,515	112	1,54
13	0,24375	33	0,61875	53	0,99375	73	1,36875	93	1,51625	113	1,54125
14	0,2625	34	0,6375	54	1,0125	74	1,3875	94	1,5175	114	1,5425
15	0,28125	35	0,65625	55	1,03125	75	1,40625	95	1,51875	115	1,54375
16	0,3	36	0,675	56	1,05	76	1,425	96	1,52	116	1,545
17	0,31875	37	0,69375	57	1,06875	77	1,44375	97	1,52125	117	1,54625
18	0,3375	38	0,7125	58	1,0875	78	1,4625	98	1,5225	118	1,5475
19	0,35625	39	0,73125	59	1,10625	79	1,48125	99	1,52375	119	1,54875
20	0,375	40	0,75	60	1,125	80	1,5	100	1,525	120	1,55

Figura 6.4.1-2: Funzione incremento di carico per il solaio deformabile.

La funzione moltiplicatore associata al vettore dei carichi orizzontali del solaio rigido è rappresentata in figura 6.4.1-3. Va da 0 a 1,5 in 1 secondo e da 1,5 a 2 in 0,5 secondi ed è stata suddivisa in 135 parti a cui corrispondono i 135 incrementi di carico della funzione (figura6.4.1-4).

Figura 6.4.1-3: Funzione moltiplicatore associata al sisma per il caso di solaio rigido.

Step	incr. Carico	Step	incr. Caric	Step	incr. Carico						
1	0,01666667	24	0,4	47	0,7833333	70	1,166667	93	1,533333	116	1,788889
2	0,03333333	25	0,4166667	48	0,8	71	1,183333	94	1,544444	117	1,8
3	0,05	26	0,4333333	49	0,8166667	72	1,2	95	1,555556	118	1,811111
4	0,06666667	27	0,45	50	0,8333333	73	1,216667	96	1,566667	119	1,822222
5	0,08333333	28	0,4666667	51	0,85	74	1,233333	97	1,577778	120	1,833333
6	0,1	29	0,4833333	52	0,8666667	75	1,25	98	1,588889	121	1,844444
7	0,1166667	30	0,5	53	0,8833333	76	1,266667	99	1,6	122	1,855556
8	0,1333333	31	0,5166667	54	0,9	77	1,283333	100	1,611111	123	1,866667
9	0,15	32	0,5333333	55	0,9166667	78	1,3	101	1,622222	124	1,877778
10	0,1666667	33	0,55	56	0,9333333	79	1,316667	102	1,633333	125	1,888889
11	0,1833333	34	0,5666667	57	0,95	80	1,333333	103	1,644444	126	1,9
12	0,2	35	0,5833333	58	0,9666667	81	1,35	104	1,655556	127	1,911111
13	0,2166667	36	0,6	59	0,9833333	82	1,366667	105	1,666667	128	1,922222
14	0,2333333	37	0,6166667	60	1	83	1,383333	106	1,677778	129	1,933333
15	0,25	38	0,6333333	61	1,016667	84	1,4	107	1,688889	130	1,944444
16	0,2666667	39	0,65	62	1,033333	85	1,416667	108	1,7	131	1,955556
17	0,2833333	40	0,6666667	63	1,05	86	1,433333	109	1,711111	132	1,966667
18	0,3	41	0,6833333	64	1,066667	87	1,45	110	1,722222	133	1,977778
19	0,3166667	42	0,7	65	1,083333	88	1,466667	111	1,733333	134	1,988889
20	0,3333333	43	0,7166667	66	1,1	89	1,483333	112	1,744444	135	2
21	0,35	44	0,7333333	67	1,116667	90	1,5	113	1,755556		
22	0,3666667	45	0,75	68	1,133333	91	1,511111	114	1,766667		
23	0,3833333	46	0,7666667	69	1,15	92	1,522222	115	1,777778		

Figura 6.4.1-4: Funzione incremento di carico per il solaio rigido.

Definiti gli incrementi di carico per il sisma è possibile svolgere l'analisi e studiarne i risultati.

La figura 6.4.1-5 mostra l'andamento della deformata complessiva della struttura sotto l'azione del sisma massimo (corrispondente all'ultimo step di carico della struttura) per il caso di solaio deformabile (a) e infinitamente rigido (b). Il nodo avente massima deformazione per entrambe le tipologie di carico è l'81.

Il caso (b) evidenzia un deformata complessiva sotto l'azione di sisma massimo maggiore rispetto al caso (a) si è pertanto deciso di monitorare i nodi 81, 84, 74 e 46 (evidenziati in figura) al fine di cogliere la risposta globale del sistema e analizzare le differenze di comportamento per le due tipologie di solaio.

Per i nodi monitorati si è tracciata la curva di capacità per taglio massimo alla basespostamento in entrambe le direzioni.

Figura 6.4.1-5: Deformata complessiva della struttura con solaio deformabile (a) e diaframma infinitamente rigido (b).

Figura 6.4.1-6: Curve taglio spostamento per il nodo 84; andamento per la direzione x (a) e andamento per la direzione y (b).

(b)

Figura 6.4.1-8: Curve taglio spostamento per il nodo 74; andamento per la direzione x (a) e andamento per la direzione y (b).

(b)

Figura 6.4.1-9: Curve taglio spostamento per il nodo 46; andamento per la direzione x (a) e andamento per la direzione y (b).

I quattro nodi monitorati mostrano una risposta lungo x caratterizzata da comportamento elasto-quasi perfettamente plastico, in particolare si osserva che la risposta del sistema è caratterizzata da elevata rigidezza nella fase elastica, sia per il caso di solaio deformabile che rigido e, la risposta in campo plastico è anch'essa analoga. La curva del solaio rigido si mantiene comunque al di sopra rispetto al solaio deformabile, ed inoltre in per il caso rigido l'analisi è riuscita ad andare oltre il primo tratto plastico.

In direzione y i risultati sono sensibilmente diversi a seconda della tipologia di diaframma considerata, difatti, sebbene la fase elastica sia caratterizza da una rigidezza elevata e paragonabile per i due solai, il punto critico della curva per il caso di diaframma rigido è notevolmente maggiore, si passa da un taglio di circa 235 KN del solaio deformabile ai 315 KN del diaframma rigido.

Il nodo 81 in direzione y ha una risposta che si differenzia rispetto agli altri punti analizzati, lo spostamento locale, difatti si manifesta nel verso opposto rispetto all'andamento del taglio massimo.

6.4.2 PUSHOVER IN DIREZIONE Y

Nel pushover in direzione y le forze applicate sono quelle associate al secondo modo di vibrare della struttura e mobilitano massa partecipante maggiore lungo y.

Di seguito sono illustrate le funzioni moltiplicatore del carico sismico per il solaio deformabile e per il solaio infinitamente rigido.

La figura 6.4.2-1 mostra l'andamento della funzione moltiplicatore associata al vettore dei carichi orizzontali del solaio deformabile. Va da 0 a 1,5 in 1 secondo e da 1,5 a 1,8 in 0,5 secondi ed è stata suddivisa in 135 parti a cui corrispondono i 135 incrementi di carico della funzione (figura6.4.2-2).

Figura 6.4.2-1: Funzione moltiplicatore associata al sisma per il caso di solaio flessibile.

step	incr. Carico								
1	0,01666667	. 31	0,5166667	. 61	1,016667	91	1,506667	121	1,706667
2	0,03333333	32	0,5333333	62	1,033333	92	1,513333	122	1,713333
3	0,05	33	0,55	63	1,05	93	1,52	123	1,72
4	0,06666667	34	0,5666667	64	1,066667	94	1,526667	124	1,726667
5	0,08333333	35	0,5833333	65	1,083333	95	1,533333	125	1,733333
6	0,1	36	0,6	66	1,1	96	1,54	126	1,74
7	0,1166667	37	0,6166667	67	1,116667	97	1,546667	127	1,746667
8	0,1333333	38	0,6333333	68	1,133333	98	1,553333	128	1,753333
9	0,15	39	0,65	69	1,15	99	1,56	129	1,76
10	0,1666667	40	0,6666667	70	1,166667	100	1,566667	130	1,766667
11	0,1833333	41	0,6833333	71	1,183333	101	1,573333	131	1,773333
12	0,2	42	0,7	72	1,2	102	1,58	132	1,78
13	0,2166667	43	0,7166667	73	1,216667	103	1,586667	133	1,786667
14	0,2333333	44	0,7333333	74	1,233333	104	1,593333	134	1,793333
15	0,25	45	0,75	75	1,25	105	1,6	135	1,8
16	0,2666667	46	0,7666667	76	1,266667	106	1,606667		
17	0,2833333	47	0,7833333	77	1,283333	107	1,613333		
18	0,3	48	0,8	78	1,3	108	1,62		
19	0,3166667	49	0,8166667	79	1,316667	109	1,626667		
20	0,3333333	50	0,8333333	80	1,333333	110	1,633333		
21	0,35	51	0,85	81	1,35	111	1,64		
22	0,3666667	52	0,8666667	82	1,366667	112	1,646667		
23	0,3833333	53	0,8833333	83	1,383333	113	1,653333		
24	0,4	54	0,9	84	1,4	114	1,66		
25	0,4166667	55	0,9166667	85	1,416667	115	1,666667		
26	0,4333333	56	0,9333333	86	1,433333	116	1,673333		
27	0,45	57	0,95	87	1,45	117	1,68		
28	0,4666667	58	0,9666667	88	1,466667	118	1,686667		
29	0,4833333	59	0,9833333	89	1,483333	119	1,693333		
30	0,5	60	1	90	1,5	120	1,7		

Figura 6.4.2-2: Funzione incremento di carico per il solaio deformabile.

La figura 6.4.2-3 mostra l'andamento della funzione moltiplicatore associata al vettore dei carichi orizzontali del diaframma rigido. Va da 0 a 1,5 in 1 secondo e da 1,5 a 1,8 in 0,5 secondi ed è stata suddivisa in 90 parti a cui corrispondono i 90 incrementi di carico della funzione (figura6.4.2-4).

Figura 6.4.2-3: Funzione moltiplicatore associata al sisma per il caso di solaio rigido.

step	incr. Carico								
1	0,025	21	0,525	41	1,025	61	1,51	81	1,71
2	0,05	22	0,55	42	1,05	62	1,52	82	1,72
3	0,075	23	0,575	43	1,075	63	1,53	83	1,73
4	0,1	24	0,6	44	1,1	64	1,54	84	1,74
5	0,125	25	0,625	45	1,125	65	1,55	85	1,75
6	0,15	26	0,65	46	1,15	66	1,56	86	1,76
7	0,175	27	0,675	47	1,175	67	1,57	87	1,77
8	0,2	28	0,7	48	1,2	68	1,58	88	1,78
9	0,225	29	0,725	49	1,225	69	1,59	89	1,79
10	0,25	30	0,75	50	1,25	70	1,6	90	1,8
11	0,275	31	0,775	51	1,275	71	1,61		
12	0,3	32	0,8	52	1,3	72	1,62		
13	0,325	33	0,825	53	1,325	73	1,63		
14	0,35	34	0,85	54	1,35	74	1,64		
15	0,375	35	0,875	55	1,375	75	1,65		
16	0,4	36	0,9	56	1,4	76	1,66		
17	0,425	37	0,925	57	1,425	77	1,67		
18	0,45	38	0,95	58	1,45	78	1,68		
19	0,475	39	0,975	59	1,475	79	1,69		
20	0,5	40	1	60	1,5	80	1,7		

Figura 6.4.2-4: Funzione incremento di carico per il solaio rigido.

Definiti gli incrementi di carico per il sisma è possibile svolgere l'analisi e studiarne i risultati.

La figura 6.4.2-5 mostra l'andamento della deformata complessiva della struttura sotto l'azione del sisma massimo (corrispondente all'ultimo step di carico della struttura) per il caso di solaio deformabile (a) e infinitamente rigido (b). Il nodo avente massima deformazione per entrambe le tipologie di carico è il 74 (cerchiato in nero in figura 6.4.2-5).

Il caso (a) evidenzia un deformata complessiva sotto l'azione di sisma massimo maggiore rispetto al caso (b).

I nodi monitori sono gli stessi 84, 81,74 e 46 e per ciscuno di essi si è tracciata la curva di capacità per taglio massimo alla base-spostamento in entrambe le direzioni.

Figura 6.4.1-5: Deformata complessiva della struttura con solaio deformabile (a) e diaframma infinitamente rigido (b).

(b)

Figura 6.4.2-6: Curve taglio spostamento per il nodo 84; andamento per la direzione x (a) e andamento per la direzione y (b).

Figura 6.4.2-7: Curve taglio spostamento per il nodo 81; andamento per la direzione x (a) e andamento per la direzione y (b).

Figura 6.4.2-8: Curve taglio spostamento per il nodo 84; andamento per la direzione x (a) e andamento per la direzione y (b).

(b)

I quattro nodi monitorati mostrano una risposta lungo y caratterizzata da comportamento elasto-quasi perfettamente plastico, in particolare si osserva che la risposta del sistema è caratterizzata da elevata rigidezza nella fase elastica sia nel caso di solaio deformabile che diaframma rigido, il tratto plastico invece evidenzia, in controtendenza rispetto ai risultati delle altre analisi, una risposta a parità di deformazione imposta caratterizzata da taglio alla base maggiore per il solaio deformabile.

In direzione x i risultati sono sensibilmente diversi in funzione della tipologia di diaframma considerata, difatti, sebbene la fase elastica sia caratterizza da una rigidezza elevata e paragonabile per i due solai, il punto critico della curva per il caso di diaframma rigido è notevolmente maggiore, si passa da un taglio di circa 350 KN del solaio deformabile ai 440 KN del diaframma rigido.

Capitolo 7

Conclusioni

Le analisi condotte hanno evidenziato le differenze di comportamento strutturale secondo la tipologia di orizzontamento considerata, sia in termini di contenuto in frequenza che massa partecipante al modo, risposta globale in termini deformativi e rapporto di carico ultimo.

In particolare per il caso 1, si è osservato come passando da una mesh grossolana ad una più accurata, si riesce a cogliere meglio la ridistribuzione delle masse sul solaio, ciò è stato evidenziato dal confronto con una discretizzazione molto raffinata.

Il contenuto in frequenza del modo 3 con una rappresentazione grossolana avrebbe condotto ad un errore del 23,60% contemporaneamente, la stessa discretizzazione avrebbe portato ad una stima errata delle masse partecipanti per i due modi principali.

Nel modo 1 ad esempio, si sarebbe sottostimata la massa partecipante in direzione y del 6,70%, mentre per il modo 2 in direzione x sovrastimata del 4,84%.

Dal punto di vista della rigidezza del diaframma, il contenuto in frequenza è sensibilmente diverso: il diaframma rigido ha un contenuto in frequenza dei singoli modi maggiore rispetto al solaio deformabile e questo è sempre più evidente col crescere dei modi.

Le masse partecipanti mobilitate dai modi principali nel solaio deformabile, sono sensibilmente maggiori rispetto al caso di diaframma rigido infatti, il modo 1 in direzione y coinvolge il 5,73% in più di massa e il modo 2 lungo la direzione x il 5,51%.

Le curve di pushover hanno evidenziato una sostanziale differenza di forma e rapporto di carico ultimo in funzione della tipologia di diaframma.

Anche per il caso 2, si è osservato che il passaggio da una mesh grossolana ad una più accurata, si riesce a cogliere meglio la ridistribuzione delle masse sul solaio.

Dal punto di vista della rigidezza del diaframma, il contenuto in frequenza è sensibilmente diverso: il diaframma rigido ha un contenuto in frequenza dei singoli modi maggiore rispetto al solaio deformabile e questo è sempre più evidente col crescere dei modi.

Le masse partecipanti mobilitate dai modi principali nel solaio deformabile, sono anche in questo caso, sensibilmente maggiori rispetto al caso di diaframma rigido infatti, il modo 1 in direzione x coinvolge il 6,27% in più di massa e il modo 2 lungo la direzione y il 4,08%.

Come per il caso 1, le curve di pushover hanno nuovamente evidenziato in funzione della tipologia di diaframma, una sostanziale differenza di forma e rapporto di carico ultimo.

Un'ultima considerazione riguarda l'ipotesi base nei modelli studiati di solaio elastico lineare. Tale ipotesi, infatti, potrebbe essere rimossa se si disponesse di uno strumento di calcolo più preciso per lavorare con elementi shell non lineari e se si conoscessero le caratteristiche del solaio con cui si sta lavorando.

Bibliografia

- D.M. 14 gennaio 2008 Norme Tecniche per le Costruzioni.
- Circolare n. 617 del 2 febbraio 2009 Istruzioni per l'applicazione delle "Nuove Norme Tecniche per le Costruzioni" di cui al D.M. 14 gennaio 2008.
- Eurocodice 8 Progettazione delle strutture per la resistenza sismica UNI EN1998-1.
- FEMA 440 june 2005 Improvement of Nonlinear Static Seismic Analysis Procedures.
- Albanesi, T., Nuti, C., Vanzi, I. (2001). "Procedure statiche non lineari basate sull'analisi di spinta: rassegna critica," *Proc. of the 10th Italian Conf. on Earthquake* Engrg., Potenza, Italy. Rome: Anidis.
- Computer-Aided Civil and Infrastructure Engineering 19 (2004) 246-259 Identification of modal combinations for nonlinear static analysis of building structures.
- Earthquake Engng Struct. Dyn. 2002; 31:561-582 A modal pushover analysis procedure for estimating seismic demands for buildings.
- Earthquake Engng Struct. Dyn. 2004; 33:903-927 A modal analysis procedure to estimate seismic demands for unsymmetric-plan buildings.
- Journal of civil engineering and management 2005; Vol. XI, n. 1, 3-12 Pushover analysis of asymmetric three-dimensional building frames.
- Nonlinear static methods for design/assessment of 3d structure 5-6 may 2008 Nonlinear static analysis of bridges accounting for higher mode effects.
- Nonlinear static methods for design/assessment of 3d structures 5-6 may 2008 –
 Pushover analysis of the experimentally tested two-span two column bent RC bridge.
- Fajfar, P., and Fischinger, M. (1989). "N2 a method for non-linear seismic analysis of regular buildings." *Proc.,9th World Conf. on Earthquake Engrg.*, Tokyo-Kyoto, 1988, Maruzen, Tokyo, Japan, Vol. 5, 111-116.

- Fajfar, P., and Gašperšic, P. (1996). "The N2 method for the seismic damage analysis of RC buildings." *Earthquake Engrg. and Struct. Dyn.*, 25(12), 31-46.
- Menegotto, M.and Pinto, P.E.: Method of Analysis for Cyclically Loadede reiforced Concrete PlaneFrames Includine Changes in Geometry and Non-Elastic Behaviour of Elements under Combined Normal Force and Bending. Proceedings, IABSE Symposium on Resistance and Ultimate Deformability of Stuctures Acted on by Well Defined epeated Loads, Lisbon, pp. 15-22.
- MidasGen: On-line Manual, V 2.1, www.MidasUser.com, (Gen 2010).
- MidasGen: Analysis Reference, <u>www.MidasUser.com</u>.
- Tutorial CSP00008 CSP FEA MIDAS GEN: Elementi in fibra in MIDAS/Gen.
- Tutorial CSP00084 CSP FEA MIDAS GEN: Progettazione sismica di una struttura in calcestruzzo armato.
- Teoria csp00089 CSP FEA MIDAS GEN: Guidelines for proper use of Plate elements.