
Alma Mater Studiorum · Università di Bologna
Campus di Cesena

Dipartimento di Informatica - Scienza e Ingegneria

Corso di Laurea Magistrale in Ingegneria e Scienze Informatiche

A methodology and a platform

to measure and assess

software windows of vulnerability

Tesi in: Sicurezza delle Reti

Relatore:

Gabriele D’Angelo

Presentata da:

Giacomo Venturini

I Sessione

Anno Accademico 2019-2020

Contents

Introduction v

1 Security Concepts Overview 1

1.1 Key objectives of computer security 1

1.2 Computer security terminology . 2

1.3 System resources typologies . 4

1.4 Kinds of attackers . 4

2 Vulnerabilities, metrics and involved parties 7

2.1 What is a vulnerability? . 7

2.2 Identifying and classifying vulnerabilities 8

2.3 Common Vulnerabilities and Exposures 9

2.3.1 CVE Entries . 9

2.3.2 CVE Community . 11

2.3.3 MITRE’s Role . 12

2.4 Common Platform Enumeration . 13

2.4.1 CPE Specifications . 13

2.5 Common Vulnerability Scoring System 17

2.6 Common Weakness Enumeration 17

2.6.1 CWE objectives . 18

2.7 National Vulnerability Database role 18

2.7.1 NVD data . 19

3 Information Systems and Windows of Vulnerability 21

3.1 States of information systems . 21

3.2 Phases of information systems . 22

3.3 Window of Vulnerability . 23

3.3.1 Vulnerability life cycle . 23

i

ii Contents

3.3.2 Zero day vulnerabilities in the life cycle 27

3.3.3 Reducing the attack chance 27

3.3.4 The dilemma of security patches application 28

4 Security concerns in software third-party dependencies 31

4.1 Applications and software dependencies 31

4.1.1 Static linking . 33

4.1.2 Dynamic linking . 33

4.1.3 Dynamic loading . 34

4.1.4 Dependencies strategies overview 34

4.2 Package management systems . 35

4.2.1 Package Manager Typologies 36

4.3 Debian’s effective package management model 36

4.3.1 Security-related bugs handling 38

4.4 Agnostic alternatives to platform specific package managers 40

5 A model to compare Windows of Vulnerability 41

5.1 Requirement analysis . 41

5.1.1 Vulnerability data sources selection 42

5.2 Architecture design . 43

5.2.1 Microservices . 43

5.3 Detailed design . 45

5.3.1 Vulnerability Data Services interactions 45

5.3.2 Vulnerability Data Services hierarchy 46

5.3.3 Data Aggregators: messages and data handling 47

5.3.4 Data retrieval procedure . 48

5.4 Implementation . 49

5.4.1 Technologies . 49

5.4.2 Vulnerability Identifiers and Data Structure 51

5.4.3 General Retrievers . 52

5.4.4 Debian Retrievers . 52

5.4.5 Red Hat Retrievers . 56

Contents iii

5.4.6 Considerations on tools and data provided by the distros . . 59

6 Vulnerability data analysis 63

6.1 CVE Window of Vulnerability formula 63

6.2 Vulnerability data analysis results 64

7 Conclusions 73

7.1 Future works . 74

A Project Deployment 77

Bibliography 81

Sitography 85

Thanksgivings 89

Introduction

In an ideal world software runs smoothly and without problems, there are no ma-

licious people and no one threatens your daily life, especially your data. However

this is just a pipe dream and software vulnerabilities are daily discovered. What

could go wrong?

Nowadays, when listening to or reading security related news, it is easy to learn

about how wrong policies and security flaws, even among big tech leaders, lead to

possible data breaches, usually notifying users of the affected services to update

their passwords. Actually behind the scenes a set of practices, activities and op-

erations are put into motion to verify the context severity, examining whether the

problem is restricted to a more or less limited area.

Since the price to pay for recovering from an outbreak can be enormous, it can

often be useful evaluating the risk of software in terms of its window of vulnerabil-

ity. A window of vulnerability can be defined as the amount of time a software has

been vulnerable to an attack that can compromise the system security. Therefore

this metric can be used by corporation to:

• assess the security of software, or more in general systems, in terms of vul-

nerability response, leading to choose a product over another;

• provide additional value to their software solutions;

• monitor their systems degree of risk;

• have a clear representation of the vulnerabilities of their systems, allowing

more deep and precise post-incident forensic analysis, which can be useful to

determine legal liabilities.

Unfortunately, defining and evaluating a window of vulnerability is not an easy

task: in literature many theoretical models have been proposed, but few were ac-

tually implemented and their analysis was limited to a restricted subset of software

products. One of the main reasons of this lack is related to the required data, that

v

vi Introduction

is provided by heterogeneous sources in different formats.

Therefore this thesis has dual objective:

• on the one hand, to make its readers aware of the importance of applying

security patches and the risks caused by careless behaviours

• on the other, to provide a methodology and a tool to compare systems by

measuring the window of vulnerability of their software.

For the implementation step it will be necessary to make a system specific choice,

as keeping the approach general is not feasible outside of the theoretical model.

Therefore, GNU/Linux systems were chosen, since their recent rise in popularity

especially in server and Internet of Things contexts, where they are exposed to an

higher risk.

This thesis is structured as follows:

• chapter 1 provides a quick overview of computer security concepts necessary

to understand the following chapters;

• chapter 2 defines what is a vulnerability and shows the metrics that come

into play when doing a vulnerability related research;

• chapter 3 introduces the window of vulnerability topic, highlighting the im-

portance of active system maintenance;

• chapter 4 shows the security implications caused by the use of third-party

dependencies and how package management systems can help reducing the

number of vulnerable dependencies in use;

• chapter 5 describes the developed tool, focusing on showing and explaining

its architecture design choices and all the other meaningful technical details;

• chapter 6 shows some interesting results obtained by the window of vulner-

ability analysis;

• chapter 7 draws the conclusions, making a recap of the work done and giv-

ing some tips for starting future vulnerability related researches using the

developed tool.

Chapter 1

Security Concepts Overview

This chapter gives an overview of basic security concepts necessary to understand

the following chapters. Most of the terminology comes from “Computer Security:

Principles and Practice” [B1], that will surely give a more detailed and in depth

perspective of these concepts for more curious and interested readers.

1.1 Key objectives of computer security

The National Institute of Standards and Technology (NIST) Computer Security

Handbook [B2] defines the term computer security as follows:

The protection afforded to an automated information system in order

to attain the applicable objectives of preserving the integrity, avail-

ability, and confidentiality of information system resources (including

hardware, software, firmware, information/data, and telecommunica-

tions).

This definition introduces three key security concepts, often referred as the CIA

triad:

• Confidentiality: this term covers two related concepts:

– Data confidentiality: assuring that private or confidential informa-

tion is not made available or disclosed to unauthorized individuals.

– Privacy: assuring that individuals control or influence what informa-

tion related to them may be collected and stored; and by whom and to

whom that information may be disclosed.

1

2 Chapter 1. Security Concepts Overview

• Integrity: this term covers two related concepts:

– Data integrity: assuring that information and programs are changed

only in a specified and authorized manner.

– System integrity: assuring that a system performs its intended func-

tions in an unimpaired manner, free from deliberate or inadvertent

unauthorized manipulation of the system.

• Availability: assuring that systems work promptly and service is not denied

to authorized users.

To have a more complete picture, many security fields also add to these definitions

authenticity and accountability concepts:

• Authenticity: the property of being genuine and being able to be verified

and trusted. This means verifying that users are who they say they are

and that each input arriving at the system comes from a trusted source.

This property focuses on ensuring the validity of transmissions, messages, or

message originators.

• Accountability: the requirement for actions of an entity to be traced

uniquely to that entity. This supports nonrepudiation, deterrence, fault

isolation, intrusion detection and prevention, and after-action recovery and

legal action. Because truly secure systems are not yet an achievable goal,

we must be able to trace a security breach to a responsible party. Systems

must keep records of their activities to permit later forensic analysis to trace

security breaches or to aid in transaction disputes.

1.2 Computer security terminology

The Internet Security Glossary [S1], defines the following computer security ter-

minology:

• Adversary: often also called threat agent, it is an entity that attacks, or is

a threat to, a system.

1.2. Computer security terminology 3

• Attack: an assault on system security that derives from an intelligent threat.

This is an intelligent act that is a deliberate attempt (especially in the sense

of a method or technique) to evade security services and violate the security

policy of a system.

• Countermeasure: an action, device, procedure, or technique that reduces

a threat, a vulnerability, or an attack:

– by eliminating or preventing it,

– by minimizing the harm it can cause,

– or by discovering and reporting it so that corrective actions can be

taken.

• Flaw: an error in the design, implementation, or operation of an information

system. A flaw may result in a vulnerability.

• Risk: an expectation of loss expressed as the probability that a particular

threat will exploit a particular vulnerability with a particular harmful result.

• Security Policy: a set of rules and practices that specify or regulate how a

system or an organization provides security services to protect sensitive and

critical system resources.

• System Resource (Asset): data contained in an information system; or a

service provided by a system; or a system capability (i.e processing power or

communication bandwidth); or an item of system equipment (i.e. a system

component); or a facility that houses system operations and equipment.

• Threat: a potential for violation of security, which exists when there is a

circumstance, capability, action, or event, that could breach security and

cause harm. A threat is a possible danger that might exploit a vulnerability.

The vulnerability definition was intentionally omitted from this terminology since

it will be discussed with a greater level of detail in chapter 2.

4 Chapter 1. Security Concepts Overview

1.3 System resources typologies

The focus of computer security is to protect system resources. These can be

categorized as:

• Hardware: computer systems and other data processing, data storage, and

data communications devices

• Software: operating systems, system utilities, and applications

• Data: files and databases, as well as security-related data, such as password

files

• Communication facilities and networks: local and wide area network

communication links, bridges, routers, and so on

1.4 Kinds of attackers

The previous section showed which assets are threatened by an attack. In addition

there are also different kinds of attackers, that can be grouped by their knowledge

and aims:

• Hacker: a person who delights in having an intimate understanding of the

internal workings of systems, computers and computer networks. With this

deep knowledge, he is able to locate and exploit possible flaws in their design.

The term is often used with a negative connotation, where “cracker” would

be the correct term instead. As a matter of fact, his intentions are not

necessarily malicious, and his discoveries can be employed to achieve more

secure systems.

• Cracker: an individual who attempts to access computer systems without

authorization. These individuals, as opposed to hackers, are usually mali-

cious and have many means at their disposal for breaking into a system.

1.4. Kinds of attackers 5

• Script kiddie: an individual who uses scripts or software written by some-

one else to exploit or break into a computer system. It is a derogatory term,

describing someone who uses malicious tools without knowing how they work

under the hood or being skilled enough to create them. [S2]

Chapter 2

Vulnerabilities, metrics and

involved parties

Nowadays, doing a vulnerability related work, is not a simple matter: actually, it is

easy to be overwhelmed and confused by many related acronyms and classification

tools. Moreover, to furtherly hinder the task, there is not a unique place where to

find the information needed to face the topic clearly.

After a brief introduction on what vulnerabilities are, this chapter goal is to group

and describe the most important concepts related to the subject, showing the main

available public and free to use sources.

2.1 What is a vulnerability?

In computer security, the “vulnerability” concept has been described with many

degrees of detail, that could be appropriate for a specific use case but imprecise or

vague for another. For this reason, to have an overall idea of what is a vulnerability,

below are reported some useful definitions given by different authorities:

A flaw or weakness in a system’s design, implementation, or opera-

tion and management that could be exploited to violate the system’s

security policy. [S1]

A vulnerability is a weakness in an information system, system se-

curity procedures, internal controls, or implementation that could be

exploited by a threat source. [S3]

A weakness in the computational logic (e.g., code) found in software

and hardware components that, when exploited, results in a negative

7

8 Chapter 2. Vulnerabilities, metrics and involved parties

impact to confidentiality, integrity, or availability. Mitigation of the

vulnerabilities in this context typically involves coding changes, but

could also include specification changes or even specification depre-

cations (e.g., removal of affected protocols or functionality in their

entirety) [S4]

With this definitions in mind, section 2.2 will show a brief historical introduction

on what led to the standardization of the tools used nowadays to refer and describe

vulnerabilities and their characteristics.

2.2 Identifying and classifying vulnerabilities

From the given vulnerability definitions, it is quite obvious that vulnerabilities

differ from each other, not only in terms of affected products but also in terms

of exploitation strategies and harmful potential. Before 1999 security tools used

proprietary names and different metrics for these classifications: the consequences

were potential gaps in security coverage and no effective interoperability among

the disparate databases and tools, with difficulties into determining whether dif-

ferent entries were referring to the same problem [S5]. Nowadays these problems

are luckily solved thanks to the work started in 1999 by the Massachusetts Insti-

tute of Technology Research Establishment (MITRE) Corporation, that led to the

following identification and classification factors:

• Common Vulnerabilities and Exposures (CVE)

• Common Platform Enumeration (CPE)

• Common Vulnerability Scoring System (CVSS)

• Common Weakness Enumeration (CWE)

2.3. Common Vulnerabilities and Exposures 9

2.3 Common Vulnerabilities and Exposures

Common Vulnerabilities and Exposures (CVE) is a list of common identifiers for

publicly known cybersecurity vulnerabilities. CVE is a dictionary rather than a

database which provides:

• a unique identifier and a standardized description for each vulnerability or

exposure

• a method with which different databases and tools can “speak” the same

language

• a way to interoperability and better security coverage

• a basis for evaluation among services, tools, and databases

CVE is nowadays the industry standard for vulnerability and exposure identifiers

and it is free for public download and use.

2.3.1 CVE Entries

CVE Entries, also called CVEs, CVE IDs, and CVE numbers by the community,

provide:

• reference points for data exchange, so that cybersecurity products and ser-

vices can “speak” with each other

• a baseline for evaluating the coverage of tools and services, so that users can

determine which tools are most effective and appropriate for the needs of

their organization

An entry is created when a potential security vulnerability is discovered and, as

shown in Figure 2.1, contains the following information:

• CVE ID: an identifier composed by the “CVE” prefix followed by an year field

and at least 4 digits number (i.e. “CVE-1999-0067”, “CVE-2014-10001”,

“CVE-2014-100001”).

10 Chapter 2. Vulnerabilities, metrics and involved parties

• Description: a brief description of the security vulnerability or exposure.

• References: any pertinent references (i.e. vulnerability reports and advi-

sories).

Figure 2.1: CVE Entries information displayed on MITRE site.

States of CVE Entries

While analysing the CVE dictionary, it can happen to face entries marked with

the following special states:

• RESERVED: when the entry has been reserved for use by a CNA or a

security researcher, but its details are not yet populated. A CVE Entry can

change from the RESERVED state to being populated (the normal one) at

any time, based on a number of factors both internal and external to the

CVE List.

• DISPUTED: when there is a disagreement between parties on the assertion

that a particular issue in software is a vulnerability. In these cases, further

references are provided to better inform those trying to understand the facts

of the issue.

2.3. Common Vulnerabilities and Exposures 11

• REJECT: when the entry is not accepted as a CVE Entry. The reasons for

the decision are usually stated in its description. Possible REJECT cause

examples are duplicates, withdrawal by the original requester or incorrect

assignments. As a rule, REJECT CVE Entries should be ignored, however

there may be cases where such entries might be moved back to RESERVED

or populated states.

2.3.2 CVE Community

The CVE project is an international cybersecurity community effort. Its success

comes from the contributions of CVE Board, CVE Numbering Authorities (CNAs)

and the numerous organizations which made their products and services compat-

ible with CVE, and/or adopted or promoted their usage.

CVE Board

The CVE Board includes numerous cybersecurity related organizations such as

commercial security tool vendors, academic and research institutions, government

departments and agencies, and other prominent security experts, as well as end-

users of vulnerability information. Through open and collaborative discussions,

the Board provides critical input regarding the data sources, product coverage,

coverage goals, operating structure, and strategic direction of the CVE Program.

CVE Numbering Authorities

CNAs are vendors, vulnerability researchers, national and industry Computer

Emergency Response Teams (CERTs), and bug bounty programs that assign CVE

Entries to newly discovered issues without directly involving the CVE Team in the

specific vulnerabilities details.

12 Chapter 2. Vulnerabilities, metrics and involved parties

CNAs are currently organized in the four following categories [B3]:

1. Sub-CNA: the most common and basic level of CNA. Each Sub-CNA as-

signs CVE IDs for vulnerabilities in their own products or their domain of

responsibility (called scope). Sub-CNAs also submit vulnerability informa-

tion to the CVE List when they make a vulnerability public.

2. Root CNA: CNA that administers and manages a group of Sub-CNAs

within a given domain or community. They are also entrusted of admitting

new Sub-CNAs, CNAs-LR, and Root CNAs within their scope.

3. CNA of Last Resort (CNA-LR): CNA created by a Root CNA to manage

the vulnerabilities of its scope that are not already covered by the other

Sub-CNAs.

4. Program Root CNA: a special type of Root CNA that oversees the entire

CNA Program. It:

• acts as the final arbiter for all disputes between CNAs and content-

related decisions,

• develops the CNA Rules with approval from the CVE Board,

• recruits and onboards new CNAs,

• ensures that all other CNAs are following CNA Rules.

In addition to these categories there is the Secretariat role, that supports many of

the CNA functions (such as publishing to the CVE List). To better understand the

described CNA relationships, Figure 2.2 represents their hierarchical organization.

2.3.3 MITRE’s Role

The MITRE Corporation currently maintains the CVE standard and its pub-

lic website, oversees the CNAs and CVE Board and provides impartial technical

guidance throughout the process to ensure CVE serves the public interest. In

addition, the MITRE CVE Team currently functions as the CVE Program Root

CNA.

2.4. Common Platform Enumeration 13

Figure 2.2: CNA hierarchical organization structure. Each colored box indicates

a different Root CNA scope. Root CNA sub-hierarchies can be created. (From

MITRE CNA Rules)

2.4 Common Platform Enumeration

Common Platform Enumeration (CPE) is a standardized method of describing

and identifying classes of applications, operating systems, and hardware devices

present among an enterprise’s computing assets. CPE identifies abstract classes of

products, such as XYZ Visualizer Enterprise Suite 4.2.3, XYZ Visualizer Enterprise

Suite (all versions), or XYZ Visualizer (all variations). Identifying products using

their CPE names allows IT management tools to collect information about them

and then make fully or partially automated decisions regarding the assets.

2.4.1 CPE Specifications

The current version of CPE is 2.3 and it is defined through the following set of

specifications in a stack-based model (Figure 2.3):

• Naming specification: defines the logical structure of Well-formed Names

(WFNs), Uniform Resource Identifier (URI) and formatted string bindings,

14 Chapter 2. Vulnerabilities, metrics and involved parties

and the procedures for converting WFNs to and from the bindings. A WFN

is a logical construct that constitutes an unordered list of Attribute-Value (A-

V) pairs that collectively describe or identify one or more operating system,

software application, or hardware device. Unordered means that there is no

prescribed sequence in which A-V pairs should be listed, and there is no

specified relationship (i.e. hierarchical, set-theoretic) among attributes.

• Name Matching specification: defines the procedures for WFNs compar-

ison and so determine whether they refer to the same products.

• Dictionary specification: defines the concept of CPE dictionary, which is

a repository of CPE names and metadata, with each name identifying a single

class of an IT product. It also defines processes for using the dictionary, such

as how to search for a particular CPE name or how to look for dictionary

entries that belong to a broader product class. Moreover it outlines all the

rules that dictionary maintainers must follow when creating or updating its

entries.

• Applicability Language specification: defines a standardized structure

for forming complex logical expressions out of WFNs. These expressions,

also known as applicability statements, are used to tag checklists, policies,

and other documents with information about the product(s) to which the

documents apply. For example, a security checklist for Mozilla Firefox 72.0.2

running on Microsoft Windows 10 could be tagged with a single applicability

statement that ensures only systems with both Mozilla Firefox 72.0.2 and

Microsoft Windows 10 will have the security checklist applied.

The CPE stack is designed to be open for innovation opportunities and its reference

page will be updated as soon as new specifications become available.

2.4. Common Platform Enumeration 15

Figure 2.3: The current CPE 2.3 stack. Each higher layer builds on top of the ones

below it, so the Naming layer is most fundamental one. (from NVD CPE stack)

Well Formed Names attributes and values

The CPE 2.3 standard [B4] defines the following WFN A-V pairs:

• part: this attribute can assume one of these string values:

– “a”: when the WFN is for a class of applications

– “o”: when the WFN is for a class of operating systems

– “h”: when the WFN is for a class of hardware devices

• vendor: values for this attribute should describe or identify the person or

organization that manufactured or created the product.

• product: values for this attribute should describe or identify the most com-

mon and recognizable title or name of the product.

• version: values for this attribute should be vendor-specific alphanumeric

strings characterizing the particular release version of the product.

• update: values for this attribute should be vendor-specific alphanumeric

strings characterizing the particular update, service pack, or point release of

the product.

• edition: deprecated attribute, which should assume the logical value ANY

except where required for backward compatibility with CPE 2.2 version.

16 Chapter 2. Vulnerabilities, metrics and involved parties

• language: values for this attribute shall be valid language tags as defined by

Request For Comments 5646 [S6], and should be used to define the language

supported in the user interface of the product being described.

• sw edition: values for this attribute should characterize how the product is

tailored to a particular market or class of end users.

• target sw: values for this attribute should characterize the software com-

puting environment within which the product operates.

• target hw: values for this attribute should characterize the instruction set

architecture (i.e. x86) on which the product being described or identified by

the WFN operates.

• other: values for this attribute should capture any other general descriptive

or identifying information which is vendor or product specific and which does

not logically fit in any other attribute value.

Each attribute may be used at most once in a WFN. If an attribute is not used,

it is said to be unspecified and its value defaults to the logical value ANY.

URI and formatted string formats

URI and formatted string formats are the machine-readable representation of

WFNs. With the CPE 2.3 standard the URI format is designed to be backward

compatible with prior CPE versions, while the formatted string one (Listing 1)

has been introduced to relax the requirements that typically apply to URIs. Both

representations bind the attributes of a WFN in a fixed order, separating them by

the colon character.

cpe:2.3: part : vendor : product : version : update : edition :

language : sw_edition : target_sw : target_hw : other

Listing 1: CPE 2.3 formatted string attributes format.

2.5. Common Vulnerability Scoring System 17

2.5 Common Vulnerability Scoring System

The Common Vulnerability Scoring System (CVSS) is an open framework owned

and managed by FIRST [S7], an US-based non-profit organization, whose mission

is to help computer security incident response teams across the world. CVSS pro-

vides a way to capture the main characteristics of a vulnerability and produce a

numerical score reflecting its severity. The numerical score can then be translated

into a qualitative representation (such as low, medium, high, and critical) to help

organizations to properly assess and prioritize their vulnerability management pro-

cesses.

CVSS scores are commonly used:

• for calculating the severity of vulnerabilities discovered on a system,

• as a factor in prioritization of vulnerability remediation activities.

CVSS current version is 3.1 and its scoring system is composed of three metric

groups [S8]:

• Base metric: produces a score ranging from 0 to 10, which represents the

innate characteristics of a vulnerability. This score can then be modified by

the Temporal and Environmental metrics.

• Temporal metric: changes the score over time due to events external to

the vulnerability.

• Environmental metric: customizes the score to reflect the vulnerability

impact on an organization.

2.6 Common Weakness Enumeration

Common Weakness Enumeration (CWE) is a community-developed list of com-

mon software and hardware weakness types that have security ramifications [S9].

“Weaknesses” are defined as flaws, faults, bugs, vulnerabilities, or other errors

18 Chapter 2. Vulnerabilities, metrics and involved parties

in software or hardware implementation, code, design, or architecture that if left

unaddressed could result in systems, networks, or hardware being vulnerable to

attacks.

The list was initially focused on software weaknesses because organizations of all

sizes wanted assurance that the software products they acquire and develop are free

of known types of security flaws. However, in 2020 the support was also extended

to hardware weaknesses, since the recent rising concern in this kind of security

issues (i.e. LoJax [B5], Rowhammer [B6], Meltdown/Spectre [S10][S11][S12]).

2.6.1 CWE objectives

CWE helps developers and security practitioners to:

• describe and discuss software and hardware weaknesses in a common lan-

guage,

• check for weaknesses in existing software and hardware products,

• evaluate coverage of tools targeting these weaknesses,

• leverage a common baseline standard for weakness identification, mitigation,

and prevention efforts,

• prevent software and hardware vulnerabilities prior to deployment.

2.7 National Vulnerability Database role

The National Vulnerability Database (NVD) is the U.S. government repository

of vulnerability data represented using the Security Content Automation Proto-

col (SCAP). This data enables automation of vulnerability management, security

measurement, and compliance. The NVD includes databases of security check-

list references, security-related software flaws, misconfigurations, product names,

and impact metrics. Originally created in 2000 (called Internet - Categorization

2.7. National Vulnerability Database role 19

of Attacks Toolkit or ICAT), the NVD has undergone multiple iterations and im-

provements and, as stated on their website [S13], it will continue to do so to deliver

high quality services.

Security Content Automation Protocol

The Security Content Automation Protocol (SCAP) is a synthesis of

interoperable specifications derived from community ideas. Commu-

nity participation is a great strength for SCAP since it ensures the

broadest possible range of use cases is reflected in its functionality.

2.7.1 NVD data

The NVD is the result of the analysis performed on entries published to the

MITRE’s CVE dictionary. By aggregating information from description, refer-

ences supplied, and any supplemental public data, the analysis enhances CVE

data with:

• impact metrics (Common Vulnerability Scoring System - CVSS),

• vulnerability types (Common Weakness Enumeration - CWE),

• applicability statements (Common Platform Enumeration - CPE),

• as well as other pertinent metadata.

The NVD does not actively perform vulnerability testing and relies on vendors,

third party security researchers and vulnerability coordinators to provide the in-

formation used to assign these attributes. However, as additional information

becomes available or existing one is subject to changes, the NVD endeavors to

ensure that the information offered are up to date.

As part of its enhanced information, the NVD site also provides the following

advanced searching features:

• by OS,

• by vendor name,

20 Chapter 2. Vulnerabilities, metrics and involved parties

• by product name and/or version number,

• by vulnerability type, severity, related exploit range and impact.

Entries states in NVD

Since NVD entries are the result of many data sources they have different states

compared to the MITRE ones:

• Received: CVEs which have been recently published to the CVE dictionary

and have been received by the NVD.

• Awaiting Analysis: CVEs which have been marked for analysis. Normally

once in this state the CVEs will be analyzed by the NVD staff within 24

hours.

• Undergoing Analysis: CVEs which are currently being analyzed by the

NVD staff. This process results in the association of reference link tags,

CVSS scores, CWE typologies, and CPE applicability statements.

• Analyzed: CVEs which have been analyzed and all their data associations

have been made.

• Modified: CVEs which have been amended by a source (CVE Primary CNA

or another CNA). Analysis data supplied by the NVD may be no longer be

accurate due to these changes.

• Deferred: CVEs which are not going to be analysed or re-analysed by the

NVD team due to resources problems or other concerns.

• Rejected: CVEs which have been marked as “REJECT” in the CVE dictio-

nary. These CVEs are in the NVD, but currently do not show up in search

results.

Chapter 3

Information Systems and

Windows of Vulnerability

Software and information systems inevitably evolve during their lifetime: they

introduce new features and add functionalities to improve the overall user experi-

ence. During their development, however, it is nearly impossible to keep them bug

safe and failure proof. For this reasons, this chapter focus is showing information

systems from a vulnerability perspective, defining how they transition between

different states and phases. Moreover this chapter will introduce the “Windows of

Vulnerability” topic, showing the importance of security activities and the impli-

cations of naive attitudes.

3.1 States of information systems

From a vulnerability point of view, information systems transition between hard-

ened, vulnerable, and compromised states during their lifetime [B7]. A system:

• attains a hardened state when all security related corrections have been in-

stalled

• becomes vulnerable when at least one security related correction has not been

installed

• enters a compromised state when it has been successfully exploited

A system during its lifetime typically oscillates between the hardened and vulnera-

ble states, and, if fortunate, it will never enter the compromised one. Active system

21

22 Chapter 3. Information Systems and Windows of Vulnerability

management seeks to reduce the total time a system remains in the vulnerable and

compromised states.

3.2 Phases of information systems

The vulnerability detection and fix effort changes during the lifetime of an informa-

tion system. In particular Alhazmi and Malaiya in their research [B8] pointed out

how vulnerabilities discovery depends largely on its user base. Their model, called

Alhazmi Malaiya Logistic Model (AML), identified the following three phases:

• learning phase: during this phase software testers (including hackers and

crackers) begin to understand the target system and gather the knowledge

needed to break it successfully.

• linear phase: when the new system, by attracting a significant number of

users, reaches the peak of its popularity. During this phase it begins to face

stronger security challenges since the number of vulnerabilities tends to grow

linearly. The system will remain in this phase until it starts getting replaced

by a newer one.

• saturation phase: when the technical support and hence the frequency of

update patches will begin to decline. The users start to switch or upgrade

to a more modern system. At the same time, attackers start to lose interest

in the system, since fewer and fewer targets will be using it.

From a security perspective, the linear phase is the most important one since it is

when most of the vulnerabilities will be found.

Even if the AML model refers only to information systems, it can actually be

easily applied to software in general, since, in this situation, information systems

can just be considered as a complex software able to run other software.

3.3. Window of Vulnerability 23

3.3 Window of Vulnerability

The term “window of vulnerability” is labelled in the Oxford Dictionary as “An

opportunity to attack something that is at risk (especially as a cold war claim

that America’s land-based missiles were easy targets for a Soviet first strike)”

[S14]. This definition does not differ too much from the computer security one:

In computer security, a Window of Vulnerability (WoV) — also called

Window of Exposure — is a time frame within which a certain software

is vulnerable to an attack. This period ranges from the flaw discovery

date to the patch installation date.

In reality there is not just a single WoV, but rather the superposition of many

Windows of Vulnerability (WoVs). Moreover it is important to underline that

not just applications are software but also operating systems. So, considering the

bigger picture, systems become vulnerable when just one of their application has

an exploitable flaw.

3.3.1 Vulnerability life cycle

During software lifetime it is almost unavoidable the (hopefully unintentional)

introduction of security flaws. The process that starts with their discovery and

leads to their fix is not straightforward and it is influenced by many factors. In

literature, researchers proposed many vulnerability life cycle models, with different

abstraction levels and different exploitation risk classifications. However none

of these models represented the problem considering also the end system actual

patching procedure (that is where the WoV gets actually closed). For this reason

in Figure 3.1 is proposed a new model filling the lack. The model, compared

to others [B9][B10][B11], does not use a time axis to represent the vulnerability

“phases”, since it is not well suited to represent their “concurrency”.

24 Chapter 3. Information Systems and Windows of Vulnerability

Figure 3.1: Representation of the possible vulnerability life cycle phases. The

vulnerability death is represented only considering a specific system, in reality

the actual death happens when the number of exploitable systems decreases to

insignificance.

The life cycle presents the following phases:

• Birth: denotes the flaw’s creation. It usually occurs unintentionally. If the

birth is malicious and thus intentional, discovery and birth coincide.

3.3. Window of Vulnerability 25

• Discovery: when someone discovers that a product has security implica-

tions, the flaw becomes a vulnerability. It should be pointed out that in this

phase only who discovered the vulnerability knows about it. In some cases,

original discovery is not an event that can be known: the discoverer may

never disclose his finding. Based on whether the discoverer’s intentions are

malicious or benign, the discovery can be further split into:

– Black Hat discovery: the vulnerability will be used only by its dis-

coverer or it will be sold on black market. The vulnerability will not be

revealed to the vendor or to the public.

– White Hat discovery: the vulnerability will be reported (disclosed)

to the vendor. Then, after a reasonable amount of time in which the

vendor should develop a patch, it will be reported to the public.

– Gray Hat discovery: neutral situation between White Hat and Black

Hat discoveries, where the vulnerability can be used just by its discov-

erer, reported to the involved vendor or sold to a private institution.

• Disclosure: the vulnerability and its exploitation details become known

to a wider audience. Depending on the discoverer’s target, the disclosure

audience can be divided into:

– private institution disclosure: the vulnerability details are revealed

to private institutions that will not reveal them to the vendor or the

public. The vulnerability will be employed for private means and often

for malicious purposes.

– internal disclosure: the vulnerability is reported to the vendor, to

allow the development and the release of a corrective patch. Not releas-

ing immediately the vulnerability details to a wider audience reduces

the number of malicious people that could exploit it. However it should

be noted that once the fix is available, the vulnerability details should

be publicly disclosed, making the community aware of all the possible

implications. Furthermore, a time limit is usually given to the vendor

26 Chapter 3. Information Systems and Windows of Vulnerability

before the vulnerability public disclosure, avoiding neglectful attitudes

and producing a quicker threat response (fearing a bad press).

– public disclosure: the vulnerability is described on a channel (i.e mail-

ing list1, vulnerability database2, vendor’s site3) where its information

and details are freely available to the public.

• Exploitation: once the vulnerability becomes known, it can be employed to

harm vulnerable systems. Since different vulnerability levels of detail can be

revealed at their disclosure, there is a gap between people that can employ

them without the proper knowledge. However, once the exploit procedure

is automated and released, even those with little or no skill can exploit

the vulnerability, increasing therefore the systems at risk. In literature, the

exploit automation is often referred also as “scripting”; but, since this term

can be misleading, it is not used in this work.

• Correction: a vulnerability is correctable when the vendor or a developer

releases a patch, a software modification or a configuration change that fixes

the underlying flaw. The correction phase is composed by:

– fix release: the date when the fix has been released.

– fix availability: the date when the fix is publicly available for the

download for the desired platform. Usually the fix availability happens

as soon after the fix release; however, sometimes it could be delayed due

to required platform specific tunings. For this reason different platforms

could have different fix availability dates.

– fix application: the date when the fix is installed and “actively” work-

ing on the system. If the fix concerns a running service, its reboot should

be required to make the fix actually take effect.

1Debian security announce: https://lists.debian.org/debian-security-announce/
2VulDB: https://vuldb.com/
3Mozilla Vulnerabilities: https://www.mozilla.org/en-US/security/known-vulnerabilities/

https://lists.debian.org/debian-security-announce/
https://vuldb.com/
https://www.mozilla.org/en-US/security/known-vulnerabilities/

3.3. Window of Vulnerability 27

• Death: usually, a vulnerability dies when the number of systems it can

exploit decreases to insignificance. The death reasons can be:

– the majority of the systems have installed the vulnerability patch,

– the vulnerable systems have been retired from the market,

– the attackers and the media have lost interest in the vulnerability.

From a system specific perspective, this phase coincides with the fix appli-

cation.

3.3.2 Zero day vulnerabilities in the life cycle

A zero day vulnerability is a vulnerability that is unknown to those who should

be interested in its mitigation. The term zero day refers to the fact that the

vendor has “zero days” to fix the problem, since it is already being exploited. In

the proposed vulnerability life cycle this corresponds to a Black Hat or Gray Hat

discovery followed by a private disclosure.

3.3.3 Reducing the attack chance

From the proposed model appears that users and in particular system administra-

tors are the “passive” element of the chain, since they can only wait for fixes to

be available and ready to be applied. Actually good system administrators know

that prevention, detection, response and recovery techniques can be implemented

while waiting for their publication. Some examples could be using a firewall to

identify and deny suspicious network activities or using containers to provide an

additional isolation layer between applications and host system.

Since the window of vulnerability grows as more people learn about the vulnera-

bility, there are two available options to make it as small as possible:

• Reducing the window in space: by limiting the number of people who know

about the flaw and the information available to the public. Even if this

idea could work in theory, in reality it just promotes the “security through

obscurity” bad practice:

28 Chapter 3. Information Systems and Windows of Vulnerability

The argument that secrecy is good for security is naive, and al-

ways worth rebutting. Secrecy is beneficial to security only in lim-

ited circumstances, and certainly not with respect to vulnerability

or reliability information. Secrets are fragile; once they’re lost,

they’re lost forever. Security that relies on secrecy is also fragile;

once secrecy is lost there’s no way to recover security. Trying to

base security on secrecy is simply bad design. [S15]

Usually a better approach is reporting the flaw to the vendor and making it

public only when the fix is available or a certain time limit is elapsed (i.e.

Google’s Project Zero research team gives the vendor 90 days to fix).

• Reducing the window in time: by increasing the speed at which vendors patch

software and how fast those fixes are installed. However, even if vendors

reactively publish patches, the installation process is in the hands of system

administrators, that often avoid it fearing breaking behavioural changes.

3.3.4 The dilemma of security patches application

From a security perspective, security patches4 should always be applied to increase

the organization’s resilience to attacks. The patch application however is not a

straightforward step:

• servers or devices may need to be restarted (causing temporary disservices),

• previously reliable services may encounter errors due to the introduced changes.

For these reasons, it is common practice delaying or totally avoiding security fixes

application, especially (and unfortunately not only) among small organizations

with limited resources employed in system administration roles. More responsible

institutions in fact usually choose to apply at least security patches fixing Impor-

tant or Critical flaws.

4Even if the term “fix” is technically more appropriate, it is common practice using the term

“patch” with the same meaning: thus from now on they will be used interchangeably.

3.3. Window of Vulnerability 29

Indeed hoping that security breaches never happen is a very cost efficient short

term “solution”, but it should be remarked that the price to pay for recovering

from an outbreak can be enormous:

• Recovery from getting hacked generally implies hosts formatting, operating

systems re-installation (with patches applied), restoring data from a previ-

ous “sane” backup, applying the remaining patches and perform forensics

analysis.

• Recovery from a bad patch may simply be a reinstall, or at least does not

involve the cost of dealing with malice.

Given these perspectives, when lacking of specialized staff, outsourcing security

functionalities is often a better solution: “security is a process and not a product”

[S16].

Chapter 4

Security concerns in software

third-party dependencies

Nowadays, it is common practice for developers to leverage third-party tools, sys-

tems and code to make their applications: avoiding reinventing the wheel allows

to put the focus on the solution of the main problem and speed up the software

release itself. However, the advantage of relying on third-party dependencies un-

fortunately has security implications, increasing the attack surface of the final

products.

This chapter starts with an overview of the possible approaches that can be used

to introduce software dependencies into an application, explaining strengths and

their related security weaknesses.

After that, it will be shown how package management systems can help reduc-

ing the number of vulnerable dependencies in use. To this end, we will describe

Debian’s update release model, which has been recognized (by the community)

among the most reliable ones in terms of system stability and security.

Finally we will discuss the recent direction taken by some Linux distributions,

which encourages the usage of system agnostic package management systems.

4.1 Applications and software dependencies

As previously mentioned, any non simple application usually relies on third-party

software. A third-party software component, often simply called dependency or

library, is a reusable module developed to be either freely distributed or sold by an

entity other than the one who uses it [S17]. However, even though its development

is up to an external party, the duty to maintain the applications who uses it re-

31

32 Chapter 4. Security concerns in software third-party dependencies

mains to their developers: so, to the problem of end users not updating software on

their devices (discussed in the previous chapter), is added the lack of third-party

library updates by developers.

One of the most clear example is the Android market, where different researches

highlighted how, even among the top Play Store apps, there were security vulnera-

bilities concerning outdated third party libraries [B12][B13]. As a proof of matter,

Figure 4.1 shows some of their frightening discoveries.

Figure 4.1: Vulnerable libraries found in 18000∼ Android applications. Among

those almost, 17000 were actively used, the 97.8% could be upgraded to the first

non-vulnerable version without code adaption (update2Fix), the 57.3% could be

upgraded to the last available version without code adaption (update2Max) and

only the 2.2% could not be upgraded to a fixed version without code modification

(non-fixable). (from [B12])

When releasing an application there are three possible ways to introduce the nec-

essary dependencies:

• static linking

• dynamic linking

• dynamic loading

We will now discuss and review the advantages and disadvantages of the ap-

proaches.

4.1. Applications and software dependencies 33

4.1.1 Static linking

With static linking, all the necessary dependencies are bundled within the appli-

cation, producing a stand-alone executable. A classic example are “fatjars” or the

so called “portable applications”.

Straightforward advantages of this approach are:

• the application distribution is simplified, since no additional files need to be

present on the system to be able to run it

• it is easier to remove the application from the system, since everything is

packaged inside its executable

Disadvantages are:

• the same library can not be shared between different applications, since each

one will have its own copy bundled within the executable, leading to disk

space waste

• any third-party library update requires the whole program to be recompiled

and redistributed

4.1.2 Dynamic linking

Dynamic linking allows storing all the necessary libraries as separate files outside

of the executable file. For this reason, when the program is compiled, additional

information will be provided to locate the dependencies: in this way, when execut-

ing the application, the operating system will know where to find them, correctly

loading and linking the required libraries.

As opposed to static linking, this approach allows multiple applications to share

the same library without falling into duplicates. Another benefit is that an update

in an external library does not require the main application to be recompiled.

The main issues of this approach are:

• libraries corruptions, that will inhibit all the programs that use them

• incompatibilities among different versions of the same library

34 Chapter 4. Security concerns in software third-party dependencies

4.1.3 Dynamic loading

Dynamic loading allows a computer program to start up in the absence of its

required libraries. When launched, the program (and not the operating system

like in dynamic linking) is responsible for their retrieval and load. The retrieval

procedure usually implies dependencies download and caching on the end user

device, to avoid wasting bandwidth. Dynamic loading is most frequently used

when implementing software plugins, overall allowing more modular applications.

The main issues of dynamic loading are:

• it is not supported by every system

• developers are forced to use special constructs to invoke the libraries Appli-

cation Programming Interface (API), eventually obstructing and/or limiting

the natural implementation logic flow

4.1.4 Dependencies strategies overview

From the presented dependency inclusion typologies, it is quite clear that dynamic

approaches are superior in terms of third-party library vulnerability patching: as a

matter of fact, the original application should not be recompiled and redistributed

to fix their security issues:

• with dynamic linking, the affected third-party libraries should be replaced

with the fixed ones

• with dynamic loading, the library retrieval procedure should implement a

strategy that checks whether more up to date compatible versions are avail-

able, eventually downloading them

Unfortunately both approaches have another notable weak point: integrity and

authenticity checks need to be performed on the required libraries, to prevent

attackers to replace them with compromised ones. While for dynamic loading ev-

erything is up to application developers, for dynamic linking package management

systems were fortunately born exactly to solve such problems. Next section will

4.2. Package management systems 35

give an overview of their working principles, showing the reasons of their success

in many Unix distributions.

4.2 Package management systems

A package management system (often simply called package manager) is a tool

(usually composed by several layers) that automates installation, upgrade and

removal of software, dealt in the form of a package. A package is an archive

file containing a program backed up with additional metadata. The metadata

typically includes: software description, version, vendor, license, list of required

dependencies, and all installation specifications necessary to make it run [B14].

Thanks to these information, package managers can easily solve the previously

mentioned dynamic linking problems:

• upon installing a new package, its missing dependencies are downloaded

• dependencies upgrades can be easily installed (and eventually automated),

since they are also treated as packages

• dependencies conflicts are promptly identified and showed to the user, which

will choose how to solve them (usually by canceling the current installation

or by removing the conflicting packages)

• dependencies integrity and authenticity checks are automatically performed,

by verifying digital certificates and checksums

To achieve the above tasks, packages need to be maintained in centralized and

trusted repositories. Publishing a package in a repository needs to follow certain

rules and it can be subject to reviews. Examination policies can be more or less

strict and can delay updates releases in favor of ulterior guarantees of not breaking

the end user environment.

Usually package managers have a default repository, which can be extended with

additional ones, like vendor specific or personal repositories. It should be noted

that, for obvious reasons, those repositories will have their own policies, which for

36 Chapter 4. Security concerns in software third-party dependencies

example could grant more up to date software at the expense of system stability.

Centralizing software management is a great advantage especially for large enter-

prises which rely on numerous software, eliminating the need for manual updates

installation and simplifying the package flow tracking.

4.2.1 Package Manager Typologies

As previously mentioned, package managers are widely used in Unix systems,

where many distributions ship with a default one. Most famous are Debian’s Ad-

vanced Package Manger (apt) [S18] or RedHat’s RedHat Package Manager (RPM)

[S19]. However package managers are not a Unix exclusive:

• for systems without a preinstalled one there are usually many unofficial so-

lutions, like OneGet [S20] or Chocolatey [S21] for Windows systems

• developers largely use language specific package managers to build their ap-

plications, like JavaScript’s Node Package Manager (npm) [S22]

App Stores can also be viewed as a sort of modern package management systems,

since they provide a centralized way to install and update systems applications.

The main differences are:

• it is not possible to add to the main repository alternative ones

• the dependency management information is hidden, since they were born to

be more user friendly

4.3 Debian’s effective package management model

The Debian distribution nowadays is known by the community as one of the most

stable ones and currently consists in around 30000 packages [B15]. To achieve its

stability while maintaining such a large amount of packages, Debian is organized

in three different main distributions (often also called suites): unstable, testing

and stable.

4.3. Debian’s effective package management model 37

Unstable, is the active development distribution, where every Debian developer

can update their packages at any time. No effort is done to make sure everything

is working properly, leading to possible instabilities.

The testing distribution is generated automatically by taking packages from un-

stable if they satisfy certain criteria. This ensures that good quality packages are

present within testing. After a period of development, under the guidelines of

the release manager, the testing distribution is frozen: the policies which control

how packages flow from unstable to testing are tightened, allowing only bug fixes.

When the open issues are solved to the satisfaction of the Release Team, a new

distribution is released. Upon a release:

• the testing distribution is renamed to stable,

• a new testing distribution is created by copying the new stable one,

• the previous stable is renamed to oldstable. Debian’s security team tries to

support oldstable distribution with security fixes for at least one year, except

when another stable distribution is released within the same year [S23].

This development cycle is based on the assumption that the unstable distribution

becomes stable after spending a certain amount of time in testing.

Even once a distribution is considered stable, a few bugs inevitably remain and,

for this reason, the stable distribution is supplied with the following suites:

• security updates: suite used by Debian security team to release security

updates. Updates are announced on the debian-security-announce mailing

list.

• stable-updates: suite to release updates that are not security related,

but that should be urgently installed (without waiting for the next Point

Release1). Possible examples are antivirus databases or timezone-related

packages.

1Point Releases are stable distribution updates which incorporate fixes of important bugs and

security issues. Point Releases usually happen about every two months and update the stable

installation image distributed on Debian’s website.

38 Chapter 4. Security concerns in software third-party dependencies

• backports: suite for packages taken from the testing suite, which are ad-

justed and recompiled for usage on stable [S24]. Its main purpose is to

provide more up to date software than the one available on stable at the

expense of stability. Therefore it is recommended to select only the backport

version of packages which features are missing in the stable suite.

Figure 4.2: Debian package release management. After the current stable suite

becomes unstable, the previous unstable is moved to the Debian archive, to serve

history purposes. (from Debian Packaging Tutorial [S25])

4.3.1 Security-related bugs handling

Due to their sensitive nature, Debian handles security related bugs very carefully:

Debian takes security very seriously. We handle all security problems

brought to our attention and ensure that they are corrected within a

reasonable timeframe. [...] Experience has shown that security through

obscurity does not work. Public disclosure allows for more rapid and

better solutions to security problems. [S26]

4.3. Debian’s effective package management model 39

The Debian Security Team exists to coordinate this activity by:

• keeping track of outstanding security problems,

• helping maintainers with security problems or fixing them themselves,

• maintaining Debian Security Tracker,

• sending security advisories.

Debian Security Tracker

Debian Security Tracker is a centralized database that contains all the public in-

formation known about security issues: which packages and versions are affected

or fixed, and thus whether stable, testing and/or unstable are vulnerable. Infor-

mation that are still confidential are not added to the tracker.

Security advisories

Security advisories are only issued for stable distribution, excluding therefore test-

ing and unstable ones. When released, advisories are sent to Debian’s security

announce mailing list2 and posted on the security web page. Security advisories

are written and posted by the security team and include the following information:

• A description of the problem and its scope, including:

– The type of problem (privilege escalation, denial of service, etc.)

– What privileges may be gained, and by whom (if any)

– How it can be exploited

– Whether it is remotely or locally exploitable

– How the problem was fixed

allowing users to assess the threat to their systems.

• Version numbers of affected packages

2debian-security-announce@lists.debian.org

mailto:debian-security-announce@lists.debian.org

40 Chapter 4. Security concerns in software third-party dependencies

• Version numbers of fixed packages

• Information on where to obtain the updated packages (usually from Debian

security suite)

• References to upstream advisories, CVE identifiers, and any other informa-

tion useful in cross-referencing the vulnerability

4.4 Agnostic alternatives to platform specific

package managers

GNU/Linux operating system has experienced a continuous growth in the last

years, especially in server and Internet of Things (IoT) contexts. Since hundred of

different Linux distributions exist, being bound to their default platform specific

package manager could not be feasible for certain working environments: for ex-

ample a small company could not afford to make its products compatible with all

the main Linux distributions and deploy them to their respective repositories. To

solve this problem system agnostic tools were born, unifying application releases

for different environments.

Nowadays the most famous formats are AppImage, Flatpak and Snap which share,

each with their own strategies, the possibility to install3 applications without the

need to grant them root access. This feature is particularly useful to:

• prevent users having administrator privileges, consequently exposing systems

to minor risks

• allow users to customize the systems with apps for their needs

Of course everything is not granted without paying a price: to have a format

compatible with every system, third-party dependencies are bundled within the

application, inheriting the previously discussed static linking problems.

3It should be noted that AppImage applications do not actually require any installation and

can be just run wherever they are.

Chapter 5

A model to compare Windows of

Vulnerability

When choosing to base a business model on an operating system, vulnerability

patching responsiveness is as much important as factors like system stability and

software availability. For this reason, I developed DiVulker, a platform that is able

to track Windows of Vulnerability in GNU/Linux software distributed via package

managers. This chapter shows at first the requirements needed for its realization,

and then it will explain its design choices and all the meaningful technical details.

5.1 Requirement analysis

For developing this kind of tool it is not feasible thinking to have a unique vul-

nerability data source: in fact, it is quite unlikely to find an institution that is

able to keep track of every GNU/Linux system vulnerability. Moreover, even if

such institution would exist, having more unrelated vulnerability data sources is

usually a better practice for:

• reducing the number of possible errors in the provided data

• avoiding possible favoritism, leading to inaccurate and unfair statistics

achieving an overall better reliability.

Regarding vulnerability data, the following information are required:

• unique identifiers: to be able to match and merge data coming from different

sources (i.e. CVE IDs)

• date of public disclosure: used to mark the start of the WoV

41

42 Chapter 5. A model to compare Windows of Vulnerability

• date of fix availability: used to mark the closure of the WoV

• affected package(s): a vulnerability could affect more than one package,

moreover a package could be vulnerable only on a certain platform

In addition to these requirements, it could also be useful, but not mandatory, that

vulnerability data sources had the support for:

• bulk downloads of their data, speeding up the retrieval procedure

• providing their data in machine readable formats, like JavaScript Object

Notation (JSON) or Extensible Markup Language (XML), reducing the effort

with creating ad-hoc data parsers

• web feed or publish-subscribe like systems, avoiding polling based strategies

to retrieve data updates

5.1.1 Vulnerability data sources selection

To understand if the system realization was possible, I first conduced an assess-

ment analysis to discover if there were enough data sources available to make

comparisons at least between two different distributions. The obtained results

were not the most reassuring: many of the most used distributions do not have a

CVE tracker and their security advisories1 are not available for a bulk download.

Even worse, some distributions do not even issue security advisories (or some other

method to track security fix releases): for instance Alpine Linux, which is a distri-

bution widely used in container environments, despite declaring in its motto being

security-oriented, dismissed its security mailing list at least from June 2017 [S27].

[...] We don’t issue our own advisories if that’s what you mean. That

would require more man power which I think we prefer to spend on

fixing the security issues. [S28]

1Security advisories are one of the main sources used by Unix distributions to notify their

users of security fixes. They provide information on when the fix is available for download and

which packages and platforms are affected.

5.2. Architecture design 43

Fortunately Debian and Red Hat offer documented and CVE compatible vul-

nerability data of their products, fulfilling the previously identified fundamental

requirements and allowing matches with MITRE and NVD vulnerability lists.

5.2 Architecture design

To allow the system to be scalable, modular and as much as possible technology

independent, I chose to realize it using a microservice based architecture. In this

way:

• the different microservices which compose the system can be dislocated on

many devices, allowing to distribute the computational load and the resource

usage

• each microservice is designed to be independent and can be easily plugged

in/out without restarting the entire system

• a microservices subset can be reused outside of DiVulker, reducing the amount

of work necessary in future vulnerability related researches

• future additions and extensions are not bound to the implementation lan-

guage used to develop the system, since they only need to adapt to the

exchanged messages format

5.2.1 Microservices

DiVulker is composed by four main microservices typologies:

• Services Registry (SR): microservice used to keep track of the other enti-

ties of the system. At startup, the other microservices will send to the SR

all the information necessary for their identification.

• Data Retriever (DR): microservice which retrieves and parses publicly

available vulnerability data, storing them in its knowledge base. There are

two kinds of DR:

44 Chapter 5. A model to compare Windows of Vulnerability

– Distro Specific Data Retriever (DSDR): microservice which data

are specific to a certain distro

– General Data Retriever (GDR): microservice which data are com-

mon to more distros

• Data Aggregator (DA): microservice that retrieves data from the other

microservices, matching and merging them to obtain more complete vulner-

ability data. To know how to contact the other microservices a DA will first

interact with SR microservice to obtain such information. There are two

kinds of DA:

– Distro Data Aggregator (DDA): microservice that retrieves data

only from DSDR microservices related to a specific distro

– General Data Aggregator (GDA): microservice that retrieves the

data from DDA and GDR microservices

• Data Comparator (DC): microservice that retrieves vulnerability data

from GDA microservices and offers methods to obtain useful statistics and

make comparisons between different distros

From the given perspective, it can be noticed that, except for SR microservice, the

others (called from now on Vulnerability Data Services) act both as a client and a

data host:

• when acting as client, the service will retrieve the vulnerability related data

from a source, parsing only the useful information

• when acting as data host, the service will act as data source, sending its data

to anyone who requests it

To better understand how the microservices relationships are organized Figure 5.1

gives a basic (only one GDA is used) system configuration.

5.3. Detailed design 45

Figure 5.1: DiVulker microservice architecture. For readability reasons, the

Sources Registry microservice, the external data sources and all the communi-

cations involving them are not represented.

5.3 Detailed design

This section will show the relevant design choices made to achieve the previously

described architecture.

5.3.1 Vulnerability Data Services interactions

To be able to reuse DiVulker microservices even outside of the system, each Vul-

nerability Data Service (VDS) is designed to be a standalone data source, that

will send its data to anyone who requests them (called from now on subscriber).

46 Chapter 5. A model to compare Windows of Vulnerability

For obvious reasons, when using the “standalone” term, it is excluded the data

retrieval procedure, in which the services necessary depend on an external source.

The data is sent across the system via WebSockets:

• granting the possibility to notify each VDS subscriber when updates or new

vulnerability data are available

• avoiding a VDS to know anything about how his subscribers are implemented

and consequentially force some kind of API

5.3.2 Vulnerability Data Services hierarchy

To speed up the VDSs realization and to apply the Don’t Repeat Yourself (DRY)

principle, I designed the hierarchy structure represented in Figure 5.2. In this way,

new microservices can be added to the system saving time, just by defining:

• the info sent to the registry to uniquely identify the service

• the necessary models to store the data

• the strategy used to retrieve and update the data, for DR microservices

• the microservices to which connect to and how to merge their data, for DA

microservices

Figure 5.2: Vulnerability Data Service hierarchy.

5.3. Detailed design 47

5.3.3 Data Aggregators: messages and data handling

Since each source is designed to be independent, each Data Aggregator should:

• know how to interact with the host sources to retrieve their data

• define how to handle the received data

Figure 5.3 shows the interface hierarchy to implement each time a Data Aggregator

needs to subscribe to a new microservice and handle its data:

• SpecificDataSourceWsHander is used by Specific Data Aggregators for han-

dling Specific Retriever data

• GeneralRetrieverWsHander is used by General Data Aggregators for han-

dling General Retriever data

• SpecificAggregatorWsHander is used by General Data Aggregators for han-

dling Specific Data Aggregators data

Figure 5.3: Data Aggregator WebSocket handlers. SpecificAggregatorWsHandler,

GeneralRetrieverWsHandler and SpecificDataSourceWsHandler abstract classes

implement most of the interfaces methods reducing the effort needed to create

a new WsHandler.

48 Chapter 5. A model to compare Windows of Vulnerability

5.3.4 Data retrieval procedure

Each Data Retriever microservice needs to retrieve its data from one or more

external source before being ready to send anything to its subscribers. This pro-

cedure could take quite long time, especially for General Retrievers which need to

download and parse a large amount of data. The activity diagram in Figure 5.4

shows the strategy adopted to speedup services setup when frequently updating

and testing their functionalities.

Figure 5.4: Activity diagram that shows the data retrieval procedure.

5.4. Implementation 49

This procedure takes advantage of a local cache, which can be stored on the filesys-

tem or on an internal database. In this way:

• the DR avoids to contact and download the data from an external source

• the parsing effort is reduced, since the vulnerability data of the local cache is

already in the required format (sources could provide raw data) and contains

only the meaningful information (often sources provide more data than the

required one)

Both “download data from source” and “setup update strategy” activity nodes

implementation depend on how the external source makes its data available: for

sources that provide them through their website, the polling approach is the only

one available.

5.4 Implementation

This section will give a brief overview of the technologies used to build DiVulker

as well as showing significant details and aspects on the microservices realization.

5.4.1 Technologies

DiVulker was implemented with the following technologies:

• Eclipse Vert.x: Eclipse Vert.x, or often simply called Vert.x, is a polyglot

event-driven and non blocking application framework that runs on the Java

Virtual Machine (JVM). It is designed to let applications scale with minimal

hardware requirements. Vert.x can be used with multiple languages (Java,

Kotlin, JavaScript, Groovy, Ruby and Scala), allowing teams to choose the

one more suitable for a specific task. Moreover it is very flexible and, by

supporting many different messaging protocols out of the box, allows to

easily build HTTP/REST microservices based applications.

50 Chapter 5. A model to compare Windows of Vulnerability

• Scala: Scala is a general purpose programming language that combines

object-oriented and functional programming in one concise, high-level lan-

guage. Being concise is one of the main focuses of the language, speeding up

the overall development and allowing external readers to better understand

the solution proposed. Other strengths of the language are:

– static typing: that helps avoiding bugs when building complex appli-

cations

– seamless Java interoperability: that allows Java and Scala stacks

to be freely mixed and easily access to huge ecosystems of libraries

– pattern matching: a mechanism for checking a value against a pat-

tern that provides a great abstraction to write algorithms, improves

readability and makes easier to statically intercept bugs

– flexibility: by combining interfaces and classes, allowing complex hi-

erarchies

• Jackson: Jackson is a suite of data-processing tools for Java (and the JVM

platform). The project was originally designed as a JSON parsing library,

but now supports many more data formats (like XML, CSV and YAML). Its

usage is built around annotations, that allow to quickly define which fields

need to be serialized/deserialized without the need to implement custom

parsers.

• Gradle Build Tool: Gradle is an open-source build automation tool fo-

cused on flexibility and performance. Gradle allows to configure projects on

fresh environments without depending on specific Integrated Development

Environment (IDE) plugins, ensuring that all the required dependencies are

correctly downloaded. Moreover it allows to create complex project depen-

dency hierarchies, especially useful to build modular applications based on

custom libraries.

5.4. Implementation 51

5.4.2 Vulnerability Identifiers and Data Structure

Vulnerabilities across the system are identified by their CVE ID. In addition to this

identifier, Specific Aggregators could use other means to associate a vulnerability

related info to the correct one: for example, distros usually associate each CVE

ID to a custom security advisory ID.

Since the amount of data to store tends to grow very quickly especially in the last

microservices of the system, it was necessary to adopt a data structure that is

able to quickly locate the entries and speedup update operations. For this reason

data is structured similarly to how it is organized on CVEproject/cvelist GitHub

repo [S29], where each vulnerability is categorized using its CVE ID, by first using

the year portion and then by truncating the id portion by 1000. Listing 2 shows

a YAML formatted example on how CVE-1999-0001, CVE-1999-1044 and CVE-

2020-13458 would be inserted inside the proposed data structure.

1 "1999":

2 "0xxx": [

3 {id: CVE-1999-0001},

4 #...

5]

6 "1xxx": [

7 #...

8 {id: CVE-1999-1044},

9 #...

10]

11 #...

12

13 #...

14 "2020":

15 #...

16 "13xxx": [

17 #...

18 {id: CVE-2020-13458},

19 #...

20]

21 #...

Listing 2: Data structure used to memorize vulnerabilities that uses CVE IDs as

identifiers.

52 Chapter 5. A model to compare Windows of Vulnerability

5.4.3 General Retrievers

The implemented General Retrievers use data publicly available on MITRE [S30]

and NVD [S31] sites. This two sources are used to mainly provide the date of first

disclosure of vulnerabilities. Even if the NVD data could technically be enough to

have the necessary vulnerability information, I still decided to also use the ones

provided on the MITRE site for the following reasons:

• the NVD data partially come from the MITRE CVE list and it often happens

that such data falls out of sync

• implementing more than one General Retriever microservice helped with the

design more generic microservices, simplifying the addition of future ones

Unfortunately both sources do not provide a way to be notified only when new

entries are added or updated. For this reason, all the data need to be periodically

downloaded. However the NVD provides a “META” file which stores information

on when the provided data was lastly updated, useful to avoid pointless downloads.

5.4.4 Debian Retrievers

Vulnerability data for Debian comes from two sources:

• the Debian Security Tracker [S32]

• the snapshot archive [S33]

Debian Security Tracker

Debian Security Tracker is a Git repository containing vulnerabilities information

of Debian distribution and scripts to generate reports. The files used by Debian

Retriever microservices are:

• CVE/list to identify which vulnerabilities affect or affected Debian

• DSA/list to identify when a Debian Security Advisory (DSA) was released

to notify the community of fixes related to one or more security issues

5.4. Implementation 53

For my research I focused only on Debian stable release, therefore I excluded

DLA/list file from the analysis, since its entries target Debian Long Term Sup-

port (LTS) release. Listing 3 and Listing 4 show some examples on how the

vulnerabilities data are stored in those files.

1 CVE-2019-14287 (In Sudo before 1.8.28, an attacker with access ...)

2 {DSA-4543-1 DLA-1964-1}

3 - sudo 1.8.27-1.1 (bug #942322)

4 ...

5 CVE-2014-9680 (sudo before 1.8.12 does not ensure that the TZ ...)

6 {DSA-3167-1 DLA-160-1}

7 - sudo 1.8.12-1 (bug #772707)

8 [jessie] - sudo 1.8.10p3-1+deb8u2

9 ...

10 CVE-2011-0010 (check.c in sudo 1.7.x before 1.7.4p5, when ...)

11 - sudo 1.7.4p4-6 (bug #609641)

12 [lenny] - sudo <not-affected> (Only affects 1.7.x)

13 [squeeze] - sudo 1.7.4p4-2.squeeze.1

Listing 3: CVE/list entries.

1 [14 Oct 2019] DSA-4543-1 sudo - security update

2 {CVE-2019-14287}

3 [stretch] - sudo 1.8.19p1-2.1+deb9u1

4 [buster] - sudo 1.8.27-1+deb10u1

5 ...

6 [22 Feb 2015] DSA-3167-1 sudo - security update

7 {CVE-2014-9680}

8 [wheezy] - sudo 1.8.5p2-1+nmu2

Listing 4: DSA/list entries.

54 Chapter 5. A model to compare Windows of Vulnerability

The information merging (performed by Debian Aggregator microservice) turned

out to be an hard task due to many inconsistencies and missing information, visible

in the proposed entries:

• CVE/list marks CVE-2014-9680 as affecting “Jessie” release, while DSA/list

DSA-3167-1 marks it affecting “Wheezy”.

• CVE/list CVE-2014-9680 cross-references two advisories IDs, DSA-3167-1

issued for stable release, DLA-160-1 for oldstable one, but only “Jessie”

release is listed in its fields.

• CVE/list CVE-2019-14287 cross-references DSA-4543-1 and DLA-1964-1 but

no affected stable or oldstable release. Usually, when no distribution name

is referenced in a CVE/list entry, it is because the issue affected only the

unstable release: however, DSA/list DSA-4543-1 shows that both “Stretch”

and “Buster” were actually affected.

• some CVEs, like CVE/list CVE-2011-0010, do not present any security ad-

visory and so the date information of their fix is lost.

Other secondary problems are:

• the format requires non simple and error prone regex parsing, especially for

CVE/list file

• CVE/list tracks every security issue, even those not related to Debian. This

implies undesired data downloads that must be later filtered out

Snapshot archive

The snapshot archive is a wayback machine that allows access to old packages

based on dates and version numbers. Its usage was necessary to fill the lack of

the fix availability date information for Debian CVEs without a DSA: the service,

among all the stored information, provides the first date a certain package was

seen in Debian stable or security repositories.

5.4. Implementation 55

The main problem encountered with accessing to its data is that they are not

available for bulk downloads. For this reason:

• a lot of HTTP requests are required to obtain all the missing data

• the snapshot archive refuses many connection attempts, since it is accessed

by the same host many times in a short timeframe, slowing furtherly down

the data retrieval

To retrieve the “first seen” information of each vulnerable package, the following

REST APIs can be used:

1. /mr/package/<package>/: lists all the available source versions of the

specified package. Having this information avoids requesting for package

versions not present in the snapshot archive.

2. /mr/package/<package>/<version>/allfiles: lists all the files associ-

ated to the specified version of a package. Within this information there is

the hash needed to perform the last query.

3. /mr/file/<hash>/info: returns the information of the file with the speci-

fied hash. Among this information there is the “first seen” field used as first

fix availability date.

Actually, this process has been furtherly improved by directly requesting and pars-

ing the HTML page of a package version at /package/<package>/<version>/,

avoiding the request necessary to retrieve the package hash. Figure 5.5 shows the

(rendered) page to parse to obtain the release date of sudo 1.7.4p4-2.squeeze.1

which was missing for CVE-2011-0010.

https://snapshot.debian.org/package/<package>/<version>/

56 Chapter 5. A model to compare Windows of Vulnerability

Figure 5.5: Snapshot info page for 1.7.4p4-2.squeeze.1 version of sudo source

package.

5.4.5 Red Hat Retrievers

Vulnerability data for Red Hat comes from their Security Data page [S34]. More

precisely Red Hat Retrievers use the following files:

• cve dates.txt: file that lists all the CVE IDs that affect/affected Red Hat

products

• release dates.txt: file that lists every Red Hat Security Advisory (RHSA),

Red Hat Bug Advisory (RHBA) and Red Hat Enhancement Advisory (RHEA),

providing the information on the date of when a fix is available

• rhsamapcpe.txt: file that maps Red Hat Advisories with the related CVE

IDs, products and packages

5.4. Implementation 57

Listing 5, Listing 6, and Listing 7 show some examples of how the files are struc-

tured. Even if once again the files use a custom plain text format, in comparison

to the one used by Debian, it is so much easier to identify and extract the data of

interest since:

• each entry is stored in a single line

• a CPE URI format is used to track affected packages and products

• no data duplication is present in the provided files, except for CVE and

advisories IDs which are necessary to perform mappings among the entries

1 CVE-2011-0010 impact=low,public=20110111,reported=20110111,

source=debian,cvss2=1.2/AV:L/AC:H/Au:N/C:N/I:P/A:N↪→

2 ...

3 CVE-2014-9680 impact=moderate,public=20141016,reported=20150210,

source=gentoo,cvss2=3.0/AV:L/AC:M/Au:S/C:N/I:P/A:P↪→

4 ...

5 CVE-2019-14287 impact=important,public=20191014:1500,

reported=20191010,source=distros,

cvss3=7.0/CVSS:3.0/AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:H/A:H,

impact(RHBA-2019:3248)=moderate

↪→

↪→

↪→

Listing 5: cve dates.txt entries.

1 RHBA-2015:2424 20151119:0621 (cdn)

2 ...

3 RHSA-2012:0309 20120221:0220 (rhn)

4 ...

5 RHSA-2015:1409 20150720:1406 (cdn)

6 ...

7 RHSA-2020:0388 20200204:1256 (cdn)

Listing 6: release dates.txt entries.

58 Chapter 5. A model to compare Windows of Vulnerability

1 RHBA-2015:2424 CVE-2014-9680

cpe:/o:redhat:enterprise_linux:7::client/sudo,

cpe:/o:redhat:enterprise_linux:7::computenode/sudo,

cpe:/o:redhat:enterprise_linux:7::server/sudo,

cpe:/o:redhat:enterprise_linux:7::workstation/sudo

↪→

↪→

↪→

↪→

2 ...

3 RHSA-2012:0309 CVE-2011-0010

cpe:/o:redhat:enterprise_linux:5::client/sudo,

cpe:/o:redhat:enterprise_linux:5::server/sudo

↪→

↪→

4 ...

5 RHSA-2015:1409 CVE-2014-9680

cpe:/o:redhat:enterprise_linux:6::client/sudo,

cpe:/o:redhat:enterprise_linux:6::computenode/sudo,

cpe:/o:redhat:enterprise_linux:6::server/sudo,

cpe:/o:redhat:enterprise_linux:6::workstation/sudo

↪→

↪→

↪→

↪→

6 ...

7 RHSA-2020:0388 CVE-2019-14287

cpe:/o:redhat:rhel_e4s:8.0::baseos/sudo↪→

Listing 7: rhsamapcpe.txt entries.

Red Hat Errata (RHSA, RHBA, and RHEA)

Red Hat Errata, often called advisories or errata advisories, help users determine

what updates are available and how important they are based on analysis per-

formed by Red Hat engineering [S35]. These advisories come in three types:

• Red Hat Security Advisory (RHSA): RHSAs contain one or more se-

curity fixes and might also contain bug or enhancements fixes. RHSAs are

ranked using a severity rating (Low, Moderate, Important, or Critical) based

on the severity of the vulnerability.

5.4. Implementation 59

• Red Hat Bug Advisory (RHBA): RHBAs always contain one or more

bug fixes and might contain enhancements, but do not contain security fixes.

• Red Hat Enhancement Advisory (RHEA): RHEAs contain one or more

enhancements or new features and do not contain bug fixes or security fixes.

Essentially, a RHEA is released when new features are added and an updated

package is shipped.

From the given definitions only RHSAs should be considered for security related

work. However, sometimes RHEAs or RHBAs (like RHBA-2015:2424) can also

address a security flaw: this happens when, after their issue, it is discovered that

they also fix vulnerabilities of previous software version(s). So, to avoid confusion

determined by sudden ID changes, the advisories are not re-labelled as RHSAs.

5.4.6 Considerations on tools and data provided by the

distros

Disclaimer: this section contains considerations based on my experience with the

tools and the data used to implement DiVulker. Debian and Red Hat are very big

ecosystems: all the proposed suggestions and possible improvements will probably

need to be reviewed and adapted considering other aspects I am unaware of. On

the whole, I have a few criticisms that are to be considered constructive, as their

aim is to grant an overall higher quality experience.

Debian

Starting with the tools offered by Debian Security Tracker, even if they could

probably solve many parsing related problems, I decided to not use them for the

following reasons:

• they are built with a weakly typed language (Python) and, for this reason,

often it is not clear how the models are defined

• they are not provided as libraries downloadable through a package manager

(i.e. pip), making difficult to track updates and possible breaking changes

60 Chapter 5. A model to compare Windows of Vulnerability

• they lack modularity: the scripts are mostly 500-1500 lines long, hindering

an external user to easily approach and understand the API

For what concerns Debian snapshot archive, even if the retrieval procedure is very

slow due to the high quantity of HTTP requests needed to gather its data, I do

not think anything has to be modified, since its goal is way wider than simply

tracking security related information.

However, considering the exposed problems, I think Debian Security Tracker data

(CVE/list, DSA/list and DLA/list) needs to be redesigned. Probably a first step

could be the creation of a tool to identify all the inconsistencies in the files, so

that they can be manually fixed. A second step could be the conversion of the

data to a new easier to use format, maybe using JSON instead of a custom plain

text format. Such format should try to avoid as much as possible information

duplication (i.e. storing only in one file the data of the affected Debian releases)

reducing the possibility to introduce inconsistencies among different files. Moreover

I think that new IDs need to be introduced to track release dates of fixes that did

not come with a security advisory.

Red Hat

Even if the provided Red Hat security data are quite easy to use, there is still

margin for improvements:

• A JSON version (or other machine readable format) could be introduced,

clarifying immediately how the data is structured.

• A change tracking system is not present: Debian uses Git to give users

transparency of the applied changes.

• Few very old issues do not have a RHSA/RHBA/RHEA and, for this reason,

they appear to be unfixed. However I do not think that even minor security

problems gets ignored for such a long time.

5.4. Implementation 61

• Since the data are only available via HTTP requests, “META” files like the

one provided by NVD avoid useless parsing when the files have not been

modified.

• Older entries use superseded formats: vulnerability scores using CVSS v3

should be added to the entries that only use CVSS v2, keeping the informa-

tion backward compatible with other tools.

• CPE URIs are stored with different formats: the parsing effort is conse-

quently increased, since it needs to match the values against multiple possi-

bilities.

Chapter 6

Vulnerability data analysis

This chapter explains how a Window of Vulnerability of a CVE Entry is computed

and shows some results obtained by analyzing the vulnerability data.

6.1 CVE Window of Vulnerability formula

To compute a Window of Vulnerability of a distro for a certain CVE Entry it is

necessary to have:

• the date of disclosure (DD)

• the date of fix (FD)

The formula to compute a WoV is:

CV E WoV = FD −DD

If its result is a number less than or equal to 0 it means that the fix was released

before or the same day as the vulnerability was disclosed: systems promptly up-

dating their software should not worry about such vulnerability being exploited

in the wild (obviously this is only true if the details of the vulnerability remain

known only to those entrusted with its fixing).

Since DiVulker supports more than one vulnerability data source for both disclo-

sures and fixes, for each CVE Entry having multiple dates information I considered

only the earliest one (respectively called EDD and EFD):

CV E WoV = EFD − EDD

63

64 Chapter 6. Vulnerability data analysis

Moreover, it may occur that a CVE Entry affects more than one package, which

fixes are released at different times. Therefore, the resulting Window of Vulnera-

bility will be obtained by taking the average WoV of all the affected packages:

CV E WoV =
1

n

n∑
p=1

(EFDp − EDD)

where “n” represents the number of packages affected by the vulnerability and

EFDp is the earliest fix date for a certain package.

6.2 Vulnerability data analysis results

This section will show some data inferred from the Data Comparator microservice.

The WoV data metrics are always:

• expressed in days, since the window usually ranges from few weeks to 3-4

months;

• computed only on fixed packages (so CVEs without any fix are excluded),

since older unfixed issues largely impact on the final results.

Table 6.1 makes an overview on the whole dataset of the two analyzed distributions.

As expected from the data sources issues showed in the previous chapter, Debian

has a lot of CVEs without a fix: however this does not necessarily mean that

they are actually unfixed, but more probably that no security advisories or Debian

Snapshot data were found. As a matter of fact, later charts will show that many

old CVEs remain unfixed for more than 10 years, and that is quite unlikely.

Distro Pkgs Number CVEs Number Fixed CVEs Number Average WoV

Debian 3735 27715 22891 115.7

Red Hat 4647 13457 13424 83.1

Table 6.1: Table showing the dataset available for the two distributions.

Another peculiarity of Debian distro is that it has almost a 4 months wide average

WoV, despite its team declares putting effort in tracking and fixing security issues:

6.2. Vulnerability data analysis results 65

therefore, I divided the dataset by CVE ID year, discovering that the WoV of older

CVEs have an high impact on the overall WoV (Table 6.2). This can be explained

historically: the CVE standard was defined in 1999 and with it arose a greater

interest and effort with security tracking and so, it is reasonable to think that

distributions fully adapted to it with some delay, leading older data to be less

precise. To have a better representation of Table 6.2 data, Figure 6.1 shows a

graphical representation of its WoV column excluding:

• CVEs with the ID year portion before 2002, since they significantly impact

on the chart scale

• CVEs with 2020 ID year portion, since their data is partial (other IDs can

be assigned during the current year)

The analysis of this data reveals that, despite the number of CVEs affecting Debian

packages is often more than twice the ones affecting Red Hat, their average WoV

tends to be almost always lower. Thus, considering the entire dataset could be

misleading.

Figure 6.1: Average Window of Vulnerability divided by CVE ID year.

66 Chapter 6. Vulnerability data analysis

Debian Red Hat

Year Total CVEs Fixed CVEs Avg WoV Count CVEs Fixed CVEs Avg WoV

1999 5 4 1913.3 7 2 2643.5

2000 9 3 2844.0 96 85 38.2

2001 24 9 829.7 155 150 63.0

2002 312 160 111.6 220 215 106.8

2003 399 254 83.1 196 193 83.3

2004 711 375 117.7 311 310 88.0

2005 1001 871 56.9 446 445 81.3

2006 1000 918 83.5 364 363 112.2

2007 1063 935 54.8 439 438 117.2

2008 1150 1011 41.6 467 467 98.3

2009 1045 968 51.9 529 529 52.3

2010 1252 1135 32.5 699 699 58.4

2011 1256 1127 26.8 640 640 61.6

2012 1431 1234 36.5 729 729 60.6

2013 1631 1456 31.2 953 953 63.0

2014 1758 1527 25.2 950 950 76.4

2015 1701 1510 18.9 1230 1230 51.8

2016 2306 2005 21.1 1342 1342 70.2

2017 3399 2840 48.0 1100 1100 106.5

2018 2835 2271 44.3 1221 1221 158.5

2019 2599 1954 25.5 1103 1103 91.0

2020 828 324 7.0 260 260 15.0

Table 6.2: CVE dataset divided by CVE ID year.

For what concerns the dataset splitting, the year portion of a CVE ID does not

actually represent the date when vulnerabilities have been disclosed: for example

CVE-2017-111371 still has the “RESERVED” state and so, its disclosure year date

will surely differ from the CVE ID year portion.

1https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-11137

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-11137

6.2. Vulnerability data analysis results 67

Therefore, as shown in Figure 6.2 and Figure 6.3, I grouped CVEs by the year of

their earliest disclosure. The charts display data considering a 10 year range of

CVE IDs common to both distros:

• The first compares the total number of CVEs in common and the number

of fixed CVEs of each distro. As expected, Debian has a slightly inferior

number of fixes, due to the previously highlighted problems concerning the

lack of information.

• The latter compares their average WoV. It can be observed that, except from

2009 to 2011, the trends have a similar curvature, however, it is clear how

Debian presents a faster response.

Figure 6.2: Fixed disclosures number of common CVE IDs.

68 Chapter 6. Vulnerability data analysis

Figure 6.3: Average WoV of common CVE IDs.

Other interesting data can be observed by relating the average WoV with the

CVEs severity:

• For Debian (Figure 6.4) the trend shows that:

– from 2009 to 2015 there is no correlation between the closure of the

WoV and the CVEs severity

– from 2016 higher severity CVEs tend to have a lower WoV

– the WoV tends to decrease over the years

• For Red Hat (Figure 6.5) the trend shows from the start an overall increased

effort in closing the WoV of higher severity issues. Unexpectedly, the aver-

age WoV increases over time: this might be due to the fact that nowadays

Red Hat maintains its products for at least 10 years, resulting in a slower

vulnerability patching speed.

6.2. Vulnerability data analysis results 69

Figure 6.4: Debian’s average WoV divided by vulnerability severity.

Figure 6.5: Red Hat’s average WoV divided by vulnerability severity.

70 Chapter 6. Vulnerability data analysis

I also tried to find out whether there is some sort of correlation between disclosures

release dates and the period of the year. To do so, I considered all the distros

related CVEs: in Figure 6.6 it can be observed how on May, August and November

there are usually less vulnerabilities disclosures (probably due to festivities).

Figure 6.6: Number of disclosures per months from 2014 to 2019.

As an ulterior proof, in Figure 6.7 the same CVEs are grouped by the day of the

week they have been disclosed, actually showing that the number of disclosures

tend to decrease over the weekend.

Lastly the most used packages are another interesting aspect to take under sta-

tistical analysis: Debian weekly publishes on the Debian Popularity Contest page

[S36] statistics on which are its user’s most used packages. Unfortunately most of

the top used packages are:

• Utility tools, like grep, gzip or sed, which have almost no vulnerability reports

• Debian specific tools, like dpkg or debconf, which are not present in Red Hat

based products

making actual comparisons meaningless.

6.2. Vulnerability data analysis results 71

Figure 6.7: Number of disclosures per day of the week from 2014 to 2019.

For this reason, I took the top 10 vulnerable packages for each distro and com-

puted the respective average WoV. As shown in Table 6.3, the packages with the

most number of vulnerabilities are web browsers, mail clients and the Linux kernel,

showing how the attacks mainly target highly used user applications or the system

itself.

Sometimes performing this kind of analysis considering the overall WoV of a prod-

uct reveals some complications: outside of package naming discrepancies between

the distributions, the same product could be identified by different package names.

Clear examples are the products referring to programming languages, like php5,

openjdk-6 or java-1.7.0-openjdk, which major and sometimes minor versions ap-

pear in the package name.

72 Chapter 6. Vulnerability data analysis

Debian Red Hat

Package Name Count Avg WoV Package Name Count Avg WoV

chromium-browser 1471 45.3 rhel extras 3186 18.6

linux 1072 87.4 kernel 1230 109.1

iceweasel 607 231.5 firefox 1092 8.2

firefox 543 76.6 flash-plugin 925 3.4

icedove 536 239.4 thunderbird 862 9.0

imagemagick 492 31.6 rhel productivity 592 13.2

wireshark 484 19.4 java-1.6.0-ibm 514 67.2

php5 482 169.8 xulrunner 471 7.7

openjdk-6 472 220.2 rhel extras oracle java 408 44.3

xulrunner 378 204.8 java-1.7.0-openjdk 402 42.9

Table 6.3: Top 10 most vulnerable packages. Note that Debian identifies the Linux

the kernel vulnerabilities as “linux”, while Red Hat labels them as “kernel”.

To sum up the data analysis, it is quite clear that the Debian distribution, es-

pecially in the last years, is the winner in terms of fix response. However, it

is remarkable that the introduction of the missing fix dates information (approxi-

mately the 17.4% of Debian total CVEs) could largely change the obtained results.

Moreover, when choosing a distribution, it should be also evaluated only the WoV

of the packages that will be highly used by the organization, focusing the compar-

ison between a restricted set of products. Finally the number of discovered CVEs

is another factor to take into account: having a slower fix response and a lower

number of discovered CVEs could be preferable for small businesses, which can

not afford to frequently invest their resources in the maintenance required by the

patching operations.

Chapter 7

Conclusions

The main objective of this thesis was the design and the implementation of a tool

to measure the Window of Vulnerability of GNU/Linux distributions software. I

will now review the topics I faced to come to its realization.

At first, it was necessary to identify the available vulnerability metrics standards,

required to uniquely identify vulnerabilities across different systems, as well as

their properties, such as affected products and issue severity. The challenging side

of this step was retrieving all the required documentation (maintained by different

institutions) to understand the purpose of each standard and how they come into

play when considering the bigger picture.

Then, I defined what is a software Window of Vulnerability by proposing a new

vulnerability life cycle model: this model, compared to the ones proposed in other

related researches, defines with a greater level of detail the vulnerability correction

phase, considering also the patching procedure on the final end systems. This is

remarkable since it determines when the Window of Vulnerability caused by a

vulnerable software gets actually closed.

After showing a brief overview of security patches application problems created

by:

• system administrators, that often neglect them to avoid dealing with trou-

blesome maintenance operations,

• software developers, that mainly put their effort in developing new function-

alities for their products, and so overlook the review of security implication

borrowed by the third-party library they use,

I showed how using a package management system to install, update and delete

system software can improve the overall system security:

73

74 Chapter 7. Conclusions

• at first by explaining their intrinsic advantages, such as automatic integrity

and authenticity checks of downloaded software or easier dependencies man-

agement;

• then by presenting Debian’s effective package management model, which is

acknowledged and appreciated by the community for its stability and secu-

rity.

For this reason and also due to the fact that package managers represent nowadays

the standard way to manage software in GNU/Linux distributions, the developed

tool is designed around computing and assessing the Window of Vulnerability of

software distributed through them. The tool was designed using a microservice

based architecture, allowing it to be modular and to scale by distributing its work-

load across different devices. Other benefits of this design choice are:

• future extensions are not bound to the implementation language used for its

development;

• the microservices data can be used outside of the system, reducing the

amount of work necessary in future security related researches.

Finally, the vulnerability data analysis results showed how, even though the amount

of discovered vulnerabilities increases over the years, the effort put in their fixing

has fortunately risen as well. In addition, these results, together with other con-

siderations aimed to improve the quality of the data used to develop the project,

will be sent to the Debian security team, that expressed interest in the discoveries

of this research.

7.1 Future works

The designed system has been realized with the aim to support other vulnerability

related researches. Surely adding more distributions to the analysis can produce

even more interesting results. It should be noted that, even if the system was

designed on GNU/Linux systems, it can be adapted with little or no modification

to any system using a package manager to install, update and remove its software.

7.1. Future works 75

To this end, I suggest considering also:

• Unix-like distributions, for example as FreeBSD1 and OpenBSD2;

• rolling distributions, like Arch Linux3 or Gentoo Linux4;

which, in my first analysis, seemed to have all the requirements needed to perform

a Window of Vulnerability related research.

Otherwise, it could be interesting to compare the Window of Vulnerability of soft-

ware provided via distribution official repositories with the one provided via system

agnostic repositories like Snapcraft and Flathub.

Finally, my research did not take into account the distribution code name af-

fected by a vulnerability and which package version fixed the issue, as many issues

emerged while parsing the available data. If anything changes in the data provided

by the analyzed distributions, or other distributions have such information, they

can be used to:

1. observe if the fix response decreases when the distro release switches to long

term support or approaches to its end of life

2. determine the local system Window of Vulnerability, analyzing how long it

takes to install security fixes in respect to their availability

1https://www.freebsd.org/security/security.html
2https://www.openbsd.org/security.html
3https://security.archlinux.org/issues/all
4https://security.gentoo.org/glsa/

https://www.freebsd.org/security/security.html
https://www.openbsd.org/security.html
https://security.archlinux.org/issues/all
https://security.gentoo.org/glsa/

Appendix A

Project Deployment

The project is publicly available for download and use on BitBucket1 under the

GNU General Public License v3.0.

The project is configured as a Gradle multi-project, where each microservice is

treated like a module. The main modules of the project are:

• common: module used as an internal library to share common code among

all the other project modules

• debian: module containing Debian distribution Data Retrievers and Data

Aggregator microservices

• distro-data-comparator: module containing the Data Comparator mi-

croservice

• general-retrievers: module containing MITRE and NVD Data Retrievers

and General Aggregator miscroservices

• launcher: utility module that provides a quick way to setup and run the

entire system

• red-hat: module containing Red Hat distribution Data Retrievers and Data

Aggregator microservices

• registry: module containing Registry microservice

In addition to these modules, inside the folder web-gui there is a very simple

frontend developed in Angular that allows to show some statistics by contacting

the distro-data-comparator microservice.

1Repository: https://bitbucket.org/FlamingTuri/divulker/src/master/

77

https://bitbucket.org/FlamingTuri/divulker/src/master/

78 Appendix A. Project Deployment

System requirements

The project requirements are:

• Java 8 or greater, to run the microservices

• npm and npx, to run the web-gui frontend

Microservices execution order

At the current system state, its microservices need to be executed in a specific

order:

1. Registry Service, necessary to make the other microservices discoverable

2. Distro Specific Data Retrievers

3. Distro Data Aggregators

4. General Data Retrievers

5. General Data Aggregators

6. Data Comparator

Since in the actual system version the microservices keep all the data in memory,

they can be shut down when all the necessary data has been retrieved by their

“client” microservices, thus avoiding memory saturation problems.

To ease the system deployment burden, the project provides inside launcher mod-

ule an application that will run the microservices in the correct order, by waiting

the subscription of a microservice to the Registry Service before launching a new

one. The application relies on MultiModuleDeployer2, a library I developed to

setup and execute projects composed by multiple applications. The library is still

a work in progress:

• on GNU/Linux systems with Gnome Terminal set as default terminal appli-

cation everything should work smoothly,

2Repository: https://github.com/FlamingTuri/multi-module-deployer

https://github.com/FlamingTuri/multi-module-deployer

79

• on Mac Os systems, due to recent changes on permission settings, it might

be required to allow AppleScript to send keystrokes (used to open different

terminal applications)

• on Windows systems the library should work, but is not deeply tested

At its first usage the library will create the “.multi-module-deployer” folder inside

the user’s home directory. In this directory will be stored the script used to open

and run commands in a new terminal, which can be easily modified to fix possible

bugs or to change the default terminal application used to run the commands.

Project files and distributed deployment

The project files will be saved inside “.divulker” directory located in the user’s

home folder. To deploy the system over multiple devices the “registryLocation-

Config.json” file needs to be modified, specifying the address at which the Registry

Service can be found.

Bibliography

[B1] William Stallings and Lawrie Brown.

Computer Security: Principles and Practice. 3rd.

USA: Prentice Hall Press, 2014. isbn: 0133773922.

[B2] Barbara Guttman and Edward A. Roback.

SP 800-12. An Introduction to Computer Security: The NIST Handbook.

Tech. rep. Gaithersburg, MD, USA, 1995.

[B3] CVE Board. Common Vulnerabilities and Exposures (CVE R©) Numbering

Authority (CNA) Rules V.3, pp. 1–2, 6.

url: https://cve.mitre.org/cve/cna/CNA_Rules_v3.0.pdf.

[B4] Brant A. Cheikes, David Waltermire, and Karen Scarfone.

Common Platform Enumeration: Naming Specification Version 2.3.

NIST, Aug. 2011, pp. 8–13. url:

https://nvlpubs.nist.gov/nistpubs/Legacy/IR/nistir7695.pdf.

[B5] Dan Goodin. “Eight months after discovery, unkillable LoJax rootkit

campaign remains active”. In: (Jan. 2019).

url: https://arstechnica.com/information-

technology/2019/01/8-months-after-its-discovery-unkillable-

lojax-rootkit-campaign-remains-active/.

[B6] Lily Hay Newman.

“An Ingenious Data Hack Is More Dangerous Than Anyone Feared”.

In: (Nov. 2018). url:

https://www.wired.com/story/rowhammer-ecc-memory-data-hack/.

[B7] W. A. Arbaugh, W. L. Fithen, and J. McHugh.

“Windows of vulnerability: a case study analysis”.

In: Computer 33.12 (Dec. 2000), pp. 52–59. doi: 10.1109/2.889093.

url: https://ieeexplore.ieee.org/document/889093.

81

https://cve.mitre.org/cve/cna/CNA_Rules_v3.0.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/IR/nistir7695.pdf
https://arstechnica.com/information-technology/2019/01/8-months-after-its-discovery-unkillable-lojax-rootkit-campaign-remains-active/
https://arstechnica.com/information-technology/2019/01/8-months-after-its-discovery-unkillable-lojax-rootkit-campaign-remains-active/
https://arstechnica.com/information-technology/2019/01/8-months-after-its-discovery-unkillable-lojax-rootkit-campaign-remains-active/
https://www.wired.com/story/rowhammer-ecc-memory-data-hack/
https://doi.org/10.1109/2.889093
https://ieeexplore.ieee.org/document/889093

82 Bibliography

[B8] O. H. Alhazmi and Y. K. Malaiya.

“Quantitative vulnerability assessment of systems software”.

In: Annual Reliability and Maintainability Symposium, 2005. Proceedings.

Jan. 2005, pp. 615–620. doi: 10.1109/RAMS.2005.1408432.

[B9] Stefan Frei et al. “Large-Scale Vulnerability Analysis”. In: Proceedings of

the 2006 SIGCOMM Workshop on Large-Scale Attack Defense.

LSAD ’06. Pisa, Italy: Association for Computing Machinery, 2006,

pp. 131–138. isbn: 1595935711. doi: 10.1145/1162666.1162671.

url: https://doi.org/10.1145/1162666.1162671.

[B10] P. K. Kapur, V. S. S. Yadavali, and A. K. Shrivastava.

“A comparative study of vulnerability discovery modeling and software

reliability growth modeling”.

In: 2015 International Conference on Futuristic Trends on Computational

Analysis and Knowledge Management (ABLAZE). 2015, pp. 246–251.

[B11] Jeffrey Jones. “Estimating Software Vulnerabilities”.

In: Security & Privacy, IEEE 5 (Aug. 2007), pp. 28–32.

doi: 10.1109/MSP.2007.81.

[B12] Erik Derr et al. “Keep Me Updated: An Empirical Study of Third-Party

Library Updatability on Android”. In: Proceedings of the 2017 ACM

SIGSAC Conference on Computer and Communications Security.

CCS ’17.

Dallas, Texas, USA: Association for Computing Machinery, 2017,

pp. 2187–2200. isbn: 9781450349468. doi: 10.1145/3133956.3134059.

url: https://doi.org/10.1145/3133956.3134059.

[B13] Michael Backes, Sven Bugiel, and Erik Derr. “Reliable Third-Party

Library Detection in Android and Its Security Applications”.

In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and

Communications Security. CCS ’16.

Vienna, Austria: Association for Computing Machinery, 2016,

https://doi.org/10.1109/RAMS.2005.1408432
https://doi.org/10.1145/1162666.1162671
https://doi.org/10.1145/1162666.1162671
https://doi.org/10.1109/MSP.2007.81
https://doi.org/10.1145/3133956.3134059
https://doi.org/10.1145/3133956.3134059

Bibliography 83

pp. 356–367. isbn: 9781450341394. doi: 10.1145/2976749.2978333.

url: https://doi.org/10.1145/2976749.2978333.

[B14] D. Spinellis. “Package Management Systems”.

In: IEEE Software 29.2 (2012), pp. 84–86.

[B15] Debian Developer’s Reference - Resources for Debian Members.

url: https://www.debian.org/doc/manuals/developers-

reference/resources.html.

https://doi.org/10.1145/2976749.2978333
https://doi.org/10.1145/2976749.2978333
https://www.debian.org/doc/manuals/developers-reference/resources.html
https://www.debian.org/doc/manuals/developers-reference/resources.html

Sitography

[S1] Network Working Group. Internet Security Glossary, Version 2.

May 2007. url: https://tools.ietf.org/html/rfc4949.

[S2] Script kiddie definition.

url: https://www.computerhope.com/jargon/s/scriptki.htm.

[S3] Joint Task Force Transformation Initiative.

Guide for Conducting Risk Assessments. Sept. 2012. url: https:

//csrc.nist.gov/publications/detail/sp/800-30/rev-1/final.

[S4] NVD vulnerabilities. url: https://nvd.nist.gov/vuln.

[S5] MITRE - About CVE.

url: https://cve.mitre.org/about/index.html.

[S6] RFC 5646. url: https://tools.ietf.org/html/rfc5646.

[S7] Common Vulnerability Scoring System SIG.

url: https://www.first.org/cvss/.

[S8] Vulnerability Metrics.

url: https://nvd.nist.gov/vuln-metrics/cvss.

[S9] About CWE. url: https://cwe.mitre.org/about/index.html.

[S10] Meltdown and Spectre. url: https://meltdownattack.com/.

[S11] Moritz Lipp et al. Meltdown. 2018. arXiv: 1801.01207 [cs.CR].

url: https://arxiv.org/abs/1801.01207.

[S12] Paul Kocher et al. Spectre Attacks: Exploiting Speculative Execution.

2018. arXiv: 1801.01203 [cs.CR].

url: https://arxiv.org/abs/1801.01203.

[S13] NVD General Information. url: https://nvd.nist.gov/general.

[S14] Lexico window of vulnerability definition. url:

https://www.lexico.com/definition/window_of_vulnerability.

85

https://tools.ietf.org/html/rfc4949
https://www.computerhope.com/jargon/s/scriptki.htm
https://csrc.nist.gov/publications/detail/sp/800-30/rev-1/final
https://csrc.nist.gov/publications/detail/sp/800-30/rev-1/final
https://nvd.nist.gov/vuln
https://cve.mitre.org/about/index.html
https://tools.ietf.org/html/rfc5646
https://www.first.org/cvss/
https://nvd.nist.gov/vuln-metrics/cvss
https://cwe.mitre.org/about/index.html
https://meltdownattack.com/
https://arxiv.org/abs/1801.01207
https://arxiv.org/abs/1801.01207
https://arxiv.org/abs/1801.01203
https://arxiv.org/abs/1801.01203
https://nvd.nist.gov/general
https://www.lexico.com/definition/window_of_vulnerability

86 Sitography

[S15] Bruce Schneier. The Non-Security of Secrecy. Oct. 2004. url:

https://www.schneier.com/essays/archives/2004/10/the_non-

security_of.html.

[S16] Bruce Schneier. The Process of Security. Apr. 2000.

url: https://www.schneier.com/essays/archives/2000/04/the_

process_of_secur.html.

[S17] Third-party software component.

url: https://www.semanticscholar.org/topic/Third-party-

software-component/174394.

[S18] apt man page.

url: https://manpages.debian.org/stretch/apt/apt.8.en.html.

[S19] RPM Package Manager homepage. url: https://rpm.org/.

[S20] OneGet GitHub. url: https://github.com/oneget/oneget.

[S21] Chocolatey homepage. url: https://chocolatey.org/.

[S22] Npm home page. url: https://www.npmjs.com/.

[S23] Debian oldstable FAQ.

url: https://wiki.debian.org/DebianOldStable.

[S24] Debian Backports homepage. url: https://backports.debian.org/.

[S25] Lucas Nussbaum. Debian Packaging Tutorial.

url: https://www.debian.org/doc/manuals/packaging-

tutorial/packaging-tutorial.en.pdf.

[S26] Debian Security Information.

url: https://www.debian.org/security/.

[S27] Alpine Linux: Mailing lists. June 2017. url:

https://wiki.alpinelinux.org/w/index.php?title=Alpine_Linux:

Mailing_lists&oldid=13584.

https://www.schneier.com/essays/archives/2004/10/the_non-security_of.html
https://www.schneier.com/essays/archives/2004/10/the_non-security_of.html
https://www.schneier.com/essays/archives/2000/04/the_process_of_secur.html
https://www.schneier.com/essays/archives/2000/04/the_process_of_secur.html
https://www.semanticscholar.org/topic/Third-party-software-component/174394
https://www.semanticscholar.org/topic/Third-party-software-component/174394
https://manpages.debian.org/stretch/apt/apt.8.en.html
https://rpm.org/
https://github.com/oneget/oneget
https://chocolatey.org/
https://www.npmjs.com/
https://wiki.debian.org/DebianOldStable
https://backports.debian.org/
https://www.debian.org/doc/manuals/packaging-tutorial/packaging-tutorial.en.pdf
https://www.debian.org/doc/manuals/packaging-tutorial/packaging-tutorial.en.pdf
https://www.debian.org/security/
https://wiki.alpinelinux.org/w/index.php?title=Alpine_Linux:Mailing_lists&oldid=13584
https://wiki.alpinelinux.org/w/index.php?title=Alpine_Linux:Mailing_lists&oldid=13584

Sitography 87

[S28] [alpine-devel] Alpine security tracker discussion.

url: https://lists.alpinelinux.org/~alpine/devel/

%3CCANtECw8gn93aiQ4qGoGcM3TJ4C6vLAK45cp62_nmHEL1usfg7A%

40mail.gmail.com%3E.

[S29] CVEProject/cvelist GitHub.

url: https://github.com/CVEProject/cvelist.

[S30] MITRE Download CVE List page.

url: https://cve.mitre.org/data/downloads/index.html.

[S31] NVD Data Feeds - JSON Feeds.

url: https://nvd.nist.gov/vuln/data-feeds#JSON_FEED.

[S32] Debian Security Tracker.

url: https://security-team.debian.org/security_tracker.html.

[S33] Debian Snapshot Archive. url: https://snapshot.debian.org/.

[S34] Red Hat Security Data.

url: https://www.redhat.com/security/data/metrics/.

[S35] Explaining Red Hat Errata (RHSA, RHBA, and RHEA).

url: https://access.redhat.com/articles/2130961.

[S36] Debian Popularity Contest.

url: https://popcon.debian.org/stable/index.html.

https://lists.alpinelinux.org/~alpine/devel/%3CCANtECw8gn93aiQ4qGoGcM3TJ4C6vLAK45cp62_nmHEL1usfg7A%40mail.gmail.com%3E
https://lists.alpinelinux.org/~alpine/devel/%3CCANtECw8gn93aiQ4qGoGcM3TJ4C6vLAK45cp62_nmHEL1usfg7A%40mail.gmail.com%3E
https://lists.alpinelinux.org/~alpine/devel/%3CCANtECw8gn93aiQ4qGoGcM3TJ4C6vLAK45cp62_nmHEL1usfg7A%40mail.gmail.com%3E
https://github.com/CVEProject/cvelist
https://cve.mitre.org/data/downloads/index.html
https://nvd.nist.gov/vuln/data-feeds#JSON_FEED
https://security-team.debian.org/security_tracker.html
https://snapshot.debian.org/
https://www.redhat.com/security/data/metrics/
https://access.redhat.com/articles/2130961
https://popcon.debian.org/stable/index.html

Ringraziamenti

Ringrazio innanzitutto il professor Gabriele D’Angelo per avermi dato l’opportunità

di affrontare un’interessante e non banale tematica di sicurezza informatica e per

avermi guidato nella realizzazione di questa tesi con estrema disponibilità ed at-

tenzione. Ringrazio inoltre Stefano Zacchiroli e Salvatore Bonaccorso per le delu-

cidazioni fornite riguardo ai dati offerti dagli strumenti Debian, che mi hanno

consentito di ottenere risultati sicuramente più significativi. Un grazie ai miei

familiari che, nonostante i momenti difficili, specialmente dell’ultimo periodo, mi

hanno sempre sostenuto e creduto in me. Infine un grazie anche ai miei amici,

universitari e non, che mi hanno aiutato a vivere più serenamente questo percorso.

Grazie veramente a tutti, potrà non sembrare, ma anche nelle piccole cose il vostro

supporto ha contribuito a fare la differenza.

	Frontispiece
	Contents
	Introduction
	Security Concepts Overview
	Key objectives of computer security
	Computer security terminology
	System resources typologies
	Kinds of attackers

	Vulnerabilities, metrics and involved parties
	What is a vulnerability?
	Identifying and classifying vulnerabilities
	Common Vulnerabilities and Exposures
	CVE Entries
	CVE Community
	MITRE's Role

	Common Platform Enumeration
	CPE Specifications

	Common Vulnerability Scoring System
	Common Weakness Enumeration
	CWE objectives

	National Vulnerability Database role
	NVD data

	Information Systems and Windows of Vulnerability
	States of information systems
	Phases of information systems
	Window of Vulnerability
	Vulnerability life cycle
	Zero day vulnerabilities in the life cycle
	Reducing the attack chance
	The dilemma of security patches application

	Security concerns in software third-party dependencies
	Applications and software dependencies
	Static linking
	Dynamic linking
	Dynamic loading
	Dependencies strategies overview

	Package management systems
	Package Manager Typologies

	Debian's effective package management model
	Security-related bugs handling

	Agnostic alternatives to platform specific package managers

	A model to compare Windows of Vulnerability
	Requirement analysis
	Vulnerability data sources selection

	Architecture design
	Microservices

	Detailed design
	Vulnerability Data Services interactions
	Vulnerability Data Services hierarchy
	Data Aggregators: messages and data handling
	Data retrieval procedure

	Implementation
	Technologies
	Vulnerability Identifiers and Data Structure
	General Retrievers
	Debian Retrievers
	Red Hat Retrievers
	Considerations on tools and data provided by the distros

	Vulnerability data analysis
	CVE Window of Vulnerability formula
	Vulnerability data analysis results

	Conclusions
	Future works

	Project Deployment
	Bibliography
	Sitography
	Thanksgivings

