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Science is built of facts the way a house is built of bricks;
but an accumulation of facts is no more science

than a pile of bricks is a house.
Henri Poincaré

Do not trust a theory until it has been supported by experiment;
and do not trust experimental results

until they have been supported by theory.
Sir Arthur Eddington
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Sommario

In questa tesi, si vuole investigare l’effetto che la fisica oltre il modello standard ha sui
decadimenti semileptonici B → D(∗)`ν`, dove ` può essere un τ , un µ o un elettrone.
Questo lavoro è stato spronato dalle cosiddette anomalie della fisica del B in processi a
corrente carica, che consistono in un tasso del decadimento B → D(∗)τντ più alto rispetto
alle predizioni teoriche. Tra i vari tipi di fisica oltre lo standard model introdotti per
spiegare questa ed altre anomalie del B, la soluzione con un contributo di tipo tensoriale
appare la più convincente e studiata nella letteratura recente, principalmente per la sua
generalità e semplicità. Altri tipi di contributi, come i leptoquarks e il modello a due
Higgs, vengono considerati. Per studiare questi effetti, la tesi è stata organizzata in due
parti: una teorica ed una sperimentale. Nella prima, dopo una introduzione sulle recenti
osservazioni sperimentali che hanno evidenziato queste anomalie, vengono presentate le
conoscenze teoriche necessarie per affrontare l’argomento. Sono quindi spiegati i fattori di
forma, che sono cruciali per descrivere i decadimenti semileptonici, e viene considerata
la loro importanza per fare predizioni affidabili. Si deriva in dettaglio l’ampiezza di
decadimento sia per il caso B → D sia per il B → D∗, mostrando come costruire
osservabili sensibili al contributo di nuova fisica. Ignorando gli effetti del rivelatore nella
ricostruzione dei decadimenti, si attua uno studio sulla sensibilità ai fattori di forma
e alla fisica oltre lo standard model. Dopo aver introdotto i metodi Monte Carlo, si
descrive l’approccio usato per effettuare lo studio di fattibilità sia per il caso di solo
modello standard, sia per il caso di nuova fisica. Infine, vengono mostrati i risultati dello
studio, e vengono presentate le conclusioni e prospettive future riguardo questa area di
ricerca.
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Abstract

In this thesis, we investigate the effects that physics beyond the Standard Model has on
semileptonic decays B → D(∗)`ν`, where ` can be a τ , a µ or an electron. This work has
been motivated by the so called B physics anomalies in charged current processes, which
consist in an anomalous higher rate of the decay B → D(∗)τντ , compared to the theoreti-
cal predictions. Among the various kind of beyond standard model physics introduced to
explain this, and other anomalies in the B decays, the tensor-like contributions appear
the most convincing and studied in the recent literature, mainly for its generality and
simplicity. Other kind of contributions, like leptoquarks and two-Higgs-Doublet model
are also considered. To study these effects, the thesis is organized into two main parts:
a theoretical one and an experimental one. In the former part, after an introduction on
recent experimental observations that have highlighted these anomalies, the theoretical
knowledge required to deal with the topic is illustrated. The form factors, which are
crucial to describe the semileptonic decays, are then explained, and their relevance for
reliable predictions are considered. We derive in detail, the decay amplitude for both the
B → D and B → D∗ cases, showing how to build observables sensitive to new physics
contributions. Ignoring the detector effects in the reconstruction of these decays, we per-
form studies on the sensitivity to the form factors and to physics beyond the standard
model. After introducing the Monte Carlo methods, we describe the approach used to
perform these feasibility studies for both the standard model case only and in the new
physics case. Finally, the results of the studies are shown, and the conclusions and future
perspectives relating to this area of research are presented.
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Introduction

Since the born of quantum mechanics, physicists have tirelessly worked to understand
the intimate structure of nature, carving one of the most fascinating theory human mind
has ever given birth to.

Developed in the early 1970s, the Standard Model is currently the best description
of the subatomic world. It has successfully explained almost all experimental results in
particle physics and precisely predicted a wide variety of phenomena. The particles are
the nature building blocks and they are splitted in two big families: quarks and leptons.
The interactions among them are interpreted as an exchange of other particles called
gauge bosons.

Every number that we can compare is of utmost importance, because this is the
only thing we have to build a proper interpretation of facts. Due to the counterintuitive
nature of quantum mechanics and its abstract mathematic formalism, it is very easy to
confuse the real with the way we depict it. The strength of the theory is in its predictions
capability only, while its intepretation is subject to change.

However, despite being one of the most successful theory of particle physics so far,
it has issues that must be addressed, such as strong CP problem, neutrino oscillations,
matter-antimatter asymmetry and the nature of dark matter and dark energy. For this
reason, Beyond Standard Model Physics is essential to push forward our knowledge of
the universe. Recently, two collaborations, LHCb at the LHC, Belle at the KEKB, have
reported an excess of the decay probability in the processes B̄ → D τ ν̄τ and B̄ → D∗ τ ν̄τ
with respect to SM predictions. These results are in very good agreement with an earlier
observation from the BABAR collaboration for the same decay channels. The decay
rates measured by BABAR in 2012 exceeded the SM predictions by about 3.4σ. When
combined with the new results from LHCb and Belle, the significance of the discrepancy
rises to 3.1-3.7σ depending on the SM prediction considered, making it one of the largest
departures from the SM seen up to now. The HFLAV collaboration reported in Ref.[1]
a comprehensive summary of the most recent results, and the comparison with the SM
predictions. The world average of the existing experimental results of the decay widths
of B̄ → D̄τ ν̄τ , normalized to the widths of the corresponding modes having a light lepton
l = e , µ in the final state [1], are
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R(D) =
Γ(B̄ → D̄τ ν̄τ )

Γ(B̄ → D̄lν̄l)
= 0.340± 0.0027± 0.013,

R(D∗) =
Γ(B̄ → D̄∗τ ν̄τ )

Γ(B̄ → D̄∗lν̄l)
= 0.295± 0.011± 0.008,

where the first and second error are the statistic and systematic uncertainty, respectively.
These results have to be compared with the SM predictions

R(D) =
Γ(B̄ → D̄τ ν̄τ )

Γ(B̄ → D̄lν̄l)
= 0.299± 0.003,

R(D∗) =
Γ(B̄ → D̄∗τ ν̄τ )

Γ(B̄ → D̄∗lν̄l
) = 0.258± 0.005,

which are given by averaging different predictions from differents groups. This dis-
crepancy is usually refererred in the literature as B-flavour anomaly in charged current
processes [11].

The B meson decays have been studied at pp and e+e− colliding beam facilities. At
e+e− a large production of B mesons has been collected by the B-Factories BABAR
and Belle. At the B-Factories, the e+ and e− of the beams annihilate with an energy in
the C.o.M. of 10.58 GeV and produce a particle, commonly refered to as Υ (4S), which

decays to B+B− or B0B
0

pairs. The maximum production rate at the B-Factories was
achieved at the KEK accelerator.

In pp collisions at the typical energy of LHC, the B mesons are instead produced
by the fragmentation of the b-quarks produced mainly by the gluon splitting process
gg∗ → bb̄. The cross section for the pp → bb̄ is about five orders of magnitude larger
than of the e+e− → Υ(4S) at B-Factories. But the much larger backgrounds present in
pp colliders, requires great care in the selection of the event.

The decays like B → Dlνl are called semileptonic because in the final state there are
both leptons and hadrons. These decays involves only the b quark, while the light quark
d̄ (or ū for the B+ case) act simply as a spectator. The b goes into a c emitting a lepton
(τ , µ or e) and the corresponding antineutrino. In the SM, the semileptonic decays are
described by a single tree-level amplitude like the one shown in figure 1. Because there
are no interactions among the leptons and the hadrons in the final state, usually the
predictions about semileptonic decays have small theoretical uncertainties. Moreover,
the QCD corrections are limited to the B → D current and there are theoretical tools
that allow to compute systematically these corrections, for example the Lattice-QCD.

In the semileptonic decays the final state always contains at least one neutrino, mak-
ing the full reconstruction of the kinematic challenging. Furthermore, in almost every
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theoretical approach to the problem, the neutrino is considered left-handed. 1.

Figure 1: Feynman Diagram of the B̄ to D̄lνl
decay.

The study of B̄ meson physics is fun-
damental to investigate and understand
the crucial puzzles of our universe. In or-
der to have some hints on its importance,
theoretically speaking, one might be able
to explain the matter-antimatter asymme-
try using CP violating B meson oscilla-
tions in conjunction with baryon number
violating decays. The theory suggests a
baryogenesis scenario beginning in the pre-
nucleosynthesis early universe with the de-
cays of a long lived scalar into b quarks and
anti-quarks. These decays are assumed to
take place late enough and at low enough

temperature to allow hadronization. Most of the b quarks form B̄0
s and B̄0 mesons.

The neutral B mesons then oscillate and decay, sometimes to baryons or anti-baryons,
resulting in the observed asymmetry. There are models exploring the connection of the
leptoquark solution to the B-meson anomalies, involving an hypothetical new particle
able to allow leptons and quarks to interact, carrying both lepton and baryon num-
bers, with a mechanism of neutrino mass generation and a viable dark matter candidate.
Without any doubts B meson physics is a new and promising field of study, but a lot of
work has yet to be done.

In this thesis we will analyse the sensitivity to new physics scenario and viable meth-
ods to distinguish all the different models. In the first chapter, we will describe the
theoretical background needed, with an introduction to the standard model and flavour
physics. The complete theory of the B decay is shown in the second chapter, with
the focus on the form factors and the effect of their parametrisations, demonstrating
how to incorporate new physics effects on sensible quantities, like the forward-backward
asymmetry. In the third chapter, we will implement the new physics into the SL Decay
software from [9], to conduct a feasibility study on the sensible quantities.

1One could consider a right-handed neutrino falling in a much more cumbersome calculations. But
it seems that right-handed models are disfavoured from LHCb data
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Chapter 1

Theoretical Background

1.1 Flavour and CKM Matrix

In 1964, two physicists, Murray Gell-Mann and George Zweig, independently proposed
the quark model, explaining how the hadrons were not elementary particles but were
in fact made of quarks and antiquarks. In this scheme, quarks are fermions, with spin
1/2 and electric charge ±1/3 or ±2/3, such that baryons are made of three quarks and
mesons are made of quark-antiquark couples.
But there was a strong objetion to the quark model: it appears to violate the Pauli
exclusion principle. Two particles with half integer spins cannot occupy the same state.
The problem arised with the discovery of hadrons made by three identical quarks in the
same state, like the Ω− (sss). Greenberg proposed a way out of this dilemma suggesting
that quarks come in three colors (red, blue, green), such that each of the quarks carried
a different color making them no more identical and invalidating the Pauli principle.
Since all the particles in nature are colorless, meaning that either the total amount of
each color is zero or all three colors are present in equal amounts, the only allowed com-
bination of quarks are qq̄, qqq, q̄q̄q̄.
In 1965, all these concept were mathematically formalized within a non-abelian gauge
group SU(3), giving birth to the QCD (quantum chromodynamics), where the quarks
could interact thanks to eight vector bosons: the gluons.
Parallel to the QCD, the electroweak theory was developing, unifying electromagnetism
and weak interaction. Leptons and quarks can interact via an exchange of four bosons:
W± and Z0, that are massive, and the photon, that is massless. However, the presence of
massive bosons, even if confirmed by experiments, was a nontrivial theoretical issue. The
cornerstone of modern physics is the idea of gauge symmetry, i.e. mathematical transfor-
mations that do not change the physics, regulating redundant degrees of freedom. When
a theory has a Lagrangian invariant under certain Lie groups of local transformations, is
called gauge theory and the symmetries dictate the form of the interactions. Such that
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one has a field theory where the fields can be redefined, but the physics is always the
same. The issue with the electroweak model was that any mass term appearing in the
Lagrangian would have ruined the gauge invariance property and was then forbidden.
To solve this riddle, the idea of spontaneous symmetry breaking comes into play. To
understand it qualitatively, the ferromagnet analogy is often used in literature. Fer-
romagnet can be modeled as spins on a grid. At high temperature the spins point in
random directions, such that the ferromagnet is invariant under rotations. The expec-
tation value of macroscopic quantities vanish. When the temperature is lowered below
the critical temperature, the Curie point, the spins begin to align. The magnetization
becomes non-zero and points in some specific direction. Thus the alignment of the spins
breaks the invariance of the ferromagnet under global rotation.
When a continuous symmetry is spontaneusly broken, the Goldstone theorem imposes
the appearance of massless bosons, one for each generator of the symmetry that is broken.
These bosons were unavoidable but no one had never seen them; it seemed an impasse.
Higgs recognized that in a local gauge symmetry, like the one of the original Yang-Mills
theory, the Goldstone boson turns into the helicity-zero part of a gauge boson. It is
usally said that the Goldstone boson is eaten by the gauge boson, giving it a mass. At
the base of the Higgs mechanism is the assumption of a new field, the Higgs field, whose
non-zero vacuum expectation value breaks the gauge symmetry of the Lagrangian.
The search for the Higgs boson became a major objective of experimental particle physics
and, on 4 july 2012, it was finally observed at CERN.

To present knowledge, matter is made out of three kinds of particles: leptons, quarks
and mediators. Adding everything up, including antimatter counterparts, the nature
counts a large number of elementary particles: 12 leptons, 36 quarks, 12 mediators, plus
the Higgs boson, to reach a minimum of 61 elementary particles, divided in three gener-
ations. In particular, there are six different types of quarks, known as flavours: u (up),
d (down), s (strange), c (charme), b (bottom) and t (top).

Fermions Bosons

I II III

u c t gluons Gµ

d s b photons γ
e µ τ W± & Z
νe νµ ντ Higgs H

Table 1.1: Standard Model particles
Interacting with all the forces, they come with a set of quantum numbers, listed in
table[1.2].
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I generation II generation III generation

u d c s t b

Q +2/3 −1/3 +2/3 −1/3 +2/3 −1/3

I 1/2 1/2 0 0 0 0

Iz +1/2 −1/2 0 0 0 0

Mev/c2 2.3 4.8 95 1275 173210 4180

Table 1.2: Quarks properties

The Standard Model, created from the work on the quark model and the electroweak
theory, is formally a gauge theory, with gauge group SU(3)c × SU(2)W × U(1)Y , where
SU(3) models the strong interactions of colored quarks and gluons, while SU(2)×U(1) is
the Glashow-Weinberg-Salam model of the electroweak interactions. The last ingredient
of the SM is the Brout-Englert-Higgs field H, a collection of complex scalars and has an
expectation value taken to be 1√

2
(0, ν).

The Yukawa interaction between the Higgs and quarks causes not only the masses but
even a phenomenon called mixing. Studying hadron decays, it is clear that there are tran-
sitions between different flavours of quarks. The interpretation of β decay, n→ p+e++ν̄e,
is a good example of how the theory evolved, going from a pointlike interaction to an
exchange of a W boson. This is an example of semileptonic decay, involving leptons and
hadrons.
Leptons and quarks participate in weak interactions through charged currents con-
structed from pairs of left-handed fermion states with the same universal coupling. After
spontaneous symmetry breaking, the most general quark mass term, expressed in the
gauge eigenstates, takes the form [8]

(
d̄
′

L, s̄
′

L, b̄
′

L

)
MD

( d̄
′
R

s̄
′
R

b̄
′
R

)
+
(
ū
′

L, c̄
′

L, t̄
′

L

)
MU

( ū
′
R

c̄
′
R

t̄
′
R

)
The mass matrices M are complex 3 × 3 and their parameter depend on the Yukawa
couplings and the vacuum value v of the Higgs field, and are always diagonalisable by
a biunitary transformation. Exspressing the interaction currents in the new basis, the
neutral currents (those mediated by the Z boson) do not give any flavour changing and
it is said that the standard model is free of flavour changing neutral currents (FCNC).
The charged currents (mediated by the W±) are, on the other hand, written as

J−µ =
(
d̄L, s̄L, b̄L

)
γµV

†
( uL
cL
tL

)
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J+
µ =

(
ūL, c̄L, t̄L

)
γµV

( d̄L
s̄L
b̄L

)
This lead to the conclusion that weak interaction couples to the linear superposition of
mass eigenstates, forcing the introduction of matrix V , called CKM.

The Cabibbo-Kobayashi-Maskawa (CKM) matrix is a 3× 3 unitary matrix, which orig-
inates from this misalignment in flavour space of the up and down components of the
SU(2)L quark doublet of the SM. In the quark mass eigenstate basis, the CKM matrix
appears in the SM charged-current interaction Lagrangian

Lcc =
g

2
√

2

∑
i,j

ūiγµ(1− γ5)(VCKM)ijdjW
µ + h.c.

where the quark fields are ui = (u, c, t) and di = (d, s, b), while g is the weak coupling
constant and W µ is the field which creates the vector boson W−. The CKM matrix can
be written in terms of four real parameters and in the Wolfenstein parametrization is

VCKM =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 =

 1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


which is an expansion in the small parameter λ = sin(θc), with θc being the Cabibbo
angle. The expansion reflects the hierarchy of the magnitudes of the matrix elements.
With four independent parameters, the unitary matrix cannot forced to be real-valued,
and hence CP violation arises from the fact that the couplings for quarks and antiquarks
can take different phases. The unitarity poses two important conditions:∑

j

|Vij|2 = 1

meaning that the coupling of any up quark with any down quark is always the same,
regardless of the generation. This relation was called universality of weak interactions
by Nicola Cabibbo. And ∑

k

VikV
∗
jk = 0

that is a bond on 3 complex number. The six vanishing combinations can be represented
as triangles in a complex plane, creating the so called unitary triangle. Among these,
the ones obtained by taking scalar products of neighboring rows or columns are nearly
degenerate. The areas of all triangles are the same. Since their angles and sides are
directly verifiable, a series of experiment aim to check the closure of the triangles,
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testing the SM and looking for CP violating effects at the same time.

Flavour physics is then the study of quarks, their spectrum and transmutations among
them, and so one of its first objectives is to precisely calculate the CKM parameters,
since they are not predicted by the Standard Model.
While the transitions occur at quark level, it is possible only to observe transitions
among hadrons, since quarks are bound in hadrons by strong interactions. Nevertheless,
this does not mean they are not accessible from the experiments, one can explore the
interior of a proton in much the same way as Rutherford probed the inside of an atom,
with collisions, and this is what particle accelerators are for. For example, exclusive
and inclusive semileptonic B decays have been used to measure the value of |Vcb| that
is in between the two determinations |Vcb|(ex) = (38.7 ± 1.1) × 10−3 and |Vcb|(in) =
(41.5± 0.7)× 10−3.

16



1.2 S-Matrix

In a real scattering or decay process, the particles only interact briefly. The initial states
cannot be exact momentum eigenstates, since such states are not spatially localized, and
cannot be energy eigenstates to the extent that their profiles in position space change
with time. Instead, the initial particles are given by wave packets which are somewhat
localized in both position and momentum, describing the relative approach.
The probability of the interaction can be factorized into the product of the probability
for the particles to meet, times the probability for the reaction to occur. The former
depends on the wave packet and the latter is an intrinsic property of the interaction.
Suppose, then, that the complete Hamiltonian, H, is written as H = H0+Hint, where the
terms are respectively the free Hamiltonian and the interaction one. The Hilbert space,
H, for the full system is divided into two parts, H = B

⊕
S, in which S are the states of

the theory with Hamiltonian H0. For example, if the system consisted of electrons and
protons interacting electromagnetically, then S might contain freely-moving electrons
and protons, but B might contain bound hydrogen atoms.
Let |α〉 be the eigenstates of H0 such that H0 |α〉 = Eα |α〉. The wave packets of these
states is [8]

|φg〉 =

∫
dα g(α) |α〉

where g(α) defines an appropriate normalizable packet. It is required now the existence
of an out state and an in state such that

lim
t>>T

e−iHt |φg〉〉out = lim
t>>T

e−iH0t |φg〉

lim
t<<−T

e−iHt |φg〉〉in = lim
t<<−T

e−iH0t |φg〉

and it is possible to define in this way the idealized scattering eigenstates of the full
Hamiltonian

lim
t>>T

e−iHt |α〉〉out = lim
t>>T

e−iH0t |α〉

lim
t<<−T

e−iHt |α〉〉in = lim
t<<−T

e−iH0t |α〉

Any scattering event can be found from the limiting amplitude for the ideal process
where the initial and final state are approximately energy eigenstates. The matrix of all
possible amplitudes is

Sβα = out〈〈β|α〉〉in
and it is called the S-Matrix. Defining the operator S

〈β|S |α〉 = Sβα
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and the Møller operator Ω
Ω(t) = eiHte−iH0t

one has
|α〉〉out = lim

t>>T
Ω(t)|α〉

|α〉〉in = lim
t<<−T

Ω(t)|α〉

In this way the S matrix becomes

S = lim
t→∞

lim
t′→−∞

Ω∗(t)Ω(t′)

Now, the operator Ω∗(t)Ω(t′) can be re-expressed in form of a solution to a differential
equation

i
d

dt

[
Ω∗(t)Ω(t′)

]
= eiH0t(H −H0)e−iH(t−t′)e−iH0t′ = V (t)Ω∗(t)Ω(t′)

with the initial condition Ω∗(t)Ω(t′) = 1

Ω∗(t)Ω(t′) = 1− i
∫ t

t′
dτV (τ)Ω∗(τ)Ω(t′)

that has an iterative solution

Ω∗(t)Ω(t′) =
n=∞∑
n=0

(−i)n
∫ t

t′
dτ1

∫ τ1

t′
dτ2...

∫ τn−1

t′
dτnV (τ1)V (τ2)...V (τn)

So that, using the time-ordering operator T , the manifestly Lorentz invariant S-matrix
becomes

S =
∞∑
n=0

(−i)n

n!

∫ ∞
∞

d4x1...d
4xnT

[
HI(x1)...HI(xn)

]
where HI is the Hamiltonian density such that

V (t) =

∫
d3xHI(x, t)

Using energy and momentum eigenstates one can employ the identity

〈β|O(x)|α〉 = 〈β|e−iPxO(0)eiPx|α〉 = ei(pα−pβ)x〈β|O(0)|α〉

to factor an overall energy-momentum conserving factor out of the matrix

Sβα = δβα − iMβα(2π)4δ(pβ − pα)

TheMβα is called the matrix element for the transition from the state α to the state β.
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1.3 LSZ reduction formula

The Lehmann-Symanzik-Zimmermann reduction formula is a method to calculate Am-
plitudes from the time-ordered correlation functions of a quantum field theory. It will
be used during the form factors derivation, so a brief explanation of this formula is in
order. The expansion of a free real scalar field (this demonstration can be generalized
to particles with spin) in terms of annihilation and creation operator can be inverted to
give [8]

ak

(2Ek)
1
2

= i

∫
d3xeikx

↔
∂ 0 φfree

a†k

(2Ek)
1
2

= i

∫
d3xeikx

↔
∂ 0 φfree

In the limit t→∞ the theory is expected to be free, since all the particles are infinitely
far away and there will be no difference between a free and a bound state.

φ(x)→ Z
1
2φj(x)

with j being the initial state if t → +∞ and the final state if t → −∞ and Z is a
c-number known as function renormalization.

a
†(in)
k − a†(out)k

(2Ek)
1
2

= iZ
1
2

∫
dx∂0(e−ikx∂0φ) =

∫
d4x
[
e−ikx∂2

0φ− φ(∇2 −m2)e−ikx
]

that is the covariant form. Therefore, writing the S Matrix in the Schrödinger picture
S = 1 + iT and using the above relations, it is possible to remove a particle with
momentum k from the initial state acting with the a†k operator, inserting the integral

iZ
1
2

∫
d4xeikx(2 +m2)φ(x)

Iterating the procedure

〈p1...pn| iT |k1...kn〉 = (iZ−
1
2 )n+m

∫ m∏
i=1

d4xi

n∏
j=1

d4yie
[i
∑n
j=1 pjyj−i

∑m
i=1 kixi](2x1 +m2)...

...(2yn +m2) 〈0|T
[
φ(x1)...φ(yn)

]
|0〉

Defining the N-point Green’s function

G(x1...xn) = 〈0|T
[
φ(x1)...φ(xn)

]
|0〉
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and using the property

(2xj +m2)G(x1...xn) = −
∫ n∏

i=1

d4ki
(2π)4

(k2
j −m2)e−i

∑n
i=1 xikiG̃(k1...kn)

the LSZ formula is

m∏
i=1

∫
d4xie

−ikixi
n∏
j=1

d4yje
−ikjyj 〈0|T

[
φ(x1)...φ(yn)

]
|0〉

= (
m∏
i=1

i
√
Z

k2
i −m2

)(
n∏
j=1

) 〈p1...pn| iT |k1...kn〉

that is a relation between the scattering amplitude and the vacuum expectation value of
a time-ordered product of fields.
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1.4 Form Factors

Form factors are a common and comfortable way to bypass the issue that is not possible
to exactly solve pieces of the Amplitude needed to compute the decay width. The form
factors of a general local operator are defined in terms of its matrix elements between
single-particle states. Thus, if we write [10]

〈B(p′)| Oα1α2...αj(0) |A(p)〉 = ūB(p′)Oα1α2...αj(p, p
′)uA(p)

where ūA and uB are the wave functions in momentum space of the particles A and B,
O(p, p′) is the most general tensor that can be constructed out of the momenta of the
two particles and making use of the LSZ reduction formula

〈B(p′)| Oα1α2...αj(0) |A(p)〉 = ∓ūB(p′)

∫
d4xe−ip

′x 〈0|TJB(x)Oα1α2...αj(0)) |A(p)〉

〈B(p′)| Oα1α2...αj(0) |A(p)〉 = ∓ūB(p′)

∫
d4xe−iqx 〈0|T

[
Oα1α2...αj(x)JB(0)

]
|A(p)〉

Here JB is the source of the particle B and q = p − p′. Now p′ is considered at his
mass-shell value. Working on the rest frame of particle A a list of kinematic relations
comes up

q0 = − 1

mA

qp = − 1

2mA

(
q2 −m2

A +m2
B

)
|q| =

√
q2 + q2

0 =
1

2mA

∣∣∣(q2 −m2
A +m2

B

)∣∣∣[1 +
4m2

Aq
2(

q2 −m2
A +m2

B

)2

] 1
2

An important theoretical progress comes in help from the QCD sum rules, that allows
to evaluate certain operators sandwiched between two hadron states by studying the
correlation functions of the type [7]

∫
d4yd4xe−iqye−iqx 〈0|T

[
Oα1α2...αj(x)JB(0)

]
|0〉 ≈ 〈0| O1 |0〉

1

m2
A − p2

A

〈B| J |A〉 1

m2
B − p2

B

〈B| O2 |0〉

In the limit q2 →∞ the dominant behavior of the integral depend on the region where

〈0|T [Oα1α2...αj(x)JB(0)] |A(p)〉 = Hα1α2...αj(x, p)uA(p)

In agreement with the postulate that the light-cone is the place where the variation is
the most rapid (because the function is singular there), then for q2 → ∞ the behavior
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depends on Hα1α2...αj(x, p)uA(p) near x2 = 0. Using the light-cone expansion, i.e. the
idea that near (x − y)2 = 0 it is possible to write the product of any two operators
as a sum of terms, consisting of a c-number function Cnα1α2...αj

(x − y) containing all the
singularities and a bilocal regular operator On(x, y), the product becomes

T [Oα1α2...αj(x)JB(0)] =
∑
n

Cnα1α2...αj
(x− y)On(x, y)

thus with x2 → 0

Hα1...αj(x, p) =
∑
n

C(n)
α1...αj

(x) 〈0|O(n)(x, 0) |A(p)〉 =
∑
n

C(n)
α1...αj

(x, p)g(n)(x, p)uA(p)

The last equation can be viewed as a representation of Hα1...αj(x, p) near the light-cone

as a sum of its singularities multiplied for their respective residues g(n). The operators
are actually restricted to the set of the needed ones for the theory: unit operator, scalar
and pseudoscalar operators, vector and axial operators, symmetric and antisymmetric
tensor operators.

In short, the method begins with the LSZ formula, writing the matrix element as an
integral, then with the aid of the QCD sum rules one can make a connection between
the matrix element and correlation functions and as a last step, it is possible to expand
the correlation functions with an operator product expansion.

In the case of B → D/D∗ decays, the correlation function of two quark currents taken
between the vacuum and the on-shell B meson state is written as [15].

F (p, q) = i

∫
d4xeipx 〈0|T d̄Γac, c̄γµ(1− γ5)b |B(pB)〉

Where Γa = mciγ5 for the D meson and Γa = γµ for D∗ meson and the B meson
momentum being on-shell, pB = (p+ q)2. The correlation function is related to the form
factors of interest via the hadronic dispersion relation, such that

F (p, q) =
〈0| d̄γac |D∗(p)〉 〈D∗(p)| c̄γµ(1− γ5)b |B(p+ q)〉

m2
D∗ + p2

+ ...

The right hand side of the equation contains decay constants (where the ellipses indicate
excited states contributions) that are determined by the standard definitions of the form
factors in the B → D case

〈D(p)| cγµb
∣∣B̄(p+ q)

〉
= f+(q2)(p+ p′)µ + f−(q2)qµ
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And B → D∗

〈D∗|c̄γµ(1− γ5)b|B̄〉 = − 2V (q2)

mB +m∗D
iεµναβε

∗νpαBp
β
D∗ −

{
(mB +m∗D)

[
ε∗µ −

ε∗ · q
q2

qµ

]
A1(q2)

− ε∗ · q
(mB +m∗D)

[
(pB + p∗D)µ −

m2
B −m2

D∗

q2
qµ

]
A2(q2) + (ε∗ · q)2mD∗

q2
qµA0(q2)

}

Due to the fact that the D∗ state is a vector state one has to take into account the
polarisation vector ε∗ and a set of new form factors.

In the case of B̄ → D it is possible to demonstrate that the form factors are real functions.
Let T be the anti-unitary time reversal operator that, given two states |a〉 and |b〉, is
defined by

〈Ta|Tb〉 = 〈a|b〉∗

Since the mesons are fully characterized by their momenta, the time reversed states
describe particles with momenta p′µ = (p0,−~p) = ηµµpµ (with no sum over the index).
The parametrization must hold also in the time-reversed frame

ηµµ
(
f1(q2)ηµµpµ + f2(q2)ηµµqµ

)
=
(
f1(q2)pµ + f2(q2)qµ

)∗
where on the left-hand side the overall factor ηµµ comes from the transformation of the
current. Since (ηµµ)2 = 1

f1(q2)pµ + f2(q2)qµ =
(
f1(q2)pµ + f2(q2)qµ

)∗

23



1.5 Heavy Quark Symmetry

The strong interactions of systems containing heavy quarks are easier to understand
than those of systems containing only light quarks. The effective coupling constant of
QCD becomes weak in processes with large momentum transfer, corresponding to inter-
actions at short distance scales. This is a unique feature of nonabelian gauge theories.
When the mass of a quark Q is much larger than the scale of ΛQCD then it is called an
heavy quark. So, u, d and s are light quarks, whereas c, b and t are heavy. For them,
the effective coupling constant is small, implying that on length scales comparable to
the Compton wavelength, the strong interactions are perturbative and much like the
electromagnetic ones. In fact, the quarkonium system Q̄Q is very much hydrogen-like.
After the discovery of asymptotic freedom, their properties could be predicted before the
observation of charmonium and bottonium states. For systems composed of an heavy
quark and a light constituent, the heavy quark is surrounded by a complicated, strongly
interacting cloud of light quarks, antiquarks and gluons. This cloud is known as brown
muck, a term invented by Nathan Isgur to emphasize the fact that the properties of such
systems cannot be calculated from first principles.
In the limit of mQ →∞ in the hadron’s rest frame, the heavy quark is at rest too. The
wave function of the brown muck follows from QCD field equations with the boundary
conditions of a static source at the location of the heavy quark. In this way, hadronic
systems which differ only by the flavour or spin quantum number of the heavy quark
have the same configuration.
Heavy Quark Symmetry is an approximate symmetry, and corrections of order

ΛQCD
mQ

arise, but the condition mQ � ΛQCD is sufficient to be very close to an actual symme-
try. However, this is not a symmetry for the Lagrangian, but rather a symmetry of an
effective theory. In the present context, only the transitions b → c + x qualify for this
limit.
The velocity of the heavy quark is conserved with respect to soft processes and it is
possible to remove the mass dependence from the momentum operator by a field redef-
inition. States are now characterized by their four-velocity v and v′ and are related by
an SU(2)f rotation at vv′ = 1 (zero recoil of the D or D∗). The matrix element can be
written with the Wigner-Eckart relation

〈D(v′)| Jhadronicµ

∣∣B̄〉 = ξ(vv′)C(Γ)

where C(Γ) is a Clebsch-Gordon coefficient (calculable for each Γ = 1, γµ, γ5γµ, ...) and
ξ(vv′) is a non-perturbative function called the Isgur-Wise function. So, the matrix
element, in a heavy to heavy decay, is reduced, in HQ symmetry, to just one function.
This approach can be used to calculate the Vcb element of the CKM matrix. The
Isgur-Wise function is obtained from the analysis of a three-current-correlator, giving a
pole-type function [27]
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ξ(w) ≈
( 2

w + 1

)β(w)

β(w) = 2 +
0.6

w

For the semileptonic B decay, it is convenient to define a set of heavy-meson form factors
hi(w), where it is used the variable w instead of the momentum transfer squared q2, such
that

w = v · v′ = m2
B +m2

D∗ − q2

2mBmD∗

〈D(v′)|Vµ|B̄(v)〉 =
√
mBmD

[
h+(w)(v + v′) + h−(w)(v − v′)µ

]
〈D∗(v′)|Vµ|B̄(v)〉 = i

√
mBmD∗hV (w)εµναβε

∗v
′αvβ

〈D∗(v′)|Aµ|B̄(v)〉 =
√
mBmD∗

[
hA1(w)(w + 1)ε∗µ − hA2(w)ε∗ · vvµ − hA3(w)ε∗ · vv′µ

]
where Vµ = c̄γµb and Aµ = c̄γµγ5b and εµ is the polarization vector of the D∗. These
hi form factors represent a linear combinations of the initial form factors but are more
clearly related to the Isgur-Wise function, in fact in the infinite quark mass limit

h+(w) = hV (w) = hA1(w) = hA3(w) = ξ(w)

h−(w) = hA2(w) = 0
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Chapter 2

Theory of B decay

The B mesons are bound states of the quark b̄, antiparticle of the b, in particular they
are B+(u b̄), B0(d b̄), Bs(s b̄) and Bc(c b̄). While the binding is provided by the strong
interaction, the decays can happen only through weak interactions. Since the b quark
is the lighter element of the third generation, the decays of b-flavoured hadrons produce
generation changing processes. Because of this, many interesting features such as loop
and box diagrams, flavour oscillations, as well as large CP asymmetries, can be observed.
Furthermore, the decays allow to extract the CKM parameters, Vcb, Vud, Vts, Vtb.
Semileptonic transitions are the simplest ones. The heavy b quark goes either into a c
or a u, while the virtual W boson becomes a lepton pair. Experimentally, they have
the advantage of large branching ratios and the characteristic signature of the energetic
charged lepton. When it goes into a c the meson formed is called D meson. In particular:
D+(c d̄), D−(c̄ d), D0(c ū),D+

s (c s̄), D−s (c̄ s), with their respective D∗ as excited states.
In this thesis, the focus is on the decay channels B̄0 → D∗+l−ν̄ and B̄0 → D+l−ν̄, which
have deviations in the decay ratios, with respect to the standard model predictions, that
are motivating studies on possible new physics.
However, making those predictions in the Standard Model perspective is not an easy
task, even if the b→ c channel is less affected by QCD corrections cause leptons do not
interact strongly and the theoretical calculations are believed to be more reliable.
First of all, one needs a suitable lagrangian for the problem, from which construct the
decay amplitude that gives the decay rate (i.e. the probability per unit time that the
particle will decay). But there are some issues; the lagrangian is known in the Standard
Model, but to incorporate new physics effects one has to add new pieces, based on
reasonable assumptions on what is missing in the Standard Model, like a new particle.
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2.1 Effective Lagrangian

At low energy the most general approach is given by the effective lagrangian. The
intuitive idea behind effective theories is that you can make calculations without knowing
the exact theory. The most famous one is the Fermi theory of weak interactions, the first
field theory in which the processes are described in terms of annihilation and creation of
particles. Valid for energies below the W and Z bosons masses, it describes a point-like
interaction weighted by the Fermi constant, borrowing the QED formalism. With the
discovery of parity violation by madame Wu, in her famous experiment on the β-decay
of the Cobalt-60, the theory evolved modifying the current to involve parity violation,
taking the modern V-A form. Since B̄ decay is a weak decay, this formalism will be
used.
So, one has to establish the form of the local operators of the appropriate dimension,
which might explain the observed anomalies and then searches for a suitable NP model.
As used in many works, to account for NP one can simply add a tensor-like term in
the SM Lagrangian. The effective lagrangian for the general B̄ decay, assuming the SM
neutrino, becomes [11]

Leff = −4GF√
2
Vcb

[
(c̄LγµbL)(¯̀

Lγ
µνL) + ε`T (c̄σµνbL)(¯̀σµννL)

]
+ h.c.

where Vcb is the component of the CKM matrix for the quark mixing, ε`T is a complex
lepton-flavour dependent parameter weighting the operator σµν , the subscript ΨL means

the left part i.e. ΨL = (1−γ5)
2

Ψ , GF is the well known Fermi constants and h.c. stands
for hermitian conjugate. The Feynman diagram describing the decay is shown in FIG.1
Now, it is possible to write the amplitude A for the B̄ → D transition using the relation
Leff = −Heff

A =
〈
D|Heff |B̄

〉
A =

4GF√
2
Vcb 〈D|

[
(c̄γµbL)(¯̀γµνL) + ε`T (c̄σµνbL)(¯̀σµννL)

] ∣∣B̄〉
From the rules of quantum mechanics, it is known that the probability for this process
is obtained by taking the squared modulus of the amplitude and summing over all the
possible values of the momenta of the final state particles. The decay rate is therefore

dΓ =
1

2Ep
|A|2 dΦ(n)

where dΦ(n) is the differential n-body phase space

dΦ(n) = (2π)4δ(4)(Pi − Pf )
n∏
i=1

d3pi
(2π)32Ei
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This approach is suitable for the µ decay, but cannot be used when quark states appear.
Indeed, hadronic decays are not solvable cause one cannot exactly compute the hadronic
current part of the amplitude. Furthermore, one does not know how to correctly write
the quark bound state.
The trick is to parametrize all the ignorance on certain functions, the form factors
as shown previously, and then study these functions to get fair approximation of the
amplitude. Since the knowledge of those functions is quite poor, one knows the poles
and the cut, and the general behavior, it is usually done a simplification to enhance
implicitly or explicitly the known features of the form factors. These simplifications are
the parametrisation.

Recalling the expression of the amplitudes of the B̄ meson decays, decomposed in terms
of the Lorentz invariant hadronic form factors [4]

〈D(p′)| cγµb
∣∣B̄(p)

〉
= f+(q2)(p+ p′)µ + f−(q2)qµ

and inserting the contribution of the tensor operator for the new physics part, obtaining
a new form factor

〈D(p′)| cσµνb
∣∣B̄(p)

〉
= −i

(
pµp

′
ν − p′µpν

)2fT (q2, µ)

mB +mD

The differential rate can be written, in the Standard Model framework, as [4]

dΓ

dq2
=
ηnewG

2
F |Vcb|

2mbλ
1
2

192π3

(
1− m2

l

q2

)[
cl+f

2
+(q2) + cl0f

2
0 (q2)

]
where

r =
mD

mB

, λ =
(
q2 −m2

B −m2
D

)2

− 4m2
Bm

2
D

cl+ =
λ

m4
B

(
1 +

m2
l

2q2

)
cl0 = (1− r2)2 3m2

l

2q2

f0(q2) = f+(q2) +
q2

m2
B −m2

D

f−(q2)

In the limit of vanishing lepton mass the f0(0) = f+(0) and its contribution becomes
irrelevant. Indeed, it can always be neglected except for the decays into τ lepton. The
factor ηnew = 1 + α

π
ln(Mz

mB
) ≈ 1, 0066 takes into account short QED corrections. One
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can now parametrise the form factors to have a better access to their values. The main
parametrisations are the BGL (Boyd-Grinstein-Lebed) and the CLN (Caprini-Lellouch-
Neubert).

2.1.1 CLN parametrisation

The CLN parametrisation is the most used in literature and is based on the Heavy Quark
Effective Theory (HQET). The form factors of the two-meson states contributing to the
two-points function are related by heavy quark symmetry, i.e. the b quark is much more
massive than is bounded light partner (like a d̄) such that it behaves always in the same
way, acting like a static colour source, regardless of the flavour of the partner. In the
heavy quark limit, the form factors either vanish or are proportional to the universal
Isgur-Wise function. This provides a simple formula valid within ≈ 2% .

f+(z) = f+(0)
[
1− 8ρ2z + (51ρ2 − 10)z2 − (252ρ2 − 84)z3)

]

f0(z)

f+(z)
=

4r2

(1 + r)2

1 + w

2
1.0036

[
1− 0.0068(w − 1)2 + 0.0017(w − 1)2 − 0.0013(w − 1)3

]
The ratio f0(z)

f+(z)
is fixed by the NLO (Next to Leading Order) HQET calculation. Any

other form factor can be expressed in terms of f+(z) times a ratio computed at NLO in
HQET.

2.1.2 BGL parametrisation

The BGL parametrisation relies on hadronic matrix elements and analycity. In the case
of semileptonic B decays q2 ranges from m2

l to (mB −mD)2 but the form factors can be
analytically extended in the q2 complex plane. It is possible to define a new variable z
such that

1 + z

1− z
=

√
(mB +mD)2 − q2

4mBmD

The change of variables q2 → z maps the two sides of q2 > (mB + mD)2 to the unit
circle |z| = 1, with the rest of the q2 plane mapped to the interior of the unit circle.
Calculations from perturbative QCD give the inequality on the contour C as the unit
circle
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1

2πi

∫
C

dz

z

∣∣∣φi(z)fi(z)
∣∣∣2 ≤ 1

where φi are weighting functions defined by [6]

φi = m2−s
B 22+p

√
knf

[
r(1 + z)]

p+1
2 (1− z)

s−3
2 [(1− z)(1 + r) + 2

√
r(1 + z)

]−s−p
here r = mD

mB
and k, p, and s are parameters that depend on the form factors fi (one can

find in the literature a table with their values). One may form functions P (z) that are

products of terms of the form (z−zi)
1−z̄iz know as Blaschke factors

P0 = P1 =
8∏
j=5

z − zj
1− z̄jz

P2 = P3 =
4∏
j=1

z − zj
1− z̄jz

These are analytic on the unit disk |z| ≤ 1 and serve to eliminate poles of fi at each
z = zj
Taylor expanding φiPifi about z = 0

fi =
1

Pi(z)φi(z)

∞∑
n=0

anz
n

with the condition
∞∑
n=0

|an|2 ≤ 1

The coefficients an are different for each form factor and must be determined by exper-
iment. The accuracy of this parametrisation depends on when one decides to cut the
series and in particular by truncating after N terms

max
∣∣∣fi(z)− fNi (z)

∣∣∣ =
1

Pi(z)φi(z)

∞∑
n=N+1

|an| zn ≤
1

Pi(z)φi(z)

zN+1
max√

1− z2
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2.2 Decay Width Calculation

2.2.1 B̄ to D

It is worth now to explicitly calculate the decay width, from which it will be possible to
have access to observable quantities. As already claimed, the amplitude is written

A =
〈
D|Heff |B̄

〉
A =

〈
D|HSM +HNP |B̄

〉
A =

4GF√
2
Vcb 〈D|

[
(c̄γµbL)(¯̀γµνL) + ε`T (c̄σµνbL)(¯̀σµννL)

] ∣∣B̄〉
For the Standard Model part

ASM =
4GF√

2
Vcb 〈D| (c̄γµbL)(¯̀γµνL)

∣∣B̄〉
ASM =

4GF√
2
Vcb 〈D| c̄γµ(1− γ5)b¯̀γµ(1− γ5)ν

∣∣B̄〉
In the interaction picture, the evolution operator is −i

∫
d4xHint and thus the matrix

element between an initial |i〉 and final |f〉 state is −i
∫
d4x 〈f |Hint |i〉. Using the space-

time translation operator P̂ µ

Hint = eiP̂ xHint(0)e−iP̂ x

−i
∫
d4x 〈f | eiP̂ xHint(0)e−iP̂ x |i〉 = −i

∫
d4xei(P̂f−P̂i)x 〈f |Hint(0) |i〉

= −i(2π)4δ(4)(Pf − Pi) 〈f |Hint(0) |i〉

The factor −i(2π)4δ(4)(Pf−Pi) is reabsorbed in the definition of the matrix element such
that it is defined only by the hamiltonian density evaluated at x = 0.

ASM =
4GF√

2
Vcb 〈D|

[
c̄γµ(1− γ5)b

]
(0)
[
¯̀γµ(1− γ5)ν

]
(0)
∣∣B̄〉

ASM =
4GF√

2
Vcb 〈D|

[
c̄γµ(1− γ5)b

]
(0)
∣∣B̄〉 〈`ν| [¯̀γµ(1− γ5)ν)

]
(0) |0〉

The leptonic part is computed by [23]

〈`ν|
[
¯̀γµ(1− γ5)ν

]
(0) |0〉 = ū(`)γµ(1− γ5)v(ν`)
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where u and v are the spinor wave functions. The hadronic part has to be factor-
ized. Since B and D are spin 0 particles, the meson state is described only by its
four-momentum pµ and since they have the same intrinsic parity (both pseudoscalars)
only the vector current contributes to the matrix element. Therefore it is possible to
write

〈D| c̄γµ(1− γ5)b
∣∣B̄〉 = 〈D| c̄γµb

∣∣B̄〉 = f+(q2)pµ + f−(q2)qµ

The form factors depend uniquely by q2 because is the only Lorentz invariant that can
be constructed with pµ = pµB − p

µ
D and qµ = pµB + pµD. Hence

ASM =
4GF√

2
Vcb

[
ū(`)γµ(1− γ5)v(ν`)

](
f+(q2)pµ + f−(q2)qµ

)
ASM =

4GF√
2
Vcb

[
ū(`)γµ(1− γ5)v(ν`)

](
f+(q2)(pµB + pµD) + f−(q2)(pµB − p

µ
D

)
ASM =

4GF√
2
Vcb

[
ū(`)γµ(1− γ5)v(ν`)

](
f+(q2)(2pµB − p

µ
` − p

µ
ν ) + f−(q2)(pµ` − p

µ
ν

)
ASM =

4GF√
2
Vcb

[
2pµBf+

(
ūγµ(1−γ5)v

)
−
(
f+−f−

)
ū(1+γ5)/p

µ

ν
v−
(
f+−f−

)
ū/p

µ

`
(1−γ5)v

]
Using the Dirac equation and assuming the SM neutrino (mν = 0)

ASM =
4GF√

2
Vcb

[
2pµBf+

(
ūγµ(1− γ5)v

)
+
(
f+ − f−

)
i~m`ū(1 + γ5)v

]
If there is no NP it is possible to compute ASM in the limit m` = 0 and in the B rest
frame, summing over the polarization of the final lepton [23](

ūγµ(1− γ5)v
)†

= v̄γµ(1 + γ5)u

uū→ (/p` +ml)

vv̄ → /pν`

|ASM |2 = 32G2
F |Vcb|2pµpνTr[/pν`

γµ(1− γ5)(/p` +m`)(1 + γ5)γν ]

|ASM |2 ∝ |Vcb|2[2(ppν`)(pp`)− p2(p`pν`)]

dΦ(3) =
1

32π3
dE`dED

Γ ≈ G2
F |Vcb|2m2

B(1− m2
D

m2
B

)
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For the NP part instead

ANP =
4GF√

2
Vcb 〈D| ε`T (c̄σµνbL)(¯̀σµννL)

∣∣B̄〉
and using the same procedure

ANP =
4GF√

2
Vcbε

`
T

[
−i
(
pBµ p

D
ν − pDµ pBν

)2fT (q2, µ)

mB +mD

(
ūσµν(1− γ5)v

)]
the factor pBµ p

D
ν − pDµ pBν can be rearranged as

pBµ p
D
ν − pDµ pBν = pBµ

[
pBν − (p`ν + pνν)

]
−
[
pBµ − (p`µ + pνµ)

]
pBν

thus

ANP =
4GF√

2
Vcbε

`
T

[
i

fT
mB +mD

ū
(
pµBp

ν
` − pνBp

µ
`

)
σµν(1− γ5)v

]
now,

A = ASM +ANP
|A|2 = AA†

|A|2 = |ASM |2 + |ANP |2 +ASMA†NP +ANPA†SM
assuming σµν = σ†µν = i

2
[γµ, γν ] summing over the spins and calling Kν = m2

Bp
D
ν −p

µ
Bp

D
µ p

B
ν

ASMA†NP =
C

mB +mD

f+fT ε
`
TKνTr

[
/pν`
γµ(1− γ5)(/p` +ml)σ

µν(1 + γ5)
]

but the in the trace only terms with even number of γ survive, then Tr[...] = 0 . Thus

|A|2 = |ASM |2 + |ANP |2

|ANP |2 ∝ Tr
[
/pνσµν(1− γ5)(/p` +m`)σ

µν(1 + γ5)
]

that is null for the same reason. So, this kind of NP does not affect the B̄ → D̄ channel.
In truth, the trace has a dependence on the dimension d of the space-time

Tr[...] ∝ (4− 5d+ d2)P `
µP

µ
ν

such that is zero only for d = 4 and d = 1.
To see the footprints of NP is much better to investigate the B̄ → D̄∗, even because one
has more variables (e.g. polarization of the D̄∗) to play with.
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2.2.2 B̄ to D∗

The B̄ → D∗ case is conceptually similar to the previous one but the hadronic part is
parametrised with 4 form factors due to the polarization of the D∗. The B → D∗lνl
decay, with the subsequent D∗ Dπ decay, can be described by three angular variables
and q2 = (pB − pD∗)2, where pB and pD∗ are the four-momenta of the B and D∗ mesons,
respectively. The three angular variables, indicated in Figure 2.1, are two helicity angles
θl and θV , and the angle χ. The angle between the direction of the muon and the
direction opposite to that of the B in the virtual W rest frame is called θl, while the
angle between the direction of the D and the direction of the B in the D∗ rest frame is
called θV . Finally, χ is the angle between the two planes formed by the virtual W and
D∗ decay products in the B rest frame. The kinematics is represented in figure 2.1 .

The amplitude of the process is therefore [11]

A(B̄ → D∗ → D) = A(B̄ → D∗)
i

p2
D∗ −m2

D∗ + imD∗Γ(D∗)
A(D∗ → D)

and the effective hamiltonian is the same as above. Being a transition between a pseu-
doscalar and a vector, the hadronic part is parametrised as follows

〈D∗|c̄γµ(1− γ5)b|B̄〉 = − 2V (q2)

mB +m∗D
iεµναβε

∗νpαBp
β
D∗ −

{
(mB +m∗D)

[
ε∗µ −

ε∗ · q
q2

qµ

]
A1(q2)

− ε∗ · q
(mB +m∗D)

[
(pB + p∗D)µ −

m2
B −m2

D∗

q2
qµ

]
A2(q2) + (ε∗ · q)2mD∗

q2
qµA0(q2)

}
Where V and A are vector and axial for factors, ε is the Levi-Civita symbol and ε∗µ is the
polarization vector. Hence, the complete hadronic matrix element is written as a sum of

B
0

D∗+
W−

D+

π0

`−

ν`

θV

χ
θ`

Figure 2.1: Schematic overview of the B → D∗lνl decay, introducing the angles θV , θl
and χ.
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these terms (with the correct sign) with the condition

A0(0) =
mB +mD∗

2mD∗
A1(0)− mB −mD∗

2mD∗
A2(0)

〈D̄∗|c̄σµν(1− γ5)b|B̄〉 = −T0(q2)
ε∗ · q

(mB +m∗D)2
εµναβp

α
Bp

β
D∗ + T1(q2)εµναβp

α
Bε
∗β

+T2(q2)εµναβp
α
D∗ε
∗β + i

[
T3(q2)(ε∗µpBν − ε∗νpBµ)

+T4(q2)(ε∗µpD∗ν − ε∗νpD∗µ) + T5(q2)
ε∗ · q

(mB +m∗D)2
(pBµpD∗ν − pBνpD∗µ)

]
where T are the form factors for the NP tensor part. The coupling constant ε∗ has
been determined using R(D) and R(D∗) from the Belle measurement. The benchmark
point Re(ε) = 0.115 has been chosen indeed to reproduce the amount of polarized D∗

reckoned by Belle.

In the rest frame of the B meson with z axis along the trajectory of the D∗, a suitable
basis for the lepton pair helicities is [11]

εµ(±) =
1√
2

(0,±1,−i, 0)

εµ(0) =
1√
q2

(|p|, 0, 0,−q0)

εµ(t) =
1√
q2

(q0, 0, 0,−|p|)

where q0 =
m2
B−m

2
D∗+q2

2mB
and |p| =

λ
1
2 (m2

B ,m
2
D∗ ,q

2)

2mB
with λ

1
2 (a, b, c) = a2 + b2 + c2 − 2(ab +

bc+ ca). They satisfy the normalization and completeness relations

ε∗µ(m)εµ(m′) = gmm′ , for (m,m′ = t,±, 0)∑
m,m′

εµ(m)ε∗ν(m
′)gmm′ = gµν

Whereas for the D∗ helicity basis

εα(±) = ∓ 1√
2

(0, 1,±i, 0)

εα(0) =
1

mD∗
(|p|, 0, 0, ED∗)
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with E∗D =
m2
B ,m

2
D∗

q2 the energy of the D∗ in the B rest frame.

ε∗α(m)εα(m′) = −δmm′∑
mm′

εα(m)εβ(m′)δmm′ = −gαβ +
pD∗α
pD∗β

It is possible to introduce now the helicity amplitudes, H±, H0 and Ht, describing the
decay of a pseudo-scalar meson into the three helicity states of a vector meson and four
helicity states of the lepton pair.

Hmm(q2) = ε(m)µHµ(m) , for m = 0,±

Ht(q
2) = ε(m = t)µ∗Hµ(n = 0)

Where Hµ(m) is the corresponding hadronic matrix element, and m,n denote helicity
projections of the D∗ and lepton pair in B rest frame.
In the Standard Model, the helicity amplitudes can be written as

H±(q2) = (mB +mD∗)A1(q2)∓ 2mB

mB +mD∗
|p|V (q2)

H0(q2) =
1

2mD∗
√
q2

[
(m2

B −m2
D∗ − q2)(mB +mD∗)A1(q2)− 4m2

B|p|2

mB +mD∗
A2(q2)

]
Ht(q

2) =
2mB|p|√

q2
A0(q2)

in this way the differential decay rate is

d2Γ

dq2d cos θ
=
G2
F |V cb|2|p|q2

256π3m2
B

(
1− m2

τ

q2

)2

×{
(1− cos θl)

2|H+|2 + (1 + cos θl)
2|H−|2 + 2 sin2 θl|H0|2+

m2
τ

q2

[
sin2 θl(|H+|2 + |H−|2) + 2|Ht −H0 cos θl|2

]}
and integrating over d cos θl

dΓ

dq2
=
G2
F |V cb|2|p|q2

96π3m2
B

(
1− m2

l

q2

)2 [
(|H+|2 + |H−|2 + |H0|2)

(
1 +

m2
l

2q2

)
+

3

2

m2
l

q2
|Ht|2

]
In the l = µ or e cases, ml ≈ 0 is a good approximation. From here, it is possible to
write several quantities that should be sensible to NP, such as the ratio

36



R(q2) =
dΓτ/dq

2

dΓl/dq2
=

(
1− m2

τ

q2

)2 [(
1 +

m2
τ

2q2

)
+

3mτ

2q2

|Ht|2

|H+|2 + |H−|2 + |H0|2

]
or the q2-dependent forward-backward lepton asymmetry, that can be used to probe for
the presence of right-handed b→ c currents, since these contribute with opposite sign to
H± relative to SM.

AFB(q2) =

[∫ 1

0
d cos θl

d2Γ
dq2d cos θ

−
∫ 0

−1
d cos θl

d2Γ
dq2d cos θ

]
dΓ/dq2

It has been pointed out recently that the spin of the tau lepton can be inferred using
the tau decay patterns. Therefore it is beneficial to compute the differential decay rates
taking into account the helicity state (λτ = ±1

2
), that are written using the completeness

relations given above [25].

dΓτ
dq2

(λτ = −1

2
) =

G2
F |V cb|2|p|q2

96π3m2
B

(
1− m2

τ

q2

)2

(|H+|2 + |H−|2 + |H0|2)

dΓτ
dq2

(λτ =
1

2
) =

G2
F |V cb|2|p|q2

96π3m2
B

(
1− m2

l

q2

)2
m2
τ

2q2
(|H+|2 + |H−|2 + |H0|2 + 3|Ht|2)

It is possible to define a useful tau spin asymmetry

Aλ(q
2) =

dΓτ/dq
2(λτ = −1

2
)− dΓτ/dq

2(λτ = 1
2
)

dΓτ/dq2

with the explicit form

Aλ(q
2) = 1− 6|Ht|2m2

τ

(2q2 +m2
τ )(|H−|2 + |H0|2 + |H+|2) + 3|Ht|2m2

τ

and an angular asymmetry

Aθ(q
2) =

[∫ 0

−1
d cos θl

d2Γτ
dq2d cos θ

−
∫ 1

0
d cos θl

d2Γτ
dq2d cos θ

]
dΓτ/dq2

=
3

4

|H+|2 − |H−|2 + 2m
2
τ

q2 Re(H0Ht)[
(|H−|2 + |H0|2 + |H+|2)(1 + m2

τ

2q2 ) + 3m2
τ

2q2 |Ht|2
]

Is it clear that the term Ht is of utmost importance, cause it distinguishes the τ case

37



0 2 4 6 8 10
2q

40−

35−

30−

25−

20−

15−

10−

5−

0

H
t

Figure 2.2: The red line is the Ht from [4], while the black line is the Ht calculated with
the equation above. Due to the fact that dΓτ is used, q2

min = m2
τ .

from the lepton case, and the λτ = ±1/2 cases. Furthermore, it is directly connected to
the form factors.
A way to directly evaluate Ht could be to use the decay widths, that ideally are know
quantity from experiments.



∑
i=0,±

H2
i =

1

N

(
1− m2

τ

q2

)−2
dΓτ
dq2

(λτ = −1

2
)

H2
t =

∑
i=0,±

H2
i

[
R(q2)

(
1− m2

τ

q2

)−2

−
(

1 +
m2
τ

2q2

)]
2q2

3mτ

With N =
G2
F |V cb|

2|p|q2

96π3m2
B

. From a simulation of the decay widths, where the parameters

of the CLN parametrization are taken from [4], in case of only SM contribution, it is
possible to see that this analytic method is correct whitin uncertanities coming from the
renormalization N .
The main issue here is that NP contribution is not known so, if one can only see the
value of the decay widths and parametrizes everything with the form factors, that are
free functions, then it is possible to adjust the form factors to match the data, covering
any NP contribution whatsoever. Thus, it is needed a way to check the value of Ht

in case of only SM contribution. This is provided by the B̄ → D channel that has no NP.
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2.2.3 Comparison between BGL and CLN

Now that it is clear how to compute the amplitude for both B → D and B → D∗ cases,
it must be considered the fact the solution is not univocal. In fact, the parametrisation
shown previously are enveloped into the calculation, such that the choice of BGL or
CLN can change the results.

In Figure 2.3, it is clear how the different parametrisations can affect the distribution
of the kinematic variables. The graphics are for the angles cosθV and cosθl (these
are for the muon case but the effect is the same for the tau as well). A lot of
information can be extract from the 2D plot of the dΓ, integrated over the other two
angles. The dΓ

dq2dcosθV
is symmetric around cosθV = 0, showing a completely longi-

tudinally polarized D∗ at q2 = 0 , while the dΓ
dq2dcosθl

is asymmetric due to parity violation.
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Figure 2.3: Distribution of cos θl (top left) and cos θv (top right) for both CLN and
BGL parameterizations. The two-dimensional distribution of cos θl (left) and cos θv as a
function of the q2 are eported in the bottom.
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In Figure 2.4 one can see the difference in the shape of the decay width (integrated over
the other variables and normalized arbitrarlily) separately for l = e, l = µ and l = τ in
the final state. Here the plots shown are for the B → D∗ decay, which is the interesting
one.

It is worth to remind that is always possible to switch among parametrisations using
appropriate relations that depend only on the meson masses and the four-velocities [5].
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Figure 2.4: Distribution of dΓ
dq2 for BGL and CLN, separately for electrons (top),

muons(middle) and taus(bottom).

It can be easily seen how the lepton mass strongly affects these distributions, as, for
example, the minimum q2 is given by m2

l .

40



2.3 Heavy Quark Expansion, Form Factor Ratios

and New Physics

In the heavy quark effective theory, hadronix matrix elements of currents between two
hadron states are expanded in inverse powers of the heavy quark masses. In the limit
mQ →∞, the effective Lagrangian for the strong interactions becomes [14]

LHQET = h̄Qiv ·DhQ

where Dα = ∂α − igstaA
α
a is the gauge-covariant derivative and hQ(v, x) =

eimQv·xP+(v)Q(x) is a redefined field which annihilates a heavy quark with velocity vα.
While P± = 1

2
(1 ± /v) is an on-shell projection operatorn and Q(x) is the conventional

quark field in QCD. With finite mass, the lagrangian can be written in a power series of
higher dimension operators.

Lp =
1

2mQ

L1 +
1

4m2
Q

L2 + ...

The leading term is given by

L1 = h̄Q(iD)2hQ + Z(mQ/µ)h̄QsαβG
αβ

where sαβ = −1
2
σαβ and Gαβ = [iDα, iDβ] = igstαG

αβ
a is the gluon field strength. Z is the

renormalization factor for the chromo-magnetic moment operator, which is responsible,
at order 1/mQ of the expansion, for the mass splitting between the pseudoscalar and
vector B mesons and it depends on the number of light quark flavours with mass below
mQ. Given the mass M of the mesons, the mass carried by the light degrees of freedom
is Λ̄ = M −mQ and due to the field redefinition it governs the x-dependence of states.

|M(x)〉HQET = e−iΛ̄v·x|M(0)〉

The eigenstates of LHQET differ from the states of the full theory. The mass shift in the
meson rest frame is such that

∆m2
M =

〈M(v)|(−L1)|M(v)〉)
〈M(v)|h†QhQ|M(v)〉

To evaluate the matrix elements one can define M(v) =
√
MP+(v) and the hadronic

parameters λi, such that

〈M(v)|h̄Q(iD)2hQ|M(v)〉 = −λ1tr[M̄M] = 2Mλ1

〈M(v)|h̄QsαβGαβhQ|M(v)〉 = −λ2tr[iσαβM̄sαβM] = 2dMMλ2(µ)
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where dM = 3 for a pseudoscalar and dM = −1 for a vector meson.
For the meson form factors one is interested in a current like Q̄

′
ΓQ, that has a short

distance expansion

Q̄
′
ΓQ =

∑
j

Cjh̄
′
Γjh+

1

2mQ

∑
j

cjh̄
′
Γαj iDαh+ ...

where cj, Cj are perturbative coefficients. The matrix element of the leading term can
be parametrized as

〈M ′|h̄′Γh|M〉 = −ξ(w)tr[M̄′ΓM]

so that, at leading order, all matrix elements of currents between mesons are described
by the Isgur-Wise function. At subleading order instead

〈M ′|h̄′ΓαiDαh|M〉 = −tr[ξ(v, v′, µ)αM̄′ΓαM]

The most general decomposition of universal form factor ξα involves three real scalar
functions.

ξα(v, v′, µ) = ξ+(w, µ)(v + v′)α + ξ−(w, µ)(v − v′)α − ξ3(w, µ)γα

Thanks to the equation of motion and the use of the projection operators, one has a
relation between the scalar functions.

(w + 1)ξ+(w, µ)− (w − 1)ξ−(w, µ) + ξ3(w, µ) = 0

Insertions of operators of L1 into matrix elements of the leading order currents represent
corrections to the wave functions and their effect is to change the structure of M(v).

M(v)→ P+(v)LM+ (v, v′) + P−(v)LM− (v, v′)

The general form of L± is

LP+ =
√
M(−γ5)L1(w)

LP− =
√
M(−γ5)L4(w)

LV+ =
√
M [/εL2(w) + ε · v′L3(w)

LV− =
√
M [/εL5(w) + ε · v′L6(w)

The Li are corrections to the Isgur-Wise function such that the form factors are expressed
as
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h+(w) = ξ(w) +
( 1

2mc

+
1

2mb

)
L1(w)

h1(w) = ξ(w) +
( 1

2mc

+
1

2mb

)
L2(w)

hA1(w) = ξ(w) +
1

2mb

[
L1(w)− w − 1

w + 1
L4(w)

]
+

1

2mc

[
L2(w)− w − 1

w + 1
L5(w)

]
with the zero recoil condition h+(1) = h1(1) = 1 from which it follows that
L1(1) = L2(1) = 0 .

Writing the decay widths as function of w = v · v′ [3].

w = v · v′ =
m2
B +m2

D∗(D) − q2

2mBmD∗(D)

dΓ

dw
(B → D) =

G2
F |Vcb|2η2

newm
5
B

48π3
(w2 − 1)3/2r3

D(1 + rD)2G(w)2

dΓ

dw
(B → D∗) =

G2
F |Vcb|2η2

newm
5
B

48π3
(w2 − 1)1/2(w + 1)2r3

D∗(1− rD∗)2

×
[
1 +

4w

w + 1

1− 2wrD∗ + r2
D∗

(1− rD∗)2

]
F(w)2

Where rD∗(D) = mD∗(D)/mB and F(w) and G(w) are a combination of the form fac-
tors such that in the heavy quark limit, F(w) = G(w) = ξ(w), the leading Isgur-Wise
function.

G(w) = h+ −
1− rD
1 + rD

h−

F(w)2 = h2
A1

[
2(1− 2wrD∗ + r2

D∗)

(
1 +R2

1

w − 1

w + 1

)
+ [(1− rD∗) + (w + 1)(1−R2)]2

]

×
[
(1− r2

D∗) +
4w

w + 1
1− 2wrD∗ + r2

D∗

]
where R1(w) = hV

hA1
, R2 =

hA3
+rD∗hA2

hA1
are form factors ratios, and the h(w) in the CLN

parametrization are so defined:
for the B → D

r = mB/mD
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f+(q2) =
1

2
√
r

[(1 + r)h+(w)− (1− r)h−(w)]

f0(q2) =
√
r

[
w + 1

1 + r
h+(w)− w − 1

1− r
h−(w)

]
while for the B → D∗

V (q2) =
mB +mD∗

2
√
mBmD∗

hV (w)

A1(q2) =
√
mBmD∗

w + 1

mB +mD∗
hA1(w)

A2(q2) =
mB +mD∗

2
√
mBmD∗

[
hA3(w) +

mD∗

mB

hA2

]
A0 =

1

2
√
mBmD∗

[mB(w + 1)hA1(w)− (mB −mD∗w)hA2(w)− (mBw −mD∗hA3(w))]

Thus are related to the H0,t,±.

This limit is strictly valid only at w = 1, but should hold if [24]

2Λ2
QCD(w − 1) << m2

b,c

so it is possible to make an expansion of the form factor ratios with the leading ξ(w) and
the subleading η(w) and χ(w) Isgur-Wise functions. In the Standard Model they are

R1(w) = 1 + αs(CV1 − CA1)− 2

w + 1
(εbL4 + εcL5)

R2(w) = 1 + αs(CA3 + rD∗CA2)− 2

w + 1
(εbL4 + εcL5) + εc [L6(1 + rD∗ − L3(1− rD∗)]

with the condition R1,2(w) = 1 in the heavy quark limit. The coefficients Ci account
for radiative corrections, while Li for O(1/mb) corrections. Their complete expression
can be found in [2]. These ratios are usually fitted to the measured B̄ → D̄∗lν̄ angular
distributions.
Making the conformal mapping z(w) = (

√
w + 1 −

√
2)/(
√
w + 1 +

√
2) and thanks to

the unitarity constraints one has

G(w)/G(1) = 1− 8ρ2z + (51ρ2 − 10)z2 − (252ρ2 − 84)z3 + ...

where ρ is the slope parameter. Keeping terms to O(εc,b(w − 1)) one can approximate
the subleading Isgur-Wise functions as

χ2(w) ≈ χ2(1) + χ2(1)′(w − 1)
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χ3(w) ≈ χ3(1)′(w − 1)

η(w) ≈ η(1) + η(1)′(w − 1)

such that one can parametrize the B → D∗ form factors in terms of six parameters. In
this way, a simultaneus fit of B → D and B → D∗ parameters can bring results without
lattice calculations and other theory input but heavy quark expansion. As shown in [3]
the global fit is in agreement with lattice predictions.

Making use of the ratios and the corrections to the Isgur-Wise function, it is possible to
evaluate the effect of new physics. Taking the hA1 in [11] and comparing it with [5]

hA1(z) = hA1(1)[1− 8ρ2z + (53ρ2 − 15)z2 − (231ρ2 − 91)z3)]

→
[
C5

1 + εc

(
L2 −

w − 1

w + 1
L5

)
+ εb

(
L1 −

w − 1

w + 1
L4

)]
ξ(w) = hA1(w)

with z = (
√
w + 1 −

√
2)/(
√
w + 1 +

√
2). In this way it is possible to extract the

Isgur-Wise function and evaluate the CLN parametrization functions.

hV =
[
C1 + εc(L2 − L5) + εb(L1 − L4)

]
ξ(w)

hA2 =
[
C5

2 + εc(L3 − L6)
]
ξ(w)

hA3 =
[
C5

1 + C5
3 + εc(L2 − L3 − L5 − L6) + εb(L1 − L4)

]
ξ(w)

The coefficients Ci account for radiative corrections, while the Li for HQ expansion.
These functions have been completely worked out in [3, 14]. There are analogous relation
for the New Physics part as well

hT1 =
[
C1 + εcL2 + εbL1

]
hT2 =

[
C2 + εcL5 − εbL4

]
hT3 =

[
C3 + εc(L6 − L3)

]
Reminding that in the CLN parametrization the matrix elements are written as

〈D∗(v′, ε)| c̄γµb
∣∣B̄(v)

〉
=
√
mBmD∗ihv(w)εµναβε

∗νv
′αvβ

〈D∗(v′, ε)| c̄γµγ5b
∣∣B̄(v)

〉
=
√
mBmD∗

[
hA1(w)(w + 1)ε∗µ − (hA2(w)vµ + hA3(w)v′µ)(ε∗ · v)

]
〈D∗(v′, ε)| c̄σµνb

∣∣B̄(v)
〉

= −
√
mBmD∗εµναβ

[
hT1(w)ε∗α(v+v′)β+hT2(w)ε∗α(v−v′)β+hT3(w)vαv

′β(ε∗·v)
]

.
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Such that the New Physics form factor are expressed as [11]

T0(q2) = −(mB +mD∗)
2

mBmD∗

√
mD∗

mB

hT3(w)

T1(q2) =

√
mD∗

mB

(hT1(w) + hT2(w))

T2(q2) =

√
mD∗

mB

(hT1(w)− hT2(w))

The form factors T3, T4, T5 are related to T0, T1, T2 by the identity σµνγ5 = i
2
εµναβσ

αβ.
So, T3 = T1, T4 = T2, T5 = −T0 .
Thus, it is possible to evaluate the effect of the New Physics, for example for the forward-
backward asymmetry.

0 1 2 3 4 5 6 7 8 9 10
2q

0.3−

0.2−

0.1−

0

0.1

0.2

)2
(q

fb
A Standard Model

New Physics

0 1 2 3 4 5 6 7 8 9 10
2q

0.15−

0.1−

0.05−

0

0.05

0.1

0.15

0.2

)2
(q

fb
A Standard Model

New Physics

Figure 2.5: Forward-Backward asymmetry for muon and tau in case of SM and NP.

A more quantitave way to see the difference between Standard Model and New Physics
is to calculate the definite integral of the AFB in different q2 range.

Ālow =

∫ 6

0

AFBdq
2

Āhigh =

∫ q2
max

6

AFBdq
2

Standard Model New Physics

Ālow 0.220164 0.44291
Āhigh −0.462698 −0.804904
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2.4 A sketch on CP violation in B decay

Three discrete operations are potential symmetries of a field theory Lagrangian; Par-
ity P , that sends (t, x) → (t,−x), Time reversal T , that sends (t, x) → (−t, x), and
Charge conjugation C, that interchanges particles and antiparticles. The CP combi-
nation replaces a particle by its antiparticle and reverses momentum and helicity. The
combination CPT is an exact symmetry in any local Lagrangian field theory.
To underand whether a given theory can accomodate CP violation, one needs to know
the transformation properties of the fields under the various discrete symmetries. In
particular for a Dirac spinor [28]

Pψ(t, x)P = γ0ψ(t,−x)

Tψ(t, x)T = −γ1γ3ψ(−t, x)

Cψ(t, x)C = −i(ψ̄(t, x)γ0γ2)T

form this follow the bilinear transformation properties under CP

ψ̄iψj → ψ̄jψi

iψ̄iγ
5ψj → −iψ̄jγ5ψi

ψ̄iγ
µψj → −(−1)µψ̄jγ

µψi

ψ̄iγ
µγ5ψj → −(−1)µψ̄jγ

µγ5ψi

with (−1)µ = 1 for µ = 0 and (−1)µ = −1 for µ = 1, 2, 3 . Similarly, the CP transforma-
tion properties of scalar, pseudoscalar and vector boson fields, and derivative operator
are rispectively

H → H

A→ −A

W±µ → −(−1)µW∓µ

∂µ→ (−1)µ∂µ

The above rules imply that each of the combinations of the fields and derivatives in the
Lagrangian transforms under CP to its hermitian conjugate. But, there are coefficients
in front of these expressions, representing either couplings or masses, which do not
transform under CP . If they are complex, then the coefficients in front of a CP -related
Lagrangian terms are complex conjugate of each other. When the rates of physical
processes are calculated, there can be CP -violating effects, namely rate differences
between pairs of CP conjugate processes.

47



For any final state f , and for an amplitude Af , the quantity | Āf̄
Af
| is independent of phase

conventions and physically meaningful (where Āf means the CP transformed). Such

that, if the relation | Āf̄
Af
| 6= 1 is true, CP violation is present. So far, this effect has been

observed only in K decays.
Beyond Standard Model theories usally introduce new fields and with them additional
couplings and hence the possibility of additional CP violation phases.
Direct CP violation requires two contributions to the decay process which differ in both
their strong and weak phases. Purely leptonic and semileptonic decays are dominated
by a single diagram and thus are unlikely to exhibit any measurable direct CP violation.
B decays can thus be grouped inot five classes.

1. Decays dominated by a single term: b → cc̄s. The Standard Model predicts zero
direct CP violation because the second term is suppressed. Modes like B+ → ψK+

are examples of this class.

2. Decays with a small second term: b → cc̄d. The penguin-only contributions are
suppressed and these modes will have small direct CP violation effects.

3. Decays with a suppressed tree contribution: b → uūs. Such as B → ρK. Small
mixing angle and large interference effects.

4. Decays with no tree contribution: b → ss̄d. Penguin contributions with different
charge quarks. Like B → KK.

5. Radiative Decays: b → sγ. The leading contribution comes from electromagnetic
penguins. An example is B → K∗γ.

CP violation is then a probe for new physics but requires a better knowledge of the
decay amplitudes.
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2.5 NP proposals

The most common approach to the problem of new physics in B decay is, as seen, to add
a tensor operator to the lagrangian, but this is not the only one. In the literature, one
can find different proposals to solve the puzzle; two honorable mentions are Leptoquarks
and Two Higgs model.

2.5.1 Leptoquarks

New Physics explanations of the B-physics anomalies suggest a presence of one or
more TeV scale mediators which couple to left-handed currents with predominantly
third generation fermions; among the most prominent candidate are leptoquarks(LQs).
Using effective theory approach, it was shown that among all possible single mediators
only one particular vector LQ can generate suitable V − A operators for the anomalies
and satisfy both low and high energy constraints. An UV complete model is based
on a SU(5) Grand Unified Theory with two light scalar LQs. At the moment, the
LHC is looking for LQs through two main leptoquark production mechanisms. Firstly,
leptoquarks would be copiously produced in pairs via strong interactions followed by
the prompt decay to leptons and jets. This is indeed a conventional assumption in most
experimental searches. After creation, a leptoquark would split almost immediately
into a quark and a lepton and could be identified by looking for their decay products.
Quarks, since they cannot exist isolated, quickly create many quark-antiquark pairs
and form a jet of particles that can be identified by the large energy deposition in the
calorimeter.

Figure 2.6: Feynman Diagram of the B to D
decay with a LQ.

The second mechanism is the production
of a single leptoquark in association with
a lepton due to the direct quark-lepton
coupling. This is an important comple-
mentary perspective which is not yet fully
exploited by the experimental collabora-
tions.

2.5.2 Two Higgs model

A well motivated class of models, compat-
ible with the Higgs discovery, is given by
extending the Standard Model Higgs sec-
tor by a second scalar SUL(2) doublet, the
so-called Two Higgs Doublet Model. The

minimal supersymmetric extension of the Standard Model is a prominent example of
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BSM theories that features a Higgs sector with two Higgs doublets. This additional
Higgs boson is usally charged and it generates new flavour-changing interactions. The
coupling to fermion seems to grow with the mass, so now B decays with a τ lepton in
the final state are studied to try to uncover these possible new effects.
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Chapter 3

Feasibility Study

3.1 Introduction to LHCb

The European Organization for Nuclear Research, commonly known by the acronym
CERN (Conseil européen pour la recherche nucléaire), is the largest laboratory in the
world of particle physics, used by over 600 research institutes and universities from all
over the world. Founded in 1954 by eleven european states, it is located on the border
between Switzerland and France, on the western outskirts of the city of Geneva. The
Large Hadron Collider (LHC) is at present the world’s most powerful particle accelerator.
Two beams of paricles are accelerated in the opposite directions and set to collide in four
interaction points along the LHC ring. These points host the seven LHC experiments:
ATLAS and LHCf, CMS and TOTEM, LHCb and MoEDAL, and ALICE.
Accelerators are mainly charaterised by their luminosity L and collision energy

√
s,

defined as the energy available in the centre of mass [16]

√
s =

[
(pb1 + pb2)µ(pb1 + pb2)µ

] 1
2

LHC operated at
√
s = 7 and 8 TeV during Run I, and

√
s = 13 TeV since the start of

Run II in 2015.
Luminosity is the measure of the number of occurrences per unit time for a process with
a given cross section σ, such that if R is the rate of events featuring the given process,
one has R(t) = σL(t) . The integrated luminosity L =

∫
dtL(t) is the measure of the

amount of pp collisions delivered by the LHC.
The beams of the collider are not continuous and assuming a Gaussian beam profile, the
instantaneous luminosity is

L(t) =
fγN2

pnb

4πεnβ∗
F

where nb is the number of proton bunches, Np is the number of protons per bunch,
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f is the revolution frequency of the bunches, γ is the relativistic gamma factor, εn is
the normalised transverse beam emittance, β∗ is a quantity related to the transverse
dimensions of the beam and F is a geometrical reduction factor due to the beams
crossing angle.
Particle emitted from a collision are mainly emitted in the forward region, due to the
asymmetry in the fraction of proton momentum. While collisions decrease the beam
intensity, the distance between the beams, in the LHCb experiment, is reduced, keeping
the instantaneous luminosity almost stable. The large centre of mass energy and the
high rate of interactions allow the LHC to produce a huge sample of charm and beauty
hadrons that the LHCb experiment has been designed to exploit.

The Large Hadron Collider beauty (LHCb) experiment was developed at the end of
the 90’s to investigate the slight differences between particles and antiparticles, which
caused the universe to evolve into a matter only state, making the antimatter disappear
just one second after the Big Bang. LHCb selects, during the proton-proton collision,
couples of mesons or hadrons, containing the b quark, trying to reconstrunct their
evolution. During the years, the experiment has broadened its goals, looking for more
and more discrepancies between what is observed and what is known from the theory.

Inside the LHCb the particles created travel for a distance of few millimeters before
decaying, so a crucial requirement of an experiment aimed at b-physics is to be able
to faithfully reconstruct the trajectory of the particles and then to distinguish beween
different decay modes. The tracking system is composed of a vertex detector, the VELO,
and a system of forward tracking stations, the Tracker Turicensis (TT). The VELO
enables the reconstruction of the trajectory of the decaying hadron. Combining the
information from all the tracking systems it is possible to provide a measurement of
the charge and momentum of the charged decay products, by tracing them through
a magnetic field. Each track is then associated to a vertex. Alongside the tracking
systems, there are: two Cherenkov radiation detectors (a radiation emitted when a
charged particle moves in a medium faster than the speed of light in that medium) that
can determine the mass of the particles; a calorimeter system, that is able to distinguish
charged and neutral particles, providing the identification of electrons, photons and
hadrons; and the muon system, that implements the identification of muons to a very
high level of purity.
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Figure 3.1: Schematic view of the LHCb detector.
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Particle identifications is then completely performed combining information from all the
systems.

The amount of raw data recorded at LHCb is too high to be stored, so a data acquisition
system is used to select only the interesting events. In particular, a series of hardware
and software based algorithms, called trigger, is employed to reduce the data generation
rate, from an initial 40 MHz, down to a few kHz. Such that each physics analysis uses
a small subset of data chosen on the base of topological and kinematic features of the
seeked events.
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3.2 Monte Carlo Method

Monte Carlo method is a broad variety of computational methods, based on random
quantities, to obtain numerical results. Its most used application is for numerical inte-
grals, and in physics, a good method to compute intergals, especially multidimensional
ones, is crucial. Indeed, the efficiency of Monte Carlo method increases with respect
to the other methods (i.e. trapezoid, Simpson and so on) when the dimension of the
problem grows, albeit it is less accurate in simpler cases.
The technique to calculate the integral is called hit or miss and is based on the geomet-
rical interpretation of an integral, that can be an area, a volume or an hypervolume. For
semplicity, one can consider a function g(x) with boundaries [29]

0 ≤ g(x) ≤ c, a ≤ x ≤ b

and the problem is to calculate the integral

I =

∫ b

a

g(x)dx

Let Ω be the rectangle defined as

Ω = {(x, y) : a ≤ x ≤ b, 0 ≤ y ≤ c}

Let (X, Y ) be a random vector uniformly distributed over the rectangle Ω with proba-
bility density function (p.d.f)

fXY (x, y) =

{
1

c(b−a)
, if (x, y) ∈ Ω

0, otherwise
(3.1)

Denoting S = {(x, y) : y ≤ g(x)}

area under g(x) = area S =

∫ b

a

g(x)dx

the probability P that the random vector (X, Y ) falls within the area under the curve
g(x) is

P =
area S

area Ω
=

∫ b
a
g(x)dx

c(b− a)
=

I

c(b− a)

Generating N independent random vectors (X1, Y1), (X2, Y2), ..., (XN , YN), one can esti-
mates P by

P̂ =
NH

N
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Figure 3.2: Graphical representation of the Hit or Miss method.

where NH is the number of hits, i.e the number of occasions on which g(Xi) ≥ Yi, i =
1, 2...N , such that N − NH is the number of misses. So, the integral can be estimated
by

I ≈ θ1 = c(b− a)
NH

N

Since each of the N trials is a Bernoulli trial with probability P of a hit, then

E(θ1) = c(b− a)E(
NH

N
) = c(b− a)

E(NH)

N
= Pc(b− a) = I

that means θ1 is an unbiased estimator of I. The variance of P̂ is

varP = var(
NH

N
) =

1

N2
var(NH) =

1

N
P (1− P ) =

1

N

I

[c(b− a)]2
[c(b− a)− I]

Thus

varθ1 = [c(b− a)]2varP̂ =
1

N
[c(b− a)− I]

and the standard deviation

σθ1 = [varθ1]
1
2 = N

1
2{I[c(b− a)− I]}

1
2

Now, the accuracy of the method is, as seen, dependent on the number of events N .
One could freely set a lower limit to the accuracy and find out the minimum number of
events needed asking, for example, that the probability

P [|θ1 − I| < ε] ≥ α

from Chebyshev’s inequality,

P [|θ1 − I| < ε] ≥ 1− var

ε2

α ≤ 1− var

ε2
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Substituting

α ≤ 1− P (1− P )[c(b− a)]2

Nε2

and solving for N

N ≥ (1− P )P [c(b− a)]2

(1− α)ε2

When N is large enough, one can apply the central limit theorem, such that the random
variable

θ̂1 =
θ1 − I
σθ1

is distributed according to the standard normal distribution

P(θ1 ≤ x) ≈ φ(x) =
1√
2π

∫ x

−∞
e−

t2

2 dt
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3.3 Monte Carlo Simulation

Computer simulations became, in the last decades, an excellent tool to investigate the
behaviour of complex systems in a broad variety of field of studies, ranging from particle
physics to climatology and engineering. They allow to compare different mathemati-
cal models, checking their reliability making predictions and studying various scenarios.
As simulations gained popularity, the issue of their trustworthiness for generating new
knowledge has grown. The relevant question is always whether or not the results of a
particular computer simulation are accurate enough for their intended purpose. Besides
numerical approssimations, a lot of subtle problems could come up; the results could be
biased, the assumptions behind the simulation could be not adeguate or the simulation
could just not be similar enough to the real experiment. For these reasons, the interplay
between experiment, simulation, and theory is fundamental during the process of build-
ing a computer simulation.
As a last thought in this overview of Monte Carlo simulation, every Monte Carlo requires
a good way to produce random numbers. A sequence of pure random numbers, namely
numbers without any connections among them, that follow the same probability distri-
bution, is indeed impossible to build artificially. The issue is that sooner or later the
sequence will repeat itself. There’s a long story of different methods developed to make
the sequence longer as possible, reaching now a maximum period of 219937 − 1 numbers
with the Twister algorithm.

Figure 3.3: Simulation of 1 milion of B decays into τ and µ.
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One of the most used and famous algorithm in the literature is the Monte Carlo Gener-
ator, that use randomness to calculate the properties of a mathematical model. In this
work, a sample of millions of events has been built starting from the differential decay
amplitude of the B decay. Knowing the amplitude, one can use it as a p.d.f. doing an
hit or miss method to accept or reject the event. So, generating a random vector, if
it is in the volume under the amplitude is accepted, otherwise is rejected. In this way,
from random vectors, one ends up with a distribution of vectors that follow the decay
amplitude. The distributions for the muon and the tau case are then summed up, with
the proper weight, to have the final sample. The raw data generated appear like in
figure 3.3. This method of producing data suffer of low effiency due to the shape of the
amplitude, indeed the probability of a random vector to be accepted is ≈ 27% for muon
and ≈ 7% for tau.
As shown in the previous sections, the amplitude is dependent on the form factors
and their parametrization, so the data have been generated both for BGL and CLN
parametrization.

3.3.1 Fit and Pseudoexperiments

A large class of problems in physics, when talking about making a fit, can be reduced to
the problem of finding a minimum. Probably the most common application of minimiza-
tion is χ2 fitting, where the function to be minimized is the sum of squares of deviations,
between measured values and predictions of a model containing variable parameters.
Calling Yn and σn the measured values and errors, and Tn(x) the predicted values by the
model, depending on a certain collection of parameters x, the function to minimize is

χ2(x) =
N∑
n=0

(
Yn − Tn(x)

)2

σn

The minimum gives the best set of parameters x with random errors σ. In this case the
n runs over the binning, such that the χ2 is a measure of the difference between events
predicted and measured to be in a volume ∆q2∆cos(θL)∆cos(θV ) . While Tn(x) is simply
counted, one has

Yn = A
[
cµ

∫
dΓµ/dΩ

Γµtot
+ cτ

∫
dΓτ/dΩ

Γτtot

]
where A is the appropriate normalization, cµ and cτ are coefficients such that Yn is still
a p.d.f. and dΩ = dq2dcos(θl)dcos(θV ). The coefficients are linked to the fraction of
B decaying into D∗τν, in fact integrating Yn over all the phace space, one obtains the
relation

cµ + cτ = 1

cµ = 1− cτ
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The parameter RD∗ can be written in terms of the numbers of muon and tau

R =
BR(D∗τν)

BR(D∗µν
=

Γτ
Γµ

=
Nτ

Nµ

=
cτ

1− cτ

The number of tau that decay into muons is not observable. One can only see a surplus
of muons.

N(τ→µ) = Nτ ·BR(τ → µ)

with BR(τ → µ) ≈ 0.17 .
Working backward from this point, it is possible to calculate the coefficients for the
Standard Model

cτ =
[
1 +

1

R · 0.17

]−1

= 0.041

This method is supposed to find a minimum without considering the fact that the min-
imum could either not exist or be multiple. If the function has more than one local
minimum, one is not guaranteed to find the global minimum or even the closest mini-
mum to the starting point. In fact, it is usually assumed, when using these algorithms,
that the function is unimodal (has one minimum) in the region of interest. For this FIT,
a scan of the different parameters has been done to ensure, with reasonable certainty,
that there are no multiple minima.
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Figure 3.4: Contours plot for BGL and CLN parameters.

To compute the fit, minuit from ROOT has been used, which employs a gradient method
to find the minimum. A gradient method is a technique which uses gradient, and maybe
higher derivatives, to create a path towards the minimum. A first derivative can be
estimated by
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∂F

∂x

∣∣∣
x=0
≈ F (x0 + d)− F (x0)

d

with d small. The error will be

δ ≈ d

2

∂2F

∂x2

∣∣∣
x=0

at lowest order in Taylor’s expansion. As soon as the function’s first derivatives are
known, it is natural to follow the direction of −∇F (x) in seeking a minimum, since this
is the direction in which the function is decreasing the fastest. So one starts from an
arbitrary point x0, calculate the gradient Pk = −∇F (x) and iterate

xk+1 = xk + αkPk

where αk is a real positive number that represent the step of the descent.

3.3.2 Fit Results

The fit has been done basically in two steps: the former has been to reproduce several
times the pseudoexperiment to find how the parameter values and their uncertanities
change, depending on the number of events, in the case of both CLN and BGL
parametrisation. The values in [4] has been used as reference point to check the validity
of the fit. The latter has been to introduce the contribution of new physics to see if,
at least in ideal condition, it is possible to measure and clearly distinguish it from the
standard model.

To reproduce the decay width and to make the analysis, it has been used a new C++
class, called SL Decay [9], created to implement all the various form factors in both
CLN and BGL parametrisation. It can be used as a Monte Carlo generator of events
and also the functions implemented can be employed as fitting functions to extract
important parameters. The class has a method by which one can set the value of the
coefficients of the form factors. In this way it has been possible to make the fit to test
the accuracy of the fit itself and the correlation between the parameters.

As shown even by the contour plots, the parameters result to be correlated (or anticorre-
lated), but while for CLN is mainly due to statistical fluctuations, for BGL the first and
second term of the expansion appear to be strongly correlated. This is due to the fact
that in a linear fit the data points impose constraints on the form of the line, such that to
incorporate all the points the parameters a0 and a1, in the expansion a0 +a1z+ ..., must
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be anticorrelated. Adding other terms in the fit would reduce the correlation between
a0 and a1 .

af1 af2 af1

1 af2

0 af2

1 ag0 ag1
af1 1.000 −0.954 0.644 −0.071 0.217 0.009 −0.031

af2 1.000 −0.584 0.144 −0.310 −0.011 0.028

af1

1 1.000 0.038 0.062 −0.152 0.027

af2

0 1.000 −0.907 0.450 −0.449

af2

1 1.000 −0.292 0.300
ag0 1.000 −0.971
ag1 1.000

Table 3.1: BGL Parameter Correlation Coefficients for 1 million events

R0 R1 R2

R0 1.000 0.222 0.151
R1 1.000 −0.430
R2 1.000

Table 3.2: CLN Parameter Correlation Co-
efficients for 100K events.

R0 R1 R2

R0 1.000 0.214 0.196
R1 1.000 −0.420
R2 1.000

Table 3.3: CLN Parameter Correlation Co-
efficients for 1M events.

The results are in agreement with [4] and the uncertanities decrease with the number of
muons, as expected.
There are two important things to notice. The former is that in order to compute the
fit, one has to build a sample of events, the synthetic data discussed earlier, that are
collected into an histogram. The statistical uncertainity is affected by the choice of the
binning. In figure 3.5 different cases of a reasonable binning for a real experiment are
represented, in regards to the CLN parameter R0.

62



610 710
µN

5−10

4−10

3−10

2−10

1−10

st
at

is
tic

al
 u

nc
er

ta
in

tie
s

BGL Parameters

a1f

a2f

a1f1

a2f2

0 10 20 30 40 50

610×

µN

0.2−
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Pa
ra

m
et

er
s 

fi
t r

es
ul

ts

BGL parameters values
a1f
a2f
a1f1
a2f2

Figure 3.5: BGL fit results
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Figure 3.6: Dependence of R0 from the binning of the fit

The latter is that all the values are biased due to the presence of an integral solved
numerically, in particular with a simple trapezoid method. This means that the integral
of a certain function f(x), between two points a and b, becomes∫ b

a

f(x)dx ≈ (b− a)
f(b) + f(a)

2

and over all the domain

m∑
n=0

∫ an+1

an

f(x)dx ≈
m∑
n=0

δ
f(an) + f(an+1)

2
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such that δ = xmax−xmin
m

.

The smaller δ, the greater the precision of the integral. Nevertheless, if m is too high, the
integral will be very time consuming (considering that in the program use the integral is
done multiple times), so one has to find a balance between time efficiency and precision.
In figure 3.7 is shown the bias from the integral on the R0 values. The dotted line is the
reference value from [4].
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Figure 3.7: Trend of R0 value with repect to the statistic.
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Figure 3.8: Dependence of R1 and R2 from the binning of the fit

It is believed that in the limit of Nµ → ∞ or with an infinte amount of steps for the
integral, the fit is exactly convergent giving the reference value of R0 = 1.
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3.3.3 Asymmetry and new physics test

Previously, it has been shown how to evaluate the new physics effect on the forward-
backward asymmetry. The SL Decay class however, does not implement new physics.
A new macro has been built to realize simulations, using the SL Decay class as a
backbone, with a numerical representation of the effect of the tensor-like contribution
to the decay, to actually make a feasibility study. The new code, that can be intended
as a subroutine to the SL Decay class, uses the analytical structure of [11], where the
standard model form factors can be easily replaced by the new physics ones, that are
seen as a sum of the standard model part plus a real and an imaginary contribution.
To complete the study, using the data from the various fit, a linear error has been
introduced on the asymmetry, propagated from the uncertainities on the form factor
parameters.

Considering AFB as a function of the parameters

AFB(q2) = AFB(q2;R0, R1, R2, ρ
2)

it is possible to find a deviation σ such that

AFB → AFB ± σ

.
Defining ∇AFB = (∂AFB

∂R0
, ∂AFB
∂R1

, ∂AFB
∂R2

, ∂AFB
∂ρ2 ) and calling Σ the covariance matrix

σ2 = ∇AFBΣ∇ATFB

This quantity has been calculated several times at different number of events to see its
evolution with the statistic. The avarage value of AFB is barely affected, but the σ
becomes smaller and smaller. The muon case has little error bars due to the dumping
from the mass value. The tau case instead, has more evident error bars but still the
separation between standard model and new physics remains clear.
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3.3.4 Resolution effect

There is an experimental issue that has not been considered yet: when a B meson decays
producing a τ lepton, is followed by the decay of the lepton as τ → lνν. So, there can
be confusion between different decays, and one needs to be able to separate out the
things. This is done exploiting the differences in the kinematics of the two processes,
since the leptons have an high mass difference, and the τ produces extra neutrinos. It
has been understood [19] that it is possible to construct several variables which usefully
separate the cases: the momentum of the µ in the B rest frame; the missing mass
m2 = (pB − pxc − pl)2, where the p are respectively the momenta of the B, the hadronic
system and the lepton; and the momentum transfer q2.
The B rest frame is approximately reconstructed, assuming that the proper velocity
of the visible part, along the Z-axis, of the semileptonic decays is equal to the proper
velocity of the B. The remaining components are determined from the primary vertex
of the experiment, giving

|pB| =
mB

mY

(pY )z
√

1 + tan2α

where α is the angle between the vertex and the Z-axis.

The resolutions on the variables of interest are then distributions, more or less symmetric,
peaked on the avarage value. In Figure 3.13 the resolution for B → D∗τντ and B →
D∗τνµ. The effect of this resolution is to mix the predicted values. To implement the
resolution in the fit, one has to multiply the vector of theoretical values with a matrix,
called migration matrix, to have the predicted rates in the reconstructed quantities, that
can be directly comparable with the real experiment.
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Figure 3.13: Resolution of the kinematic observables.
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Chapter 4

Conclusions and Outlook

In this thesis, we tried to provide a theoretical explanation to the anomaly observed on
the B decay. As said, we gave a possible solution inserting a tensor like contribution
to the lagrangian, in an effective theory fashion. Although, this leaves unsolved the
problem that we have no clue on where that operator comes from.
In the first chapter, we summarised the theoretical background needed to understand
the topic. Beginning with an introduction on the Standard Model and flavour physics,
to arrive at the problem of computing hadronic decays. To solve it, we introduced the
form factors with their parametrisation, and we have seen how they can actually have
a small influence on the results but, with enough data from experiments, it is possible
to analytically derive them, in a completely independent way. In the second chapter,
we have deeply analysed the two decay modes, B → D and B → D∗, showing how it
is possible to derive quantities sensible to new physics, such as the forward-backward
asymmetry, even computing the difference in value with the standard model. In the
third chapter, our feasibility study is reproduced, after a brief introduction to the
Monte Carlo methods. Using the SL Decay class as an event generator, we managed
to build pseudoexperiments that followed the correct distributions. In particular, a
distribution given only by the contribution of the standard model, which served to
check the correctness of the fit, and one with our hypothesis of new physics. The
fit resulted to be in agreement with all the values from [4], paper used as a guide,
demostrating its reliability. We took then the forward-backward asymmetry studied
in the previous chapter and, with the pseudoexperiment, we were able to compute it
for both B → D∗µν and B → D∗τν, and with different number of events, to show
how the statistics can affect the measurement. To deviate slightly from the perfect
ideal case, we introduced an uncertainty on the asymmetry, propagated from the fitted
parameters. The uncertainties appear as error bars that become smaller and smaller
with the increasing number of events. As a last comment, we introduced the effect of
the resolution, to come closer and closer to a real scenario.
We are now able to understand whether a possible real experiment is capable of
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distinguishing the contribution of new physics. The forward-backward asymmetry
turned out to be a powerful observable to disentangle the Standard Model pre-
diction from the new physics scenario we have considered. We believe therefore that
the new physics has recognizable features that can be exploited to solve the B anomalies.

This has been a very preliminary study on how to explain the anomaly in the B decay
and the focus has been only on one variable, even if we think the asymmetry is one of the
most sensitive, but to understand completely the problem, it is mandatory to control all
the possible ways in which deviations from the standard model can be observed. There
are in fact several other quantities that can be studied.
As a final thought, we believe that, even if the measurement of the observables presented
in this thesis could be challenging, in particular the decomposition of the amplitude in
τ helicity, the incoming analyses at LHCb with the run 3 upgrade, expected in the next
years, will be able to shed light on the topic and encourage new research.
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