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Abstract

This work consisted in the study and application of volumetric Deep Learning (DL)
approach to seismic data provided by Eni S.p.A., with an industrial utility perspective.
After a series of fruitful meetings with the Upstream & Technical Services team, we
clearly de�ned the �nal objective of this approach: the automatic search for geological
structures such as turbidite channel-bases, as potential regions of interest for the Oil
& Gas industry. Therefore, we de�ned a workow based on the training of volumetric
DL models over seismic horizons containing channel bases providing \windrose" input
patches, i.e. a planar approximation of a three-dimensional volume.

All components and sources of criticality were systematically analyzed. For this
purpose we studied: the e�ect of preprocessing, the contribution of the dataset aug-
mentation, the sensitivity for the channel-base manual segmentation, the e�ect of the
spatial expansion of the input patches. Evaluating both qualitatively and quantitatively
through K-fold cross-validation.
This work showed: how an appropriate preprocessing of the original data substantially
helps DL models, how the dataset augmentation is fundamental for good model gen-
eralization given the poor representativity of the accessible examples compared to all
possible con�gurations, how this DL approach is susceptible to the channel-base seg-
mentation imposing to invest su�cient e�ort in the generati on of reliable labels, how
the size of input patches must be large enough to allow modelsto perceive around each
voxel the structure concavity and the texture of any sediment in�ll.

We conclude that the volumetric DL approach developed in this work has proved to
be very promising.



Sommario

Questo lavoro �e consistito nello studio e applicazione di un approccio Deep Learning
(DL) volumetrico a dati sismici di Eni S.p.A., con un ottica di utilit�a industriale.
Dopo una serie di fruttuosi incontri con il team di Upstream & Technical Services, si �e
de�nito in maniera chiara l'obbietivo �nale di questo approccio: la ricerca automatica di
strutture geologiche quali basi di canali turbiditici, in quanto potenziali zone di interesse
per l'industria Oil & Gas. Si �e pertanto de�nito un workow b asato sull'addestramento
di modelli DL volumetici su orizzonti sismici contenenti basi di canale attraverso patch
di input a \windrose", ossia una approssimazione planare diun volume tridimensionale.

Si sono analizzate in modo sistematico tutte le componenti ele fonti di criticit�a. A
tale scopo si �e studiato: l'e�etto del preprocessing, il contributo della dataset augmen-
tation, la sensibilit�a rispetto alla segmentazione manuale della base di canale, l'e�etto
dell'espansione spaziale delle patch di input. Valutando in modo sia qualitativo che
quantitativo tramite K-fold cross-validation.
Questo lavoro ha mostrato: come un appropriato preprocessing del dato originale aiuti
in modo sostanziale i modelli DL, come la dataset augmentation sia fondamentale per
una buona generalizzazione dei modelli data la scarsa rappresentativit�a degli esempi
accessibili rispetto alle con�gurazioni possibili, come questo approccio DL sia suscettibile
alla segmentazione della base di canale imponendo di dedicare su�ciente impegno nella
generazione di label attendibili, come la dimensione dellepatch di input debba essere
abbastanza estesa da permettere ai modelli di percepire nell'intorno di ogni voxel la
concavit�a delle strutture e la tessitura dell'eventuale in�ll di sedimenti.

Concludiamo che l'approccio DL volumetrico sviluppato in questo lavoro si �e dimo-
strato essere molto promettente.
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Only when you know the question will you know what the answer means.
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Chapter 1

Introduction

Data mining and analytics have played an important role in knowledge discovery and
decision-making in the industry process over the past several decades.

In recent years, many unions or countries have announced a new round of development
plans in manufacturing. For example, the European Union proposed 20-20-20 goals
to achieve a sustainable future, which means 20% increase inenergy e�ciency, 20%
reduction of CO2 emissions, and 20% renewables by this year 2020. The US government
has proposed a new industrial internet framework for developing the next generation
of manufacturing. Similarly, China has announced a new manufacturing plan more
recently, which is known as \China Manufacturing 2025", theaim of which is also to
make the manufacturing process more intelligent. Those goals can only be realized by
incorporating more intelligence into the industrial manufacturing process.

To e�ectively carry out data mining and analytics in the industry process, machine
learning algorithms have always played an important role [27].

Figure 1.1: AI Eulero-Venn scheme.

1



CHAPTER 1 Introduction

1.1 Deep Learning

In this work, we will pay attention to a subset of Machine Learning (ML) called Deep
Learning (DL).

DL makes use of Arti�cial Neural Networks (ANNs), models vaguely inspired by
human visual cortex neurons, to create algorithms that can learn how to solve problems
from data. From a theoretical point of view, the basis of ANNs canbe traced back to
the early 1940s with McCulloch's work on neural models. The �rst hypothesis on the
training of these machines was made by Hebb in the late 40s, leading, in the late 50s, to
the �rst true \learning" classi�er: Rosenblatt's perceptr on [18].

Figure 1.2: Rosenblatt perceptron functioning scheme. A setof real-value inputsx i are
previously multiplied by a weightwi , like a synaptic weight, and then summed up creating
a linear combination of inputs. This linear combination is passed through an activation
function A f that provides the perceptron real-value outputy. A single perceptron or a
network composed of them belongs to ANNs.

The idea behind the perceptron was simple but e�ective and itis schematically shown
in Figure 1.2 as a biological neuron that receives input from synapses andconditionally
propagates an output along the axon. The perceptron has a number of inputs and pro-
duces a response as a linear combination of these. The weights of the linear combination
determine the relative importance of the input, and by properly adjusting them a simple
classi�er can be obtained. The right set of weights can be searched for using a feedback
system that iteratively compares the correct values with the predicted ones and it adjusts
the weights accordingly to their di�erences.

Perception was a very attractive solution for classi�cation problems, but in 1989 Min-
sky proved that a single perceptron1 could not deal with non-linearly separable problems,
like the XOR problem, even with activation functions2 non-linear. This was particularly
dramatic because not even by introducing multi-layer architectures it was possible to
deal with them, at least with linear activation functions. Stacking multiple layers of

1Or equivalently a layer of them, for multiclass classi�cations.
2The activation functions must be monotonous to allow trainability.
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CHAPTER 1 Introduction

perceptrons with linear activation functions is, in fact, equivalent to having only one
with appropriate weights. Therefore, the only possible wayto solve non-linearly separa-
ble problems was to simultaneously introduce multi-layer architectures with non-linear
activation functions i.e. Multi-Layer Perceptrons (MPLs). There was simply not enough
understanding of the topic to meet this challenge.

The theoretical problems with the perceptron's ability to solve XOR-type problems
led to a generalized loss of interest in ANNs by the scienti�c community in the event
known as \First AI winter". This state lasted until the mid-50s, when the Werbos back-
propagation algorithm [24], based on the application of the chain-derived rule, allowed
e�cient and feasible training for MPLs as well. During the following 15 years, ANNs
saw a renewed enthusiasm thanks to the promises of the old models left behind: they
were now with a working training method and preliminary results that only increased ex-
pectations. Unfortunately, the participation of the scienti�c community was cold again.
Despite the optimistic scenarios supported by technological advances in the �eld, it be-
came clear that it was only through expensive and mostly ad-hoc hardware that it would
be possible to launch the necessary computations that, although relatively simple, were
so numerous that they could not be handled by the computers ofthe time. This drowsed
out the remaining interest in ANNs in what is called \Second AI winter".

Even small networks require an extremely high number of tunable parameters. The
only possible solution to manage the training process in acceptable times was a heavy
form of parallelization. It was around 2009/2011 that the current de�nition of DL
came into existence. When Andrew Ng3 began using Nvidia Graphical Processing Units
(GPUs) to train his algorithms. GPUs are perfect for parallelizing a vast number of
repetitive operations, such as geometric transformationsor 3D renderings, and with a
little bit of secondary work even those involved by the backpropagation algorithm, tak-
ing a fraction of the time it would have taken on the CPU. Movingfrom CPU to GPU
computation was the crucial step in dramatically scaling-up ANNs thanks to the wide
availability at a reasonable price of hardware that was prevalently marketed for video
games. This combined with the ease of programming provided by new GPU tools such
as Nvidia CUDA, led to an unprecedented spread of DL research.

DL, especially recent developments, has changed the way we look at problems and
challenges, opening up possibilities that were unimaginable until 10 years ago. DL has
seen a massive application in almost all �elds of science andindustry in a very short
period of time, with massive investments of resources and improvements emerging very
quickly that span the academic and industrial �elds and produce applications ranging
from event identi�cation in particle physics to autonomousdriving. The reason for this
is to be found in the DL's ability to obtain results with relative ease when compared

3Andrew Yan-Tak Ng is a Chinese-American computer scientist and statistician, focusing on machine
learning and AI. Also, a business executive and investor in Silicon Valley, co-founded and led Google
Brain and was a former Vice President and Chief Scientist at Baidu.

3



CHAPTER 1 Introduction

with traditional ML methods: where the success of a given strategy is largely inuenced
by the scientist's experience of manually engineering features for the model. DL makes
in many cases this work obsolete thanks to its ability to produce an internal and linearly
separable representation of the features space that largely surpasses the handmade ones
in e�ciency. On the other hand, this implies that these high dimensional representations
and their decisional criteria are too complex to be seen and interpreted by a human being.
This means that in many cases the DL acts as a \black box" whoseinternal functioning
is not fully understood.

1.1.1 Learning Algorithms

A machine learning algorithm is an algorithm that is able to learn from data. But what
do we mean by learning? Mitchell (1997) [14] provides a succinct de�nition:

\ A computer program is said to learn from experienceE with respect to some class of
tasksT and performance measureP, if its performance at tasks inT , as measured by

P, improves with experienceE."

� Task, T

In this relatively formal de�nition of the word \task", the p rocess of learning itself
is not the task. Learning is our means of attaining the ability to perform the task.
Machine learning tasks are usually described in terms of howthe machine learning
system should process anexample. An example is a collection ofNF features that
have been quantitatively measured from some object or eventthat we want the
machine learning system to process. We typically representan example as a vector
x 2 RNF where each entryx i of the vector is another feature.

One of the most common task isclassi�cation, in which the computer program is
asked to specify which ofNC categories some inputx belongs to. To solve this
task, the learning algorithm is usually asked to produce a function f : RNF !
f 1; 2; : : : ; NCg.
Where y = f (x ), the model, through f , assigns an input described by vectorx to
a category identi�ed by integer codey.

� Experience, E

Machine learning algorithms can be broadly categorized asunsupervisedor su-
pervised by what kind of experience they are allowed to have during thelearning
process. Learning algorithms are allowed to experience an entire dataset. A dataset
D is a collection ofN examples4.

4Unlabeled examplesf x j j j = 1 ; 2; : : : M g in the case of unsupervised learning and labeled examples
f (x j ; yj ) j j = 1 ; 2; : : : M g in the case of supervised learning.
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Unsupervised learning algorithms experience a dataset containing only features,
then learn useful properties of the structure of this dataset.
Supervised learning algorithms experience a dataset containing features and labels.

Roughly speaking, unsupervised learning involves observing several examples of a
random vector x and attempting to implicitly or explicitly learn the probability
distribution P(x ), or some interesting properties of that distribution; while su-
pervised learning involves observing several examples of arandom vector x and
an associated valuey, then learning to predict y from x , usually by estimating
P(y j x )5.

Unsupervised learning and supervised learning are not formally de�ned terms. The
lines between them are often blurred. Many machine learningtechnologies can be
used to perform both tasks.
For example, the chain rule of probability states that for a vector x 2 RNF , the
joint distribution can be decomposed as:

P(x ) =
NFY

i =1

P(x i j x1; x2; : : : ; xi � 1) (1.1)

This decomposition means that we can solve the ostensibly unsupervised problem
of modellingP(x ) by splitting it into n supervised learning problems.
Alternatively, we can solve the supervised learning problemof learningP(y j x ) by
using traditional unsupervised learning technologies to learn the joint distribution
P(x ; y), then inferring the conditional probabilities.

P(y j x ) =
P(x ; y)

P
y0 P(x ; y0)

(1.2)

� Performance, P

To evaluate the abilities of a machine learning algorithm, we must design a quanti-
tative measure of its performance. Usually this performancemeasureP is speci�c
to the task T being carried out by the system.

For tasks such as classi�cation we often measure theaccuracy of the model. Accu-
racy is just the proportion of examples for which the model produces the correct
output. We can also obtain equivalent information by measuring the error rate,
the proportion of examples for which the model produces an incorrect output.

5Conditional probabilities that the correct label is y given the examplex .
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1.1.2 Learning as Mathematical Optimization

Most deep learning algorithms involveoptimization of some sort. Optimization refers
to the task of either minimizing or maximizing some functionJ (w ) by altering w . We
usually state most optimization problems in terms of minimizing6 J (w ). The function
we want to minimize is called theloss function. We denote the values that minimize it,
with a superscript � .

w � = arg min
w

[J (w )] (1.3)

1.1.2.1 Stochastic Gradient Descent

If we want to minimize a real-valued function de�ned on a multidimensional spaceJ :
RN ! R, perhaps the simplest method we can use isgradient descent. Gradient descent
is a �rst order7 iterative method which make use of Taylor's expansion:

w t+1 = w t � � r w Jjw t

= w t � � gt

= w t + � w t

(1.4)

where� is the learning rate, a positive scalar determining the size of the step �w t .
A recurring problem in DL is that large datasetsD are necessary for good results8,

but at the same time large sets are more computationally expensive. In fact DL loss
function obviously depends on the datasetJ (w ; D), and often it decomposes as a sum
over dataset examples of some per-example loss functionJe.

J (w ; D) =
MX

j =1

Je (w ; (x j ; yj )) (1.5)

Therefore the computational cost of calculatingg is O(M ). As the dataset size grows to
billions of examples, the time to take a single gradient stepbecome prohibitively long.
Stochastic gradient descentovercame this issue using this approximation:

J (w ; D) ' J (w ; B) (1.6)

6Maximization may be accomplished via a minimization algorithm by minimizing � J (w ).
7Second order methods can be stated as well, of course involving the Hessian matrix H (w). For

example Newton's method: w t +1 = w t � �H � 1(w t )gt . However the computational cost of calculating
H � 1 makes this method impractical in DL

8We denoteP̂data as the dataset generating probability distribution function estimated from D itself
and Pdata as the true one. AsM approaches in�nity we have: P̂data ����!

M !1
Pdata .
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In virtue of9

J (w ; D) = EB� P̂data
[J (w ; B)] (1.7)

where B is a randomly sampledminibatch of examplesB = f (x j (B ) ; yj (B )) 2 D j B =
1; 2; : : : ; MBg of �xed size MB � M .

More sophisticated methods can be de�ned, for exampleADADELTA (2012 [26]).
This is a per-dimension learning rate method for gradient descent. ADADELTA dy-
namically adapts over time using only �rst order information. The method requires no
manual tuning of learning rate.

� w t+1 = �
RMS [� w t � 1]

RMS [gt ]
gt (1.8)

where

RMS [xt ] =
q

ER(x2
t ) + " " > 0

ER(x t+1 ) = �E R(x t ) + (1 � � )x t � 2 (0; 1)
(1.9)

ER is a pseudo running average over a time window. Window size is implicitly speci�ed
by � , asymptotically in�nite-sized as � approaches 1.RMS is a pseudo root mean square
whit a constant positive scalar" for better conditioning of the denominator in Equation
1.8.

1.1.2.2 Loss Function and Activation Function

The function that we want to minimize is the loss function. Fortunately, the loss func-
tions for neural networks are more or less the same as those for other parametric mod-
els10. DL model, in classi�cation tasks, de�nes a conditionally probability distribution 11

Pmodel (y j x ; w ) and are trained usingmaximum likelihood.

w � = arg min
w

[� Pmodel(D; w )] (1.10)

9Ex� P (x) [x] is the expectation value of a random variable x drawn from a probability distribution
P(x).

10DL models are parametric respect to weightsw .
11Now we denote labels in vectorial form using the one-hot encoding. In other words labels are

expressed as versors of aNC -dimensional space.
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In the hypothesis that examples inD are independently drawn from the true but unknown
data generating distribution Pdata , we have:

w � = arg min
w

"

�
MY

j =1

Pmodel
�
y j j x j ; w

�
#

= arg min
w

"

�
MX

j =1

ln
�
Pmodel

�
y j j x j ; w

��
#

= arg min
w

h
� E(x ;y )� P̂data

ln
�
Pmodel (y j x ; w )

� i

(1.11)

Training using maximum likelihood means that the loss function is simply the nega-
tive log-likelihood, equivalently described as thecross-entropybetween the dataset and
the model probability distribution.

J (w ) = � E(x ;y )� P̂data
ln

�
Pmodel (y j x ; w )

�
(1.12)

The choice of loss function is tightly coupled with the choice of the activation function
A f of output unit. The choice of how to represent them determines the form of the cross-
entropy function. Any kind of activation function that may be used for output units can
also be used for hidden unit as well and vice versa; but any time we wish to represent
a probability distribution over a NC discrete classes, we may use thesoftmax function.
Formally the softmax function is given by12

softmax(z) i =
exp(zi )

P N c
k=1 exp(zk)

(1.13)

Therefore if

Pmodel(y i = ĉ j x i ; w ) = Pmodel
�
y i = ĉ; z(x i ; w )

�

= softmax
�
z(x i ; w )

�
c

(1.14)

then minimizing the cross-entropy implies the minimization of:

� ln
�
softmax(z)c

�
= � zc + ln

 
N cX

k=1

exp(zk)

!

' � zc + max
k

f zkg

(1.15)

Minimizing Equation 1.15 encourages the �rst termzc, relative to the true class, to be
pushed up, while the second term encourages all ofz to be pushed down.

12We refer to z as the inner summation of inputs inside a perceptron, see Figure1.2.
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Figure 1.3: Graphical representation of ReLU function.

The design ofhidden unit is an extremely active area of research and not yet have
many de�nite guiding theoretical principles. Recti�ed linear units are an excellent default
choice of hidden units. Them use the activation functionA f (z) = ReLU( z)

ReLU(z) = max f 0; zg (1.16)

These units are easy to optimize because they are so similar to liner units. The only
di�erence is that a recti�ed linear unit outputs zero acrosshalf of its domain. This
makes the derivatives through a recti�ed linear unit remainlarge whenever the unit is
active. Its simplicity is useful in the learning phase because the information taken by the
gradient is more e�ective than it would be with activation function that introduce second-
order e�ects. One may point out that the non-di�erentiabili ty of ReLU in z = 0 could
be an invalidate characteristic when used with a gradient-based learning algorithm. In
practice, however, gradient descent still performs well enough because we are usually not
interested in arriving to a local minima of the loss function; but merely to a signi�cantly
low value of it. Because we do not expect training to actuallyreach critical points13, it
is acceptable for the minima of the loss function to correspond to points with unde�ned
gradient and therefore not accessible through gradient descent.

13Critical points of a function J (w ) are points w � where r J jw � = 0.
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1.1.2.3 Capacity, Under�tting and Over�tting

The central challenge in machine learning is that our algorithm must perform well on
new, previously unseen inputs not just those on which our model was trained. The ability
to perform well on previously unobserved inputs is calledgeneralization. Typically, when
training a machine learning model, we have access to atraining set; we can compute
some error measure on the training set, called the training error; and training process
reduces this training error.

So far, what we have described is simply an optimization problem. What separates
machine learning from optimization is that we want the generalization error, also called
the test error, to be low as well.
We typically estimate the test error of a machine learning model by measuring its per-
formance on atest set Te of examples that were collected separately from the training
set Tr

14.

D = Tr [ Te (1.17)

In order to theoretical justify the generalization ability of the model, it has to be
that the training and test data are generated by a shared probability distribution called
the dataset generating probability distributionPdata . We also make a set of assumptions
known collectively as the \i.i.d. assumptions". These assumptions are that the examples
in each dataset areindependent from each other, and that the training set and test
set are identically distributed. These assumptions enable us to mathematically study
the relationship between training error and test error. Oneimmediate connection we
can observe between training error and test error is that theexpected training error
of a randomly selected model is equal to the expected test error of that model. Of
course, when we use a machine learning algorithm, we do not �xthe parameters ahead
of time, then sample both datasets. We sample the training set, then use it to choose
the parameters to reduce training error, then we evaluate test error. Under this process,
the expected test error is greater than or equal to the expected value of training error.

The factors determining how well a machine learning algorithm will perform are its
ability to:

� Make the training error small.

� Make the gap between training and test error small.

These two factors correspond to the two central challenges in machine learning:under-
�tting and over�tting .

14A common practice is to, actually, monitoring the training phase whit a t hird set called validation
set Tv , which is obtained from Tr = Tx [ Tv . E�ective training set is then Tx because validation set is
not presented to the model; it's instead used to tuninghyperparameters.
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Under�tting occurs when the model is not able to obtain a su�ciently low error value
on the training set. Over�tting occurs when the gap between the training error and test
error is too large.

We can control whether a model is more likely to over�t or under�t by altering its
capacity. Informally, a model's capacity is its ability to �t a wide variety of functions
which is indeed strongly related to the number of its trainable parameter. Models with
low capacity may struggle to �t the training set. Models with high capacity can over�t
by memorizing properties of the training set that do not serve them well on the test set.
There are many ways to change a model's capacity. Capacity isnot determined only by
the choice of model. The model speci�es which family of functions the learning algorithm
can choose from when varying the parameters in order to reduce a training objective.
This is called therepresentational capacityof the model. In many cases, �nding the best
function within this family is a di�cult optimization probl em. In practice, the learning
algorithm does not actually �nd the best function, but merely one that signi�cantly
reduces the training error. These additional limitations,such as the imperfection of the
optimization algorithm, mean that the learning algorithm's e�ective capacity may be
less than the representational capacity of the model family.

Perhaps the most important results in statistical learningtheory shows that the
discrepancy between training error and test error is bounded from above by a quantity
that grows as the model capacity grows but shrinks as the number of training examples
increases (Vapnik and Chervonenkis, 1971 [23]).

Figure 1.4: Typical relationship between error and capacity[6]. Typically, training error
decreases until it asymptotes to the minimum possible errorvalue as model capacity
increases. Typically test error has a U-shaped curve as a function of model capacity.

These bounds provide intellectual justi�cation that machine learning algorithms can
work, but they are rarely used in practice because it can be quite di�cult to determine
the e�ective capacity of deep learning algorithms. We must simply remember that while

11



CHAPTER 1 Introduction

simpler functions are more likely to generalize, we must still choose a su�ciently complex
hypothesis to achieve low training error.

One may suggest in order to enhance capacity and parallel have a better chance to
have separable classes, to increase the number of example'sfeaturesNF . However, this
is a double-edged sword commonly known as thecurse of dimensionality. In fact, we
have:

lim
NF !1

�
�
�
�P̂data � Pdata

�
�
�
� = 1 (1.18)

This is due to the fact that the number of possible con�gurations of every example
x grows exponentially as the number of features increase, andtherefore the examples
are diluted in this high-dimensional feature space. An increase in NF then requires
an exponential increase inM to compensate for this dilution and to allow the limit in
Equation 1.18 to converge.

1.1.2.4 Regularization Techniques

Regularization is any modi�cation we make to a learning algorithm that is intended
to reduce its test error but not its training error. Regularization is one of the central
concerns of the �eld of machine learning, rivaled in its importance only by optimization.

� Early Stopping

When training large models with su�cient representational capacity to over�t the
task, we often observe that training error decreases steadily over time, but valida-
tion set error begins to rise again. See Figure1.4 for an example of this behavior,
which occurs reliably. This means we can obtain a model with better validation
set error (and thus, hopefully better test set error) by returning to the parameter
setting at the point in time with the lowest validation set error. Every time the
error on the validation set improves, we store a copy of the model parameters.
When the training algorithm terminates, we return these parameters, rather than
the latest parameters.

This strategy is known asearly stopping. It is probably the most commonly used
form of regularization in deep learning.

� Dropout

Dropout (Srivastava et al., 2014 [21]) provides a computationally inexpensive but
powerful method of regularizing a broad family of models. Speci�cally, dropout
trains the ensemble consisting of all subnetworks that can be formed by removing
a certain percentagePDropout of non-output units from an underlying base network,
as illustrated in Figure 1.5.
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Dropout provides therefore an inexpensive approximation to training and evaluat-
ing a wrapped ensemble of exponentially many neural networks, increasing model's
generalization capabilities.

(a) Multi Layer Perceptron. (b) Multi Layer Perceptron after applying
dropout.

Figure 1.5: Dropout [21].

� Dataset Augmentation

The best way to make a machine learning model generalize better is to train it on
more data. Of course, in practice, the amount of data we have is limited. One way
to get around this problem is to create fake data and add it to the training set. For
some machine learning tasks, it is reasonably straightforward to create new fake
data.

Dataset augmentationhas been a particularly e�ective technique for a speci�c
classi�cation problem: object recognition. Images are high dimensional and include
an enormous range of factors of variation, many of which can be easily simulated.
Operations like translating the training images a few pixels in each direction can
often greatly improve generalization. Many other operations, such as rotating the
image or scaling the image, have also proved quite e�ective

1.1.3 Convolutional Networks

Convolutional networks, also known as Convolutional NeuralNetworks (CNNs), are a
specialized kind of neural network for processing data thathas a known grid-like topology.
Examples include time-series data, which can be thought of as a 1D grid taking samples
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at regular time intervals, and image data, which can be thought of as a 2D grid of pixels.
Convolutional networks have been tremendously successfulin practical applications.

\Convolutional neural network" indicates that the network employs a mathematical
operation calledconvolution15. Convolution is a specialized kind of linear operation.
Convolutional networks are simply neural networks that useconvolution in place of
general matrix multiplication in at least one of their layers.

1.1.3.1 Convolution

Convolution operation, in two dimensions (i 1; i2), is de�ned as:

S = x � w

S(m; n) =
X

i 1

X

i 2

x(i 1; i2)w(m � i 1; n � i 2) (1.19)

In convolutional network terminology, the �rst argument x to the convolution is often
referred to as the input, and the second argumentw as the kernel. The outputS is
sometimes referred to as the feature map.

It can be shown that convolution is commutative. The commutative property of
convolution arises because we have ipped the kernel relative to the input. The only
reason to ip the kernel is to obtain the commutative property. Even if the commutative
property is useful for writing proofs, it is not usually an important property of a neural
network implementation. Instead, many neural network libraries implement a related
function called thecorrelation, which is the same as convolution but without ipping the
kernel.

S = x ? w

S(m; n) =
X

i 1

X

i 2

x(i 1; i2)w(m + i 1; n + i 2) (1.20)

1.1.3.2 Parameter Sharing

Convolution leverages two important ideas that can help improve a machine learning
system: parameter sharing16, sparse interactions.

15Actually it's not convolution, it's instead correlation. Many machine le arning libraries implement
correlation but call it convolution.

16In the case of convolutional networks this property is tightly related to the concept of equivariant
representations or speci�cally equivariance to translation. To say a function is equivariant means that if
the input changes, the output changes in the same way. Similarly withimages, convolution creates a 2-D
map of where certain features appear in the input. If we move the object in the input, its representation
will move the same amount in the output.
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Figure 1.6: 2D correlation operation. We notice that, without padding of input, feature
map is smaller than input and shrinking is related to the kernel size.

Parameter sharing refers to using the same parameter for more than one function
in a model. Discrete convolution can be viewed as multiplication by a matrix, but the
matrix has several entries constrained to be equal to other entries. In addition to these
constraints that several elements be equal to each other, convolution usually corresponds
to a very sparse matrix17.

1.1.3.3 Pooling

A pooling function replaces the output of the net at a certainlocation with a summary
statistic of the nearby outputs. For example, themax pooling operation reports the
maximum output within a rectangular neighborhood.

In all cases, pooling helps to make the representation approximately invariant to small
translations of the input. Invariance to translation meansthat if we translate the input
by a small amount, the values of most of the pooled outputs do not change. Invariance
to local translation can be a useful property if we care more about whether some feature
is present than exactly where it is.

Figure 1.7: 2D max pooling operation.

17A sparse matrix is a matrix whose entries are mostly equal to zero. Thisis because the kernel is
usually much smaller than the input image.
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1.2 Hydrocarbon Exploration

Exploration and production of hydrocarbons (HC) is a high-risk venture.
These uncertainties originated from geological models andcoupled with economic and
engineering models involve high-risk decision scenarios,with no absolute guarantee of
successfully discovering and developing hydrocarbons.

The future trends in oil resources availability will dependlargely on the balance
between the outcome of the cost-increasing e�ects of depletion and the cost-reducing
e�ects of the new technology. Technological advances allowed the exploration in well
established basins as well as in new frontier zones such as ultra-deep waters.

Information is vital for decision-making. Therefore, it'snecessary to de�ne the value
of information associated with important decisions. Information only has value in a
decision problem if it results in a change in some action to betaken by a decision
maker. The information is seldom perfectly reliable and generally it does not eliminate
uncertainty, so the value of information depends on both theamount of uncertainty,
or equivalently the prior knowledge available, and payo�s involved in the petroleum
exploration and production projects.

Over the last two decades, the advances in computer-aided decision making pro-
cesses have provided a mechanism to improve the quality of decision making in modern
petroleum industry.
However, as Newendorp [22] emphasized, the decision analysis does not eliminate or
reduce risk and will not fully replace professional judgment of geoscientists, engineers,
and managers.

1.2.1 Components of a Prospect

A prospect is a potential trap which geologists believe may contain hydrocarbons. A
signi�cant amount of geological, structural and seismic investigation must �rst be com-
pleted to rede�ne the potential hydrocarbon drill location from a lead to a prospect.
Four geological factors have to be simultaneously present for a prospect to work and if
any of them fail neither oil nor gas will be present.

� Source Rock

In petroleum geology,source rock refers to rocks from which hydrocarbons have
been generated or are capable of being generated. They form one of the necessary
elements of a working petroleum system. They are organic-rich sediments that
may have been deposited in a variety of environments including deep water marine,
lacustrine and deltaic.

A river delta is a landform created by deposition of sedimentthat is carried by a
river as the ow leaves its mouth and enters slower-moving orstagnant water. This
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occurs where a river enters an ocean, sea, estuary, lake, or (more rarely) another
river that cannot carry away the supplied sediment.

During sedimentary diagenesis18 the degradation of living matter eventually trapped
in sediments begins. The original organic matter could comprise lacustrine and ma-
rine algae and plankton and terrestrial higher-order plants. During diagenesis large
biopolymers e.g. proteins and carbohydrates in the original organic matter decom-
pose partially or completely. These resulting units can then polycondense to form
geopolymers. The formation of geopolymers in this way accounts for the large
molecular weights and diverse chemical compositions associated with kerogen19.

Resulting changes in the burial temperatures and pressures lead to further changes
in kerogen composition including loss of hydrogen, oxygen,nitrogen, sulfur, and
their associated functional groups, and subsequent isomerization and aromatiza-
tion. Such changes are indicative of the thermal maturity state of kerogen.

During the process of thermal maturation, kerogen breaks down in high-temperature
pyrolysis reactions to form lower molecular weight products including bitumen, oil,
and gas. The extent of thermal maturation controls the nature of the product,
with lower thermal maturities yielding mainly bitumen/oil and higher thermal
maturities yielding gas. These generated species are partially expelled from the
kerogen-rich source rock and in some cases can charge into a reservoir rock.

� Migration

Migration is the movement of hydrocarbons from their source into reservoir rocks.

Migration typically occurs from a structurally low area to ahigher area because
of the relative buoyancy of hydrocarbons in comparison to the surrounding rock.
Migration can be local or can occur along distances of hundreds of kilometers in
large sedimentary basins, and is critical to the formation of a viable petroleum
system. The hydrocarbons are expelled from source rock, moving by density-
related mechanisms. Most hydrocarbons could even migrate till the surface as oil
seeps, but some will get trapped.

� Reservoir

An oil and gasreservoir is a subsurface pool of hydrocarbons contained in porous
or fractured rock formations. Oil and gas reservoirs are broadly classi�ed as con-
ventional and unconventional reservoirs. In case of conventional reservoirs, the

18After deposition, sediments are compacted as they are buried beneath successive layers of sediment
and cemented by minerals that precipitate from solution.

19Kerogen is a mixture of organic chemical compounds that make up a portion of organic matter in
sedimentary rocks. It is insoluble in normal organic solvents due to the enormous molecular weight of
the constituent compounds. The soluble portion is known as bitumen.
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naturally occurring hydrocarbons, such as crude oil or natural gas, are capped by
overlying rock formations (the seal) with lower permeability. While in unconven-
tional reservoirs the rocks have high total porosity and very low permeability which
keeps the hydrocarbons trapped in place not allowing migration, therefore not re-
quiring a cap rock. Reservoirs are found using hydrocarbon exploration methods.

� Trap

The hydrocarbons are buoyant respect to the higher density water usually trapped
in the sediments (formation water), hence the need to have a trap con�guration,
limiting the buoyancy. The hydrocarbontrap has to be covered by an impermeable
rock known as a seal or cap-rock in order to prevent hydrocarbons escaping to the
surface. A trap forms when the buoyancy forces driving the upward migration
of hydrocarbons through a permeable rock cannot overcome the capillary forces
of a sealing medium. The timing of trap formation relative tothat of petroleum
generation and migration is crucial to ensuring a reservoircan form. All the trap
elements have to be correctly timed in order to co-occur.

1.2.2 Seismic Survey

Visible surface features such as oil seeps, natural gas seeps, pockmarks20 provide ba-
sic evidence of hydrocarbon generation. However, most exploration depends on highly
sophisticated technology to detect and determine the extent of these deposits using ex-
ploration geophysics. Areas thought to contain hydrocarbons are initially subjected to
a gravity survey, magnetic survey, passive seismic or regional seismic reection surveys
to detect large-scale features of the sub-surface geology.Once de�ned the features of
interest, known as leads, these are subjected to more detailed seismic surveys. The
seismic surveys principle and models make use of the relationships that exist between
the propagation of acoustic and/or elastic waves, including, reections and refractions,
according to the kind of material (rock type) and its �lling  uid (water, gas or liquid
HC, other uids), and the physical (mechanical) properties of the matter; allowing to
obtain clearer images of the underlying geological structure. Seismic data have to be
interpreted in order to identify all the prospect elements,and trap geometries.

Finally, when a prospect has been identi�ed and evaluated andpasses the oil com-
pany's selection criteria, an exploration well could be drilled in an attempt to conclusively
determine the presence or absence of hydrocarbons.

1.2.2.1 More Details on Seismic Data Acquisition

Seismic data acquisition involves applying a seismic energy source generating a prop-
agating pulse. This source is dependent on the area where survey has been designed:

20Underwater craters caused by escaping gas
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onshore, o�shore, intermediate very shallow water areas. Vibroseis truck, dynamite shot,
or an air gun, generates acoustic, or better elastic waves that travel into the Earth in
di�erent modes. The most used mode that is processed to obtain seismic images is the
compressional. Waves pass through strata with di�erent seismic responses and earth �l-
tering e�ects (alterating the initial pulse shape, that is non-stationary along is path), and
return back to the surface to be recorded as seismic data by geophones or seismometers.

Seismic data acquisition involves applying a seismic energy source. This source such
as a vibroseis truck, dynamite shot, or an air gun, generatesacoustic or elastic vibrations
that travel into the Earth, pass through strata with di�eren t seismic responses and
�ltering e�ects, and return to the surface to be recorded as seismic data by geophones
or seismometers.

The study area ofmarine survey acquisition, in particular, is considered to be a \deep-
water area" with a column of water that reaches 500 m or much more. Accordingly the
seismic is acquired with particular techniques, see Figure1.8.

1.2.2.2 Elements of Seismic Data Processing

Seismic processingconsists of several operation steps on the acquired or \raw"seismic
data, to suppress noise, enhance signal and migrate seismicevents to its appropriate
location in space. Seismic processing facilitates better interpretation because subsurface
structures and reection geometries are more apparent. There are three main processes
in seismic data processing: deconvolution, Common-MidPoint (CMP) stacking and mi-
gration.

� Deconvolution

Deconvolution is a process that tries to extract the reectivity series of the Earth,
under the assumption that a seismic trace is just the reectivity series of the Earth
convolved with distorting �lters. This process improves temporal resolution by
collapsing the seismic wavelet lenght, but it is non-uniqueunless further informa-
tion is available such as well logs, or further assumptions are made. Deconvolution
operations can be cascaded, with each individual deconvolution designed to remove
a particular type of distortion.

� CMP Stacking

CMP stacking is a robust process that uses the fact that a particular location in
the subsurface have been sampled numerous times and at di�erent o�sets. This
allows a geophysicist to construct a group of traces with a range of o�sets that
all samples the same subsurface location,known as a Common Midpoint Gather.
Another process that is applied to proceed to CMP stack is the Normal MoveOut
(NMO), see Figure1.9. The moveout quantity is dependent from the propagation
velocity of the rock to pressure waves. NMO align horizontally all the seismic
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Figure 1.8: Marine seismic acquisition. Traditional marineseismic surveys are conducted
using specially-equipped vessels that tow one or more cables containing a series of hy-
drophones at constant intervals. The cables are known as streamers, with 2D surveys
using only 1 streamer and 3D surveys employing up to 12 or more. The streamers are
deployed just beneath the surface of the water and are at a setdistance away from the
vessel. The seismic source, usually an airgun or an array of airguns but other sources are
available, is also deployed beneath the water surface and islocated between the vessel
and the �rst receiver. Marine seismic surveys generates a signi�cant quantity of data, in
fact each streamer can be up to 6 or even 8 km long and the seismic source is typically
�red every 15 or 20 seconds.
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event, that are curved along hyperbola, according to their propagation law, with
respect to the o�set. Better stack along constant event times can be therefore
performed. The average amplitude is calculated along time samples, resulting
in signi�cantly lowering the random noise but also losing all valuable information
about the relationship between seismic amplitude and o�set(information on elastic
properties of the rocks).

(a) CMP gather. The same event in a CMP gather has
a hyperbolic time location respect to o�set.  1 is the
particular angle of reection for raypath 1.

(b) NMO correction. Traces are
re-located in time to account o�-
set, and then averaged out to in-
crease signal-to-noise ratio.

Figure 1.9: CMP stacking.

� Seismic Migration

Seismic migration is the process by which seismic events aregeometrically re-
located in either space or time to the location the event occurred in the subsurface
rather than the location that it was recorded at the surface.Creating, thereby,
a more accurate image of the subsurface, see Figure1.10. Migration precision is
function of appropriate algorithms and of the knowledge of acoustic and elastic
properties, �rst of all the pressure waves velocity model.

Figure 1.10: Seismic migration.
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1.2.3 A View on Sedimentary Processes: Turbidite Systems

Among a wide list of geological depositional mechanism, we mention here the turbidity
currents since well spread in the studied area; they are gravity driven turbid mixtures of
sediment temporarily suspended in water. The name is derived from their characteristics
of being opaque mixtures of sediment and water. They ow downslopes or over a
horizontal surface provided that the thickness of the ow isgreater up-ow than it is
down-ow. The deposit of a turbidity current is a turbidite. The volumes of material
involved in a single ow event can be anything up to tens of cubic kilometres, which is
spread out by the ow and deposited as a layer a few millimetres to tens of meters thick.
Turbidity currents, and hence turbidites, can occur in water anywhere there is a supply
of sediment and a slope. They are common in deep lakes, and mayoccur on continental
shelves, but are most abundant in deep marine environments,where turbidites are the
dominant clastic deposit. As more sediment is deposited fromthe decelerating ow a
deposit accumulates and the ow eventually comes to a halt when the ow has spread
out as a thin, even sheet.

Figure 1.11: Turbidite system.

Lithi�ed 21 accumulations of turbidite deposits may, in time, become hydrocarbon reser-
voirs and the oil and gas industry makes strenuous e�orts to predict the location, overall
shape, and internal characteristics of these sediment bodies in order to e�ciently develop
�elds as well as explore for new reserves.

21Lithi�cation is the process in which sediments compact under pressure, expel trapped uids, and
gradually become solid rock. Essentially, lithi�cation is a processof porosity destruction through com-
paction and cementation. Lithi�cation includes all the processes which convert unconsolidated sediments
into sedimentary rocks.
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Data, Task and Models

In this work we applied deep learning techniques to the knowledge �eld of Oil & Gas
(O&G) exploration. This thesis is made possible by the collaboration with Eni S.p.A.,
in particular with the Upstream & Technical Services team. Through a fruitful series of
meetings, an industrial objective for Eni to apply deep learning techniques was focused
on. This led to the de�nition of a dataset on which this objective could be applied,
which Eni kindly provided us with. Some data and text could beanonymised due to
NDA restrictions.

Figure 2.1: Study area: large view. The orange box represent the speci�c location of
study area.
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Figure 2.2: Study area: detail. The orange box represent the speci�c location and dimen-
sion of study area. We introduce the coordinate system used through this work: Cross
Line (XL) and In Line (IL). Xx xxxxxxxxx xxxxxx xxxxxx xxxxx xxx xx xxxxxxxxx
xxxxxx xxxx.

2.1 Dataset Description

Xxx xxxxx xxxx xx xxxxxxx xx xxx xxxxxxxx xxxx xx xxx xxxxxxxxx x xxxxxxx xxxx
xxxx xxx xxxxxx xxxx xxxxxxxx. Xxx xxxxxx xxx xx xx xxx xxxxx xx xx xxx xxxxxxx
xx xxx xxxxxx xxxxx xxxx xx xxxxxxxxxxxxx xx xxxxxxx xxxxxx x xxxxxxxxx.

The dataset Eni gave us comprises of:

� Two high quality 3D Pre-Stack Depth Migrated (PSDM)1 Volumes: oneNear
reprocessed angle stack and oneFar angle stack2. These two volumes are di�erent
types of stacks, not including all the o�sets, but only selected ones, according to
being Near (closer receivers o�sets to the source, meaning low incidence angles
of reections) or Far (far receivers o�sets to the source, meaning higher incidence
angles of reections). They are sensitive to di�erent seismic properties; for instance
we could say that the Far is more sensitive to uid presence.

1PSDM indicates that the seismic migration procedure is done before the CMP stacking one.
2The di�erence between them lies in the range of angle reections collected in the CMP stacking

procedure:  Near 2 [3� ; 18� ] and  Far 2 [33� ; 48� ]. A result is that the Near volume has a higher spatial
resolution than Far volume.
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� Three manually interpreted surfaces orhorizons3 that have at least one embedded
turbidite channel-base: Base I, Base II, Base III.

� Four high quality exploration porosity well logs4 (W1; W2; W3; W5) each one com-
posed of: the actual measured porosity log and the relevant frequency �ltered
version5.

2.1.1 Seismic Volumes

Spatial extension and sampling density of seismic volumes are summarized in Figure2.3.

Figure 2.3: Seismic volumes overview. Depth axis points downward and has zero value
on sea level.

Xx xxx xx xxxxxxxxx xxxxx xxxx xxxxxxx xxx x xxxxxx xx xxxxxxxx x xxxx x
xxxxxxxx xxxxxxxx xx xxxx x. Xx xxx xx xxxxxxxxx xxxxx xxxx xxx xxxx xxx x
xxxxxx xx xxxxxx x xxxx x xxxxxxxx xxxxxxxx xx xx x. Xxx xxxx xxx xxx xxxxxxx x
xxxxx xx xxxxxx xxxxx x xxxx xxxxxxxxx x xxxxxx xx xxxxxxxxxx xxx xxxxxxxxxxx
x xx xxxxx. Xxx xxx xxxxxx xxxxxxx xxxxx xx x xxxxx xx xxxxxx xxx xx x xxx xxxx
xx xxx xxxx xxxxx xx xxxx xxxxxx.

Therefore volumes dimensions expressed as tensor indexes are:

� Near : 1,901 XLs, 606 ILs, 2,001 Depths.

� Far : 1,901 XLs, 606 ILs, 1,601 Depths.

We �nally point out that in both volumes, voxels6 are non-isotropic and have the same
size which is 12.5m x 25 m x 2.5 m. Voxels are huge hence oil and gas predictions has
to be extremely accurate.

3An informal term used to denote a surface constituted of a distinctive layer of rock that is represented
by a reection pattern in seismic data. A horizon can be thought of as a geological snapshot of the
surface history. These horizons are interpreted using Near seismicvolume, see [16].

4A measurement versus depth of one or more physical quantities in or around a hydrocarbon explo-
ration well.

5Frequency �ltration has been done by convolution between measured logand a proper wavelet' in
order to match seismic data spatial resolution.

6A voxel represents a value on a regular grid in three-dimensional space. The 3D analogous of 2D
pixel.
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Figure 2.4: IL-slice of Near volume: axes are in reciprocal proportion to the study
volume.

In Figure 2.4 we show how looks like an IL-slice of Near volume seen in proportion
to the real physical volume. Seismic voxels contains scalarvalues directly related to the
local variation of acoustic impedance7, or equivalently, related to the acoustic reection
coe�cient RC . Seismic volumes are usually graphically rendered in diverging pseudo
color which associates blue to negative values, red to positive values and white to zero
crossing.

Figure 2.5: IL-slice of Near volume.

7Acoustic impedanceZM is a physical property of matter. It describes how much resistance a sound
beam encounters as it passes through a layer. It is de�ned by the product between density � M and
speed of sound waves in mediumvM : ZM = � M vM .
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2.1.2 Seismic Horizons

Seismic horizons play a key role in this work and they are expressed as a cloud of points.

Figure 2.6: Base I horizon. XL and IL axes maintains reciprocalproportion to the study
volume. Base I horizon is rendered trough depth in pseudo color. Wells are superimposed
to understand their exact locations.

Geological and geomorphological experience allow to recognize erosive patterns that are
attributable to turbidite channel-base systems; the exactlocation and segmentation of
them. However, it is not a trivial task and it involves geophysical expertise.

Remaining horizons are showed next. As you might notice, horizons are presented in
order of decreasing depth; Base I, in fact, is the deepest andhence the oldest.
We �nally point out the notion of sequencewhich is a group of relatively conformable
strata that represents a cycle of deposition and is bounded by unconformities.

� Sequence I : bounded by Base I and Base II.

� Sequence II : bounded by Base II and Base III.

� Sequence III : bounded by Base III and a surface of non-geophysical interest called
Top Interp.
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Figure 2.7: Base II horizon.

Figure 2.8: Base III horizon.
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2.1.3 Well Logs

Well logs are subsurface property measurement acquired in the borehole. Seismic vol-
umes, in fact, are a non-direct information, just the best result of the O&G industry to
solve a poorly-posed problem such as the time-depth inversion of seismic traces.

In this case, the porosity logs are a more direct and physicalmeasurement indicating
the local pore volumes in percentage over the total. High porosity, for this kind of study
area, is a strong indicator of sandy clastic sediments8 which indeed suggest the presence
of a turbidite channel in�ll and therefore a candidate reservoir (lead).

(a) W1 measured porosity log. (b) W1 frequency �ltered porosity log.

Figure 2.9: W1 porosity well logs.

Frequency �ltering of measured porosity logs is done by convolution whit the same
depth-dependent9 wavelet used in seismic survey processing. The aim of that isto match
the density of information content between logs and seismicvolumes.

Figure 2.10: Seismic wavelet explanation.

8Sediment consisting of broken fragments derived from pre-existing rocks and transported elsewhere
and redeposited before forming another rock.

9An important fact is that rock acts as a low pass �lter therefore wavelet shape is depth-dependent.
You may notice it in Figure 2.5.
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(a) W2 measured porosity log. (b) W2 frequency �ltered porosity log.

Figure 2.11: W2 porosity well logs.

(a) W3 measured porosity log. (b) W3 frequency �ltered porosity log.

Figure 2.12: W3 porosity well logs.

(a) W5 measured porosity log. (b) W5 frequency �ltered porosity log.

Figure 2.13: W5 porosity well logs.
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All informations about dataset are summarized in Figure2.14.

Figure 2.14: Dataset comprehensive scheme.

Data Format and Visualization Tools

A signi�cant part of the work in this thesis consisted in understanding and learning how
to manage the formats used in the O&G exploration industry. In particular, learning
how to read and produce �les in SEG-Y �le format. Another important part was to
visualize the data and results produced by deep learning algorithms.

SEG-Y File Format

The SEG-Y �le format is one of several standards developed bythe Society of Explo-
ration Geophysicists (SEG) for storing geophysical data. It is an open standard, and is
controlled by the SEG Technical Standards Committee, a no-pro�t organization. The
format was originally developed in 1973 to store single-line reection seismic (traces)
digital data on magnetic tapes. The speci�cation was published in 1975.
However, since its release, there have been signi�cant advancements in geophysical data
acquisition, such as 3-dimensional seismic techniques andhigh speed, high capacity
recording. The most recent revision of the SEG-Y format was published in 2017, named
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the rev 2.0 speci�cation. It still features certain legacies of the original format (referred
as rev 0), such as an optional SEG-Y tape label, the main 3,200byte textual EBCDIC
character encoded tape header and a 400 byte binary header.

Figure 2.15: SEG-Y �le structure. The �le is organized by traces and these are typically
arranged as IL-slice, i.e.f Trace(il = 0; xl = 0) ; Trace(il = 0; xl = 1) ; : : : ;Trace(il =
0; xl = XLs ); Trace(il = 1; xl = 0) ; : : : ;Trace(il = ILs; xl = XLs )g. This format is
therefore not conceived and optimized for a fast access of 3Dsub-volumes of data.

To manage the SEG-Y format in Input/Output (IO) we used the segyio10 library
which allowed us to read and produce SEG-Y �les to be suppliedto Eni as input for
their visualization and processing tools.
Segyio is a small LGPL11 licensed C library for easy interaction with SEG-Y formatted
seismic data, with language bindings for Python and Matlab.However, segyio has some
limitations as it does not support the entire standard or allexotic (but correctly) for-
matted �les. Some assumptions are made, for example: all traces in a �le are supposed
to be the same size as the sample and all lines are supposed to have the same number of
traces.

Visualization Tools

Visualization in this �eld plays a key role due to the intrinsically 3D nature of geobodies.
It was therefore important to be equipped with graphical tools to improve the under-
standing of the provided dataset. Petrel is not free of charge and have therefore only
been exploited through Eni's team.

� Petrel

Petrel is a software platform used in the exploration and production sector of
the petroleum industry. It allows the user to interpret seismic data, perform well
correlation, build reservoir models, visualize reservoirsimulation results, calculate
volumes, produce maps and design development strategies tomaximize reservoir
exploitation. Petrel is developed and built by Schlumberger.

10https://segyio.readthedocs.io/en/latest
11The GNU Lesser General Public License (LGPL) is a free-software license published by the Free

Software Foundation (FSF). The license allows developers and companies to use and integrate a software
component released under the LGPL into their own (even proprietary) software without being required
by the terms of a strong copyleft license to release the source codeof their own components.
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Using the latest advanced GPU rendering, the Petrel Seismic Volume Rendering
and Extraction module enables quick and interactive blending and rendering of
multiple seismic volumes with extreme clarity to detect anomalies, delineate struc-
tural and stratigraphic features, isolate areas of interest, and then instantly extract
what is visualized into a 3D object called a geobody. One can create complex se-
lection events to delineate complex structural and stratigraphic features such as
channels, deltas, or fractures. Accurate interpretation ofthose features is made
possible by the complete set of tools, such as advanced horizon amplitude-based
and waveform-based horizon autotracking, multi-Z interpretation, and interactive
mesh editing. One can also extract 3D geobodies and assign geological templates
to them providing the bodies with instant geological meaning.

� OpendTect

OpendTect is a complete open source seismic interpretationpackage, which is
widely used in the industry and that it can be downloaded at nocost from Opend-
Tect. OpendTect contains all tools, needed for a 2D and/or 3Dseismic interpre-
tation: 2D and 3D visualization, horizon and fault trackers, attribute analysis and
cross-plots, time-depth conversion, etc.

� Mayavi

Mayavi12 is a scienti�c data visualizer written in Python. Mayavi is free and
distributed under the BSD13 license. The latest version of Mayavi is called Mayavi2.

Mayavi2 seeks to provide easy and interactive visualization of 3D data, or 3D
plotting. It does this by the following: an (optional) rich user interface with
dialogs to interact with all data and objects in the visualization, a simple and clean
scripting interface in Python, including ready to use 3D visualization functionality
similar matplotlib, harnesses the power of VTK without forcing you to learn it.

2.2 Task Description

A valuable industrial objective is to quickly and semi-automatically characterize the
presence, location and extension of leads, in this case, turbidite systems.
The most natural choice for such a task is the binary classi�cation: object of interest,
background. This would naturally �t into the framework of supervised learning, but this
kind of task can be set up only if we have, or at least we can de�ne the labels. Therefore

12https://docs.enthought.com/mayavi/mayavi
13BSD licenses are a family of permissive free software licenses, imposing minimal restrictions on the

use and distribution of covered software. The BSD license is a simple license that merely requires that
all code retain the BSD license notice if redistributed in sourcecode format, or reproduce the notice if
redistributed in binary format.
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the choice of algorithms task de�nition must be done taking into account what data is
available.

Up to this point, we should ask, are these objects characterized by their sinuous and
meandering shape or by their texitural internal layering? Probably both...
The information on where are the turbidite sediments in�llsare a very di�cult one to
gain and it requires a lot of time, for geologists and geophysicists to correctly interpret the
seismic volume, and money to collect well logs in order to establish high porosity regions.
Furthermore, even if this e�ort is placed at work, a 3D reliable label with su�cient spatial
resolution is impractical. On the other hand, the extraction of horizons is a relatively fast
and semi-automated process done using 3D visualization andprocessing software, such
as Petrel. This is because the seismics is the most importantattribute in interpreting
and recognizing horizons.

Since we do not have the information on where the turbidite sediments in�lls are, we
can not set up the classi�cation task as a direct search for this kind of objects. However,
we do have three horizons with at least one embedded turbidite channel-base system.
But is the information embodied in the channel-base su�cient?

(a) Near XL-slice centered around
a channel-base voxel.

(b) Same slice as2.16awith super-
imposed channel-base (dotted line)
and sediments in�ll (green region).

Figure 2.16: Form or content dilemma. An interesting slice containing a turbidite channel
is presented. We see shape of a turbidite channel-base, the form, and textural pattern
of the sediments in�ll, the content.

In Figure 2.16 we see a slice of seismics centered around a channel-base voxel. We
notice two important things that are present: channel-baseis characterized by a concave
shape and sediments in�ll with its texitural pattern that li es above. Therefore, even if
we are expressing the task as a search for turbidite channel-base systems, using a big
enough context around every channel-base voxel we give to the model both pieces of
information: shape and content.
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After all these consideration, we choose to de�ne the deep learning task as binary
classi�cation between turbidite channel-base and background using as input a sub-volume
context or a 3D patch. Or, in other words, we choose to build models that for every
voxel answer the question:

\ Does this voxel belong to a sub-volume that represents a channel-base system?"

2.3 Proposed Models

We previously introduced the concept of the 3D patch in the context of a patch-based
classi�cation task. The 3D patch is the earlier called sub-volume which is aNpatch side
volume.

At the end of the sub-sub-section1.1.2.3we talked about the curse of dimensionality,
which focuses on how the number of features should be kept under control in relation to
the available examples in order to ensure a good learning process. In case we are using
Npatch side volumes as input patches we are looking for a solution toa problem with
the complexity that grows asO(N 3

patch ), sinceNF = N 3
patch . Given that Npatch must also

be large enough to provide an adequate context for the learning process, the risk of not
having enough examples is considerably high.

Figure 2.17: Windrose diagram.

We, therefore, decided to take an alternative
route before admitting the need to move to full 3D.
It has been decided to work with a certain number
of 2D patches, according to what could be de�ned
as a 2.5D approach. This approach makes the com-
plexity of the problem proportional to a O(N 2

patch ).
The most intuitive choice to transform an intrin-
sically 3D problem into a 2D one is to takeNslice

slice along the coordinated axes of the subvolume,
in a mode that we have named \windrose". For a
graphical representation see Figure2.18.

2.3.1 Input Patch

Once we decided that we want to use a 2.5D approach, it remainsto be de�ned how to
exactly build the input patch from the three selected slices.
One idea could be to place them horizontally side by side to form a single image of
size [1]x[Npatch ]x[3Npatch ]. Even if this may seem an obvious choice, with respect to
the functioning of the CNN models, it implies that the same convolution �lters act
simultaneously for all three slices. However, they carry very di�erent information, for
example the D-slice, and not to mention the fact that there are discontinuities in the
junction points that models must learn to handle it.
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(a) 3D patch around a channel-base voxel. (b) Three 2D patches extracted in a win-
drose fashion. Slices are extracted per-
pendicular to coordinate axes.

Figure 2.18: Windrose patch description. In this caseNslice = 3 but we can generalize
easily to the case whereNslice < N patch . The caseNslice = Npatch , no matter how slices
are selected, implies the same complexity as the direct 3D approach and therefore is not
convenient.

Figure 2.19: Windrose h-stack patch description.

We, therefore, opted for an input patch de�nition that would allow the network to
use di�erent �lters for each slice. The result of this reasoning was to stack the slices on
top of each other, as happens with RGB image channels. Thus producing patches of size
[3]x[Npatch ]x[Npatch ].

2.3.2 Models Architecture

Regarding the architecture of the models, which are naturally 2D CNNs, we decided to
study two architecture in particular, called here \CNN A" and \ CNN B".

As you can see in Figure2.21, the last two connections has a further information in
square brackets which is relative to the regularization techniques called dropout. Dropout
is drawn in brackets because we analized the CNN A architecture both with and without
dropout, called respectively: \CNN A Dropout" and \CNN A".
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(a) Windrose slices are concatenated one
above the other in a three-channel way.

()

(b) Spectral interpretation of
the concatenated windrose slices
as a RGB image.

Figure 2.20: Windrose spectrum patch description.

CNN B architecture is described in Figure2.22. As before we analized architecture both
with and without dropout, called respectively: \CNN B Dropout" and \CNN B".

The main di�erence from the two architectures is the depth, or rather the composi-
tionality of the inner representation. CNN B, in fact, better represents the convolution
network paradigm, having many convolutional layers and therefore feature maps built
as the composition of the previous feature maps. In additionto having more convo-
lutional layers, CNN B also has an extra layer of max pooling that makes its internal
representation more spatially invariant. These di�erences are strongly reected in the
representational capacity. The representational capacity can be roughly estimated as the
number of tunable parameters, the weights� . Of course, the number of weights depends
on the size of the input patch. Convolutional connections, in fact, shrink the size of the
incoming feature maps, as max pooling connections naturally do. In Table 2.1 you can
see a huge di�erence, in terms of weights, between the two architectures as the size of
the input patch changes.
In summary, we have that although CNN B is a better representative of the convolutional
paradigm it has way less representational capacity than CNN A,which reects however
on the number of examples needed to achieve good learning.
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Figure 2.21: CNN A architecture. We can see early convolutional layers, expressed as
a certain number of feature maps, connected trough a 2D convolution operation with
speci�ed kernel size. Second hidden layer is conned to thirdhidden layer by a 2D max
pooling operation which halves feature maps side. Flattening procedure simply reshapes
all elements in a row, so that a dense connection can be made. For all layers but the
output one, which has softmax as usual for classi�cation tasks, the activation function is
the ReLU function. Output layer has two nodes, one for the background class prediction
probability PBackground and one for turbidite channel-base prediction probabilityPChannel .
The last two connections has a further information in squarebrackets, which is dropout
and relative dropping nodes percentage.

Npatch

Model architecture 17 33 49 65
CNN A 314,690 1,625,410 3,984,706 7,392,578
CNN B - 205,826 211,970 226,306

Table 2.1: Representational capacity for proposed models.Number of tunable parame-
ters for the two architectures considerated at varying input patch size. CNN B can not
operate on patches smaller thanNpatch < 24 due to feature map shrinkage by convolu-
tional and max pooling layers.
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Figure 2.22: CNN B architecture. This architecture is proposed in [10].
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Chapter 3

Implementation and Results

This chapter describes the implementation of the deep learning problem described so far
and the results obtained.
First of all, we highlight the use of Python language and the TensorFlow library coupled
with the use of Nvidia CUDA capable GPUs. As expressed in section1.1, nowadays
any experimental deep learning project can't avoid the use of GPUs because these allow
studying multiple possibilities in acceptable deadlines.

TensorFlow is a free and open-source software library developed by the Google Brain
team that is also used for machine learning applications such as neural networks. It was
released under the Apache License 2.01 and it is used for both research and production
at Google. TensorFlow can run on multiple CPUs and GPUs with optional CUDA
extensions.

In this work we used two GPUs, one relative to my laptop and one relative to the
workstation provided by Bioretics. The most intensive tests were conducted entirely on
the workstation.

Here's a list of the main characteristics of used GPU's.

� Laptop : Nvidia GeForce MX 150 with 2 GB of dedicated memory.

� Workstation : Nvidia GeForce GTX 1080 with 8GB of dedicated memory.

3.1 Implementation

In the previous chapter, the deep learning problem has been explicitly de�ned. It is a
binary classi�cation between background and turbidite channel-base. This choice was
made considering the available dataset, in fact, we have horizons with at least one channel

1The Apache License is a permissive free software license written by the Apache Software Foundation
(ASF). It allows users to use the software for any purpose, to distribute it, to modify it, and to distribute
modi�ed versions of the software under the terms of the license, without concern for royalties.
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immersed. Now, the fundamental step is to generate a labeled training/test set and to
do this it is necessary to de�ne which are the channel voxels and which are not.

Is it possible to de�ne channel voxels purely by observing the geometry of the horizon?
In the following you can see the three horizons represented through the depth in grayscale
pseudocolor, associating black to deep regions and white toshallow ones.

Figure 3.1: Base III horizon with depth as grayscale pseudo color.

Figure 3.2: Base II horizon with depth as grayscale pseudo color.

Figure 3.3: Base I horizon with depth as grayscale pseudo color.
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From previous images, it is possible to detect the presence of some channels even
if a sort of darkening seems to prevent an optimal vision of the horizon topology. The
motivation for this aberration lies in the fact that the horizons can have a non-null
average slope, in particular, all three horizons show a slope towards increasing IL.
To remove this e�ect we decided to process the horizons in a way that visually improves
the images and helps the human eye to perform segmentation. The idea is to remove the
contribution of the average gradient from the horizons as summarized in Figure3.4.

Figure 3.4: Mean-plane correction.

In order to explain how we implemented this correction it's useful to describe the hori-
zon as a di�erentiable function de�ned on the XL-IL plane that gives the corresponding
depth2.

Hor : R2 �! R

(XL; IL ) 7�! Hor(XL; IL ) = DHor
(3.1)

With this mathematical framework we can de�ne the mean gradients with respect to
coordinate axes:gXL , gIL .

gXL =
@Hor
@XL

:=
1

(XLs)(ILs)

X

i;j

@Hor
@XL

j(XL i ;IL j )

gIL =
@Hor
@IL

:=
1

(XLs)(ILs)

X

i;j

@Hor
@IL

j(XL i ;IL j )

(3.2)

2We can suppose that our horizons are a sampled version of the continuous horizons de�ned in
equation 3.1.
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It's easy now to de�ne a function MPlane that assign to every point in the XL-IL plane,
the corresponding depth of the mean plane, or even the horizon interpolating plane3

MPlane(XL; IL ) := gXL XL + gIL IL + const (3.3)

Mean-plane corrected horizons are de�ned in equation3.4 in such a way that gcorr;XL =
gcorr;IL = 0.

Horcorr (XL; IL ) := Hor( XL; IL ) � MPlane(XL; IL ) (3.4)

Figure 3.5: Base III mean-plane corrected horizon with depthas grayscale pseudo color.
A channel-base is clearly visible on the right hand side thatcrosses from top to bottom
the image. Other channel-bases may be present but not as visible to us.

Figure 3.6: Base II mean-plane corrected horizon with depth as grayscale pseudo color.
An S-shaped channel-base is clearly visible diagonally across the image. This appears
to be a system of two channels that have split in two at the bottom of the image. An
uncertain region appears to be the one at the top right.

3We de�ned the MPlane function up to a constant because it is irrelevant to our purpose. The reason
is that we are not interested in the actual depth value of mean-plane corrected horizons, but only to
enhance their visual representation in grayscale pseudo color whichadapts itself to the data range.
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Figure 3.7: Base I mean-plane corrected horizon with depth asgrayscale pseudo color.
A system of channel-bases is clearly visible in the center ofthe image crossing from the
top center to bottom right.

After examining all the horizons and noticing the presence ofevident channels, we
decided to focus heavily on Base II. This horizon, in fact, has a widespread channel that
crosses a signi�cant part of the horizon and therefore can provide a lot of information
to the models. Moreover, Base II, being between Base I and Base III, is an obvious
candidate to focus out attention on because it can provide useful information also for
the generalization in its surroundings, which we can control by monitoring what models
predict on Base I and Base III.
In Figure 3.8 we show how Base II appear in 3D space.

Figure 3.8: Base II horizon in 3D space.
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3.1.1 Manual Channel-Base Segmentation

In this section, we describe how we proceeded to extract information about the location
of the channel dipped on Base II horizon. Since we want to extract the channel-base
using only topological information, we �nd two useful information: the magnitude of the
gradient and the curvature. To calculate them, it was necessary to take into account
that the XL and IL axes do not have a homogeneous sampling. As youcan see from
Figure 2.3 � IL = 2� XL , and we had to take this into account de�ning two variables of
scale:SXL = 1 and SIL = 2. Now you can correctly de�ne the magnitude or modulus of
the gradient vector as expressed in equation3.5.

Gmagnitude (XL; IL ) :=

s �
1

SXL
gcorr;XL (XL; IL )

� 2

+
�

1
SIL

gcorr;IL (XL; IL )
� 2

(3.5)

Where

gcorr;XL (XL; IL ) =
@Horcorr

@XL
(XL; IL )

gcorr;IL (XL; IL ) =
@Horcorr

@IL
(XL; IL )

(3.6)

We can also calculate a simpli�ed version of curvature, suchthat in equation 3.7, and
visually combine the two information as in Figure3.9.

Curvature(XL; IL ) :=
�

1
SXL

� 2 @2Horcorr

@XL2
(XL; IL ) +

�
1

SIL

� 2 @2Horcorr

@IL2
(XL; IL ) (3.7)

Figure 3.9: Base II gradient magnitude plus curvature. In this image, gradient magnitude
and curvature are blended in a certain proportion, respectively 0.75 and 0.25, in order
to give a topological hint on where the channel-base is.
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Using this information we have manually contoured the regionthat we believe could
correspond to the de�nition of channel-base, reaching as far as the concavity reaches its
maximum downward, i.e. what could be de�ned as the bank of thechannel. The result
of this �rst segmentation can be seen in Figures3.10. Unfortunately, it is di�cult to
exactly de�ne where the channel-base ends and it is a part of this work to �gure out how
this de�nition a�ects the classi�cation problem resolution.

Figure 3.10: Base II �rst segmentation. As may notice, we completely ignored the
topological indications regarding the top right area, considering that part as background.
We point out that this choice is not motivated by an a priori knowledge and therefore it
should be considered as a possible criticality of this initial segmentation, which adds to
the problem of how to de�ne the channel-base boundaries.

3.1.2 Dataset Handling

Now that we have de�ned, at least on the Base II horizon, which are channel-base
voxels and which are background, we just have to de�ne how to build a windrose patch
labeled dataset in practice. First of all, the number of voxels on each horizon isMmax =
(XLs )(ILs ) = 1 ; 901 x 606 = 1; 152; 006 but only a part of them has a windrose patch
associated with, this is because the latter must be within4 the seismic data volume. So
the number of voxels from which it is possible to extract windrose patches ofNpatch side,
and therefore the maximum number of e�ective extractable examples, is equal to:

M e� = Mmax �
�

2
�

Npatch

2

�
+ 2

�
Npatch

2

��
(3.8)

As an implementation choice we decided to save on disk 3D patches of sideNsaved >
Npatch centered around the labelled voxels from which we later extract the windrose
patches during simulation. ThereforeM e� is actually:

M e� = Mmax � 4
�

Nsaved

2

�
(3.9)

4Unless you put into practice volume padding procedures.
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Figure 3.11: 3D central cropping of saved volume and windrosepatch extraction.

The decision of saving 3D patches along with the large amountof extractable 3D patches
M e� induced, for reasons of memory storage capacity, to actually save a fraction of them.
We decided to not select this fraction of 3D patches randomlybecause it could happen
that in some regions patches might be closely picked, and therefore highly correlated,
while in others spatially distant. The set of selected 3D patches was therefore de�ned
using the concept of 2D stride: i.e. 3D patches selected having central voxel lying on a
2D grid of step (� XL ; � IL ).

The number of 3D patches of sideNsaved saved on disk is therefore:

M saved =
M e�

� XL � IL
(3.10)

In our case the trade-o� between the request for a su�cientlylarge dataset and the
memory storage requirements led to the choice of� XL = � IL = 4: that is M saved =
M e� =16 � 70k examples.

3.1.3 Preprocessing

Before implementing a deep learning algorithm it is good practice to study how the
numerical range of examples behaves in the training context. The training algorithms in
fact, due to numerical crunching reasons, do not work properly if the input values are
either too small or too large5. In our case values contained in seismic volumes have an
extremely wide dynamic range in the order of 108:

� Far : Farmin = -623,911,936.00, Farmax = 409,188,992.00.

5Typically the range [0; 255] of the 8-bit unsigned integers is a good one for CNNs.
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� Near : Nearmin = -505,458,176.00, Nearmax = 402,230,816.00.

To study how the dynamic range of the data a�ects training, and thus develop a
preprocessing procedure if necessary, we have built a toy problem. We chose to focus
on the left half of Base II and extractM = 6,255 windrose patches of sideNpatch = 33
from the available ones, on the Far volume. In Figure3.12you can see the distribution
of input values for the selected windrose patches and the contributions given by the two
classes.

(a) Histogram of input values of the 6,255 selected
windrose patch.

(b) Histogram of input values of the 6,255 selected
windrose patch splitted by class.

Figure 3.12: Histogram of input values for the preprocessing toy problem.

Since the seismic volumes contain physical information about the RC reection co-
e�cients, we decided to study three preprocessing cases that would preserve the zero-
crossing characteristic of the original data, i.e. a trivial rescaling dividing original data
by a certain factor Fproc .

� Original : Fproc = 1. We keep the original data unchanged.

� Normalized : Fproc = Fnormalized . We normalize the whole seismic volume, while
preserving zero-crossing, dividing byFnormalized,Vol = maxfj Volmin j; j Volmax jg
where Vol = Far; Near.

� Custom : Fproc = Fcustom . We adjust the normalized version by increasing data
range by a factor of 100:Fcustom = Fnormalized =100.

We have therefore studied how these three preprocessing factors a�ect the training
process applied to the architectures analyzed in this work.We have divided datasets
of this toy problem into a training set (90%) and validation set (10%) to observe the
robustness of the training process from the generalizing ability of the trained models.
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(a) (b)

Figure 3.13: E�ects of preprocessing on training CNN As architectures. 3.13aWe can
see that the normalized version behaves worse, probably thevalues are too small. It is
very interesting to note that although the original versionperforms better on the training
set, the custom version has the best generalizing ability.3.13b The dropout seems to
compromise the training on the original data while the custom version performs pretty
well. We notice how the regularizing ability of the dropout keeps the performance on
the training set and validation set close.

(a) (b)

Figure 3.14: E�ects of preprocessing on training CNN Bs architectures.

Considering the results expressed in Figures3.13 and 3.14 and especially the good
performance of the custom preprocessing version on Dropoutarchitectures, we decided
to use this preprocessing technique in all the simulations of this work.
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3.1.4 Dataset Augmentation

Given the scarcity of labeled examples compared to the number of possible physically
acceptable con�gurations in which 3D patches can be found. We decided to implement
the dataset augmentation in order to improve the generalization of the models, providing
arti�cially generated examples generated from real ones through transformations that
preserve their realism.

The chosen transformations are:

� XL-ipping : The 3D patch is mirrored on a plane passing through the center of
the 3D patch and orthogonal to the XL direction.

� IL-ipping : The 3D patch is mirrored on a plane passing through the center of
the 3D patch and orthogonal to the IL direction6.

� D-translation : The 3D patch is shifted to increasing or decreasing depths of a
certain number of voxels, respectively positive or negative. This transformation is
important because horizons are the result of human interpretation and therefore
not certain and not perfect. We account for this uncertain introducing a random
noise in depth.

� D-rotation : The 3D patch is rotated with respect to the axis passing through
the center of the 3D patch and parallel to D direction, by a certain angle. This
transformation implies that there's not a preferential direction between XL and IL.
Every object can be found orientated in all direction of the XL-IL plane.

� Scaling : The 3D patch is zoomed in or out by a certain factor, respectively larger
than or smaller than one7. This transformation tries to account for the depth
variation of seismic wavelet resolution (see Figure2.10) and hence to help generalize
on surrounding depths.

Thinking about the D-rotation transformation, we realizedit hides a trap. In fact,
the seismic volume sampling is not isotropic in the three directions, and especially XL
and IL. This characteristic of the seismic volume implies that by rotating an original
3D patch you get another 3D patch that does not conform to the original volume due
to this sampling asymmetry. For this reason, we decided to implement a pre-treatment
procedure for original 3D patches in order to correctly perform dataset augmentation,
as graphically described in Figure3.15.

6You can't do the same thing with the D direction because it would produce unrealistic examples,
a bit like seeing a tree upside down. The D direction is therefore substantially di�erent from the other
two.

7You may notice that in order to apply this transformation, the 3D patch mus t be larger than the �nal
windrose patch; hence the requestNsaved > N patch . The same goes for the D-translation transformation.
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(a)

=)

(b)

Figure 3.15: XL-IL homogenization.3.15aThe original 3D patch extracted from seismic
volume. As you can see in the IL axis there's more information respect to XL, this is
caused by di�erence in axes sampling rates.3.15b We expanded IL axis by a factor
SIL = 2, homogenizing XL and IL axes.

Once the XL-IL homogenized patch is produced, we proceed to extract the central
region of sideNpatch from which the windrose patch is generated, as shown in Figure3.16
and Figure 3.17.

Figure 3.16: Npatch central cropping of the axis-homogenized 3D patch.
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Figure 3.17: Original windrose patch of sizeNpatch = 33.

XL-Flipping

Flipping is a reection transformation and cannot be described as a rotation, so it is
necessary. Transformations are performed on the XL-IL homogenized 3D patch, as visible
in Figure 3.18, from which it is then extracted a cropped sub-volume of sideNpatch . In
Figure 3.19we show the XL-ipping data-augmented windrose patch.

(a)

=)

(b)

Figure 3.18: Dataset augmentation: XL-ip.
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Figure 3.19: XL-ipping data-augmented windrose patch of size Npatch = 33.

IL-Flipping

Figure 3.20: IL-ipping data-augmented windrose patch of size Npatch = 33.

D-Translation

This trasformation translates the 3D patch in depth of a random number of voxel within
the range [� 5; +5].

Figure 3.21: D-translation data-augmented windrose patch of size Npatch = 33. This
windrose patch is associated to a translation of +5 voxel in depth.
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D-Rotation

This transformation rotates the 3D patch of a random angle within the range
[� 180� ; +180� ], with respect to the axis passing through the center and parallel to D.

Figure 3.22: D-rotation data-augmented windrose patch of size Npatch = 33. This win-
drose patch is associated to a 90 degree anticlockwise rotation.

Scaling

This transformation zooms out or in by a random factor withinthe range [0:9; 1:1], or
equivalently [� 10%; +10%].

Figure 3.23: Scaling data-augmented windrose patch of sizeNpatch = 33. This windrose
patch is associated to a scaling factor of 0.9, or equivalently to a zoom out of 10%.

Operatively, we implemented the dataset augmentation by sequentially applying all
the selected transformations, each with a certain probability 8 Ptransformation . So that
a varied and representative dataset can be obtained withoutexplicitly encoding every
combination.

8We implemented it in such a way that the original windrose patch is always kept. Therefore we can
also use unit-valued probabilities.
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3.2 Training on Base II

In this section, we describe the results of the simulations carried out by training the
models on portions of Base II horizon and by studying the predictive behavior of the
models on previously unseen ones.
In this results presentation, we follow the logical path of reasoning that has guided us in
our research. By exploring the key critical points identi�ed, in particular:

� On which seismic volume is it better to set up the DL task9?

� Is dataset augmentation useful for this DL approach?

� How susceptible is this DL approach to channel-base segmentation?

� How and how much does the context extensionNpatch a�ects DL performance?

To better understand the problem we are going to study and thedi�erences between
the two seismic volumes, we can observe the following two images which show the seismics
values of Base II horizon voxels.

Observing Figures3.24 and 3.25 we notice two important facts: the di�erence in
resolution between the two volumes and that this horizon does not perfectly follow a
constant seismics value. On the horizon, in fact, seismics take both negative and positive
values, contrary to what one might think. This depends on onehand to the fact that
the horizon is the result of a semi-automatic manual interpretation and segmentation
and on the other to the fact that the horizontal seismic bandsrepresenting strata are
discontinuous so that the operator interpreting horizons extends these regions crossing
zones of discontinuity and inconsistency. However, the volume from which the horizons
are segmented (Near) is consistent with the established channel-base as this seems to be
more or less de�ned by a positive (red) seismics. This is not found on the Far volume as
proof that the horizon has been segmented using Near seismics.

9We studied the performance of the models on both Far and Near volumes, although we know that
since the horizons have been segmented from the seismics of Near, thelatter is the logically coherent
seismic volume on which to base the DL approach outlined so far.
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Figure 3.24: Far seismics on Base II horizon.

Figure 3.25: Near seismics on Base II horizon.

3.2.1 Left Training and Right Inference

We initially observed the importance of performing some form of dataset augmentation.
For this purpose, we compared the results of two experimentsconducted by training on
the left half of the Base II horizon based on the Far volume.

The �rst experiment consists of training only on original examples while the second
one consists of training on the same number of data-augmented examples.

# Examples
Label Original Data-augmented (x5)

Channel 13,133 2,626 x 5
Background 15,795 3,158 x 5
% Channel 45.40 % 45.40%

Tot 28,928 28,920

Table 3.1: Left training dataset composition. The symbol x5is the data-augmentation
factor which means that for each extracted original example5 are produced (1 original
example unchanged plus 4 arti�cial data-augmented examples). The examples are ran-
domly selected from theM saved ones located in the training area, i.e. the left half in this
case.

In these experiments and all the following ones, we chose to divide the training data
into an e�ective training set (90%) and a validation set (10%) to monitor the training
process. Data augmentation features implemented in this experiment are expressed in
Table 3.2. These parameters are used for all the simulations in this work so that results
can be compared.
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Transformation Ptransformation

D-rotation 1
XL-ipping 0.5
IL-ipping 0.5

D-traslation 0.5
Scaling 0.5

Table 3.2: Data augmentation probabilities. The D-rotation has an associated unit
probability and this is allowed because we implemented thatthe original data is always
kept unchanged by data augmentation. The order in which the transformations are
expressed is the sequential order in which the data augmentation is implemented. Hence,
�rst, we execute the rotation, then on the rotated data, we execute the XL-ipping with
0.5 probability, etc.

In the following �gures we show how data-augmentation a�ects the generalization
ability of the model here analyzed, CNN A onNpatch = 65 sided windrose patch10. The
model is trained in both experiments for 200 epochs11. To better understand the results,
we recommend checking the ground truth image valid for theseexperiments in Figure
3.10, remembering however that this is a segmentation made by theauthor and therefore
should not be considered certain and unmodi�able.

10We chose to use the architecture without dropout to highlight the generalization power of data
augmentation. Also, we chose windrose patches large enough to allow the models to over�t given the
high representational capacity induced by such a big patch in order toreveal discrepancies between
these two experiments.

11By epoch we mean a complete iteration of stochastic gradient descent.In other words, we can
say that during an epoch the model sees as many examples as the total number of examples provided
for training. The stochastic gradient descent, in fact, works on randomly sampled minibatch of M B

examples.
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Figure 3.26: Left training and right inference: original examples.

In Figure 3.26we notice that in the training region the model almost perfectly over�ts
the shape of the segmented channel, showing how the model representational capacity is
high enough for this kind of problem. In the right half, i.e. the test half, we notice �rst
of all that the model does not predict at random, this means that useful information is
contained within the training set. However, we observe how the prediction has several
high probability spots that are described in this segmentation as false-positives. We also
notice that the learned channel-base is extended as pseudo-straight �laments that come
out from the training boundaries and do not follow the correct downward meandering
shape of ground truth. According to our interpretation, this is due to the lack of an
enough representative dataset of all the possible spatial orientations, in the Xl-IL plane,
where a channel-base can be found.

Figure 3.27: Left training and right inference: data-augmented examples.

In Figure 3.27 we notice that in the training region despite the spatially dilution 12

of training examples by a factor of 5, the shape of the segmented channel continues
to be well represented. In the test region instead, we noticehow the number of false-
positive spots has decreased and especially how the channelis now better extended as
the expected downward trend is here present. At the top right, we continue to see the
presence of a high probability channel-base region that is consistent with the topological
information inferable by examining Base II horizon in Figure3.6. This might mean that
the segmented channel-base is not the only one present in Base II horizon.

Given the results produced, we can argue that for the DL task described in this work,
the data augmentation is of fundamental importance and cannot be omitted because the

12In Figure 3.26 the mean minimum distance, expressed in number of voxels, between central voxel
of two training windrose patches is 4.22 while in Figure3.27 is 9.43.
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number of physically acceptable con�gurations that can be encountered far exceeds those
that can be extracted from a single horizon. Therefore, for all the experiments carried
out in this work, data augmentation has always been applied.

3.2.2 K-Fold-Cross Validation

Cross-validation is any of various similar model validation techniques for statistical as-
sessing how the results of an algorithm will generalize to anindependent data set. It
is mainly used in settings where the goal is prediction, and one wants to estimate how
accurately a predictive model will perform in practice. Thegoal of cross-validation is
to test the model's ability to predict new data that was not used in estimating it, in
order to ag problems like over�tting or selection bias13 and to give an insight on how
the model will generalize to an independent dataset.

Two types of cross-validation can be distinguished: exhaustive and non-exhaustive
cross-validation. Exhaustive cross-validation methods are cross-validation methods
which study models that are respectively trained and testedon all possible ways to di-
vide the original dataset into a training and a test set. Non-exhaustive cross-validation
methods do not compute all ways of splitting the original dataset. The most famous of
this class of methods is K-fold cross-validation.

In K-fold cross-validation, the original dataset is randomly partitioned into K equal
sized subsamples. Of the K subsamples, a single subsample isretained as the test dataset
for testing the model, and the remaining K-1 subsamples are used as training the dataset.
The cross-validation process is then repeated K times, witheach of the K subsamples
used exactly once as the test data, generating K di�erent models. The accuracies of the
K models can then be averaged to produce a single accuracy estimation.

In summary, K-fold cross-validation combines, or averages, measures of accuracy in
prediction to derive a more accurate estimate of model prediction performance with
associated uncertainty.

AccK-fold =
1
K

KX

i =1

Acci

� Acc;K-fold =

s
P K

i =1 (Acci � AccK-fold )2

K

(3.11)

13Selection bias is a distortion in a measure due to a sample selection that does not accurately reect
the overall target ensemble.
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Figure 3.28: 4-fold cross-validation graphical representation. In this representation
dataset examples are randomly placed in a list and thereforethere is no concept of
samples spatial location.

In our case, a random partition of the dataset is not the most statistically correct way
to apply K-fold cross-validation. Windrose patches that arelocated close on the horizon
have high correlation because they share part of their 3D context and this can distort
accuracy estimates if K is small. We, therefore, decided to split the dataset according to
a spatial criterion as in Figure3.29.

Figure 3.29: 4-fold cross-validation subsamples on Base II �rst segmentation.

The results obtained from our simulations are shown below. All the prediction images
refer to the CNN A Dropout architecture trained for 1,000 epochs.

3.2.2.1 Small Context Extension

Initially we decided to study simpler cases so we set to a low value the extension of the
3D context associated with each voxel through the input patch. In particular we selected
Npatch = 33.
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# Channel voxel # Background voxel % Channel voxel
Test set 1 105,752 182,704 36.66 %
Test set 2 122,627 165,223 42.60 %
Test set 3 137,526 150,324 47.78 %
Test set 4 6,309 281,541 2.19 %

Table 3.3: 4-fold cross-validation subsamples on Base II �rst segmentation composition.
This table is relative to Figure3.29. As you can see the test set 4 has a class disproportion
compared to the other test sets and this is a critical point ofthis subsampling. We opted
for this solution because it allows us to investigate via experiment 4 if and how the
information contained therein we have high con�dence in segmentation is reected in
the leftmost margin where we have some doubt about the presence of a second channel-
base. However, in order to obtain better statistical results, we suggest implementing
di�erent subsampling in the future.

First Version Segmentation

# Examples
Channel Background % Channel

Test set 1 1,164 x 10 1,855 x 10 38.56 %
Test set 2 1,538 x 10 1,698 x 10 47.53 %
Test set 3 1,753 x 10 1,483 x 10 54.17 %
Test set 4 54 x 10 2,964 x 10 1.79 %

Tot 125,900

Table 3.4: Npatch = 33 Base II �rst segmentation dataset composition. For a graphical
representation of Base II �rst segmentation see Figure3.29.

We analyzed the problem set on both Far and Near volume.

Far Volume
Here we report the result of the 4-fold cross-validation. Fora clearer explanation we

now also show the result of experiment 4.
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(a) Histogram of preprocessed input values. (b) Histogram of preprocessed input values split-
ted by class.

Figure 3.30: Histogram of preprocessed input values for the Far volume Npatch = 33 Base
II �rst segmentation simulation.

Figure 3.31: Far volumeNpatch = 33 Base II �rst segmentation: experiment 4.

Figure 3.32: Far volumeNpatch = 33 Base II �rst segmentation: accuracy evolution of
experiment 4.
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Figure 3.33: Far volumeNpatch = 33 Base II �rst segmentation: prediction image.

Figure 3.33 is obtained by composing the inference images of the four models de-
�ned by the 4-fold cross-validation on the respective test sets. Therefore, the accuracy
calculated on this image is the same asAccK-fold . By studying this image we see some
interesting facts. We observe that not considering test set4 which has already pointed
out critical issues, in test set 2 the DL task seems to be more di�cult than elsewhere.
We think that the cause of this lies in the non-coherent application of the Base II horizon
on Far seismics, in fact, as previously pointed out, the horizons have been segmented
according to Near seismics. Furthermore, we observe how in test set 1 there seems to be
a channel-base conuence/bifurcation. From the topological information we have, there
are no channel-bases in that area. However, it is possible that because the context of the
windrose patches also extends in the depth direction and because through training on the
horizon the model is not well trained on class discontinuities in depth, this channel-base
is either shallower or deeper than the training horizon.

Since the classes within each test set are neither balanced nor in equal proportion
across di�erent test sets, as seen in Table3.4, we decided to also calculate the weighted
accuracy WAcc as de�ned in Equation 3.12. Unweighted accuracy is simply de�ned
as the ratio between the number of correctly predicted examples, true positive (True
Channel-base,TC) and true negative (True Background,TB), and the total number
of tested examples. The weighted accuracy version, on the other hand, consists of the
average of compartmentalized accuracy on each class, thus balancing the prediction's
contribution even on sparsely populated classes.

UAcci =
TCi + TBi

#C i + #B i

WAcci =
1
2

�
TCi

#C i
+

TBi

#B i

� i = 1; 2; : : : ; K (3.12)
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(a) Unweighted accuracyUAccK-fold . (b) Weighted accuracy W AccK-fold .

Figure 3.34: Far volumeNpatch = 33 Base II �rst segmentation: accuracies. We notice
that accuracies do not seem to increase in a statistically signi�cant way as the number
of training epochs increases. This is a strong indication that in this con�guration the
problem is not well-posed. Another important aspect that emerges is that the standard
deviation associated with unweighted accuracy does not decrease in a statistically signif-
icant way as the number of epochs increases. This means that theK weighted accuracies
are converging toward the same value as training proceeds.

Near Volume

(a) Histogram of preprocessed input values. (b) Histogram of preprocessed input values split-
ted by class.

Figure 3.35: Histogram of preprocessed input values for the Near volume Npatch = 33
Base II �rst segmentation simulation. We point out that compared to the histogram
of the dataset extracted on the Far seismics in Figure3.30, here the distribution of the
inputs associated with the Channel-base class seems to be more symmetric around zero.
This is a rough indication that there is a profound di�erencein the application of the
DL task on the two seismic volumes.
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Figure 3.36: Near volumeNpatch = 33 Base II �rst segmentation: prediction image.

In Figure 3.36we initially observe how this image looks more resolute thanFigure 3.33,
this is directly related to the higher resolution of Near seismics. We notice that in the
upper portion of test set 4 there is a predicted channel-basesystem that might be compat-
ible with the horizon topology in Figure3.6, but that has been considered as Background
in this segmentation. We observe that there is a channel-base that consistently crosses
test sets 1 and 2 and runs parallel at the top of the segmented channel-base. We con-
sider this to be a false positive and we think, looking more closely at the segmentation
in Figures 3.29, that this false positive may be due to an excessively broad classi�cation
of channel-bases that includes excessive channel banks.

(a) Unweighted accuracyUAccK-fold . (b) Weighted accuracy W AccK-fold .

Figure 3.37: Near volumeNpatch = 33 Base II �rst segmentation: accuracies. We observe
that in this case, accuracies show an initial growth trend that stabilizes around 100
epochs at an approximate value of 70 %. The accuracy value on its own brings little
information because the channel-base segmentation is not considered certain, so what is
actually signi�cant is this growth trend as epochs progress. This is a further indication
that the DL task should be set on Near seismics.
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Second Version Segmentation
From considerations developed on Figures3.36about the e�ects of an excessive seg-

mentation, we decided to study how sensitive this DL approach is to segmentation. In
particular, we decided to slightly modify the �rst segmentation version of Base II exclud-
ing what we believe to be critical portions of channel banks that lead models to predict
false positives.

Figure 3.38: 4-fold cross-validation subsamples on Base II second segmentation.

# Channel voxel # Background voxel % Channel voxel
Test set 1 93.043 195.413 32,26 %
Test set 2 85.732 202.118 29,78 %
Test set 3 130.181 157.669 45,23 %
Test set 4 6.309 281.541 2,19 %

Table 3.5: 4-fold cross-validation subsamples on Base II second segmentation composi-
tion.

# Examples
Channel Background % Channel

Test set 1 1,006 x 10 2,013 x 10 33.32 %
Test set 2 1,075 x 10 2,161 x 10 33.22 %
Test set 3 1,500 x 10 1,736 x 10 46.36 %
Test set 4 54 x 10 2,964 x 10 1.79 %

Tot 125,900

Table 3.6: Npatch = 33 Base II second segmentation dataset composition.
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Far Volume

(a) Histogram of preprocessed input values. (b) Histogram of preprocessed input values split-
ted by class.

Figure 3.39: Histogram of preprocessed input values for the Far volume Npatch = 33 Base
II second segmentation simulation.

Figure 3.40: Far volumeNpatch = 33 Base II second segmentation: prediction image.

In Figure 3.40 we observe how the image looks cleaner compared to Figure3.33 since
many false positives (F C) are no longer present. We notice that the prediction in test
set 4 is substantially unchanged. We also notice that in testset 2 the problem is still
more di�cult than in the other test sets, although it is better solved. Finally, we observe
that the new segmentation allowed the model in test set 1 to remove the false positive
channel-base that seemed to merge/fork the segmented channel-base. From this visual
result, we can say that segmentation plays a fundamental role and even small changes
have a great impact on the behavior of DL models.
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(a) Unweighted accuracyUAccK-fold . (b) Weighted accuracy W AccK-fold .

Figure 3.41: Far volumeNpatch = 33 Base II second segmentation: accuracies. We ob-
serve that unweighted accuracies with this new segmentation are higher than accuracies
in Figure 3.34and also than weighted accuracies. The weighted accuraciesinstead remain
statistically unchanged with respect to the �rst version segmentation case. However, the
�rst point is only an indication that the problem induced by the new segmentation is
more easily representable through the representational capacity of the studied models.
And the fact that the unweighted accuracies are statistically higher than weighted ones
means that although the number of true negative (TB) has increased, the number of
true positive (TC), which in this kind of metrics counts more, has decreased.These two
e�ects balance each other perfectly keeping the weighted accuracy unchanged compared
to the case with the �rst segmentation.

Near Volume

(a) Histogram of preprocessed input values. (b) Histogram of preprocessed input values split-
ted by class.

Figure 3.42: Histogram of preprocessed input values for the Near volume Npatch = 33
Base II second segmentation simulation.
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Figure 3.43: Near volumeNpatch = 33 Base II second segmentation: prediction image.

For Figure 3.43similar considerations hold true to those expressed for Figure 3.40. We
observe how a small variation in the segmentation has a signi�cant e�ect on the pre-
dictive behavior of the models. Therefore we can conclude that for this DL approach
segmentation plays a determinant role and thus proper e�ortand care must be invested
in this process.

(a) Unweighted accuracyUAccK-fold . (b) Weighted accuracy W AccK-fold .

Figure 3.44: Near volumeNpatch = 33 Base II second segmentation: accuracies. We
observe how in the case of unweighted accuracies dropout architectures show a better
generalizing ability as the associated accuracies continue to increase even beyond 100
epochs, where instead the other architectures seem to saturate.
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3.2.2.2 Big Context Extension

Lastly, we explored how the extension of input patches a�ects the performance of algo-
rithms. We wondered if a windrose patch of sideN patch = 33 would provide enough
context to models for this DL task. For this purpose we studied the caseN patch = 65,
and to allow comparability with previous simulations we kept the same number of exam-
ples. We are well aware however of the danger represented by the curse of dimensionality.
This aspect is surely a critical point of these experiments.

# Examples
Channel Background % Channel

Test set 1 930 x 10 1,809 x 10 33.95 %
Test set 2 1,075 x 10 1,970 x 10 35.30 %
Test set 3 1,434 x 10 1,612 x 10 47.08 %
Test set 4 45 x 10 2,694 x 10 1.64 %

Tot 125,900

Table 3.7: Npatch = 65 Base II second segmentation dataset composition.

Far Volume

(a) Histogram of preprocessed input values. (b) Histogram of preprocessed input values split-
ted by class.

Figure 3.45: Histogram of preprocessed input values for the Far volume Npatch = 65 Base
II second segmentation simulation.
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Figure 3.46: Far volumeNpatch = 65 Base II second segmentation: prediction image.

In Figure 3.46 we observe how the visual quality of the prediction has increased. In
fact, the many false-positiveF C spots in Figure3.36 are almost completely gone. The
increased context provided to the models also made possiblea better solution to the
problem in test set 1.

(a) Unweighted accuracyUAccK-fold . (b) Weighted accuracy W AccK-fold .

Figure 3.47: Far volumeNpatch = 65 Base II second segmentation: accuracies. Although
the number of tunable parameters has signi�cantly increased for CNN As architectures,
see Table2.1, and the number of examples provided is minimal in this respect, CNN A
Dropout seems to perform very well at least here working on Far seismics. An interesting
fact that can be seen by observing the weighted accuracies ofthe CNN A Dropout
architecture is that the associated standard deviations are sensibly smaller than those of
the CNN B Dropout architecture accuracies.
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(a) First 3D view.

(b) Second 3D view

Figure 3.48: Far volumeNpatch = 65 Base II second segmentation: 3D view prediction
image.
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Near Volume

(a) Histogram of preprocessed input values. (b) Histogram of preprocessed input values split-
ted by class.

Figure 3.49: Histogram of preprocessed input values for the Near volume Npatch = 65
Base II second segmentation simulation.

Figure 3.50: Near volumeNpatch = 65 Base II second segmentation: prediction image.

For Figure 3.50similar considerations hold true to those expressed for Figure 3.46.
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(a) Unweighted accuracyUAccK-fold . (b) Weighted accuracy W AccK-fold .

Figure 3.51: Near volumeNpatch = 65 Base II second segmentation: accuracies. We
observe that the increase in input context extension results in increased accuracy, as
occurred with Far. We also notice the overall increasing trend that is consistently ob-
served in all Near simulations. It is interesting to note how the unweighted accuracy
gives the indication that CNN B Dropout has an insu�cient representational capacity
as its performance saturates and tends to decrease comparedto that of CNN A Dropout.
However, this consideration seems to be reversed when considering weighted accuracy.
Therefore, we cannot at this point make quantitative considerations about whether one
architecture is better than the other.

(a) First 3D view.
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(b) Second 3D view

Figure 3.51: Near volumeNpatch = 65 Base II second segmentation: 3D view prediction
image. Looking at Figure3.52ait is noteworthy how the model generalized in the lower
left region where there seems to be an internal bank separating two channel-bases. In
this region, in fact, although our raw segmentation tells usthat there is a channel-base,
the model gives a more realistic response by classifying it as background.

3.3 Inference on Surroundings

In this section, we tried to extend the results obtained in Base II training/testing horizon
to its surroundings, in particular to Base III and Base I horizons. It is important to
point out that such inference is intrinsically badly posed as training occurred on a single
horizon, i.e. on a surface with little depth variation. Thismeans that models have not
received examples that provide signi�cant class discontinuities in depth. Therefore we
believe that the results that we are going to expose are a�ected by this point of criticality
and that this is reected on predictions in multiple false positives that in some cases are
artifacts, due to the unrepresentative training dataset, and in other cases the recognition
of characteristic patterns of Base II that fall within the depth context of the windrose
input patches. However, we believe that the HSV infographic methodology developed to
analyze these predictions provides interesting information.
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Figure 3.52: HSV color cone space. HSV (Hue, Saturation, Value) is an alternative
representation of the RGB color model. In this model, colorsof each Hue are arranged
in a radial slice, around a central axis of neutral colors which ranges from black at
the bottom to white at the top. The Saturation dimension resembles various shades of
brightly colored paint, and the Value dimension resembles the mixture of those paints
with various amounts of black or white paint.

We assigned to the Hue dimension the standard deviation associated with the channel-
base predictions of the four models trained in the 4-fold cross-validation. Therefore
voxels whose predictions are consistent between the four models will be colored blue
(low standard deviation) while those more uncertain of red (high standard deviation).
Assigning to the Value dimension the average probability it is possible to \turn on" only
the most interesting voxels. To generate these images we have fully saturated colors, i.e.
assigned to Saturation the maximum value.

The following images are produced by CNN A Dropout architectures trained for 1,000
epochs.

3.3.1 Base III

We recommend to review Figure3.5 in order to comprehend the expected results for
the following images. We also show the value of the seismics over the horizon to better
interpret the model's behaviour in this area.
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Far Volume

Figure 3.53: Far seismics on Base III horizon.

Figure 3.54: Base III inference image on Far volume. CNN A Dropout, Npatch = 65
trained on Base II second segmentation.

First of all, we notice that from the seismics over the horizonin Figures 3.53 a
characteristic channel-base pattern is not as clearly visible as in Figure3.24. Observing
the prediction image in Figure3.54 we gain information about the average channel-
base probability of the four models and the uncertainty associated with this prediction.
We notice how the models identify a region of interest on the right side where from
topological information we know there is a channel-base. Inthis regard, we point out
that the areas of high uncertainty and low probability (low intensity dark red areas) are
often originated by the contribution of the model that has not been trained on subsample
4 (Test set 4), which is also the area where we have strong doubts on the validity of our
manual segmentation. Therefore, these areas also carry interesting information about
the consistency of our segmentation. We observe the presence of a channel-base that
reminds for position and morphology (see the intra-channelbank) much that present in
Base II. It is then possible that this is a false positive induced by the training performed
on Base II.
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Near Volume

Figure 3.55: Near seismics on Base III horizon.

Figure 3.56: Base III inference image on Near volume. CNN A Dropout, Npatch = 65
trained on Base II second segmentation.

We notice that from the seismics over the horizon in Figure3.55 a characteristic
channel-base pattern is not as clearly visible as in Figure3.25. We observe in Figure
3.56 how in this case the channel-base on the right side of the image has been well
recognized. However, we identify multiple false positives in the center of the image that
are probably due to the criticality exposed at the beginningof this section regarding the
applicability of this inference.

3.3.2 Base I

We recommend to review Figure3.7 in order to comprehend the expected results for
the following images. We also show the value of the seismics over the horizon to better
interpret the model's behaviour in this area.
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Far Volume

Figure 3.57: Far seismics on Base I horizon.

Figure 3.58: Base III inference image on Far volume. CNN A Dropout, Npatch = 65
trained on Base II second segmentation.

We observe that compared to the case of Base III here in Figure3.57 a well recog-
nizable channel-base structure is visible. In Figure we notice how on Base I horizon the
models do not predict any channel-base, except for the modelthat has not been trained
on subsample 4. The contribution of that model is the only that seems to slightly predict
a channel-base in the region that we know to be a channel-base. This is a strong indi-
cation that the segmentation used in the rightmost subsample is not consistent with the
other subsamples of Base II as well as with the implicit learned de�nition of channel-base.
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Near Volume

Figure 3.59: Near seismics on Base I horizon.

Figure 3.60: Base III inference image on Near volume. CNN A Dropout, Npatch = 65
trained on Base II second segmentation.

We notice that from the seismics over the horizon in Figure3.59 a characteristic
channel-base pattern clearly visible. We observe a large region of false positives in the
upper right corner whose cause lies in the insu�ciently representative case history of
training examples provided by Base II. Once again we point out that the only model
that predicts channel-base in the region where we know thereis channel-base, although
it predicts numerous false positives throughout the horizon, is the one that has not been
trained on subsample 4.

According to these images, we believe that the problem de�nedon the Near volume
is more di�cult than the one de�ned on the Far volume. However,we also believe that
the problem should be de�ned on the same volume from which thehorizons have been
segmented.
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Conclusion

This work consisted in the study and application of volumetric Deep Learning (DL)
approach to seismic data provided by Eni S.p.A., with an industrial utility perspective.
After a series of fruitful meetings with the Upstream & Technical Services team, we
clearly de�ned the �nal objective of this approach: the automatic search for geological
structures such as turbidite channel-bases, as potential regions of interest for the Oil &
Gas industry.

The dataset Eni gave us comprises of:

� Two high quality 3D Pre-Stack Depth Migrated (PSDM) Volumes: one Near re-
processed angle stack and oneFar angle stack.

� Three manually interpreted surfaces orhorizons that have at least one embedded
turbidite channel-base: Base I, Base II, Base III.

� Four high quality exploration porosity well logs(W1; W2; W3; W5) each one com-
posed of: the actual measured porosity log and the relevant frequency �ltered
version.

The information on where the turbidite sediments in�lls are, is a very di�cult one to
gain and it requires a lot of time, for geologists and geophysicists to correctly interpret the
seismic volume, and money, to collect well logs in order to establish high porosity regions.
Furthermore, even if this e�ort is placed at work, a 3D reliable label with su�cient spatial
resolution is impractical. On the other hand, the extraction of horizons is a relatively fast
and semi-automated process done using 3D visualization andprocessing software, such
as Petrel. This is because the seismics is the most importantattribute in interpreting
and recognizing horizons.
Since we do not have the information on where the turbidite sediments in�lls are, we can
not set up the classi�cation task as a direct search for this kind of objects. However, we
do have three horizons with at least one embedded turbidite channel-base system.
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After all these consideration, we choose to de�ne the deep learning task as binary
classi�cation between turbidite channel-base and background using as input a sub-volume
context or a 3D patch. Or, in other words, we choose to build models that for every
voxel answer the question:

\ Does this voxel belong to a sub-volume that represents a channel-base system?"

Since implementing this DL approach through 3D input patches means that the
complexity of the problem grows very quickly with the extension of this 3D context
(like third-degree polynomial) and thus undermining its success due to thecurse of
dimensionality, we decided to take an alternative route before admitting the need to
move to full 3D. It has been decided to work with a certain number of 2D patches,
according to what could be de�ned as a 2.5D approach. The mostintuitive choice to
transform an intrinsically 3D problem into a 2D one is to takeslices along the coordinated
axes of the subvolume (Cross Line XL, In Line IL, Depth D), in a mode that we have
named \windrose".

In this work, we have analyzed and studied the following aspects and points of criti-
cality.

� Preprocessing

Before implementing a deep learning algorithm it is good practice to study how
the numerical range of examples behaves in the training context. The training
algorithms in fact, due to numerical crunching reasons, do not work properly if
the input values are either too small or too large. In our casevalues contained in
seismic volumes have an extremely wide dynamic range in the order of 108. We
analyzed how the training process was inuenced by three types of preprocessing:
original (original data unchanged), normalized (we brought the dynamic range of
the entire seismic volume within the range [� 1; 1], while preserving zero-crossing)
and custom (we adjusted the normalized version by increasing data range by a
factor of 100).

Results showed how an appropriate data preprocessing step substantially improves
both the training process, especially for models integrating the dropout regulariza-
tion technique, and the generalizing ability of the models.

� Dataset augmentation :

Given the scarcity of labeled examples compared to the number of possible physi-
cally acceptable con�gurations in which 3D patches can be found. We decided to
implement the augmentation dataset in order to improve the generalization of the
models, providing arti�cially generated examples generated from real ones through
transformations that preserve their realism. We implemented the following trans-
formation: XL-ipping, IL-ipping, D-translation, D-rota tion and Scaling.
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We compared two simulations with the same number of examples, one using only
the native ones and the other with a mixture of original and augmented data.
The results showed how the use of arti�cially generated dataallows models to
better generalize, at least in a qualitative way. In this approach, the number
of con�gurations accessible through the original examplesis much lower than the
number of con�gurations physically plausible or even �ndable in the seismic volume.
Just think of all the possible orientations in the XL-IL plane in which a geo-object
can be found. We have therefore concluded that the dataset augmentation for this
type of DL approach is fundamental.

� Channel-base segmentation :

We manually segmented from Base II horizon a channel-base using only topological
information. Unfortunately, it is di�cult to exactly de�ne w here the channel-base
ends and it was part of this work to �gure out how this de�nition a�ects our DL
classi�cation problem.

We studied qualitatively and quantitatively through K-fold cross-validation two
similar segmentations of the previously mentioned cannel-base: an extended one
that also included bank areas and a more stringent one that excluded those few
areas that we considered possible outliers. We found that even a small variation
in ground truth has a great e�ect on both the visual consistency of the prediction
images and the accuracy measured by K-fold cross-validation. In particular, we
observed an increase in accuracy of about 10% using the most stringent segmenta-
tion. We cannot say that the second segmentation is better because the accuracy is
better, what we can say instead is that this type of problem isvery sensitive to seg-
mentation and therefore it is necessary to invest su�cient e�ort in the generation
of reliable labels.

� Context extension :

We previously introduced the concept of the 3D patch in the context of a patch-
based classi�cation task. This context must be large enoughto provide adequate
information about the voxel's surroundings for the classi�cation task, but at the
same time it must be small enough to keep the complexity of theproblem under
control and allow good generalization.

We studied qualitatively and quantitatively two context extensions using K-fold
cross-validation and found that, at least for the number of training examples chosen
in our experiments (� 80k), the larger version allowed a 5-7% increase in accuracy
and a large suppression of false positives. This probably depends on the spatial
resolution of the seismics around Base II, which limits the informative content of
the input patches. We concluded that, at least for the extensions analyzed, the
damage caused by the increase in complexity due to the greater number of tunable
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parameters was outweighed by the bene�ts brought by the increase in information
content due to a wider context extension. Therefore, we think that the results
presented here can provide a point of reference for de�ning patch extensions in
areas with di�erent seismics resolution.

� Far volume or Near volume : As expressed above we worked on two seismic
volume, Far and Near. These two volumes are di�erent types of stacks and they
are sensitive to di�erent seismic properties; for instancewe could say that the Far
is more sensitive to uid presence.

We studied qualitatively and quantitatively through K-fold cross-validation the
problem set on both Far and Near volume. From our experiments we observed
that, from a statistical point of view, the performances of the models trained on
Near are more convincing than those on Far. We noticed that theaccuracy as
measured by K-fold cross-validation tends to increase withthe number of training
epochs, which is not the case with Far. We can not say that it isbetter to set
the problem on the Near since horizons used in this work have been segmented
from the Near seismics. For this reason, we believe that the problem appears more
consistent on Near. Therefore what we can say from the studiescarried out is
that the problem appears to be better set on the volume used for the horizons
segmentation.

Given the results achieved and the potential shown by this DLapproach, we have
the following recommendations to proceed with a further study.

� From our experiments, we observed that the problem set on theFar volume appears
easier than the one set on the Near volume. Therefore, we suggest to carry out
a study similar to the one carried out in this work, in order to�nally establish
whether or not it is useful to set the problem on the Far volume, using horizons
segmented on the Far volume.

� Given the poor ability of the models to generalize on other horizons at di�erent
depths, we suggest doing a multi horizon training. We believe that this can provide
the necessary information of strong depth discontinuity tobetter infer in all three
spatial directions. In this regard, we recommend making thefollowing multi horizon
training to compare it with the results expressed in this work: training on Base II
plus Base I and inference on Base III.

� We believe that the approach developed in this work involving the windrose input
patches has proven to be satisfactory. We consider interesting to explore new
input patch con�gurations by adding slice at di�erent angles to windrose patch as
a sequence of gradually increasing complexity approaches up to full 3D.
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Conclusion

From a qualitative point of view, the generalization results on Base II were judged
by Eni's experts to be consistent. Therefore, the proposed method is able to extract
valuable information from the seismic data volume. However,a scale-up of examples
and computing power is necessary to unleash a credible result on the entire seismic
volume.
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