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Abstract

This work consisted in the study and application of volumetric Deep Learning (DL)
approach to seismic data provided by Eni S.p.A., with an industrial utility perspective.
After a series of fruitful meetings with the Upstream & Technical Services team, we
clearly defined the final objective of this approach: the automatic search for geological
structures such as turbidite channel-bases, as potential regions of interest for the Oil
& Gas industry. Therefore, we defined a workflow based on the training of volumetric
DL models over seismic horizons containing channel bases providing “windrose” input
patches, i.e. a planar approximation of a three-dimensional volume.

All components and sources of criticality were systematically analyzed. For this
purpose we studied: the effect of preprocessing, the contribution of the dataset aug-
mentation, the sensitivity for the channel-base manual segmentation, the effect of the
spatial expansion of the input patches. Evaluating both qualitatively and quantitatively
through K-fold cross-validation.
This work showed: how an appropriate preprocessing of the original data substantially
helps DL models, how the dataset augmentation is fundamental for good model gen-
eralization given the poor representativity of the accessible examples compared to all
possible configurations, how this DL approach is susceptible to the channel-base seg-
mentation imposing to invest sufficient effort in the generation of reliable labels, how
the size of input patches must be large enough to allow models to perceive around each
voxel the structure concavity and the texture of any sediment infill.

We conclude that the volumetric DL approach developed in this work has proved to
be very promising.



Sommario

Questo lavoro è consistito nello studio e applicazione di un approccio Deep Learning
(DL) volumetrico a dati sismici di Eni S.p.A., con un ottica di utilità industriale.
Dopo una serie di fruttuosi incontri con il team di Upstream & Technical Services, si è
definito in maniera chiara l’obbietivo finale di questo approccio: la ricerca automatica di
strutture geologiche quali basi di canali turbiditici, in quanto potenziali zone di interesse
per l’industria Oil & Gas. Si è pertanto definito un workflow basato sull’addestramento
di modelli DL volumetici su orizzonti sismici contenenti basi di canale attraverso patch
di input a “windrose”, ossia una approssimazione planare di un volume tridimensionale.

Si sono analizzate in modo sistematico tutte le componenti e le fonti di criticità. A
tale scopo si è studiato: l’effetto del preprocessing, il contributo della dataset augmen-
tation, la sensibilità rispetto alla segmentazione manuale della base di canale, l’effetto
dell’espansione spaziale delle patch di input. Valutando in modo sia qualitativo che
quantitativo tramite K-fold cross-validation.
Questo lavoro ha mostrato: come un appropriato preprocessing del dato originale aiuti
in modo sostanziale i modelli DL, come la dataset augmentation sia fondamentale per
una buona generalizzazione dei modelli data la scarsa rappresentatività degli esempi
accessibili rispetto alle configurazioni possibili, come questo approccio DL sia suscettibile
alla segmentazione della base di canale imponendo di dedicare sufficiente impegno nella
generazione di label attendibili, come la dimensione delle patch di input debba essere
abbastanza estesa da permettere ai modelli di percepire nell’intorno di ogni voxel la
concavità delle strutture e la tessitura dell’eventuale infill di sedimenti.

Concludiamo che l’approccio DL volumetrico sviluppato in questo lavoro si è dimo-
strato essere molto promettente.
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Chapter 1

Introduction

Data mining and analytics have played an important role in knowledge discovery and
decision-making in the industry process over the past several decades.

In recent years, many unions or countries have announced a new round of development
plans in manufacturing. For example, the European Union proposed 20-20-20 goals
to achieve a sustainable future, which means 20% increase in energy efficiency, 20%
reduction of CO2 emissions, and 20% renewables by this year 2020. The US government
has proposed a new industrial internet framework for developing the next generation
of manufacturing. Similarly, China has announced a new manufacturing plan more
recently, which is known as “China Manufacturing 2025”, the aim of which is also to
make the manufacturing process more intelligent. Those goals can only be realized by
incorporating more intelligence into the industrial manufacturing process.

To effectively carry out data mining and analytics in the industry process, machine
learning algorithms have always played an important role [27].

Figure 1.1: AI Eulero-Venn scheme.

1



CHAPTER 1 Introduction

1.1 Deep Learning

In this work, we will pay attention to a subset of Machine Learning (ML) called Deep
Learning (DL).

DL makes use of Artificial Neural Networks (ANNs), models vaguely inspired by
human visual cortex neurons, to create algorithms that can learn how to solve problems
from data. From a theoretical point of view, the basis of ANNs can be traced back to
the early 1940s with McCulloch’s work on neural models. The first hypothesis on the
training of these machines was made by Hebb in the late 40s, leading, in the late 50s, to
the first true “learning” classifier: Rosenblatt’s perceptron [18].

Figure 1.2: Rosenblatt perceptron functioning scheme. A set of real-value inputs xi are
previously multiplied by a weight wi, like a synaptic weight, and then summed up creating
a linear combination of inputs. This linear combination is passed through an activation
function Af that provides the perceptron real-value output y. A single perceptron or a
network composed of them belongs to ANNs.

The idea behind the perceptron was simple but effective and it is schematically shown
in Figure 1.2 as a biological neuron that receives input from synapses and conditionally
propagates an output along the axon. The perceptron has a number of inputs and pro-
duces a response as a linear combination of these. The weights of the linear combination
determine the relative importance of the input, and by properly adjusting them a simple
classifier can be obtained. The right set of weights can be searched for using a feedback
system that iteratively compares the correct values with the predicted ones and it adjusts
the weights accordingly to their differences.

Perception was a very attractive solution for classification problems, but in 1989 Min-
sky proved that a single perceptron1 could not deal with non-linearly separable problems,
like the XOR problem, even with activation functions2 non-linear. This was particularly
dramatic because not even by introducing multi-layer architectures it was possible to
deal with them, at least with linear activation functions. Stacking multiple layers of

1Or equivalently a layer of them, for multiclass classifications.
2The activation functions must be monotonous to allow trainability.
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CHAPTER 1 Introduction

perceptrons with linear activation functions is, in fact, equivalent to having only one
with appropriate weights. Therefore, the only possible way to solve non-linearly separa-
ble problems was to simultaneously introduce multi-layer architectures with non-linear
activation functions i.e. Multi-Layer Perceptrons (MPLs). There was simply not enough
understanding of the topic to meet this challenge.

The theoretical problems with the perceptron’s ability to solve XOR-type problems
led to a generalized loss of interest in ANNs by the scientific community in the event
known as “First AI winter”. This state lasted until the mid-50s, when the Werbos back-
propagation algorithm [24], based on the application of the chain-derived rule, allowed
efficient and feasible training for MPLs as well. During the following 15 years, ANNs
saw a renewed enthusiasm thanks to the promises of the old models left behind: they
were now with a working training method and preliminary results that only increased ex-
pectations. Unfortunately, the participation of the scientific community was cold again.
Despite the optimistic scenarios supported by technological advances in the field, it be-
came clear that it was only through expensive and mostly ad-hoc hardware that it would
be possible to launch the necessary computations that, although relatively simple, were
so numerous that they could not be handled by the computers of the time. This drowsed
out the remaining interest in ANNs in what is called “Second AI winter”.

Even small networks require an extremely high number of tunable parameters. The
only possible solution to manage the training process in acceptable times was a heavy
form of parallelization. It was around 2009/2011 that the current definition of DL
came into existence. When Andrew Ng3 began using Nvidia Graphical Processing Units
(GPUs) to train his algorithms. GPUs are perfect for parallelizing a vast number of
repetitive operations, such as geometric transformations or 3D renderings, and with a
little bit of secondary work even those involved by the backpropagation algorithm, tak-
ing a fraction of the time it would have taken on the CPU. Moving from CPU to GPU
computation was the crucial step in dramatically scaling-up ANNs thanks to the wide
availability at a reasonable price of hardware that was prevalently marketed for video
games. This combined with the ease of programming provided by new GPU tools such
as Nvidia CUDA, led to an unprecedented spread of DL research.

DL, especially recent developments, has changed the way we look at problems and
challenges, opening up possibilities that were unimaginable until 10 years ago. DL has
seen a massive application in almost all fields of science and industry in a very short
period of time, with massive investments of resources and improvements emerging very
quickly that span the academic and industrial fields and produce applications ranging
from event identification in particle physics to autonomous driving. The reason for this
is to be found in the DL’s ability to obtain results with relative ease when compared

3Andrew Yan-Tak Ng is a Chinese-American computer scientist and statistician, focusing on machine
learning and AI. Also, a business executive and investor in Silicon Valley, co-founded and led Google
Brain and was a former Vice President and Chief Scientist at Baidu.

3



CHAPTER 1 Introduction

with traditional ML methods: where the success of a given strategy is largely influenced
by the scientist’s experience of manually engineering features for the model. DL makes
in many cases this work obsolete thanks to its ability to produce an internal and linearly
separable representation of the features space that largely surpasses the handmade ones
in efficiency. On the other hand, this implies that these high dimensional representations
and their decisional criteria are too complex to be seen and interpreted by a human being.
This means that in many cases the DL acts as a “black box” whose internal functioning
is not fully understood.

1.1.1 Learning Algorithms

A machine learning algorithm is an algorithm that is able to learn from data. But what
do we mean by learning? Mitchell (1997) [14] provides a succinct definition:

“A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured by

P, improves with experience E.”

• Task, T

In this relatively formal definition of the word “task”, the process of learning itself
is not the task. Learning is our means of attaining the ability to perform the task.
Machine learning tasks are usually described in terms of how the machine learning
system should process an example. An example is a collection of NF features that
have been quantitatively measured from some object or event that we want the
machine learning system to process. We typically represent an example as a vector
x ∈ R

NF where each entry xi of the vector is another feature.

One of the most common task is classification, in which the computer program is
asked to specify which of NC categories some input x belongs to. To solve this
task, the learning algorithm is usually asked to produce a function f : RNF →
{1, 2, . . . , NC}.
Where y = f(x), the model, through f , assigns an input described by vector x to
a category identified by integer code y.

• Experience, E

Machine learning algorithms can be broadly categorized as unsupervised or su-
pervised by what kind of experience they are allowed to have during the learning
process. Learning algorithms are allowed to experience an entire dataset. A dataset
D is a collection of N examples4.

4Unlabeled examples {xj | j = 1, 2, . . .M} in the case of unsupervised learning and labeled examples
{(xj , yj) | j = 1, 2, . . .M} in the case of supervised learning.
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Unsupervised learning algorithms experience a dataset containing only features,
then learn useful properties of the structure of this dataset.
Supervised learning algorithms experience a dataset containing features and labels.

Roughly speaking, unsupervised learning involves observing several examples of a
random vector x and attempting to implicitly or explicitly learn the probability
distribution P (x), or some interesting properties of that distribution; while su-
pervised learning involves observing several examples of a random vector x and
an associated value y, then learning to predict y from x, usually by estimating
P (y | x)5.

Unsupervised learning and supervised learning are not formally defined terms. The
lines between them are often blurred. Many machine learning technologies can be
used to perform both tasks.
For example, the chain rule of probability states that for a vector x ∈ R

NF , the
joint distribution can be decomposed as:

P (x) =

NF
∏

i=1

P (xi | x1, x2, . . . , xi−1) (1.1)

This decomposition means that we can solve the ostensibly unsupervised problem
of modelling P (x) by splitting it into n supervised learning problems.
Alternatively, we can solve the supervised learning problem of learning P (y | x) by
using traditional unsupervised learning technologies to learn the joint distribution
P (x, y), then inferring the conditional probabilities.

P (y | x) =
P (x, y)

∑

y′ P (x, y′)
(1.2)

• Performance, P

To evaluate the abilities of a machine learning algorithm, we must design a quanti-
tative measure of its performance. Usually this performance measure P is specific
to the task T being carried out by the system.

For tasks such as classification we often measure the accuracy of the model. Accu-
racy is just the proportion of examples for which the model produces the correct
output. We can also obtain equivalent information by measuring the error rate,
the proportion of examples for which the model produces an incorrect output.

5Conditional probabilities that the correct label is y given the example x.
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1.1.2 Learning as Mathematical Optimization

Most deep learning algorithms involve optimization of some sort. Optimization refers
to the task of either minimizing or maximizing some function J(w) by altering w. We
usually state most optimization problems in terms of minimizing6 J(w). The function
we want to minimize is called the loss function. We denote the values that minimize it,
with a superscript ∗.

w∗ = argmin
w

[J(w)] (1.3)

1.1.2.1 Stochastic Gradient Descent

If we want to minimize a real-valued function defined on a multidimensional space J :
R

N → R, perhaps the simplest method we can use is gradient descent. Gradient descent
is a first order7 iterative method which make use of Taylor’s expansion:

wt+1 = wt − ǫ∇wJ|wt

= wt − ǫgt

= wt +∆wt

(1.4)

where ǫ is the learning rate, a positive scalar determining the size of the step ∆wt.
A recurring problem in DL is that large datasets D are necessary for good results8,

but at the same time large sets are more computationally expensive. In fact DL loss
function obviously depends on the dataset J(w;D), and often it decomposes as a sum
over dataset examples of some per-example loss function Je.

J(w;D) =
M
∑

j=1

Je (w; (xj, yj)) (1.5)

Therefore the computational cost of calculating g is O(M). As the dataset size grows to
billions of examples, the time to take a single gradient step become prohibitively long.
Stochastic gradient descent overcame this issue using this approximation:

J(w;D) ≃ J(w;B) (1.6)

6Maximization may be accomplished via a minimization algorithm by minimizing −J(w).
7Second order methods can be stated as well, of course involving the Hessian matrix H(w). For

example Newton’s method: wt+1 = wt − ǫH−1(wt)gt. However the computational cost of calculating
H−1 makes this method impractical in DL

8We denote P̂data as the dataset generating probability distribution function estimated from D itself
and Pdata as the true one. As M approaches infinity we have: P̂data −−−−→

M→∞
Pdata.
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In virtue of9

J(w;D) = E
B∼P̂data

[J(w;B)] (1.7)

where B is a randomly sampled minibatch of examples B = {(xj(B), yj(B)) ∈ D | B =
1, 2, . . . ,MB} of fixed size MB ≪ M .

More sophisticated methods can be defined, for example ADADELTA (2012 [26]).
This is a per-dimension learning rate method for gradient descent. ADADELTA dy-
namically adapts over time using only first order information. The method requires no
manual tuning of learning rate.

∆wt+1 = −
RMS [∆wt−1]

RMS [gt]
gt (1.8)

where

RMS [xt] =
√

ER(x2t ) + ε ε > 0

ER(xt+1) = ρER(xt) + (1− ρ)xt ρ ∈ (0, 1)
(1.9)

ER is a pseudo running average over a time window. Window size is implicitly specified
by ρ, asymptotically infinite-sized as ρ approaches 1. RMS is a pseudo root mean square
whit a constant positive scalar ε for better conditioning of the denominator in Equation
1.8.

1.1.2.2 Loss Function and Activation Function

The function that we want to minimize is the loss function. Fortunately, the loss func-
tions for neural networks are more or less the same as those for other parametric mod-
els10. DL model, in classification tasks, defines a conditionally probability distribution11

Pmodel (y | x;w) and are trained using maximum likelihood.

w∗ = argmin
w

[−Pmodel(D;w)] (1.10)

9
Ex∼P (x) [x] is the expectation value of a random variable x drawn from a probability distribution

P (x).
10DL models are parametric respect to weights w.
11Now we denote labels in vectorial form using the one-hot encoding. In other words labels are

expressed as versors of a NC-dimensional space.
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In the hypothesis that examples in D are independently drawn from the true but unknown
data generating distribution Pdata, we have:

w∗ = argmin
w

[

−

M
∏

j=1

Pmodel

(

yj | xj ;w
)

]

= argmin
w

[

−

M
∑

j=1

ln
(

Pmodel

(

yj | xj;w
))

]

= argmin
w

[

−E(x,y)∼P̂data
ln
(

Pmodel (y | x;w)
)

]

(1.11)

Training using maximum likelihood means that the loss function is simply the nega-
tive log-likelihood, equivalently described as the cross-entropy between the dataset and
the model probability distribution.

J(w) = −E(x,y)∼P̂data
ln
(

Pmodel (y | x;w)
)

(1.12)

The choice of loss function is tightly coupled with the choice of the activation function
Af of output unit. The choice of how to represent them determines the form of the cross-
entropy function. Any kind of activation function that may be used for output units can
also be used for hidden unit as well and vice versa; but any time we wish to represent
a probability distribution over a NC discrete classes, we may use the softmax function.
Formally the softmax function is given by12

softmax(z)i =
exp(zi)

∑Nc

k=1 exp(zk)
(1.13)

Therefore if

Pmodel(yi = ĉ | xi;w) = Pmodel

(

yi = ĉ; z(xi,w)
)

= softmax
(

z(xi,w)
)

c

(1.14)

then minimizing the cross-entropy implies the minimization of:

− ln
(

softmax(z)c
)

= −zc + ln

(

Nc
∑

k=1

exp(zk)

)

≃ −zc +max
k

{zk}

(1.15)

Minimizing Equation 1.15 encourages the first term zc, relative to the true class, to be
pushed up, while the second term encourages all of z to be pushed down.

12We refer to z as the inner summation of inputs inside a perceptron, see Figure 1.2.
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Figure 1.3: Graphical representation of ReLU function.

The design of hidden unit is an extremely active area of research and not yet have
many definite guiding theoretical principles. Rectified linear units are an excellent default
choice of hidden units. Them use the activation function Af (z) = ReLU(z)

ReLU(z) = max{0, z} (1.16)

These units are easy to optimize because they are so similar to liner units. The only
difference is that a rectified linear unit outputs zero across half of its domain. This
makes the derivatives through a rectified linear unit remain large whenever the unit is
active. Its simplicity is useful in the learning phase because the information taken by the
gradient is more effective than it would be with activation function that introduce second-
order effects. One may point out that the non-differentiability of ReLU in z = 0 could
be an invalidate characteristic when used with a gradient-based learning algorithm. In
practice, however, gradient descent still performs well enough because we are usually not
interested in arriving to a local minima of the loss function; but merely to a significantly
low value of it. Because we do not expect training to actually reach critical points13, it
is acceptable for the minima of the loss function to correspond to points with undefined
gradient and therefore not accessible through gradient descent.

13Critical points of a function J(w) are points w∗ where ∇J|w∗ = 0.
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1.1.2.3 Capacity, Underfitting and Overfitting

The central challenge in machine learning is that our algorithm must perform well on
new, previously unseen inputs not just those on which our model was trained. The ability
to perform well on previously unobserved inputs is called generalization. Typically, when
training a machine learning model, we have access to a training set ; we can compute
some error measure on the training set, called the training error; and training process
reduces this training error.

So far, what we have described is simply an optimization problem. What separates
machine learning from optimization is that we want the generalization error, also called
the test error, to be low as well.
We typically estimate the test error of a machine learning model by measuring its per-
formance on a test set Te of examples that were collected separately from the training
set Tr

14.

D = Tr ∪ Te (1.17)

In order to theoretical justify the generalization ability of the model, it has to be
that the training and test data are generated by a shared probability distribution called
the dataset generating probability distribution Pdata. We also make a set of assumptions
known collectively as the “i.i.d. assumptions”. These assumptions are that the examples
in each dataset are independent from each other, and that the training set and test
set are identically distributed. These assumptions enable us to mathematically study
the relationship between training error and test error. One immediate connection we
can observe between training error and test error is that the expected training error
of a randomly selected model is equal to the expected test error of that model. Of
course, when we use a machine learning algorithm, we do not fix the parameters ahead
of time, then sample both datasets. We sample the training set, then use it to choose
the parameters to reduce training error, then we evaluate test error. Under this process,
the expected test error is greater than or equal to the expected value of training error.

The factors determining how well a machine learning algorithm will perform are its
ability to:

• Make the training error small.

• Make the gap between training and test error small.

These two factors correspond to the two central challenges in machine learning: under-
fitting and overfitting.

14A common practice is to, actually, monitoring the training phase whit a third set called validation

set Tv, which is obtained from Tr = Tx ∪ Tv. Effective training set is then Tx because validation set is
not presented to the model; it’s instead used to tuning hyperparameters.
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Underfitting occurs when the model is not able to obtain a sufficiently low error value
on the training set. Overfitting occurs when the gap between the training error and test
error is too large.

We can control whether a model is more likely to overfit or underfit by altering its
capacity. Informally, a model’s capacity is its ability to fit a wide variety of functions
which is indeed strongly related to the number of its trainable parameter. Models with
low capacity may struggle to fit the training set. Models with high capacity can overfit
by memorizing properties of the training set that do not serve them well on the test set.
There are many ways to change a model’s capacity. Capacity is not determined only by
the choice of model. The model specifies which family of functions the learning algorithm
can choose from when varying the parameters in order to reduce a training objective.
This is called the representational capacity of the model. In many cases, finding the best
function within this family is a difficult optimization problem. In practice, the learning
algorithm does not actually find the best function, but merely one that significantly
reduces the training error. These additional limitations, such as the imperfection of the
optimization algorithm, mean that the learning algorithm’s effective capacity may be
less than the representational capacity of the model family.

Perhaps the most important results in statistical learning theory shows that the
discrepancy between training error and test error is bounded from above by a quantity
that grows as the model capacity grows but shrinks as the number of training examples
increases (Vapnik and Chervonenkis, 1971 [23]).

Figure 1.4: Typical relationship between error and capacity [6]. Typically, training error
decreases until it asymptotes to the minimum possible error value as model capacity
increases. Typically test error has a U-shaped curve as a function of model capacity.

These bounds provide intellectual justification that machine learning algorithms can
work, but they are rarely used in practice because it can be quite difficult to determine
the effective capacity of deep learning algorithms. We must simply remember that while
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simpler functions are more likely to generalize, we must still choose a sufficiently complex
hypothesis to achieve low training error.

One may suggest in order to enhance capacity and parallel have a better chance to
have separable classes, to increase the number of example’s features NF . However, this
is a double-edged sword commonly known as the curse of dimensionality. In fact, we
have:

lim
NF→∞

∣

∣

∣

∣P̂data − Pdata

∣

∣

∣

∣ = ∞ (1.18)

This is due to the fact that the number of possible configurations of every example
x grows exponentially as the number of features increase, and therefore the examples
are diluted in this high-dimensional feature space. An increase in NF then requires
an exponential increase in M to compensate for this dilution and to allow the limit in
Equation 1.18 to converge.

1.1.2.4 Regularization Techniques

Regularization is any modification we make to a learning algorithm that is intended
to reduce its test error but not its training error. Regularization is one of the central
concerns of the field of machine learning, rivaled in its importance only by optimization.

• Early Stopping

When training large models with sufficient representational capacity to overfit the
task, we often observe that training error decreases steadily over time, but valida-
tion set error begins to rise again. See Figure 1.4 for an example of this behavior,
which occurs reliably. This means we can obtain a model with better validation
set error (and thus, hopefully better test set error) by returning to the parameter
setting at the point in time with the lowest validation set error. Every time the
error on the validation set improves, we store a copy of the model parameters.
When the training algorithm terminates, we return these parameters, rather than
the latest parameters.

This strategy is known as early stopping. It is probably the most commonly used
form of regularization in deep learning.

• Dropout

Dropout (Srivastava et al., 2014 [21]) provides a computationally inexpensive but
powerful method of regularizing a broad family of models. Specifically, dropout
trains the ensemble consisting of all subnetworks that can be formed by removing
a certain percentage PDropout of non-output units from an underlying base network,
as illustrated in Figure 1.5.
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Dropout provides therefore an inexpensive approximation to training and evaluat-
ing a wrapped ensemble of exponentially many neural networks, increasing model’s
generalization capabilities.

(a) Multi Layer Perceptron. (b) Multi Layer Perceptron after applying
dropout.

Figure 1.5: Dropout [21].

• Dataset Augmentation

The best way to make a machine learning model generalize better is to train it on
more data. Of course, in practice, the amount of data we have is limited. One way
to get around this problem is to create fake data and add it to the training set. For
some machine learning tasks, it is reasonably straightforward to create new fake
data.

Dataset augmentation has been a particularly effective technique for a specific
classification problem: object recognition. Images are high dimensional and include
an enormous range of factors of variation, many of which can be easily simulated.
Operations like translating the training images a few pixels in each direction can
often greatly improve generalization. Many other operations, such as rotating the
image or scaling the image, have also proved quite effective

1.1.3 Convolutional Networks

Convolutional networks, also known as Convolutional Neural Networks (CNNs), are a
specialized kind of neural network for processing data that has a known grid-like topology.
Examples include time-series data, which can be thought of as a 1D grid taking samples
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at regular time intervals, and image data, which can be thought of as a 2D grid of pixels.
Convolutional networks have been tremendously successful in practical applications.

“Convolutional neural network” indicates that the network employs a mathematical
operation called convolution15. Convolution is a specialized kind of linear operation.
Convolutional networks are simply neural networks that use convolution in place of
general matrix multiplication in at least one of their layers.

1.1.3.1 Convolution

Convolution operation, in two dimensions (i1, i2), is defined as:

S = x ∗w

S(m,n) =
∑

i1

∑

i2

x(i1, i2)w(m− i1, n− i2)
(1.19)

In convolutional network terminology, the first argument x to the convolution is often
referred to as the input, and the second argument w as the kernel. The output S is
sometimes referred to as the feature map.

It can be shown that convolution is commutative. The commutative property of
convolution arises because we have flipped the kernel relative to the input. The only
reason to flip the kernel is to obtain the commutative property. Even if the commutative
property is useful for writing proofs, it is not usually an important property of a neural
network implementation. Instead, many neural network libraries implement a related
function called the correlation, which is the same as convolution but without flipping the
kernel.

S = x ⋆w

S(m,n) =
∑

i1

∑

i2

x(i1, i2)w(m+ i1, n+ i2)
(1.20)

1.1.3.2 Parameter Sharing

Convolution leverages two important ideas that can help improve a machine learning
system: parameter sharing16, sparse interactions.

15Actually it’s not convolution, it’s instead correlation. Many machine learning libraries implement
correlation but call it convolution.

16In the case of convolutional networks this property is tightly related to the concept of equivariant
representations or specifically equivariance to translation. To say a function is equivariant means that if
the input changes, the output changes in the same way. Similarly with images, convolution creates a 2-D
map of where certain features appear in the input. If we move the object in the input, its representation
will move the same amount in the output.
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Figure 1.6: 2D correlation operation. We notice that, without padding of input, feature
map is smaller than input and shrinking is related to the kernel size.

Parameter sharing refers to using the same parameter for more than one function
in a model. Discrete convolution can be viewed as multiplication by a matrix, but the
matrix has several entries constrained to be equal to other entries. In addition to these
constraints that several elements be equal to each other, convolution usually corresponds
to a very sparse matrix17.

1.1.3.3 Pooling

A pooling function replaces the output of the net at a certain location with a summary
statistic of the nearby outputs. For example, the max pooling operation reports the
maximum output within a rectangular neighborhood.

In all cases, pooling helps to make the representation approximately invariant to small
translations of the input. Invariance to translation means that if we translate the input
by a small amount, the values of most of the pooled outputs do not change. Invariance
to local translation can be a useful property if we care more about whether some feature
is present than exactly where it is.

Figure 1.7: 2D max pooling operation.

17A sparse matrix is a matrix whose entries are mostly equal to zero. This is because the kernel is
usually much smaller than the input image.
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1.2 Hydrocarbon Exploration

Exploration and production of hydrocarbons (HC) is a high-risk venture.
These uncertainties originated from geological models and coupled with economic and
engineering models involve high-risk decision scenarios, with no absolute guarantee of
successfully discovering and developing hydrocarbons.

The future trends in oil resources availability will depend largely on the balance
between the outcome of the cost-increasing effects of depletion and the cost-reducing
effects of the new technology. Technological advances allowed the exploration in well
established basins as well as in new frontier zones such as ultra-deep waters.

Information is vital for decision-making. Therefore, it’s necessary to define the value
of information associated with important decisions. Information only has value in a
decision problem if it results in a change in some action to be taken by a decision
maker. The information is seldom perfectly reliable and generally it does not eliminate
uncertainty, so the value of information depends on both the amount of uncertainty,
or equivalently the prior knowledge available, and payoffs involved in the petroleum
exploration and production projects.

Over the last two decades, the advances in computer-aided decision making pro-
cesses have provided a mechanism to improve the quality of decision making in modern
petroleum industry.
However, as Newendorp [22] emphasized, the decision analysis does not eliminate or
reduce risk and will not fully replace professional judgment of geoscientists, engineers,
and managers.

1.2.1 Components of a Prospect

A prospect is a potential trap which geologists believe may contain hydrocarbons. A
significant amount of geological, structural and seismic investigation must first be com-
pleted to redefine the potential hydrocarbon drill location from a lead to a prospect.
Four geological factors have to be simultaneously present for a prospect to work and if
any of them fail neither oil nor gas will be present.

• Source Rock

In petroleum geology, source rock refers to rocks from which hydrocarbons have
been generated or are capable of being generated. They form one of the necessary
elements of a working petroleum system. They are organic-rich sediments that
may have been deposited in a variety of environments including deep water marine,
lacustrine and deltaic.

A river delta is a landform created by deposition of sediment that is carried by a
river as the flow leaves its mouth and enters slower-moving or stagnant water. This
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occurs where a river enters an ocean, sea, estuary, lake, or (more rarely) another
river that cannot carry away the supplied sediment.

During sedimentary diagenesis18 the degradation of living matter eventually trapped
in sediments begins. The original organic matter could comprise lacustrine and ma-
rine algae and plankton and terrestrial higher-order plants. During diagenesis large
biopolymers e.g. proteins and carbohydrates in the original organic matter decom-
pose partially or completely. These resulting units can then polycondense to form
geopolymers. The formation of geopolymers in this way accounts for the large
molecular weights and diverse chemical compositions associated with kerogen19.

Resulting changes in the burial temperatures and pressures lead to further changes
in kerogen composition including loss of hydrogen, oxygen, nitrogen, sulfur, and
their associated functional groups, and subsequent isomerization and aromatiza-
tion. Such changes are indicative of the thermal maturity state of kerogen.

During the process of thermal maturation, kerogen breaks down in high-temperature
pyrolysis reactions to form lower molecular weight products including bitumen, oil,
and gas. The extent of thermal maturation controls the nature of the product,
with lower thermal maturities yielding mainly bitumen/oil and higher thermal
maturities yielding gas. These generated species are partially expelled from the
kerogen-rich source rock and in some cases can charge into a reservoir rock.

• Migration

Migration is the movement of hydrocarbons from their source into reservoir rocks.

Migration typically occurs from a structurally low area to a higher area because
of the relative buoyancy of hydrocarbons in comparison to the surrounding rock.
Migration can be local or can occur along distances of hundreds of kilometers in
large sedimentary basins, and is critical to the formation of a viable petroleum
system. The hydrocarbons are expelled from source rock, moving by density-
related mechanisms. Most hydrocarbons could even migrate till the surface as oil
seeps, but some will get trapped.

• Reservoir

An oil and gas reservoir is a subsurface pool of hydrocarbons contained in porous
or fractured rock formations. Oil and gas reservoirs are broadly classified as con-
ventional and unconventional reservoirs. In case of conventional reservoirs, the

18After deposition, sediments are compacted as they are buried beneath successive layers of sediment
and cemented by minerals that precipitate from solution.

19Kerogen is a mixture of organic chemical compounds that make up a portion of organic matter in
sedimentary rocks. It is insoluble in normal organic solvents due to the enormous molecular weight of
the constituent compounds. The soluble portion is known as bitumen.
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naturally occurring hydrocarbons, such as crude oil or natural gas, are capped by
overlying rock formations (the seal) with lower permeability. While in unconven-
tional reservoirs the rocks have high total porosity and very low permeability which
keeps the hydrocarbons trapped in place not allowing migration, therefore not re-
quiring a cap rock. Reservoirs are found using hydrocarbon exploration methods.

• Trap

The hydrocarbons are buoyant respect to the higher density water usually trapped
in the sediments (formation water), hence the need to have a trap configuration,
limiting the buoyancy. The hydrocarbon trap has to be covered by an impermeable
rock known as a seal or cap-rock in order to prevent hydrocarbons escaping to the
surface. A trap forms when the buoyancy forces driving the upward migration
of hydrocarbons through a permeable rock cannot overcome the capillary forces
of a sealing medium. The timing of trap formation relative to that of petroleum
generation and migration is crucial to ensuring a reservoir can form. All the trap
elements have to be correctly timed in order to co-occur.

1.2.2 Seismic Survey

Visible surface features such as oil seeps, natural gas seeps, pockmarks20 provide ba-
sic evidence of hydrocarbon generation. However, most exploration depends on highly
sophisticated technology to detect and determine the extent of these deposits using ex-
ploration geophysics. Areas thought to contain hydrocarbons are initially subjected to
a gravity survey, magnetic survey, passive seismic or regional seismic reflection surveys
to detect large-scale features of the sub-surface geology. Once defined the features of
interest, known as leads, these are subjected to more detailed seismic surveys. The
seismic surveys principle and models make use of the relationships that exist between
the propagation of acoustic and/or elastic waves, including, reflections and refractions,
according to the kind of material (rock type) and its filling fluid (water, gas or liquid
HC, other fluids), and the physical (mechanical) properties of the matter; allowing to
obtain clearer images of the underlying geological structure. Seismic data have to be
interpreted in order to identify all the prospect elements, and trap geometries.

Finally, when a prospect has been identified and evaluated and passes the oil com-
pany’s selection criteria, an exploration well could be drilled in an attempt to conclusively
determine the presence or absence of hydrocarbons.

1.2.2.1 More Details on Seismic Data Acquisition

Seismic data acquisition involves applying a seismic energy source generating a prop-
agating pulse. This source is dependent on the area where survey has been designed:

20Underwater craters caused by escaping gas
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onshore, offshore, intermediate very shallow water areas. Vibroseis truck, dynamite shot,
or an air gun, generates acoustic, or better elastic waves that travel into the Earth in
different modes. The most used mode that is processed to obtain seismic images is the
compressional. Waves pass through strata with different seismic responses and earth fil-
tering effects (alterating the initial pulse shape, that is non-stationary along is path), and
return back to the surface to be recorded as seismic data by geophones or seismometers.

Seismic data acquisition involves applying a seismic energy source. This source such
as a vibroseis truck, dynamite shot, or an air gun, generates acoustic or elastic vibrations
that travel into the Earth, pass through strata with different seismic responses and
filtering effects, and return to the surface to be recorded as seismic data by geophones
or seismometers.

The study area ofmarine survey acquisition, in particular, is considered to be a “deep-
water area” with a column of water that reaches 500 m or much more. Accordingly the
seismic is acquired with particular techniques, see Figure 1.8.

1.2.2.2 Elements of Seismic Data Processing

Seismic processing consists of several operation steps on the acquired or “raw” seismic
data, to suppress noise, enhance signal and migrate seismic events to its appropriate
location in space. Seismic processing facilitates better interpretation because subsurface
structures and reflection geometries are more apparent. There are three main processes
in seismic data processing: deconvolution, Common-MidPoint (CMP) stacking and mi-
gration.

• Deconvolution

Deconvolution is a process that tries to extract the reflectivity series of the Earth,
under the assumption that a seismic trace is just the reflectivity series of the Earth
convolved with distorting filters. This process improves temporal resolution by
collapsing the seismic wavelet lenght, but it is non-unique unless further informa-
tion is available such as well logs, or further assumptions are made. Deconvolution
operations can be cascaded, with each individual deconvolution designed to remove
a particular type of distortion.

• CMP Stacking

CMP stacking is a robust process that uses the fact that a particular location in
the subsurface have been sampled numerous times and at different offsets. This
allows a geophysicist to construct a group of traces with a range of offsets that
all samples the same subsurface location,known as a Common Midpoint Gather.
Another process that is applied to proceed to CMP stack is the Normal MoveOut
(NMO), see Figure 1.9. The moveout quantity is dependent from the propagation
velocity of the rock to pressure waves. NMO align horizontally all the seismic
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Figure 1.8: Marine seismic acquisition. Traditional marine seismic surveys are conducted
using specially-equipped vessels that tow one or more cables containing a series of hy-
drophones at constant intervals. The cables are known as streamers, with 2D surveys
using only 1 streamer and 3D surveys employing up to 12 or more. The streamers are
deployed just beneath the surface of the water and are at a set distance away from the
vessel. The seismic source, usually an airgun or an array of airguns but other sources are
available, is also deployed beneath the water surface and is located between the vessel
and the first receiver. Marine seismic surveys generates a significant quantity of data, in
fact each streamer can be up to 6 or even 8 km long and the seismic source is typically
fired every 15 or 20 seconds.
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event, that are curved along hyperbola, according to their propagation law, with
respect to the offset. Better stack along constant event times can be therefore
performed. The average amplitude is calculated along time samples, resulting
in significantly lowering the random noise but also losing all valuable information
about the relationship between seismic amplitude and offset (information on elastic
properties of the rocks).

(a) CMP gather. The same event in a CMP gather has
a hyperbolic time location respect to offset. γ1 is the
particular angle of reflection for raypath 1.

(b) NMO correction. Traces are
re-located in time to account off-
set, and then averaged out to in-
crease signal-to-noise ratio.

Figure 1.9: CMP stacking.

• Seismic Migration

Seismic migration is the process by which seismic events are geometrically re-
located in either space or time to the location the event occurred in the subsurface
rather than the location that it was recorded at the surface. Creating, thereby,
a more accurate image of the subsurface, see Figure 1.10. Migration precision is
function of appropriate algorithms and of the knowledge of acoustic and elastic
properties, first of all the pressure waves velocity model.

Figure 1.10: Seismic migration.
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1.2.3 A View on Sedimentary Processes: Turbidite Systems

Among a wide list of geological depositional mechanism, we mention here the turbidity
currents since well spread in the studied area; they are gravity driven turbid mixtures of
sediment temporarily suspended in water. The name is derived from their characteristics
of being opaque mixtures of sediment and water. They flow down slopes or over a
horizontal surface provided that the thickness of the flow is greater up-flow than it is
down-flow. The deposit of a turbidity current is a turbidite. The volumes of material
involved in a single flow event can be anything up to tens of cubic kilometres, which is
spread out by the flow and deposited as a layer a few millimetres to tens of meters thick.
Turbidity currents, and hence turbidites, can occur in water anywhere there is a supply
of sediment and a slope. They are common in deep lakes, and may occur on continental
shelves, but are most abundant in deep marine environments, where turbidites are the
dominant clastic deposit. As more sediment is deposited from the decelerating flow a
deposit accumulates and the flow eventually comes to a halt when the flow has spread
out as a thin, even sheet.

Figure 1.11: Turbidite system.

Lithified21 accumulations of turbidite deposits may, in time, become hydrocarbon reser-
voirs and the oil and gas industry makes strenuous efforts to predict the location, overall
shape, and internal characteristics of these sediment bodies in order to efficiently develop
fields as well as explore for new reserves.

21Lithification is the process in which sediments compact under pressure, expel trapped fluids, and
gradually become solid rock. Essentially, lithification is a process of porosity destruction through com-
paction and cementation. Lithification includes all the processes which convert unconsolidated sediments
into sedimentary rocks.
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Data, Task and Models

In this work we applied deep learning techniques to the knowledge field of Oil & Gas
(O&G) exploration. This thesis is made possible by the collaboration with Eni S.p.A.,
in particular with the Upstream & Technical Services team. Through a fruitful series of
meetings, an industrial objective for Eni to apply deep learning techniques was focused
on. This led to the definition of a dataset on which this objective could be applied,
which Eni kindly provided us with. Some data and text could be anonymised due to
NDA restrictions.

Figure 2.1: Study area: large view. The orange box represent the specific location of
study area.
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Figure 2.2: Study area: detail. The orange box represent the specific location and dimen-
sion of study area. We introduce the coordinate system used through this work: Cross
Line (XL) and In Line (IL). Xx xxxxxxxxx xxxxxx xxxxxx xxxxx xxx xx xxxxxxxxx
xxxxxx xxxx.

2.1 Dataset Description

Xxx xxxxx xxxx xx xxxxxxx xx xxx xxxxxxxx xxxx xx xxx xxxxxxxxxx xxxxxxx xxxx
xxxx xxx xxxxxx xxxx xxxxxxxx. Xxx xxxxxx xxx xx xx xxx xxxxx xxxx xxx xxxxxxx
xx xxx xxxxxx xxxxx xxxx xx xxxxxxxxxxxxx xx xxxxxxx xxxxxx xxxxxxxxxx.

The dataset Eni gave us comprises of:

• Two high quality 3D Pre-Stack Depth Migrated (PSDM)1 Volumes: one Near
reprocessed angle stack and one Far angle stack2. These two volumes are different
types of stacks, not including all the offsets, but only selected ones, according to
being Near (closer receivers offsets to the source, meaning low incidence angles
of reflections) or Far (far receivers offsets to the source, meaning higher incidence
angles of reflections). They are sensitive to different seismic properties; for instance
we could say that the Far is more sensitive to fluid presence.

1PSDM indicates that the seismic migration procedure is done before the CMP stacking one.
2The difference between them lies in the range of angle reflections collected in the CMP stacking

procedure: γNear ∈ [3◦, 18◦] and γFar ∈ [33◦, 48◦]. A result is that the Near volume has a higher spatial
resolution than Far volume.
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• Three manually interpreted surfaces or horizons3 that have at least one embedded
turbidite channel-base: Base I, Base II, Base III.

• Four high quality exploration porosity well logs4 (W1,W2,W3,W5) each one com-
posed of: the actual measured porosity log and the relevant frequency filtered
version5.

2.1.1 Seismic Volumes

Spatial extension and sampling density of seismic volumes are summarized in Figure 2.3.

Figure 2.3: Seismic volumes overview. Depth axis points downward and has zero value
on sea level.

Xx xxx xx xxxxxxxxx xxxxx xxxx xxxxxxx xxx x xxxxxx xx xxxxxxxx x xxxx x
xxxxxxxx xxxxxxxx xx xxxx x. Xx xxx xx xxxxxxxxx xxxxx xxxx xxxxxxx xxx x
xxxxxx xx xxxxxx x xxxx x xxxxxxxx xxxxxxxx xx xx x. Xxx xxxx xxxxxx xxxxxxx x
xxxxx xx xxxxxx xxxxx x xxxx xxxxxxxxx x xxxxxx xx xxxxxxxxxxxxx xxxxxxxxxxx
x xx xxxxx. Xxx xxx xxxxxx xxxxxxx xxxxx xx x xxxxx xx xxxxxx xxxxx x xxx xxxx
xx xxx xxxx xxxxx xx xxxx xxxxxx.

Therefore volumes dimensions expressed as tensor indexes are:

• Near: 1,901 XLs, 606 ILs, 2,001 Depths.

• Far: 1,901 XLs, 606 ILs, 1,601 Depths.

We finally point out that in both volumes, voxels6 are non-isotropic and have the same
size which is 12.5 m x 25 m x 2.5 m. Voxels are huge hence oil and gas predictions has
to be extremely accurate.

3An informal term used to denote a surface constituted of a distinctive layer of rock that is represented
by a reflection pattern in seismic data. A horizon can be thought of as a geological snapshot of the
surface history. These horizons are interpreted using Near seismic volume, see [16].

4A measurement versus depth of one or more physical quantities in or around a hydrocarbon explo-
ration well.

5Frequency filtration has been done by convolution between measured log and a proper wavelet ϕ in
order to match seismic data spatial resolution.

6A voxel represents a value on a regular grid in three-dimensional space. The 3D analogous of 2D
pixel.
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Figure 2.4: IL-slice of Near volume: axes are in reciprocal proportion to the study
volume.

In Figure 2.4 we show how looks like an IL-slice of Near volume seen in proportion
to the real physical volume. Seismic voxels contains scalar values directly related to the
local variation of acoustic impedance7, or equivalently, related to the acoustic reflection
coefficient RC . Seismic volumes are usually graphically rendered in diverging pseudo
color which associates blue to negative values, red to positive values and white to zero
crossing.

Figure 2.5: IL-slice of Near volume.

7Acoustic impedance ZM is a physical property of matter. It describes how much resistance a sound
beam encounters as it passes through a layer. It is defined by the product between density ρM and
speed of sound waves in medium vM : ZM = ρMvM .
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2.1.2 Seismic Horizons

Seismic horizons play a key role in this work and they are expressed as a cloud of points.

Figure 2.6: Base I horizon. XL and IL axes maintains reciprocal proportion to the study
volume. Base I horizon is rendered trough depth in pseudo color. Wells are superimposed
to understand their exact locations.

Geological and geomorphological experience allow to recognize erosive patterns that are
attributable to turbidite channel-base systems; the exact location and segmentation of
them. However, it is not a trivial task and it involves geophysical expertise.

Remaining horizons are showed next. As you might notice, horizons are presented in
order of decreasing depth; Base I, in fact, is the deepest and hence the oldest.
We finally point out the notion of sequence which is a group of relatively conformable
strata that represents a cycle of deposition and is bounded by unconformities.

• Sequence I: bounded by Base I and Base II.

• Sequence II: bounded by Base II and Base III.

• Sequence III: bounded by Base III and a surface of non-geophysical interest called
Top Interp.
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Figure 2.7: Base II horizon.

Figure 2.8: Base III horizon.
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2.1.3 Well Logs

Well logs are subsurface property measurement acquired in the borehole. Seismic vol-
umes, in fact, are a non-direct information, just the best result of the O&G industry to
solve a poorly-posed problem such as the time-depth inversion of seismic traces.

In this case, the porosity logs are a more direct and physical measurement indicating
the local pore volumes in percentage over the total. High porosity, for this kind of study
area, is a strong indicator of sandy clastic sediments8 which indeed suggest the presence
of a turbidite channel infill and therefore a candidate reservoir (lead).

(a) W1 measured porosity log. (b) W1 frequency filtered porosity log.

Figure 2.9: W1 porosity well logs.

Frequency filtering of measured porosity logs is done by convolution whit the same
depth-dependent9 wavelet used in seismic survey processing. The aim of that is to match
the density of information content between logs and seismic volumes.

Figure 2.10: Seismic wavelet explanation.

8Sediment consisting of broken fragments derived from pre-existing rocks and transported elsewhere
and redeposited before forming another rock.

9An important fact is that rock acts as a low pass filter therefore wavelet shape is depth-dependent.
You may notice it in Figure 2.5.
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(a) W2 measured porosity log. (b) W2 frequency filtered porosity log.

Figure 2.11: W2 porosity well logs.

(a) W3 measured porosity log. (b) W3 frequency filtered porosity log.

Figure 2.12: W3 porosity well logs.

(a) W5 measured porosity log. (b) W5 frequency filtered porosity log.

Figure 2.13: W5 porosity well logs.
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All informations about dataset are summarized in Figure 2.14.

Figure 2.14: Dataset comprehensive scheme.

Data Format and Visualization Tools

A significant part of the work in this thesis consisted in understanding and learning how
to manage the formats used in the O&G exploration industry. In particular, learning
how to read and produce files in SEG-Y file format. Another important part was to
visualize the data and results produced by deep learning algorithms.

SEG-Y File Format

The SEG-Y file format is one of several standards developed by the Society of Explo-
ration Geophysicists (SEG) for storing geophysical data. It is an open standard, and is
controlled by the SEG Technical Standards Committee, a no-profit organization. The
format was originally developed in 1973 to store single-line reflection seismic (traces)
digital data on magnetic tapes. The specification was published in 1975.
However, since its release, there have been significant advancements in geophysical data
acquisition, such as 3-dimensional seismic techniques and high speed, high capacity
recording. The most recent revision of the SEG-Y format was published in 2017, named
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the rev 2.0 specification. It still features certain legacies of the original format (referred
as rev 0), such as an optional SEG-Y tape label, the main 3,200 byte textual EBCDIC
character encoded tape header and a 400 byte binary header.

Figure 2.15: SEG-Y file structure. The file is organized by traces and these are typically
arranged as IL-slice, i.e. {Trace(il = 0, xl = 0),Trace(il = 0, xl = 1), . . . ,Trace(il =
0, xl = XLs),Trace(il = 1, xl = 0), . . . ,Trace(il = ILs, xl = XLs)}. This format is
therefore not conceived and optimized for a fast access of 3D sub-volumes of data.

To manage the SEG-Y format in Input/Output (IO) we used the segyio10 library
which allowed us to read and produce SEG-Y files to be supplied to Eni as input for
their visualization and processing tools.
Segyio is a small LGPL11 licensed C library for easy interaction with SEG-Y formatted
seismic data, with language bindings for Python and Matlab. However, segyio has some
limitations as it does not support the entire standard or all exotic (but correctly) for-
matted files. Some assumptions are made, for example: all traces in a file are supposed
to be the same size as the sample and all lines are supposed to have the same number of
traces.

Visualization Tools

Visualization in this field plays a key role due to the intrinsically 3D nature of geobodies.
It was therefore important to be equipped with graphical tools to improve the under-
standing of the provided dataset. Petrel is not free of charge and have therefore only
been exploited through Eni’s team.

• Petrel

Petrel is a software platform used in the exploration and production sector of
the petroleum industry. It allows the user to interpret seismic data, perform well
correlation, build reservoir models, visualize reservoir simulation results, calculate
volumes, produce maps and design development strategies to maximize reservoir
exploitation. Petrel is developed and built by Schlumberger.

10https://segyio.readthedocs.io/en/latest
11The GNU Lesser General Public License (LGPL) is a free-software license published by the Free

Software Foundation (FSF). The license allows developers and companies to use and integrate a software
component released under the LGPL into their own (even proprietary) software without being required
by the terms of a strong copyleft license to release the source code of their own components.
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Using the latest advanced GPU rendering, the Petrel Seismic Volume Rendering
and Extraction module enables quick and interactive blending and rendering of
multiple seismic volumes with extreme clarity to detect anomalies, delineate struc-
tural and stratigraphic features, isolate areas of interest, and then instantly extract
what is visualized into a 3D object called a geobody. One can create complex se-
lection events to delineate complex structural and stratigraphic features such as
channels, deltas, or fractures. Accurate interpretation of those features is made
possible by the complete set of tools, such as advanced horizon amplitude-based
and waveform-based horizon autotracking, multi-Z interpretation, and interactive
mesh editing. One can also extract 3D geobodies and assign geological templates
to them providing the bodies with instant geological meaning.

• OpendTect

OpendTect is a complete open source seismic interpretation package, which is
widely used in the industry and that it can be downloaded at no cost from Opend-
Tect. OpendTect contains all tools, needed for a 2D and/or 3D seismic interpre-
tation: 2D and 3D visualization, horizon and fault trackers, attribute analysis and
cross-plots, time-depth conversion, etc.

• Mayavi

Mayavi12 is a scientific data visualizer written in Python. Mayavi is free and
distributed under the BSD13 license. The latest version of Mayavi is called Mayavi2.

Mayavi2 seeks to provide easy and interactive visualization of 3D data, or 3D
plotting. It does this by the following: an (optional) rich user interface with
dialogs to interact with all data and objects in the visualization, a simple and clean
scripting interface in Python, including ready to use 3D visualization functionality
similar matplotlib, harnesses the power of VTK without forcing you to learn it.

2.2 Task Description

A valuable industrial objective is to quickly and semi-automatically characterize the
presence, location and extension of leads, in this case, turbidite systems.
The most natural choice for such a task is the binary classification: object of interest,
background. This would naturally fit into the framework of supervised learning, but this
kind of task can be set up only if we have, or at least we can define the labels. Therefore

12https://docs.enthought.com/mayavi/mayavi
13BSD licenses are a family of permissive free software licenses, imposing minimal restrictions on the

use and distribution of covered software. The BSD license is a simple license that merely requires that
all code retain the BSD license notice if redistributed in source code format, or reproduce the notice if
redistributed in binary format.
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the choice of algorithms task definition must be done taking into account what data is
available.

Up to this point, we should ask, are these objects characterized by their sinuous and
meandering shape or by their texitural internal layering? Probably both...
The information on where are the turbidite sediments infills are a very difficult one to
gain and it requires a lot of time, for geologists and geophysicists to correctly interpret the
seismic volume, and money to collect well logs in order to establish high porosity regions.
Furthermore, even if this effort is placed at work, a 3D reliable label with sufficient spatial
resolution is impractical. On the other hand, the extraction of horizons is a relatively fast
and semi-automated process done using 3D visualization and processing software, such
as Petrel. This is because the seismics is the most important attribute in interpreting
and recognizing horizons.

Since we do not have the information on where the turbidite sediments infills are, we
can not set up the classification task as a direct search for this kind of objects. However,
we do have three horizons with at least one embedded turbidite channel-base system.
But is the information embodied in the channel-base sufficient?

(a) Near XL-slice centered around
a channel-base voxel.

(b) Same slice as 2.16a with super-
imposed channel-base (dotted line)
and sediments infill (green region).

Figure 2.16: Form or content dilemma. An interesting slice containing a turbidite channel
is presented. We see shape of a turbidite channel-base, the form, and textural pattern
of the sediments infill, the content.

In Figure 2.16 we see a slice of seismics centered around a channel-base voxel. We
notice two important things that are present: channel-base is characterized by a concave
shape and sediments infill with its texitural pattern that lies above. Therefore, even if
we are expressing the task as a search for turbidite channel-base systems, using a big
enough context around every channel-base voxel we give to the model both pieces of
information: shape and content.
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After all these consideration, we choose to define the deep learning task as binary
classification between turbidite channel-base and background using as input a sub-volume
context or a 3D patch. Or, in other words, we choose to build models that for every
voxel answer the question:

“Does this voxel belong to a sub-volume that represents a channel-base system?”

2.3 Proposed Models

We previously introduced the concept of the 3D patch in the context of a patch-based
classification task. The 3D patch is the earlier called sub-volume which is a Npatch side
volume.

At the end of the sub-sub-section 1.1.2.3 we talked about the curse of dimensionality,
which focuses on how the number of features should be kept under control in relation to
the available examples in order to ensure a good learning process. In case we are using
Npatch side volumes as input patches we are looking for a solution to a problem with
the complexity that grows as O(N3

patch), since NF = N3
patch. Given that Npatch must also

be large enough to provide an adequate context for the learning process, the risk of not
having enough examples is considerably high.

Figure 2.17: Windrose diagram.

We, therefore, decided to take an alternative
route before admitting the need to move to full 3D.
It has been decided to work with a certain number
of 2D patches, according to what could be defined
as a 2.5D approach. This approach makes the com-
plexity of the problem proportional to a O(N2

patch).
The most intuitive choice to transform an intrin-
sically 3D problem into a 2D one is to take Nslice

slice along the coordinated axes of the subvolume,
in a mode that we have named “windrose”. For a
graphical representation see Figure 2.18.

2.3.1 Input Patch

Once we decided that we want to use a 2.5D approach, it remains to be defined how to
exactly build the input patch from the three selected slices.
One idea could be to place them horizontally side by side to form a single image of
size [1]x[Npatch]x[3Npatch]. Even if this may seem an obvious choice, with respect to
the functioning of the CNN models, it implies that the same convolution filters act
simultaneously for all three slices. However, they carry very different information, for
example the D-slice, and not to mention the fact that there are discontinuities in the
junction points that models must learn to handle it.
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(a) 3D patch around a channel-base voxel. (b) Three 2D patches extracted in a win-
drose fashion. Slices are extracted per-
pendicular to coordinate axes.

Figure 2.18: Windrose patch description. In this case Nslice = 3 but we can generalize
easily to the case where Nslice < Npatch. The case Nslice = Npatch, no matter how slices
are selected, implies the same complexity as the direct 3D approach and therefore is not
convenient.

Figure 2.19: Windrose h-stack patch description.

We, therefore, opted for an input patch definition that would allow the network to
use different filters for each slice. The result of this reasoning was to stack the slices on
top of each other, as happens with RGB image channels. Thus producing patches of size
[3]x[Npatch]x[Npatch].

2.3.2 Models Architecture

Regarding the architecture of the models, which are naturally 2D CNNs, we decided to
study two architecture in particular, called here “CNN A” and “CNN B”.

As you can see in Figure 2.21, the last two connections has a further information in
square brackets which is relative to the regularization techniques called dropout. Dropout
is drawn in brackets because we analized the CNN A architecture both with and without
dropout, called respectively: “CNN A Dropout” and “CNN A”.
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(a) Windrose slices are concatenated one
above the other in a three-channel way.

⇐⇒

(b) Spectral interpretation of
the concatenated windrose slices
as a RGB image.

Figure 2.20: Windrose spectrum patch description.

CNN B architecture is described in Figure 2.22. As before we analized architecture both
with and without dropout, called respectively: “CNN B Dropout” and “CNN B”.

The main difference from the two architectures is the depth, or rather the composi-
tionality of the inner representation. CNN B, in fact, better represents the convolution
network paradigm, having many convolutional layers and therefore feature maps built
as the composition of the previous feature maps. In addition to having more convo-
lutional layers, CNN B also has an extra layer of max pooling that makes its internal
representation more spatially invariant. These differences are strongly reflected in the
representational capacity. The representational capacity can be roughly estimated as the
number of tunable parameters, the weights θ. Of course, the number of weights depends
on the size of the input patch. Convolutional connections, in fact, shrink the size of the
incoming feature maps, as max pooling connections naturally do. In Table 2.1 you can
see a huge difference, in terms of weights, between the two architectures as the size of
the input patch changes.
In summary, we have that although CNN B is a better representative of the convolutional
paradigm it has way less representational capacity than CNN A, which reflects however
on the number of examples needed to achieve good learning.
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Figure 2.21: CNN A architecture. We can see early convolutional layers, expressed as
a certain number of feature maps, connected trough a 2D convolution operation with
specified kernel size. Second hidden layer is conned to third hidden layer by a 2D max
pooling operation which halves feature maps side. Flattening procedure simply reshapes
all elements in a row, so that a dense connection can be made. For all layers but the
output one, which has softmax as usual for classification tasks, the activation function is
the ReLU function. Output layer has two nodes, one for the background class prediction
probability PBackground and one for turbidite channel-base prediction probability PChannel.
The last two connections has a further information in square brackets, which is dropout
and relative dropping nodes percentage.

Npatch

Model architecture 17 33 49 65

CNN A 314,690 1,625,410 3,984,706 7,392,578
CNN B - 205,826 211,970 226,306

Table 2.1: Representational capacity for proposed models. Number of tunable parame-
ters for the two architectures considerated at varying input patch size. CNN B can not
operate on patches smaller than Npatch < 24 due to feature map shrinkage by convolu-
tional and max pooling layers.
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Figure 2.22: CNN B architecture. This architecture is proposed in [10].
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Implementation and Results

This chapter describes the implementation of the deep learning problem described so far
and the results obtained.
First of all, we highlight the use of Python language and the TensorFlow library coupled
with the use of Nvidia CUDA capable GPUs. As expressed in section 1.1, nowadays
any experimental deep learning project can’t avoid the use of GPUs because these allow
studying multiple possibilities in acceptable deadlines.

TensorFlow is a free and open-source software library developed by the Google Brain
team that is also used for machine learning applications such as neural networks. It was
released under the Apache License 2.01 and it is used for both research and production
at Google. TensorFlow can run on multiple CPUs and GPUs with optional CUDA
extensions.

In this work we used two GPUs, one relative to my laptop and one relative to the
workstation provided by Bioretics. The most intensive tests were conducted entirely on
the workstation.

Here’s a list of the main characteristics of used GPU’s.

• Laptop: Nvidia GeForce MX 150 with 2 GB of dedicated memory.

• Workstation: Nvidia GeForce GTX 1080 with 8GB of dedicated memory.

3.1 Implementation

In the previous chapter, the deep learning problem has been explicitly defined. It is a
binary classification between background and turbidite channel-base. This choice was
made considering the available dataset, in fact, we have horizons with at least one channel

1The Apache License is a permissive free software license written by the Apache Software Foundation
(ASF). It allows users to use the software for any purpose, to distribute it, to modify it, and to distribute
modified versions of the software under the terms of the license, without concern for royalties.
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immersed. Now, the fundamental step is to generate a labeled training/test set and to
do this it is necessary to define which are the channel voxels and which are not.

Is it possible to define channel voxels purely by observing the geometry of the horizon?
In the following you can see the three horizons represented through the depth in grayscale
pseudocolor, associating black to deep regions and white to shallow ones.

Figure 3.1: Base III horizon with depth as grayscale pseudo color.

Figure 3.2: Base II horizon with depth as grayscale pseudo color.

Figure 3.3: Base I horizon with depth as grayscale pseudo color.
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From previous images, it is possible to detect the presence of some channels even
if a sort of darkening seems to prevent an optimal vision of the horizon topology. The
motivation for this aberration lies in the fact that the horizons can have a non-null
average slope, in particular, all three horizons show a slope towards increasing IL.
To remove this effect we decided to process the horizons in a way that visually improves
the images and helps the human eye to perform segmentation. The idea is to remove the
contribution of the average gradient from the horizons as summarized in Figure 3.4.

Figure 3.4: Mean-plane correction.

In order to explain how we implemented this correction it’s useful to describe the hori-
zon as a differentiable function defined on the XL-IL plane that gives the corresponding
depth2.

Hor : R2 −→ R

(XL, IL) 7−→ Hor(XL, IL) = DHor

(3.1)

With this mathematical framework we can define the mean gradients with respect to
coordinate axes: gXL, gIL.

gXL =
∂Hor

∂XL
:=

1

(XLs)(ILs)

∑

i,j

∂Hor

∂XL
|(XLi,ILj)

gIL =
∂Hor

∂IL
:=

1

(XLs)(ILs)

∑

i,j

∂Hor

∂IL
|(XLi,ILj)

(3.2)

2We can suppose that our horizons are a sampled version of the continuous horizons defined in
equation 3.1.
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It’s easy now to define a function MPlane that assign to every point in the XL-IL plane,
the corresponding depth of the mean plane, or even the horizon interpolating plane3

MPlane(XL, IL) := gXLXL+ gILIL+ const (3.3)

Mean-plane corrected horizons are defined in equation 3.4 in such a way that gcorr,XL =
gcorr,IL = 0.

Horcorr(XL, IL) := Hor(XL, IL)−MPlane(XL, IL) (3.4)

Figure 3.5: Base III mean-plane corrected horizon with depth as grayscale pseudo color.
A channel-base is clearly visible on the right hand side that crosses from top to bottom
the image. Other channel-bases may be present but not as visible to us.

Figure 3.6: Base II mean-plane corrected horizon with depth as grayscale pseudo color.
An S-shaped channel-base is clearly visible diagonally across the image. This appears
to be a system of two channels that have split in two at the bottom of the image. An
uncertain region appears to be the one at the top right.

3We defined the MPlane function up to a constant because it is irrelevant to our purpose. The reason
is that we are not interested in the actual depth value of mean-plane corrected horizons, but only to
enhance their visual representation in grayscale pseudo color which adapts itself to the data range.
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Figure 3.7: Base I mean-plane corrected horizon with depth as grayscale pseudo color.
A system of channel-bases is clearly visible in the center of the image crossing from the
top center to bottom right.

After examining all the horizons and noticing the presence of evident channels, we
decided to focus heavily on Base II. This horizon, in fact, has a widespread channel that
crosses a significant part of the horizon and therefore can provide a lot of information
to the models. Moreover, Base II, being between Base I and Base III, is an obvious
candidate to focus out attention on because it can provide useful information also for
the generalization in its surroundings, which we can control by monitoring what models
predict on Base I and Base III.
In Figure 3.8 we show how Base II appear in 3D space.

Figure 3.8: Base II horizon in 3D space.
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3.1.1 Manual Channel-Base Segmentation

In this section, we describe how we proceeded to extract information about the location
of the channel dipped on Base II horizon. Since we want to extract the channel-base
using only topological information, we find two useful information: the magnitude of the
gradient and the curvature. To calculate them, it was necessary to take into account
that the XL and IL axes do not have a homogeneous sampling. As you can see from
Figure 2.3 ∆IL = 2∆XL, and we had to take this into account defining two variables of
scale: SXL = 1 and SIL = 2. Now you can correctly define the magnitude or modulus of
the gradient vector as expressed in equation 3.5.

Gmagnitude(XL, IL) :=

√

[

1

SXL

gcorr,XL(XL, IL)

]2

+

[

1

SIL

gcorr,IL(XL, IL)

]2

(3.5)

Where

gcorr,XL(XL, IL) =
∂Horcorr
∂XL

(XL, IL)

gcorr,IL(XL, IL) =
∂Horcorr
∂IL

(XL, IL)

(3.6)

We can also calculate a simplified version of curvature, such that in equation 3.7, and
visually combine the two information as in Figure 3.9.

Curvature(XL, IL) :=

[

1

SXL

]2
∂2Horcorr
∂XL2

(XL, IL) +

[

1

SIL

]2
∂2Horcorr
∂IL2

(XL, IL) (3.7)

Figure 3.9: Base II gradient magnitude plus curvature. In this image, gradient magnitude
and curvature are blended in a certain proportion, respectively 0.75 and 0.25, in order
to give a topological hint on where the channel-base is.
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Using this information we have manually contoured the region that we believe could
correspond to the definition of channel-base, reaching as far as the concavity reaches its
maximum downward, i.e. what could be defined as the bank of the channel. The result
of this first segmentation can be seen in Figures 3.10. Unfortunately, it is difficult to
exactly define where the channel-base ends and it is a part of this work to figure out how
this definition affects the classification problem resolution.

Figure 3.10: Base II first segmentation. As may notice, we completely ignored the
topological indications regarding the top right area, considering that part as background.
We point out that this choice is not motivated by an a priori knowledge and therefore it
should be considered as a possible criticality of this initial segmentation, which adds to
the problem of how to define the channel-base boundaries.

3.1.2 Dataset Handling

Now that we have defined, at least on the Base II horizon, which are channel-base
voxels and which are background, we just have to define how to build a windrose patch
labeled dataset in practice. First of all, the number of voxels on each horizon is Mmax =
(XLs)(ILs) = 1, 901 x 606 = 1, 152, 006 but only a part of them has a windrose patch
associated with, this is because the latter must be within4 the seismic data volume. So
the number of voxels from which it is possible to extract windrose patches of Npatch side,
and therefore the maximum number of effective extractable examples, is equal to:

Meff = Mmax −

(

2

⌊

Npatch

2

⌋

+ 2

⌊

Npatch

2

⌋)

(3.8)

As an implementation choice we decided to save on disk 3D patches of side Nsaved >
Npatch centered around the labelled voxels from which we later extract the windrose
patches during simulation. Therefore Meff is actually:

Meff = Mmax − 4

⌊

Nsaved

2

⌋

(3.9)

4Unless you put into practice volume padding procedures.
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Figure 3.11: 3D central cropping of saved volume and windrose patch extraction.

The decision of saving 3D patches along with the large amount of extractable 3D patches
Meff induced, for reasons of memory storage capacity, to actually save a fraction of them.
We decided to not select this fraction of 3D patches randomly because it could happen
that in some regions patches might be closely picked, and therefore highly correlated,
while in others spatially distant. The set of selected 3D patches was therefore defined
using the concept of 2D stride: i.e. 3D patches selected having central voxel lying on a
2D grid of step (δXL, δIL).

The number of 3D patches of side Nsaved saved on disk is therefore:

Msaved =
Meff

δXLδIL
(3.10)

In our case the trade-off between the request for a sufficiently large dataset and the
memory storage requirements led to the choice of δXL = δIL = 4: that is Msaved =
Meff/16 ∼ 70k examples.

3.1.3 Preprocessing

Before implementing a deep learning algorithm it is good practice to study how the
numerical range of examples behaves in the training context. The training algorithms in
fact, due to numerical crunching reasons, do not work properly if the input values are
either too small or too large5. In our case values contained in seismic volumes have an
extremely wide dynamic range in the order of 108:

• Far: Farmin = -623,911,936.00, Farmax = 409,188,992.00.

5Typically the range [0, 255] of the 8-bit unsigned integers is a good one for CNNs.
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• Near: Nearmin = -505,458,176.00, Nearmax = 402,230,816.00.

To study how the dynamic range of the data affects training, and thus develop a
preprocessing procedure if necessary, we have built a toy problem. We chose to focus
on the left half of Base II and extract M = 6,255 windrose patches of side Npatch = 33
from the available ones, on the Far volume. In Figure 3.12 you can see the distribution
of input values for the selected windrose patches and the contributions given by the two
classes.

(a) Histogram of input values of the 6,255 selected
windrose patch.

(b) Histogram of input values of the 6,255 selected
windrose patch splitted by class.

Figure 3.12: Histogram of input values for the preprocessing toy problem.

Since the seismic volumes contain physical information about the RC reflection co-
efficients, we decided to study three preprocessing cases that would preserve the zero-
crossing characteristic of the original data, i.e. a trivial rescaling dividing original data
by a certain factor Fproc.

• Original: Fproc = 1. We keep the original data unchanged.

• Normalized: Fproc = Fnormalized. We normalize the whole seismic volume, while
preserving zero-crossing, dividing by Fnormalized,Vol = max{| Volmin |, | Volmax |}
where Vol = Far,Near.

• Custom: Fproc = Fcustom. We adjust the normalized version by increasing data
range by a factor of 100: Fcustom = Fnormalized/100.

We have therefore studied how these three preprocessing factors affect the training
process applied to the architectures analyzed in this work. We have divided datasets
of this toy problem into a training set (90%) and validation set (10%) to observe the
robustness of the training process from the generalizing ability of the trained models.
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(a) (b)

Figure 3.13: Effects of preprocessing on training CNN As architectures. 3.13a We can
see that the normalized version behaves worse, probably the values are too small. It is
very interesting to note that although the original version performs better on the training
set, the custom version has the best generalizing ability. 3.13b The dropout seems to
compromise the training on the original data while the custom version performs pretty
well. We notice how the regularizing ability of the dropout keeps the performance on
the training set and validation set close.

(a) (b)

Figure 3.14: Effects of preprocessing on training CNN Bs architectures.

Considering the results expressed in Figures 3.13 and 3.14 and especially the good
performance of the custom preprocessing version on Dropout architectures, we decided
to use this preprocessing technique in all the simulations of this work.
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3.1.4 Dataset Augmentation

Given the scarcity of labeled examples compared to the number of possible physically
acceptable configurations in which 3D patches can be found. We decided to implement
the dataset augmentation in order to improve the generalization of the models, providing
artificially generated examples generated from real ones through transformations that
preserve their realism.

The chosen transformations are:

• XL-flipping: The 3D patch is mirrored on a plane passing through the center of
the 3D patch and orthogonal to the XL direction.

• IL-flipping: The 3D patch is mirrored on a plane passing through the center of
the 3D patch and orthogonal to the IL direction6.

• D-translation: The 3D patch is shifted to increasing or decreasing depths of a
certain number of voxels, respectively positive or negative. This transformation is
important because horizons are the result of human interpretation and therefore
not certain and not perfect. We account for this uncertain introducing a random
noise in depth.

• D-rotation: The 3D patch is rotated with respect to the axis passing through
the center of the 3D patch and parallel to D direction, by a certain angle. This
transformation implies that there’s not a preferential direction between XL and IL.
Every object can be found orientated in all direction of the XL-IL plane.

• Scaling: The 3D patch is zoomed in or out by a certain factor, respectively larger
than or smaller than one7. This transformation tries to account for the depth
variation of seismic wavelet resolution (see Figure 2.10) and hence to help generalize
on surrounding depths.

Thinking about the D-rotation transformation, we realized it hides a trap. In fact,
the seismic volume sampling is not isotropic in the three directions, and especially XL
and IL. This characteristic of the seismic volume implies that by rotating an original
3D patch you get another 3D patch that does not conform to the original volume due
to this sampling asymmetry. For this reason, we decided to implement a pre-treatment
procedure for original 3D patches in order to correctly perform dataset augmentation,
as graphically described in Figure 3.15.

6You can’t do the same thing with the D direction because it would produce unrealistic examples,
a bit like seeing a tree upside down. The D direction is therefore substantially different from the other
two.

7You may notice that in order to apply this transformation, the 3D patch must be larger than the final
windrose patch; hence the request Nsaved > Npatch. The same goes for the D-translation transformation.
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(a)

=⇒

(b)

Figure 3.15: XL-IL homogenization. 3.15a The original 3D patch extracted from seismic
volume. As you can see in the IL axis there’s more information respect to XL, this is
caused by difference in axes sampling rates. 3.15b We expanded IL axis by a factor
SIL = 2, homogenizing XL and IL axes.

Once the XL-IL homogenized patch is produced, we proceed to extract the central
region of side Npatch from which the windrose patch is generated, as shown in Figure 3.16
and Figure 3.17.

Figure 3.16: Npatch central cropping of the axis-homogenized 3D patch.
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Figure 3.17: Original windrose patch of size Npatch = 33.

XL-Flipping

Flipping is a reflection transformation and cannot be described as a rotation, so it is
necessary. Transformations are performed on the XL-IL homogenized 3D patch, as visible
in Figure 3.18, from which it is then extracted a cropped sub-volume of side Npatch. In
Figure 3.19 we show the XL-flipping data-augmented windrose patch.

(a)

=⇒

(b)

Figure 3.18: Dataset augmentation: XL-flip.
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Figure 3.19: XL-flipping data-augmented windrose patch of size Npatch = 33.

IL-Flipping

Figure 3.20: IL-flipping data-augmented windrose patch of size Npatch = 33.

D-Translation

This trasformation translates the 3D patch in depth of a random number of voxel within
the range [−5,+5].

Figure 3.21: D-translation data-augmented windrose patch of size Npatch = 33. This
windrose patch is associated to a translation of +5 voxel in depth.
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D-Rotation

This transformation rotates the 3D patch of a random angle within the range
[−180◦,+180◦], with respect to the axis passing through the center and parallel to D.

Figure 3.22: D-rotation data-augmented windrose patch of size Npatch = 33. This win-
drose patch is associated to a 90 degree anticlockwise rotation.

Scaling

This transformation zooms out or in by a random factor within the range [0.9, 1.1], or
equivalently [−10%,+10%].

Figure 3.23: Scaling data-augmented windrose patch of size Npatch = 33. This windrose
patch is associated to a scaling factor of 0.9, or equivalently to a zoom out of 10%.

Operatively, we implemented the dataset augmentation by sequentially applying all
the selected transformations, each with a certain probability8 Ptransformation. So that
a varied and representative dataset can be obtained without explicitly encoding every
combination.

8We implemented it in such a way that the original windrose patch is always kept. Therefore we can
also use unit-valued probabilities.
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3.2 Training on Base II

In this section, we describe the results of the simulations carried out by training the
models on portions of Base II horizon and by studying the predictive behavior of the
models on previously unseen ones.
In this results presentation, we follow the logical path of reasoning that has guided us in
our research. By exploring the key critical points identified, in particular:

• On which seismic volume is it better to set up the DL task9?

• Is dataset augmentation useful for this DL approach?

• How susceptible is this DL approach to channel-base segmentation?

• How and how much does the context extension Npatch affects DL performance?

To better understand the problem we are going to study and the differences between
the two seismic volumes, we can observe the following two images which show the seismics
values of Base II horizon voxels.

Observing Figures 3.24 and 3.25 we notice two important facts: the difference in
resolution between the two volumes and that this horizon does not perfectly follow a
constant seismics value. On the horizon, in fact, seismics take both negative and positive
values, contrary to what one might think. This depends on one hand to the fact that
the horizon is the result of a semi-automatic manual interpretation and segmentation
and on the other to the fact that the horizontal seismic bands representing strata are
discontinuous so that the operator interpreting horizons extends these regions crossing
zones of discontinuity and inconsistency. However, the volume from which the horizons
are segmented (Near) is consistent with the established channel-base as this seems to be
more or less defined by a positive (red) seismics. This is not found on the Far volume as
proof that the horizon has been segmented using Near seismics.

9We studied the performance of the models on both Far and Near volumes, although we know that
since the horizons have been segmented from the seismics of Near, the latter is the logically coherent
seismic volume on which to base the DL approach outlined so far.
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Figure 3.24: Far seismics on Base II horizon.

Figure 3.25: Near seismics on Base II horizon.

3.2.1 Left Training and Right Inference

We initially observed the importance of performing some form of dataset augmentation.
For this purpose, we compared the results of two experiments conducted by training on
the left half of the Base II horizon based on the Far volume.

The first experiment consists of training only on original examples while the second
one consists of training on the same number of data-augmented examples.

# Examples
Label Original Data-augmented (x5)

Channel 13,133 2,626 x 5
Background 15,795 3,158 x 5
% Channel 45.40 % 45.40%

Tot 28,928 28,920

Table 3.1: Left training dataset composition. The symbol x5 is the data-augmentation
factor which means that for each extracted original example 5 are produced (1 original
example unchanged plus 4 artificial data-augmented examples). The examples are ran-
domly selected from the Msaved ones located in the training area, i.e. the left half in this
case.

In these experiments and all the following ones, we chose to divide the training data
into an effective training set (90%) and a validation set (10%) to monitor the training
process. Data augmentation features implemented in this experiment are expressed in
Table 3.2. These parameters are used for all the simulations in this work so that results
can be compared.
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Transformation Ptransformation

D-rotation 1
XL-flipping 0.5
IL-flipping 0.5
D-traslation 0.5

Scaling 0.5

Table 3.2: Data augmentation probabilities. The D-rotation has an associated unit
probability and this is allowed because we implemented that the original data is always
kept unchanged by data augmentation. The order in which the transformations are
expressed is the sequential order in which the data augmentation is implemented. Hence,
first, we execute the rotation, then on the rotated data, we execute the XL-flipping with
0.5 probability, etc.

In the following figures we show how data-augmentation affects the generalization
ability of the model here analyzed, CNN A on Npatch = 65 sided windrose patch10. The
model is trained in both experiments for 200 epochs11. To better understand the results,
we recommend checking the ground truth image valid for these experiments in Figure
3.10, remembering however that this is a segmentation made by the author and therefore
should not be considered certain and unmodifiable.

10We chose to use the architecture without dropout to highlight the generalization power of data
augmentation. Also, we chose windrose patches large enough to allow the models to overfit given the
high representational capacity induced by such a big patch in order to reveal discrepancies between
these two experiments.

11By epoch we mean a complete iteration of stochastic gradient descent. In other words, we can
say that during an epoch the model sees as many examples as the total number of examples provided
for training. The stochastic gradient descent, in fact, works on randomly sampled minibatch of MB

examples.
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Figure 3.26: Left training and right inference: original examples.

In Figure 3.26 we notice that in the training region the model almost perfectly overfits
the shape of the segmented channel, showing how the model representational capacity is
high enough for this kind of problem. In the right half, i.e. the test half, we notice first
of all that the model does not predict at random, this means that useful information is
contained within the training set. However, we observe how the prediction has several
high probability spots that are described in this segmentation as false-positives. We also
notice that the learned channel-base is extended as pseudo-straight filaments that come
out from the training boundaries and do not follow the correct downward meandering
shape of ground truth. According to our interpretation, this is due to the lack of an
enough representative dataset of all the possible spatial orientations, in the Xl-IL plane,
where a channel-base can be found.

Figure 3.27: Left training and right inference: data-augmented examples.

In Figure 3.27 we notice that in the training region despite the spatially dilution12

of training examples by a factor of 5, the shape of the segmented channel continues
to be well represented. In the test region instead, we notice how the number of false-
positive spots has decreased and especially how the channel is now better extended as
the expected downward trend is here present. At the top right, we continue to see the
presence of a high probability channel-base region that is consistent with the topological
information inferable by examining Base II horizon in Figure 3.6. This might mean that
the segmented channel-base is not the only one present in Base II horizon.

Given the results produced, we can argue that for the DL task described in this work,
the data augmentation is of fundamental importance and cannot be omitted because the

12In Figure 3.26 the mean minimum distance, expressed in number of voxels, between central voxel
of two training windrose patches is 4.22 while in Figure 3.27 is 9.43.
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number of physically acceptable configurations that can be encountered far exceeds those
that can be extracted from a single horizon. Therefore, for all the experiments carried
out in this work, data augmentation has always been applied.

3.2.2 K-Fold-Cross Validation

Cross-validation is any of various similar model validation techniques for statistical as-
sessing how the results of an algorithm will generalize to an independent data set. It
is mainly used in settings where the goal is prediction, and one wants to estimate how
accurately a predictive model will perform in practice. The goal of cross-validation is
to test the model’s ability to predict new data that was not used in estimating it, in
order to flag problems like overfitting or selection bias13 and to give an insight on how
the model will generalize to an independent dataset.

Two types of cross-validation can be distinguished: exhaustive and non-exhaustive
cross-validation. Exhaustive cross-validation methods are cross-validation methods
which study models that are respectively trained and tested on all possible ways to di-
vide the original dataset into a training and a test set. Non-exhaustive cross-validation
methods do not compute all ways of splitting the original dataset. The most famous of
this class of methods is K-fold cross-validation.

In K-fold cross-validation, the original dataset is randomly partitioned into K equal
sized subsamples. Of the K subsamples, a single subsample is retained as the test dataset
for testing the model, and the remaining K-1 subsamples are used as training the dataset.
The cross-validation process is then repeated K times, with each of the K subsamples
used exactly once as the test data, generating K different models. The accuracies of the
K models can then be averaged to produce a single accuracy estimation.

In summary, K-fold cross-validation combines, or averages, measures of accuracy in
prediction to derive a more accurate estimate of model prediction performance with
associated uncertainty.

AccK-fold =
1

K

K
∑

i=1

Acci

σAcc,K-fold =

√

∑K

i=1 (Acci − AccK-fold)
2

K

(3.11)

13Selection bias is a distortion in a measure due to a sample selection that does not accurately reflect
the overall target ensemble.
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Figure 3.28: 4-fold cross-validation graphical representation. In this representation
dataset examples are randomly placed in a list and therefore there is no concept of
samples spatial location.

In our case, a random partition of the dataset is not the most statistically correct way
to apply K-fold cross-validation. Windrose patches that are located close on the horizon
have high correlation because they share part of their 3D context and this can distort
accuracy estimates if K is small. We, therefore, decided to split the dataset according to
a spatial criterion as in Figure 3.29.

Figure 3.29: 4-fold cross-validation subsamples on Base II first segmentation.

The results obtained from our simulations are shown below. All the prediction images
refer to the CNN A Dropout architecture trained for 1,000 epochs.

3.2.2.1 Small Context Extension

Initially we decided to study simpler cases so we set to a low value the extension of the
3D context associated with each voxel through the input patch. In particular we selected
Npatch = 33.
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# Channel voxel # Background voxel % Channel voxel

Test set 1 105,752 182,704 36.66 %
Test set 2 122,627 165,223 42.60 %
Test set 3 137,526 150,324 47.78 %
Test set 4 6,309 281,541 2.19 %

Table 3.3: 4-fold cross-validation subsamples on Base II first segmentation composition.
This table is relative to Figure 3.29. As you can see the test set 4 has a class disproportion
compared to the other test sets and this is a critical point of this subsampling. We opted
for this solution because it allows us to investigate via experiment 4 if and how the
information contained therein we have high confidence in segmentation is reflected in
the leftmost margin where we have some doubt about the presence of a second channel-
base. However, in order to obtain better statistical results, we suggest implementing
different subsampling in the future.

First Version Segmentation

# Examples
Channel Background % Channel

Test set 1 1,164 x 10 1,855 x 10 38.56 %
Test set 2 1,538 x 10 1,698 x 10 47.53 %
Test set 3 1,753 x 10 1,483 x 10 54.17 %
Test set 4 54 x 10 2,964 x 10 1.79 %

Tot 125,900

Table 3.4: Npatch = 33 Base II first segmentation dataset composition. For a graphical
representation of Base II first segmentation see Figure 3.29.

We analyzed the problem set on both Far and Near volume.

Far Volume

Here we report the result of the 4-fold cross-validation. For a clearer explanation we
now also show the result of experiment 4.
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(a) Histogram of preprocessed input values. (b) Histogram of preprocessed input values split-
ted by class.

Figure 3.30: Histogram of preprocessed input values for the Far volume Npatch = 33 Base
II first segmentation simulation.

Figure 3.31: Far volume Npatch = 33 Base II first segmentation: experiment 4.

Figure 3.32: Far volume Npatch = 33 Base II first segmentation: accuracy evolution of
experiment 4.
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Figure 3.33: Far volume Npatch = 33 Base II first segmentation: prediction image.

Figure 3.33 is obtained by composing the inference images of the four models de-
fined by the 4-fold cross-validation on the respective test sets. Therefore, the accuracy
calculated on this image is the same as AccK-fold. By studying this image we see some
interesting facts. We observe that not considering test set 4 which has already pointed
out critical issues, in test set 2 the DL task seems to be more difficult than elsewhere.
We think that the cause of this lies in the non-coherent application of the Base II horizon
on Far seismics, in fact, as previously pointed out, the horizons have been segmented
according to Near seismics. Furthermore, we observe how in test set 1 there seems to be
a channel-base confluence/bifurcation. From the topological information we have, there
are no channel-bases in that area. However, it is possible that because the context of the
windrose patches also extends in the depth direction and because through training on the
horizon the model is not well trained on class discontinuities in depth, this channel-base
is either shallower or deeper than the training horizon.

Since the classes within each test set are neither balanced nor in equal proportion
across different test sets, as seen in Table 3.4, we decided to also calculate the weighted
accuracy WAcc as defined in Equation 3.12. Unweighted accuracy is simply defined
as the ratio between the number of correctly predicted examples, true positive (True
Channel-base, TC) and true negative (True Background, TB), and the total number
of tested examples. The weighted accuracy version, on the other hand, consists of the
average of compartmentalized accuracy on each class, thus balancing the prediction’s
contribution even on sparsely populated classes.

UAcci =
TCi + TBi

#Ci +#Bi

WAcci =
1

2

(

TCi

#Ci

+
TBi

#Bi

) i = 1, 2, . . . , K (3.12)

63



CHAPTER 3 Implementation and Results

(a) Unweighted accuracy UAccK-fold. (b) Weighted accuracy WAccK-fold.

Figure 3.34: Far volume Npatch = 33 Base II first segmentation: accuracies. We notice
that accuracies do not seem to increase in a statistically significant way as the number
of training epochs increases. This is a strong indication that in this configuration the
problem is not well-posed. Another important aspect that emerges is that the standard
deviation associated with unweighted accuracy does not decrease in a statistically signif-
icant way as the number of epochs increases. This means that the K weighted accuracies
are converging toward the same value as training proceeds.

Near Volume

(a) Histogram of preprocessed input values. (b) Histogram of preprocessed input values split-
ted by class.

Figure 3.35: Histogram of preprocessed input values for the Near volume Npatch = 33
Base II first segmentation simulation. We point out that compared to the histogram
of the dataset extracted on the Far seismics in Figure 3.30, here the distribution of the
inputs associated with the Channel-base class seems to be more symmetric around zero.
This is a rough indication that there is a profound difference in the application of the
DL task on the two seismic volumes.
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Figure 3.36: Near volume Npatch = 33 Base II first segmentation: prediction image.

In Figure 3.36 we initially observe how this image looks more resolute than Figure 3.33,
this is directly related to the higher resolution of Near seismics. We notice that in the
upper portion of test set 4 there is a predicted channel-base system that might be compat-
ible with the horizon topology in Figure 3.6, but that has been considered as Background
in this segmentation. We observe that there is a channel-base that consistently crosses
test sets 1 and 2 and runs parallel at the top of the segmented channel-base. We con-
sider this to be a false positive and we think, looking more closely at the segmentation
in Figures 3.29, that this false positive may be due to an excessively broad classification
of channel-bases that includes excessive channel banks.

(a) Unweighted accuracy UAccK-fold. (b) Weighted accuracy WAccK-fold.

Figure 3.37: Near volume Npatch = 33 Base II first segmentation: accuracies. We observe
that in this case, accuracies show an initial growth trend that stabilizes around 100
epochs at an approximate value of 70 %. The accuracy value on its own brings little
information because the channel-base segmentation is not considered certain, so what is
actually significant is this growth trend as epochs progress. This is a further indication
that the DL task should be set on Near seismics.
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Second Version Segmentation

From considerations developed on Figures 3.36 about the effects of an excessive seg-
mentation, we decided to study how sensitive this DL approach is to segmentation. In
particular, we decided to slightly modify the first segmentation version of Base II exclud-
ing what we believe to be critical portions of channel banks that lead models to predict
false positives.

Figure 3.38: 4-fold cross-validation subsamples on Base II second segmentation.

# Channel voxel # Background voxel % Channel voxel

Test set 1 93.043 195.413 32,26 %
Test set 2 85.732 202.118 29,78 %
Test set 3 130.181 157.669 45,23 %
Test set 4 6.309 281.541 2,19 %

Table 3.5: 4-fold cross-validation subsamples on Base II second segmentation composi-
tion.

# Examples
Channel Background % Channel

Test set 1 1,006 x 10 2,013 x 10 33.32 %
Test set 2 1,075 x 10 2,161 x 10 33.22 %
Test set 3 1,500 x 10 1,736 x 10 46.36 %
Test set 4 54 x 10 2,964 x 10 1.79 %

Tot 125,900

Table 3.6: Npatch = 33 Base II second segmentation dataset composition.
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Far Volume

(a) Histogram of preprocessed input values. (b) Histogram of preprocessed input values split-
ted by class.

Figure 3.39: Histogram of preprocessed input values for the Far volume Npatch = 33 Base
II second segmentation simulation.

Figure 3.40: Far volume Npatch = 33 Base II second segmentation: prediction image.

In Figure 3.40 we observe how the image looks cleaner compared to Figure 3.33 since
many false positives (FC) are no longer present. We notice that the prediction in test
set 4 is substantially unchanged. We also notice that in test set 2 the problem is still
more difficult than in the other test sets, although it is better solved. Finally, we observe
that the new segmentation allowed the model in test set 1 to remove the false positive
channel-base that seemed to merge/fork the segmented channel-base. From this visual
result, we can say that segmentation plays a fundamental role and even small changes
have a great impact on the behavior of DL models.
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(a) Unweighted accuracy UAccK-fold. (b) Weighted accuracy WAccK-fold.

Figure 3.41: Far volume Npatch = 33 Base II second segmentation: accuracies. We ob-
serve that unweighted accuracies with this new segmentation are higher than accuracies
in Figure 3.34 and also than weighted accuracies. The weighted accuracies instead remain
statistically unchanged with respect to the first version segmentation case. However, the
first point is only an indication that the problem induced by the new segmentation is
more easily representable through the representational capacity of the studied models.
And the fact that the unweighted accuracies are statistically higher than weighted ones
means that although the number of true negative (TB) has increased, the number of
true positive (TC), which in this kind of metrics counts more, has decreased. These two
effects balance each other perfectly keeping the weighted accuracy unchanged compared
to the case with the first segmentation.

Near Volume

(a) Histogram of preprocessed input values. (b) Histogram of preprocessed input values split-
ted by class.

Figure 3.42: Histogram of preprocessed input values for the Near volume Npatch = 33
Base II second segmentation simulation.
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Figure 3.43: Near volume Npatch = 33 Base II second segmentation: prediction image.

For Figure 3.43 similar considerations hold true to those expressed for Figure 3.40. We
observe how a small variation in the segmentation has a significant effect on the pre-
dictive behavior of the models. Therefore we can conclude that for this DL approach
segmentation plays a determinant role and thus proper effort and care must be invested
in this process.

(a) Unweighted accuracy UAccK-fold. (b) Weighted accuracy WAccK-fold.

Figure 3.44: Near volume Npatch = 33 Base II second segmentation: accuracies. We
observe how in the case of unweighted accuracies dropout architectures show a better
generalizing ability as the associated accuracies continue to increase even beyond 100
epochs, where instead the other architectures seem to saturate.
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3.2.2.2 Big Context Extension

Lastly, we explored how the extension of input patches affects the performance of algo-
rithms. We wondered if a windrose patch of side Npatch = 33 would provide enough
context to models for this DL task. For this purpose we studied the case Npatch = 65,
and to allow comparability with previous simulations we kept the same number of exam-
ples. We are well aware however of the danger represented by the curse of dimensionality.
This aspect is surely a critical point of these experiments.

# Examples
Channel Background % Channel

Test set 1 930 x 10 1,809 x 10 33.95 %
Test set 2 1,075 x 10 1,970 x 10 35.30 %
Test set 3 1,434 x 10 1,612 x 10 47.08 %
Test set 4 45 x 10 2,694 x 10 1.64 %

Tot 125,900

Table 3.7: Npatch = 65 Base II second segmentation dataset composition.

Far Volume

(a) Histogram of preprocessed input values. (b) Histogram of preprocessed input values split-
ted by class.

Figure 3.45: Histogram of preprocessed input values for the Far volume Npatch = 65 Base
II second segmentation simulation.
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Figure 3.46: Far volume Npatch = 65 Base II second segmentation: prediction image.

In Figure 3.46 we observe how the visual quality of the prediction has increased. In
fact, the many false-positive FC spots in Figure 3.36 are almost completely gone. The
increased context provided to the models also made possible a better solution to the
problem in test set 1.

(a) Unweighted accuracy UAccK-fold. (b) Weighted accuracy WAccK-fold.

Figure 3.47: Far volume Npatch = 65 Base II second segmentation: accuracies. Although
the number of tunable parameters has significantly increased for CNN As architectures,
see Table 2.1, and the number of examples provided is minimal in this respect, CNN A
Dropout seems to perform very well at least here working on Far seismics. An interesting
fact that can be seen by observing the weighted accuracies of the CNN A Dropout
architecture is that the associated standard deviations are sensibly smaller than those of
the CNN B Dropout architecture accuracies.
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(a) First 3D view.

(b) Second 3D view

Figure 3.48: Far volume Npatch = 65 Base II second segmentation: 3D view prediction
image.
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Near Volume

(a) Histogram of preprocessed input values. (b) Histogram of preprocessed input values split-
ted by class.

Figure 3.49: Histogram of preprocessed input values for the Near volume Npatch = 65
Base II second segmentation simulation.

Figure 3.50: Near volume Npatch = 65 Base II second segmentation: prediction image.

For Figure 3.50 similar considerations hold true to those expressed for Figure 3.46.
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(a) Unweighted accuracy UAccK-fold. (b) Weighted accuracy WAccK-fold.

Figure 3.51: Near volume Npatch = 65 Base II second segmentation: accuracies. We
observe that the increase in input context extension results in increased accuracy, as
occurred with Far. We also notice the overall increasing trend that is consistently ob-
served in all Near simulations. It is interesting to note how the unweighted accuracy
gives the indication that CNN B Dropout has an insufficient representational capacity
as its performance saturates and tends to decrease compared to that of CNN A Dropout.
However, this consideration seems to be reversed when considering weighted accuracy.
Therefore, we cannot at this point make quantitative considerations about whether one
architecture is better than the other.

(a) First 3D view.
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(b) Second 3D view

Figure 3.51: Near volume Npatch = 65 Base II second segmentation: 3D view prediction
image. Looking at Figure 3.52a it is noteworthy how the model generalized in the lower
left region where there seems to be an internal bank separating two channel-bases. In
this region, in fact, although our raw segmentation tells us that there is a channel-base,
the model gives a more realistic response by classifying it as background.

3.3 Inference on Surroundings

In this section, we tried to extend the results obtained in Base II training/testing horizon
to its surroundings, in particular to Base III and Base I horizons. It is important to
point out that such inference is intrinsically badly posed as training occurred on a single
horizon, i.e. on a surface with little depth variation. This means that models have not
received examples that provide significant class discontinuities in depth. Therefore we
believe that the results that we are going to expose are affected by this point of criticality
and that this is reflected on predictions in multiple false positives that in some cases are
artifacts, due to the unrepresentative training dataset, and in other cases the recognition
of characteristic patterns of Base II that fall within the depth context of the windrose
input patches. However, we believe that the HSV infographic methodology developed to
analyze these predictions provides interesting information.

75



CHAPTER 3 Implementation and Results

Figure 3.52: HSV color cone space. HSV (Hue, Saturation, Value) is an alternative
representation of the RGB color model. In this model, colors of each Hue are arranged
in a radial slice, around a central axis of neutral colors which ranges from black at
the bottom to white at the top. The Saturation dimension resembles various shades of
brightly colored paint, and the Value dimension resembles the mixture of those paints
with various amounts of black or white paint.

We assigned to the Hue dimension the standard deviation associated with the channel-
base predictions of the four models trained in the 4-fold cross-validation. Therefore
voxels whose predictions are consistent between the four models will be colored blue
(low standard deviation) while those more uncertain of red (high standard deviation).
Assigning to the Value dimension the average probability it is possible to “turn on” only
the most interesting voxels. To generate these images we have fully saturated colors, i.e.
assigned to Saturation the maximum value.

The following images are produced by CNN A Dropout architectures trained for 1,000
epochs.

3.3.1 Base III

We recommend to review Figure 3.5 in order to comprehend the expected results for
the following images. We also show the value of the seismics over the horizon to better
interpret the model’s behaviour in this area.
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Far Volume

Figure 3.53: Far seismics on Base III horizon.

Figure 3.54: Base III inference image on Far volume. CNN A Dropout, Npatch = 65
trained on Base II second segmentation.

First of all, we notice that from the seismics over the horizon in Figures 3.53 a
characteristic channel-base pattern is not as clearly visible as in Figure 3.24. Observing
the prediction image in Figure 3.54 we gain information about the average channel-
base probability of the four models and the uncertainty associated with this prediction.
We notice how the models identify a region of interest on the right side where from
topological information we know there is a channel-base. In this regard, we point out
that the areas of high uncertainty and low probability (low intensity dark red areas) are
often originated by the contribution of the model that has not been trained on subsample
4 (Test set 4), which is also the area where we have strong doubts on the validity of our
manual segmentation. Therefore, these areas also carry interesting information about
the consistency of our segmentation. We observe the presence of a channel-base that
reminds for position and morphology (see the intra-channel bank) much that present in
Base II. It is then possible that this is a false positive induced by the training performed
on Base II.
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Near Volume

Figure 3.55: Near seismics on Base III horizon.

Figure 3.56: Base III inference image on Near volume. CNN A Dropout, Npatch = 65
trained on Base II second segmentation.

We notice that from the seismics over the horizon in Figure 3.55 a characteristic
channel-base pattern is not as clearly visible as in Figure 3.25. We observe in Figure
3.56 how in this case the channel-base on the right side of the image has been well
recognized. However, we identify multiple false positives in the center of the image that
are probably due to the criticality exposed at the beginning of this section regarding the
applicability of this inference.

3.3.2 Base I

We recommend to review Figure 3.7 in order to comprehend the expected results for
the following images. We also show the value of the seismics over the horizon to better
interpret the model’s behaviour in this area.
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Far Volume

Figure 3.57: Far seismics on Base I horizon.

Figure 3.58: Base III inference image on Far volume. CNN A Dropout, Npatch = 65
trained on Base II second segmentation.

We observe that compared to the case of Base III here in Figure 3.57 a well recog-
nizable channel-base structure is visible. In Figure we notice how on Base I horizon the
models do not predict any channel-base, except for the model that has not been trained
on subsample 4. The contribution of that model is the only that seems to slightly predict
a channel-base in the region that we know to be a channel-base. This is a strong indi-
cation that the segmentation used in the rightmost subsample is not consistent with the
other subsamples of Base II as well as with the implicit learned definition of channel-base.
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Near Volume

Figure 3.59: Near seismics on Base I horizon.

Figure 3.60: Base III inference image on Near volume. CNN A Dropout, Npatch = 65
trained on Base II second segmentation.

We notice that from the seismics over the horizon in Figure 3.59 a characteristic
channel-base pattern clearly visible. We observe a large region of false positives in the
upper right corner whose cause lies in the insufficiently representative case history of
training examples provided by Base II. Once again we point out that the only model
that predicts channel-base in the region where we know there is channel-base, although
it predicts numerous false positives throughout the horizon, is the one that has not been
trained on subsample 4.

According to these images, we believe that the problem defined on the Near volume
is more difficult than the one defined on the Far volume. However, we also believe that
the problem should be defined on the same volume from which the horizons have been
segmented.
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Conclusion

This work consisted in the study and application of volumetric Deep Learning (DL)
approach to seismic data provided by Eni S.p.A., with an industrial utility perspective.
After a series of fruitful meetings with the Upstream & Technical Services team, we
clearly defined the final objective of this approach: the automatic search for geological
structures such as turbidite channel-bases, as potential regions of interest for the Oil &
Gas industry.

The dataset Eni gave us comprises of:

• Two high quality 3D Pre-Stack Depth Migrated (PSDM) Volumes: one Near re-
processed angle stack and one Far angle stack.

• Three manually interpreted surfaces or horizons that have at least one embedded
turbidite channel-base: Base I, Base II, Base III.

• Four high quality exploration porosity well logs (W1,W2,W3,W5) each one com-
posed of: the actual measured porosity log and the relevant frequency filtered
version.

The information on where the turbidite sediments infills are, is a very difficult one to
gain and it requires a lot of time, for geologists and geophysicists to correctly interpret the
seismic volume, and money, to collect well logs in order to establish high porosity regions.
Furthermore, even if this effort is placed at work, a 3D reliable label with sufficient spatial
resolution is impractical. On the other hand, the extraction of horizons is a relatively fast
and semi-automated process done using 3D visualization and processing software, such
as Petrel. This is because the seismics is the most important attribute in interpreting
and recognizing horizons.
Since we do not have the information on where the turbidite sediments infills are, we can
not set up the classification task as a direct search for this kind of objects. However, we
do have three horizons with at least one embedded turbidite channel-base system.

81



CHAPTER 4 Conclusion

After all these consideration, we choose to define the deep learning task as binary
classification between turbidite channel-base and background using as input a sub-volume
context or a 3D patch. Or, in other words, we choose to build models that for every
voxel answer the question:

“Does this voxel belong to a sub-volume that represents a channel-base system?”

Since implementing this DL approach through 3D input patches means that the
complexity of the problem grows very quickly with the extension of this 3D context
(like third-degree polynomial) and thus undermining its success due to the curse of
dimensionality, we decided to take an alternative route before admitting the need to
move to full 3D. It has been decided to work with a certain number of 2D patches,
according to what could be defined as a 2.5D approach. The most intuitive choice to
transform an intrinsically 3D problem into a 2D one is to take slices along the coordinated
axes of the subvolume (Cross Line XL, In Line IL, Depth D), in a mode that we have
named “windrose”.

In this work, we have analyzed and studied the following aspects and points of criti-
cality.

• Preprocessing

Before implementing a deep learning algorithm it is good practice to study how
the numerical range of examples behaves in the training context. The training
algorithms in fact, due to numerical crunching reasons, do not work properly if
the input values are either too small or too large. In our case values contained in
seismic volumes have an extremely wide dynamic range in the order of 108. We
analyzed how the training process was influenced by three types of preprocessing:
original (original data unchanged), normalized (we brought the dynamic range of
the entire seismic volume within the range [−1, 1], while preserving zero-crossing)
and custom (we adjusted the normalized version by increasing data range by a
factor of 100).

Results showed how an appropriate data preprocessing step substantially improves
both the training process, especially for models integrating the dropout regulariza-
tion technique, and the generalizing ability of the models.

• Dataset augmentation:

Given the scarcity of labeled examples compared to the number of possible physi-
cally acceptable configurations in which 3D patches can be found. We decided to
implement the augmentation dataset in order to improve the generalization of the
models, providing artificially generated examples generated from real ones through
transformations that preserve their realism. We implemented the following trans-
formation: XL-flipping, IL-flipping, D-translation, D-rotation and Scaling.
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We compared two simulations with the same number of examples, one using only
the native ones and the other with a mixture of original and augmented data.
The results showed how the use of artificially generated data allows models to
better generalize, at least in a qualitative way. In this approach, the number
of configurations accessible through the original examples is much lower than the
number of configurations physically plausible or even findable in the seismic volume.
Just think of all the possible orientations in the XL-IL plane in which a geo-object
can be found. We have therefore concluded that the dataset augmentation for this
type of DL approach is fundamental.

• Channel-base segmentation:

We manually segmented from Base II horizon a channel-base using only topological
information. Unfortunately, it is difficult to exactly define where the channel-base
ends and it was part of this work to figure out how this definition affects our DL
classification problem.

We studied qualitatively and quantitatively through K-fold cross-validation two
similar segmentations of the previously mentioned cannel-base: an extended one
that also included bank areas and a more stringent one that excluded those few
areas that we considered possible outliers. We found that even a small variation
in ground truth has a great effect on both the visual consistency of the prediction
images and the accuracy measured by K-fold cross-validation. In particular, we
observed an increase in accuracy of about 10% using the most stringent segmenta-
tion. We cannot say that the second segmentation is better because the accuracy is
better, what we can say instead is that this type of problem is very sensitive to seg-
mentation and therefore it is necessary to invest sufficient effort in the generation
of reliable labels.

• Context extension:

We previously introduced the concept of the 3D patch in the context of a patch-
based classification task. This context must be large enough to provide adequate
information about the voxel’s surroundings for the classification task, but at the
same time it must be small enough to keep the complexity of the problem under
control and allow good generalization.

We studied qualitatively and quantitatively two context extensions using K-fold
cross-validation and found that, at least for the number of training examples chosen
in our experiments (∼ 80k), the larger version allowed a 5-7% increase in accuracy
and a large suppression of false positives. This probably depends on the spatial
resolution of the seismics around Base II, which limits the informative content of
the input patches. We concluded that, at least for the extensions analyzed, the
damage caused by the increase in complexity due to the greater number of tunable
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parameters was outweighed by the benefits brought by the increase in information
content due to a wider context extension. Therefore, we think that the results
presented here can provide a point of reference for defining patch extensions in
areas with different seismics resolution.

• Far volume or Near volume: As expressed above we worked on two seismic
volume, Far and Near. These two volumes are different types of stacks and they
are sensitive to different seismic properties; for instance we could say that the Far
is more sensitive to fluid presence.

We studied qualitatively and quantitatively through K-fold cross-validation the
problem set on both Far and Near volume. From our experiments we observed
that, from a statistical point of view, the performances of the models trained on
Near are more convincing than those on Far. We noticed that the accuracy as
measured by K-fold cross-validation tends to increase with the number of training
epochs, which is not the case with Far. We can not say that it is better to set
the problem on the Near since horizons used in this work have been segmented
from the Near seismics. For this reason, we believe that the problem appears more
consistent on Near. Therefore what we can say from the studies carried out is
that the problem appears to be better set on the volume used for the horizons
segmentation.

Given the results achieved and the potential shown by this DL approach, we have
the following recommendations to proceed with a further study.

• From our experiments, we observed that the problem set on the Far volume appears
easier than the one set on the Near volume. Therefore, we suggest to carry out
a study similar to the one carried out in this work, in order to finally establish
whether or not it is useful to set the problem on the Far volume, using horizons
segmented on the Far volume.

• Given the poor ability of the models to generalize on other horizons at different
depths, we suggest doing a multi horizon training. We believe that this can provide
the necessary information of strong depth discontinuity to better infer in all three
spatial directions. In this regard, we recommend making the following multi horizon
training to compare it with the results expressed in this work: training on Base II
plus Base I and inference on Base III.

• We believe that the approach developed in this work involving the windrose input
patches has proven to be satisfactory. We consider interesting to explore new
input patch configurations by adding slice at different angles to windrose patch as
a sequence of gradually increasing complexity approaches up to full 3D.
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Conclusion

From a qualitative point of view, the generalization results on Base II were judged
by Eni’s experts to be consistent. Therefore, the proposed method is able to extract
valuable information from the seismic data volume. However, a scale-up of examples
and computing power is necessary to unleash a credible result on the entire seismic
volume.
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