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Abstract

This work consisted in the study and application of volumetc Deep Learning (DL)
approach to seismic data provided by Eni S.p.A., with an inddsal utility perspective.
After a series of fruitful meetings with the Upstream & Technial Services team, we
clearly de ned the nal objective of this approach: the autenatic search for geological
structures such as turbidite channel-bases, as potentiaégions of interest for the Oil
& Gas industry. Therefore, we de ned a work ow based on the #ining of volumetric
DL models over seismic horizons containing channel basesyding \windrose" input
patches, i.e. a planar approximation of a three-dimensiohgolume.

All components and sources of criticality were systematidgl analyzed. For this
purpose we studied: the e ect of preprocessing, the contubon of the dataset aug-
mentation, the sensitivity for the channel-base manual segentation, the e ect of the
spatial expansion of the input patches. Evaluating both quaatively and quantitatively
through K-fold cross-validation.

This work showed: how an appropriate preprocessing of theiginal data substantially
helps DL models, how the dataset augmentation is fundamemtéor good model gen-
eralization given the poor representativity of the accedde examples compared to all
possible con gurations, how this DL approach is susceptiblto the channel-base seg-
mentation imposing to invest su cient e ort in the generati on of reliable labels, how
the size of input patches must be large enough to allow modétsperceive around each
voxel the structure concavity and the texture of any sedimenn |l.

We conclude that the volumetric DL approach developed in tBiwork has proved to
be very promising.



Sommario

Questo lavoro e consistito nello studio e applicazione diruapproccio Deep Learning
(DL) volumetrico a dati sismici di Eni S.p.A., con un ottica diutilia. industriale.
Dopo una serie di fruttuosi incontri con il team di Upstream & EBchnical Services, sie
de nito in maniera chiara I'obbietivo nale di questo approccio: la ricerca automatica di
strutture geologiche quali basi di canali turbiditici, in quanto potenziali zone di interesse
per l'industria Oil & Gas. Sie pertanto de nito un work ow b asato sull'addestramento
di modelli DL volumetici su orizzonti sismici contenenti bai di canale attraverso patch
di input a \windrose", ossia una approssimazione planare din volume tridimensionale.

Si sono analizzate in modo sistematico tutte le componentile fonti di criticie. A
tale scopo sie studiato: I'e etto del preprocessing, il catributo della dataset augmen-
tation, la sensibilia rispetto alla segmentazione manua della base di canale, I'e etto
dell'espansione spaziale delle patch di input. Valutandonimodo sia qualitativo che
guantitativo tramite K-fold cross-validation.
Questo lavoro ha mostrato: come un appropriato preprocesgidel dato originale aiuti
in modo sostanziale i modelli DL, come la dataset augmentati sia fondamentale per
una buona generalizzazione dei modelli data la scarsa rapgentativian degli esempi
accessibili rispetto alle con gurazioni possibili, comewgsto approccio DL sia suscettibile
alla segmentazione della base di canale imponendo di dedécau ciente impegno nella
generazione di label attendibili, come la dimensione delpatch di input debba essere
abbastanza estesa da permettere ai modelli di percepire Itilorno di ogni voxel la
concavit delle strutture e la tessitura dell'eventualem Il di sedimenti.

Concludiamo che l'approccio DL volumetrico sviluppato in gesto lavoro sie dimo-
strato essere molto promettente.
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Chapter 1

Introduction

Data mining and analytics have played an important role in kawledge discovery and
decision-making in the industry process over the past seatdecades.

In recent years, many unions or countries have announced anneund of development
plans in manufacturing. For example, the European Union pragsed 20-20-20 goals
to achieve a sustainable future, which means 20% increaseenergy e ciency, 20%
reduction of CO, emissions, and 20% renewables by this year 2020. The US gorent
has proposed a new industrial internet framework for devglong the next generation
of manufacturing. Similarly, China has announced a new mafacturing plan more
recently, which is known as \China Manufacturing 2025", theaim of which is also to
make the manufacturing process more intelligent. Those geacan only be realized by
incorporating more intelligence into the industrial manudcturing process.

To e ectively carry out data mining and analytics in the industry process, machine
learning algorithms have always played an important role2[].

Example: Example: Example:
Knowledge SVMs MLPs
bases
Machine .
I . Deep learning
learning

Figure 1.1: Al Eulero-Venn scheme.



CHAPTER 1 Introduction

1.1 Deep Learning

In this work, we will pay attention to a subset of Machine Leaning (ML) called Deep
Learning (DL).

DL makes use of Articial Neural Networks (ANNs), models vaguely igspired by
human visual cortex neurons, to create algorithms that carearn how to solve problems
from data. From a theoretical point of view, the basis of ANNs cabe traced back to
the early 1940s with McCulloch's work on neural models. Therst hypothesis on the
training of these machines was made by Hebb in the late 40s,d&zg, in the late 50s, to
the rst true \learning" classi er: Rosenblatt's perceptron [1§].

Ujl . .
L o——— 1w Activation
function  Output
Inputs : : P— E Ay -y
N o—EN o rywy
Weights

Figure 1.2: Rosenblatt perceptron functioning scheme. A sef real-value inputsx; are
previously multiplied by a weightw;, like a synaptic weight, and then summed up creating
a linear combination of inputs. This linear combination is pssed through an activation
function A; that provides the perceptron real-value outputy. A single perceptron or a
network composed of them belongs to ANNSs.

The idea behind the perceptron was simple but e ective and is schematically shown
in Figure 1.2 as a biological neuron that receives input from synapses andnditionally
propagates an output along the axon. The perceptron has a nter of inputs and pro-
duces a response as a linear combination of these. The wesght the linear combination
determine the relative importance of the input, and by propey adjusting them a simple
classi er can be obtained. The right set of weights can be sehed for using a feedback
system that iteratively compares the correct values with tl predicted ones and it adjusts
the weights accordingly to their di erences.

Perception was a very attractive solution for classi catia problems, but in 1989 Min-
sky proved that a single perceptrohcould not deal with non-linearly separable problems,
like the XOR problem, even with activation functiong non-linear. This was particularly
dramatic because not even by introducing multi-layer arcltectures it was possible to
deal with them, at least with linear activation functions. Sacking multiple layers of

10r equivalently a layer of them, for multiclass classi cations.
2The activation functions must be monotonous to allow trainability.

2



CHAPTER 1 Introduction

perceptrons with linear activation functions is, in fact, quivalent to having only one
with appropriate weights. Therefore, the only possible watp solve non-linearly separa-
ble problems was to simultaneously introduce multi-layerrahitectures with non-linear
activation functions i.e. Multi-Layer Perceptrons (MPLs) There was simply not enough
understanding of the topic to meet this challenge.

The theoretical problems with the perceptron's ability to slve XOR-type problems
led to a generalized loss of interest in ANNs by the scienti ¢ comunity in the event
known as \First Al winter". This state lasted until the mid-50s, when the Werbos back-
propagation algorithm 4], based on the application of the chain-derived rule, allead
e cient and feasible training for MPLs as well. During the fdlowing 15 years, ANNs
saw a renewed enthusiasm thanks to the promises of the old netsdleft behind: they
were now with a working training method and preliminary resliis that only increased ex-
pectations. Unfortunately, the participation of the scientc community was cold again.
Despite the optimistic scenarios supported by technologicadvances in the eld, it be-
came clear that it was only through expensive and mostly adele hardware that it would
be possible to launch the necessary computations that, atthgh relatively simple, were
so numerous that they could not be handled by the computers tife time. This drowsed
out the remaining interest in ANNSs in what is called \Second Al witer".

Even small networks require an extremely high number of tulde parameters. The
only possible solution to manage the training process in agutable times was a heavy
form of parallelization. It was around 2009/2011 that the curent de nition of DL
came into existence. When Andrew Nigbegan using Nvidia Graphical Processing Units
(GPUs) to train his algorithms. GPUs are perfect for paralleliing a vast number of
repetitive operations, such as geometric transformatiors 3D renderings, and with a
little bit of secondary work even those involved by the backppagation algorithm, tak-
ing a fraction of the time it would have taken on the CPU. Movingirom CPU to GPU
computation was the crucial step in dramatically scalingqo ANNs thanks to the wide
availability at a reasonable price of hardware that was predently marketed for video
games. This combined with the ease of programming provideg¢ hew GPU tools such
as Nvidia CUDA, led to an unprecedented spread of DL research.

DL, especially recent developments, has changed the way wek at problems and
challenges, opening up possibilities that were unimaginiabuntil 10 years ago. DL has
seen a massive application in almost all elds of science amtustry in a very short
period of time, with massive investments of resources and pnovements emerging very
quickly that span the academic and industrial elds and prodce applications ranging
from event identi cation in particle physics to autonomousdriving. The reason for this
is to be found in the DL's ability to obtain results with relative ease when compared

3Andrew Yan-Tak Ng is a Chinese-American computer scientist and statitician, focusing on machine
learning and Al. Also, a business executive and investor in Silicon Véd¢y, co-founded and led Google
Brain and was a former Vice President and Chief Scientist at Baidu.
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with traditional ML methods: where the success of a given sttegy is largely in uenced
by the scientist's experience of manually engineering femes for the model. DL makes
in many cases this work obsolete thanks to its ability to progce an internal and linearly
separable representation of the features space that largeslurpasses the handmade ones
in e ciency. On the other hand, this implies that these high dmensional representations
and their decisional criteria are too complex to be seen anutérpreted by a human being.
This means that in many cases the DL acts as a \black box" whoseternal functioning

is not fully understood.

1.1.1 Learning Algorithms

A machine learning algorithm is an algorithm that is able toéarn from data. But what
do we mean by learning? Mitchell (1997)1f] provides a succinct de nition:

\ A computer program is said to learn from experienc with respect to some class of
tasksT and performance measur®, if its performance at tasks inT, as measured by
P, improves with experiencee."

Task, T

In this relatively formal de nition of the word \task", the p rocess of learning itself
is not the task. Learning is our means of attaining the abilit to perform the task.
Machine learning tasks are usually described in terms of hdirne machine learning
system should process aexample An example is a collection oNg features that
have been quantitatively measured from some object or evettitat we want the
machine learning system to process. We typically represesm example as a vector
x 2 RNF where each entryx; of the vector is another feature.

One of the most common task iglassi cation, in which the computer program is
asked to specify which oN¢ categories some inpuk belongs to. To solve this
task, the learning algorithm is usually asked to produce a figtion f : RNF |
f1,2;:::;Ncg.

Wherey = f (x), the model, throughf , assigns an input described by vectox to
a category identi ed by integer codey.

Experience, E

Machine learning algorithms can be broadly categorized assupervisedor su-
pervised by what kind of experience they are allowed to have during thiearning
process. Learning algorithms are allowed to experience artiee dataset A dataset
D is a collection ofN example$.

4Unlabeled examplesfx; jj =1;2;:::Mgin the case of unsupervised learning and labeled examples
f(Xj;y;)ij =1;2:::Mgin the case of supervised learning.

4



CHAPTER 1 Introduction

Unsupervised learning algorithms experience a dataset camting only features,
then learn useful properties of the structure of this datase
Supervised learning algorithms experience a dataset cointiag features and labels.

Roughly speaking, unsupervised learning involves obsergiseveral examples of a
random vectorx and attempting to implicitly or explicitly learn the probability
distribution P(x), or some interesting properties of that distribution; whie su-
pervised learning involves observing several examples ofamdom vectorx and
an associated valuey, then learning to predicty from x, usually by estimating
P(yjx)°.

Unsupervised learning and supervised learning are not fortlyade ned terms. The
lines between them are often blurred. Many machine learnirtgchnologies can be
used to perform both tasks.

For example, the chain rule of probability states that for a gctor x 2 RNF, the
joint distribution can be decomposed as:

¥F
P(x)=  P(XjjX;X2::0X 1) (1.1)

i=1

This decomposition means that we can solve the ostensiblysupervised problem
of modelling P (x) by splitting it into n supervised learning problems.
Alternatively, we can solve the supervised learning problewof learningP (y j x) by
using traditional unsupervised learning technologies t@arn the joint distribution
P(x;y), then inferring the conditional probabilities.

P(x;y)

yoP(X;yg (1.2)

P(yjx)=

Performance, P

To evaluate the abilities of a machine learning algorithm, emust design a quanti-
tative measure of its performance. Usually this performangeeasureP is specic
to the task T being carried out by the system.

For tasks such as classi cation we often measure tlaecuracy of the model. Accu-
racy is just the proportion of examples for which the model duces the correct
output. We can also obtain equivalent information by measumg the error rate,
the proportion of examples for which the model produces andarrect output.

5Conditional probabilities that the correct label is y given the examplex.



CHAPTER 1 Introduction

1.1.2 Learning as Mathematical Optimization

Most deep learning algorithms involveoptimization of some sort. Optimization refers
to the task of either minimizing or maximizing some functiond (w) by altering w. We
usually state most optimization problems in terms of mininging® J(w). The function
we want to minimize is called theloss function We denote the values that minimize it,
with a superscript .

w =argmin [J(w)] (1.3)

1.1.2.1 Stochastic Gradient Descent

If we want to minimize a real-valued function de ned on a multilimensional space] :
RN I R, perhaps the simplest method we can usegsadient descent Gradient descent
is a rst order’ iterative method which make use of Taylor's expansion:

Wi = Wy r WJth
=We O (1.4)
= Wi+ W,

where is the learning rate, a positive scalar determining the size of the stepw.

A recurring problem in DL is that large datasetsD are necessary for good resufts
but at the same time large sets are more computationally expsive. In fact DL loss
function obviously depends on the datasel(w; D), and often it decomposes as a sum
over dataset examples of some per-example loss functin

X
Jw;D)= Je(w;(Xj;¥)) (1.5)
j=1
Therefore the computational cost of calculatingy is O(M). As the dataset size grows to
billions of examples, the time to take a single gradient stepecome prohibitively long.
Stochastic gradient descenbvercame this issue using this approximation:

J(w;D)" J(w;B) (1.6)

6Maximization may be accomplished via a minimization algorithm by minimizing J(w).

’Second order methods can be stated as well, of course involving the Hess matrix H (w). For
example Newton's method: w,; = wy H (w;)g;. However the computational cost of calculating
H ! makes this method impractical in DL

8We denote Pyaa as the dataset generating probability distribution function estimated from D itself
and Pyaa as the true one. AsM approaches in nity we have: Pata !M " Pyata -
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In virtue of®

JW:D)= Eg g, (W:B)] (17)

where B is a randomly sampledminibatch of examplesB = f(Xxj®&);Y¥j@®)) 2 DB =
1,2;:::;Mgg of xed sizeMg M.

More sophisticated methods can be de ned, for examplDADELTA (2012 p6)).
This is a per-dimension learning rate method for gradient deent. ADADELTA dy-
namically adapts over time using only rst order information. The method requires no
manual tuning of learning rate.

Wil = Rl\gfﬂ[s EIE\]I:] 1]91 (1.8)
where
q__
RMS [x]= Er(xd)+" "> 0 (1.9)
Er(Xt+1) = ERr(X) +(1 )Xt 2 (0;1)

Er is a pseudo running average over a time window. Window size isglicitly speci ed
by , asymptotically in nite-sized as approaches 1RMS is a pseudo root mean square
whit a constant positive scalar" for better conditioning of the denominator in Equation
1.8

1.1.2.2 Loss Function and Activation Function

The function that we want to minimize is the loss function. Faunately, the loss func-
tions for neural networks are more or less the same as those dther parametric mod-
elst®. DL model, in classi cation tasks, de nes a conditionally pobability distribution 1*
Pmodel (Y ] X; W) and are trained usingmaximum likelihood

w =argmin[ Ppmogel(D;W)] (1.10)

9E, P [X] is the expectation value of a random variable x drawn from a probabilty distribution
P (x).

DL models are parametric respect to weightsw.

INow we denote labels in vectorial form using the one-hot encoding. In otr words labels are
expressed as versors of B¢ -dimensional space.
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In the hypothesis that examples irD are independently drawn from the true but unknown
data generating distribution Py, We have:

" #
hd

w =argmin Pmodel Y ] Xj,w
w .

= arg min IN Pmodel Y | Xj;W (1.11)
op i |
= argvtnin Ex:y) Bya 1N Pmodel (Y ] X; W)

Training using maximum likelihood means that the loss funabn is simply the nega-
tive log-likelihood, equivalently described as theross-entropybetween the dataset and
the model probability distribution.

J(W) = E(X§Y) If}data ln PmOde| (y J X1W) (112)

The choice of loss function is tightly coupled with the cho&of the activation function
A¢ of output unit. The choice of how to represent them determines the form ofelcross-
entropy function. Any kind of activation function that may be used for output units can
also be used for hidden unit as well and vice versa; but any terwe wish to represent
a probability distribution over a N¢ discrete classes, we may use tls®ftmax function.
Formally the softmax function is given by?

softmax(z); = PNeX& (1.13)
k=1 EXP(Z«)

Therefore if

Pmodel(Yi = €] Xi;W) = Pmogel Yi = €;2(Xi; W)

(1.14)
= softmax z(xi;w) .
then minimizing the cross-entropy implies the minimizatio of:
!
In softmax(@z). = z. +In exp(z)
k-1 (1.15)

Zc+ mgxfzkg

Minimizing Equation 1.15encourages the rst termz, relative to the true class, to be
pushed up, while the second term encourages alloto be pushed down.

12\We refer to z as the inner summation of inputs inside a perceptron, see Figuré.2.
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— ReLU(z)

Figure 1.3: Graphical representation of ReLU function.

The design ofhidden unit is an extremely active area of research and not yet have
many de nite guiding theoretical principles. Recti ed linear units are an excellent default
choice of hidden units. Them use the activation functiod\; (z) = ReLU( z)

RelLU(z) = maxfO0; zg (1.16)

These units are easy to optimize because they are so similarliner units. The only
di erence is that a recti ed linear unit outputs zero acrosshalf of its domain. This
makes the derivatives through a recti ed linear unit remainlarge whenever the unit is
active. Its simplicity is useful in the learning phase becae the information taken by the
gradient is more e ective than it would be with activation function that introduce second-
order e ects. One may point out that the non-di erentiability of ReLU in z = 0 could
be an invalidate characteristic when used with a gradientdsed learning algorithm. In
practice, however, gradient descent still performs well engh because we are usually not
interested in arriving to a local minima of the loss functionbut merely to a signi cantly
low value of it. Because we do not expect training to actuallyeach critical points', it
is acceptable for the minima of the loss function to correspd to points with unde ned
gradient and therefore not accessible through gradient ds=nt.

13Critical points of a function J(w) are pointsw wherer J;,, = 0.
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1.1.2.3 Capacity, Under tting and Over tting

The central challenge in machine learning is that our algghm must perform well on

new, previously unseen inputs not just those on which our mebwas trained. The ability
to perform well on previously unobserved inputs is callegeneralization Typically, when

training a machine learning model, we have access totraining set; we can compute
some error measure on the training set, called the trainingrer; and training process
reduces this training error.

So far, what we have described is simply an optimization prédm. What separates
machine learning from optimization is that we want the genalization error, also called
the test error, to be low as well.

We typically estimate the test error of a machine learning miel by measuring its per-
formance on atest set T, of examples that were collected separately from the traingn
set T, ™.

D=T,[ Te (2.17)

In order to theoretical justify the generalization ability of the model, it has to be
that the training and test data are generated by a shared prability distribution called
the dataset generating probability distribution Py,,. We also make a set of assumptions
known collectively as the \i.i.d. assumptions”. These assoptions are that the examples
in each dataset areindependentfrom each other, and that the training set and test
set areidentically distributed These assumptions enable us to mathematically study
the relationship between training error and test error. Onemmediate connection we
can observe between training error and test error is that thexpected training error
of a randomly selected model is equal to the expected test @rrof that model. Of
course, when we use a machine learning algorithm, we do not tlke parameters ahead
of time, then sample both datasets. We sample the training seghen use it to choose
the parameters to reduce training error, then we evaluate seerror. Under this process,
the expected test error is greater than or equal to the expestt value of training error.

The factors determining how well a machine learning algohitn will perform are its
ability to:

Make the training error small.
Make the gap between training and test error small.

These two factors correspond to the two central challenges machine learning:under-
tting and over tting .

14 A common practice is to, actually, monitoring the training phase whit a third set called validation
set T, which is obtained from T, = T4 [ T,. E ective training set is then T, because validation set is
not presented to the model; it's instead used to tuninghyperparameters

10
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Under tting occurs when the model is not able to obtain a su ciently low error value
on the training set. Over tting occurs when the gap betweenhe training error and test
error is too large.

We can control whether a model is more likely to overt or undet by altering its
capacity. Informally, a model's capacity is its ability to t a wide variety of functions
which is indeed strongly related to the number of its trainale parameter. Models with
low capacity may struggle to t the training set. Models with high capacity can over t
by memorizing properties of the training set that do not serm them well on the test set.
There are many ways to change a model's capacity. Capacitynst determined only by
the choice of model. The model speci es which family of furions the learning algorithm
can choose from when varying the parameters in order to redua training objective.
This is called therepresentational capacityof the model. In many cases, nding the best
function within this family is a di cult optimization probl em. In practice, the learning
algorithm does not actually nd the best function, but merey one that signi cantly
reduces the training error. These additional limitationssuch as the imperfection of the
optimization algorithm, mean that the learning algorithm's e ective capacity may be
less than the representational capacity of the model family

Perhaps the most important results in statistical learningtheory shows that the
discrepancy between training error and test error is boundefrom above by a quantity
that grows as the model capacity grows but shrinks as the nurab of training examples
increases (Vapnik and Chervonenkis, 19723).

= - Training error
Underfitting zone | Overfitting zone

—— Test error

Error

0 Optimal Capacity

Capacity

Figure 1.4: Typical relationship between error and capacityf]. Typically, training error
decreases until it asymptotes to the minimum possible erroralue as model capacity
increases. Typically test error has a U-shaped curve as a ftioa of model capacity.

These bounds provide intellectual justi cation that machne learning algorithms can
work, but they are rarely used in practice because it can be i di cult to determine
the e ective capacity of deep learning algorithms. We mustisiply remember that while

11
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simpler functions are more likely to generalize, we must Btthoose a su ciently complex
hypothesis to achieve low training error.

One may suggest in order to enhance capacity and parallel leaa better chance to
have separable classes, to increase the number of examdietduresNg. However, this
is a double-edged sword commonly known as tloeirse of dimensionality In fact, we
have:

Nlpi!q] [sdata Poata =1 (1.18)

This is due to the fact that the number of possible con guratins of every example
X grows exponentially as the number of features increase, atfterefore the examples
are diluted in this high-dimensional feature space. An incase in Ng then requires
an exponential increase iM to compensate for this dilution and to allow the limit in

Equation 1.18to converge.

1.1.2.4 Regularization Techniques

Regularization is any modi cation we make to a learning alg@thm that is intended
to reduce its test error but not its training error. Regularzation is one of the central
concerns of the eld of machine learning, rivaled in its impwance only by optimization.

Early Stopping

When training large models with su cient representational @pacity to over t the
task, we often observe that training error decreases stebdover time, but valida-
tion set error begins to rise again. See Figurke4 for an example of this behavior,
which occurs reliably. This means we can obtain a model withekter validation
set error (and thus, hopefully better test set error) by retming to the parameter
setting at the point in time with the lowest validation set eror. Every time the
error on the validation set improves, we store a copy of the rdel parameters.
When the training algorithm terminates, we return these parmeters, rather than
the latest parameters.

This strategy is known asearly stopping It is probably the most commonly used
form of regularization in deep learning.

Dropout

Dropout (Srivastava et al., 2014 71]) provides a computationally inexpensive but
powerful method of regularizing a broad family of models. $pi cally, dropout
trains the ensemble consisting of all subnetworks that carelformed by removing
a certain percentagePpopout Of NON-output units from an underlying base network,
as illustrated in Figure 1.5.

12
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Dropout provides therefore an inexpensive approximatiorottraining and evaluat-
ing a wrapped ensemble of exponentially many neural netwakincreasing model's
generalization capabilities.
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(a) Multi Layer Perceptron. (b) Multi Layer Perceptron after applying
dropout.

Figure 1.5: Dropout P1].

Dataset Augmentation

The best way to make a machine learning model generalize kestis to train it on
more data. Of course, in practice, the amount of data we have limited. One way
to get around this problem is to create fake data and add it tolte training set. For
some machine learning tasks, it is reasonably straightfoand to create new fake
data.

Dataset augmentationhas been a particularly e ective technique for a specic
classi cation problem: object recognition. Images are higdimensional and include
an enormous range of factors of variation, many of which careleasily simulated.
Operations like translating the training images a few pixslin each direction can
often greatly improve generalization. Many other operatius, such as rotating the
image or scaling the image, have also proved quite e ective

1.1.3 Convolutional Networks

Convolutional networks, also known as Convolutional Neurdletworks (CNNs), are a
specialized kind of neural network for processing data thags a known grid-like topology.
Examples include time-series data, which can be thought o$ @ 1D grid taking samples

13
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at regular time intervals, and image data, which can be thoun of as a 2D grid of pixels.
Convolutional networks have been tremendously successiulpractical applications.

\Convolutional neural network" indicates that the network employs a mathematical
operation called convolution'®. Convolution is a specialized kind of linear operation.
Convolutional networks are simply neural networks that useonvolution in place of
general matrix multiplication in at least one of their layes.

1.1.3.1 Convolution

Convolution operation, in two dimensionsi(;i,), is de ned as:

LR
S(m;n) = X(iy;iz)w(m i5n i2) (1.19)
i1 2
In convolutional network terminology, the rst argument x to the convolution is often
referred to as the input, and the second argumemnw as the kernel. The outputS is
sometimes referred to as the feature map.

It can be shown that convolution is commutative. The commuttive property of
convolution arises because we have ipped the kernel rehai to the input. The only
reason to ip the kernel is to obtain the commutative propery. Even if the commutative
property is useful for writing proofs, it is not usually an inportant property of a neural
network implementation. Instead, many neural network libaries implement a related
function called thecorrelation, which is the same as convolution but without ipping the
kernel.

?

7%
(1.20)

S
S(m;n) X(ig;i)w(m+ i n+iy)

i1 2
1.1.3.2 Parameter Sharing

Convolution leverages two important ideas that can help imove a machine learning
system: parameter sharing®, sparse interactions

5 Actually it's not convolution, it's instead correlation. Many machine le arning libraries implement
correlation but call it convolution.

18]n the case of convolutional networks this property is tightly related to the concept of equivariant
representations or speci cally equivariance to translation. To say a function is equivariant means that if
the input changes, the output changes in the same way. Similarly withimages, convolution creates a 2-D
map of where certain features appear in the input. If we move the objedn the input, its representation
will move the same amount in the output.
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Figure 1.6: 2D correlation operation. We notice that, withotpadding of input, feature
map is smaller than input and shrinking is related to the keral size.

Parameter sharing refers to using the same parameter for neothan one function
in a model. Discrete convolution can be viewed as multiplitan by a matrix, but the
matrix has several entries constrained to be equal to othenteies. In addition to these
constraints that several elements be equal to each other,,solution usually corresponds
to a very sparse matrix’.

1.1.3.3 Pooling

A pooling function replaces the output of the net at a certairlocation with a summary
statistic of the nearby outputs. For example, themax pooling operation reports the
maximum output within a rectangular neighborhood.

In all cases, pooling helps to make the representation apgnmately invariant to small
translations of the input. Invariance to translation meanghat if we translate the input
by a small amount, the values of most of the pooled outputs doohchange. Invariance
to local translation can be a useful property if we care moréaut whether some feature
is present than exactly where it is.

2

1] 1 2 5 8 4 2 x 2 max pooling 3 0 8

—-

Figure 1.7: 2D max pooling operation.

1A sparse matrix is a matrix whose entries are mostly equal to zero. Thids because the kernel is
usually much smaller than the input image.
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1.2 Hydrocarbon Exploration

Exploration and production of hydrocarbons (HC) is a high-s8k venture.

These uncertainties originated from geological models amdupled with economic and
engineering models involve high-risk decision scenariogth no absolute guarantee of
successfully discovering and developing hydrocarbons.

The future trends in oil resources availability will dependargely on the balance
between the outcome of the cost-increasing e ects of deptat and the cost-reducing
e ects of the new technology. Technological advances alled the exploration in well
established basins as well as in new frontier zones such asadtleep waters.

Information is vital for decision-making. Therefore, it'snecessary to de ne the value
of information associated with important decisions. Infanation only has value in a
decision problem if it results in a change in some action to baken by a decision
maker. The information is seldom perfectly reliable and genally it does not eliminate
uncertainty, so the value of information depends on both thamount of uncertainty,
or equivalently the prior knowledge available, and payo snvolved in the petroleum
exploration and production projects.

Over the last two decades, the advances in computer-aidedcggon making pro-
cesses have provided a mechanism to improve the quality ofcd#on making in modern
petroleum industry.

However, as Newendorp2f] emphasized, the decision analysis does not eliminate or
reduce risk and will not fully replace professional judgmerf geoscientists, engineers,
and managers.

1.2.1 Components of a Prospect

A prospectis a potential trap which geologists believe may contain hydcarbons. A
signi cant amount of geological, structural and seismic westigation must rst be com-
pleted to rede ne the potential hydrocarbon drill locationfrom a lead to a prospect.
Four geological factors have to be simultaneously presemtrfa prospect to work and if
any of them fail neither oil nor gas will be present.

Source Rock

In petroleum geology,source rock refers to rocks from which hydrocarbons have
been generated or are capable of being generated. They fome @f the necessary
elements of a working petroleum system. They are organi@hi sediments that
may have been deposited in a variety of environments includj deep water marine,
lacustrine and deltaic.

A river delta is a landform created by deposition of sedimerthat is carried by a
river as the ow leaves its mouth and enters slower-moving atagnant water. This
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occurs where a river enters an ocean, sea, estuary, lake, mofe rarely) another
river that cannot carry away the supplied sediment.

During sedimentary diagenesi$ the degradation of living matter eventually trapped
in sediments begins. The original organic matter could compe lacustrine and ma-
rine algae and plankton and terrestrial higher-order plaist During diagenesis large
biopolymers e.g. proteins and carbohydrates in the origiharganic matter decom-
pose partially or completely. These resulting units can threpolycondense to form
geopolymers. The formation of geopolymers in this way acaas for the large
molecular weights and diverse chemical compositions asated with kerogert®.

Resulting changes in the burial temperatures and pressuresad to further changes
in kerogen composition including loss of hydrogen, oxygenitrogen, sulfur, and
their associated functional groups, and subsequent isonzation and aromatiza-
tion. Such changes are indicative of the thermal maturity stte of kerogen.

During the process of thermal maturation, kerogen breaks dm in high-temperature
pyrolysis reactions to form lower molecular weight produstincluding bitumen, oil,
and gas. The extent of thermal maturation controls the natu of the product,
with lower thermal maturities yielding mainly bitumen/oil and higher thermal
maturities yielding gas. These generated species are pallif expelled from the
kerogen-rich source rock and in some cases can charge inteservoir rock.

Migration
Migration is the movement of hydrocarbons from their source into resair rocks.

Migration typically occurs from a structurally low area to ahigher area because
of the relative buoyancy of hydrocarbons in comparison to éhsurrounding rock.
Migration can be local or can occur along distances of hundi® of kilometers in
large sedimentary basins, and is critical to the formationfoa viable petroleum
system. The hydrocarbons are expelled from source rock, nmay by density-
related mechanisms. Most hydrocarbons could even migraté the surface as oil
seeps, but some will get trapped.

Reservoir

An oil and gasreservoir is a subsurface pool of hydrocarbons contained in porous
or fractured rock formations. Oil and gas reservoirs are badly classi ed as con-
ventional and unconventional reservoirs. In case of contamal reservoirs, the

18 After deposition, sediments are compacted as they are buried beneathuscessive layers of sediment
and cemented by minerals that precipitate from solution.

9Kerogen is a mixture of organic chemical compounds that make up a portion of orgadn matter in
sedimentary rocks. It is insoluble in normal organic solvents due to he enormous molecular weight of
the constituent compounds. The soluble portion is known as bitumen.
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naturally occurring hydrocarbons, such as crude oil or natal gas, are capped by
overlying rock formations (the seal) with lower permeabtly. While in unconven-
tional reservoirs the rocks have high total porosity and vgrlow permeability which
keeps the hydrocarbons trapped in place not allowing migran, therefore not re-
quiring a cap rock. Reservoirs are found using hydrocarborporation methods.

Trap

The hydrocarbons are buoyant respect to the higher densityater usually trapped
in the sediments (formation water), hence the need to have aap con guration,
limiting the buoyancy. The hydrocarbontrap has to be covered by an impermeable
rock known as a seal or cap-rock in order to prevent hydrocashs escaping to the
surface. A trap forms when the buoyancy forces driving the ward migration
of hydrocarbons through a permeable rock cannot overcomeetltapillary forces
of a sealing medium. The timing of trap formation relative tothat of petroleum
generation and migration is crucial to ensuring a reservogan form. All the trap
elements have to be correctly timed in order to co-occur.

1.2.2 Seismic Survey

Visible surface features such as oil seeps, natural gas seguekmarks® provide ba-
sic evidence of hydrocarbon generation. However, most extion depends on highly
sophisticated technology to detect and determine the exteof these deposits using ex-
ploration geophysics. Areas thought to contain hydrocarb@nare initially subjected to
a gravity survey, magnetic survey, passive seismic or regad seismic re ection surveys
to detect large-scale features of the sub-surface geologynce de ned the features of
interest, known as leads, these are subjected to more detgilseismic surveys The
seismic surveys principle and models make use of the relasbips that exist between
the propagation of acoustic and/or elastic waves, includ@) re ections and refractions,
according to the kind of material (rock type) and its lling uid (water, gas or liquid
HC, other uids), and the physical (mechanical) properties bthe matter; allowing to
obtain clearer images of the underlying geological strugtl Seismic data have to be
interpreted in order to identify all the prospect elementsand trap geometries.

Finally, when a prospect has been identi ed and evaluated angasses the oil com-
pany's selection criteria, an exploration well could be dted in an attempt to conclusively
determine the presence or absence of hydrocarbons.

1.2.2.1 More Details on Seismic Data Acquisition

Seismic data acquisition involves applying a seismic engrgource generating a prop-
agating pulse. This source is dependent on the area wherevay has been designed:

20underwater craters caused by escaping gas
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onshore, o shore, intermediate very shallow water areas. Mioseis truck, dynamite shot,
or an air gun, generates acoustic, or better elastic wavesathtravel into the Earth in
di erent modes. The most used mode that is processed to obtaseismic images is the
compressional. Waves pass through strata with di erent sginic responses and earth I-
tering e ects (alterating the initial pulse shape, that is ron-stationary along is path), and
return back to the surface to be recorded as seismic data byogdones or seismometers.

Seismic data acquisition involves applying a seismic engrgource. This source such
as a vibroseis truck, dynamite shot, or an air gun, generatesoustic or elastic vibrations
that travel into the Earth, pass through strata with dierent seismic responses and
Itering e ects, and return to the surface to be recorded asasmic data by geophones
or seismometers.

The study area ofmarine survey acquisitionin particular, is considered to be a \deep-
water area" with a column of water that reaches 500 m or much m& Accordingly the
seismic is acquired with particular techniques, see Figufe8.

1.2.2.2 Elements of Seismic Data Processing

Seismic processingconsists of several operation steps on the acquired or \rag&ismic
data, to suppress noise, enhance signal and migrate seis@vents to its appropriate
location in space. Seismic processing facilitates betteterpretation because subsurface
structures and re ection geometries are more apparent. The are three main processes
in seismic data processing: deconvolution, Common-MidPwi(CMP) stacking and mi-
gration.

Deconvolution

Deconvolutionis a process that tries to extract the re ectivity series of he Earth,

under the assumption that a seismic trace is just the re ectity series of the Earth

convolved with distorting lters. This process improves tenporal resolution by
collapsing the seismic wavelet lenght, but it is non-uniquenless further informa-
tion is available such as well logs, or further assumptionseamade. Deconvolution
operations can be cascaded, with each individual deconviidun designed to remove
a particular type of distortion.

CMP Stacking

CMP stacking is a robust process that uses the fact that a particular locain in
the subsurface have been sampled numerous times and at deat o sets. This
allows a geophysicist to construct a group of traces with a mge of o sets that
all samples the same subsurface location,known as a Commordpbint Gather.
Another process that is applied to proceed to CMP stack is the Mmal MoveOut
(NMO), see Figurel.9. The moveout quantity is dependent from the propagation
velocity of the rock to pressure waves. NMO align horizontgllall the seismic
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Figure 1.8: Marine seismic acquisition. Traditional maringeismic surveys are conducted

using specially-equipped vessels that tow one or more cablmontaining a series of hy-
drophones at constant intervals. The cables are known as samers, with 2D surveys
using only 1 streamer and 3D surveys employing up to 12 or mor&he streamers are
deployed just beneath the surface of the water and are at a s#istance away from the
vessel. The seismic source, usually an airgun or an array ofyans but other sources are
available, is also deployed beneath the water surface andloagated between the vessel

and the rst receiver. Marine seismic surveys generates @gi cant quantity of data, in
fact each streamer can be up to 6 or even 8 km long and the seisrsource is typically
red every 15 or 20 seconds.
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event, that are curved along hyperbola, according to theirrppagation law, with

respect to the o set. Better stack along constant event time can be therefore
performed. The average amplitude is calculated along timeammples, resulting
in signi cantly lowering the random noise but also losing &lvaluable information

about the relationship between seismic amplitude and o s¢information on elastic

properties of the rocks).
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(a) CMP gather. The same event in a CMP gather has (b) NMO correction. Traces are

a hyperbolic time location respect to oset. 1 is the re-located in time to account o -

particular angle of re ection for raypath 1. set, and then averaged out to in-
crease signal-to-noise ratio.

Figure 1.9: CMP stacking.

Seismic Migration

Seismic migration is the process by which seismic events ageometrically re-
located in either space or time to the location the event ocowed in the subsurface
rather than the location that it was recorded at the surface.Creating, thereby,
a more accurate image of the subsurface, see Figur&éQ Migration precision is
function of appropriate algorithms and of the knowledge ofcaustic and elastic
properties, rst of all the pressure waves velocity model.
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Figure 1.10: Seismic migration.
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1.2.3 A View on Sedimentary Processes: Turbidite Systems

Among a wide list of geological depositional mechanism, we ntien here the turbidity
currents since well spread in the studied area; they are gigvdriven turbid mixtures of
sediment temporarily suspended in water. The name is dertvérom their characteristics
of being opaque mixtures of sediment and water. They ow dowslopes or over a
horizontal surface provided that the thickness of the ow igyreater up- ow than it is
down- ow. The deposit of a turbidity current is a turbidite. The volumes of material
involved in a single ow event can be anything up to tens of cub kilometres, which is
spread out by the ow and deposited as a layer a few millimetseto tens of meters thick.
Turbidity currents, and hence turbidites, can occur in wate anywhere there is a supply
of sediment and a slope. They are common in deep lakes, and noagur on continental
shelves, but are most abundant in deep marine environmentshere turbidites are the
dominant clastic deposit. As more sediment is deposited frothe decelerating ow a
deposit accumulates and the ow eventually comes to a halt vém the ow has spread
out as a thin, even sheet.

Figure 1.11: Turbidite system.

Lithi ed 2! accumulations of turbidite deposits may, in time, become lyocarbon reser-
voirs and the oil and gas industry makes strenuous e orts torpdict the location, overall

shape, and internal characteristics of these sediment bediin order to e ciently develop

elds as well as explore for new reserves.

21Lithi cation is the process in which sediments compact under presure, expel trapped uids, and
gradually become solid rock. Essentially, lithi cation is a processof porosity destruction through com-
paction and cementation. Lithi cation includes all the processes whch convert unconsolidated sediments
into sedimentary rocks.
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In this work we applied deep learning techniques to the knoadige eld of Oil & Gas
(O&G) exploration. This thesis is made possible by the colbeoration with Eni S.p.A.,
in particular with the Upstream & Technical Services team. Though a fruitful series of
meetings, an industrial objective for Eni to apply deep leaing techniques was focused
on. This led to the de nition of a dataset on which this objecive could be applied,
which Eni kindly provided us with. Some data and text could beanonymised due to
NDA restrictions.

Not Available Due to NDA

Figure 2.1: Study area: large view. The orange box represetttet speci c location of
study area.
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Not Available Due to NDA

Figure 2.2: Study area: detail. The orange box represent thpexi ¢ location and dimen-
sion of study area. We introduce the coordinate system uselrbugh this work: Cross
Line (XL) and In Line (IL). XX XXXXXXXXX XXXXXX XXXXXX XXXXX XXX XX XXXXXXXXX
XXXXXX XXXX.

2.1 Dataset Description

XXX XXXXX XXKX XX XXXXXKX XX XXX XXXXKXXX XXKX XK XXX XXXXKXXXK X XXXXXXX XXXX
XXXX XXX XXXXXX XXXX XXXKXXXK. XXX XXKXXX XXX XX XX XXX XXXXX XX XX XXX XXXXXXX
XX XXX XXXXXX XXXXX XXXX XX XXXXXXXXXXXKK XK XKXXXKX XXXXKX X XXXXXKXXX.

The dataset Eni gave us comprises of:

Two high quality 3D Pre-Stack Depth Migrated (PSDM) Volumes: oneNear
reprocessed angle stack and of@r angle stack. These two volumes are di erent
types of stacks, not including all the o sets, but only selged ones, according to
being Near (closer receivers o sets to the source, meaningvlancidence angles
of re ections) or Far (far receivers o sets to the source, naning higher incidence
angles of re ections). They are sensitive to di erent seisio properties; for instance
we could say that the Far is more sensitive to uid presence.

1PSDM indicates that the seismic migration procedure is done beforette CMP stacking one.

2The di erence between them lies in the range of angle re ections cdécted in the CMP stacking
procedure: near 2 [3 ;18 ] and g 2 [33 ;48 ]. A result is that the Near volume has a higher spatial
resolution than Far volume.
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Three manually interpreted surfaces ohorizons® that have at least one embedded
turbidite channel-base: Base |, Base Il, Base llI.

Four high quality exploration porosity well log$ (W; W»; W3; Ws) each one com-
posed of: the actual measured porosity log and the relevantefjuency ltered
versiorr.

2.1.1 Seismic Volumes

Spatial extension and sampling density of seismic volumeeaummarized in Figure2.3.

Not Available Due toc NDA

Figure 2.3: Seismic volumes overview. Depth axis points doward and has zero value
on sea level.

XX XXX XX XXXXXXXXX XXXXX XXXX XXXXXXX XXX X XXXXXX XX XXXXXXXX X XXXX X
XXXXKXXXX XXXXKXXX XX XXXX X, XX XXX XX XXXXXXXXK XXXXX XXXX XXX XXXX XXX X
XXXXKX XX XXXXXK X XXXK X XXXKXXKK XKXXXKXX XX XX K. XXX XXXX XXX XXX XXXXXXX X
XXXXK XX XXXKXX XXKXX X XXKX XXXKXXXKX X XXXKXX XX XXKXXKKXXK XXX XXXXXXXKXXX
X XX XXXXX. XXX XXX XXXXXX XXXXXXX XXXXX XX X XXXXK XX XXXXXX XXX XX X XXX XXXX
XX XXX XXXX XXXXX XX XXXX XXXXXX.

Therefore volumes dimensions expressed as tensor indexes a

Near: 1,901 XLs, 606 ILs, 2,001 Depths.
Far: 1,901 XLs, 606 ILs, 1,601 Depths.

We nally point out that in both volumes, voxel$ are non-isotropic and have the same
size which is 12.5m x 25m x 2.5 m. Voxels are huge hence oil and gas predictions has
to be extremely accurate.

3An informal term used to denote a surface constituted of a distinctive layer of rock that is represented
by a re ection pattern in seismic data. A horizon can be thought of as a geologial snapshot of the
surface history. These horizons are interpreted using Near seismimlume, see 16].

4A measurement versus depth of one or more physical quantities in or arouha hydrocarbon explo-
ration well.

SFrequency ltration has been done by convolution between measured lognd a proper wavelet' in
order to match seismic data spatial resolution.

6A voxel represents a value on a regular grid in three-dimensional spac The 3D analogous of 2D
pixel.
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Figure 2.4: IL-slice of Near volume: axes are in reciprocal artion to the study

volume.

In Figure 2.4 we show how looks like an IL-slice of Near volume seen in propon
to the real physical volume. Seismic voxels contains scalalues directly related to the
local variation of acoustic impedancé, or equivalently, related to the acoustic re ection
coe cient Rc. Seismic volumes are usually graphically rendered in diggng pseudo
color which associates blue to negative values, red to pagt values and white to zero

crossing.

500 +

1000 A

Depth index (Near)

1500 A

2000

1000 1250

XL index

0 250 500 750

Figure 2.5: IL-slice of Near volume.

"Acoustic impedanceZy, is a physical property of matter. It describes how much resistane a sound
beam encounters as it passes through a layer. It is de ned by the proact between density y and

speed of sound waves in mediumyy @ Zy = M Vum -
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2.1.2 Seismic Horizons

Seismic horizons play a key role in this work and they are exgssed as a cloud of points.

Figure 2.6: Base | horizon. XL and IL axes maintains reciprocg@koportion to the study
volume. Base | horizon is rendered trough depth in pseudo oanl Wells are superimposed
to understand their exact locations.

Geological and geomorphological experience allow to reng erosive patterns that are
attributable to turbidite channel-base systems; the exackcation and segmentation of
them. However, it is not a trivial task and it involves geophyigal expertise.

Remaining horizons are showed next. As you might notice, heans are presented in
order of decreasing depth; Base I, in fact, is the deepest ahdnce the oldest.
We nally point out the notion of sequencewhich is a group of relatively conformable
strata that represents a cycle of deposition and is bounded lbinconformities.

Sequence |: bounded by Base | and Base II.
Sequence Il : bounded by Base Il and Base IIl.

Sequence Il : bounded by Base Il and a surface of non-geophysical intstealled
Top Interp.
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Figure 2.7: Base Il horizon.

Figure 2.8: Base Il horizon.
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2.1.3 Well Logs

Well logs are subsurface property measurement acquired inet borehole. Seismic vol-
umes, in fact, are a non-direct information, just the best mlt of the O&G industry to
solve a poorly-posed problem such as the time-depth invemsiof seismic traces.

In this case, the porosity logs are a more direct and physicaleasurement indicating
the local pore volumes in percentage over the total. High pasity, for this kind of study
area, is a strong indicator of sandy clastic sedimefitsvhich indeed suggest the presence
of a turbidite channel in Il and therefore a candidate resenir (lead).

Not Available Due to NDA Not Available Due to NDA

(a) W1 measured porosity log. (b) W1 frequency Itered porosity log.

Figure 2.9: W1 porosity well logs.

Frequency Itering of measured porosity logs is done by coalution whit the same
depth-dependent wavelet used in seismic survey processing. The aim of thatismatch
the density of information content between logs and seismiolumes.

Acoustic Reflection Seismic Seismic
impedance Z coeflicient B wavelet ¢ trace T'r
- |+ -]+ -]+

Figure 2.10: Seismic wavelet explanation.

8Sediment consisting of broken fragments derived from pre-existip rocks and transported elsewhere
and redeposited before forming another rock.

9An important fact is that rock acts as a low pass lter therefore wavelet shape is depth-dependent.
You may notice it in Figure 2.5.
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Not Available Due to NDA Not Available Due to NDA

(a) W2 measured porosity log. (b) W2 frequency Itered porosity log.

Figure 2.11: W2 porosity well logs.

Not Available Due to NDA Not Available Due to NDA

(a) W3 measured porosity log. (b) W3 frequency Itered porosity log.

Figure 2.12: W3 porosity well logs.

Not Available Due to NDA Not Available Due to NDA

(a) W5 measured porosity log. (b) W5 frequency Itered porosity log.

Figure 2.13: W5 porosity well logs.
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All informations about dataset are summarized in Figure.14

Not Available Due to NDA

Figure 2.14: Dataset comprehensive scheme.

Data Format and Visualization Tools

A signi cant part of the work in this thesis consisted in undestanding and learning how
to manage the formats used in the O&G exploration industry. A particular, learning
how to read and produce les in SEG-Y le format. Another imporiant part was to
visualize the data and results produced by deep learning alighms.

SEG-Y File Format

The SEG-Y le format is one of several standards developed lifne Society of Explo-
ration Geophysicists (SEG) for storing geophysical datat Is an open standard, and is
controlled by the SEG Technical Standards Committee, a norpt organization. The
format was originally developed in 1973 to store single-Bnre ection seismic (traces)
digital data on magnetic tapes. The speci cation was publied in 1975.

However, since its release, there have been signi cant adeaments in geophysical data
acquisition, such as 3-dimensional seismic techniques ahih speed, high capacity
recording. The most recent revision of the SEG-Y format wasuplished in 2017, named
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the rev 2.0 speci cation. It still features certain legacige of the original format (referred
as rev 0), such as an optional SEG-Y tape label, the main 3,206Qte textual EBCDIC
character encoded tape header and a 400 byte binary header.

Optional 3200 400 byte 1st Nth 1st 1st Nth Nth
SEGY byte Binary 3200 byte 3200 byte 240 byte Trace 240 byte Trace
Tape Textual File Extended Extended Trace Data Trace Data
Label File Header Textual, veel Textual Header (variable [+«+ Header (variable
Header File File size) size)
Header Header
(Optional) (Optional)

Figure 2.15: SEG-Y le structure. The le is organized by traes and these are typically
arranged as IL-slice, i.e.f Trace(il = O;xI = 0);Trace(l = 0;xl = 1);:::;Trace(l =
O;xI = XLs);Trace(l = 1;xI = 0);:::;Trace(l = ILs;xI = XLs)g. This format is
therefore not conceived and optimized for a fast access of 30b-volumes of data.

To manage the SEG-Y format in Input/Output (I0) we used the segyid® library
which allowed us to read and produce SEG-Y les to be supplied Eni as input for
their visualization and processing tools.

Segyio is a small LGPL! licensed C library for easy interaction with SEG-Y formatte
seismic data, with language bindings for Python and MatlabHowever, segyio has some
limitations as it does not support the entire standard or allexotic (but correctly) for-
matted les. Some assumptions are made, for example: all tles in a le are supposed
to be the same size as the sample and all lines are supposedaweehthe same number of
traces.

Visualization Tools

Visualization in this eld plays a key role due to the intrinsically 3D nature of geobodies.
It was therefore important to be equipped with graphical tots to improve the under-
standing of the provided dataset. Petrel is not free of chaegand have therefore only
been exploited through Eni's team.

Petrel

Petrel is a software platform used in the exploration and piuction sector of
the petroleum industry. It allows the user to interpret seisic data, perform well
correlation, build reservoir models, visualize reservogimulation results, calculate
volumes, produce maps and design development strategiesmaximize reservoir
exploitation. Petrel is developed and built by Schlumberge

Ohttps://segyio.readthedocs.io/en/latest

1The GNU Lesser General Public License (LGPL) is a free-software licese published by the Free
Software Foundation (FSF). The license allows developers and comparsdo use and integrate a software
component released under the LGPL into their own (even proprietary software without being required
by the terms of a strong copyleft license to release the source codé their own components.
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Using the latest advanced GPU rendering, the Petrel SeismicoMime Rendering
and Extraction module enables quick and interactive blendg and rendering of
multiple seismic volumes with extreme clarity to detect anmalies, delineate struc-
tural and stratigraphic features, isolate areas of intergsand then instantly extract
what is visualized into a 3D object called a geobody. One careate complex se-
lection events to delineate complex structural and strati@phic features such as
channels, deltas, or fractures. Accurate interpretation ofhose features is made
possible by the complete set of tools, such as advanced honzamplitude-based
and waveform-based horizon autotracking, multi-Z intergetation, and interactive
mesh editing. One can also extract 3D geobodies and assignlggical templates
to them providing the bodies with instant geological meanmn

OpendTect

OpendTect is a complete open source seismic interpretatiggackage, which is
widely used in the industry and that it can be downloaded at n@ost from Opend-
Tect. OpendTect contains all tools, needed for a 2D and/or 3Beismic interpre-
tation: 2D and 3D visualization, horizon and fault trackers attribute analysis and
cross-plots, time-depth conversion, etc.

Mayavi

Mayavi'? is a scienti ¢ data visualizer written in Python. Mayavi is free and
distributed under the BSD" license. The latest version of Mayavi is called Mayavi?2.

Mayavi2 seeks to provide easy and interactive visualizatioof 3D data, or 3D
plotting. It does this by the following: an (optional) rich user interface with
dialogs to interact with all data and objects in the visualiation, a simple and clean
scripting interface in Python, including ready to use 3D vigalization functionality
similar matplotlib, harnesses the power of VTK without forcng you to learn it.

2.2 Task Description

A valuable industrial objective is to quickly and semi-autmatically characterize the
presence, location and extension of leads, in this case,tigite systems.

The most natural choice for such a task is the binary classiation: object of interest,
background. This would naturally t into the framework of supervised learning, but this
kind of task can be set up only if we have, or at least we can deerthe labels. Therefore

2https://docs.enthought.com/mayavi/mayavi

13BSD licenses are a family of permissive free software licenses,posing minimal restrictions on the
use and distribution of covered software. The BSD license is a sini license that merely requires that
all code retain the BSD license notice if redistributed in sourcecode format, or reproduce the notice if
redistributed in binary format.
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the choice of algorithms task de nition must be done takingnto account what data is
available.

Up to this point, we should ask, are these objects characteeid by their sinuous and
meandering shape or by their texitural internal layering? Fobably both...

The information on where are the turbidite sediments in llsare a very di cult one to
gain and it requires a lot of time, for geologists and geophygssts to correctly interpret the
seismic volume, and money to collect well logs in order to abslish high porosity regions.
Furthermore, even if this e ort is placed at work, a 3D relialte label with su cient spatial
resolution is impractical. On the other hand, the extractio of horizons is a relatively fast
and semi-automated process done using 3D visualization aprbcessing software, such
as Petrel. This is because the seismics is the most importaattribute in interpreting
and recognizing horizons.

Since we do not have the information on where the turbidite dements in lls are, we
can not set up the classi cation task as a direct search for thkind of objects. However,
we do have three horizons with at least one embedded turbidicthannel-base system.
But is the information embodied in the channel-base su ciet?

20 20

Y
(=]
S
o

Depth index
Depth index

(=]
o
=2
o

0 20 40 60 80 0 20 40 60 80
IL index IL index
(a) Near XL-slice centered around (b) Same slice a®2.16awith super-
a channel-base voxel. imposed channel-base (dotted line)

and sediments in Il (green region).

Figure 2.16: Form or content dilemma. An interesting slice céaining a turbidite channel
is presented. We see shape of a turbidite channel-base, tbeni, and textural pattern
of the sediments in Il, the content.

In Figure 2.16 we see a slice of seismics centered around a channel-baselvok/e
notice two important things that are present: channel-bases characterized by a concave
shape and sediments in Il with its texitural pattern that lies above. Therefore, even if
we are expressing the task as a search for turbidite chanrelse systems, using a big
enough context around every channel-base voxel we give teetimodel both pieces of
information: shape and content.
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After all these consideration, we choose to de ne the deep ftemg task as binary
classi cation between turbidite channel-base and backgund using as input a sub-volume
context or a 3D patch. Or, in other words, we choose to build nadels that for every
voxel answer the question:

\ Does this voxel belong to a sub-volume that represents a channel-base syStem?

2.3 Proposed Models

We previously introduced the concept of the 3D patch in the etext of a patch-based
classi cation task. The 3D patch is the earlier called subelume which is aNpacn Side
volume.

At the end of the sub-sub-sectiori.1.2.3we talked about the curse of dimensionality,
which focuses on how the number of features should be kept @natontrol in relation to
the available examples in order to ensure a good learning pess. In case we are using
Nyaich Side volumes as input patches we are looking for a solution goproblem with
the complexity that grows asO(N 3,,), SinceNg = N2,,. Given that Npaen must also
be large enough to provide an adequate context for the leangj process, the risk of not
having enough examples is considerably high.

We, therefore, decided to take an alternative
route before admitting the need to move to full 3D.

It has been decided to work with a certain number
of 2D patches, according to what could be de ned
as a 2.5D approach. This approach makes the com-
plexity of the problem proportional to aO(Nrfatch).
The most intuitive choice to transform an intrin-
sically 3D problem into a 2D one is to takeNgjice
slice along the coordinated axes of the subvolume,
in a mode that we have named \windrose". For a Figure 2.17: Windrose diagram.
graphical representation see Figur2.18

2.3.1 Input Patch

Once we decided that we want to use a 2.5D approach, it remaitesbe de ned how to
exactly build the input patch from the three selected slices

One idea could be to place them horizontally side by side torfa a single image of
size [1]XNpatcn [X[BNpacn].  Even if this may seem an obvious choice, with respect to
the functioning of the CNN models, it implies that the same camlution lters act
simultaneously for all three slices. However, they carry werdi erent information, for
example the D-slice, and not to mention the fact that there a discontinuities in the
junction points that models must learn to handle it.
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(a) 3D patch around a channel-base voxel. (b) Three 2D patches extracted in a win-
drose fashion. Slices are extracted per-
pendicular to coordinate axes.

Figure 2.18: Windrose patch description. In this casBlgi.e = 3 but we can generalize
easily to the case wheréNgjice < N paich. The caseNgjce = Npach, N0 matter how slices
are selected, implies the same complexity as the direct 3Dm@pach and therefore is not
convenient.

XL-slice S - 11L-slice

Figure 2.19: Windrose h-stack patch description.

We, therefore, opted for an input patch de nition that would allow the network to
use di erent Iters for each slice. The result of this reasoimg was to stack the slices on
top of each other, as happens with RGB image channels. Thusopiucing patches of size

[3Ix[N patch IXIN patch I

2.3.2 Models Architecture

Regarding the architecture of the models, which are natudgl2D CNNs, we decided to
study two architecture in particular, called here \CNN A" and \CNN B".

As you can see in Figure.2], the last two connections has a further information in
square brackets which is relative to the regularization téoiques called dropout. Dropout
is drawn in brackets because we analized the CNN A architectuboth with and without
dropout, called respectively: \CNN A Dropout” and \CNN A".

36



CHAPTER 2 Data, Task and Models

(a) Windrose slices are concatenated one (b) Spectral interpretation of
above the other in a three-channel way. the concatenated windrose slices
as a RGB image.

Figure 2.20: Windrose spectrum patch description.

CNN B architecture is described in Figure2.22 As before we analized architecture both
with and without dropout, called respectively: \CNN B Dropou" and \CNN B".

The main di erence from the two architectures is the depth, orather the composi-
tionality of the inner representation. CNN B, in fact, better represents the convolution
network paradigm, having many convolutional layers and thefore feature maps built
as the composition of the previous feature maps. In additioto having more convo-
lutional layers, CNN B also has an extra layer of max pooling #t makes its internal
representation more spatially invariant. These di erence are strongly re ected in the
representational capacity. The representational capagican be roughly estimated as the
number of tunable parameters, the weights. Of course, the number of weights depends
on the size of the input patch. Convolutional connectionsnifact, shrink the size of the
incoming feature maps, as max pooling connections naturaltlo. In Table 2.1 you can
see a huge di erence, in terms of weights, between the two hitectures as the size of
the input patch changes.

In summary, we have that although CNN B is a better representate of the convolutional
paradigm it has way less representational capacity than CNN Ayhich re ects however
on the number of examples needed to achieve good learning.
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64
Feature maps

Dense
Af: Softmax
[Dropout: 1/2]

2D Convolution
Kernel: 3x3 B

Af: ReLU 2D Convolution
Kernel: 3x3

2D Max Pool
Af: RelLU

Kernel: 2x2 Dense
Af: ReLU
[Dropout: 1/4]

Figure 2.21: CNN A architecture. We can see early convolutiohkayers, expressed as
a certain number of feature maps, connected trough a 2D comvtion operation with
speci ed kernel size. Second hidden layer is conned to thirddden layer by a 2D max
pooling operation which halves feature maps side. Flattergrprocedure simply reshapes
all elements in a row, so that a dense connection can be madeor Rll layers but the
output one, which has softmax as usual for classi cation t&s, the activation function is
the ReLU function. Output layer has two nodes, one for the b&ground class prediction
probability Pgackgrouna @nd one for turbidite channel-base prediction probabilityPchannei -
The last two connections has a further information in squarbrackets, which is dropout
and relative dropping nodes percentage.

Npatch
Model architecture 17 33 49 65
CNN A 314,690| 1,625,410 3,984,706 7,392,578
CNN B - 205,826 | 211,970 | 226,306

Table 2.1: Representational capacity for proposed modelslumber of tunable parame-
ters for the two architectures considerated at varying inpupatch size. CNN B can not
operate on patches smaller thamNpacn < 24 due to feature map shrinkage by convolu-
tional and max pooling layers.
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128 128
Feature maps Feature maps

Y

64

64
32 5 Feature maps

Feature maps

Dense
Af: Softmax
Dropout: 1/2]

2D Convolution
2D Max Pool

Kernel: 5x5 2D Convolution =

Af: RelU Kernel: 2x2 S

Kernel: 3x3 2D Max Pool S
Af: RelU Kernel: 2x2 TS _
2D Convolution

Kernel: 3x3 = . -
Af: ReLU 2D Convolution
Kernel: 1x1
Af: ReLU

[Dropout: 1/2]

Figure 2.22: CNN B architecture. This architecture is proposkin [10].
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Chapter 3

Implementation and Results

This chapter describes the implementation of the deep leany problem described so far
and the results obtained.

First of all, we highlight the use of Python language and the TesorFlow library coupled
with the use of Nvidia CUDA capable GPUs. As expressed in sectidnl, nowadays
any experimental deep learning project can't avoid the usd &PUs because these allow
studying multiple possibilities in acceptable deadlines.

TensorFlow is a free and open-source software library devedal by the Google Brain
team that is also used for machine learning applications duas neural networks. It was
released under the Apache License 2.and it is used for both research and production
at Google. TensorFlow can run on multiple CPUs and GPUs with optital CUDA
extensions.

In this work we used two GPUSs, one relative to my laptop and oneelative to the
workstation provided by Bioretics. The most intensive tes were conducted entirely on
the workstation.

Here's a list of the main characteristics of used GPU's.

Laptop : Nvidia GeForce MX 150 with 2 GB of dedicated memory.
Workstation : Nvidia GeForce GTX 1080 with 8GB of dedicated memory.

3.1 Implementation

In the previous chapter, the deep learning problem has beerpdicitly de ned. It is a
binary classi cation between background and turbidite chanel-base. This choice was
made considering the available dataset, in fact, we have limwns with at least one channel

1The Apache License is a permissive free software license writterylthe Apache Software Foundation
(ASF). It allows users to use the software for any purpose, to distrilute it, to modify it, and to distribute
modi ed versions of the software under the terms of the license, whout concern for royalties.
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immersed. Now, the fundamental step is to generate a labelecining/test set and to
do this it is necessary to de ne which are the channel voxelsi@ which are not.

Is it possible to de ne channel voxels purely by observing thgeometry of the horizon?
In the following you can see the three horizons representddough the depth in grayscale
pseudocolor, associating black to deep regions and whitedieallow ones.

Figure 3.1: Base Il horizon with depth as grayscale pseudolon

Figure 3.2: Base Il horizon with depth as grayscale pseudo aol

Figure 3.3: Base | horizon with depth as grayscale pseudo aolo
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From previous images, it is possible to detect the presencé sbme channels even
if a sort of darkening seems to prevent an optimal vision of éhhorizon topology. The
motivation for this aberration lies in the fact that the horizons can have a non-null
average slope, in particular, all three horizons show a skepowards increasing IL.

To remove this e ect we decided to process the horizons in a yvthat visually improves
the images and helps the human eye to perform segmentationh&idea is to remove the
contribution of the average gradient from the horizons as sumarized in Figure 3.4.

Figure 3.4: Mean-plane correction.

In order to explain how we implemented this correction it's seful to describe the hori-
zon as a di erentiable function de ned on the XL-IL plane that gives the corresponding
depth?.

Hor:R?! R

(XL;IL ) 7! Hor(XL;IL ) = Dor (3.1)

With this mathematical framework we can de ne the mean gradigs with respect to
coordinate axes:gx., O .

_ @or 1 X @or .
T @xiT Kis)iLs)  @xu*)

_ (3.2)
_ @or 1 @Hor .

97 @Il T Kis)ils)  @IL &)
isj

2We can suppose that our horizons are a sampled version of the continuous hmoins de ned in
equation 3.1.
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It's easy now to de ne a function MPlane that assign to every @int in the XL-IL plane,
the corresponding depth of the mean plane, or even the honzaterpolating plane?

MPlane(XL;IL ) := gx. XL + g IL +const (3.3)

Mean-plane corrected horizons are de ned in equatid®4 in such a way thatQeorx. =
Ocorri. = 0.

Horeor (XL; IL ) ;= Hor( XL;IL ) MPlane(XL;IL ) (3.4)

Figure 3.5: Base Ill mean-plane corrected horizon with depths grayscale pseudo color.
A channel-base is clearly visible on the right hand side thairosses from top to bottom
the image. Other channel-bases may be present but not as hisi to us.

Figure 3.6: Base Il mean-plane corrected horizon with depthsarayscale pseudo color.
An S-shaped channel-base is clearly visible diagonally assothe image. This appears
to be a system of two channels that have split in two at the bottm of the image. An
uncertain region appears to be the one at the top right.

3We de ned the MPlane function up to a constant because it is irrelevant to our purpose. The reason
is that we are not interested in the actual depth value of mean-plane comcted horizons, but only to
enhance their visual representation in grayscale pseudo color whicadapts itself to the data range.
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Figure 3.7: Base | mean-plane corrected horizon with depth gsayscale pseudo color.

A system of channel-bases is clearly visible in the centertbe image crossing from the
top center to bottom right.

After examining all the horizons and noticing the presence @&vident channels, we
decided to focus heavily on Base Il. This horizon, in fact, lssa widespread channel that
crosses a signi cant part of the horizon and therefore can gvide a lot of information
to the models. Moreover, Base Il, being between Base | and BaHI, is an obvious
candidate to focus out attention on because it can provide eful information also for

the generalization in its surroundings, which we can contrdoy monitoring what models
predict on Base | and Base llI.

In Figure 3.8 we show how Base Il appear in 3D space.

Figure 3.8: Base Il horizon in 3D space.
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3.1.1 Manual Channel-Base Segmentation

In this section, we describe how we proceeded to extract infeation about the location

of the channel dipped on Base Il horizon. Since we want to eatt the channel-base
using only topological information, we nd two useful infomation: the magnitude of the

gradient and the curvature. To calculate them, it was neceasy to take into account

that the XL and IL axes do not have a homogeneous sampling. As ya@an see from
Figure 2.3 L. =2 x_, and we had to take this into account de ning two variables of
scale:Sx. =1 and S;. =2. Now you can correctly de ne the magnitude or modulus of
the gradient vector as expressed in equatiodb.

S 1 2 1 2
Gmagnitude (XL IL ) = = Ocorrxt (XL;IL' )+ ——GcomiL (XL;IL ) (3.5)
SXL S|L
Where
or
Ocorr:xL (XL;IL ) = %(XL; L) (3.6)
GeorraL (XL;IL ) = %(XL;IL )

We can also calculate a simpli ed version of curvature, sudhat in equation 3.7, and
visually combine the two information as in Figure3.9.

1 2@éHorcon(XI_;”_)+ 1 *@Horcon
SXL C@XI—2 S||_ @”_2

Curvature(XL;IL ) := (XL;IL ) (3.7)

Figure 3.9: Base Il gradient magnitude plus curvature. In tls image, gradient magnitude
and curvature are blended in a certain proportion, respeetly 0.75 and 0.25, in order
to give a topological hint on where the channel-base is.
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Using this information we have manually contoured the regiothat we believe could
correspond to the de nition of channel-base, reaching asrfas the concavity reaches its
maximum downward, i.e. what could be de ned as the bank of thehannel. The result
of this rst segmentation can be seen in Figure8.1Q Unfortunately, it is di cult to
exactly de ne where the channel-base ends and it is a part diis work to gure out how
this de nition a ects the classi cation problem resolution.

Figure 3.10: Base Il rst segmentation. As may notice, we comgtely ignored the
topological indications regarding the top right area, condering that part as background.
We point out that this choice is not motivated by an a priori krowledge and therefore it
should be considered as a possible criticality of this in#i segmentation, which adds to
the problem of how to de ne the channel-base boundaries.

3.1.2 Dataset Handling

Now that we have de ned, at least on the Base Il horizon, whichra channel-base
voxels and which are background, we just have to de ne how taubdd a windrose patch
labeled dataset in practice. First of all, the number of voxelon each horizon iM .« =
(XLs)(ILs) =1;901 x 606 = 1 152 006 but only a part of them has a windrose patch
associated with, this is because the latter must be withfnthe seismic data volume. So
the number of voxels from which it is possible to extract winse patches oNpach Side,
and therefore the maximum number of e ective extractable emples, is equal to:

N N
Me = Mpaxy 2 —Pach 4o “pach (3.8)
2 2
As an implementation choice we decided to save on disk 3D pagshof sideNgayeq >
Noaich centered around the labelled voxels from which we later ezt the windrose
patches during simulation. ThereforeM, is actually:

N
Me = Mpmax 4 SSVEd (3.9)

4Unless you put into practice volume padding procedures.
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Figure 3.11: 3D central cropping of saved volume and windropatch extraction.

The decision of saving 3D patches along with the large amounit extractable 3D patches
Me induced, for reasons of memory storage capacity, to actualave a fraction of them.
We decided to not select this fraction of 3D patches randomlyecause it could happen
that in some regions patches might be closely picked, and tieéore highly correlated,
while in others spatially distant. The set of selected 3D pahes was therefore de ned
using the concept of 2D stride: i.e. 3D patches selected hagicentral voxel lying on a
2D grid of step (xL; 1L)-
The number of 3D patches of sid&lsaeq Saved on disk is therefore:

M
M saved = = (3.10)
XL IL
In our case the trade-o between the request for a su cientlylarge dataset and the
memory storage requirements led to the choice of. = |1 = 4: that iS Mgaeq =

Me =16 70k examples.

3.1.3 Preprocessing

Before implementing a deep learning algorithm it is good pctice to study how the
numerical range of examples behaves in the training contexthe training algorithms in
fact, due to numerical crunching reasons, do not work proggrif the input values are
either too small or too largé. In our case values contained in seismic volumes have an
extremely wide dynamic range in the order of £0

Far: Farmn = -623,911,936.00, Fak.x = 409,188,992.00.

STypically the range [0; 255] of the 8-bit unsigned integers is a good one for CNNs.

a7



CHAPTER 3 Implementation and Results

Near : Neah,n = -505,458,176.00, Neax = 402,230,816.00.

To study how the dynamic range of the data a ects training, ad thus develop a
preprocessing procedure if necessary, we have built a toyoplem. We chose to focus
on the left half of Base Il and extractM = 6,255 windrose patches of sid®lpacn = 33
from the available ones, on the Far volume. In Figur8.12you can see the distribution
of input values for the selected windrose patches and the ¢obutions given by the two
classes.

(a) Histogram of input values of the 6,255 selected (b) Histogram of input values of the 6,255 selected
windrose patch. windrose patch splitted by class.

Figure 3.12: Histogram of input values for the preprocessingyt problem.

Since the seismic volumes contain physical information albothe Rc¢ re ection co-
e cients, we decided to study three preprocessing cases thaould preserve the zero-
crossing characteristic of the original data, i.e. a trivilarescaling dividing original data
by a certain factor Fpc.

Original : Fpoc = 1. We keep the original data unchanged.

Normalized : Fpoc = Fnormaiized- We normalize the whole seismic volume, while
preserving zero-crossing, dividing b¥omalizedvoi = Maxf] VOlmin J;] VOlmax JO
where Vol = Far; Near.

Custom : Fyoc = Feustom. We adjust the normalized version by increasing data
range by a faCtor Of 100:Fcust0m = Fnorma”zed =100.

We have therefore studied how these three preprocessingtéas a ect the training
process applied to the architectures analyzed in this workWe have divided datasets
of this toy problem into a training set (90%) and validation gt (10%) to observe the
robustness of the training process from the generalizingity of the trained models.
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(a) (b)

Figure 3.13: E ects of preprocessing on training CNN As architdures. 3.13aWe can
see that the normalized version behaves worse, probably th@ues are too small. It is
very interesting to note that although the original versiorperforms better on the training
set, the custom version has the best generalizing ability3.13b The dropout seems to
compromise the training on the original data while the custo version performs pretty
well. We notice how the regularizing ability of the dropout keps the performance on
the training set and validation set close.

(@) (b)

Figure 3.14: E ects of preprocessing on training CNN Bs arclettures.

Considering the results expressed in Figuré&s13 and 3.14 and especially the good
performance of the custom preprocessing version on Dropaurthitectures, we decided
to use this preprocessing technique in all the simulationg this work.
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3.1.4 Dataset Augmentation

Given the scarcity of labeled examples compared to the numbef possible physically
acceptable con gurations in which 3D patches can be found. &\ecided to implement
the dataset augmentation in order to improve the generalitian of the models, providing
arti cially generated examples generated from real ones ithugh transformations that
preserve their realism.

The chosen transformations are:

XL-ipping : The 3D patch is mirrored on a plane passing through the cemtef
the 3D patch and orthogonal to the XL direction.

IL- ipping : The 3D patch is mirrored on a plane passing through the cemtef
the 3D patch and orthogonal to the IL directior?.

D-translation : The 3D patch is shifted to increasing or decreasing depth$ a
certain number of voxels, respectively positive or negagv This transformation is
important because horizons are the result of human interpiaion and therefore
not certain and not perfect. We account for this uncertain itroducing a random
noise in depth.

D-rotation : The 3D patch is rotated with respect to the axis passing throgh
the center of the 3D patch and parallel to D direction, by a ceéain angle. This
transformation implies that there's not a preferential diection between XL and IL.
Every object can be found orientated in all direction of the XEIL plane.

Scaling : The 3D patch is zoomed in or out by a certain factor, respestly larger
than or smaller than oné. This transformation tries to account for the depth
variation of seismic wavelet resolution (see Figutz10 and hence to help generalize
on surrounding depths.

Thinking about the D-rotation transformation, we realizedit hides a trap. In fact,

the seismic volume sampling is not isotropic in the three dictions, and especially XL
and IL. This characteristic of the seismic volume implies @t by rotating an original

3D patch you get another 3D patch that does not conform to therminal volume due
to this sampling asymmetry. For this reason, we decided to jpement a pre-treatment
procedure for original 3D patches in order to correctly pesfm dataset augmentation,
as graphically described in Figure3.15

6You can't do the same thing with the D direction because it would produce unrealistic examples,
a bit like seeing a tree upside down. The D direction is therefoe substantially di erent from the other

two.

"You may notice that in order to apply this transformation, the 3D patch mus t be larger than the nal
windrose patch; hence the requesNsaved > N parch - The same goes for the D-translation transformation.
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(@) (b)

Figure 3.15: XL-IL homogenization.3.15aThe original 3D patch extracted from seismic
volume. As you can see in the IL axis there's more informatiorespect to XL, this is
caused by dierence in axes sampling rates3.15b We expanded IL axis by a factor
Si. =2, homogenizing XL and IL axes.

Once the XL-IL homogenized patch is produced, we proceed totexct the central
region of sideNpacn from which the windrose patch is generated, as shown in FiguBel6
and Figure 3.17.

Figure 3.16: Nyacn central cropping of the axis-homogenized 3D patch.
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Figure 3.17: Original windrose patch of siz8lyaich = 33.

XL-Flipping

Flipping is a re ection transformation and cannot be describd as a rotation, so it is
necessary. Transformations are performed on the XL-IL homexized 3D patch, as visible
in Figure 3.18 from which it is then extracted a cropped sub-volume of sidlpach. In
Figure 3.19we show the XL- ipping data-augmented windrose patch.

@) (b)

Figure 3.18: Dataset augmentation: XL- ip.
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Figure 3.19: XL- ipping data-augmented windrose patch of s&Npaen = 33.

IL-Flipping

Figure 3.20: IL- ipping data-augmented windrose patch of g Npacen = 33.

D-Translation

This trasformation translates the 3D patch in depth of a randm number of voxel within
the range [ 5; +5].

Figure 3.21: D-translation data-augmented windrose patchf ®ize Nyacn = 33. This
windrose patch is associated to a translation of +5 voxel ingpth.
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D-Rotation

This transformation rotates the 3D patch of a random angle whin the range
[ 180;+180 ], with respect to the axis passing through the center and paltel to D.

Figure 3.22: D-rotation data-augmented windrose patch of A Nyacn = 33. This win-
drose patch is associated to a 90 degree anticlockwise ratat

Scaling

This transformation zooms out or in by a random factor withinthe range [09; 1:1], or
equivalently [ 10% +10%].

Figure 3.23: Scaling data-augmented windrose patch of siXgacn = 33. This windrose
patch is associated to a scaling factor of 0.9, or equivalgnto a zoom out of 10%.

Operatively, we implemented the dataset augmentation by gaentially applying all
the selected transformations, each with a certain probaliif® Pyansiormaton - SO that
a varied and representative dataset can be obtained withowxplicitly encoding every
combination.

8We implemented it in such a way that the original windrose patch is always kept. Therefore we can
also use unit-valued probabilities.
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3.2 Training on Base Il

In this section, we describe the results of the simulationsagied out by training the
models on portions of Base Il horizon and by studying the preztive behavior of the
models on previously unseen ones.

In this results presentation, we follow the logical path ofeasoning that has guided us in
our research. By exploring the key critical points identi @l, in particular:

On which seismic volume is it better to set up the DL task?

Is dataset augmentation useful for this DL approach?

How susceptible is this DL approach to channel-base segmeiua?

How and how much does the context extensiodNpach a ects DL performance?

To better understand the problem we are going to study and thdi erences between
the two seismic volumes, we can observe the following two iges which show the seismics
values of Base Il horizon voxels.

Observing Figures3.24 and 3.25 we notice two important facts: the dierence in
resolution between the two volumes and that this horizon dsenot perfectly follow a
constant seismics value. On the horizon, in fact, seismicke both negative and positive
values, contrary to what one might think. This depends on onband to the fact that
the horizon is the result of a semi-automatic manual intergtation and segmentation
and on the other to the fact that the horizontal seismic bandsepresenting strata are
discontinuous so that the operator interpreting horizonsxends these regions crossing
zones of discontinuity and inconsistency. However, the vohe from which the horizons
are segmented (Near) is consistent with the established cheat-base as this seems to be
more or less de ned by a positive (red) seismics. This is natdnd on the Far volume as
proof that the horizon has been segmented using Near seismics

9We studied the performance of the models on both Far and Near volumes, altugh we know that
since the horizons have been segmented from the seismics of Near, tladter is the logically coherent
seismic volume on which to base the DL approach outlined so far.
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Figure 3.24: Far seismics on Base Il horizon.

Figure 3.25: Near seismics on Base Il horizon.

3.2.1 Left Training and Right Inference

We initially observed the importance of performing some far of dataset augmentation.
For this purpose, we compared the results of two experimentenducted by training on
the left half of the Base Il horizon based on the Far volume.

The rst experiment consists of training only on original eamples while the second
one consists of training on the same number of data-augmedtexamples.

# Examples
Label Original | Data-augmented (x5)
Channel 13,133 2,626 x 5
Background| 15,795 3,158 x 5
% Channel | 45.40 % 45.40%
Tot 28,928 28,920

Table 3.1: Left training dataset composition. The symbol x%s the data-augmentation
factor which means that for each extracted original exampl& are produced (1 original
example unchanged plus 4 arti cial data-augmented examp@e The examples are ran-
domly selected from theMs,eq ONES located in the training area, i.e. the left half in this
case.

In these experiments and all the following ones, we chose twvide the training data
into an e ective training set (90%) and a validation set (10% to monitor the training
process. Data augmentation features implemented in this ggriment are expressed in
Table 3.2 These parameters are used for all the simulations in this woso that results
can be compared.
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Transformation | Pyansformation
D-rotation 1
XL- ipping 0.5
IL- ipping 0.5
D-traslation 0.5
Scaling 0.5

Table 3.2: Data augmentation probabilities. The D-rotatim has an associated unit
probability and this is allowed because we implemented thdhe original data is always
kept unchanged by data augmentation. The order in which theransformations are
expressed is the sequential order in which the data augmetitan is implemented. Hence,
rst, we execute the rotation, then on the rotated data, we e&cute the XL- ipping with
0.5 probability, etc.

In the following gures we show how data-augmentation a e the generalization
ability of the model here analyzed, CNN A orNyacn = 65 sided windrose patcf. The
model is trained in both experiments for 200 epochs To better understand the results,
we recommend checking the ground truth image valid for thessxperiments in Figure
3.10 remembering however that this is a segmentation made by tla@ithor and therefore
should not be considered certain and unmodi able.

0We chose to use the architecture without dropout to highlight the genealization power of data
augmentation. Also, we chose windrose patches large enough to allow the mddeo overt given the
high representational capacity induced by such a big patch in order toreveal discrepancies between
these two experiments.

1lB i i H i

y epoch we mean a complete iteration of stochastic gradient descentin other words, we can

say that during an epoch the model sees as many examples as the total nber of examples provided
for training. The stochastic gradient descent, in fact, works on randomy sampled minibatch of Mg
examples.
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Figure 3.26: Left training and right inference: original exaples.

In Figure 3.26we notice that in the training region the model almost perfdty over ts
the shape of the segmented channel, showing how the modelresgntational capacity is
high enough for this kind of problem. In the right half, i.e. he test half, we notice rst
of all that the model does not predict at random, this means #it useful information is
contained within the training set. However, we observe how éhprediction has several
high probability spots that are described in this segmentain as false-positives. We also
notice that the learned channel-base is extended as psewsimight laments that come
out from the training boundaries and do not follow the corrdcdownward meandering
shape of ground truth. According to our interpretation, thisis due to the lack of an
enough representative dataset of all the possible spatiaientations, in the XI-IL plane,
where a channel-base can be found.

Figure 3.27: Left training and right inference: data-augmead examples.

In Figure 3.27 we notice that in the training region despite the spatially dution *?
of training examples by a factor of 5, the shape of the segmedt channel continues
to be well represented. In the test region instead, we notideow the number of false-
positive spots has decreased and especially how the chaneehow better extended as
the expected downward trend is here present. At the top rightwe continue to see the
presence of a high probability channel-base region that isrtsistent with the topological
information inferable by examining Base Il horizon in Figure.6. This might mean that
the segmented channel-base is not the only one present in Bakhorizon.

Given the results produced, we can argue that for the DL taskescribed in this work,
the data augmentation is of fundamental importance and camt be omitted because the

121n Figure 3.26 the mean minimum distance, expressed in number of voxels, betea central voxel
of two training windrose patches is 4.22 while in Figure3.27is 9.43.
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number of physically acceptable con gurations that can beneountered far exceeds those
that can be extracted from a single horizon. Therefore, forlahe experiments carried
out in this work, data augmentation has always been applied.

3.2.2 K-Fold-Cross Validation

Cross-validation is any of various similar model validatio techniques for statistical as-
sessing how the results of an algorithm will generalize to andependent data set. It
is mainly used in settings where the goal is prediction, andhe wants to estimate how
accurately a predictive model will perform in practice. Thegoal of cross-validation is
to test the model's ability to predict new data that was not ugd in estimating it, in

order to ag problems like over tting or selection biag® and to give an insight on how
the model will generalize to an independent dataset.

Two types of cross-validation can be distinguished: exhau and non-exhaustive
cross-validation. Exhaustive cross-validation methodsra cross-validation methods
which study models that are respectively trained and testedn all possible ways to di-
vide the original dataset into a training and a test set. Non>dhaustive cross-validation
methods do not compute all ways of splitting the original daset. The most famous of
this class of methods is K-fold cross-validation.

In K-fold cross-validation, the original dataset is randory partitioned into K equal
sized subsamples. Of the K subsamples, a single subsamptetigined as the test dataset
for testing the model, and the remaining K-1 subsamples arsed as training the dataset.
The cross-validation process is then repeated K times, withach of the K subsamples
used exactly once as the test data, generating K di erent mads. The accuracies of the
K models can then be averaged to produce a single accuracyirastion.

In summary, K-fold cross-validation combines, or averageseasures of accuracy in
prediction to derive a more accurate estimate of model prexion performance with
associated uncertainty.

X
Acc

=1 (3.11)

g K 2
— i=1 (ACCi ACCK-fold )
Acc;K-fold — K

1
ACCx-fold K
S

13Selection bias is a distortion in a measure due to a sample selectiohat does not accurately re ect
the overall target ensemble.
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Figure 3.28: 4-fold cross-validation graphical represenitan. In this representation
dataset examples are randomly placed in a list and therefotbere is no concept of
samples spatial location.

In our case, a random partition of the dataset is not the mostatistically correct way
to apply K-fold cross-validation. Windrose patches that aréocated close on the horizon
have high correlation because they share part of their 3D demt and this can distort
accuracy estimates if K is small. We, therefore, decided tpli the dataset according to
a spatial criterion as in Figure3.29

Figure 3.29: 4-fold cross-validation subsamples on Base tst segmentation.

The results obtained from our simulations are shown below. KKhe prediction images
refer to the CNN A Dropout architecture trained for 1,000 epdts.
3.2.2.1 Small Context Extension

Initially we decided to study simpler cases so we set to a lovalue the extension of the
3D context associated with each voxel through the input patc In particular we selected
Npatch = 33.
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# Channel voxel | # Background voxel | % Channel voxel
Test set 1 105,752 182,704 36.66 %
Test set 2 122,627 165,223 42.60 %
Test set 3 137,526 150,324 47.78 %
Test set 4 6,309 281,541 2.19 %

Table 3.3: 4-fold cross-validation subsamples on Base lIst segmentation composition.
This table is relative to Figure3.29 As you can see the test set 4 has a class disproportion
compared to the other test sets and this is a critical point ahis subsampling. We opted
for this solution because it allows us to investigate via expiment 4 if and how the
information contained therein we have high con dence in segentation is re ected in
the leftmost margin where we have some doubt about the presenof a second channel-
base. However, in order to obtain better statistical resuliswe suggest implementing
di erent subsampling in the future.

First Version Segmentation

# Examples
Channel | Background | % Channel
Testset 1| 1,164 x 10| 1,855 x 10 | 38.56 %
Testset 2| 1,538 x 10| 1,698 x 10 | 47.53 %
Test set 3| 1,753 x 10| 1,483 x 10 | 54.17 %
Testset4| 54 x 10 2,964 x 10 1.79 %

Tot 125,900

Table 3.4: Npacn = 33 Base Il rst segmentation dataset composition. For a grahical
representation of Base Il rst segmentation see Figurd.29

We analyzed the problem set on both Far and Near volume.

Far Volume
Here we report the result of the 4-fold cross-validation. Faa clearer explanation we
now also show the result of experiment 4.
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(a) Histogram of preprocessed input values. (b) Histogram of preprocessed input values split-
ted by class.

Figure 3.30: Histogram of preprocessed input values for therRamlume N, = 33 Base
Il rst segmentation simulation.

Figure 3.31: Far volumeN,4cn = 33 Base Il rst segmentation: experiment 4.

Figure 3.32: Far volumeNpacn = 33 Base Il rst segmentation: accuracy evolution of
experiment 4.
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Figure 3.33: Far volumeN,.cn = 33 Base Il rst segmentation: prediction image.

Figure 3.33is obtained by composing the inference images of the four nedsl de-
ned by the 4-fold cross-validation on the respective testets. Therefore, the accuracy
calculated on this image is the same a&ccCcoq . By studying this image we see some
interesting facts. We observe that not considering test set which has already pointed
out critical issues, in test set 2 the DL task seems to be more allt than elsewhere.
We think that the cause of this lies in the non-coherent apptation of the Base Il horizon
on Far seismics, in fact, as previously pointed out, the haons have been segmented
according to Near seismics. Furthermore, we observe how isttaet 1 there seems to be
a channel-base con uence/bifurcation. From the topologa information we have, there
are no channel-bases in that area. However, it is possible theecause the context of the
windrose patches also extends in the depth direction and kase through training on the
horizon the model is not well trained on class discontinugs in depth, this channel-base
is either shallower or deeper than the training horizon.

Since the classes within each test set are neither balanceaor mn equal proportion
across di erent test sets, as seen in Tablg.4, we decided to also calculate the weighted
accuracy WAcc as de ned in Equation 3.12 Unweighted accuracy is simply de ned
as the ratio between the number of correctly predicted exartgs, true positive (True
Channel-base, TC) and true negative (True Background,TB), and the total number
of tested examples. The weighted accuracy version, on thenet hand, consists of the
average of compartmentalized accuracy on each class, thusdncing the prediction's
contribution even on sparsely populated classes.

-+ .
UAcq:u
#C; +#B ; .
1 TC¢  TB i=1;2::5K (3.12)
WAcc = = — 4+ L
€972 uc, B,
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(a) Unweighted accuracy U AcCk-foig - (b) Weighted accuracy W AcCk-old -

Figure 3.34: Far volumeN,xn = 33 Base Il rst segmentation: accuracies. We notice
that accuracies do not seem to increase in a statisticallygsii cant way as the number
of training epochs increases. This is a strong indication & in this con guration the
problem is not well-posed. Another important aspect that enmrges is that the standard
deviation associated with unweighted accuracy does not dease in a statistically signif-
icant way as the number of epochs increases. This means theéK weighted accuracies
are converging toward the same value as training proceeds.

Near Volume

(a) Histogram of preprocessed input values. (b) Histogram of preprocessed input values split-
ted by class.

Figure 3.35: Histogram of preprocessed input values for the Nealume Npaen = 33

Base Il rst segmentation simulation. We point out that compared to the histogram
of the dataset extracted on the Far seismics in Figurg8.3Q here the distribution of the
inputs associated with the Channel-base class seems to been®ymmetric around zero.
This is a rough indication that there is a profound di erencein the application of the
DL task on the two seismic volumes.
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Figure 3.36: Near volumeN.cn = 33 Base Il rst segmentation: prediction image.

In Figure 3.36we initially observe how this image looks more resolute thafigure 3.33
this is directly related to the higher resolution of Near semsics. We notice that in the
upper portion of test set 4 there is a predicted channel-basgstem that might be compat-
ible with the horizon topology in Figure3.6, but that has been considered as Background
in this segmentation. We observe that there is a channel-tm@shat consistently crosses
test sets 1 and 2 and runs parallel at the top of the segmentetdannel-base. We con-
sider this to be a false positive and we think, looking moreagely at the segmentation
in Figures 3.29 that this false positive may be due to an excessively broathssi cation
of channel-bases that includes excessive channel banks.

(a) Unweighted accuracy U AcCg-foid - (b) Weighted accuracy W AcCk-fold -

Figure 3.37: Near volumeéN.cn = 33 Base Il rst segmentation: accuracies. We observe
that in this case, accuracies show an initial growth trend tht stabilizes around 100
epochs at an approximate value of 70 %. The accuracy value da own brings little
information because the channel-base segmentation is nohsidered certain, so what is
actually signi cant is this growth trend as epochs progressThis is a further indication
that the DL task should be set on Near seismics.
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Second Version Segmentation

From considerations developed on Figurés36about the e ects of an excessive seg-
mentation, we decided to study how sensitive this DL appro&cis to segmentation. In
particular, we decided to slightly modify the rst segmentdion version of Base Il exclud-
ing what we believe to be critical portions of channel bankshat lead models to predict
false positives.

Figure 3.38: 4-fold cross-validation subsamples on Base éicend segmentation.

# Channel voxel | # Background voxel | % Channel voxel
Test set 1 93.043 195.413 32,26 %
Test set 2 85.732 202.118 29,78 %
Test set 3 130.181 157.669 45,23 %
Test set 4 6.309 281.541 2,19 %

Table 3.5: 4-fold cross-validation subsamples on Base licead segmentation composi-
tion.

# Examples
Channel | Background| % Channel
Testset 1| 1,006 x 10| 2,013 x 10| 33.32 %
Testset 2| 1,075 x 10| 2,161 x 10 | 33.22 %
Test set 3| 1,500 x 10| 1,736 x 10 | 46.36 %
Testset4| 54 x10 | 2,964 x 10 1.79 %
Tot 125,900

Table 3.6: Npacn = 33 Base Il second segmentation dataset composition.
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Far Volume

(a) Histogram of preprocessed input values. (b) Histogram of preprocessed input values split-
ted by class.

Figure 3.39: Histogram of preprocessed input values for therR@lume N,xcn = 33 Base
Il second segmentation simulation.

Figure 3.40: Far volumeN,xcn = 33 Base Il second segmentation: prediction image.

In Figure 3.40 we observe how the image looks cleaner compared to Fig®8&3 since
many false positives £ C) are no longer present. We notice that the prediction in tés
set 4 is substantially unchanged. We also notice that in tedet 2 the problem is still
more di cult than in the other test sets, although it is better solved. Finally, we observe
that the new segmentation allowed the model in test set 1 to meove the false positive
channel-base that seemed to merge/fork the segmented chahbase. From this visual
result, we can say that segmentation plays a fundamental mland even small changes
have a great impact on the behavior of DL models.
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(a) Unweighted accuracy U AcCk-fold - (b) Weighted accuracy W AcCk-fod -

Figure 3.41: Far volumeN,.n = 33 Base Il second segmentation: accuracies. We ob-
serve that unweighted accuracies with this new segmentati@are higher than accuracies
in Figure 3.34and also than weighted accuracies. The weighted accuradiestead remain
statistically unchanged with respect to the rst version sgmentation case. However, the
rst point is only an indication that the problem induced by the new segmentation is
more easily representable through the representational gacity of the studied models.
And the fact that the unweighted accuracies are statisticall higher than weighted ones
means that although the number of true negative B) has increased, the number of
true positive (T C), which in this kind of metrics counts more, has decrease@hese two
e ects balance each other perfectly keeping the weightedagacy unchanged compared
to the case with the rst segmentation.

Near Volume

(a) Histogram of preprocessed input values. (b) Histogram of preprocessed input values split-
ted by class.

Figure 3.42: Histogram of preprocessed input values for the Nealume Npaen = 33
Base Il second segmentation simulation.
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Figure 3.43: Near volumeNpacn = 33 Base Il second segmentation: prediction image.

For Figure 3.43similar considerations hold true to those expressed for Figu3.40 We
observe how a small variation in the segmentation has a sigi@nt e ect on the pre-
dictive behavior of the models. Therefore we can concludeathfor this DL approach
segmentation plays a determinant role and thus proper e orand care must be invested

in this process.

(a) Unweighted accuracy U AcCk-foid - (b) Weighted accuracy W AcCk-fold -

Figure 3.44: Near volumeNp,cn = 33 Base Il second segmentation: accuracies. We
observe how in the case of unweighted accuracies dropoutharectures show a better
generalizing ability as the associated accuracies contedo increase even beyond 100
epochs, where instead the other architectures seem to satig.

69



CHAPTER 3 Implementation and Results

3.2.2.2 Big Context Extension

Lastly, we explored how the extension of input patches a estthe performance of algo-
rithms. We wondered if a windrose patch of sid®& patch = 33 would provide enough
context to models for this DL task. For this purpose we studikthe caseN patch = 65,
and to allow comparability with previous simulations we kepthe same number of exam-
ples. We are well aware however of the danger represented bg turse of dimensionality.
This aspect is surely a critical point of these experiments.

# Examples
Channel | Background| % Channel
Testset1| 930x 10 | 1,809 x 10 | 33.95 %
Testset 2| 1,075 x 10| 1,970x 10| 35.30 %
Test set 3| 1,434 x 10| 1,612 x 10| 47.08 %
Testset4| 45x10 | 2,694 x 10 1.64 %
Tot 125,900
Table 3.7: Npach = 65 Base |l second segmentation dataset composition.
Far Volume

(b) Histogram of preprocessed input values split-
ted by class.

(a) Histogram of preprocessed input values.

Figure 3.45: Histogram of preprocessed input values for therR@lume N,xcn = 65 Base
Il second segmentation simulation.
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Figure 3.46: Far volumeN,xcn = 65 Base Il second segmentation: prediction image.

In Figure 3.46 we observe how the visual quality of the prediction has incased. In
fact, the many false-positiveF C spots in Figure3.36 are almost completely gone. The
increased context provided to the models also made possilalebetter solution to the
problem in test set 1.

(a) Unweighted accuracy U AcCk-fod - (b) Weighted accuracy W Acck-fold -

Figure 3.47: Far volumeN4cn = 65 Base |l second segmentation: accuracies. Although
the number of tunable parameters has signi cantly increasefor CNN As architectures,
see Table2.1, and the number of examples provided is minimal in this respg CNN A
Dropout seems to perform very well at least here working on Faeismics. An interesting
fact that can be seen by observing the weighted accuraciestbE CNN A Dropout
architecture is that the associated standard deviations arsensibly smaller than those of
the CNN B Dropout architecture accuracies.
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(a) First 3D view.

(b) Second 3D view

Figure 3.48: Far volumeN 4cn = 65 Base |l second segmentation: 3D view prediction
image.
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Near Volume

(a) Histogram of preprocessed input values. (b) Histogram of preprocessed input values split-
ted by class.

Figure 3.49: Histogram of preprocessed input values for the Nealume Npaen = 65
Base Il second segmentation simulation.

Figure 3.50: Near volumeNp,cn = 65 Base Il second segmentation: prediction image.

For Figure 3.50similar considerations hold true to those expressed for Figu3.46
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(a) Unweighted accuracy U AcCk-fold - (b) Weighted accuracy W AcCk-fod -

Figure 3.51: Near volumeNp,cn = 65 Base Il second segmentation: accuracies. We
observe that the increase in input context extension resgltin increased accuracy, as
occurred with Far. We also notice the overall increasing tral that is consistently ob-
served in all Near simulations. It is interesting to note howhe unweighted accuracy
gives the indication that CNN B Dropout has an insu cient representational capacity
as its performance saturates and tends to decrease compat@that of CNN A Dropout.
However, this consideration seems to be reversed when coasity weighted accuracy.
Therefore, we cannot at this point make quantitative consierations about whether one
architecture is better than the other.

(a) First 3D view.
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(b) Second 3D view

Figure 3.51: Near volumeN i = 65 Base |l second segmentation: 3D view prediction
image. Looking at Figure3.52ait is noteworthy how the model generalized in the lower
left region where there seems to be an internal bank separagitwo channel-bases. In
this region, in fact, although our raw segmentation tells utghat there is a channel-base,
the model gives a more realistic response by classifying & background.

3.3 Inference on Surroundings

In this section, we tried to extend the results obtained in Bse Il training/testing horizon
to its surroundings, in particular to Base Ill and Base | horzons. It is important to
point out that such inference is intrinsically badly posed straining occurred on a single
horizon, i.e. on a surface with little depth variation. Thismeans that models have not
received examples that provide signi cant class discontiities in depth. Therefore we
believe that the results that we are going to expose are a eadl by this point of criticality
and that this is re ected on predictions in multiple false paitives that in some cases are
artifacts, due to the unrepresentative training dataset, ad in other cases the recognition
of characteristic patterns of Base Il that fall within the dgth context of the windrose
input patches. However, we believe that the HSV infographic rtfeodology developed to
analyze these predictions provides interesting informain.
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Figure 3.52: HSV color cone space. HSV (Hue, Saturation, Valuey an alternative
representation of the RGB color model. In this model, colorsf each Hue are arranged
in a radial slice, around a central axis of neutral colors wti ranges from black at
the bottom to white at the top. The Saturation dimension resmbles various shades of
brightly colored paint, and the Value dimension resemblehé mixture of those paints
with various amounts of black or white paint.

We assigned to the Hue dimension the standard deviation asgied with the channel-
base predictions of the four models trained in the 4-fold cse-validation. Therefore
voxels whose predictions are consistent between the four dets will be colored blue
(low standard deviation) while those more uncertain of redhigh standard deviation).
Assigning to the Value dimension the average probability itsipossible to \turn on" only
the most interesting voxels. To generate these images we bdully saturated colors, i.e.
assigned to Saturation the maximum value.

The following images are produced by CNN A Dropout architectes trained for 1,000
epochs.

3.3.1 Base llI

We recommend to review Figure3.5 in order to comprehend the expected results for
the following images. We also show the value of the seismiagiothe horizon to better
interpret the model's behaviour in this area.
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Far Volume

Figure 3.53: Far seismics on Base Il horizon.

Figure 3.54: Base lll inference image on Far volume. CNN A Dropy Npach = 65
trained on Base Il second segmentation.

First of all, we notice that from the seismics over the horizonn Figures 3.53 a
characteristic channel-base pattern is not as clearly visde as in Figure3.24 Observing
the prediction image in Figure3.54 we gain information about the average channel-
base probability of the four models and the uncertainty ass@ated with this prediction.
We notice how the models identify a region of interest on theight side where from
topological information we know there is a channel-base. lihis regard, we point out
that the areas of high uncertainty and low probability (low ntensity dark red areas) are
often originated by the contribution of the model that has nbbeen trained on subsample
4 (Test set 4), which is also the area where we have strong désilon the validity of our
manual segmentation. Therefore, these areas also carrydargsting information about
the consistency of our segmentation. We observe the preseraf a channel-base that
reminds for position and morphology (see the intra-channélank) much that present in
Base Il. It is then possible that this is a false positive indted by the training performed
on Base II.
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Near Volume

Figure 3.55: Near seismics on Base Ill horizon.

Figure 3.56: Base Il inference image on Near volume. CNN A Dropo Npaenh = 65
trained on Base Il second segmentation.

We notice that from the seismics over the horizon in Figur@.55 a characteristic
channel-base pattern is not as clearly visible as in Figui25 We observe in Figure
3.56 how in this case the channel-base on the right side of the in@adas been well
recognized. However, we identify multiple false positivea the center of the image that
are probably due to the criticality exposed at the beginningf this section regarding the
applicability of this inference.

3.3.2 Base |l

We recommend to review Figure3.7 in order to comprehend the expected results for
the following images. We also show the value of the seismia®iothe horizon to better
interpret the model's behaviour in this area.
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Far Volume

Figure 3.57: Far seismics on Base | horizon.

Figure 3.58: Base Ill inference image on Far volume. CNN A Dropy Npach = 65
trained on Base Il second segmentation.

We observe that compared to the case of Base Ill here in FiguBes7 a well recog-
nizable channel-base structure is visible. In Figure we nog how on Base | horizon the
models do not predict any channel-base, except for the modkht has not been trained
on subsample 4. The contribution of that model is the only theseems to slightly predict
a channel-base in the region that we know to be a channel-baskhis is a strong indi-
cation that the segmentation used in the rightmost subsamelis not consistent with the
other subsamples of Base Il as well as with the implicit leaedl de nition of channel-base.
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Near Volume

Figure 3.59: Near seismics on Base | horizon.

Figure 3.60: Base Il inference image on Near volume. CNN A Dropo Npaen = 65
trained on Base Il second segmentation.

We notice that from the seismics over the horizon in Figur&.59 a characteristic
channel-base pattern clearly visible. We observe a largegren of false positives in the
upper right corner whose cause lies in the insu ciently repgsentative case history of
training examples provided by Base Il. Once again we point bahat the only model
that predicts channel-base in the region where we know thei® channel-base, although
it predicts numerous false positives throughout the horizg is the one that has not been
trained on subsample 4.

According to these images, we believe that the problem de nezh the Near volume
is more di cult than the one de ned on the Far volume. However,we also believe that
the problem should be de ned on the same volume from which tHerizons have been
segmented.
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Conclusion

This work consisted in the study and application of volumetc Deep Learning (DL)
approach to seismic data provided by Eni S.p.A., with an indusal utility perspective.
After a series of fruitful meetings with the Upstream & Technial Services team, we
clearly de ned the nal objective of this approach: the autenatic search for geological
structures such as turbidite channel-bases, as potentiagions of interest for the Oil &
Gas industry.

The dataset Eni gave us comprises of:

Two high quality 3D Pre-Stack Depth Migrated (PSDM) Volumes one Near re-
processed angle stack and orar angle stack.

Three manually interpreted surfaces ohorizons that have at least one embedded
turbidite channel-base: Base |, Base Il, Base IlI.

Four high quality exploration porosity well logs(W; W»,; W3; Ws) each one com-
posed of: the actual measured porosity log and the relevanmefjuency ltered
version.

The information on where the turbidite sediments in lls are is a very di cult one to
gain and it requires a lot of time, for geologists and geophygssts to correctly interpret the
seismic volume, and money, to collect well logs in order totablish high porosity regions.
Furthermore, even if this e ort is placed at work, a 3D relialte label with su cient spatial
resolution is impractical. On the other hand, the extractia of horizons is a relatively fast
and semi-automated process done using 3D visualization aprbcessing software, such
as Petrel. This is because the seismics is the most importaatribute in interpreting
and recognizing horizons.

Since we do not have the information on where the turbidite dements in lls are, we can
not set up the classi cation task as a direct search for thisikd of objects. However, we
do have three horizons with at least one embedded turbiditdhannel-base system.
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After all these consideration, we choose to de ne the deep ftemg task as binary
classi cation between turbidite channel-base and backgund using as input a sub-volume
context or a 3D patch. Or, in other words, we choose to build nadels that for every
voxel answer the question:

\ Does this voxel belong to a sub-volume that represents a channel-base system?

Since implementing this DL approach through 3D input patch& means that the
complexity of the problem grows very quickly with the extensn of this 3D context
(like third-degree polynomial) and thus undermining its sacess due to thecurse of
dimensionality, we decided to take an alternative route before admitting ta need to
move to full 3D. It has been decided to work with a certain numér of 2D patches,
according to what could be de ned as a 2.5D approach. The mosttuitive choice to
transform an intrinsically 3D problem into a 2D one is to takeslices along the coordinated
axes of the subvolume (Cross Line XL, In Line IL, Depth D), in a mmde that we have
named \windrose".

In this work, we have analyzed and studied the following aspes and points of criti-

cality.

Preprocessing

Before implementing a deep learning algorithm it is good peéice to study how
the numerical range of examples behaves in the training cext. The training
algorithms in fact, due to numerical crunching reasons, dooh work properly if
the input values are either too small or too large. In our caselues contained in
seismic volumes have an extremely wide dynamic range in theder of 1. We
analyzed how the training process was in uenced by three t@s of preprocessing:
original (original data unchanged), normalized (we broughthe dynamic range of
the entire seismic volume within the range [1; 1], while preserving zero-crossing)
and custom (we adjusted the normalized version by increagirdata range by a
factor of 100).

Results showed how an appropriate data preprocessing stejostantially improves
both the training process, especially for models integraij the dropout regulariza-
tion technique, and the generalizing ability of the models.

Dataset augmentation

Given the scarcity of labeled examples compared to the numbef possible physi-
cally acceptable con gurations in which 3D patches can bedad. We decided to
implement the augmentation dataset in order to improve the gneralization of the
models, providing arti cially generated examples generat from real ones through
transformations that preserve their realism. We implemesetd the following trans-
formation: XL- ipping, IL- ipping, D-translation, D-rota tion and Scaling.
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We compared two simulations with the same number of examplesne using only
the native ones and the other with a mixture of original and agmented data.
The results showed how the use of arti cially generated datallows models to
better generalize, at least in a qualitative way. In this apmach, the number
of con gurations accessible through the original examplas much lower than the
number of con gurations physically plausible or even ndalke in the seismic volume.
Just think of all the possible orientations in the XL-IL plane nh which a geo-object
can be found. We have therefore concluded that the datasetgmentation for this
type of DL approach is fundamental.

Channel-base segmentation

We manually segmented from Base Il horizon a channel-basengsonly topological
information. Unfortunately, it is di cult to exactly de ne w here the channel-base
ends and it was part of this work to gure out how this de nition a ects our DL
classi cation problem.

We studied qualitatively and quantitatively through K-fold cross-validation two
similar segmentations of the previously mentioned cannbise: an extended one
that also included bank areas and a more stringent one that elxided those few
areas that we considered possible outliers. We found thatesva small variation
in ground truth has a great e ect on both the visual consistegy of the prediction
images and the accuracy measured by K-fold cross-validatio In particular, we
observed an increase in accuracy of about 10% using the mdsihgent segmenta-
tion. We cannot say that the second segmentation is better bause the accuracy is
better, what we can say instead is that this type of problem igery sensitive to seg-
mentation and therefore it is necessary to invest su cient @rt in the generation
of reliable labels.

Context extension

We previously introduced the concept of the 3D patch in the ecwext of a patch-
based classi cation task. This context must be large enougio provide adequate
information about the voxel's surroundings for the classcation task, but at the
same time it must be small enough to keep the complexity of theroblem under
control and allow good generalization.

We studied qualitatively and quantitatively two context extensions using K-fold
cross-validation and found that, at least for the number ofraining examples chosen
in our experiments ( 80k), the larger version allowed a 5-7% increase in accuracy
and a large suppression of false positives. This probablypdads on the spatial
resolution of the seismics around Base Il, which limits thenformative content of
the input patches. We concluded that, at least for the extenmsns analyzed, the
damage caused by the increase in complexity due to the greatember of tunable
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parameters was outweighed by the bene ts brought by the inease in information
content due to a wider context extension. Therefore, we thinthat the results
presented here can provide a point of reference for de ningatgh extensions in
areas with di erent seismics resolution.

Far volume or Near volume : As expressed above we worked on two seismic
volume, Far and Near. These two volumes are di erent types otacks and they
are sensitive to di erent seismic properties; for instancere could say that the Far

is more sensitive to uid presence.

We studied qualitatively and quantitatively through K-fold cross-validation the
problem set on both Far and Near volume. From our experimentseaobserved
that, from a statistical point of view, the performances of he models trained on
Near are more convincing than those on Far. We noticed that thaccuracy as
measured by K-fold cross-validation tends to increase witihe number of training

epochs, which is not the case with Far. We can not say that it ibetter to set

the problem on the Near since horizons used in this work have dre segmented
from the Near seismics. For this reason, we believe that theginlem appears more
consistent on Near. Therefore what we can say from the studiearried out is

that the problem appears to be better set on the volume usedrfthe horizons

segmentation.

Given the results achieved and the potential shown by this Dlapproach, we have
the following recommendations to proceed with a further stiy.

From our experiments, we observed that the problem set on tik@r volume appears
easier than the one set on the Near volume. Therefore, we sugig® carry out
a study similar to the one carried out in this work, in order to nally establish
whether or not it is useful to set the problem on the Far volumeusing horizons
segmented on the Far volume.

Given the poor ability of the models to generalize on other ln@ons at di erent
depths, we suggest doing a multi horizon training. We beliewvthat this can provide
the necessary information of strong depth discontinuity tdetter infer in all three
spatial directions. In this regard, we recommend making thfellowing multi horizon
training to compare it with the results expressed in this wade training on Base I
plus Base | and inference on Base IIl.

We believe that the approach developed in this work involvopthe windrose input
patches has proven to be satisfactory. We consider intergsj to explore new
input patch con gurations by adding slice at di erent angles to windrose patch as
a sequence of gradually increasing complexity approachegsto full 3D.
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Conclusion

From a qualitative point of view, the generalization resulk on Base |l were judged
by Eni's experts to be consistent. Therefore, the proposedeatinod is able to extract
valuable information from the seismic data volume. Howeveg scale-up of examples
and computing power is necessary to unleash a credible reésoih the entire seismic

volume.
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