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Abstract

In recent years there has been a growing attention from the world of research and com-

panies in the field of Machine Learning. This interest, thanks mainly to the increasing

availability of large amounts of data, and the respective strengthening of the hardware

sector useful for their analysis, has led to the birth of Deep Learning. The growing com-

puting capacity and the use of mathematical optimization techniques, already studied in

depth but with few applications due to a low computational power, have then allowed

the development of a new approach called Reinforcement Learning.

This thesis work is part of an industrial process of selection of fruit for sale, thanks

to the identification and classification of any defects present on it. The final objective is

to measure the similarity between them, being able to identify and link them together,

even if coming from optical acquisitions obtained at different time steps.

We therefore studied a class of algorithms characteristic of Reinforcement Learning,

the policy gradient methods, in order to train a feedforward neural network to compare

possible malformations of the same fruit. Finally, an applicability study was made, based

on real data, in which the model was compared on different fruit rolling dynamics and

with different versions of the network.





Sommario

Negli ultimi anni si è assistito ad una crescente attenzione da parte del mondo della

ricerca e delle aziende al campo del Machine Learning. Questo interessamento, grazie

soprattutto alla crescente disponibilità di grandi quantità di dati, e dal rispettivo po-

tenziamento del comparto hardware utile alla loro analisi, è sfociato nella nascita del

Deep Learning. La crescente capacità di calcolo e l’utilizzo di tecniche di ottimizzazione

matematica, già in precedenza studiate approfonditamente ma con poche applicazioni a

causa della scarsa potenza computazionale, hanno poi permesso lo sviluppo di un nuovo

approccio che prende il nome di Reinforcement Learning.

Questo lavoro di tesi si inserisce all’interno di un processo industriale di selezione della

frutta destinata alla vendita, grazie all’individuazione ed alla classificazione di eventuali

difetti presenti su di essa. L’obiettivo finale è quello di essere in grado di misurare la

similarità tra questi, riuscendo ad identificarli ed a collegarli tra loro, anche se provenienti

da acquisizioni ottiche ottenute ad istanti temporali differenti.

Si è quindi studiato una classe di algoritmi caratteristici del Reinforcement Learning,

i policy gradient methods, al fine di addestrare una rete neurale feedforward a confrontare

tra loro le eventuali malformazioni di uno stesso frutto. Infine si è fatto uno studio di

applicabilità, basato su dati reali, in cui si è confrontato il modello su diverse dinamiche

di rotolamento dei frutti e con differenti versioni della rete.
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General Introduction

In Chapter 1, basic machine learning concepts are introduced, the different learning

approaches, what does it mean to overfit a model, the importance of hyperparameters

and their role, and the gradient-based optimization and how it is implemented.

In Chapter 2, a very common model for deep learning, feedforward neural networks,

is presented and the different parts from which it is composed of, such as perceptrons,

layers, activation functions, and the backpropagation algorithm, are described in details.

In Chapter 3, the reinforcement learning framework is introduced, with particular

attention to a formal definition of finite Markov decision processes, and the fundamental

elements of reinforcement learning, such as states, actions, rewards, and policies.

In Chapter 4, some basic reinforcement learning algorithms are presented, useful for

understanding general ideas such as generalized policy iteration, which describes the

relationship between the value function and the policy.

In Chapter 5, the concepts presented before are extended thanks to the use of func-

tions approximation, which allows solutions to be found even in a more general context,

allowing the treatment of more complex problems.

In Chapter 6, the problem faced is described and an alternative approach is proposed;

the methods and models actually used to solve this are then presented, with particular

regards to the fruits modelling process and data generation.

In Chapter 7, several tests carried out on the dataset are presented, both as regards

the study of different dynamics and the comparison between different models; the nu-

merical results obtained are then reported, from which some conclusions can be drawn,

also with a view to future developments.

xxi





Part I

Deep Learning
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Chapter 1

Introduction to Machine Learning

1.1 Basic Concepts

Today the word artificial intelligence is used, and often abused, in a large number of

areas, both scientific or not, and it is good to clarify what we are actually talking about.

Practically speaking, AI is a thriving field with many practical applications and active

research topics. Researchers look for intelligent software to automate routine labor,

understand speech or images, make diagnoses in medicine and support basic scientific

research. The true challenge to artificial intelligence is in fact in solving tasks that are

easy for people to perform, but hard to describe formally [Goodfellow et al., 2017].

The solution might be to allow computers to learn from experience and understand the

world in terms of a hierarchy of concepts, with each concept defined in terms of its relation

to simpler concepts. This hierarchy allows the computer to learn complicated concepts

by building them out of simpler ones. If this process were represented graphically it

would probably be similar to a graph showing how all these ideas are built on top of

each other, with the graph being deep, with many layers. For this reason, this approach

to AI is usually called deep learning.

The difficulties faced by systems relying on coded knowledge suggest that deep learn-

ing systems need the ability to acquire their own knowledge, by extracting patterns from

raw data. This capability is known as machine learning. The performance of these

machine learning algorithms depends heavily on the representation of the data they are

given. Each piece of information included in this representation is known as a feature.

3



1.1.1 Task, Performance and Experience

In [Mitchell, 1997] it is very clearly defined what is meant by learning for a computer:

A computer program is said to learn from experience E with respect to some

class of tasks T and performance measure P , if its performance at tasks in

T , as measured by P , improves with experience E.

In this relatively formal definition of the word ”task”, it is important to notice that the

process of learning itself is not the task. Learning is the means of attaining the ability

to perform the task T . Machine learning tasks are usually described in terms of how

the machine learning system should process an example. An example is a collection of

features that have been quantitatively measured from some object or event. An example

is generally represented as a feature vector x ∈ Rd, where each entry xi is a different

feature. Several are the tasks that a machine learning algorithm can perform, such as

regression, classification, probability density estimation and many others.

In order to evaluate the ability of a machine learning algorithm to perform such a

task, there is need to define a quantitative way of defining a measure of its performance

P , usually specific to the task T being carried on. For tasks such as classification and

so on, often the accuracy of the model is measured, or the proportion of examples for

which the model produces the correct output. Equivalent information can be obtained

by measuring the error rate, the proportion of examples for which the model produces

and incorrect output. It is important to say that only the performance of data that the

model has not seen before is interesting, since this can an esteem of how well it would

work when deployed in the real world.

Supervised vs. Unsupervised Learning

Machine learning algorithms can also be broadly categorized as unsupervised or super-

vised based upon what kind of experience they are allowed to have during the learning

process and how the training dataset is structured. Unsupervised learning algorithms

usually have a dataset containing many features and then learn the useful properties of

the structure of this dataset. Supervised learning algorithms, on the other hand, have

a dataset containing features too, but each of these is also associated with a label (or

target). Roughly speaking, unsupervised learning involves observing several examples

of an input vector x and trying to learn some interesting properties of the underlying

4



distribution p(x), while supervised learning involves observing several examples of the

same vector and of the associated value vector y, learning to predict p(y|x).

1.1.2 Flexibility, Underfitting and Overfitting

As said before, the main challenge of deep learning is to perform well on new, unseen

data. This ability is called generalization. When a machine learning model is in training,

it is possible to compute some error measure of the training set called training error.

But actually we want to minimize the so called generalization error (often also called

test error), which is defined as the expected value of the error on a new input. This

is typically estimated by measuring the performance on a test set of examples, which

are kept separated from the training set. The machine learning process can then be

summarized in two steps: the training set is sampled and the model is trained to minimize

training error; and then it is tested on a test set to determine the generalization error.

As a consequence of the entire process, the expected test error is ofter greater or

equal than the training error. The factors determining how well a machine learning

algorithm will perform are its ability to make the training error the smallest as possible

and shrinking the gap between the test error. These two factors corresponds to the two

central challenges in machine learning: underfitting and overfitting. The first occurs

when the model is not able to obtain a sufficiently low error value on the training set,

whilst the second occurs when the gap between the two errors is too large. A graphical

representation of the two is reported in Figure 1.1.

Is it possible to control how much likely a model will overfit or underfit by altering its

property called flexibility. Practically speaking, a model’s flexibility is its ability to fit a

wide variety of functions. Flexible models can overfit by simply memorizing the correct

answers to the training set, while models with low flexibility may have some difficulties

to fit it. One way to control the flexibility of the model is to choose the dimension of its

hypotesis space, the set of functions that the learning algorithm is allowed to select as

the general solution of the problem.

For example, the flexibility of a linear regression spline, which is represented by:

ŷ = b+
n∑
i=1

wix
i (1.1)

it’s in the number of their parameters wi (and, as a consequence, in the maximum grade

of the polynomial). However, it is important to note that, even if there are polynomials
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of high grade in the function, this is still linear since the equation is a linear combination

of the parameters wi.

Machine learning algorithms generally perform best when their flexibility is appro-

priate for the true complexity of the task they need to perform. Models with insufficient

flexibility are obviously unable to solve complex tasks. On the other hand, models with

high flexibility can solve complex tasks, but when their flexibility is too high for the

currentt task they may overfit. These two situations are graphically represented as an

example in Figure 1.1, where the simple linear regression on the left side does not capture

the complexity of the system below, while the higher degree model on the right side is

too precise and will probably have an higher value of the test error.

(a) Underfitting (b) Appropriate (c) Overfitting

Figure 1.1: Flexibility of a model.

A graphical representation of the struggle to find the best combination between un-

derfitting and overfitting is also reported in Figure 1.2. In this image are depicted the

trends of the training error and the test error with respect to the flexibility of the model

and the conncection with Figure 1.1 is immediately clear. A low flexibility in the model

would probably lead to a bounded generalization gap (difference of the test and training

error), but also to a high test error, due to the model’s inability to generalize. On the

other hand, a high flexibility of the model will bring a lower test error in a first instance

but will probably lead to overfitting, causing a diverging generalization gap.
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Figure 1.2: Optimal model flexibility.

1.1.3 Validation Set, Hyperparameters, and Cross-Validation

An easy but effective strategy to avoid overfitting is to define another set, called validation

set, from the training set containing samples which the training set that will not be

observed during the training phase (this is made because the test set cannot be used in

any other way than to estimate the error rate), against which we are going to evaluate

model’s performance. Assuming that these two datasets are indipendently extracted and

identically distributed, the optimization goal becomes lowering the train and validation

errors while ensuring that the difference between the two stays low.

Measuring the performance on both the datasets, during the training phase, will

show that performance improves for both the errors until the model starts to reproduce

the features of the training dataset. In this case we observe that the train performance

continues to slowly decrease as expected, while the validation error increases as the model

starts to overfit. Interrupting the training process before the validation error starts to

increase should ensure that the model optimizes while retaining enough generalization

capabilities, this trick is called early stopping. Since we’re not evaluating the actual

performance on the test set, there is no precise point where we need to stop training but

rather an interval, as depicted in Figure 1.3.
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Figure 1.3: Early stopping.

Most machine learning algorithms also have the possibility to control some parame-

ters, which are called hyperparameters, in order to modify the general behaviour of the

model. In the linear regression example from Equation 1.1, the only hyperparameter is

the degree of the polynomial, but often there are more of them. The values of hyper-

parameters are usually not learned through the learning algorithm and, since this can

be viewed as an underfitting vs. overfitting problem, it is usally used the validation set

for this purpose too. It is important to notice that, as explained before, the validation

error will of course underestimate the generalization error, though typically by a smaller

amount than the training error.

The main problem now, is how to divide the dataset into the training plus validation

part and the test part. This is crucial especially when the dataset is small, since this

implies a big uncertainty around the estimated test error. The most common technique

for solving the problem is called k-fold Cross-Validation, which allows to use all the

examples for the estimation of the generalizaion error at the cost of increased compu-

tation. This procedure is based upon the idea of repeating the training and testing on

differently random chosen splits of the original dataset. The dataset is divided into k

non-overlapping subsets and, on trial i, the i-th subset of the data is used to estimate

the test set, while the rest of the data is used as the training and validation sets.
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Figure 1.4: K-fold Cross Validation.

1.2 Gradient-Based Optimization

As a consequence of what has being said about minimizing the error functions, it is

possible to think deep learning algorithms as optimization problems. In optimiziation

problems, one tries to minimize or maximize some function f(x), the so called objective

function, or criterion, by modifying the input x. In the deep learning framework, this

function is obviously the training error, which is often also called cost function, error

function, or simply the loss of the model.

The most common technique in optimization problems is the gradient descent, which

exploits the properties of the first derivative f ′(x) of the loss function to find its minimum.

The derivation operation is very useful in this task, since it tells us how to change the

input x in order to slightly modify f(x) in the direction we want. In fact, it is immediate

to demonstrate that f(x− ε sign(f ′(x))) is less than f(x) for a small enough ε.

For functions with several variables it is necessary to introduce partial derivatives.

The partial derivative ∂
∂xi
f(x) measures how f changes as only the variable xi increase

at point x. The vector containing all the partial derivatives, with respect to different

directions, is called gradient and denoted by ∇xf(x). This generalizes the concept of

derivative in multiple dimensions and therefore a critical point has a zero gradient.
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The points in which f ′(x) = 0, the derivative provides no information about which

direction leads to an increase, or a decrease, of the function. Such points are called

critical, or stationary, points. Each of these is also called a local minimum if f(x) is lower

than all neighboring points, or a local maximum if higher. If it is neither a minimum or

a maximum, it is called a saddle point. If a point has also the absolute lowest value of

f(x), it is called the global minimum, or global maximum if it is the highest.

In the context of deep learning, is happens very often to have functions with many

local minima wich are not optimal, and many saddle points surrounded by flat regions.

Since this makes the learning process very difficult and slow, it’s usually fine to settle

for finding a value of f(x) that is very low, but not necessarily minimal. An example of

a objective function trend is reported in Figure 1.5.

  0

Global Minimum
Suboptimal

Local Minimum

Local Minimum

Figure 1.5: Minima optimization landscape.

1.2.1 Minibatch Stochastic Gradient Descent

The gradient descent technique is based on the property of the gradient to always point

in the direction of maximum increase of the objective function f(x). From this, we

deduce that it is possible to decrease the function by simply moving in the direction of

the negative gradient −∇xf(x).
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This method, known as method of steepest descent, or simply gradient descent, pro-

poses a new point x′, for which f(x′) < f(x):

x′ = x− ε∇xf(x) (1.2)

where ε is a positive valued parameter, called learning rate.

In terms of deep learning, the objective function to minimize is usually the loss func-

tion L(x,θ), where θ is the vector that describes the model’s paramters. The gradient

is then taken with respect to θ, in order to reduce the loss over the input values x(i)

from the dataset. If a gradient step is evaluated over all the training set, the algorithm

is said to be deterministic but, if the dataset dimension n is very large, it can be too

computationally expensive, and the time to take a gradient step becomes prohibitively

long. On the other hand, if a gradient step is evaluated for each of the dataset samples

the method is called stochastic, but the result is probably very noisy.

Most algorithms used for deep learning fall somewhere in between, using more than

one but less than all of the training samples, and are then called minibatch methods.

The novelty introduced by these is that the gradient descent is now based upon an

expectation, which is approximately estimated using a subsample of the dataset. On

each step of the algorithm in fact, a batch B = {x(1) . . .x(m)} of examples is fed from

the dataset into the algorithm. Here the batch size m is typically chosen to be relatively

small with compared to the dataset size n. An implementation of the resulting algorithm

is reported in Algorithm 1.

Algorithm 1: Minibatch Stochastic Gradient Descent

Inputs: a training set X, a loss function L(θ,x)

Parameters: model parameters θ, learning rate ε, a small threshold η

used to determine the accuracy of the parameters θ

Initialization: θi randomly

while L(θ,x) < η do

sample {x(1) . . .x(m)} from X

g = 1
m
∇θ
∑m

i=1 L(x(i),θ)

θ ← θ − εg
return θ
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1.2.2 Adaptive Learning Rates

A crucial parameter of the gradient descent algorithm is the learning rate ε, and it is

usually very difficult to set because it a has a significant effect of model performance. In

fact, it is important to decrease ε over time because, by random sampling the m training

samples, a lot of noise is introduced in the process, which does not vanish when arriving

at a minimum. Initially it was common to decay the learning rate linearly until a certain

iteration τ , after which it will simply remains constant:

εk = (1− α)ε0 + αετ (1.3)

with α = k
τ
. This method is certainly simple and effective in making the algorithm

converge but it can be improved quite easily.

The easisest way to do so is by introducing momentums, which are designed to ac-

celerate learning, especially when facing small but consistent gradients. Formally, this

algorithm introduces a variable v, that plays the role of a sort of velocity of the parame-

ters. This velocity is set to an exponentially decaying average of the negative gradients.

An hyperparameter α ∈ [0, 1] determines how quickly the contributions of previous gra-

dients exponentially decay, and the new update rule is then given by:

v ← αv − ε∇θ
(

1

m

m∑
i=1

L(f(x(i),θ))

)
(1.4)

θ ← θ + v (1.5)

Here, the velocity v accumulates the gradients elements ∇θ
(

1
m

∑m
i=1 L(f(x(i),θ)

)
) and,

the larger α is relative to ε, the more previous gradients affect the current direction.

Actually it is possible to think the problems of finding the best learning parameters

and the best learning rate as separated, and to adapt a different learning rate for each

parameter. The AdaGrad algorithm from [Duchi et al., 2011], for example, individually

adapts the learning rates of all parameters by scaling them inversely proportional to the

square root of the sum of all of their historical squared values. The parameters with

the largest partial derivative of the loss have a correspondingly rapid decrease in their

learning rate, while parameters with small partial derivatives have a relatively small

decrease in their learning rate. The final effect is greater progress in the lesser sloped

directions of parameter space.

A slightly modification of this is the RMSProp algorithm, from [Hinton, 2012], which

changes the gradient accumulation into an exponential weighted moving average. This
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is done to discard history form the extreme past so the model can converge rapidly

after finding a convex bowl. This algorithm has been shown to be an effective and

practical optimization algorithm for neural networks, and its one of the best optimization

algorithms available.

The last learning rate optimization algorithm presented is Adam (which stands for

“adaptive moments”), from [Kingma and Ba, 2014], which is a variant of the combina-

tion of the RMSProp with momentum. First, the momentum is incorporated directly as

an estimate of the first order moment (with exponential weighting) of the rescaled gra-

dients. Second, first order and second order moments estimates are bias corrected. The

implementation of the stochastic gradient descent algorithm with the Adam optimizer is

reported in Algorithm 2, where the � operation is intended as an element-wise product.

Algorithm 2: Minibatch Stochastic Gradient Descent (Adam Optimizer)

Inputs: a training set X, a loss function L(θ,x)

Parameters: function parameters θ, learning rate ε (usually 10−4),

exponential decay rates ρ1 and ρ2 (usually 0.9 and 0.999 respectively),

a small constant δ for numerical stabilization (usually 10−8),

a small threshold η used to determine the accuracy of the paramters θ

Initialization: θi randomly, first and second moment variables s = 0 and

r = 0, timestep t = 0

while L(θ,x) < η do

sample {x(1) . . .x(m)} from X

g = 1
m
∇θ
∑m

i=1 L(x(i),θ)

t← t+ 1

biased first moment estsimate: s← ρ1s+ (1− ρ1)g
biased second moment estsimate: r ← ρ2r + (1− ρ2)g � g
correct bias in first moment: ŝ← s

1−ρt1
correct bias in second moment: r̂ ← r

1−ρt2
θ ← θ − ε ŝ√

r̂+δ

return θ
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Chapter 2

Artificial Neural Networks and Deep

Learning

2.1 Introduction

Deep feedforward neural networks, often simply called deep neural networks, are the

representative model for deep learning. The main goal of a deep neural network is to

approximate some function f ∗(x), for example a classifier which maps an input vector

x to a certain class yi, coded inside the class vector y. From a mathematical point of

view, a deep neural network defines a mapping:

y = f(x,θ) (2.1)

where the parameters θ are the trainable parameters, which are learned during the

training phase, and which lead to the best function approximation.

These models are called feedforward because the information travels only in a certain

direction, from the input x, directly to the output y. Unlike in recurrent neural networks

(RNN), not covered here, there are no feedback connections, in which outputs of the

model are taken back as input into themselves.

Feedforward neural networks are also called networks, because they are typically

associated with a directed acyclic graph, describing how the different parts are com-

posed together. In Figure 2.1 a simple network is represented, in which three function

f (1), f (2), f (3) are linked together to form the composed function:

f = f (3)(f (2)(f (1)(x))) (2.2)
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In this case, each function is called a layer of the network, i.e. f (1) if the first layer, f (2)

if the second layer, and so on. The final layer of the network is called the output layer,

while the overall length of the chain is named the depth of the model. Since only the

output is compared to the expected result y = f ∗(x), the layers in between are called

hidden layers. Each of these is typically vector-valued, and the dimensionality of the

largest one determines the width of the model. During the training phase of the neural

network, the learning algorithm decides how to tune these hidden layers, in order to

implement the best approximation of f ∗.

Figure 2.1: Basic feedforward network.

Finally, these networks are said to be neural because the loosely resembles a network

of neurons from neuroscience. Each element of the layer is called a perceptron, hence the

alternative name for neural networks: multilayer perceptrons (MLP), which are thought

to play a role similar to a neuron. Thanks to this similarity, it is possible to think a

single layer as consisting of many units that act in parallel, each representing a vector-

to-scalar function rather than a vector-to-vector function, which, as we shall see, leads

to simplifications in the application of gradient descent algorithms.

2.2 Single Layer Perceptron

As a consequence of what has been said, a single perceptron takes a vector-valued in-

put and outputs a scalar. In order to do this, each unit has an unique weights vector

w = {w1, w2, . . . , wp}, each of which will be updated and learned during the training

phase of the model, and an activation function ϕ(x), usually non-linear. The percep-

tron behaviour can then be divided into two steps: firstly, the perceptron computes

the weighted sum of the input vector
∑

j wjxj and, secondly, in applies the activation

function so the obtained result. The perceptron is also said to be linear or non-linear,

depending on the nature of its activation function.
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Thanks to its neural nature, its quite common to represent a generic perceptron as

depicted in Figure 2.2, alongside with its mathematical equation.

  

φΣ

. . .

x1

x 2

xn

yx3

w1w2
w3

wn

. . .

y = ϕ

(∑
j

xjwj

)
(2.3)

Figure 2.2: Single layer perceptron.

2.2.1 Linear Case

Of all the possible cases, the simplest one is undoubtedly the one in which the activation

function is a linear one. One of the simplest activation functions available in this case is

the binary activation function (also called Heaviside step function):

ϕ(x) = H(x)
.
=

1, if x ≥ θ

0, if x < θ
(2.4)

Figure 2.3: Binary activation function.

In Figure 2.3 the parameter was fixed θ = 0 for the simplicity of representation, but in

general it can be fixed to any value. The main problem with a step function is that it

doesn’t allow vector-value outputs (e.g. it doesn’t support the classification of the inputs

into one of several categories), or at least it would need one additional parameter θi for

each additional class, rising up the number of the parameters to choose (and therefore

the flexibility of the model).
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Despite being so simple, it is possible to describe some boolean functions like AND

or OR using a perceptron without weights and a binary step function. In order to do so

threshold should be θ = 2 and θ = 1, for the AND and for the OR function respectively,

with the inputs that are only between xi ∈ {0, 1}.

(a) AND (b) OR

Figure 2.4: Neural implementation of logic gates.

Another functions often used is the simple linear activation function:

ϕ(x) = α · x (2.5)

Figure 2.5: Linear activation function.

which takes the weighted sum of the inputs and creates an output signal directly propor-

tional to it. In a certain sense, a linear function is better than a step function because

it allows multiple outputs without incrementing the number of parameters. As before,

in Figure 2.5 the parameter was fixed c = 1 for the simplicity of representation, but in

general it can be fixed to any value.

Linear perceptrons, however, are not really useful in more advanced tasks, like image

recognition or classification. This is due to the fact that it is not possible to use a

technique called backpropagation (based on the gradient descent method), which will

be explained later, to train the model. The derivative of a linear function is in fact
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constant, and therefore has no relation to the input vector x, so it is not possible to

go back and understand which weights or parameters in the input neurons can provide

better prediction. Another reason is that, with linear activations, all the hidden layers

of the neural network collapse into one. No matter how many there are, the last layer

will be a simple linear function of the first (since a combination of linear functions is still

a linear functions). This prevents the model from stacking several layers and to achieve

a more complex behaviour.

2.2.2 Non-linear Case

Non-linear perceptrons differently, uses non-linear activation functions and, therefore,

can be stacked to form a deeper network with more complex behaviour. Actually, there

are a lot of different functions to choose from in the non-linear case, each one with some

pros and cons. It is also important to distinguish between the ones which can be used

in the output layer and the ones used mainly in the hidden ones.

Output Units

Many tasks often requires to predict the probability of an input vector x to belong to

class yi. Since the output must be bounded in the interval [0, 1], it’s useful to use non-

linear functions with the same span. One of the most common non-linear functions with

this property, is the sigmoid activation function, defined as:

ϕ(x) = σ(x)
.
=

1

1 + exp(−x)
(2.6)

Figure 2.6: Sigmoid activation function.

which normalizes the output in the interval [0, 1]. This function is very convenient

because it provides a smooth gradient, without jumps in output values, and leads to
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clear predictions, since even a relatively small value brings the output close to 0 or 1.

On the other hand, for very high or very low values of x, there is almost no change to

the output y, causing the vanishing gradient problem. This can result in the network

refusing to learn further, or being too slow to reach an accurate prediction.

The immediate extension of the sigmoid, which is capable to handle multiple classes,

is the softmax activation function:

ϕ(x) = softmax(xi)
.
=

exp(xi)∑
j exp(xj)

(2.7)

which normalizes the outputs for each class between 0 and 1, and divides by their sum,

giving the probability of the input value being in a specific class. This function is

very useful in multi-class problems, rather than using several sigmoids, because it also

enhances the differences between probabilities, but ensuring that the sum is always 1.

Hidden Units

Prior to the introduction of rectified linear units (which are described in a while), most

of the neural network models used the sigmoid σ(x) also for the hidden layers or, alter-

natively the hyperbolic tangent activation function:

ϕ(x) = tanh(x)

tanh(x)
.
=

exp(x)− exp(−x)

exp(x) + exp(−x)

(2.8)

Figure 2.7: Hyperbolic tangent activation function.

which is closely related to the sigmoid from the relation tanh(x) = 2σ(2x) − 1. But,

apart from this, the hyperbolic tangent is quite different from the sigmoid, since now

the output is zero centered and bounded to be in [−1, 1], which is important because it

allows the activation to also be negative.
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A big novelty has been brought in the field by the introduction of the Rectified Linear

Unit (ReLU) activation function, defined as:

ϕ(x) = ReLU(x)
.
= max(0, x) (2.9)

Figure 2.8: ReLU activation function.

which is a non-linear version of the linear activation function but, despite the appear-

ances, has a derivative function and allows the use of backpropagation. The main problem

of this function is the dying ReLU problem instead. In fact, when inputs approach zero,

or are negative, the gradient of the function becomes zero and the network can no longer

perform backpropagation and learn. The function has therefore several variations and

has undergone some improvements, the most important of which is the Leaky ReLU :

ϕ(x) = LeakyReLU(x)

LeakyReLU(x)
.
= max(α · x, x)

(2.10)

Figure 2.9: Leaky ReLU activation function.

where α is usually a small number in [0.1, 0.01]. This simple variation prevents the

problem of the gradient vanishing, enabling backpropagation. Despite that, it may not

provide consistent results for negative values since the slope is very small.
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A last interesting variation is the Swish activation function, defined in [Ramachan-

dran et al., 2017] as:

ϕ(x) = swish(x)
.
= x · σ(x) (2.11)

Figure 2.10: Swish activation function.

which smoothes the output more than the LeakyReLU and, when the input becomes

increasingly negative, it also gets smaller, avoiding large regularization effects.

2.3 Multilayer Perceptron

By composing several single perceptrons together it is possible to create a more complex

behaviour, embodied in the model which is called multilayer perceptron (MLP). This

is often organized in a chain of groups of perceptrons, called layers, with each being a

function of the one that preceeds it:

  

x 2

x3

y1

y2

x1

W 1 W 2

W 3

h(0)
h(1)

h(2)

h(3)

h(i) = ϕ(i)
(
W (i)Th(i−1)) (2.12)

Figure 2.11: Multilayer perceptron.

where W (i) is the weight matrix and ϕ(i) is the activation function of the i-th layer, and

of course h(0) is simply the input vector x.
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2.3.1 Architectural Considerations

In these chain-based architectures, the main architectural considerations are to choose

the depth of the network and the width of each layer. Deeper networks are able to use

fewer units per layer and fewer parameters in order to generalize to the test set, but

are also often harder to optimize. The universal approximation theorem states that an

arbitrarily large multilayer perceptron is able to represent an arbitrary function, but it

is not guaranteed that the training algorithm is able to learn to represent it. Even if

the MLP is able to represent the function, learning can fail for two different reasons.

First, the optimization algorithm used for training may not be able to find the value of

the parameters that corresponds to the desired function. Second, the training algorithm

might choose the wrong function due to overfitting.

The universal approximation theorem also says that there exists a network large

enough to achieve any degree of accuracy desired, but the theorem does not say how

large this network has to be. Some bounds on the size of a single-layer network needed

to approximate a broad class of functions are provided in [Barron, 1993] but, in the worst

case, an exponential number of units may be required. To sum up, a feedforward network

with a single layer is enough to represent any function, but the layer may be infeasibly

large and may fail to learn and generalize correctly. Therefore, is often preferable to use

deeper models which can reduce the number of units required to represent the desired

function and can the amount of generalization error.

2.3.2 The Backpropagation Algorithm

In a deep feedforward neural network, such as the MLP represented in Figure 2.11,

information flows from the input x to the output y. This kind of propagation, where the

information is provided from the input layer up to the output layer through the hidden

ones, is called forward propagation. During the training of the network, this process

produces the scalar cost L(x,θ), which depends both on the input vector x and on all

the model paramters θ. This function called the cost function, or the loss of the network,

represents how much the neural network is wrong about an output.

The backpropagation algorithm [Rumelhart et al., 1986], allows the information from

this loss to flow backwards through the network, in order to compute the gradient of

the function. It is important to say that the term backpropagation refers only to the

method for computing the gradient, while another algorithm, such as minibatch stochas-
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tic gradient descent explained in section 1.2, is actually used to perform the learning.

Furthermore, backpropagation is often misunderstood as being specific to multilayer

neural networks, but in principle it could compute derivatives of any function.

Computational Graphs and Chain Rule

To understand the backpropagation algorithm, is firstly necessary to introduce the con-

cept of computational graph. In a computational graph each variable, which may be a

scalar, a vector, a matrix, or a tensor, is represented by a node. To represent an operation

between variables, these are linked to a new node which returns a single output variable.

As an example, the expression H = max{0,XW + b} is reported in Figure 2.12 as a

computational graph, which computes a matrix of rectified linear activations H given a

minibatch of inputs X.

  X W b

U (1) U (2)

H

matmul

relu

sum

Figure 2.12: Example of a computational graph.

As will be seen shortly, backpropagation is an algorithm that makes great use of the

chain rules of calculus. This rule is used to compute derivatives of functions formed by

composing other functions whose derivatives are known. Generalized in the multivariable

case, if y = g(x) : Rm → Rn and z = f(y) : Rn → R then the partial partial derivatives

of z with respect to x are expressed as:

∂z

∂xi
=
∑
j

∂z

∂yj

∂yj
∂xi

or, in vector notation ∇xz =

(
∂y

∂x

)>
∇yz (2.13)

From this relation it is possible to see that the gradient of variable x can be obtained

by multiplying the Jacobian matrix
(
∂y
∂x

)>
by the gradient ∇yz. The backpropagation

algorithm consists exactly in performing such a product for each operation in the graph.
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The Algorithm

Using the chain rule, it is immediate to write the algebraic expression for the gradient

of a scalar with respect to any node in the computational graph associated.

Consider a computational graph G describing how to compute a single scalar node

u(n), which is obtained starting from the ni input nodes u(1) . . . u(ni). Computing the

gradients then means to compute:

∂u(n)

∂u(i)
for i ∈ {1, 2, . . . , ni} (2.14)

In the case of a feedforward neural network, each node of the graph is ordered in such a

way that it is possible to compute the output one after the other, starting from u(n1+1)

and ending with u(n). Each node u(i) is also associated with an operation f (i), computed

evaluating the function:

u(i) = f (i)(A(i)) (2.15)

where A(i) is the set of all nodes that are connected to u(i).

In order to perform the backpropagation, a computational graph is constructed from

G and adding an extra set of nodes. These form a subgraph B with one node per node of

G. Computation in B proceeds in the reverse order of computation in G, and each node

computes the derivative ∂u(n)

∂u(i)
associated with the forward graph node u(i). This is done

using the chain rule with respect to the scalar output u(n):

∂u(n)

∂u(j)
=

∑
i:u(j)∈A(i)

∂u(n)

∂u(i)
∂u(i)

∂u(j)
(2.16)

The subgraph B has exactly one edge for each edge from node u(j) to node u(i) of G,

which is associated with the computation of ∂u(i)

∂u(j)
. In addition, a dot product is performed

at each node, between the gradient already computed with respect to nodes u(i) that

are children of u(i), and the vector containing the partial derivatives ∂u(i)

∂u(j)
for the same

children nodes u(i). In the end, the amount of computation required for backpropagation,

scales linearly with the number of edges in graph original G, where the computation

for each edge corresponds to computing a partial derivative (as well as performing one

multiplication and one addition).

The complete back-propagation algorithm is in fact composed of two parts. Firstly,

there is need to compute all the activations for each node in the graph, in order to obtain
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the final scalar result of node u(n). Secondly, the actual partial derivatives edges are

computed, multiplied and stored into an array for the future update of the parameters.

The pseudocode for both the two part is reported in Algorithm 3.

Algorithm 3: Forward Activation and Backpropagation Algorithm

Inputs: an input vector x

Parameters: a computational graph G with nodes u(i), the array grads

that stores the derivatives

Initialization: input nodes u(i) = xi for i ∈ {1, 2, . . . , ni}, grads[u(n)] = 1

Forward Activation

for i in [ni + 1, . . . , n] do

u(i) ← f (i)(A(i))

Backpropagation

for j in [n− 1, . . . , 1] do

grads[u(j)]←∑
i:u(j)∈A(i)grads[u(i)] ∂u

(i)

∂u(j)

return u(i), grads

2.4 Convolutional Neural Networks

A slightly different type of neural networks, which deserve to be mentioned here, are

convolutional neural networks (CNNs). These are specialized in processing data that

has a known grid-like topology, such as time-series data (1D) or images (2D).

Differently from MLPs, which are fully connected, CNNs take advantage of the hier-

archical pattern in data and assemble more complex patterns using smaller and simpler

patterns. In fact these networks employ a mathematical operation called convolution

between layers instead of the traditional matrix multiplication, which makes them more

sparse and more regularized. This also means that CNNs are independent from the input

size (unlike MLPs) and allowing them to be trained on data of different sizes. Other

than that, CNNs also usually perform another kind of operation, called pooling, which

both improves the computational efficiency of the network and its ability to generalize.
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2.4.1 The Convolution Operation

From a mathematical point of view the convolution operation is a sort of weighted sum,

where a function x(t) is averaged with respect to a weight function w(a). The definition

in the continuous space is:

s(t) = (x ∗ w)(t)
.
=

∫
x(a)w(t− a) da (2.17)

In the deep learning terminology, the first argument (the function x(t)) is often called the

input, whereas the second argument (the weight function w(a)) is known as the kernel.

However, usually, both the input and the kernel are discretized, as used for compu-

tation, and hence there is need to define its discrete counterpart as:

s(t) = (x ∗ w)(t)
.
=

+∞∑
a=−∞

x(a)w(t− a) (2.18)

where the variable t can assume only integer values. In deep learning applications, the

input is usually a multidimensional array of data and the kernel is usually a multidimen-

sional array of parameters that will be updated by the learning algorithm. Because each

element of the input and the kernel must be stored in memory, it is assumed that these

functions are zero everywhere but the finite set of points for which the values are stored.

This means that in practice the infinite summation is implemented as a summation over

a finite number of array elements:

s(t) = (x ∗ w)(t)
.
=

+N∑
a=−N

x(a)w(t− a) (2.19)

It is also possible to use convolutions over more than one axis at a time. For example,

if we have a two-dimensional image I as our input, we probably also want to use a two-

dimensional kernel K:

S(i, j) = (I ∗K)(i, j)
.
=
∑
m

∑
n

I(m,n)K(i−m, j − n) (2.20)

A graphical representation of a 2-D convolution is reported in Figure 2.13. It is important

to notice that convolution is also commutative, meaning that it is equivalent to write:

S(i, j) = (K ∗ I)(i, j)
.
=
∑
m

∑
n

I(i−m, j − n)K(m, j) (2.21)

27



The commutative property of convolution arises because the kernel is flipped relative

to the input, in the sense that as m increases, the index into the input increases, but

the index into the kernel decreases. The only reason to flip the kernel is to obtain the

commutative property, which is not usually an important property in a neural network

implementation. Instead, a more interesting related function is the cross-correlation,

which is the same as convolution but without flipping the kernel:

S(i, j) = (I ∗K)(i, j)
.
=
∑
m

∑
n

I(i+m, j + n)K(m, j) (2.22)

  

a

Input

Kernel

b c d

e f g h

i j k l

w x

y z

aw + bx +
ey + fz   

bw + cx +
fy + gz   

cw + dx +
gy + hz   

ew + fx +
iy + jz   

fw + gx +
jy + kz   

gw + hx +
ky + lz   

Output

Figure 2.13: 2-D convolution operation.

Convolution Advantages

Convolutional neural networks, thanks to the convolution operation, have therefore three

basic properties, which advantage the model during the learning process.

The first one is that convolution leads to sparse interactions (or sparse weights):

traditional feedforward neural network layers use matrix multiplication to describe the

interaction between each input unit and each output unit, which means that every output

unit interacts with every input unit. Convolutional neural networks instead have a kernel,

wich is smaller than the input, and therefore it also needs fewer parameters. This both

reduces the memory requirements of the model and also means that computing the

output requires fewer operations.
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The second one is that convolution is sharing parameters, which refers to using the

same parameter for more than one function in the model. In a traditional feedforward

neural network, each element of the weights matrix is used exactly once when computing

the output of a layer. In a CNN instead, each member of the kernel is used at every

position of the input. The parameter sharing used by the convolution operation means

that rather than learning a separate set of parameters for every location, only one set is

learned. This aswell further reduces the storage requirements of the model.

The third one is that the particular form of CNNs parameter sharing causes the

layer to have a property called equivariance to translation. A function is equivariant if,

when the inputs changes, it changes in the same way. Specifically, a function f(x) is

equivariant to a function g(x) if:

f(g(x)) = g(f(x)) (2.23)

When processing time series data, this means that convolution produces a sort of timeline

that shows when different features appear in the input. If we move an event later in time

in the input, the exact same representation of it will appear in the output, just later in

time. Similarly with images, convolution creates a 2-D map of where certain features

appear in the input. If we move the object in the input, its representation will move

the same amount in the output. By the way, it’s important to notice that convolution

is not naturally equivariant to some other transformations, such as changes in the scale

or rotation of an image. Other mechanisms are necessary for handling these kinds of

transformations.

2.4.2 The Pooling Operation

A typical layer of a convolutional network consists of three stages unlike the two of a tra-

ditional feedforward network. In the first stage, the layer performs several convolutions in

parallel to produce a set of linear activations. In the second stage, each linear activation

is run through a nonlinear activation function. These two stages have a corresponding

version in classical feedforward networks.

The third stage, which has not a corresponding one in the classical form, is composed

of a pooling function to further modify the output of the layer. A pooling function

replaces the output at a certain location with a summary statistic of the nearby outputs.

For example, the max pooling operation reports the maximum output within a certain
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neighborhood, the average pooling function include the average of a neighborhood and so

on. In all such cases, pooling helps making the representation approximately invariant

to small translations of the input, which is a useful property since in many cases it’s

more important to know whether some feature is present or not than exactly where it is.

Therefore it can be said that the pooling operation summarizes the responses over

a whole neighborhood, and it is possible to use fewer units than detector units. This

improves the computational efficiency of the network because the next layer has fewer

inputs to process. When the number of parameters in the layer is a function of its input

size (for example in matrix multiplication) this reduction in the size can also improve

the statistical efficiency and reduce memory requirements for storing the parameters.

Pooling is also essential for many different tasks, since it allows for handling inputs of

varying size. For example, in a classification problem there might be images of variable

size, but the input to the classification layer must have a fixed size. This is accomplished

by varying the size of an offset between pooling regions, so that the classification layer

always receives the same number of summary statistics regardless of the input size.
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Part II

Reinforcement Learning
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Chapter 3

Introduction to Reinforcement

Learning

3.1 Introduction

Let us leave aside the deep learning framework for a moment, and instead focus on the

learning process itself. If we think, for example, of a living being who learns to walk,

it will certainly encounter a lot of difficulties and unsuccessful attempts, before actually

succeeding in doing it. If, however, he has a clear idea of his intent, every time he will

do better than the previous ones and will be encouraged to do even better. On this basis

the reinforcement learning framework is built, which is different from any other machine

learning processes already mentioned.

3.1.1 Differences with (Un)Supervised Learning

Reinforcement learning means learning what to do in order to maximize a certain profit.

The learner does not know the best actions to perform a priori, but must instead discover

them through a trial-and-error search and a delayed reward (two of the most distinguish

features of reinforcement learning). As will be formalized later, the general idea of

reinforcement learning is to recognize the peculiarities of the problem the learning agent

is facing, by interacting over time with the environment to reach a goal.

This approach is quite different from supervised learning, in which the agent learns

from a set of examples labeled by an omniscent source. The purpose of this type of

learning is to generalize the response, in order to be able to solve situations not present
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in the training set. This is not a solid basis for developing a type of learning based on

interaction, since it would be too impractical to obtain examples of desired behaviour

that are representative of all the possible situations that can occur to the agent.

Reinforcement learning also differs from unsupervised learning, which typically in-

volves learning patterns from a set of unlabeled examples. Although this approach aims

to find a structure without knowing the correct behaviour, it does not address the prob-

lem of maximizing a reward signal, typical of reinforcement learing problems. Therefore

it is possible to consider reinforcement learning as a third machine learning paradigm,

alongside supervised and unsupervised learning.

3.1.2 Elements of Reinforcement Learning

Apart from the agent that interacts with the environment, it is possible to define other

elements that constitute the reinforcement learning framework: a policy, a reward signal,

a value function, and, in some cases, a model of the environment.

The policy defines how the agent behaves, according to his state, at a certain moment.

Roughly speaking it defines, among all the possible actions, the most profitable action

that the agent can take given his state. In some plain cases, the policy can simply

consist in a simple function or a lookup table, whereas in other, more difficult tasks, it

can be formulated as a more complex predictor, such as a neural network. The policy

is certainly one of the fundamental parts of reinforcement learning, since it, even alone,

can determine the behavior of the entire agent. It is also important to mention that

the policy can be deterministic, in which each state corresponds to a single action, or

stochastic, in which a state corresponds to a distribution of probability of actions.

The reward signal defines the goal of the task faced by the agent. In fact, whenever

he takes an action, the environment sends him back a reward represented by a number,

which can be either positive or negative, based on whether it did well or not. The sole

purpose of the agent is to maximize the total reward obtainable in the long term.

If the reward signal indicates which action is best to perform in the short term, the

value function defines what is best in the long run. Practically speaking, the value of

each state depends on the amount of rewards that the agent can expect to obtain starting

from that state. It is obviously possible that a state leads to a generally low reward at

the next step, but has an intrinsically high value, as it is followed by states that lead to

higher rewards.
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The last element, which occurs only in some some reinforcement learning cases, is

the model of the environment. The model is something that mimics the behavior of

the environment, or more generally, that allows us to make predictions about how the

environment will behave. Methods for solving reinforcement learning problems that use

models are called model-based methods, as opposed to simpler model-free methods that

are explicitly trial-and-error.

It is also important to say that reinforcement learning relies heavily on the concept

of state, as input to the policy and the value function, and as both input and output

from the model. Roughly speaking, the state conveys information to the agent about

how the environment is, at a particular time. A proper and rigorous definition of what

a system’s state is will be given in Section 3.2.

In Figure 3.1 is possible to observe all these elements combined together. The agent

is initially in state St and, consulting the policy, decides to take action At. The environ-

ment, in response to that, returns a new state value St+1 and a reward Rt+1.

  

Agent Policy

Environment

actionrewardstate
(St , Rt)

AtRt+1St+1

Figure 3.1: Reinforcement learning framework.

The Trade-off between Exploration and Exploitation

One of the most characteristic difficulties to face in reinforcement learning problems is

the trade-off between exploration and exploitation. In order to maximize its own reward

signal, the agent should take actions that he is already sure of the result, i.e. those

actions taken previously and found to be effective in producing reward. But, to do this,

he must also find out which of all the possible actions are the most profitable.

The agent has therefore to exploit what he already knows in order to obtain the best

reward, but it also has to explore in order to be able to make better decisions in the

future. The difficulty lies in the fact that the agent cannot only pursue a single approach
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without failing its task. It must use a combination of the two by trying a variety of

actions and progressively favor those that appear the best.

The simplest action selection rule is to select one of the actions that have the highest

estimated future reward, such behaviour is called greedy. But, as just mentioned, this is

not always the way to deal with the problem as we could lose sight of the actions that

guarantee us even better rewards. A simple alternative is to behave greedily most of the

times, but every once in a while, with small probability ε, instead select randomly from

all the actions with equal probability. This near-greedy action selection rule is called

ε-greedy method and they often performs better than the simple greedy ones because it

continue to explore and to improve their chances of recognizing the optimal action.

3.2 Finite Markov Decision Processes

Markov decision processes (MDPs) are a tool which can allow us describe the reinforce-

ment learning problem in a mathematical way, by making rigorous theoretical statements.

MDPs, as well as reinforcement learning, involve evaluating a feedback, have an asso-

ciative aspect (choosing different actions in different situations) and the need to find a

tradeoff between immediate and delayed reward and are, therefore, the optimal tool to

use. In order to understand how MDPs work however, it is important to start with more

basic concepts.

3.2.1 Markov Processes

As written in Section 3.1.2, the agent and the environment interact alternately, the

former selecting actions and the latter responding to them presenting new situations

and rewards (see Figure 3.1). More specifically, the agent and environment interact at

each of a finite sequence of discrete time steps t = 0, 1, . . . , T . At each time step, the

agent receives some representation of the environment’s state St ∈ S, and therefore it is

possible to identify a trajectory of states:

S0, S1, S2, S3, . . . (3.1)

This trajectory can be modelized as a Markov process (MP), or more precisely a

Markov chain since the time is discrete, which is a stochastic model that describes a
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sequence of possible events. This process is mathematically defined as a tuple of states-

probabilities (S,P) and has the particular property of being memoryless. This property,

also known as the Markov property (from which the process takes its name), means

that the probability of each possible values for St+1 depends only on the immediately

preceding state St−1, or:

P [St+1|S0, . . . , St] = P [St+1|St] (3.2)

This means that each state captures all the relevant information from the process history

and, once the state is known, the future is independent of the past states.

In case of a finite MP, the sets of all possible state S has a finite number n of elements,

and it is then possible to define a transition matrix as:

P
.
=

p(S0|S0) . . . p(Sn|S0)
...

. . .
...

p(S0|Sn) . . . p(Sn|Sn)

 (3.3)

where p(s′|s) is defined as the probability of the transition:

p(s′|s) .
= P [St+1 = s′|St = s] (3.4)

It is then straightforward to obtain the property:∑
s′∈S

p(s′|s) = 1 for all s ∈ S, (3.5)

which corresponds to sum over each row in the matrix P. In Figure 3.2 is reported an

example of a Markov process with four states, and its corresponing transition matrix.

  

0 1

23

0.20

0.30

0.40

0.50

0.50
1

0.20 0.100.80
P =


0 0 0.8 0.2

0.20 0.40 0.30 0.10

0.50 0 0 0.50

0 0 0 1



Figure 3.2: Example of a finite Markov process.
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3.2.2 Rewards and Return

Moving on to more complicated concepts, we can define a Markov reward process (MRP)

as a simple Markow process with which a reward functions is associated, in order to

evaluate the transition between different states. This new process is mathematically

defined as a tuple of state-probabilities-rewards (S,P ,R, γ), where R is the reward

function and γ ∈ [0, 1] is known as the corresponding discount factor. It is then possible

to define the return Gt as the total discounted reward from a certain time-step t as:

Gt
.
= Rt+1 + γRt+1 + · · · =

∞∑
k=0

γkRt+k+1 (3.6)

This definition allows us to make assessments on how important it is to obtain a

reward delayed in time. For example small vales of γ leads to a short-term evaluation,

bigger values instead leads to a more far-sighted evaluation. This is also done to avoid

infinite returns in cyclic Markov processes.

Similar to how the transition matrix is defined, it is possible to define also the reward

matrix R, which associate a reward to each state, as:

R
.
=

R[S0]
...

R[Sn]

 (3.7)

In Figure 3.3 it’s possible to see the extension of the example in Figure 3.2, as a Markov

reward process with its corresponing reward matrix.

  

0 1

23

0.20

0.30

0.40

0.50

0.50
1

0.20 0.100.80

(+2) (+1)

(+3) (-5)

R =


+2

+1

−5

+3



Figure 3.3: Example of a finite Markov process with rewards.
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3.2.3 Value Function and Bellman Equation

The next step is trying to evaluate how good a state is, in a generic Markov reward

process. In order to do, we can define the state-value function as the expected return

starting from state s:

v(s)
.
= E[Gt|St = s] (3.8)

which depends obviously on the parameter γ. It’s important to notice that it is possible

to decompose the equation in two parts, the immediate reward Rt+1 and the discounted

value of successor state γv(St+1):

v(s)
.
= E[Gt|St = s]

= E[Rt+1 + γRt+2 + γ2Rt+2 + . . . |St = s]

= E[Rt+1 + γ(Rt+2 + γRt+2 + . . . )|St = s]

= E[Rt+1 + γGt+1|St = s]

= E[Rt+1 + γv(St+1)|St = s]

(3.9)

where the last part is known as the Bellman equation for a generic Markov reward

process, and is usually written in the form:

v(s) = R[s] + γ
∑
s′∈S

Pss′v(s′) (3.10)

The Bellman equation plays a fundamental role in the study of MRPs because it

allows us to calculate the exact value of each state, thus solving our system. It is in fact

possible to express the equation using the matrices previously defined:

v = R + γPv (3.11)

which is a linear system, and can be solved directly:

v = (I− γP)−1R (3.12)

However, solving this has a computational complexity of O(n3) for n states, and is

therefore possible only for small MRPs. In Figure 3.4 it is possible to see the values of

the states of the example in Figure 3.3, obtained by solving the Bellman equation.
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

Figure 3.4: Example of a finite Markov process with values solved.

3.2.4 Actions and Policies

Finally, we can define a Markov decision process (MDP) as a Markov reward process, in

which an agent can choose a certain action a following a policy π. This new process is

mathematically defined as a tuple of states-actions-probabilities-rewards (S,A,P ,R, γ),

where A is a finite set of actions. The policy π is defined as the probability distribution

over actions given states:

π(a|s) .
= P [At = a|St = s] (3.13)

which fully defines the behaviour of an agent. With this in mind, it is possible to update

the definition of the state-value function (3.8) as the expected return starting from state

s, and then following policy π:

vπ(s)
.
= Eπ[Gt|St = s] (3.14)

which brings us to a new form of the Bellman equation:

vπ(s) = Eπ[Gt|St = s]

= Eπ[Rt+1 + γGt+1|St = s]

=
∑
a

π(a|s)
∑
s′

∑
r

p(s′, r|s, a) [r + γEπ[Gt+1|St+1 = s′]]

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γvπ(s′)] for all s ∈ S.

(3.15)

This equation expresses a relationship between the value of a state and the values of its

successor states. A simple representation of this relation can be seen in the diagram in

Figure 3.5. Starting from a state s, the root node at the top, the agent could take any
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of some set of actions based on its policy π. From each of these, the environment could

respond with one of the several next states s′, along with a reward r, depending on its

dynamics given by the function p.

  

p r

π

a

s

s’

Figure 3.5: Bellman equation diagram.

It is now possible to define the action-value function, in analogy with (3.14). This

function is defined as the value of taking action a in state s under a policy π, denoted

by qπ(s, a), as the expected return starting from s, taking the action a, and thereafter

following the agent policy π:

qπ(s, a)
.
= Eπ[Gt|St = s, At = a] (3.16)

Optimal Policies and Optimal Value Functions

For finite MDPs, the one in which the state space S has a finite number of states s, it is

possible to precisely define an optimal policy, by taking into account that value functions

define a partial ordering over policies. A policy π is in fact said to be better than, or

equal, to a policy π′, if and only if vπ(s) ≥ vπ′(s) for all s ∈ S. Therefore there is always

at least one policy that is better than or equal to all other policies, that is the optimal

policy and is usually denoted as π∗. This policy is determined by the optimal state-value

function, denoted with v∗ and defined as:

v∗(s)
.
= max

π
vπ(s) for all s ∈ S. (3.17)

Optimal policies also share the same optimal action-value function q∗, defined as:

q∗(s, a)
.
= max

π
qπ(s, a) for all s ∈ S and a ∈ A. (3.18)
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For the state-action pair (s, a), this function gives the expected return for taking action

a in state s and therefore following the optimal policy. Therefore, we can write q∗ in

terms of v∗ as follows:

q∗(s, a) = E[Rt+1 + γv∗(St+1)|St = s, At = a] (3.19)

Because v∗ is the value function for a policy, it must satisfy the self-consistency

condition given by the Bellman equation in (3.15) but, since it is also the optimal value

function, it can be written in a special form without reference to any specific policy,

which is the Bellman optimality equation for v∗. Intuitively, the Bellman optimality

equation expresses the fact that the value of a state under an optimal policy must equal

the expected return for the best action from that state:

v∗(s) = max
a∈A(s)

qπ∗(s, a)

= max
a

Eπ∗ [Gt|St = s, At = a]

= max
a

Eπ∗ [Rt+1 + γGt+1|St = s, At = a]

= max
a

E[Rt+1 + γv∗(St+1)|St = s, At = a]

= max
a

∑
s′,r

p(s′, r|s, a)[r + γv∗(s
′)]

(3.20)

The Bellman optimality equations for q∗ instead is:

q∗(s) = max
a

E[Rt+1 + γmax
a′

q∗(St+1, a)|St = s, At = a]

=
∑
s′,r

p(s′, r|s, a)[r + γmax
a′

q∗(s
′, a)]

(3.21)

The diagrams in Figure 3.6 show graphically the spans of future states and actions con-

sidered in the Bellman optimality equation for v∗ and q∗. Arcs are depicted at agent’s

choice points to represent that the maximum over that choice is taken, rather the ex-

pected value given some policy.
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Figure 3.6: Bellman optimality equation diagrams.

For finite MDPs, the Bellman optimality equation for v∗ has a unique solution. The

equation (3.20) is in fact a system of equations, one for each state and, once solved, it

is relatively easy to determine an optimal policy. For each state s, there will be one or

more actions at which the maximum is obtained in the Bellman optimality equation.

Any policy that assign nonzero probability only tho these actions is said to be greedy

with respect to the optimal evaluation funcition v∗, and is also an optimal policy. The

convenience of v∗ is in fact that if one uses it to evaluate the short-term consequences

of actions, then a greedy policy is actually optimal in the long-term sense, because v∗

already takes into account the reward consequences of all possible future behaviour. By

means of v∗, the optimal expected long-term return is turned into a quantity that is

locally and immediately available for each state. Having q∗ makes choosing optimal

actions even easier than v∗. For each state s, the agent does not even have to do a one-

step-ahead search, but simply has to find any action that maximizes q∗: the action-value

function effectively caches the results of all one-step-ahead possible searches.
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Chapter 4

Basic Algorithms for Reinforcement

Learning

4.1 Dynamic Programming

The term dynamic programming (DP) is both a mathematical and an algorithmic method

for solving an optimization problem, by breaking it down into simpler subproblems and

utilizing the fact that the optimal solution to the overall problem depends upon the

optimal solution to its subproblems.

In reinforcement learning, it refers to a collection of algorithms that allow us to

compute optimal policies, given a perfect model of the environment as a Markov decision

process, by estimating and updating the values obtained by the state-value and the

action-value functions. Classical DP algorithms are of limited utility in reinforcement

learning both because of their assumption of a perfect model and beacuse of their great

computational expense, but they are still important theoretically since they provide an

essential foundation for the understanding of the other algorithms.

The key idea of dynamic programming, and of reinforcement learning in general, is

the use of value functions to organize and structure the search for good policies. It is

easy to obtain optimal policies once the optimal value functions for v∗ or q∗, expressed

in (3.20) and (3.21), are known. In order to do this, DP algorithms aims at continuously

evaluating and updating the policy, thanks to the values obtained from the two function.

These algorithms are therefore obtained by turning these Bellman equations into update

rules for improving approximations of the desired value functions.
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4.1.1 Policy Evaluation

We already know how to compute the state-value function vπ for an arbitrary policy:

vπ(s) = Eπ[Rt+1 + γvk(St+1)|St = s]

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γvπ(s′)]

where the existence and uniqueness of vπ is guaranteed as long as either γ < 1 or eventual

termination is guaranteed from all states under policy π. If the environment dynamics

are known, then this equation is a system of |S| simultaneous linear equations and, in

principle, its solutions are straightforward computations. However, as already seen, this

can be very tedious or computationally expensive and then, also from a generalization

perspective, iterative solution methods are more suitable.

Consider a sequence of approximate value functions v0, v1, v2, . . . , each mapping S to

R, where the initial approximation is chosen aribtrarily (except that the terminal state,

if any, must be given value 0). Each successive approximation is obtained by using the

Bellman equation above as an update rule:

vk+1(s)
.
= Eπ[Rt+1 + γvk(St+1)|St = s]

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γvk(s
′)] for all s ∈ S. (4.1)

Clearly, vk = vπ is a fixed point for this update rule because the Bellman equation for

vπ assures us of equality in this case. Indeed, it can be shown that the sequence {vk}
converges to vπ, as k →∞ under the same confitions that guarantee the existence of vπ.

This algorithm is called iterative policy evaluation.

To produce each successive approximation, vk+1 from vk, iterative policy evaluation

applies the same operation to each state s: it replaces the old value with a new one

obtained from the old values of the successor states of s, and the expected immediate

rewards. This kinf of operation is called expected update and there are several different

kind of them, depending on whether a state or a state-action pair is being updated, and

depending on the precise way the estimated values of the successor states are combined.

To write a sequential program to implement the algorithm, one should use two arrays,

one for the old values vk and one for the new ones vk+1. In fact, it is easier to use one

array and update the values ”in place”, thus sometimes new values are used instead of

old ones on the right hand side of (4.1). This in-place algorithm also converges to vπ, in
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fact it usually converges faster than the two arrays version, because it uses new data as

soon as they are available. The pseudocode for the algorithm is given in Algorithm 4.

Algorithm 4: Iterative Policy Evaluation

Inputs: the policy to be evaluated π

Parameters: a small threshold θ > 0 used to determine the accuracy of

the estimation

Initialization: V (s), for all s ∈ S, arbitrarily except V (final) = 0

∆← θ′ > θ

while ∆ > θ do

∆← 0

for s in S do

v ← V (s)

V (s)←∑
a π(a|s)∑s′,r p(s

′, r|s, a)[r + γV (s′)]

∆← max(∆, |v − V (s)|)
return V ≈ vπ

4.1.2 Policy Improvement

Once a way of evaluating a policy is defined, it is important to also find a method to

determine if it is better to change the current policy, to deterministically choose an action

instead of following the probability distribution π(s). We know how good is to follow

the current policy from a state s, because it is represented by the value vπ(s), but we

don’t know if it would be better or worse to change to a new policy. To answer that

we need to consider selecting action a in s and thereafter following the current policy π.

The value of this way of behaving is:

qπ(s, a)
.
= Eπ[Rt+1 + γvπ(St+1)|St = s, At = a]

=
∑
s′,r

p(s′, r|s, a)[r + γvπ(s′)] (4.2)

The criterion here is whether this value is greater or less than vπ(s). If it is greater, then

it is better to select a once in s and therefore follow π rather than to follow π all the
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time, and it is possibile to modify the policy in such a way that a is followed every time

s is encountered. That this is true is a special case of a general result called the policy

improvement theorem. Let π and π′ be any pair of deterministic policies such that:

qπ(s, π′(s)) ≥ vπ(s) for all s ∈ S (4.3)

Then the policy π′ must be as good as, or better than, the policy π. That is, it must

obtain greater or equal expected return from all states s ∈ S:

vπ′(s) ≥ vπ(s) (4.4)

The policy improvement theorem applies of course in the case of the two former policies:

the original deterministic policy π and a changed policy π′ which is identical to π except

that π′(s) = a 6= π(s). For states other than s, (4.3) holds because the two sides are

equal. Thus, if qπ(s, a) > vπ(s), then the changed policy is better than π.

The idea behind the proof of this theorem, starting from (4.3), is:

vπ(s) ≤ qπ(s, π′(s))

= E[Rt+1 + γvπ(St+1)|St = s, At = π′(s)]

= Eπ′ [Rt+1 + γvπ(St+1)|St = s]

≤ Eπ′ [Rt+1 + γqπ(St+1, π
′(St+1))|St = s]

= Eπ′ [Rt+1 + γE[Rt+2 + γvπ(St+2)|St+1, At+1 = π′(s)]|St = s]

= Eπ′ [Rt+1 + γRt+2 + γ2vπ(St+2)|St = s]

≤ Eπ′ [Rt+1 + γRt+2 + γ2Rt+3 + γ3vπ(St+3)|St = s]

...

≤ Eπ′ [Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 + . . . |St = s]

= vπ′(s)

(4.5)

It is then a natural extension to consider changes in all states and all possible actions,

selecting at each state the action that appears to be the best according to qπ(s, a). In

other words, to consider the new greedy policy π′, given by:

π′(s)
.
= arg max

a
qπ(s, a)

= arg max
a

E[Rt+1 + γvπ(St+1)|St = s, At = a]

= arg max
∑
s′,r

p(s′, r|s, a)[r + γvπ(s′)]

(4.6)
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This greedy policy takes the action that looks best in the short term according to vπ and,

since it meets the conditions of the policy improvement theorem, it is as good, or better

than, the original policy. This overall process of making a new policy and improving the

original one, is called policy improvement.

4.1.3 Policy Iteration

Once the policy π has been improved using vπ to a better policy π′, it is possible to

compute vπ′ and improve it again to an even better policy π′′. This sequence of improving

policies can be represented as:

π0
E−→ vπ0

I−→ π1
E−→ vπ1

I−→ π2
E−→ . . .

I−→ π∗
E−→ v∗

where E stands for policy evaluation and I stands for policy improvement. This way

of finding an optimal policy is called policy iteration and the pseudocode of the corre-

sponding algorithm is given in Algorithm 5.

Algorithm 5: Policy Iteration (using iterative policy evaluation)

Inputs: the policy to be evaluated and improved π

Parameters: a small threshold θ > 0 used to determine the accuracy of

the estimation

Initialization: V (s) ∈ R and π(s) ∈ A(s) arbitrarily for all s ∈ S

policy stable ← False

while not policy stable do

run Algorithm 4: Iterative Policy Evaluation

policy stable ← True

for s in S do

old action ← π(s)

π(s)← arg maxa
∑

s′,r p(s
′, r|s, a)[r + γV (s′)]

if old action 6= π(s) then

policy stable ← False

return V ≈ v∗, π ≈ π∗
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Since a finite MDP has a finite number of policies, this process must converge to

an optimal policy and an optimal value function in a finite number of iterations. It is

immediate to notice that it is formed by the policy evaluation algorithm described in

Algorithm 4, and by a loop that simply updates the policy based upon the results.

4.1.4 Value Iteration

The main problem behind policy iteration method is that each of its iterations requires a

policy evaluation which consequently requires computation time, since the convergence

exactly to vπ occurs only in the limit. Actually, the evaluation step of policy iteration can

be truncated in several ways without losing the convergence guarantees of the algorithm.

The most important case is when policy evaluation is stopped after just one iteration

(one update of each state). This algorithm is called value iteration. It can be written as

a particularly simple update rule that combines the policy improvement and truncated

policy evaluation steps:

vk+1(s)
.
= max

a
E[Rt+1 + γvk(St+1)|St = s, At = a]

= max
a

∑
s′,r

p(s′, r|s, a)[r + γvk(s
′)] for all s ∈ S, (4.7)

which for arbitrary v0 can be shown to converge to v∗ under the same conditions that

guarantee the existence of v∗.

Another way of understanding value iteration is by reference to the Bellman optimal-

ity equation (3.20), since it is obtained simply by turning this into an update rule. It

may be also noticed how the value iteration update is identical to the policy evaluation

update (4.1), except that it requires the maximum to be taken over all actions.

The pseudocode for the corresponding algorithm is reported in Algorithm 6. Like

policy evaluation, value iteration formally requires an infinite number of iterations to

converge exactly to v∗ but, in practice, it’s common to stop once the value function

changes by only a small amount in the same iteration. This algorithm effectively com-

bine, in each of its iterations, an iteration of policy evaluation and one iteration of policy

improvement. Faster convergence is often achieved by interposing multiple policy evalu-

ation iterations between each policy improvement iteration. In general, the entire class

of truncated policy iteration algorithms can be thought of as sequences of sweeps, some

of which use policy evaluation updates and some of which use value iteration updates.
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Because the max operation in (4.7) is the only difference between these updates, this

just means that the max operation is added to some sweeps of policy evaluation. All of

these algorithms converge to an optimal policy for discounted finite MDPs.

Algorithm 6: Value Iteration

Inputs: the policy to be evaluated and improved π

Parameters: a small threshold θ > 0 used to determine the accuracy of

the estimation

Initialization: V (s), for all s ∈ S, arbitrarily except V (final) = 0

∆← θ′ > θ

while ∆ > θ do

∆← 0

for s in S do

v ← V (s)

V (s)←∑
a π(a|s)∑s′,r p(s

′, r|s, a)[r + γV (s′)]

∆← max(∆, |v − V (s)|)

π(s) = arg maxa
∑

s′,r p(s
′, r|s, a)[r + γV (s′)]

return π ≈ π∗

4.1.5 Generalized Policy Iteration

The term generalized policy iteration (GPI) is used to refer to the genral idea of letting

policy evaluation and policy improvement processes interact. Almost all reinforcement

learning methods are easily described as GPI, in fact all have identifiable policies and

value functions, with the policy always being improved with respect to the value function

and the value function always being driven toward the value function for the policy. If

both the evaluation process and the improvement process stabilize, then the policy and

the value function must be both the optimal ones.

The evaluation and improvement processes in generalized policy iteration can be

viewed as both as competing and cooperating. They compete in the sense that they

pull in opposing directions. making the policy greedy with respect to the value function
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tipically makes the value function incorrect for the changed policy, and making the value

function consistent with the policy tipically causes that policy no longer to be greedy. In

the long run, however, these two processes interact to find the optimal value function and

the optimal policy. The double evaluation-improvement loop is graphically represented

in Figure 4.1. In the diagram the processes are represented as lines, which constrain the

iteration and guide it to the convergence with optimal results.

  

Vπ
V=V π

evaluation

improvement

π    = greedy(V)

(a) loop

  

V,πstarting

V=V π

= greedy(V)
π

V*
π*

(b) diagram

Figure 4.1: Generalized policy iteration loop and diagram.

4.2 Monte Carlo Methods

Monte Carlo (MC) methods are a class of reinforcement learning algorithms wich does

not require a complete understanding of the environment but only need experience, a

sample sequences of state-action-reward from the interaction between the agent and the

environment. Even if a model is required, this only need to generate sample transitions,

not the complete probability distributions of all possible transitions that is required for

dynamic programming instead.

4.2.1 First-Visit Monte Carlo

The first algorithm presented aims to learn the state-value function for a given policy.

As said before, the value of a state is the expected return starting from that state. The

most obvious way to estimate it from experience then, is simply to average the returns

observed after visits to that state. As more returns are observed, the average should

converge to the expected value.
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Suppose we want to estimate vπ(s), the value of state s under policy π, given a set

of episodes obtained following π and passing through s. Each occurrence of state s in

an episode is called a visit to s. Actually the same state s could be visited many times

during the same episode, so it’s important to distinguish the first time s is visited by

calling it first-visit. The first-visit Monte Carlo method estimates vπ(s) as the average

of the returns following first visit to s and is different from the every-visit Monte Carlo

method which averages the returns following all visit to s. Both methods converge to

vπ(s) as the number of visits (or first visits) to s goes to infinity.

Algorithm 7: First-visit Monte Carlo

Inputs: the policy to be evaluated π

Initialization: V (s) ∈ R, arbitrarily, for all s ∈ S and returns(s), an

empty list for all s ∈ S

for each episode do

episode ← new episode following π : S0, A0, R1, S1, . . . , ST−1, AT−1, RT

G← 0

for t in [T − 1, T − 2, . . . , 0] do

G← γG+Rt+1

if St not in [S0, . . . , St−1] then

append G to returns(St)

V (St)← avg(returns(St))

return V ≈ vπ

It is possible now to make a comparison between this and the dynamic program-

ming approach. In the latter one all of the probabilities must be computed before the

algorithms can be applied, and such computations are often complex or error-prone. In

contrast, generating the sample required by Monte Carlo method is quite easy. Also,

whereas the dynamic programming diagram includes only one-step transitions, the Monte

Carlo diagram (see Figure 4.2) goes all way to the end of the episode. Whereas the DP

diagrams are represented with all possible interactions(see Figure 3.6), the MC diagram

shows only those sampled on current the episode. It is important to notice that the
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computational expense of estimating the value of a single state is dependent only on the

duration of the episode, and independent from the total number of states.

Figure 4.2: Monte Carlo diagram.

4.2.2 Monte Carlo with Exploring Starts

If a model is not available, then it is particularly useful to estimate action values (the

values of state-action pairs) rather than state values. The policy evaluation problem is

then to estimate qπ(s, a), the expected return when starting in state s, taking action a,

and following policy π. The only complication is that many state-action pairs may never

be visited. If π is a deterministic policy, then in following π one will observe returns

only for one of the actions from each state. With no returns to average, the Monte Carlo

estimates of the other actions will not improve with experience.

This is the already known problem of maintaining exploration, and one way to solve

this is to specify that the episode starts in a state-action pair, and that every pair has

a nonzero probability of being selected as the start. This guarantess that all the state-

action pairs will be visited an infinite number of times in the limit of an infinite number

of episodes. This assumption is usually called exploring starts.

It is now possible to combine the ideas of MC methods with the GPI explained in

4.1.5. To begin , let us consider a MC version of classical policy iteration. In this method

there is an alternating evaluation of the policy followed by an improvement, as the one

described in 4.1.3, but this time the action-value function is taken into consideration

rather than the state-value:

π0
E−→ qπ0

I−→ π1
E−→ qπ1

I−→ π2
E−→ . . .

I−→ π∗
E−→ q∗

Here policy improvement is done in the same way as before, apart from making the

policy greedy with respect to the action-value function:

π(s)
.
= arg max

a
q(s, a) (4.8)
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Actually, an unlikely assumption was made to easily obtain the guarantee of convergence

for the Monte Carlo method, that is that the policy evaluation could be done with an

infinite number of episodes. This is relatively easy to remove, in fact the same issue arises

even in DP methods, which also converge only asymptotically to the true value function.

In both DP and MC cases there are two ways to solve the problem. One is to hold firm

the idea of approximating qπk in each policy evaluation. This approach can probably

be made completely satisfactory in the sense of guaranteeing correct convergence up to

some level of approximation. In the second approach, on each evaluation step the value

function is moved toward qπk , but it is not expected to actually get close except over

many steps, and the attempt to completely evaluate the policy is given up.

For Monte Carlo policy iteration it is natural to alternate between evaluation and

improvement on an episode-by-episode basis. After each episode, the observed returns

are used for policy evaluation, and then the policy is improved at all the states visited in

the episode. The pseudocode of the algorithm, called Monte Carlo with Exploring Starts

is reported in Algorithm 8.

Algorithm 8: Monte Carlo with Exploring Starts

Inputs: the policy to be evaluated and updated π

Initialization: V (s) ∈ R, arbitrarily, for all s ∈ S and returns(s), an

empty list for all s ∈ S

for each episode do

(S0, A0)← chosen randomly from S,A(S0)

episode ← new episode following π : S0, A0, R1, S1, . . . , ST−1, AT−1, RT

G← 0

for t in [T − 1, T − 2, . . . , 0] do

G← γG+Rt+1

if (St, At) not in [S0, A0 . . . , St−1, At−1] then

append G to returns(St)

Q(St, At)← avg(returns(St, At))

π(St)← arg maxaQ(St, a)

return π ≈ π∗
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In this algorithm, all the returns for each state-action pair are accumulated and

averaged, irrespective of what policy was in force when they were observed. It is easy to

see that this cannot converge to any suboptimal policy. If it did, then the value function

would eventually converge to the value function for that policy, and that in turn would

cause the policy to change. Stability is achieved only when both the policy and the value

function are optimal.

4.3 Temporal-Difference Learning

Temporal Difference (TD) learning combines both ideas from Monte Carlo and dynamic

programming. Like in MC methods, TD techniques can learn from direct experience

aswell, without knowing a model of the environment’s dynamics. Like DP, TD methods

update estimates based in part on other learned estimates, without waiting to reach the

final outcome of the episode (unlike MC methods).

4.3.1 One-Step Temporal-Difference

As just mentioned, both MC and TD methods use experience to solve the problem of

finding the correct estimate V of vπ. But, unlike Monte Carlo methods which have to

wait until the reaching of the final state, TD methods only wait until the next time step.

So, at time t+ 1, it is immediately possible to make an estimate of the value V , taking

into account the observed reward Rt+1 and the estimate of V (St+1). The simplest TD

method makes the update:

V (St+1)← V (St) + α[Rt+1 + γV (St+1)− V (St)] (4.9)

where it is easy to note that the target for the MC update is Gt whereas the target for

the TD update is Rt+1 + γV (St+1). This method is called TD(0) or one-step TD and,

since the update is based in part upon an existing estimate, it is a bootstrapping method.

The corresponding pseudocode is reported in Algorithm 9.

One important remark to make is that the term in brackets in the one-step TD update

is a sort of error, which measures the difference between the estimated value V (St) and

the better estimate Rt+1 + γV (St+1). This quantity is called the TD error and appears

in various areas of reinforcement learning:

δt
.
= Rt+1 + γV (St+1)− V (St) (4.10)
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It is important to notice that this error is the estimate made at a specific time, since it

depends on the next state and next reward, which are not available until one step later.

That is, δt is the error for V (St) available at time t+ 1.

Algorithm 9: One-Step Temporal-Difference

Inputs: the policy to be evaluated π

Parameters: step size α ∈ [0, 1]

Initialization: V (s), for all s ∈ S, arbitrarily except for V (final) = 0

for each episode do

S ← new state

for step in episode do

A← new action following π

R, S ′ ← observed reward and next state

V (S)← V (S) + α[R + γV (S ′)− V (S)]

S ← S ′

return vπ ≈ v∗

The one-step TD diagram, visible in Figure 4.3 is quite similar to the MC one in

Figure 4.2, but with just one step of update. Since the estimate is updated on the basis

of a sample transition, this type of updates are usually referred to as sample updates

which differ from the expected updates of DP methods in that they are based on a single

sample successor rather than on a complete distribution of all possible successors.

Figure 4.3: Temporal-Difference diagram.

Finally, TD methods have two main advantage over the methods previously explained.

TD, unlike DP methods, does not require a model of the environment, nor of the rewards
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and next-state probabilities. The other advantage, which makes TD standing out with

respect to MC methods is that they does not need to reach the end of the episode but just

the next step, and this is often critical since some applications have very long episodes.

4.3.2 SARSA

As done for MC methods, the next step is to apply the idea behind the GPI, but this

time using TD methods for the evaluation and the prediction part. As before, this is

made by learning the action-value function rather than the state-value function.

It is important now to distinguish between on-policy and off-policy methods. In the

former case, the agent learns and behaves using the same policy while, in the latter, the

agent learns and behaves using two (slightly) different versions of the policy. In fact,

the SARSA algorithm uses the same policy to both learn and behave and is therefore an

on-policy method, while the Q-Learning algorithm, explained in the next section, uses a

modification of the behaveviour policy to update it and is therefore an off-policy method.

In the SARSA algorithm transitions from state-action pair to state-action pair are

considered, and the corresponding values are learned. The theorem which assures the

convergence of the state values under the one-step TD also applies to the correspondig

algorithm for action values:

Q(St, At)← Q(St, At) + α[Rt+1 + γQ(St+1, At+1)−Q(St, At)] (4.11)

This update rule uses every element of the quintuple of events (St, At, Rt+1, St+1, At+1),

that make up a transition from one state-action pair to another, and which give rise to

the SARSA name of the algorithm. The corresponding diagram is reported in Figure

4.4, which is quite similar to the one-step TD reported in Figure 4.3, but it starts and

ends with an action instead of a state.

Figure 4.4: SARSA diagram.

The algorithm continually estimates qπ for the behaviour policy π, and at the same

time change π in a greedy way with respect to π. SARSA converges to an optimal policy
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and action-value function as long as all state-action pairs are visited an infinite number

of times. The corresponding pseudocode is reported in Algorithm 10.

Algorithm 10: SARSA (On-Policy Temporal-Difference)

Inputs: the policy to be evaluated and improved π

Parameters: step size α ∈ (0, 1], small number ε > 0

Initialization: Q(s, a), for all s ∈ S, a ∈ A, arbitrarily except for

Q(final) = 0

for each episode do

S ← new state

A← action from S following policy derived from Q (e.g. ε-greedy)

for step in episode do

R, S ′ ← observed reward and next state after taking A

A′ ← action from S ′ following policy derived from Q (e.g. ε-greedy)

Q(S,A)← Q(S,A) + α[R + γQ(S ′, A′)−Q(S,A)]

S ← S ′

A← A′

return Q ≈ q∗, π ≈ π∗

4.3.3 Q-learning and Expected SARSA

Is is now possible to obtain, with a slightly modification of the update rule, the corre-

sponding off-policy method called Q-learning :

Q(St, At)← Q(St, At) + α[Rt+1 + γmax
a
Q(St+1, a)−Q(St, At)] (4.12)

In this case, the learned action-value function Q, directly approximates q∗, the opti-

mal action-value function, independent of the policy being followed, which dramatically

simplifies the analysis of the algorithm and enables early convergence proofs. The pseu-

docode for the algorithm is reported in Algorithm 11.
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Algorithm 11: Q-learning (Off-Policy Temporal-Difference)

Inputs: the policy to be evaluated and improved π

Parameters: step size α ∈ (0, 1], small number ε > 0

Initialization: Q(s, a), for all s ∈ S, a ∈ A, arbitrarily except for

Q(final) = 0

for each episode do

S ← new state

for step in episode do

A← action from S following policy derived from Q (e.g. ε-greedy)

R, S ′ ← observed reward and next state after taking A

Q(S,A)← Q(S,A) + α[R + γmaxaQ(S ′, a)−Q(S,A)]

S ← S ′

return Q ≈ q∗, π ≈ π∗

It is also possible to consider a slightly modification of the Q-learning algorithm, ex-

cept that instead of the maximum over next state–action pairs it uses the expected value,

taking into account how likely each action is under the current policy. The corresponding

the update rule therefore is:

Q(St, At)← Q(St, At) + α[Rt+1 + γEπ[Q(St+1, At+1)|St+1]−Q(St, At)]

← Q(St, At) + α[Rt+1 + γ
∑
a

π(a|St+1)Q(St+1, a)−Q(St, At)]
(4.13)

Given the next state St+1, this algorithm moves deterministically in the same direction

as SARSA moves but in expectation, and accordingly it is called Expected SARSA.

Expected SARSA is more computationally complex than SARSA but, in return, it

eliminates the variance due to the random selection of At+1. Given the same amount

of experience it usually perfom slightly better than SARSA. Furthermore, despite it is

usually used as an on-policy method, in general it might use a different policy from the

target policy π to generate behaviour, in which case it becomes an off-policy method. In

this sense, Expected SARSA subsumes and generalizes Q-learning while reliably improv-

ing over SARSA. Even if the algorithm is easy to deduce from the Q-learning algorithm,

the pseudocode is reported for sake of completeness in Algorithm 12.
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Algorithm 12: Expected SARSA

Inputs: the policy to be evaluated and improved π

Parameters: step size α ∈ (0, 1], small number ε > 0

Initialization: Q(s, a), for all s ∈ S, a ∈ A, arbitrarily except for

Q(final) = 0

for each episode do

S ← new state

for step in episode do

A← action from S following policy derived from Q (e.g. ε-greedy)

R, S ′ ← observed reward and next state after taking A

Q(S,A)← Q(St, At)+α[Rt+1+γ
∑

a π(a|St+1)Q(St+1, a)−Q(St, At)]

S ← S ′

return Q ≈ q∗, π ≈ π∗

The corresponding diagrams for these algorithms, reported in Figure 4.5, are quite

different from the previous ones, as they take into account all the possible actions for

the state of the system. The only difference is the max operation between the following

actions, which emphasizes the similarity between the two methods.

  

(a) Q-learning

  

(b) Expected SARSA

Figure 4.5: Q-learning and Expected SARSA diagrams.
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4.4 Summary

All of the methods presented in this chapter have three key ideas in common: first,

they all seek to estimate value functions (be they state-value of action-value functions);

second, they all operate by updating values along actual or possible state trajectories;

and third, they all follow the general strategy of generalized policy iteration (GPI),

meaning that they maintain an approximate value function and an approximate policy,

and they continually improve each on the basis of the other.

Each one of the algorithms however has a coherent set of ideas cutting across meth-

ods. Each idea can be viewes as a dimension along which methods vary. The set of such

dimensions spans a large space of possible methods. Two of the most important dimen-

sions along which these methods may vary are shown in Figure 4.6. These dimensions

have to do with the kind of update used to improve the value function.

  

..
.

Figure 4.6: Span of the methods space.

The horizontal dimension is whether they are sample updates (based on a sample tra-

jectory) or expected updates (based on a distribution of possible trajectories). Expected
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updates require a distribution model, whereas sample updates need only a sample model,

or can be done from actual experience with no model at all (another dimension of varia-

tion). The vertical dimension of Figure 4.6 corresponds to the depth of updates, that is,

to the degree of bootstrapping. At three of the four corners of the space are the three pri-

mary methods for estimating values: dynamic programming, Temporal-Difference, and

Monte Carlo. Along the left edge of the space are the sample-update methods, ranging

from one-step TD updates to full-return MC updates.

Dynamic programming methods are shown in the extreme upper-right corner of the

space because they involve one-step expected updates. The lower-right corner is the

extreme case of expected updates so deep that they run all the way to terminal states,

this is the case of exhaustive search. The interior of the square is filled in to represent

the space of all such intermediate methods.
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Chapter 5

Deep Reinforcement Learning

5.1 Prediction and Control with Approximation

Trying to apply the reinforcement learning framework to different problems, it is imme-

diate to find tasks that are too difficult to be solved in a decent amount of computational

time and with sufficient precision. Many problems arise, for example, when a large state

space S is taken into consideration. Not only solving a problem of this kind, using pre-

viously explained algorithms, would require a huge amount of memory, but also of time

and data. In many of the target tasks in fact, almost every state would have never been

seen before. To make the best action in these states it is necessary for the agent to learn

to generalize correctly, by analyzing different states that are similar to the current one.

5.1.1 Function Approximation

The kind of generalization used is called function approximation, which is an instance

of supervised learning, because it takes examples from a desired function (e.g. the state-

value function) and attempts to generalize from them, in order to construct an approxi-

mation of the entire function.

The main difference between such a technique and the previously explained ones, is

that the approximate value function is no longer represented by the fixed association

state-value, but is a parametrized functional form with a weight vector w ∈ Rd. For

example, the approximate value function v̂(s,w) might now be a linear function of

features of the state, with w vector of weights. More generally, v̂ might be the function

computed by a deep artificial neural network, such as the ones described in Chapter 2,
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with w the vector of connection weights between the hidden layers units.

Typically, the number of weigths is much less than the number of states d � |S|
and, therefore, changing one weight changes the estimated value of many states. As a

consequence of this, when a single state is updated, the change generalizes from that

state to affect the values of many other states.

5.1.2 The Prediction Objective V E

In previously described algorithms, an explicit objective to minimize was not necessary

since the learned value function would have converged, sooner or later, to the true value

function exactly. Moreover, the learned values at each state were decoupled, an update

at one state affected no other. But, with function approximation, an update affects all

states, and it is not possible to get the values of all states exactly correct. By assumption

we have far more states than weights, so making one state’s estimate more accurate

invariably means making others less accurate. Therefore, there is need to specify a state

distribution µ(s) ≥ 0, with
∑

s µ(s) = 1, representing how much the error in a state s is

more important than the errors in other states.

The error in a general state s is defined as the mean square of the difference between

the approximate value v̂(s,w) and the true value function vπ(s). By weigthing this over

the distribution µ(s) it is possible to define the Mean Squared Value Error :

V E(w)
.
=
∑
s∈S

µ(s) [v̂(s,w)− vπ(s)]2 (5.1)

The square root of V E gives a rough measure of how much the approximate values differ

from the true values. Often µ(s) is chosen to be the fraction of time spent in s.

An ideal goal in terms of V E would be to find a global minimum, which is represented

by a weight vector w∗ for which V E(w∗) ≤ V E(w) for all possible w. In practical terms

this is achieved quite easily by linear approximators, but is sometimes very difficult

for non-linear ones, which instead converge more often to a local minimum, which is

represented by a weight vector w∗ for which the relation V E(w∗) ≤ V E(w) holds only

in a neighborhood of w∗. Said that, it is always possible that the local minimum for

the non-linear approximator is at a lower value than the global minimum for the linear

approximator, and therefore it still represents a better solution.

66



5.2 Stochastic-gradient and Semi-gradient Methods

We now present a class of learning methods for function approximation in value pre-

diction, based on the stochastic gradient descent described in 1.2.1. In these methods

the weight vector is a vector with a fixed number of components w = (w1, w2, . . . , wd),

and the approximate value function v̂(s,w) is differentiable with respect to w for each

state s ∈ S. The weight vector will be updated at each of a series of discrete time steps

t = 0, 1, 2, . . . , so there is need to a notation wt for the weight vector at each step. At

each step, a new example St → vπ(St) is observed, consisting of a state St and its true

value under the policy. These states might be successive states from an interaction with

the environement, but this is not restrictive.

Even with the correct values vπ(St), this is still a difficult problem. Since the function

approximator has limited resources (the fixed lenght weight vector w), there is generally

no w that gets all the states exactly correct and, in addition, we need to generalize to

all the states not appeared in the examples. A good strategy in this case, is to minimize

the error V E in the observed examples using the gradient descent. In order to do so,

the weight vector is adjusted by a small amount in the direction that would most reduce

the error on that example:

wt+1
.
= w − 1

2
α∇w [vπ(St)− v̂(St,wt)]

2

= w + α [vπ(St)− v̂(St,wt)]∇wv̂(St,wt)
(5.2)

where α is a positive step-size parameter.

5.2.1 Gradient Monte Carlo

We now study the case in which the target output is not the true value vπ(St), but some

approximation Ut, it might be a noise-corrupted version or a bootstrapped estimation.

This yelds to the general stochastic gradient descent method:

wt+1
.
= w + α [Ut − v̂(St,wt)]∇wv̂(St,wt) (5.3)

In the particular case Ut is unbiased, that is:

E[Ut|St = s] = vπ(St)

then, wt is guaranteed to converge to a local minimum.
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Because the true value of a state is the expected value of the return following it, the

Monte Carlo target Ut = Gt is by definition an unbiased estimate of vπ(St). With this

choice, the general stochastic gradient descent method converges to a locally optimal

approximation of vπ(St). Thus, the gradient descent version of Monte Carlo state-value

prediction is guaranteed to find a locally optimal solution. The pseudocode for this

algorithm is shown in Algorithm 13.

Algorithm 13: Gradient Monte Carlo

Inputs: the policy to be evaluated π, a differentiable function v̂

Parameters: step size α > 0

Initialization: weight vector w arbitrarily

for each episode do

episode ← new episode following π : S0, A0, R1, S1, . . . , ST−1, AT−1, RT

for step in episode do

w ← w + α[Gt − v̂(St,w)]∇v̂(St,w)

return v̂ ≈ v∗

5.2.2 Semi-gradient Temporal-Difference and SARSA

By bootstrapping the targets, all depend on the current value of the weight vector wt,

which implies that they will be biased and the method is not a true gradient descent. In

fact, the passage in (5.2) relies on the target being independent from wt, and therefore is

not valid if a bootstrapping estimate were used in place of vπ(St). Therefore bootstrap-

ping methods are not instances of true gradient descent [Barnard, 1993] and, since they

take into account only a part of the gradient, are therefore called semi-gradient methods.

Despite the fact these methods don’t converge as robustly as pure gradient descent

ones, they do converge reliably in some cases, and offer important advantages that make

them often preferable. One reason is that they generally have a significantly higher

convergence rate, and they allow for continuous and online policy learning, without

waiting for the end of an episode. A common semi-gradient method is the semi-gradient

TD(0), which uses Ut = Rt+1 + γv̂(St+1,w) as its target. The pseudocode for this

algorithm is shown in Algorithm 14.
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Algorithm 14: Semi-gradient One-Step Temporal Difference

Inputs: the policy to be evaluated π, a differentiable function v̂

Parameters: step size α > 0

Initialization: weight vector w arbitrarily

for each episode do

initialize S

for step in episode do

A← π(·|S)

observe R, S ′

w ← w + α[R + γv̂(S ′,w)− v̂(S,w)]∇v̂(S,w)

S ← S ′

return v̂ ≈ v∗

The extension of these methods to approximate the action-value function is immedi-

ate. In this case is the function q̂ ≈ qπ which is parametrized, as the state-value function

before, with a weight vector w, but now the update target Ut can be any approximation

of qπ(St, At). The general gradient descent update for the action-value function is:

wt+1 = wt + α[Ut − q̂(St, At,w)]∇q̂(St, At,w) (5.4)

The function approximation version of the SARSA algorithm, for example, uses the

following update rule:

wt+1 = wt + α[Rt+1 + γq̂(St+1, At+1,wt)− q̂(St, At,wt)]∇q̂(St, At,wt) (5.5)

which is called Semi-gradient SARSA. To form an efficient control method, there is need

to couple action-value function approximation with techniques for policy improvement

and action selection. If the action set is discrete and not too large, it is possible to

compute q̂(St, a,w) for each available action a in the current state St and then find

the greedy action A∗t = arg maxa q̂(St, a,wt−1). Policy improvement is then done by

changing the estimation policy to a soft approximation of the greedy policy, such as the

ε-greedy policy.actions are selected according to this same policy. The pseudocode for

the corresponding algorithm is reported in Algorithm 15
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Algorithm 15: Semi-gradient SARSA

Inputs: a differentiable function q̂

Parameters: step size α > 0

Initialization: weight vector w arbitrarily

for each episode do

initialize S,A

for step in episode do

observe R, S ′

if S ′ is terminal then

w ← w + α[R− q̂(S,A,w)]∇q̂(S,A,w)

break

A′ ← q̂(S ′, ·,w)

w ← w + α[R + γq̂(S ′, A′,w)− v̂(S,A,w)]∇q̂(S,A,w)

S ← S ′

A← A′

return v̂ ≈ v∗

5.3 Policy Gradient Methods

As it is possible to learn a state-value or an action-value function, is possible to learn

a policy in the same way. The idea is the same as in function approximation, but this

time it is parametrized the policy instead, with a policy parameters vector θ.

In order to learn the best policy, it is possible to use the gradient descent as described

before, by taking into consideration the gradient of a performance measure J(θ) with

respect to the policy parameters vector θ. Since this time we are actually trying to

maximize the performance, the update rule will be ascending the function J :

θt+1 = θt + α∇̂θJ(θt) (5.6)

where ∇̂J(θt) is the stochastic estimate of the gradient of the performance measure. All

methods that follows this general schema are called policy gradient methods.
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In these methods, the policy can be parametrized in any way, as long as π(a|s,θ) is

differentiable with respect to the parameters. If the action space is discrete and not too

large, then an easy parameterization is to form some numerical preferences h(s, a,θ) for

each state-action pair. The action with the highest preferences in each state are given

the highest probabilities of being selected, for example by using the soft-max rule:

π(a|s,θ) =
exp(h(s, a,θ))∑
b exp(h(s, b,θ))

(5.7)

The action preferences themselves can be parametrized arbitrarily. For example, they

might be computed using a deep artificial neural network, such as the ones described in

Chapter 2, where θ is the vector of all the connection weights of the network.

5.3.1 Monte Carlo Policy Gradient (REINFORCE)

The stochastic gradient descent method requires a way to obtain samples, such the ex-

pectation of the sample gradient is proportional to the actual gradient of the performance

measure as a function of the parameter. Furthermore, the sample gradients need only

be proportional to the gradient because any constant of proportionality can be absorbed

into the step size α, which is arbitrary. The policy gradient theorem gives an exact

expression proportional to the gradient:

∇J(θ) ∝
∑
s

µ(s)
∑
a

qπ(s, a)∇π(a|s,θ)

= E

[∑
a

qπ(St, a)∇π(a|St,θ)

] (5.8)

where µ is the on-policy distribution under π. It is then possible to define a basic

stochastic gradient descent update as:

θt+1
.
= θt + α

∑
a

q̂(St, a,w)∇θ(a|St,θ) (5.9)

which is often called an all-actions method because it involves all of the possible actions.

A better method is the REINFORCE algorithm, which is derived by introducing At

in (5.8), by replacing a sum over the random variable’s possible values by an expectation

under π, and then sampling this expectation. This is done by introducing the weighting
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term π(a|St,θ). With that, the gradient has now the form:

∇J(θ) = Eπ

[∑
a

π(a|St,θ)qπ(St, a)
∇π(a|St,θ)

π(a|St,θ)

]

= Eπ
[
qπ(St, At)

∇π(At|St,θ)

π(At|St,θ)

]
= Eπ

[
Gt
∇π(a|St,θ)

π(a|St,θ)

] (5.10)

where Gt is the classic return. The final expression in the brackets is exactly what we

were searching for. A value that can be sampled on each time step and whose expectation

is equal to the gradient. This allows us to write the REINFORCE update rule:

θt+1 = θt + αGt
∇π(At|St,θt)
π(At|St,θt)

(5.11)

Here the increment is proportional to the product of a return Gt and the gradient of the

probability of taking the action actually taken, divided by the probability of taking that

action. This vector is the direction in parameter space that most increases the probability

of repeating the action At on future visits to state St. The update increases the parameter

vector in this direction proportional to the return, and inversely proportional to the

action probability. The former makes sense because it causes the parameter to move

most in the directions that favor actions that yield the highest return. The latter makes

sense because otherwise actions that are selected frequently are at an advantage (the

updates will be more often in their direction) and might win out even if they do not

yield the highest return.

It should also be noted that the REINFORCE algorithm uses the complete return

from time t, which includes all the rewards until the end of the episode. In this sense

REINFORCE is a Monte Carlo method. Pseudocode of this algorithm is reported in 16.

Here the fraction ∇π(At|St,θt)
π(At|St,θt)

is written in the compact form ∇ ln π(At|St,θt), which is

usually referred to as the eligibility vector.

As a stochastic gradient method, REINFORCE has good convergence properties. By

construction, the expected update over an episode is in the same direction as the perfor-

mance gradient. This assures an improvement in expected performance for sufficiently

small α, and convergence to a local optimum under standard stochastic approximation

conditions for decreasing α. However, as a Monte Carlo method REINFORCE may be

of high variance and thus produce slow learning.
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Algorithm 16: Monte Carlo Policy Gradient (REINFORCE)

Inputs: a differentiable policy parametrization π(a|s,θ)

Parameters: step size α > 0

Initialization: policy parameter θ arbitrarily

for each episode do

episode ← new episode following π : S0, A0, R1, S1, . . . , ST−1, AT−1, RT

for step in episode do

G←∑T
k=t+1 γ

k−t−1Rk

θ ← θ+αγtG∇ lnπ(At|St,θ)

return π̂ ≈ π∗

REINFORCE with Baseline

The policy gradient theorem (5.8) can be improved by including a comparison of the

action-value function with an arbitrary baseline b(s):

∇J(θ) ∝
∑
s

µ(s)
∑
a

(qπ(s, a)− b(s))∇π(a|s,θ) (5.12)

This baseline can be any function as long as it does not depend on a. In fact, this

guarantess that the equation remains valid because, when computing the gradient, the

value of the subtracted quantity is zero:∑
a

b(s)∇π(a|s,θ) = b(s)∇
∑
a

π(a|s,θ) = b(s)∇1 = 0 (5.13)

The corresponding update rule is a new version of the REINFORCE algorithm, which

now includes a generic baseline:

θt+1 = θt + α(Gt − b(St))
∇π(At|St,θt)
π(At|St,θt)

(5.14)

Since the baseline could be uniformly zero, this is a strict generalization of REINFORCE.

In general, by proper chosing the baseline, it is possible to leave the expected value of

the update unchanged, but it can still have a large effect on its variance.
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The most obvious choice for the baseline is to use an estimate of the state-value

v̂(St,w) and, since REINFORCE is a Monte Carlo method for learning the policy pa-

rameter θ, it is immediate to also use a Monte Carlo method to learn the state-value

weights w. The pseudocode for this algorithm is given in Algorithm 17.

Algorithm 17: REINFORCE with Baseline

Inputs: a differentiable policy parametrization π(a|s,θ), a differentiable

state-value function parametrization v̂(s,w)

Parameters: step size αw > 0, αθ > 0

Initialization: policy parameter θ arbitrarily, weight vector w arbitrarily

for each episode do

episode ← new episode following π : S0, A0, R1, S1, . . . , ST−1, AT−1, RT

for step in episode do

G←∑T
k=t+1 γ

k−t−1Rk

δ ← G− v̂(St,w)

w ← w + αwδ∇v̂(St,w)

θ ← θ+αθγtδG∇ ln π(At|St,θ)

return π̂ ≈ π∗

5.3.2 Actor-Critic Methods

When the state-value function, or similarly the action-value function, is not used only

as a baseline b(s), but also to actively bootstrap the value, here we are faced with a new

class of algorithms, the Actor-Critic algorithms.

This class algorithms are composed of two parts: the first one, which is called the

“Critic” part, estimates the value of the state (or action) the agent is in (or has just

taken), whilst the second one, the so-called “Actor” part, actually updates the policy

distribution in the direction suggested by the Critic. Despite the REINFORCE with

baseline method learns both the policy function and the state-value function, it is not

considered to belong to the Actor-Critic algorihtms, since its state-value function is not

used for estimating the current value for a certain state, but only as a baseline for the

state whose value estimate is being updated.
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REINFORCE with baseline is an unbiased method and will converge asymptotically

to a local minimum but, since it is a Monte Carlo method it may learn slowly and it

is unconvenient to implement for online or continuing problems. The One-Step Actor-

Critic methods replace the full return of the REINFORCE algorithm with a one-step

return (while using a learned state-value function as the baseline):

θt+1
.
= θt + α(Gt:t+1 − v̂(St,w))

∇π(At|St,θt)
π(At|St,θt)

= θt + (Rt+1 + γv̂(St+1,w)− v̂(St,w))
∇π(At|St,θt)
π(At|St,θt)

= θt + αδt
∇π(At|St,θt)
π(At|St,θt)

(5.15)

The pseudocode for this algorithm is reported in Algorithm 18.

Algorithm 18: One-Step Actor-Critic

Inputs: a differentiable policy parametrization π(a|s,θ), a differentiable

state-value function parametrization v̂(s,w)

Parameters: step size αw > 0, αθ > 0

Initialization: policy parameter θ arbitrarily, weight vector w arbitrarily

for each episode do

Initialize S

I ← 1

while S is not terminal do

A← π(·|S,θ)

Take action A, observe S ′, R (if S ′ is terminal, v̂(S ′,w) = 0)

δ ← R + γv̂(St+1,w)− v̂(St,w)

w ← w + αwδ∇v̂(St,w)

θ ← θ+αθIδ∇ lnπ(At|St,θ)

I ← γI

S ← S ′

return π̂ ≈ π∗
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5.3.3 Deep Learning Methods

In this chapter we have presented several function approximation algorithms for rein-

forcement learning, but how can these be ”deep”? As briefly mentioned above, both

the prediction and control methods described here are based on a parameterization of

a function, in particular v̂(s,w) with respect to the weight vector w and π(a|s,θ) with

respect to θ. Now, if we think of these approximation functions as neural networks, the

w and θ vectors become exactly the weights vectors of a single perceptron, as described

in Chapter 2 (and then the weigths matrices in a multy-layer perceptron).

To better understand, let’s take a practical example about the structure of a deep

reinforcement learning setup. In particular, let’s take exactly the last category of algo-

rithms studied, the actor-critic ones, and see how they can be quickly implemented on a

neural network. The Figure 5.1 shows an artificial neural network in a two-headed con-

figuration. The first one, the one with more output units, is the one that will represent

the function approximation of the policy π̂, while the second one, constituted by only

one unit, will represent the function approximation for the value function v̂. Since this

is a multi-layered model, obviously the parameter vectors w and θ have now become

matrices. This, however, this does not change the way the model works, which will use

the same algorithm described in Algorithm 18 to train them.

  

x1 y1

x 2

x3

x4

y2

y3

v̂

π̂

Figure 5.1: Deep neural network in a reinforcement learning setup.

Finally, there is one last interesting thing to discuss about: it may seem strange in

fact to consider a neural network with two separate output layers. Typically we have

a policy network that provides a probability distribution over actions and another that

gives a value estimate of the state. If we have n actions, then the policy network yields
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n values that sum to 1, while the value network always yields a single value, but, with

a two-headed network we wind up getting a shared body of layers that branch off into

these separate heads. In order to update this, we have to pass the gradients coming out

of both heads, so the body gets updated according to the gradients of both the policy

network and the value network. What these networks are actually trying to do, is in

fact just to learn to approximate some functions based on the data we provide. So all

we’re doing is adjusting the parameters of the network to best approximate this function,

regardless of what the output is.

5.4 State of the Art of Reinforcement Learning

Most of the algorithms described in the previous sections are related to mathematical

optimization theories developed during the late 1950s. However, it has only been in

recent years that reinforcement learning has undergone a considerable rediscovery and

diffusion, mainly due to the improvement of the hardware available used for computation.

5.4.1 Multi-agent Reinforcement Learning

A novelty introduced thanks to parallel computing development, is the possibility of

using a multi-agent system to train a common network. In a multi-agent framework,

many learrning agents are equipped with a local copy of the global network, and interact

with the same environment (or with each other, depending on the task). After a training

period, each worker then updates the global network based on what has been learned.

Many algorithms already presented can be developed asynchronously [Mnih et al., 2016],

such as the policy gradient methods explained in Section 5.3. An example of the global

architecture of the algorithm is represented in Figure 5.2.

It was shown that asynchronous algorithms are capable of training a neural network

in a stable manner as well as synchronous ones, and even better in some occasions.

What has been found is that using parallel actor-learners to update a shared model has

a stabilizing effect on the learning process. The asynchronous models also train faster on

a multi-core CPU with respect to the synchronous ones trained on a GPU, this resulting

in better performances in the same training time.

77



  

Global Network

Input

Network

Policy Value

WorkerWorker Worker Worker

Environment

Figure 5.2: Asyncronous Actor-Critic framework.

5.4.2 Learning to Play Games

The area where reinforcement learning has been most successful is undoubtedly that of

games and videogames, where agents are trained to play at beyond the human level. In

[Mnih et al., 2013] and [Mnih et al., 2015], for example, a convolutional neural network

was developed , such as the ones described in Chapter 2, which was trained with a

variant of a reinforcement learning algorithm called Q-learning (not reported here). This

network has proven to be capable of learning how to play seven different Atari 2600

games, outperforming previous approaches and surpassing human experts in most of

them, using only the raw pixels of the screen as input.

More recently, Google Deepmind’s AlphaGo reached the great milestone of defeating

a Go champion on a standard-sized table [Silver et al., 2016]. The game of Go has long

been viewed as the most challenging of classic games for artificial intelligence, owing

to its enormous search space and the difficulty of evaluating all the board positions and

possible moves. In the AlphaGo proposed model, two deep convolutional neural networks

are used: the first evaluates the board position, whilst the other one selects moves (as in
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the Actor-Critic approach of the previous chapter). This two networks were trained using

a combination of supervised learning (from human-expert games) and reinforcement

learning (from self-played games). In the next improved model AlphaGoZero [Silver

et al., 2017] instead, the two networks were merged into a single network, and the

algorithm was based solely on the reinforcement learning approach, without human data.

This last model was proven to achieve even better results than the previous one, winning

a series of mathces 100− 0 against the first model.

Finally, only during the last year significant results were also achieved in the field

of real-time-strategy (RTS) video games, in particular the game StarCraft II, played by

Google Deepmind’s AlphaStar [Vinyals et al., 2019]. Although the significant successes

in the field, until now artificial intellicenge techniques have struggled to cope with the

complexity of RTS games. AlphaStar behaviour is generated by a deep neural network

(which is actually a combination of different architectures, from feedforward to recur-

sive) that receives input data from the raw game interface, and outputs a sequence of

instructions that constitute an action within the game. The neural network was initially

trained by supervised learning, which allowed AlphaStar to learn by imitation, and then

it learned by playing against itself in a multi-agent reinforcement learning process. In the

end, AlphaStar was able to beat a top professional player in a series of matches 5− 0.
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Industrial Applications
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Chapter 6

Methods and Models

Before explaining in detail the problem faced during my thesis work, and the methods

used to solve it, we are going to start with an easier toy problem: the arcade game Snake.

This, despite at first glance may seem to have little to do with the main problem, it will

actually serve as a starting point for the study and development of the policy gradient

algorithm used afterwards.

We move on then to describe the problem of recognizing defects on fruits, and briefly

discuss what the current approach is, and how to overcome the difficulties that emerge

from this. Then the first attempts to model the problem are presented, and we’ll go and

see where they proved to be adequate or where they could be improved. In the end, the

final problem framework and methods are presented, with particular attention to the

dataset generation, used to create samples and assess the applicability of the model.

6.1 Starting with a Toy-Problem: The Snake Game

To correctly implement the some deep reinforcement learning algorithm within the code,

we first started by testing it on a toy-problem: the arcade game Snake. This is a game

in which the player controls a line of squares (the snake) on a bordered plane, and the

goal is to collect as many squares of another color (the food) as possible, increasing the

length of the snake as they get eaten. The game is lost when the player eats himself

or ends up off the playing field. A graphical representation of the game is reported in

Figure 6.1, which shows the snake in three different phases of the game with a different

length. The whole Snake game environment was developed using Python.
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Figure 6.1: Different time steps of the Snake game.

Actually, the algorithm implemented within the Snake environment is the Actor-

Critic algorithm, whilst the one implemented in the main problem faced will be the

REINFORCE one. This is due to the fact that, while the former turns out to be a

non-episodic task (as the snake could never lose during the game), the latter has well-

defined episodes (the analysis of a single fruit), and it is therefore useless to use the value

function also to bootstrap the state-values for each update. However, this does not cause

major differences in the implementation of the algorithm since they are quite similar,

and the transition from one to another was immediate.

6.1.1 Network Architecture and Input Mapping

In order to beat the game, a feedforward neural network was implemented the TensorFlow

package. This should have been deep enough to give rise to sufficiently complex behavior,

and therefore a network with hidden layers of shape 40− 32− 24− 12 was created, each

of those with tanh(x) as the activation function.

The network accepted an 8-dimensional input vector, which coded the essential in-

formation in order to correctly play:

• input[1-3]: the distance between the snake head and the boundaries, with respect

to the direction of the movement (left, front, right), normalized in the interval [0, 1];

• input[4-6]: the distance between the snake head and the snake body (in present

along the direction), with respect to the direction of the movement (left, front,

right), normalized in the interval [0, 1];
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• input[7]: the Manhattan distance between the snake head and the food square,

normalized in the interval [0, 1];

• input[8]: the angle between the snake head and the food square, with respect to

the direction of the movement, rescaled from the interval [−π, π] to [−1, 1].

Random noise was then added to each of the distances, in order to speed up the conver-

gence of the algorithm, in the range [−1/s,+1/s] (where s was the size of the board).

At the other side, the network output a 3-dimensional vector, which represented

the probability of turning left, continuing straight or turning right. This vector was

then normalized through the softmax(x) function, and then a random action was taken,

following the obtained distribution.

To train the network for this problem, as well as for the main one, we used the Adam

optimizer, explained in Chapter 1, with a learning rate of 10−4, to minimize the loss

function explained later in this section.

6.1.2 Rewards and Loss Function

In order to work the Actor-Critic algorithm needed to estimate the value of a certain

state and, in order to so, there was need to define the rewards and the discount factor.

As a reward, the agent earned a reward of +1 for each fruit he has been able to eat, and

a negative reward of −1 if it had eaten itself or had exited the game boundaries.

To prevent the game from running indefinitely, the maximum number of steps that

the snake could have taken without eating anything was set to four times the size of the

board. The discount factor γ was set equal to 0.9, since it was not really important when

a snake ate some food, as long as it remained alive. For lower value in fact, in certain

occasions the agent might prefer moving straight to the food square without taking into

consideration the risk of hitting a part of itself. However, it was not fixed higher in order

to prevent diverging values in the state-value function approximation.

In order to apply the gradient descent rule in TensorFlow, there is need of the anal-

ogous loss function for the update rule of Algorithm 18, defined as:

Lπ = − log (π(At|St,θπ)) δt − β ·H (π(At|St,θπ)) + α · (v̂(St)−Gt)
2 (6.1)

Let’s take a moment to comment this formula. The first part is the standard policy

gradient loss function: the δt is the TD-error at step t, and the policy gradient loss
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function is the error times the log of the probability of the action a taken at t.

To this, we also subtract the entropy term, which is scaled by a factor β (relatively small,

usually ∼ 10−2) because this ought not dominate the loss we get from the rest of our loss

function. The idea here is to use entropy to encourage further exploration of the model.

Recall that the output of a network with policy gradient is a probability distribution

over possible actions. If we have three actions to choose from, the softmax layer will

give us three probabilities and, in order to prevent premature convergence, the we want

to penalize the algorithm for being overconfident in a certain action by increasing the

loss through the entropy term. In essence we’re trying to adjust our probabilities to

gain more information. It’s important to note that we’re taking the negative of our loss

function here, thus subtracting our entropy term. This might be confusing at first, so

let’s think carefully about what our loss function is designed to do.

In short, our loss function is designed to increase the probability that we’ll take high

reward actions in the future. We want to change the gradient of our network to push

that probability in the right direction. The first term for the policy gradient loss is the

log probability times our TD-error, which can be thought of as the expected amount

we outperform (or under perform if δ is negative) our baseline estimate of that state.

We want to maximize this, however because deep learning frameworks like TensorFlow

don’t have the ability to maximize a function, we then minimize the negative of our loss,

which is mathematically equivalent. We desire this first term then to be as negative as

possible. Because the entropy is a positive value, we subtract it from this loss. This

means that the loss is more negative when the output is high in entropy relative to the

low entropy values. In this sense then, we’re telling our network to update itself to favor

high entropy values over low entropy to encourage exploration.

Because we’re shoving all of these different gradients through the same network, we

need to include the value loss as well. We’ll just take the mean squared error (MSE)

between the value prediction and the discounted rewards. To help learning along, we’ll

also introduce a scaling function for the value function gradients called α. This will be

used to get the gradients to roughly the same order of magnitude so that one of our

gradients doesn’t dominate the others.

These three terms all work together to influence the behavior of the algorithm. At the

end of the day, this algorithm isn’t explicitly trying to maximize its reward, it’s trying

to minimize or maximize its loss function. Looking at it closely, these three values are

working together for different purposes as shown in Figure 6.2(a).
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What we see in the image is that we want to increase our policy loss and entropy loss

while decreasing the value loss because the first corresponds to our expected rewards,

which we obviously want to maximize in most cases. The entropy loss here is like

as a “bonus” value that the algorithm receives for exploring, because the entropy will

always be some non-zero value and increase the loss, but it adds more to the total

loss by having a higher entropy. Then the value ought to be minimized because it is

decreasing the predicted value estimation error for each state. As stated above, because

it is only possible to minimize functions in TensorFlow, we adjust the signs so that we’re

minimizing all of our values during the training (see Figure 6.2(b)).

(a) Original optimization goal.

(b) Actual optimization goal.

Figure 6.2: Loss function optimization goal.
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6.1.3 Results

As said before, the objective of the implementation of this project was simply to study

the functioning of the policy gradient algorithms and how to apply them to concrete

problems. For this reason, we are not interested in the performance of the algorithm nor

in finding a way to improve it, but only that it has been developed correctly.

In order to see this, we trained the model over 250k games, each of size 10× 10 (see

Figure 6.1). Thanks to the Actor-Critic algorithm, which updates the network every 5

steps or when the game is over, the agent quicly learns how to survive and then how to

grow in length without dying. The trend of the rewards is then reported in Figure 6.3.

Figure 6.3: Snake training rewards.

Since the total loss function is the composition of several losses from (6.1), in general

the graphic representation is not immediately understandable as for the reward. The

trends, however, are still reported in Figure 6.4 for the sake of completeness.
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Figure 6.4: Snake training losses.

Here it is possible to see that the entropy loss starts from a rather high value, and

gradually decreases, a sign that the network is more and more secure of the choices it

makes, and therefore discourages exploration later in the training process. The value loss

instead starts from a lower point (since in the start all the values were fixed randomly

around ∼ 0.1) and then increases because the network started correct the values. Once

reached its maximum, then it decreases again as the model starts to make more correct

estimations. Finally, the policy loss is following a more or less specular path of the value

loss, but is instead increasing. In this way the expected log rewards are maximized, as

explained before in 6.1.2.

At the end, the agent was tested on 25k other games, without improving the network,

in order to estimate the expected reward for a single game as:

26± 8

which leads us to believe that the algorithm was correctly implemented.
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From Games to Industrial Applications

Seeing how reinforcement learning techniques can be successfully applied to the gaming

world, mostly a simplification of the real world, one immediately wonders if these cannot

also be applied to real life situations with the necessary simplifications, and in particular

referring to industrial applications [Hammond, 2017].

The premises are very promising, since the goal of reinforcement learning framework

is simply to learn how to map observations and measurements to a set of actions while

trying to maximize some long-term reward and, in simple terms, it reduces in finding

the optimal sequences of decisions. Therefore, at least in theory, it is possible to model

any aspect of real life, not just games, as a reinforcement learning problem.

Even the fields of application could then be the most varied. Let’s only think about

problems of text and speech comprehension, image and video analysis, network opti-

mization, process planning, demand forecasting, robotics and automation, fleet logistics,

froduct design, service availability and many others.

6.2 Industrial Scenario

The problem faced during my thesis work mainly concerns the agri-food industry, with

particular reference to the sector that produces and selects the fruits to be sold.

All of my work has been co-supervised by Dr. Matteo Roffilli, CEO at Bioretics s.r.l.,

a small cutting-edge company focused on research and development in artificial vision,

who has proposed me to find a way to improve their approach to fruit selection, in order

to better select the defects detected on different kind of fruits.

6.2.1 Optical Sorting

In the food industry it is very common to use machinery called optical sorters, which

allows to recognize color, shape, structural properties and chemical composition of some

solid products, using a combination of cameras and lasers. These sorters are generally

used to compare the objects in question with some pre-established filtering rules, in

order to accept or reject them from the production chain. Unlike manual sorting, which

is subjective and often inconsistent, optical sorting provides an objective evaluation

method, helping to improve the quality of the product, maximize throughput and increase

yields while reducing labor costs.
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In general, optical sorters are composed of four steps: the feed system, the optical

system, an image processing software and the separating system. The main purpose of

the feed system is to distribute evenly the product, in order to present it to the optical

system without clumps and at a constant velocity. Then, the optical system uses lights

and sensors to create some images and data to be passed on to the image processing

system. This compares objects with some previously defined accept/reject thresholds

to classify the objects and actuate the separation system. The separation system then

selects and mechanically picks up the defective products from the suitable ones.

Sensors and Software

In order to correcly classify and separate objects, optical sorters use a combination of

lights and sensors to illuminate and capture images, which will be processed and are used

to make accept/reject decisions. There are multiple possible combination of cameras and

lasers sensors which can be made. These can in fact be designed to function within the

visible light wavelengths, as well as the infrared (IR) and the ultraviolet (UV) spectrum.

The optimal wavelengths for each application maximize the contrast between the objects

to be separated. Cameras and laser sensors can differ in spatial resolution, with higher

resolutions enabling the sorter to detect and remove smaller defects.

Simple monochromatic cameras are able to detect several shades of gray and can be

very effective when sorting products with high contrast defects. If the defects present

subtle shades instead, it might be better to use more sophisticated color cameras, which

are capable of detect millions of colors.

While cameras capture information based primarily upon object’s reflectance, lasers

are able to extract structural properties in addition to determining differences in color.

This property makes lasers ideal for detecting a wide range of foreign material, both

organic and inorganic, even if they are the same color as the product.

Once the sensors have captured several images, the image processing software starts to

manipulate the data and extracts and categorize some specific features. The effectiveness

of this image processing step lies in the development of algorithms that maximize the

accuracy of the sorter, while being fast and easy to execute.

Object-based recognition is a classic example of software-driven intelligence. It allows

the used to define a defective product based on where a defect lies on the product and/or

the total defective surface area of an object.
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6.2.2 Current Approach

The faced problem consisted in selecting whether or not a fruit was suitable for sale,

based on the presence or absence of different classes of defects on it. In order to do

so, a fruit candidate is passed on a conveyor belt inside an optical sorter. Here four

cameras (two visible light cameras and two infrared cameras) aquire several shots of the

fruit at different time steps. While the visible light cameras just aquire a normal shot of

the fruit, the IR cameras are used to create a virtual mask of the fruit, which allows to

separate it from the background for a better analysis.

The obtained image is then fed into a convolutional neural network, which is pre-

trained to recognize the different parts of the fruit and the present defects. A specially

written software also extrapolates some useful information about the fruit, such as the

length and the width, the major/minor axis ration, and so on. Each part recognized by

the software is then labeled, such as the stalk or the color of the fruit, and each defect is

associated with a class number, describing its type, and a probability of correcteness of

the identification. An example of the overall detection process is reported in Figure 6.5.
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Figure 6.5: Optical sorter detection process.
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The software then uses the information obtained to choose whether to discard the

fruit or keep it in terms of defects present, but based only on the result of the worst

shot. The software in fact does not take into consideration the rotation of the fruit,

and does not attempt to match the defects between the different shots of the same fruit.

Another example, showing three shots of the same fruit acquired at different time steps,

is reported in Figure 6.6, showing also the information extracted by the CNN.

Figure 6.6: Three shots of the same fruit with CNN information.

Using Reinforcement Learning to Track Defects

The approach proposed in this thesis is then aimed at taking into consideration the

physical rolling process of the fruit, and in trying to link the same defects between

different shots. In order to do this, it was decided to train a deep neural network, without

going to bother particular complex structures (such as convolutional or recurrent ones),

to compare the properties of the defects and to recognize when they are sufficiently

similar to be identified as the same defect.

The use of a labeled output and supervised learning was the initially favored choice,

but this would not have deviated from a traditional approach of developing a classifica-

tion model for the defects, and which more importantly would not have taken the rolling

process into account at all. The use of reinforcement learning instead, would have in-

troduced the concept of system state (in this case the rotation of the fruit) which would

probably have influenced the defect identification process. The proposal is therefore to

use a simple feedforward neural network, but using an algorithm that takes into account

the rolling process during the training phase.
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Therefore, it is necessary for the network to consider the step of the rolling process

in which the fruit is, thus it is needed that this is coded and supplied to the network

by means of the input. The final input vector will therefore contain a combination of

features that describe the difference between two defects, in order to compare them, and

also features that describe the rolling state of the fruit.

The algorithm that would be optimal for this case, is an algorithm that takes into

account the state of the system when it’s time to take an action, and that uses it within

the training process. The most immediate idea that comes to mind, is then to use

one of the policy gradient algorithms explained at the end of Chapter 5. These in fact

use a baseline to train the policy, such as the REINFORCE with Baseline (17) or the

Actor-Critic (18) algorithms.

6.3 Modeling Defects and Fruits

Subsequent efforts, in order to solve the problem of fruit sorting, focused mainly on

understanding how to model the rolling process and how to process the data obtained

for an eventual identification phase. It should be noted in fact that this thesis work

is inserted after the CNN elaboration phase reported in Figure 6.5, where defects have

already been identified and their properties extracted.

Once it has been decided how the process of identifying the various defects should

take place, various ways have been tried to simulate the shot acquisition process, as well

as the simulation of the various properties of the defects on the fruit. Once the first

results were obtained, the process was then improved, trying to create a dataset that

would allow faster processing and greater customization capabilities.

6.3.1 Defects Comparison and Identification Process

When loaded, each defect is also accompanied with a set of useful information, obtained

from the CNN and software configuration from Figure 6.5, such as:

• the position (x, y) of the defect normalized with respect to the size of the shot;

• the circularity, defined as:

c =
4π · Area

Perimeter2
(6.2)
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• the eccentricity, defined as the ratio of the focal distance over the major axis length;

• the solidity, defined as the ratio between the area of the region and the area of the

convex hull surrounding it;

which will be used to compare the defects between each other.

It is now important to describe the process of comparing defects and the following

process of identification separately, because while the former is actually used to train the

model used, the latter is only proposed as an extra step for defects management.

Defects Comparison Process

Once created, these defects will be stored inside a fruit object, which will take care of

applying the correct spatial transformations (simulating the rolling process) and present-

ing them in the correct temporal order of analysis (the shot number). Each defect will

be in fact compared by the neural network with all the already analyzed defects from all

the previous shots. For each comparison, the output of the neural network can be either

identical or different. The agent then checks that the answer given by the network is

correct with the ground truth and, in case of correct answer, it receives a reward of +1,

otherwise -1. At the end of the analysis of each single fruit, the accuracy achieved by

the model for the current fruit is calculated by simply rescaling the final average reward

(bounded to be in the interval [−1, 1] by construction) in the interval [0, 1].

Identification Process

As far as the process of identifying the various defects is concerned, the matter becomes

slightly more complicated. As the smallest element to be analyzed is the single defect,

we want the program to be able to univocally identify these elements after each analysis

process. To do so, each defect object is defined to have a universally unique identifier

(UUID), which is represented by a string of 32 hexadecimal digits displayed in groups of

the form 8− 4− 4− 4− 12. This guarantees that there are more than 3 · 1038 different

possible UUIDs and therefore, when one is randomly assigned to a new defect, the

probabilities to have the same UUID while not being actually the same are almost zero.

For each defects comparison, if the output is the label identical, the compared defect’s

UUID is stored in a list of possible UUIDs of the current defect. After the current defect

has been compared with all the previous defects, the most frequently attributed UUID is
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assigned to the defect. If the output label is always different, no UUID is ever attributed

and a new one is then generated, because it means that the defect has no similar in

the other shots. It is important to specify that a reward of ±1 is earned for each label

attribution and, only at the end, when all the defects have an assigned UUID (which may

be correct or not) the network is updated with all the results. This is the main difference

between the fruit framework and the Snake game, where the updates were made every

few steps, regardless of whether the game was over or not. This overall process of UUIDs

assigning is reported and described in Figure 6.7.
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Figure 6.7: Defect comparison and UUIDs assignement processes.

Here the colours are used in order to better describe the comparison between defects of

a shot with the previous ones. In this example, only the comparison with the immediately

preceding shot is shown for simplicity but, actually, all the previous shots are taken into

consideration. Also, in case of a tie between the frequencies of the UUIDs assigned, the

resulting UUID will be a randomly chosen between the most frequent ones.
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6.3.2 Rolling Process Simulation for Synthetic Dataset

Unfortunately, a dataset with the characteristics needed for the process described was not

readily available, since no one contained all the information about the identification of

the defects on a fruit. Therefore, it was necessary to artificially create it, but simulating

the data as realistically as possible, to not affect the applicability in real situations.

Generating Shots

The initial intention was to fully simulate the process of acquiring shots and processing

the properties of defects. For this purpose we wrote some code that allow the creation

of points on a spherical surface, with many possibilities of scale and color customization.

The surface was then rotated, and an image saved to simulate the shot acquisition. As

an example, three generated shots at different time steps of the same fruit are reported

in Figure 6.8, where it’s immediate to notice the simulated rolling process.

Figure 6.8: Five simulated shots of the same fruit during the rolling process.

On the same fruit each defect is uniquely numbered and its position is always tracked,

so it’s possible to create a list with the correct id of the defects contained in the same

shot, which will come in handy later in the training phase. After this, all the shots

images are converted in greyscale and the defects properties are extracted using simple

image segmentation algorithms.

This approach has proved to be very effective for the overall process simulation, but

with several limitations. First of all, the size and shape of the fruits were not realistic

because they were perfectly spherical and not customizable. Secondly, the generation of

a very high number of images entailed very high costs in terms of memory and compu-

tation. Finally, the properties extraction process relied on very noise-sensitive labeling

algorithms, with the risk of combining together some defects that were too close.
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Generating Geometrical Data

The most important improvement made to the code was the transition from image cre-

ation to analytical simulation. Although it was initially difficult to write the part of

the code that correctly computed the properties of the defects, this allowed for greater

customization of the properties of the fruit and greatly speeded up both the dataset

generation process and the training phase. The key idea here is to think of a single fruit

as a relatively simple geometric entity, like an ellipsoid. Consequently, the rolling process

can be modelled as a simple three-dimensional rotation of the fruit surface. Thinking

then of the defects as simple points on this surface, the mathematical operations to be

carried out are reduced to trivial matrices multiplications.

The general equation for an ellipsoid (centered in the origin) is:

x2

a2
+
y2

b2
+
z2

c2
= 1 (6.3)

where a, b, c are the lengths of its principal axes. This equation also has a matrix form

representation as a quadric:

x>Ax = 1 (6.4)

where A is a positive definite matrix, whose eigenvectors define the principal axes and

the eigenvalues are the reciprocals of the squares of the semi-axes a−2, b−2, c−2. This

form allows us to easily compute a rotation around an axis and of an angle of our choice,

by simply multiplying the matrix A with the corresponding rotation matrix R.

Therefore, to simulate a custom fruit, we just have to choose the lengths of the axes

a, b, c and create its corresponding matrix. The coordinates of the defects on it, on the

other hand, are only a list of points whose position will be tracked during the rotations.

Applying Defects

The next task is to generate the defects on the fruit, each with a different shape, size,

and properties, and to correctly compute these during the images acquisition.

This is actually performed by projecting several defects onto the three-dimensional

ellipsoid described before, that will be centered in the origin, and have axes a, b, c set

as the length and caliper generated from the dataset. In particular two of them (those

describing the caliper) will be the, in order to simulate a symmetrical fruit. The surface

will then perform two rotation, the firts along the z-axis (perpendicular to the acquisition
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plane) and the second one along its major axis. After this, all the points that have the

coordinate z > 0 will be considered as acquired, and the properties of the fruit defects

are evaluated. The difficult part of all of this, is to correctly compute each of the defect

properties, such as area and perimeter, with taking into consideration the “cutting” effect

of the shot acquisition. In order to do so, we’re going to decompose each defect into a

mesh grid, by performing a ncloud point Delaunay triangulation. This will guarantee

that, even if some points will be missing, the properties will be computed based oly on

the current points. A visualization of the process is reported in Figure 6.9.

Figure 6.9: Defect mesh grid creation process.

Once a new defect of a certain shape is created, it is rescaled up to a random fac-

tor and projected onto the ellipsoid using the appropriate transformation in spherical

coordinates. Obviously the defect properties won’t be preserved during this projection,

but the most important thing is that they will be preserved during the forward rolling

process simulation. Some randomly generated kiwis are reported in Figure 6.10, each

with four defects projected on the surface. Here the ellipsoid is represented as slightly

transparent in order to see also the defects on the other side of the surface. It is also

possible to see its three axis, where the green one is the major axis of rotation.

Figure 6.10: Three randomly generated fruits with four defects each.
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6.4 Creating the Dataset

As said before, a dataset with exactly those characteristics was not immediately available.

However, it was possible to retrieve data on the size and rolling process of real fruits,

obtained through a process similar to the one reported in Figure 6.5. This has allowed us

to create a custom dataset that, even if generated artificially, was based on data obtained

from a real process, and therefore of immediate applicability.

6.4.1 The Real Dataset

The dataset containing real data was provided by Ser.mac s.r.l., a company collaborating

with Bioretics, with measurements of 1713 kiwis. For each of these, 5 shots were acquired

from two cameras, positioned one opposite to the other in a left-right configuration, for

a total of 17130 entries. The measurements reported in the dataset indicated an ID of

the fruit, the camera used, the view number, the positions of points used to calculate

the length and the caliper, and of the point identified as the stalk (if recognized). An

example of the images acquired for each fruit are reported in Figure 6.11 while an excerpt

of the provided dataset is reported in Table 6.1. All the measurements are reported in

pixels, with a known conversion factor of 3 px/mm.

Figure 6.11: Five consecutive shots of the same fruit during the rolling process.

The raw data were then cleaned and parsed, in order to extract more useful informa-

tions. For simplicity of data analysis, the measurements obtained by the two cameras

were treated as independent acquisitions and therefore, after the processes, the dataset

was composed of 5 shots of 3418 kiwis, for a total of 17090 entries. An excerpt of this

dataset is reported in Table 6.2. Here we can observe the calculated caliper and length

of the fruit, alongside with the angle α, the rotation angle around the axis perpendic-

ular to the conveyor belt (z-axis). The angle ∆α is simply the difference between two

consecutive angles, which therefore measures the rolling of the fruit between each shot.
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fruit cam view pt len 1 pt len 2 pt cal 1 pt cal 2 pt stalk

0 4 right 0 [121, 220] [115, 31] [37, 128] [200, 122] [118, 186]

1 4 right 1 [137, 222] [87, 35] [31, 154] [191, 111] [123, 172]

2 4 right 2 [140, 220] [102, 32] [34, 151] [207, 115] [132, 186]

3 4 right 3 [140, 218] [104, 33] [32, 144] [211, 108] [127, 171]

4 4 right 4 [131, 31] [102, 220] [34, 114] [200, 140] [106, 183]

5 4 left 0 [136, 33] [103, 212] [38, 100] [203, 132] [NaN, NaN]

6 4 left 1 [137, 35] [90, 218] [34, 103] [195, 145] [NaN, NaN]

7 4 left 2 [161, 31] [83, 212] [34, 99] [198, 171] [NaN, NaN]

8 4 left 3 [183, 202] [58, 47] [47, 180] [189, 63] [NaN, NaN]

9 4 left 4 [134, 214] [95, 31] [34, 137] [197, 101] [98, 50]
...

...
...

...
...

...
...

...

Table 6.1: Fruits dataset originally provided.

It is important to note that, since some measurements were taken from an opposite

placed camera, some data were appropriately flipped over the x-axis, in order to bring

them back into the same reference system of the main camera (arbitrarily chosen).

fruit shot length caliper α ∆α

0 0 0 190 162 1.86 0

1 0 1 194 165 15.4 13.6

2 0 2 192 177 11.8 -3.7

3 0 3 189 183 11.4 -0.3

4 0 4 191 167 -9.18 -20.6

5 1 0 182 168 10.9 0

6 1 1 189 167 14.7 3.8

7 1 2 197 179 23.7 9.0

8 1 3 199 183 -39.2 -62.9

9 1 4 187 167 -12.5 26.7
...

...
...

...
...

...
...

Table 6.2: Cleaned and parsed fruits dataset.
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6.4.2 Fruits Data Analysis

In order to generate a data set as realistic as possible, we first proceeded to analyze the

data provided, so as to see if there were some types of correlation, especially between

the length and caliper of a single fruit, as well as the subsequent α angles of rotation.

Length and Caliper

The first task concerns the best estimate of the length and caliper of a single fruit, as

we have 5 different measurements (one for each shot) of them. However, It is quite

immediate to think that the most correct thing to do here is to use the maximum of the

various measures as the final estimate, as a simple mean will underestimate them.

Once estabilished this, it also must be taken into account, when sampling the values,

that the two distributions will probably be correlated. This was confirmed by the Pearson

correlation coefficient ρ:

ρ(L,C) =
cov(L,C)

σLσC
= 0.79

which suggests a strong correlation and indicates that we cannot sample the values as if

they were independent, but we have to sample both together. A visual representation of

the underlying data distributions is reported in the first part of Figure 6.12.

Rolling Angle

The analysis of the rolling angles is actually very similar to the previous one, as the

angle αi of the i-th shot is highly correlated with the difference ∆αi+1 of the next shot.

In fact, the average Pearson correlation coefficient ρ for i ∈ [0, 4]:

ρ̄(αi,∆αi+1) = −0.74

that prevents us from sampling the angles as independent, and forces us to to sample

all of the 5 angles at the same time. A visual representation of the underlying data

distributions is reported in the second part of Figure 6.12.
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Figure 6.12: Fruits dataset underlying distributions.
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Here it is possible to notice the shifting of the rotation angles between the shots, as a

consequence of the rolling process. Actually, during this process, there is also a rotation

around the major axis of the fruit but, since there are not data available from the real

dataset, this will be simulated by generating the angles from a normal distribution.

6.4.3 Fruits Sampling and Defects Generation

Once the properties of the original dataset have been analyzed, it is time to generate the

train, validation and test datasets. To do this, a uniform sampling without replacement

was carried out on the cleaned and parsed original dataset. As mentioned earlier, we

took care to place in the same dataset the pairs of correlated fruit measures, in order

to avoid bias. For each fruit sampled, a uniform noise factor of ±5% was then added to

both the length and caliper measures and to each α angle independently.

A train dataset of 250k samples was then created, together with a validation and

test datasets of 5k and 25k units respectively. An excerpt of these is reported in Table

6.3. Each sampling was carried out on independent splits of the original dataset, with

proportion 80%− 10%− 10% (which correspond to 2734 fruits for the training set, and

342 for the validation and test sets respectively). The original dataset will actually never

be used, neither for validation nor for testing, because of the too low number of examples.

fruit shot length caliper α ∆α β ∆β

0 0 0 248 215 -5.9 0.0 0.0 0.0

1 0 1 248 215 9.1 15.0 50.8 50.8

2 0 2 248 215 5.1 -4.0 138.4 87.6

3 0 3 248 215 -8.0 -13.1 186.3 47.9

4 0 4 248 215 -6.1 1.9 258.5 72.2

5 1 0 217 194 -2.5 0.0 0.0 0.0

6 1 1 217 194 5.4 7.9 33.5 33.5

7 1 2 217 194 -3.8 -9.2 88.7 55.2

8 1 3 217 194 -4.0 -0.2 121.3 32.6

9 1 4 217 194 16.5 20.5 196.7 75.4
...

...
...

...
...

...
...

...
...

Table 6.3: Generated fruits shots dataset.

104



As said before, for each fruit sampled an angle ∆β of rotation around its major

axis is also sampled but, since no information is available from the real dataset, this is

generated randomly from a normal distribution N (µ, σ). With all this information, the

dataset accurately describes both the fruit and the rolling process for each shot, and

now we only have to compute the various properties of the defects. These, in fact, will

be stored in a new dataset in order to speed up the computation of the neural network.

For each fruit, therefore, a number of defects ranging from 0 to 5 are projected onto its

surface, according to the procedure described in 6.3.2, with an angular position between

[0◦, 360◦] for the longitude and [−65◦, 65◦] for the latitude. This last range was chosen

in order to avoid that some points fall too close to the singularity points, generated by

the transformation of polar coordinates used to project the defects on the ellipsoid. The

fruit is then rotated for each shot by the angle ∆α around the z-axis, and by an angle ∆β

around its major axis. All the points of the defects are then acquired and the properties

computed and stored in a dataset. An excerpt of this is reported in Table 6.4. Here the

solidity of each defect is always near 1.00 because the created defects are always convex

(but nothing prevents to generate also concave ones).

fruit shot defect id pt cen x pt cen y circularity eccentricity solidity

0 0 0 0 −52 −39 0.91 0.84 1.00

1 0 0 1 −86 10 0.93 0.90 0.99

2 0 1 0 −48 −37 0.90 0.84 1.00

3 0 1 1 −83 13 0.95 0.91 1.00

4 0 2 0 −64 −36 0.94 0.83 1.00

5 0 2 1 −91 14 0.79 0.84 0.99

6 0 3 0 −57 −42 0.93 0.83 0.99

7 0 3 1 −89 6 0.87 0.87 0.99

8 0 4 0 −49 −49 0.92 0.79 1.00

9 0 4 1 −88 6 0.90 0.87 1.00
...

...
...

...
...

...
...

...
...

Table 6.4: Generated defects properties dataset.
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Chapter 7

Results and Conclusions

7.1 Software and Hardware Setup

It is now time to describe the model used more in thoroughly, its structure, what it takes

as input and what it sends as output, and the training algorithm, in order to make better

comparisons later on. A brief description is also given of the hardware setup used, both

the one owned and the one provided kindly by Bioretics.

7.1.1 Input Mapping and Training Algorithm

As for the structure, the network has a number of hidden layers fixed at 4, as in the

Snake game case, but their sizes are not yet set, since a comparison between different

possibilities is made later and it will be reported in the appropriate section.

As for the input, the network continuously compare the properties of two defects, see

the process described in Figure 6.7, by accepting a 7-dimensional input vector:

• input[1-2]: the difference between the x and y position, already normalized in

the interval [0, 1], as described in Section 6.3.1;

• input[3-5]: the difference between the three defect properties (circularity, eccen-

tricity, and solidity);

• input[6-7]: the progress of the process, measured as the ratio between the ana-

lyzed shots (or defects) over the total number of shots (or defects): #shot
Nshots

#defect
Ndefects
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At the other end instead, the network has two output units:

• one with a sigmoid activation function, used for the binary classification of the two

defects into the labels {identical, different};

• one without activation function, used to evaluate the value function (then used to

train the model, see Section 5.3).

Finally, as already said, we used the REINFORCE algorithm (see Algorithm 16) to

train the network, which is a variant of the Actor-Critic algorithm used to solve the

Snake game toy-problem. In this case in fact the network can be updated with gradients

after having analyzed every fruit, as this is a well defined episode, and it is therefore

useless to use the value function also to bootstrap the state-values for each update every

few steps, as in the Actor-Critic algorithm. As said before, the network is trained using

the Adam optimizer, explained in Chapter 1, with a learning rate of 10−4.

All this written code, from the dataset generation part to the model training process,

was written in the Python language. Several libraries have been used, among them

TensorFlow, for the deep learning part, and Numpy, Scipy, and Pandas, for the dataset

analysis and the fruits generation parts.

7.1.2 Hardware Specifications and Time Required

All the hardware used in the project consists of only two machines, one personally owned

and one provided kindly by Bioretics. The first one is a simple personal computer with

a GNU/Linux Ubuntu 18.04.4 LTS distribution, which runs on an Intel Core i7-3610QM

2.30 GHz quad-core with 8 GB RAM as the CPU and a NVIDIA GeForce GT 650M as

the GPU. The second one is a server with GNU/Linux Ubuntu 16.04.6 LTS distribution,

which runs on an Intel Core i7-7700 3.60 GHz quad-core with 32 GB RAM as the CPU

and a NVIDIA GeForce GTX 1080 as the GPU.

The parts of software that have taken the longest time to run are undoubtedly the

generation of the datasets used and the corresponding training part. The first part took

about 3 days in total to compute in multiprocessing on the CPUs of the two computers,

for a total of more than 106 fruits generated. For the training part, the single process

took less time, about 16 hours, but, with more simulations to do, the total amount of

time exceeded 4 days of computation on the available GPUs.
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7.2 Applicability Study

In order to effectively study the applicability of the model, different tests were conducted

under different conditions. In particular, we have tested different ways of rolling around

the main axis, in order to have as complete a view as possible on the application possi-

bilities of the model. In addition, we made a comparison with two alternative models, a

neural network with wider hidden layers and one trained using supervised learning.

For the sake of simplicity, we started with only a qualitative comparison between the

various cases, while the numerical results are given later in this section. All the graphs

of the training processes are then presented first, together with visual examples of the

simulated shots acquired for each rolling case, and a brief comment on the comparisons

made. After this, all the numerical results are presented, even with the help of some

graphics, and a final commentary on the overall study is provided.

As already said, all the results are expressed in terms of accuracy of guessing, obtained

by rescaling in the interval [0, 1] the mean of the average rewards for each fruit. In order

to avoid overfitting the early stopping method, explained in Chapter 1, has been used.

Therefore, the model is validated every 1k steps, and the best one is saved for testing.

7.2.1 Comparison Between Different Rolling Processes

As described before, the real dataset allows us to estimate the angle of rotation for each

fruit around the z-axis, indicated by α, but not around their major axis, indicated by β.

The initial value of the β angle in the starting shot was then arbitrarily set to β0 = 0,

since this is not fundamental for the dynamics (being the ellipsoid symmetric), and

the next angle differences between shots ∆βi, for i ∈ [1, 4], were sampled from several

different normal distribution N (µ, σ), in order to make some comparisons.

Four distributions were studied: N (0, 0), N (0, 15), N (30, 15), N (60, 15), which cor-

respond to four different dynamics: no rolling, random equiprobable rolling, small direc-

tional rolling and large directional rolling. For all of these a neural network with shape

42 − 48 − 36 − 18 is used, a little bigger than the one used to solve the Snake game

toy-problem, with each of its hidden layers with tanh(x) as the activation function.
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No Rolling

The first case studied is the trivial case, in which the angles ∆βi are all zero. In this case

the fruit does not rotate around its major axis, but only around the z-axis, following the

dynamic generated previously. An example of the simulated shots featuring no rolling is

represented in Figure 7.1, while the graphical results are reported in Figure 7.2.

Figure 7.1: Five consecutive simulated shots in case of no rolling.

Figure 7.2: Results in case of no rolling.
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Randomly Equiprobable Rolling

In the second case analyzed, the angles ∆βi follow the normal distribution N (0, 15). The

fruits therefore rotate both around the z-axis and around their major axis. An example

of the simulated shots featuring equiprobable rolling is represented in Figure 7.3, while

the graphical results are reported in Figure 7.4.

Figure 7.3: Five consecutive simulated shots in case of equiprobable rolling.

Figure 7.4: Results in case of randomly equiprobable rolling.
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Small Directional Rolling

In the third cases studied, the fruit rotates as before, but the angles ∆βi now follow

the normal distribution N (30, 15) in order to simulate a rolling process with a fixed

direction. An example of the simulated shots featuring this small directional rolling is

represented in Figure 7.5, while the graphical results are reported in Figure 7.6.

Figure 7.5: Five consecutive simulated shots in case of small directional rolling.

Figure 7.6: Results in case of small directional rolling.
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Large Directional Rolling

In the last rolling case analyzed, the angles ∆βi follow the normal distribution N (60, 15),

an almost extreme case in in which the fruit takes an average of almost a full turn on itself.

An example of the simulated shots featuring this small directional rolling is represented

in Figure 7.7, while the graphical results are reported in Figure 7.8.

Figure 7.7: Five consecutive simulated shots in case of large directional rolling.

Figure 7.8: Results in case of large directional rolling.

113



Comments on the Comparison

For ease of comparison, both now with regard to the various rolling dynamics and shortly

with the other models and types of learning, the overall trend of the four cases in the

figure is shown in Figure 7.9, where only the results of the validation and test set are

represented, as the train set has no statistical significance.

Figure 7.9: Results for several rolling cases.

It is immediate to notice, from the graphs of the training processes, how the training

and validation trends are almost identical. This is a sign that the model generalizes well,

and that the validation dataset is very similar to the training one. As a consequence

of that, we can conclude that the projection of the defects on the surface of the fruit

is more relevant than the size of the fruit (or its rolling dynamic), since the difference

between the train, validation, and test datasets lies only in the latter.

Regarding the accuracy of the model, in the first case it is extremely high, undoubt-

edly due to the fact that, although there is a rotation around one axis, the other one is

completely ignored. As one might then expect, this precision significantly decrease with

the introduction of the rotation around the major axis. Despite being small in fact, the
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randomness introduced in the second case lowers the score by ∼ 20%. This is however

still an interesting results, as the underlying dynamic is no longer trivial.

The accuracy is then further reduced when the rolling becomes directional, as in the

third and fourth case. In particular a drop in score from the previous case of ∼ 5% is

measured. However, the increase of the rolling angles doesn’t seem to affect too much

the precision. There’s not in fact a big difference between the third and the fourth case,

a sign that we’ve probably reached the lower limit of the model’s accuracy. The only

difference we may notice here is in fact the speed of convergence to the final value, as

the steepness of the training and validation trends is more gentle in the last case.

7.2.2 Comparison Between Different Models

To make the study as complete as possible, it is important to compare the model used

with some alternatives. For this we went to compare the original neural network with

a version with wider layers and with a version trained using supervised learning, on all

four rolling cases described above. As before, only short descriptions of the comparisons

are given here, together with the results of the validation and the test set and a short

comment, while later in the next section are reported the numerical results.

Wider Neural Network Supervised Learning

First of all, the original model used was compared with a wider neural network, of the

form 126 − 144 − 108 − 54, three times larger than the original one. Besides that, the

input and output structure is kept the same, as well as the layers activation functions.

The graphical results are reported in Figure 7.10(a).

Subsequently, the model was then compared with a network of the same size but

trained using supervised learning. Here the output is therefore reduced to the classifica-

tion unit only (the one with the sigmoid as the activation function) and the loss function

used is the binary cross entropy. The graphical results are reported in Figure 7.10(b).

Comments on the Comparison

In the first graph, it is immediate to notice the strange trend of the model for the no

rolling case. The depicted negative peaks are peculiar in case of overcapacity, i.e. they

indicate that the model in question has probably too many unnecessary parameters to
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(a) Wider network.

(b) Supervised learning.

Figure 7.10: Results for several rolling cases with different models.
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solve the task. In this case, the shots of the fruit, which does not rotate around its major

axis, are probably a problem “too simple” to solve, and are causing some instability in

the network. Apart from that, the final results and trends of the other cases do not seem

to be so different from those presented previously.

As for the model trained with supervised learning, we can see that this gives rise to

training curves very similar to those seen previously. Despite this the final results seem

to be slightly lower than those measured with reinforcement learning.

7.2.3 Numerical Results

To draw the most objective conclusions, the numerical results of the accuracy measured

of the various models are given in Table 7.1. Actually the final score is calculated by

splitting the test set into 5 independent parts (therefore each composed of 5k fruits),

and averaging the measured accuracy obtained on each of them.

∆β distribution Network size Learning Type Accuracy ± SD

N (0, 0) Normal Reinforcement 97.8± 0.1

N (0, 15) ” ” 76.0± 0.4

N (30, 15) ” ” 71.8± 0.5

N (60, 15) ” ” 71.9± 0.3

N (0, 0) Wider Reinforcement 96.1± 0.2

N (0, 15) ” ” 78.2± 0.4

N (30, 15) ” ” 72.2± 0.5

N (60, 15) ” ” 72.6± 0.2

N (0, 0) Normal Supervised 97.6± 0.2

N (0, 15) ” ” 72.3± 0.6

N (30, 15) ” ” 65.2± 0.3

N (60, 15) ” ” 65.6± 0.1

Table 7.1: Models accuracy comparison table.

A graphic representation of all the results is reported in Figure 7.11, where they have

been divided by rolling cases instead. The error bars, fixed at 3σ, have been represented

here, so that it is easier to comment on the comparability between the various models.
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(a) N (0, 0) (b) N (0, 15)

(c) N (30, 15) (d) N (60, 15)

Figure 7.11: Models accuracy comparison.
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Let’s start with a case-by-case model analysis of the accuracy trend as the degree

of rolling increases. For the standard case, with a normal size network and using the

reinforcement learning algorithm, we can see how the accuracy starts with a very high

value in the case of no rolling, and then drops as the rolling introduced increases. In the

case of directional rolling, however, the value seems to settle around 71.8 ∼ 71.9, with

an irrelevant difference between the two cases as the two are perfectly comparable. This

same trend, including the compatibility of results for directional rolling, is also repeated

in the case of a wider network and in the case of supervised learning.

We now move on to analyze the trend of the models for each rolling dynamics stud-

ied. For all of them, we can see that the model with the wider network is generally

better performing, except in the no rolling case, where we have already said that this is

probably due to an instability of the model itself caused by the overcapacity. However,

the differences with the original model are minimal, often only reduced to a few points.

The interesting thing that we can see from these analyses is instead that the models

trained through reinforcement learning are generally more accurate than those trained

through supervised learning, as it’s clearly visibile from Figure 7.12 (only the mean value

of the accuracies measured is reported here).

Figure 7.12: Difference between accuracy of differently trained models.
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This is particularly relevant, and may lead us to think that reinforcement learning

is to be preferred if some of the input encodes information in a time sequence (like the

overall process of analysis of a single fruit in this case). This might also be supported by

noticing the increase in the difference of performance between the models, when there is

a rolling process compared to the no rolling case, which increases even more when the

rolling becomes directional.

7.3 Final Considerations

During this thesis work, the theory and models typical of machine learning and deep

learning were studied in depth. From this, we then went on to study the reinforcement

learning approach, starting from its theoretical basis up to the implementation algorithms

in a deep learning perspective through neural networks. A toy problem, the Snake game,

was then solved with these, in order to test the correct implementation of policy gradient

methods in a deep learning perspective.

Things have become more complicated in moving from this to an industrial problem:

the recognition and connection of defects on the same fruit, starting from images acquired

at different time steps. It was therefore necessary to find a way to model the problem

effectively, in order to be able to adapt and apply the previously developed algorithm.

We then started by simulating the fruits rolling process and shots acquisition, and then

moved on to the synthetic generation of the fruits and of the defects present on them.

Starting from real data, a custom dataset was then created with which a study of the

applicability of the model was made. In this, we went to compare different fruits rolling

dynamics and the effectiveness of different learning types.

After all the comments that have been made in this chapter on the various cases

studied, one thing seems quite clear: the consistency of reinforcement learning methods

also for industrial problems. That is precisely the point we would like to make from

the beginning: although its methods and algorithms find their natural development in

(video)games, as explained in the previous chapter, this does not preclude the formulation

of a problem of any kind in a reinforcement learning perspective. In addition to this,

we’ve seen from the various cases studied that it can actually be very effective and how

it is perfectly comparable, if not superior, to other types of learning.
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Future Developments

This thesis work obviously cannot be considered a complete solution to the problem of

fruit defects, already extensively described, as many refinements on the code need to

be done and tests to be conducted. These have not been done yet because of obvious

difficulties, that mainly involve time required and workload.

First of all, it would be necessary to increase the number of train examples, as well as

validation and test ones, since deep learning works much better with datasets of orders

of magnitude higher than those used in this project. Together with this it should then

be carried out a process of cleaning and optimization of the code used, in order to speed

up the processes and remove all those bugs that surely are still there.

Secondly, it would be necessary to improve the creation of the fruits and defects, both

in terms of their shape and size and in terms of the process of surface projection and

shots acquisition simulation. Although these have proved to be effective in the study of

the problem addressed, this is only a starting point, as it should be possible to simulate

several shapes and improve the quality of the projection, of both defects and fruits.

Finally, it would be necessary to do several other tests on different models, perhaps

even with including more complex architectures such as recursive neural networks. This

would allow even more to exploit the effectiveness of reinforcement learning in managing

input presented in a time sequence, and not to mention all the fine tuning work of the

network and algorithms hyperparameters.
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