
Alma Mater Studiorum · Università di Bologna

SCUOLA DI SCIENZE

Corso di Laurea Magistrale in Informatica

Towards a Safe
and Secure

web semantic framework

Supervisor:
Prof. Gianluigi Zavattaro

Co-supervisors:
Ilaria Castellani
Tamara Rezk

Presented by:
Carlo Prato

Session III
Academic Year 2018/2019

Sommario

Questa tesi descrive il lavoro da me svolto durante il mio tirocinio presso il

centro di ricerca INRIA di Sophia-Antipolis all’interno del team INDES, sotto

la supervisione di Ilaria Castellani e Tamara Rezk. Il team INDES si prefigge

come obiettivi di ricerca lo studio di modelli e lo sviluppo di linguaggi per il

Diffuse computing, un paradigma di computazione in cui è necessario gestire

e mantenere strutture di calcolo distribuite su più nodi generalmente eterogenei

e che possono non fidarsi l’uno dell’altro. In particolare INDES si concentra

sullo studio dei diversi modelli di gestione della concorrenza che stanno alla base

di questi sistemi e rivolge particolare attenzione verso il Multitier programming,

un paradigma di programmazione emergente che mira alla riduzione della comp-

lessità nello sviluppo di applicazioni web, con l’adozione di un unico linguaggio

per programmare le varie entità in gioco (client, server ed eventuali interazioni con

un database). Molto rilevante nell’attività del team è il ruolo giocato dalle ques-

tioni di sicurezza (e particolarmente dalla necessità di proteggere la confidenzialità

e l’integrità dei dati), la cui importanza cresce di pari passo con la diffusione di

nuove tecnologie sempre più pervasive e comuni nella vita quotidiana.

Il mio tirocinio si è svolto nel contesto del progetto ANR CISC (Certification of

IoT Secure Compilation) il cui obiettivo è quello di fornire, mediante l’utilizzo

di tecniche formali, un insieme di semantiche, linguaggi e modelli di attacco per

l’Internet of Things (IoT), termine che si riferisce ad un particolare tipo di sis-

i

SOMMARIO ii

temi composti da un insieme di dispositivi interconnessi, i quali interagiscono

con l’ambiente in cui sono posti mediante diversi sensori ed attuatori. Durante

la mia permanenza ho avuto modo di familiarizzarmi con diversi argomenti col-

legati alle attività del team, sia individualmente che durante seminari di diverso

genere, come l’Information Flow, il Multitier Programming, aspetti legati alla Si-

curezza di applicazioni web come la Web Session Integrity e le varie questioni di

sicurezza specifiche all’IoT. Inoltre ho avuto l’opportunità di approfondire la mia

conoscenza riguardo ai Session Types, una teoria di tipi volta all’analisi di corret-

tezza di applicazioni distribuite. La mia ricerca individuale si è svolta nell’ambito

di Webi, un framework semantico che mira ad una simulazione primitiva delle

interazioni che avvengono tra server e client nel web, sviluppato da Tamara Rezk

e da suoi colleghi. In particolare mi sono concentrato su un’estensione di Webi

chiamata WebiLog, che permette di rappresentare sessioni autenticate e di formal-

izzare attacchi mirati a comprometterne l’integrità. Questo lavoro ha permesso di

individuare diversi progetti futuri di ricerca, tra cui la definizione di Session Types

per Webilog, il cui scopo è di garantire un’esecuzione corretta delle interazioni tra

client e server, sia durante la fase di autenticazione che durante una sessione aut-

enticata.

Summary

This thesis describes the work I did during my internship at the INRIA re-

search center in Sophia-Antipolis, within the INDES team and under the supervi-

sion of Ilaria Castellani and Tamara Rezk.The main objectives of the INDES team

is to study models and develop languages for Diffuse computing, a computing

paradigm in which it is necessary to manage and maintain computing structures

distributed on several heterogeneous nodes that usually do not trust each other. In

particular, INDES focuses on the study of the different concurrency models that

underlie these systems and pays particular attention to Multitier programming,

an emerging programming paradigm that aims to reduce complexity in the devel-

opment of web applications by adopting a single language to program all their

components. The role played by security issues (and particularly the protection

of confidentiality and integrity of data) is crucial in these applications, and en-

suring security of web applications is another important goal of the INDES team.

My internship took place in the context of the ANR CISC (Certification of IoT

Secure Compilation) project, whose objective is to provide semantics, languages

and attack models for the Internet of Things (IoT), a term that refers to systems

composed of a set of interconnected devices, which interact with the environment

in which they are placed by means of different sensors and actuators. During my

internship I got to know several topics investigated in the team, both through my

study of the literature and during seminars of different kinds: Information Flow,

iii

SUMMARY iv

Multitier Programming, aspects related to the security of web applications such

as Web Session Integrity and various IoT specific security issues. I also had the

opportunity to deepen my knowledge of Session Types, a theory of types aimed at

analysing the correctness of distributed applications. My individual research took

place within Webi, a semantic framework that aims at a primitive simulation of the

interactions that take place between servers and clients on the web, developed by

Tamara Rezk and her colleagues. In particular, I concentrated on an extension of

Webi called WebiLog, which allows one to represent authenticated sessions and

to formalize attacks aimed at compromising their integrity. This work allowed

for the detection of future research projects, through which the definition of Ses-

sion Types for WebiLog, whose purpose is to guarantee a correct execution of the

interactions between client and server, both during the authentication phase and

during an authenticated session.

Contents

Sommario i

Summary iii

1 Introduction 1

2 Secure Information Flow 5

2.1 The Lattice Model . 6

2.2 Noninterference . 8

2.3 Covert Channels in Programming Languages 11

3 Web Security 13

3.1 Web Session Integrity . 13

3.1.1 Session Hijacking . 15

3.1.2 CSRF attacks . 15

3.2 Internet of Things . 17

3.2.1 Security Issues . 18

4 Session Types 21

4.1 Binary Session Types . 22

4.2 Multiparty Session Types . 25

4.3 Projection of a Multiparty Protocol 28

v

CONTENTS vi

4.4 Safety Properties . 30

5 Multitier Programming 36

5.1 Hop . 37

5.1.1 A dual language . 38

5.1.2 Communication and service calls 39

5.2 Links . 40

6 Webi 42

6.1 Client and Server languages . 43

6.1.1 Client Language . 43

6.1.2 Server Language . 46

6.2 Webi configurations . 48

6.3 Webi Semantics . 50

7 WebiLog: Adding Login History to Webi 54

7.1 WebiLog Semantics . 55

7.2 Examples . 59

7.2.1 Example 1: A secure WebiLog Session 62

7.2.2 Example 2: An insecure WebiLog Session 63

8 Future work 65

8.1 Session types for WebiLog . 65

8.1.1 Types . 65

8.1.2 Type Checking . 66

8.1.3 Examples . 68

8.2 Session Integrity for WebiLog 69

Conclusions 72

CONTENTS vii

Bibliography 77

Chapter 1

Introduction

Today’s web applications combine several features. They rely on broad net-

work accessibility, offer customizable digital environment while providing access

to vast sources of information. These applications are sometimes called "diffuse"

because of the multiplicity of interconnected computing devices, often mobile or

portable, which constitute their computing environment. They require a combi-

nation of different programming paradigms, ranging from sequential computing

up to parallel and concurrent computing. Since these applications rely heavily on

sharing of private informations over networks, where mutually distrustful nodes

are connected by possibly unreliable means of communication, there is a growing

need for strong security guarantees.

The INDES team goal is to study models for diffuse computing and to de-

velop languages for secure diffuse applications. The team aims to contribute to

the whole chain of research for diffuse computing, including the study of foun-

dational models, formal semantics as well as the design and implementation of

new languages. Regarding the latter, emphasis is put on multitier programming,

a programming approach aiming to ease the complexity of developing web appli-

cations. To this end, interest is placed towards the study of concurrency manage-

1

INTRODUCTION 2

ment, since a deep understanding of different concurrency principles and models

is required in order to be able to interface devices through a programming lan-

guage. In the long term, the research conducted in the INDES team aims at pro-

viding scalable and sound language based techniques to be integrated into com-

pilers for these languages, in order to enforce correctness and security guarantees

within the execution of diffuse programs.

My internship was set in the context of the ANR project CISC (Certification of

IoT Secure Compilation), whose goal is to define languages, semantics, attacker

models, and security policies for the Internet of Things (IoT). The term IoT refers

to a system of connected computing devices interacting in a number of ways with

their environment. An example of an IoT system is "Smart Homes" technologies,

where a multitude of devices is able to detect, thanks to embedded sensors, the

occurrence of physical events, such as overheating, fires and many more, and re-

act on the environment through actuators. There are a number of serious concerns

related to security and safety aspects of IoT, especially due to the ability of these

devices to remotely control physical elements of houses, opening the door to a

number of serious threats from malicious network users. Several of these issues

were discussed during the weekly seminars held by team members, named "read-

ing groups", which included practical demonstrations of security attacks against

smart watches, vacuum cleaners and web applications. This allowed me to dive

into topics related to security of programs, including notions of Secure Informa-

tion Flow and Web Session Integrity.

During my stay at INRIA I also had the chance to consolidate my knowledge

and understanding of Session Types, a type theory for the analysis and verification

of communication protocols in distributed systems. I also gave an introduction

talk on this subject, within the regular seminar of the INDES team. Moreover,

I participated in the BehAPI Summer School (Behavioural Approaches for API-

INTRODUCTION 3

Economy with Applications), an event featuring theoretical and practical sessions

on the concept of behavioural APIs, including several courses on Session Types

held by experts on the topic. The school offered a mix of courses and boot-

camps from academia and industry, supported by practical "hands-on" sessions

with state-of-the-art tools and technology.

My personal research was carried out in the setting of Webi, a semantic frame-

work which primitively simulates interactions between clients and servers on the

web, developed by Tamara Rezk and her colleagues. One of my tasks was to

enrich Webi in such a way that it could represent Authenticated Sessions as de-

scribed in [18]. A further goal was to investigate the use of Session Types in this

new instance of Webi to ensure safety and security properties for web sessions.

The rest of this document is structured as follows:

• In Chapter 2 the key concepts of Information Flow theory are introduced,

such as the Lattice Model of security levels and the notion of noninterfer-

ence, together with examples of the usage of these techniques in modern

programming languages.

• Chapter 3 contains an in-depth analysis of the topics of Web Security that

were covered during the internship, including a formalization of Web Ses-

sion Integrity, possible attacks breaking this safety property and a discussion

on IoT security issues.

• Chapter 4 deals with the topic of Session Types, explaining by examples

their purpose and the properties they are able to guarantee.

• Chapter 5 explains the motivations and key points of multitier program-

ming, presenting two languages that exemplify it: Hop and Links.

INTRODUCTION 4

• Chapter 6 presents the Webi semantic framework as proposed by Tamara

Rezk and colleagues.

• Chapter 7 defines WebiLog, an extension of Webi that accounts for authen-

ticated sessions.

• Chapter 8 presents future research topics related to WebiLog. We scrib-

ble the basis of a type system based on Session Types. It also introduces

a notion of noninterference and uses it to formalize the Session Integrity

property.

Chapter 2

Secure Information Flow

The environment in which most web technologies are set nowadays is inher-

ently heterogeneous and heavily relies on communication between various types

of programmable and connectable devices, of which the proliferation and diffu-

sion is now evident. Therefore, Web programming has become more complex and

many issues have risen: device heterogeneity, concurrency, communication, mo-

bility, untrusted code and the need for protection against several security attacks.

Since computations occur concurrently between interconnected devices and it is

possible that some of them are controlled by parties we may not trust, it becomes

of crucial importance to define and enforce security policies on the data that are

exchanged between them during communications.

We can target two fundamental security properties: confidentiality, which as-

serts that no divulgation of sensitive data happens during execution, and integrity,

which asserts that no corruption of sensitive data is possible during execution.The

theory of Secure information flow formalised through the notion of noninterfer-

ence, covers relevant aspects of both these properties through static and dynamic

techniques.

Ensuring secure information flow within programs in the context of multiple sen-

5

2.1 The Lattice Model 6

sitivity levels has been widely studied during the years, with seminal works from

Denning [11], which introduced the Lattice Model and the associated static anal-

ysis technique, Goguen and Meseguer [13], who proposed the notion of noninter-

ference, and Volpano, Irvine and Smith [25] who where the first to present a type

system ensuring noninterference. In the following sections we will give a broad

description of the Lattice Model and focus on the notion noninterference, which

guarantees these properties.

2.1 The Lattice Model

In Denning’s model an information policy is defined by a lattice (SL,≤),

where SL is a finite set of security levels partially ordered by ≤. Security levels

may be interpreted as confidentiality levels or as integrity levels. In the former

case the bottom element is denoted by L (standing for low or public) and the

top element is denoted by H (standind for high or secret). In the latter case the

bottom element is denoted by U (standing for untrusted) and the top element is

denoted by T (standing for trusted). Therefore, for any level l in one of these

lattices we have L ≤ l ≤ H and U ≤ l ≤ T . In the following we will mostly

focus on confidentiality, but the same concepts are easily stateable for integrity.

Security levels are assigned to objects containing information, such as variables.

The security level of variable x is denoted by x. This level is usually determined

statically and not subject to update. A transfer of information from a variable x to

a variable y is a permissible flow if x ≤ y.

2.1 The Lattice Model 7

H T

Private1 Private2 Trusted1 Trusted2

L U

Figure 2.1: Security lattice for Confidentiality and Integrity.

To ensure Confidentiality only flows towards equal or higher levels are au-

thorized as we can see on the lattice pictured on the left, while for Integrity of

data, only flows of information towards equal or lower levels are authorized. All

other flows are considered as insecure. In the case of confidentiality, insecure

flows are also called information leaks. We may identify two different types of

information flows, explicit and implicit. Explicit flows occurs as the result of ex-

ecuting any statement that directly transfers information to a location, such as an

assignment or an I/O operation. Implicit flows occur as the result of execution or

non-execution of a statement that causes an explicit flow to a location when con-

ditioned on the result of an expression. Since these flows arise in different ways in

a programming language, every construct needs a certification condition relating

the security levels of its variables and data.

For example, the statement :

x := y

has the condition x ≤ y controlling an explicit flow. Conditions related to con-

structs like the if or while loops, control implicit flows like the one generated from

the tested expression of a conditional to its branches. For example, the statement:

if x > y then z := w else i = i+ 1

contains an implicit flow from x and y to z and i. The statement has the condition

2.2 Noninterference 8

that x⊕ y ≤ z ⊗ i where ⊕ and ⊗ denote respectively the least upper bound and

the greatest lower bound operator.

2.2 Noninterference

Noninterference [13] is a security policy designed to ensure that objects and

subjects at different security levels do not interfere with those at other levels. This

policy enforces that an attacker should not be able to distinguish two computations

from their outputs if they only vary in their secret inputs.

Noninterference aims at a strict separation of different security levels to en-

sure that higher-level variables values do not determine any lower-level variables

values, in order to ascertain that the latter cannot be used to determine the former.

This leads to a very strict security regime and as a consequence, it is very diffi-

cult to create a program that completely meets all the demands of noninterference.

An example is a password checker program that, in order to be useful, needs to

disclose some secret information: whether the input password is correct or not,

where the information that an attacker learns in case the program rejects the pass-

word is that the attempted password is not the valid one. Usually, this situation is

referred to as the "No classified information at startup" exception.

We consider an l-observer as an entity which is able to observe variables of

level l or lower. The objective of noninterference is to ensure that, by observing

l′-level outputs for l′ ≤ l, an l-observer cannot reconstruct any l′′-level input for

l′′ � l. This can be achieved by not allowing dependencies between l′′-level inputs

and l′-level outputs. To formalise this property, we introduce some notation. We

assume states (or memories) s, s′ to be functions from variables to values. We

denote by 〈c, s〉 ↓ s′ the fact that command c running in state s produces state s′.

Two states s1, s2 of a program are said to be l-equal, that is s1 =l s2 if, for all

2.2 Noninterference 9

variables x with x ≤ l, s1(x) = s2(x). We can now define noninterference for

sequential programs as follows. A command c is l-noninterferent if, for all states

s1, s2 such that s1 =l s2, the following condition holds:

(〈c, s1〉 ↓ s′1 ∧ 〈c, s2〉 ↓ s′2)→ s′1 =l s
′
2

This condition states that the execution of command c in l-equal states leads to

l-equal states. A command is noninterferent, or secure, if it is l-noninterferent for

any level l. There are two classes of techniques to ensure that security properties

such as noninterference are satisfied by programs: dynamic techniques such as

runtime monitoring, and static techniques which usually make use of a security

type system to analyse source code. The latter approach was pioneered by Vol-

pano, Irvine and Smith in [25] where a security type system was proposed and

proven to be sound with respect to a noninterference property. We now comment

some of the rules related to one of the two possible presentations of this type sys-

tem, namely the one including subtyping. The type system assigns types (security

levels) to both expressions and commands. The intuition behind this procedure is

to establish limits within which a program can be considered as safe. Assigning

a security level to an expression gives us an upper bound on the security levels of

the variables that occur in it. On the other hand, assigning a security level to a

command gives us a lower bound on the security levels of variables assigned to in

it. The definition of a subtype relation allows for a secure arrangement of upwards

information flows. We suppose Γ is an environment mapping variables to security

levels τ, τ ′ ∈ T for a given security lattice (T,≤).

2.2 Noninterference 10

ASSIGN

Γ ` e : τ Γ(x) = τ

Γ ` x := e : τ

IF

Γ ` e : τ Γ ` c : τ Γ ` c′ : τ

Γ ` if e then c else c′ : τ

SUB-EXP

Γ ` e : τ τ ≤ τ ′

Γ ` e : τ ′

SUB-COM

Γ ` c : τ τ ′ ≤ τ

Γ ` c : τ ′

Rule ASSIGN ensures that the explicit flow from e to x is secure by requiring

that they agree on their security levels, since τ appears on both hypotheses of

the rule. An upward flow from e to x is still allowed by the system through

subtyping: if Γ ` e : L and Γ(x) = H , the type of e can be upgraded to H by

Rule SUB-EXP and Rule ASSIGN can be applied with hypothesis Γ ` e : H . It is

worth noting that the whole statement is given type H in order to be used in the

context of other constructs, for instance in the branch of a conditional, which is

secured by Rule IF. The intuition behind this rule is that c and c′ are executed in

contexts where information of level τ is implicitly known and thus they can only,

for example, assign to variables of level τ or higher. Even if the rule requires the

guard and both branches to have the same security level, it does not prevent an

implicit upward flow from e to c and c′, since subtyping can establish agreement

by coercing the type of e to a higher level or the type of the branches to lower

levels. No agreement can be reached if there is any downward flow from e, since

the rule must reject the statement if this situation occurs. This model gives a

precise operational characterization of the flow analysis: altering the initial value

of a variable x with security level τ cannot affect the final values of any variable

with security level τ ′ as long as τ � τ ′.

2.3 Covert Channels in Programming Languages 11

2.3 Covert Channels in Programming Languages

Besides implicit and explicit flows which are detectable in programming con-

structs, many other features of a language could lead to leaks of information in

the execution of a program. Such vulnerabilities are usually called side channels

and are based on the principle that physical effects caused by the operation of a

system can provide useful extra information about secrets inside the system.

A common side channel is represented by timing attacks which, observing

how long some operations take to be performed, have been shown to be able to

break cryptosystems. An effective countermeasure against such attacks is to de-

sign the software to be isochronous, that is to run in a constant amount of time,

independently of secret values. This makes timing attacks impossible, but such

countermeasures can be difficult to implement in practice, since even individual

instructions can have variable timing on some CPUs. An example of a timing

attack related to features in programming languages is presented in [23], where

the authors take into account an important aspect of program runtime that is au-

tomatic memory management. They show that it represents a vulnerable shared

resource through which an attacker could leak sensitive information by showcas-

ing a series of simple attacks on modern runtimes, in particular Java sequential

and parallel garbage collection implementations.

JavaScript is a multiparadigm language widely used in the context of web de-

velopment which, like many other languages designed for this purpose, gives more

importance to flexibility and simplicity of use than to correctness guarantees. It in-

cludes an eval function that can execute statements provided as strings at run-time.

Languages implementing this functionality are usually called dynamic languages,

and tracking information flow in this setting is an intricate yet important problem,

as will be explained later on. The large number of features available in JavaScript

led the authors of [14] to the identification of a core subset of the language, in or-

2.3 Covert Channels in Programming Languages 12

der to present a dynamic type system guaranteeing information flow security. This

core includes object orientation, higher-order functions, exceptions and dynamic

evaluation of code. This work addresses a major issue in the usage of JavaScript,

that is client side script inclusion, an extensively used technique for service com-

position in modern web applications. Included scripts are embedded in the top

level of a web page, often in the same page used for the authentication of a user.

With user credentials at their disposal, integrated client scripts have unrestricted

power to engage interaction with the hosting service. Most browsers today en-

force the Same Origin Policy (SOP) which is intended to restrict access for scripts

coming from different domains. The SOP offers two alternatives when including a

script: either the script is completely isolated, or it is fully integrated. The authors

focus on the identification of a tight yet secure integration for scenarios in which

these alternatives are not fitting.

Chapter 3

Web Security

In the following sections, several state of the art topics related to Web Security

are discussed, and a brief introduction to challenges in the context of Internet

of Things (IoT) security is given. After presenting the concept of Web Session

Integrity as formalized in [18], the specific scenario of Cross Site Request Forgery

(CSRF) attacks will be analysed. Afterwards, several issues related to Security for

IoT devices and applications that were addressed during my internship are going

to be discussed, along with approaches aiming to achieve security properties by

exploiting different techniques.

3.1 Web Session Integrity

The complexity of the web makes it necessary to take into account a large

number of variables when discussing the security of a web application. Simple

web applications still suffer from a great number of vulnerabilities, which could

lead to critical issues if not prevented correctly. Let us consider, for simplicity,

a web session as a series of actions by a user on an individual web application,

usually within a specific time frame. The integrity or confidentiality of a web

13

3.1 Web Session Integrity 14

session may be broken at many layers and by a large number of attackers, as high-

lighted by [4]. In this work, the authors present the most common attacks against

web sessions, among which we can identify attacks targeting honest web-browser

users establishing an authenticated session with a trusted web application. The

authors also review and evaluate existing security solutions and countermeasures

that are able to prevent or mitigate such situations. In [6] the authors introduce

several black-box testing strategies that aim to detect possible flaws in the imple-

mentation of web sessions. After releasing these tactics in a browser extension,

they use the latter to assess the security of popular websites and manage to expose

a large number of vulnerabilities.

Quite often, web services who need to implement several features or to track

the user identity across multiple requests will rely on cookies. Cookies are key-

value pairs generated by a server and sent in response to browser requests. After

receiving them the browser automatically attaches them to later requests sent to

the same website. This behaviour allows for the user not having to re-authenticate

whenever he performs an action, for instance. The need for cookies originates

from the stateless nature of the HTTP protocol, which implies that every request

is going to be executed independently, without any knowledge of requests that

were executed before. Through cookies a server is able to discriminate between

incoming requests, understanding to which session they belong to.

In the following sections we consider only sessions built on top of HTTP cook-

ies, without considering variants that do not require their use, such as the exchange

of JSON Web Tokens through Ajax. This choice does not influence the general-

ity of our discussion, since the cookie based approach still covers the majority of

web sessions. Furthermore, we are especially interested in user-authenticated ses-

sions established upon a successful login, where some cookies are used in order

to authenticate the user.

3.1 Web Session Integrity 15

3.1.1 Session Hijacking

The fact that cookies represent the only proof of a user’s identity makes a web

session vulnerable to Session Hijacking attacks. In these attacks a browser run by

a given user sends request associated to the identity of the attacker. Despite the

numerous threat models under which these attacks were studied and the robust

countermeasures available, web developers often ignore the recommended secu-

rity practices. The adoption of HTTP Strict Transport Security (HSTS) is still not

common and cookie security attributes, such as HttpOnly and Secure, are usu-

ally unset. The former makes impossible to access the cookies programmatically

(i.e. via JavaScript code), while the latter provides confidentiality guarantees on

the cookies exchange by constraining the client to only send them over HTTPS

connections. Usually, a number n > 1 of cookies is used to implement different

features in a session. In this situation there might be actually n sub sessions run-

ning at the same website, where each cookie is used to retrieve part of the state

information related to the session. Sub-Session Hijacking is an attack in which the

ideal view of the existence of a single unique user session is broken. An attacker

can selectively hijack m sub-sessions, with m < n, reducing the security of the

whole session to the security of its weakest sub-session. In [5] the authors identify

a general overview of Sub-Session Hijacking attacks and introduce a Sub-Session

linking technique as a possible countermeasure. They also present a server-side

proxy program which enforces this technique on incoming HTTP Requests.

3.1.2 CSRF attacks

In a Cross Site Request Forgery (CSRF) attack, an authenticated user is tricked

into performing a security sensitive action against its consent. This attack specifi-

cally targets state-changing requests, not theft of data. This is due to the fact that

3.1 Web Session Integrity 16

the attacker has no way to see the response to the forged request. With the help

of social engineering, an attacker may trick the users of a web application into

executing actions on his behalf. If the victim is a normal user, a successful CSRF

attack can force the user to perform requests like transferring funds, changing their

email address and similar. If the victim is an administrative account, CSRF attacks

can compromise the entire web application. Suppose an authenticated client exe-

cutes the code received from a malicious server: if this code performs a request to

the website he logged onto, the browser will send the login cookie along with it,

making so that it will be considered authenticated. A graphical representation of

the attack is shown in the following UML sequence diagram.

Figure 3.1: UML sequence diagram of a CSRF attack. [18]

To prevent CSRF attacks, web developers have to implement protection mech-

anisms to filter out malicious cross-site requests. To this end, several techniques

are available. Common countermeasures include the usage of custom headers

3.2 Internet of Things 17

through JavaScript or specific Anti-CSRF Tokens, embedded in the structure of

the web page. Nonetheless, most of these strategies still include several short-

comings.

In [18] the authors describe the development of Login History Dependent

(LHD) noninterference, a variant of noninterference which is able to capture the

peculiarities and complexities of Web Session Integrity. A significant component

in this definition is the presence of a Login History lattice, whose elements repre-

sent the integrity levels of an authenticated communication with a domain. During

the evaluation of a program the shape of the Login History lattice is altered in re-

sponse to the occurrence of certain events. For example, when an authentication

on domain d is detected, the corresponding integrity level d is added to the Login

History. The integrity of communication with that domain can therefore be taken

into account thanks to this update, which correctly represents the behaviour of

a web browser. LHD noninterference is defined in terms of LHD similarity, as

mentioned before with respect to standard noninterference, which takes into con-

sideration also the login history L. The authors show then how this property can

be translated to Web Session Integrity and is able to prevent several categories of

web security attacks, including CSRF.

3.2 Internet of Things

The Internet of Things (IoT) is a system of related computing devices, in

which mechanical and digital machines are provided with unique identifiers. These

devices generally have the ability to transfer data over a network, to monitor the

environment around them through sensors and to interact with it by means of actu-

ators. This definition has evolved during the years, due to the overlap of multiple

technologies such as real-time analytics, machine learning, commodity sensors

3.2 Internet of Things 18

and embedded systems technology. Cisco Systems [21] defined the IoT as "sim-

ply the point in time when more ’things or objects’ were connected to the Internet

than people" and estimated that it was "born" between 2008 and 2009, with the

things/people ratio growing from 0.08 in 2003 to 1.84 in 2010.

Figure 3.2: Typical home-based IoT setup. [1]

IoT technology is commonly known for products related to the concept of

"smart homes", covering devices such as cameras, security systems, heating con-

trollers and similar. These devices are usually related to one ecosystem and are

controlled through devices such as smartphones and Vocal Personal Assistants

(VPA).Actuators allow the devices to collect information from the environment,

leading to the detection of events to which the device is programmed to react.

Sensors allow for a concrete interaction with the ecosystem which includes tem-

perature regulation, fire prevention, alarm systems and many more.

3.2.1 Security Issues

Several concerns related to security and privacy of IoT deployments are grow-

ing, especially now that a large portion of IoT devices includes vehicles and wear-

able devices that usually feature remote monitoring capabilities. IoT devices also

3.2 Internet of Things 19

have access to new areas of data and many internet-connected appliances were

said to be used by companies to spy in people’s homes. In [26] the authors report

the first security analysis on the ecosystems of Vocal Personal Assistants services.

This study led to the discovery of several security weaknesses in their develop-

ment, which enabled remote attacks from untrusted third parties. Security issues

were found even in the simplest objects, including child toys. This has been re-

ported in [9], where the authors analyse three commercially available products

exposing several vulnerabilities. They conclude that this situation is indicative of

a disconnect between many IoT developers and security best practices.

As mentioned before, another area where concerns are arising is automotive.

Modern automobiles are computerized more than ever and potentially vulnera-

ble to several attacks. Devices controlled by computing systems in automobiles

(such as brakes, engine, locks and dashboard) have been shown to be vulnerable

to attackers who have access to the on-board network. In [8] the authors have an-

alyzes the external attack surface of a modern automobile. They discovered that

remote exploitation is feasible via a broad range of attack vectors and that wireless

communications channels allow for long distance vehicle control, location track-

ing, in-cabin audio exfiltration and theft.

Most of the technical security concerns related to IoT devices include weak au-

thentication, forgetting to change default credentials, unencrypted messages sent

between devices, SQL injections and poor handling of security updates. However,

many IoT devices have limitations regarding the computational power available to

them. This constraint can make them unable to directly use basic security mea-

sures such as implementing firewalls or using strong cryptosystems to encrypt

their communications with other devices.

Different approaches to provide security and privacy guarantees in the Iot have

been proposed, exploiting static or dynamic techniques. As examples, we can cite

3.2 Internet of Things 20

Soteria [7], a static analysis system for safety validation of both a single IoT ap-

plication and the whole IoT environment, and HoMonit, [27] a runtime monitor of

the wireless traffic designed to detect anomalies and malicious behaviour in smart

home apps trying to leak data or spoof events. Nevertheless, the IoT remains un-

provided of valid and effective techniques that allow to guarantee the security and

privacy of its users. Furthermore, it is desirable that the strategies that will be

proposed are based on formally verifiable techniques. For this purpose, a com-

plete analysis of the security implications of these systems is necessary as well as

a joint effort between manufacturers and researchers.

Chapter 4

Session Types

In this chapter we will describe the theory of session types, starting from the

simplest possible scenario up to the most general one. Writing correct concurrent

and distributed code requires effective tools for reasoning about communication

protocols. While data types provide an effective tool for reasoning about the shape

of exchanged data, communication protocols also require reasoning about the or-

der in which messages are transmitted. It is therefore desirable to have an abstract

description of these protocols, in order to be able to analyse them and prevent

possible deadlocks and errors in data transmission.

Session types are a type theory focusing on the description and validation of

communication protocols. They can be seen as shared agreements between par-

ticipants in a conversation, specifying the sequence, the direction and the payload

of the messages exchanged between them.

Firstly introduced by Honda et al. for binary protocols [15], session types

were later generalised to multiparty protocols [16]. Session type theory allows for

modelling and verification of binary and multiparty protocols through the analysis

of two categories of types which describe different perspectives of the protocol:

global types and local types. Global types describe the overall protocol, while

21

4.1 Binary Session Types 22

local types describe the contribution of individual participants to the protocol.

For a protocol to be correct, compatibility between the local types of its various

endpoints is needed. This property, called duality in the binary setting, captures

the matching between the interaction patterns of the various participants.

Local types can be generated through a projection algorithm from the global

type. Compliance between an endpoint program and a local type can then be used

to guarantee adherence to the protocol specified by the global type. Two local

types obtained as projections from the same global type are compatible by con-

struction. If the protocol is binary, each of the (dual) local types of the participants

contains already all the information about the protocol. In this case, the global

type of the protocol can be reconstructed from the local types of the participants.

4.1 Binary Session Types

A session is the embodiment of a protocol, whose roles are assigned to a given

set of participants. A Binary Session is the simplest possible scenario for a ses-

sion, involving only two participants. Each session can be labelled with a type

representing the usage of communication channels during the interaction. Let us

consider the following message sequence diagram, which is a graphical represen-

tation of the Buyer Seller protocol, a communication protocol commonly used to

introduce Session Types (all the examples in this section are taken from [16]):

4.1 Binary Session Types 23

Figure 4.1: Message sequence diagram for the Buyer Seller protocol [16].

In this protocol we have a Buyer entity, which, after establishing a session

with a Vendor entity, interacts with it in order to acquire a book. The protocol

proceeds as follows:

• At first, the Buyer sends to the Vendor the title of the book in which it is

interested.

• The Vendor replies to the client with the amount of money required, and

waits for a response from the Buyer, which has now to make a choice be-

tween two different communication behaviours:

– If the Buyer chooses the branch labelled with “ok”:

* it will send its address to the Vendor;

* it will receive from the Vendor the expected date of arrival of the

book.

– If the Buyer selects the branch labelled with “quit”, the session ends.

In a binary protocol as the above, there is no need to distinguish between local

and global types, since all the information we need is specified in the single type of

4.1 Binary Session Types 24

one of the participants. Using σ to range over basic data types and p, q, r to denote

participants, we can present the syntax for Binary Session Types as follows:

T ::= ! 〈q, σ〉;T send

| ? (p, σ);T receive

| ⊕ 〈q, {li〈σi〉 : Ti}i∈I〉 select

| & (p, {li〈σi〉 : Ti}i∈I) branch

| µt.T | t | end

The type ! 〈q, σ〉;T denotes the action of sending a value of type σ to partici-

pant q, followed by the behaviour specified by type T . Correspondingly, the type

? (p, σ);T represents the action of receiving a value of type σ from participant p,

before proceeding as specified by type T . The type ⊕ 〈q, {li〈σi〉 : Ti}i∈I denotes

the selection of any label lj in the set of labels {li|i ∈ I} offered by q, followed by

the behaviour specified by Tj . The type & (p, {li〈σi〉 : Ti}i∈I) expresses an offer

to participant p of any label lj in {li|i ∈ I}, followed by the behaviour specified

by Tj . It is assumed that all the labels li are different. Type µt.G allows for the

description of recursive protocols.

The select and branch types allow for representation of branching in the exe-

cution flow, that is the possibility for the protocol to evolve into a finite number

of paths, each identified by a different label.

We can now specify the type for Buyer:

Buyer :

!〈V, String〉; ?(V,Real);⊕〈V, {ok :!〈V, String〉; ?(V, Int); end, quit : end}〉

Since the interaction between the two participants is perfectly specular, to ob-

4.2 Multiparty Session Types 25

tain the type for Vendor we can simply reverse the type operators, obtaining:

Vendor :

?(B, String); !〈B,Real〉; &(B, {ok :?〈B, String〉; !〈B, Int〉; end, quit : end})

This example highlights the only requirement for ensuring communication

safety in Binary Sessions, which is duality between the types of participants. As

mentioned above, the whole communication protocol can be described by the type

of any of its two participants.

4.2 Multiparty Session Types

A session is said to be Multiparty when it involves more than two participants.

Binary session types are not able to represent protocols with more than two parties.

Let us consider a variation of the previous example, in which there are two Buyer

entities collaborating to acquire a single book:

Figure 4.2: Message sequence diagram for the Two Buyers protocol.[16]

The protocol articulates as follows:

• Buyer1 sends a book title to Vendor;

4.2 Multiparty Session Types 26

• Vendor sends back a quote to Buyer1 and Buyer2;

• Buyer1 now sends a message to Buyer2, to indicate that it is willing to

contribute half of the expense;

• Buyer2 is now in charge of concluding the interaction with the Vendor. It

has to make a choice:

– If Buyer2 chooses the branch labelled with "ok":

* it will send its address to the Vendor;

* it will receive from the Vendor the expected arrival date of the

book.

– If Buyer2 selects the branch labelled with "quit", the session ends.

This protocol exposes a limitation of Binary Session Types. Since they can

describe protocols with multiple participants only by using multiple binary proto-

cols, we would have to define a binary session type for each pair of participants.

Besides not being scalable, this solution would lead to a loss of information about

the ordering of messages, since the information about the specific interleaving of

binary sessions required by the multiparty interaction would not be capured by the

individual session types.

There is therefore a need for a global description of the protocol, which spec-

ifies the ordering between these messages, but it would not be a scalable solution

to provide each one of the participants with the whole description, since it could

account for many operations in which they are not involved. From the notion

of Visibility, informally meaning that an action is visible to a participant if it is

involved in it, we may derive two perspectives of a protocol: Global or Local.

Global Types describe the overall protocol behaviour, while Local Types are spe-

cific to each participant and represent only the actions visible to them.

4.2 Multiparty Session Types 27

The syntax for global types is the following, assuming p 6= q and li 6= lj for

i 6= j: :

Global Types G ::= p→ q : (σ);G′ interaction

| p→ q : {li〈σi〉 : Gi}i∈I branching

| G1 ‖ G2 parallel

| µt.G recursion

| t variable

| end end

Type p → q : (σ);G′ denotes the sending of a message with payload σ from

participant p to q, followed by the behaviour specified in G′. Usually p 6= q is as-

sumed since reflexive interaction is not considered. Type p→ q : {li〈σi〉 : Gi}i∈i
represents branching offered from participant q to p between the alternatives in

{li|i ∈ I}. TypeG1 ‖ G2 stands for parallel composition of interactions described

in G1 and G2, while µt.G is a recursive type to allow for reiterate interactions.

The syntax for local types is the following, assuming li 6= lj for i 6= j:

Local Types T ::= ! 〈q, σ〉;T send

| ? (p, σ);T receive

| ⊕ 〈q, {li〈σi〉 : Ti}i∈I〉 select

| & (p, {li〈σi〉 : Ti}i∈I) branch

| µt.T | t | end

It should be noted that in Local Types there is no parallel composition as they

refer to a single process. Note also that the syntax of local types is the same as the

syntax of binary session types. Local Types can be generated through a projection

algorithm from the Global type, which also checks several conditions to ensure

the well-formedness of the protocol, as we will explain in the following section.

4.3 Projection of a Multiparty Protocol 28

The global Type associated with the Two Buyer Protocol is the following,

where B1 stands for Buyer1, B2 for Buyer2 and V for Vendor:

B1→ V : (String)

V → B1 : (Real)

V → B2 : (Real)

B1→ B2 : (Real)

B2→ V : {

ok : B2→ V : (String)

V → B2 : (Int)

end

quit : end

}
Using the projection algorithm we obtain the following Local Types for the

participants:

Buyer1 : !〈V, String〉; ?(V,Real); !〈B2, Real〉; end

Buyer2 : ?(V,Real); ?(B1, Real);⊕〈V, {ok : V !String;V ?Int; end, quit : end}〉

Vendor : ?(B1, String); !〈B1, Real〉; !〈B2, Real〉;

&(B2, {ok : B2?String;B2!Int; end, quit : end})

4.3 Projection of a Multiparty Protocol

The following assumptions are made on the transmission of messages.

• Asynchrony: a sender should not have to wait for a message to be sent

before continuing its computation. Sending actions are nonblocking. How-

4.3 Projection of a Multiparty Protocol 29

ever, the order of messages between a given pair of participants is preserved.

The allowed message permutations are expressed by the following equa-

tions, where we assume p 6= p′:

!〈p, σ〉; !〈p′, σ′〉; end ≈ !〈p′, σ′〉; !〈p, σ〉; end

⊕〈p, {li : ⊕〈p′, {l′j : Tij}j∈J〉}i∈I〉 ≈ ⊕〈p′{l′j : ⊕〈p, {li : Tij}i∈I〉}j∈J〉

The first equation allows permutation of two consecutive outputs directed

to different participants. The second equation allows permutation of two

consecutive selections directed to different participants.

• Order preservation: the messages between a participant p and a participant

q are received in the same order in which they have been sent.

• Reliability: a message is never lost nor blocked during transmission.

When the projection function given below is defined for a global type, it is

possible to obtain the local types for each of its participant. These maintain depen-

dencies and operations concerning a specific participant and exclude the others.

The projection function is a partial function because of the condition ∀i, j ∈

I,Gi � p = Gj � p, and because of the condition of disjointnesses for the sets

of participants of G1 and G2 in (G1 ‖ G2).

The projection of G onto p, written G � p, is inductively defined as follows:

• (p→ q : 〈σ〉.G′) � r =
!〈q, σ〉.(G′ � r) if r = p

?(p, σ).(G′ � r) if r = q

(G′ � r) if r 6= p and r 6= q

4.4 Safety Properties 30

• (p→ q : {lj : Gj}j∈J) � r =

⊕〈q, {lj : (Gj � r)}j∈J〉 if r = p

&(p, {lj : (Gj � r)}j∈J), if r = q

(Gi � r) if r 6= p and r 6= q

and ∀i, j ∈ I,Gi � r = Gj � r

• (G1, G2) � r =Gi � r if r ∈ Gi and r /∈ Gj, i 6= j ∈ {1, 2}

end if r /∈ G1 and r /∈ G2

• (µt.G) � r = µt.(G � r), t � r = t and end � r = end

• when some of the side conditions do not hold, the map is undefined..

It is worth noting that in the branching case, all projections onto participants dif-

ferent from p and q have to generate an identical local type. In the case of parallel

composition, participant p should not be contained in more than one type, in order

to ensure that every type is related to a single thread of execution.

If a global type is projectable, then the local types for its participants can be gener-

ated. These local types can then be used to perform type checking on the processes

implementing the participants.

4.4 Safety Properties

The main properties ensured by Session Types are:

• Communication safety: no communication errors can occur in a session.

4.4 Safety Properties 31

• Session Fidelity: the communication sequence in a session follows the sce-

nario declared in the global type.

• Progress: every sent message is going to be received, every process waiting

for a message will receive it.

Communication safety and session fidelity rely on the Subject Reduction prop-

erty of the type system. To give an intuition of how a session type system manages

to ensure these properties, we introduce now a simple process calculus, where sin-

gle sessions (which we assume to be already initiated) are represented as networks

of sequential processes. Processes are ranged over by P,Q, networks by N,N′

and expressions by e, e′. As for types, participants are denoted by p, q, r.

The syntax for finite processes is the following (for simplicity we do not con-

sider recursive processes):

Process P ::= 〈q, e〉.P Value sending

| (p, x).P Value reception

| ⊕〈q, l〉.P Selection

| &(p, {li : Pi}i∈I) Branching

| if e then P else Q Conditional

| 0 Inaction

Multiparty sessions are described as asynchronous networks of processes en-

closed into participants. We denote by p[[P]] the process P enclosed into partic-

ipant p. The intuition is that p[[P]] represents participant p executing process P .

Then, a network is a parallel composition of components p[[P]], where all p’s are

assumed to be different.

Definition (Networks). Networks are defined by:

N ::= p[[P]] | N ‖ N′ Part(N) ∩ Part(N′) = ∅

4.4 Safety Properties 32

where Part(N), the set of participants of N, is defined by:

Part(p[[P]]) = {p}

Part(N ‖ N′) = Part(N) ∪ Part(N′)

The operator ‖ is assumed to be associative and commutative, with neutral

element p[[0]] for each p. These laws yield the structural congruence for networks.

Since communication is assumed to be asynchronous, as discussed earlier, ses-

sions should be asynchronous networks of processes, that is, networks executing

in parallel with queues. Formally, messages and queues are defined as follows:

Messages m ::= (p, q, v) Enqueued Value

| (p, q, l) Enqueued Label

Queue h ::= h ·m Enqueueing

| ∅

We can now define asynchronous networks:

Definition (Asynchronous Networks). Asynchronous networks are defined by:

NA ::= N ‖ h

The operational semantics for our calculus is defined by the following set of

reduction rules, where P{x 7→ v} represents process P where value v is assigned

to variable x and e ↓ v means that expression e evaluates to value v.

4.4 Safety Properties 33

p[[!〈q, e〉.P]] ‖ N ‖ h → p[[P]] ‖ N ‖ h · (p, q, v) if e ↓ v [Send]

q[[?(p, x).Q]] ‖ N ‖ (p, q, v) · h → q[[Q]]{x 7→ v} ‖ N ‖ h [Rcv]

p[[⊕〈q, l〉.P]] ‖ N ‖ h → p[[P]] ‖ N ‖ h · (p, q, l) [Sel]

q[[&(p, {li : Qi}i∈I)]] ‖ N ‖ (p, q, lj) · h → q[[Qj]] ‖ N ‖ h if j ∈ I [Branch]

p[[if e then P else Q]] ‖ N ‖ h → p[[P]] ‖ N ‖ h if e ↓ true [If-T]

p[[if e then P else Q]] ‖ N ‖ h → p[[Q]] ‖ N ‖ h if e ↓ false [If-F]

We now introduce the session type system for processes and networks. We de-

note by Γ the standard environment which associates basic data types to variables.

Typing judgments for expressions, processes and networks have the following

shape:

Γ ` e : σ and Γ ` P : T and Γ ` N : G

4.4 Safety Properties 34

The typing rules for processes are the following:

NIL

Γ ` 0 : end

SEND

Γ ` e : σ Γ ` P : T

Γ ` !〈q, e〉.P : ! 〈q, σ〉;T

RCV

Γ, x : σ ` P : T

Γ ` ?(p, x).P : ? (p, σ);T

SEL

l = lj Γ ` P : Tj j ∈ J

Γ ` ⊕〈q, l〉.P : ⊕ 〈q, {li : Ti}i∈I〉

BRANCH

Γ ` Pi : Ti ∀i ∈ I

Γ ` &(p, {li : Pi}i∈I) : & (p, {li : Ti}i∈I)

IF

Γ ` e : bool Γ ` P : T Γ ` Q : T

Γ ` if e then P else Q : T

The typing rule for networks is:

NET

Γ ` Pi : G � pi Part(G) ⊆ {pi | i ∈ I}

Γ `
∏
i∈I

pi[[Pi]] : G

Rule SEND verifies that both the sent expression e and the continuation process

P are typable and then assigns to the output process the corresponding output

type. Rule RCV is similar except that it checks typability of P in the environment

Γ extended with the assumption that the input variable has type σ.

Rule SEL verifies that the continuation process P follows the session type of

the branch related to the label that is selected. Rule BRANCH verifies the same

4.4 Safety Properties 35

condition for all of the branches offered by the branch construct. Rule IF con-

strains the branches of a conditional to have the same behaviour of interaction

with the other parties, since compatibility with the other parties must hold no

matter which branch is chosen.

It is interesting to note that all the “prefix rules” [Send], [Rcv], [Sel] and [Branch]

consume the prefix of the session type of the process.

The typing rule for asynchronous networks is more involved as it requires

typing the queues and projecting them onto participants, as well as concatenating

the type of a network with the type of a queue. Moreover, queues must be handled

modulo permutation of independent messages, in agreement with the “asynchrony

equations” shown in page ??. We therefore omit it in this presentation.

Figure 4.3: Diagram representing the different levels of Session Types.

The diagram above summarises the Session Type approach for the verification

of distributed systems. Thanks to local checks, which can be performed stati-

cally, Session Types theory allows us to prove properties which are critical in the

assesment of the correctness of a distributed system.

Chapter 5

Multitier Programming

In the following sections we will describe the multitier paradigm for program-

ming and delve on two examples of languages adopting it: Hop, developed at

INRIA Sophia Antipolis, and Links, a multitier language implementing Session

Types. The multitier paradigm aims at solving the problems caused by the client-

server architecture of web applications. This asymmetric structure most often

obliges programmers to use different languages to implement the whole system.

Tipically, a web application is organized in three tiers, each running on a sepa-

rate computer. The logic, which resides on the middle-tier server, generates web

pages. These are sent to a front-end browser, which is generally capable of for-

mulating queries. The latter must traverse the entire structure to reach a back-end

database.

Figure 5.1: Schematics of the three tier model.[10]

36

5.1 Hop 37

As shown in the figure above, the logic of the application could be written in

a mixture of several languages, each one of them related to one of the three tiers

involved. After learning many of these, a developer faces the problem of finding a

way to connect them together. For example, it is necessary to ensure that a HTML

form or a SQL query produces the data expected by a Java program. This issue

is usually referred to as the impedance mismatch problem. It may be argued that

this situation can lead to poor implementation and does not help programmers

to focus on security aspects of the application, which can be distributed in all of

the tiers mentioned. Multitier programming focuses on being able to program the

application as a single code for both server and client. This approach is able to

solve the impedance mismatch problem and reduces development complexity.

5.1 Hop

Hop [24] is a multitier language designed for programming interactive web

applications, which adopts a programming model based on two computation lev-

els. The first level is used to program the server behaviour and for designing

graphical user interfaces (GUI). The second level is used for programming ani-

mations and interactions of interfaces with the user. This approach allows for a

single packaging of the whole application and separates its view and logic. Hop

eases the implementation of web application by abstracting many operations re-

quired by the web. It supports object-oriented programming, exceptions, modules,

multi-threading and provides various tools and libraries. Notably, Hop provides

original constructions designed specifically for programming web applications,

which consist of functions calls traversing the web and a particular mechanism

for event notification. This is due to the fact that a Hop program is executed

on multiple engines residing on different machines. Hop allows the server’s and

5.1 Hop 38

client’s execution flows to communicate one with each other by means of this

peculiar function calls and event management.

5.1.1 A dual language

By promoting a computation model in which the main tasks are executed on

the server, while the GUI is executed on clients, Hop applications are scalable by

construction. A Hop program has to be uploaded on a Hop server, conforming to

the HTTP protocol, in order to be binded to a provided URL. This is the one that

will be used by the client’s web browsers to start the application, allowing for the

server and client to interact one with each other. A Hop program, as mentioned

before, is executed on several engines (namely physical computers) at the same

time. The main engine resides in the server and is dedicated to executing the

logic of the program. It focuses on computations which require a high CPU usage

and manages privileged operations, such as file access and alteration. The client

engine is dedicated to the GUI and its related animations and functionalities.

Figure 5.2: Architecture of a Hop program.[24]

Once started, the program is executed first on the main engine, in order to

5.1 Hop 39

elaborate a description of the GUI. Once this is sent to the client engin, the exe-

cution starts to flow from the latter to the former, and vice versa. Hop also allows

for more execution flows to run in parallel.

5.1.2 Communication and service calls

Interactions between the two engines are enabled by remote function calls and

event loops. These features allows for a practical implementation of application

which frequently need to communicate. The client engine (or GUI engine) can

invoke functions, namely services, from the main engine. The main engine is able

to notify events to the GUI engines. We will focus now on service calls since they

are going to play a relevant role in the remaining chapters of the document.

When programming in Hop, on can considers HTML’s URLs to be very similar

to functions in programming languages. For example, the URL https://www.

ecosia.org may be considered as a function named www.ecosia.org, whose

signature is: unit→ HTMLtree.

One click of the user on the link provided by the <a> markup is sufficient to

call this function. Similarly, a different function is denoted by the URL https:

//www.ecosia.org/search. This function is called as a response to the

user click on the "search" icon. Since this function takes a parameter named q as

its argument, namely the text which is object of the research, we can define its

signature as: String→ HTMLtree.

In Hop, every function is linked to special functions, called services. Services

inhabit the server and can be called by clients. A service is defined in the following

syntax:

(define-service (<ident> <ident0> ...)

<expression>)

https://www.ecosia.org
https://www.ecosia.org
https://www.ecosia.org/search
https://www.ecosia.org/search

5.2 Links 40

<ident> is the name of the service and <ident0> , ... are its parame-

ters.The define-service construct does not only bind a function to an inden-

tifier residing on the server, it also binds it to a URL, which can be used to run a

Hop program. Service calls from the client to the server can be used to produce

either complete web pages or partial results. Any Hop service can be called, from

a client, with the following syntax:

(with-hop (service arg0, ...)

[(lambda (h) ...success expression...)

[(lambda (h) ...failure expression...)]])

Through the with-hop syntax, a client calls the function service with

the arguments arg0,.... Once the call is completed, two alternative situations

may occur. In case of success the success procedure is executed. Otherwise,

the failure procedure is executed. Both of them accept as argument the result

produced by the service evaluation of the call.

5.2 Links

Links is a multitier functional programming language which aims at easing

the impedance mismatch problem. It provides a language which allows for the

specification of the behaviours of all tiers involved in a web application. To do so,

it generates code for each tier by translating parts of the program into JavaScript

code, which can be run by the the browser, other parts into bytecode, which can

be run by the server, and the remaining bits into SQL for the database. Namely, as

reported in [10], the server component of Links is composed of a static analyzer,

a translator to JavaScript and SQL and an interpreter for Links code. The client

component compiles to JavaScript, providing support for Ajax. Links adopts a

communication system based on the exchange of messages to provide support for

5.2 Links 41

distributed applications, such as Erlang, and many other features incorporated by

other functional programming languages.

As in Hop, a Links program is distributed and executed across two locations,

a client and a server. Keywords client and server can be used to annotate

function definitions, to indicate where it shoud run. Functions annotated with

client can call functions with server, and the other way around. This is

made possible by the usage of a variation of the continuation-passing technique

that encapsulates all of the server’s sate information inside a parameter passed to

the client. Links servers are thus scalable and require little resources.

An interesting feature of Links is to provide support for Session Types. These

were added to the language by Lindley and Morris in [20] by means of row poly-

morphism and lightweight linear typing. Lindley and Morris base themselves on a

language introduced in [19], called GV. GV is a functional language with Session

Types that was proven to be deadlock free, deterministic and terminating. In [20]

GV is extended with polymorphism, row types, subkinding. This allows for the

integration of linear types, which are very useful to introduce Session Types. The

resulting language is more expressive, while retaining the same safety property.

Since version 0.6, Links includes an extension based on this language. Session

types are checked by means of static analysis, allowing for the development of the

application to be driven by the communication protocol it is supposed to comply

to. However, most accounts of session typing do not account for failure. This

limits their use in most web applications, where failure is pervasive and needs to

be handled carefully. To solve this problem, in [12] GV and, hence, Links are

extended further to provide for exception handling. In order to concretze this,

exceptions are embedded into Session Types theory for GV by incorporating the

approach of [22] leveraging on linear types with explicit cancellation.

Chapter 6

Webi

In this section, we introduce the Webi semantic framework, as proposed by

Tamara Rezk and her colleagues. In the next section we will define our specific

version of Webi, tailored towards the representation of Authenticated Sessions.

The Webi semantics is meant to represent the interactions occurring on the web

between different servers and many clients which are able to browse multiple web-

sites at the same time. The semantics is parametric on client and server transition

relations S and C (representing the evaluation of their code). Moreover, it ex-

hibits one of the most prominent features of a web application, that is the transfer

of code and values from a server to a client. The first time a client connects to a

server it will answer with some code to be executed. This code might call other

servers as well, or simply allow for interaction between server and client.

42

6.1 Client and Server languages 43

6.1 Client and Server languages

6.1.1 Client Language

The programs used to instantiate client configurations have the following syn-

tax:

Q ::= x := e | Q;Q | skip | return e

| if e then Q else Q | while e do Q

| branch(l) {l1 : Q1 . . . ln : Qn}

| call u with −→x := e then do λx.Q

e ::= v | x | op(e1, . . . , en)

v ::= undefined | true | false | 1 | 2 | . . .

We let v range over values and require that the set of values, called V al, should

contain a special value named undefined. We let µ range over memories, that is,

finite functions from variables to values. We write µ{x 7→ v} for the memory

that maps x to v and any y 6= x to µ(y). In Figure 1 we present the small-step

operational semantics for the Client language. This semantics is given in terms

of two transition relations: an undecorated transition relation C (also called

reduction relation), and a decorated transition relation δ
C , where δ is a transition

decoration, defined by:

δ ::= u?−→x = −→v , λx.Q

These record some relevant information about service calls. Both transition re-

lations are defined on client configurations, which have the form 〈Q, µ〉 or 〈v, µ〉.

The latter, called final client configurations, represent termination with return

value v and final memory µ. When writing 〈Q, µ〉, we implicitly assume that

the variables of Q are included in the domain of µ. All expressions are evaluated

6.1 Client and Server languages 44

through the function [[e]](µ):

[[e]](µ) =


v if e = v

µ(x) if e = x

op([[e1]](µ) . . . [[en]](µ)) if e = op(e1, . . . en)

6.1 Client and Server languages 45

Figure 6.1: Small-Step Semantics for Client Language.

ASSIGN

[[e]](µ) = v

〈x := e, µ〉 C 〈undefined, µ{x 7→ v}〉

SKIP

〈skip, µ〉 C 〈undefined, µ〉

RETURN

[[e]](µ) = v

〈return e, µ〉 C 〈v, µ〉

SEQR

〈Q1, µ〉 C 〈v, µ′〉 v 6= undefined

〈Q1;Q2, µ〉 C 〈v, µ′〉

SEQS

〈Q1, µ〉 C 〈Q′1, µ′〉

〈Q1;Q2, µ〉 C 〈Q′1;Q2, µ
′〉

SEQT

〈Q1, µ〉 C 〈undefined, µ′〉

〈Q1;Q2, µ〉 C 〈Q2, µ
′〉

SEQSL

〈Q1, µ〉 δ
C 〈Q′1, µ′〉

〈Q1;Q2, µ〉 δ
C 〈Q′1;Q2, µ

′〉

SEQTL

〈Q1, µ〉 δ
C 〈undefined, µ′〉

〈Q1;Q2, µ〉 δ
C 〈Q2, µ

′〉

COND

[[e]](µ) = α α ∈ {true, false}

〈if e then Qtrue else Qfalse, µ〉 C 〈Qα, µ〉

WHILETRUE

[[e]](µ) = true

〈while e do Q, µ〉 C 〈Q; while e do Q, µ〉

WHILEFALSE

[[e]](µ) = false

〈while e do Q, µ〉 C 〈undefined, µ〉

BRANCH

l = li

〈branch(l) {l1 : Q1 . . . ln : Qn}, µ〉 C 〈Qi, µ〉

CALL

[[e]](µ) = −→v

〈call u with −→x := e then do λx.Q, µ〉 u?−→x=−→v ,λx.Q
C 〈undefined, µ〉

6.1 Client and Server languages 46

Rule [Assign] yields a final configuration where the value is undefined and

the memory is obtained from µ by updating the entry for the variable x with the

value of expression e. Rule [Return] evaluates an expression e to produce a return

value v, while leaving the memory unchanged. There are five rules for sequen-

tial composition : three specifying the reduction relation, and two specifying the

decorated transition relation. Rule [SeqR] applies when the first component of

the sequential composition yields a value different from undefined. In this case,

since a program is not supposed to continue after returning a proper value, the

second component is discarded. Rule [SeqS] applies when the first component

evolves to another program, while Rule [SeqT] applies when the first component

terminates, i.e. leads to the value undefined : in this case, the second component

starts to be executed. Rules [SeqSL] and [SeqTL] are the decorated counterparts

of [SeqS] and [SeqT]. Rules [WhileTrue], [WhileFalse] and [Cond] are standard.

Rule [Branch] models the capability of a program to offer multiple possible be-

haviours by associating each one of them to a label and running the program Qi

associated to the selected label li. Rule [Call] models a client call to service u,

with parameter e and continuation program λx.Q: expression e is evaluated to

a values −→v to be bound to variable −→x , and both this binding and the continua-

tion function are recorded in the decoration of the transition. This information

will then be fetched by the called service as specified by the WEBI semantics

described in Section 6.3.

6.1.2 Server Language

The Server Language has a richer syntax for expressions than the Client Lan-

guage. In addition to the standard expressions e, introduced previously, it includes

expressions of the form ˜t, called tilde expressions, and expressions of the form

$x, called dollar expressions. Formally, the sets of server expressions and values,

6.1 Client and Server languages 47

ranged over by e$ and v∼, are defined by:

e$::= v∼ | x | $x | op(e1$, . . . , en$) | ˜t

v∼ ::= v | ˜Q

where t is defined by:

t ::= x := e$ | t; t | skip | return e$

| if e$ then t else t | while e$ do t

| branch(l) {l1 : P1 . . . ln : Pn}

| call u with x := e$ then do λx.t

Hence Q is a particular case of t (where all expressions e$ are simply client ex-

pressions e), and expressions of the form ˜Q are considered to be values in the

server language.

The syntax for the programs used to instantiate server configurations is the

following:

P ::= x := e$ | P ;P | skip | return e$

| if e$ then P else P | while e$ do P

| branch(l) {l1 : P1 . . . ln : Pn}

Note that the syntax of server programs only differs from that of client pro-

grams for the absence of the call construct and for the use of expressions e$ instead

of e.

The semantics of the Server Language is defined on server configurations of

the form 〈P, µ〉 or 〈v∼, µ〉, the latter being called again final. We start by defining

the evaluation of expressions. Dollar expressions are evaluated to values and tilde

6.2 Webi configurations 48

expressions where all dollar expressions have been evaluated are treated as values

in the language. The expression evaluation function {|e$|}(µ) uses an auxiliary

function φ(t, µ). Formally, {|e$|}(µ) is defined by:

{|e$|}µ =



v if e$ = v

µ(x) if e$ = x or e$ = $x

op({|e1$|}, . . . , {|en$ |}) if e$ = op(e1$, . . . , e
n
$)

˜φ(t, µ) if e$ = ˜t

where:

φ(t, µ) =



x := {|e$|}(µ) if t = x := e$

φ(t1, µ);φ(t2, µ) if t = t1; t2

if {|e$|}(µ) then φ(t1, µ) else φ(t2, µ) if t = if e$ then t1 else t2

while {|e$|}(µ) do φ(t, µ) if t = while e$ do t

call u with x := {|e$|}(µ) then do λx.φ(t, µ) if t = call u with −→x := e$ then do λx.t

t if t = skip or

if t = branch(l) {l1 : P1 . . . ln : Pn}

The small-step operational semantics for server programs is then formally the

same as that for client programs, replacing v by v∼ and [[e]](µ) by {|e$|}(µ).

6.2 Webi configurations

We now present the Webi semantics, which describes the interaction between

clients and servers. The semantics is defined on Webi configurations, which are

pairs of the form:

6.2 Webi configurations 49

〈SS,CC〉

where SS is a set of concrete server configurations ss and CC is a multiset of

concrete client configurations cc. The possible forms of ss and cc are:

ss ::= 〈service u(−→x){P}, µ〉 |

〈P, µ〉j |

〈〈P, µ〉k〉j |

〈v∼, µ〉j

s ::= 〈P, µ〉 |

〈v∼, µ〉

cc ::= 〈〈c, B, T 〉j〉u |

〈〈boot〉j〉u |

c ::= 〈Q, µ〉 |

〈v, µ〉

Here s is a server configuration and c is a client configuration, as described

previously. In the syntax of ss, u is the name of a service, P is a server program,
−→x is a set of input parameters, v∼ is a server value and µ is the memory in which

the program P is going to be executed. The superscripts j and k are used to specify

respectively the session name and the return address for callback functions. In the

syntax of cc, B is the callback function queue and T is the thunks queue. Here

the superscripts j and u denote respectively the session name and the name of the

6.3 Webi Semantics 50

service that is the source of the configuration. A callback function represents a

subroutine waiting to receive an input from the server in order to be calculated. It

is instantiated after a HTTP Request to a server, and has the form (λx.Q)k, where

k is the return address for the Server. We will write B :: (λx.Q)k for enqueueing.

When the server returns an input to the callback function, the two are paired and

enqueued in the thunks queue. When the current active code terminates, it is

substituted with the first of the thunks queue elements. Client code is generated

by two different functions: boot maps a server value to client code, while gencc

is used to map a server value to a client value.

6.3 Webi Semantics

We present now the semantic rules of Webi. There are two kinds of transi-

tion relations here as well, one that is unlabelled and the other that is labelled by

decorations ∆, which are richer than the δ’s introduced previously, and are given

by:

δ ::= boot | u?−→x = −→v | u?−→x = −→v , λx.Q

URLREQ

〈service u(−→x){P}, µ〉 ∈ SS

j fresh CC ′ = CC ∪ {〈〈boot〉j〉u} SS ′ = SS ∪ {〈P, µ{−→x 7→ −→v }〉j}

〈SS,CC〉 u?−→x=−→v 〈SS ′, CC ′〉

This rule specifies how a client making a Url Request and the target server u in-

teract. The client initiates a new session j with the server by sending a vector of

values −→v to be associated with the vector of parameters −→x . A new client config-

uration 〈〈boot〉j〉u is added to the client configuration set, which will execute the

boot function to generate the client code from the server response. A server con-

6.3 Webi Semantics 51

figuration is added to the server configuration set to calculate a response for the

client. Note that this rule can be applied anytime, as long as SS contains a service

declaration 〈service u(−→x){P}, µ〉. This represents the fact that an UrlRequest can

be issued anytime, whatever the set of client configurations CC.

CLIENTBOOT

SS = SS ′ ∪ {〈v∼, µ〉j} CC = CC ′′ ∪ {〈〈boot〉j〉u}

boot(v∼) = Q CC ′ = CC ′′ ∪ {〈〈Q, ε, ε〉j〉u}

〈SS,CC〉 boot 〈SS ′, CC ′〉

This rule specifies how a client that has to boot may receive code from the server.

This happens if there exist a server configuration and a client configuration that

are labelled with the same session name j. Note that this implies that the server

configuration was created via Rule [UrlReq] by the same service u that appears as

a superscript in the client configuration. The boot function returns the client code

that becomes the active client code in the new configuration, while 〈〈v∼, µ〉j〉 is

lost, due to the stateless nature of the HTTP protocol.

CLIENTCALL

CC = CC ′′ ∪ {〈〈c, B, T 〉j〉u} c u′?−→x=−→v ,,label=vlabel,λx.Q
C c′

〈service u′(−→x , label){P}, µ〉 ∈ SS k fresh B′ = B :: {(λx.Q)k}

CC ′ = CC ′′ ∪ {〈〈c′, B′, T 〉j〉u} SS ′ = SS ∪ {〈〈P, µ{−→x 7→ −→v }〉k〉j}

〈SS,CC〉 u?−→x=−→v ,label=vlabel,λx.Q 〈SS ′, CC ′〉

This rule specifies how a client is able to make a HTTP Request to a server u′

(that is, a server that could be different from its source server u) assigning the

values −→v to the server parameters −→x and stating that its continuation will be

in the form of the callback function λx.Q. The callback function and the server

configuration dedicated to that client are labelled with a fresh k that acts as a return

6.3 Webi Semantics 52

address, however the session is still labelled by j. The former is then moved to the

callback queue in the client configuration, while the latter stores the parameter in

its memory. Other than parameters −→x a client is able to express a value vlabel for

a specific variable, label which specifies the desired interaction flow during the

execution of the program.

RETSERVICE

SS = SS ′ ∪ {〈〈v∼, µ〉k〉j} CC = CC ′′ ∪ {〈〈c, {(λx.Q)k} :: B, T 〉j〉u}

gencc(v∼) = v CC ′ = CC ′′ ∪ {〈〈c, B, T :: {(λx.Q)v}〉j〉u}

〈SS,CC〉 〈SS ′, CC ′〉

This rule specifies how a client may receive a response from a Server within a

session j. This happens if there are both a client configuration and a server con-

figuration labelled by j, if the server configuration contains a value and if the first

callback function in the client configuration has the same return address k as the

server configuration. The server returns value v resulting from gencc(v∼) and ap-

plies the callback function to it, and adds the result to the thunks queue.

We present now the contextual rules that allow the internal moves of both

clients and servers to take place within Webi configurations:

CLIENTSTEP

CC = CC ′′ ∪ {〈〈c, B, T 〉j〉u} c C c
′ CC ′ = CC ′′ ∪ {〈〈c′, B, T 〉j〉u}

〈SS,CC〉 〈SS,CC ′〉

When a client executes an internal computation, its configuration is updated ac-

cordingly.

6.3 Webi Semantics 53

SERVERSTEP1

SS = SS ′′ ∪ {s j} s S s
′ SS ′ = SS ′′ ∪ {s′ j}

〈SS,CC〉 〈SS ′, CC〉

SERVERSTEP2

SS = SS ′′ ∪ {〈s k〉j} s S s
′ SS ′ = SS ′′ ∪ {〈s′ k〉j}

〈SS,CC〉 〈SS ′, CC〉

Similarly, when a server makes an internal computation, its configuration is

updated. Note that for the server we need two contextual rules.

RUN

CC = CC ′′ ∪ {〈〈〈v′, µ〉, B, {(λx.Q)v} :: T 〉j〉u}

CC ′ = CC ′′ ∪ {〈〈〈(Q{x 7→ v}, µ〉, B, T 〉j〉u}

〈SS,CC〉 〈SS,CC ′〉

This rule executes one of the thunks, replacing an active client program that has

reached a final configuration.

Chapter 7

WebiLog: Adding Login History to

Webi

In the following we will focus on user-authenticated sessions established upon

a successful login, in which cookies are used to authenticate users at the server

side. In order to adapt Webi to model authenticated sessions we need to represent

and detect login actions and record them into a lattice of security levels following

the approach in (reference). A WebiLog configuration is now of this shape:

〈SS,CC,L〉

where L is the Login History Lattice, whose elements are server names u, u′...,

together with top and bottom elements > and ⊥. At the beginning, we assume

L = {>,⊥}.

To record login actions, a special variable login is introduced. Service dec-

larations have now the form 〈service u(−→x , login){P}, µ〉 and correspondingly,

client calls need to transmit both a vector of values −→v to be substituted for −→x and

a value vlogin to be substituted for login.

Given a configuration 〈SS,CC,L〉, a login on service u is performed in two

54

7.1 WebiLog Semantics 55

steps:

• A new client calls server u with a set of parameters −→v and a parameter

vlogin 6= undefined.

If u /∈ L, this has to be a login request towards u, otherwise it should be a

logged-in action on u.

• If server u replies with special value cookielogin(u) then the authentication

was successful, u is added to L and therefore, every subsequent call to u

will have vlogin = cookielogin(u).

This behavior describes the use of cookies within a web browser.

7.1 WebiLog Semantics

We assume that a login action can only be performed when calling a server

with a UrlRequest, therefore there are now three different alternatives for a client

to start a session with a service u(−→x , login){P}, depending on the value assigned

by the client to the parameter login and the shape of the Login History L.

URLREQ

〈service u(−→x , login){P}, µ〉 ∈ SS j fresh CC ′ = CC ∪ {〈〈boot〉j〉u}

SS ′ = SS ∪ {〈P, µ{−→x 7→ −→v , login 7→ undefined}〉j}

〈SS,CC,L〉 u?−→x=−→v ,login=undefined 〈SS ′, CC ′, L〉

A client makes its initial call to a server u which does not belong to L with login

parameter equal to undefined, starting a non authenticated session.

7.1 WebiLog Semantics 56

URLLOGINREQ

〈service u(−→x , login){P}, µ〉 ∈ SS

j fresh u /∈ L CC ′ = CC ∪ {〈〈boot〉j〉u}

SS ′ = SS ∪ {〈P, µ{−→x 7→ −→v , login 7→ vlogin}〉j}

〈SS,CC,L〉 u?−→x=−→v ,login=vlogin 〈SS ′, CC ′, L〉

A client issues an authentication request to a server u which does not belong to

L, providing a value for the login parameter. We are not adding u in L since we

have to wait for the server response to judge the outcome of the login procedure.

URLREQ-LOGGEDIN

〈service u(−→x , login){P}, µ〉 ∈ SS

j fresh u ∈ L CC ′ = CC ∪ {〈〈boot〉j〉u}

SS ′ = SS ∪ {〈P, µ{−→x 7→ −→v , login 7→ cookielogin(u)}〉j}

〈SS,CC,L〉 u?−→x=−→v ,login=cookielogin(u) 〈SS ′, CC ′, L〉

A client issues an authentication request to the server uwhich belongs to L, mean-

ing that the client has already authenticated to this server. The value assigned to

the login parameter of this request is therefore the login cookie for the server.

The response from a server to a Url request may alter the shape of the Login

History, issuing a login cookie to the client.

CLIENTLOGIN

SS = SS ′ ∪ {〈v∼, µ{login 7→ cookielogin(u)}〉j}

CC = CC ′′ ∪ {〈〈boot〉j〉u}

boot(v∼) = Q CC ′ = CC ′′ ∪ {〈〈Q, ε, ε〉j〉u} L′ = L⊕ u

〈SS,CC,L〉 boot 〈SS ′, CC ′, L′〉

The authentication was successful and the server responds with some code, the

7.1 WebiLog Semantics 57

Login History lattice L is updated with the name u and every subsequent request

to it will carry the cookie.

CLIENTBOOT

SS = SS ′ ∪ {〈v∼, µ〉j} CC = CC ′′ ∪ {〈〈boot〉j〉u}

boot(v∼) = Q CC ′ = CC ′′ ∪ {〈〈Q, ε, ε〉j〉u}

〈SS,CC,L〉 boot 〈SS ′, CC ′, L〉

The server replies with code to the client, no login cookie is issued and an unau-

thenticated session is started.

A call from a client to a service named u is performed applying one of the

following rules, depending on the structure of L . If the service name u does not

belong to L, the following rule is applied:

CLIENTCALL

〈service u′(−→x , login){P}, µ〉 ∈ SS

CC = CC ′′ ∪ {〈〈c, B, T 〉j〉u} c u′?−→x=−→v ,login=undefined,λx.Q
C c′

u /∈ L k fresh B′ = B :: {(λx.Q)k}

CC ′ = CC ′′ ∪ {〈〈c′, B′, T 〉j〉u} SS ′ = SS ∪ {〈〈P, µ{−→x 7→ −→v }〉k〉j}

〈SS,CC,L〉 u′?−→x=−→v ,login=undefined,λx.Q 〈SS ′, CC ′, L〉

If there is no current login on service u, the request is sent with the specified

parameters without any cookie.

CLIENTCALL-LOGGEDIN

〈service u(−→x){P}, µ〉 ∈ SS c
u′?−→x=−→v ,login=cookielogin(u),λx.Q

C c′ u ∈ L

k fresh B′ = B :: {(λx.Q)k} CC ′ = CC ′′ ∪ {〈〈c′, B′, T 〉j〉u}

SS ′ = SS ′′ ∪ {〈〈P, µ{−→x 7→ −→v , login 7→ cookielogin(u)}〉k〉j}

〈SS,CC,L〉 u′?−→x=−→v ,login=cookielogin(u),λx.Q 〈SS ′, CC ′, L〉

7.1 WebiLog Semantics 58

If a client calls a server on which an authentication request was successfully per-

formed, the value of the login parameter is set to that of the login cookie issued

by the server.

The remaining rules are nearly identical since they do not have to account for

the Login History, and are left uncommented for brevity.

RETSERVICE

SS = SS ′ ∪ {〈〈v∼, µ〉k〉j} CC = CC ′′ ∪ {〈〈c, {(λx.Q)k} :: B, T 〉j〉u}

gencc(v∼) = v CC ′ = CC ′′ ∪ {〈〈c, B, T :: {(λx.Q)v}〉j〉u}

〈SS,CC,L〉 〈SS ′, CC ′, L〉

CLIENTSTEP

CC = CC ′′ ∪ {〈〈c, B, T 〉j〉u} c C c
′ CC ′ = CC ′′ ∪ {〈〈c′, B, T 〉j〉u}

〈SS,CC,L〉 〈SS,CC ′, L〉

SERVERSTEP1

SS = SS ′′ ∪ {s j} s S s
′ SS ′ = SS ′′ ∪ {s′ j}

〈SS,CC,L〉 〈SS ′, CC, L〉

SERVERSTEP2

SS = SS ′′ ∪ {〈s k〉j} s S s
′ SS ′ = SS ′′ ∪ {〈s′ k〉j}

〈SS,CC,L〉 〈SS ′, CC, L〉

RUN

CC = CC ′′ ∪ {〈〈〈v′, µ〉, B, {(λx.Q)v} :: T 〉j〉u}

CC ′ = CC ′′ ∪ {〈〈〈(Q{x 7→ v}, µ〉, B, T 〉j〉u}

〈SS,CC,L〉 〈SS,CC ′, L〉

7.2 Examples 59

7.2 Examples

Suppose we have a bank service. In order to access the bank, one should first

identify with its login interface 〈service auth(login){P}, µ〉 which will return

him the code to interact with the bank and the login cookie if the authentification

is correct. The code for P is:

login=check(login);

if (login = cookielogin) then {

return ~(

input = get input();

if(input=transfer) then {

call bank with

[label=transfer, to=friend, amount=100] then do (

\balance, label. branch (label) {

done : return balance;

refused : return "error";

})}

else{

if (input = balance) then{

call bank with [label=balance] then do (

\label, balance. branch (label) {

done : return balance;

refused : return "error";

})}

else {

call bank with [label=quit] then do (\w.return w)

}

}

)

7.2 Examples 60

}

else

return ~(skip)

We then have 〈service bank(−→x , login){P ′}, µ〉, where−→x = {to, amount, label},

with the following P ′:

branch(label){ transfer:

if (login != undefined & valid(to, amount)) then

new-balance=update(amount);

return [label=done, new_balance]

else

return [label=refused]

balance: if (cookielogin != undefined) then

balance=balance();

return [label=done, balance]

else

return [label=refused, 0]

quit: return true

}

where we assume balance() and update balance() calculate and update the current

balance of the user, check() authenticates the user and islogincookie() checks the

response of the authentication request.

7.2 Examples 61

We also have 〈service attacker(x){P ′′}, µ〉 with the following P ′′:

return ~(

call bank with

[label=transfer, to=attacker, amount=1000] then do (

\balance, label. branch (label) {

done : return "Attack performed";

refused : return "Attack blocked";

})

)

Function gencc:

gencc(v) = v

Function boot():

boot(v) = {|v|}(µ)

7.2 Examples 62

7.2.1 Example 1: A secure WebiLog Session

In this example we describe how WebiLog can model the interaction between

a server and a client. Suppose:

SS = {〈service auth(login){P}, µ〉, 〈service bank(−→x){P ′}, µ〉}

〈SS ∪ {〈service auth(login){P}, µ〉}, ∅, L〉 auth?login=credentials

〈SS ∪ {〈P, µ{login 7→ credentials}〉j}, {〈〈boot〉j〉auth}}, L〉 ∗

〈SS ∪ {〈return ˜(. . .), µ{login 7→ cookielogin(bank)}j},

{〈〈boot〉j〉auth}, L⊕ bank〉 boot ∗

〈SS ∪ 〈service bank(−→x){P ′},

{〈〈call bank with −→x := {transfer, ”friend”, 100} then do

(λ label, balance.Q)〉, ∅, ∅〉j〉auth}, L〉 bank?−→x={transfer,”friend”,100},λlabel,balance.Q

〈SS ∪ {〈P ′, µ{−→x 7→ {transfer, ”friend”, 100}, login 7→ cookielogin(u)}〉〉k},

{〈〈∅, {(λ label, balance.Q)k}, ∅〉j〉auth}, L〉 ∗

〈SS ∪ {〈return {done, new − balance}, µ〉j},

{〈〈∅, {(λ label, balance.Q)k}, ∅〉j〉auth}, S, L〉

〈SS, {〈〈∅, ∅, {(λ label, balance.Q)done new − balance}〉j〉bank}, L〉 ∗

〈SS, {〈〈return balance, ∅, ∅〉j〉bank}, S, L〉

7.2 Examples 63

7.2.2 Example 2: An insecure WebiLog Session

In this example we show how Webi is able to represent Session Integrity vio-

lations such as CSRF attacks described before.

Suppose:

SS = {〈service auth(login){P}, µ〉,

〈service bank(−→x){P ′}, µ〉, 〈service attacker(x){P ′′}, µ〉}

〈SS ∪ {〈service auth(login){P}, µ〉}, ∅, L〉 auth?login=credentials

〈SS ∪ {〈P, µ{login 7→ credentials}〉j}, CC ∪ {〈〈boot〉j〉auth}}, L〉 ∗

〈SS ∪ {〈return ˜(. . .), µ{login 7→ cookielogin(bank)}j},

CC ∪ {〈〈boot〉j〉auth}, L⊕ bank〉 boot

〈SS ∪ {〈service attacker(x){P ′′}, µ〉}, CC, L〉 attacker?x=undefined

〈SS ∪ {〈P ′′, µ{x 7→ undefined}〉j}, CC ∪ {〈〈boot〉j〉attacker}}, L〉

〈SS ∪ {〈return ˜(. . .), µ〉j}, CC ∪ {〈〈boot〉j〉attacker}, L〉 boot

〈SS ∪ 〈service bank(−→x){P ′},

{〈〈call bank with −→x := {transfer, ”attacker”, 1000} then do

(λ label, balance.Q)〉, ∅, ∅〉j〉attacker},

L〉 bank?−→x={transfer,”attacker”,1000},λlabel,balance.Q

7.2 Examples 64

〈SS ∪ {〈P ′, µ{−→x 7→ {transfer, ”attacker”, 1000}, login 7→ cookielogin(u)}〉〉k},

{〈〈∅, {(λ label, balance.Q)k}, ∅〉j〉auth}, L〉 ∗

〈SS ∪ {〈return {done, new − balance}, µ〉j},

{〈〈∅, {(λ label, balance.Q)k}, ∅〉j〉auth}, S, L〉

〈SS, {〈〈∅, ∅, {(λ label, balance.Q)done new − balance}〉j〉bank}, L〉 ∗

〈SS, {〈〈return ”Attack performed”, ∅, ∅〉j〉bank}, S, L〉

Chapter 8

Future work

8.1 Session types for WebiLog

We present a sketch of a Type System based on Session Types that could allow

us to verify if a program of a server corresponds or not to the protocol that it

must realize when it communicates with a client. For simplicity, we take into

consideration only a subset of finite protocols protocols, leaving for future work

the other cases, which include recursive protocols.

8.1.1 Types

Our types only capture the selection and branching constructs. This allows us

for a simpler representation of the protocols and does not limit our approach since

these constructs may be viewed as a generalisation of output and input.

The syntax for Global Types and Local Types is listed below and is very sim-

ilar to the one given in sections 4.1, 4.2.

65

8.1 Session types for WebiLog 66

Global Types G ::= p→ q : {li〈σi〉 : Gi}i∈i branching

| p→login q : (−→σ);G′ authentication

| end end

Introducing a Global type p →login q : (−→σ);G′ for the authentication allows us

to capture this particular type of interacton. This could also possibly allow us to

enforce an Integrity property on the execution of session.

Local Types T ::= ⊕ 〈q, {li〈σi〉 : Ti}i∈I〉 select

| &(q, L, σ1 . . . σn){li : Ti}i∈I branch

| end

8.1.2 Type Checking

We suppose that every server is annotated with a Session type specifying its

expected behaviour. This behaviour could be formalized, for example, in a com-

munication protocol. Some services will offer several options in a branching con-

struct, while others will perform an authentication procedure and return code to

the client. Depending on the outcome of the procedure, different interactions will

take place.

We consider only finite protocols which do not include while loops, in order to

have a simpler environment and exclude recursive types. The typing rules include

a standard typing environment Γ for variables, expressions and labels.

The rules are not properly formalized, and some required rules are missing, most

importantly a rule for typing a main WebiLog configuration with a Global Type.

A complete formulation of the Type System and of its Soundness is left as future

work.

8.1 Session types for WebiLog 67

Server Program:

A Server may interact with the client in different ways. In the following rules

we try to formalise how a Type Checker could be able to verify the adherence

of these interaction with a specified protocol. The shape of type judgements for

server and client programs is Γ ` P . ∆ and Γ ` Q . ∆where ∆ is the sesson

environment, associating a session type with each channels of the program. In

these rules, s[C] and s[S] stand for the channels of the client and the server in

session S.

RETURNCODE

Γ ` t .∆, s[C] : &(S, {logini : Ti}).T i ∈ {0, 1}

Γ ` 〈return ˜t, µ〉 .∆, s[S] : ⊕〈C, {logini : Ti}〉.end

SERVERSELECTION

Γ ` e : σ label = li for some i

Γ ` 〈return {label, e}, µ〉 .∆, s[p] : ⊕〈q, {li : Ti}〉

Rule RETURNCODE aims at ensuring that the code returned to the client is co-

herent with the result of the authentication of the client. Rule SERVERSELECTION

aims at verifying that the server’s code adheres to the behaviour of the branch that

results from the evaluation of the client’s call.

Client Program:

The only way in which a client is able to communicate with a server is through

a client call.

CLIENTSELECTION

label ∈ L Γ ` −→e : σ Γ ` (λx.Q) . s[C] : Ti

Γ ` call u with label, x := e then do λx.Q .∆, s[C] : ⊕〈u, {li〈σ〉 : Ti}

8.1 Session types for WebiLog 68

This rule aims at checking whether the client is supposed to execute this call

to the server.

8.1.3 Examples

Recalling the Bank server example, given in 7.2, we can say that the identity

provider auth initiates a session of the following Global Protocol G:

bank → c :



transfer〈String, Int〉 : c→ bank :

 done〈Int〉 : end

refused〈Bool〉 : end

balance : c→ bank :

 done〈Int〉 : end

refused〈Bool〉 : end

quit : end

Projection of G onto its participants:

bank : &



c, transfer〈String, Int〉 : ⊕

〈
c, done〈Int〉 : end

c, refused〈Bool〉 : end

c, balance : ⊕

〈
c, done〈Int〉 : end

c, refused〈Bool〉 : end

c, quit : end

c : ⊕



bank, transfer〈String, Int〉 : &

 bank, done〈Int〉 : end

bank, refused〈Bool〉 : end

bank, balance : &

 bank, done〈Int〉 : end

bank, refused〈Bool〉 : end

bank, quit : end

8.2 Session Integrity for WebiLog 69

8.2 Session Integrity for WebiLog

During the internship we focused on Web Session Integrity, and since We-

biLog provided an environment able to reproduce attacks on authenticated ses-

sions, we propose to formalize this notion as a noninterference property along the

lines of [18]. Specific adjustments regarding the formalization of WebiLog have

been considered in order to achieve this goal, such as the incorporation of a set of

streams S registering the inputs and outputs for all services considered in SS. A

stream is defined by the following grammar:

S ::= ε | s :: S

where s ranges over δ. In order to state a definition of noninterferece we would

also need a suitable l-equality ≈l formalizing the LHD similarity between these

streams and a labeling function which captures the correct level of integrity of

client calls towards a specific service. A scribbled version of the LHD similarity

≈l and of the Session Integrity properties are shown below:

Definition (LHD-similarity). Given two streams S1, S2 we write S1 ≈u S2 if we

can build a proof tree for this statement using the following rules:

8.2 Session Integrity for WebiLog 70

ID-LOGIN

s = u?−→x = −→v , login = vlogin

vlogin 6= undefined u ≤ l L⊕ u ` S1 ≈l S2

L ` s :: S1 ≈l s :: S2

ID-SIM

s = u?−→x = −→v , login = vlogin

vlogin = undefined lblL(s) ≤ l L ` S1 ≈l S2

L ` s :: S1 ≈l s :: S2

ID-L

lblL(s) � l L ` S1 ≈l S2

L ` s :: S1 ≈l S2

ID-R

lblL(s) � l L ` S1 ≈l S2

L ` S1 ≈l s :: S2

ID-NIL

L ` ε ≈l ε

The key point in this approach is a correct definition of the labeling function

lblL, which has to capture the correct level of integrity of the communication by

altering its behaviour depending on the shape of the Login History L.

Definition (Session Integrity). A Server program service u(−→x){P} is noninterfer-

ent iff: ∀SS1, SS2 such that service u(−→x , login){P} ∈ SS1∧service u(−→x , login){P} ∈

SS2 and for every computation such that:

〈SS1, ∅, ∅, ∅〉 I1 〈SS ′1, CC1, S1, L1〉

〈SS2, ∅, ∅, ∅〉 I2 〈SS ′2, CC2, S2, L2〉

we have that ∅ ` I1 ≈l I2 ⇒ ∅ ` S1(u) ≈l S2(u).

In this definition we can see streams I1, I2 as sequences of decorated tran-

sitions occurring in WebiLog and thus recording only the inputs flowing towards

8.2 Session Integrity for WebiLog 71

services, while S1(u), S2(u) represent the stream of interleaved inputs and outputs

of service u.

Conditions for ensuring this property were explored during my internship. The

achievement of this goal is left for future work.

Conclusions

To summarize, the following topics were discussed in the previous chapters:

• We have presented, while discussing Secure Information Flow theory, the

Security Lattice model, the notion of noninterference and a Security Type

System, presenting an intuition of how it is able to achieve and guarantee

integrity and confidentiality on the data that it manipulates.

• We have discussed Web Session Integrity in the context of authenticated ses-

sions built on top of cookies, describing a class of attacks known as Session

Hijacking and focusing on the case of CSRF Attacks. We have described

approaches aiming at the enforcement of different Session Integrity notions,

focusing in particular on the case of the formulation in terms of LHD non-

interference. We introduced current issues and concerns related to privacy

and security in the context of IoT systems.

• We have presented Session Types, a type theory focusing on the description

and validation of communication protocols in the case of binary and multi-

party sessions, describing the properties they can guarantee on the execution

of the whole protocol by the means of local static checks.

• We have described the multitier paradigm, an approach towards web pro-

gramming aiming at a simplificaton of the classical multitier architecture of

72

CONCLUSIONS 73

a web application by providing a single language to deploy tho whole sys-

tem.We presented two languages adopting this paradigm: Hop and Links.

• We have presented Webi, a semantic framework to model interaction on

the web. Clients and servers in Webi run programs written in a multitier

language, inspired by Hop, of which we provided the semantics of both

components.

• We have presented an extension of Webi, named WebiLog, in which it is

possible to model authenticated sessions by means of a Login History Lat-

tice.We have provided semantics that capture their behavior, including their

vulnerabilities.

• We propose to further extend WebiLog with a Session Type based type sys-

tem and a Login History Dependent noninterference property. The former

could guarantee desirable safety properties, while the latter could ensure

Session Integrity on authenticated sessions.

This thesis leaves many open research questions that will later be faced dur-

ing my research activities. Webi extensions such as WebiLog could represent

versatile tools in the process of formalization, analysis and verification of web

environments. Another aim of this document is to convey a message of caution

in the usage of today’s available web applications and IoT systems, as they could

pose significant risks towards our privacy, security and safety.

Bibliography

[1] ALRAWI, O., LEVER, C., ANTONAKAKIS, M., AND MONROSE, F. Sok:

Security evaluation of home-based iot deployments. In 2019 2019 IEEE

Symposium on Security and Privacy (SP) (Los Alamitos, CA, USA, may

2019), IEEE Computer Society.

[2] BOUDOL, G., LUO, Z., REZK, T., AND SERRANO, M. Towards reasoning

for web applications: an operational semantics for hop.

[3] BUGLIESI, M., CALZAVARA, S., FOCARDI, R., KHAN, W., AND TEM-

PESTA, M. Provably sound browser-based enforcement of web session in-

tegrity. vol. 2014, pp. 366–380.

[4] CALZAVARA, S., FOCARDI, R., SQUARCINA, M., AND TEMPESTA, M.

Surviving the web: A journey into web session security. pp. 451–455.

[5] CALZAVARA, S., RABITTI, A., AND BUGLIESI, M. Sub-session hijacking

on the web: Root causes and prevention. Journal of Computer Security 27

(10 2018), 1–25.

[6] CALZAVARA, S., RABITTI, A., RAGAZZO, A., AND BUGLIESI, M. Testing

for Integrity Flaws in Web Sessions. 09 2019, pp. 606–624.

[7] CELIK, Z. B., MCDANIEL, P., AND TAN, G. Soteria: Automated iot

safety and security analysis. In 2018 USENIX Annual Technical Confer-

74

BIBLIOGRAPHY 75

ence (USENIX ATC 18) (Boston, MA, July 2018), USENIX Association,

pp. 147–158.

[8] CHECKOWAY, S., MCCOY, D., KANTOR, B., ANDERSON, D., SHACHAM,

H., SAVAGE, S., KOSCHER, K., CZESKIS, A., ROESNER, F., AND

KOHNO, T. Comprehensive experimental analyses of automotive attack sur-

faces. In Proceedings of the 20th USENIX Conference on Security (USA,

2011), SEC’11, USENIX Association, p. 6.

[9] CHU, G., APTHORPE, N., AND FEAMSTER, N. Security and privacy anal-

yses of internet of things children’s toys. IEEE Internet of Things Journal 6,

1 (Feb 2019), 978–985.

[10] COOPER, E., LINDLEY, S., WADLER, P., AND YALLOP, J. Links: Web

programming without tiers. In Proceedings of the 5th International Confer-

ence on Formal Methods for Components and Objects (Berlin, Heidelberg,

2006), FMCO’06, Springer-Verlag, pp. 266–296.

[11] DENNING, D. E. A lattice model of secure information flow. Commun.

ACM 19, 5 (May 1976), 236–243.

[12] FOWLER, S., LINDLEY, S., MORRIS, J. G., AND DECOVA, S. Excep-

tional asynchronous session types: Session types without tiers. Proc. ACM

Program. Lang. 3, POPL (Jan. 2019).

[13] GOGUEN, J. A., AND MESEGUER, J. Security policies and security models.

In IEEE Symposium on Security and Privacy (1982), pp. 11–20.

[14] HEDIN, D., AND SABELFELD, A. Information-flow security for a core

of javascript. In Proceedings of the 2012 IEEE 25th Computer Security

Foundations Symposium (USA, 2012), CSF ’12, IEEE Computer Society,

pp. 3–18.

BIBLIOGRAPHY 76

[15] HONDA, K., VASCONCELOS, V. T., AND KUBO, M. Language Primitives

and Type Disciplines for Structured Communication-based Programming. In

Proc. ESOP’98 (1998), vol. 1381 of LNCS, Springer, pp. 22–138.

[16] HONDA, K., YOSHIDA, N., AND CARBONE, M. Multiparty Asynchronous

Session Types. In Proc. POPL’08 (2008), ACM Press, pp. 273–284.

[17] JIA, Y. J., CHEN, Q. A., WANG, S., RAHMATI, A., FERNANDES, E.,

MAO, Z. M., AND PRAKASH, A. ContexIoT: Towards Providing Contex-

tual Integrity to Appified IoT Platforms. In 21st Network and Distributed

Security Symposium (Feb 2017).

[18] KHAN, W., CALZAVARA, S., BUGLIESI, M., GROEF, W., AND PIESSENS,

F. Client side web session integrity as a non-interference property. vol. 8880,

pp. 89–108.

[19] LINDLEY, S., AND MORRIS, J. G. A semantics for propositions as ses-

sions. In Programming Languages and Systems (Berlin, Heidelberg, 2015),

J. Vitek, Ed., Springer Berlin Heidelberg, pp. 560–584.

[20] LINDLEY, S., AND MORRIS, J. G. Lightweight functional session types.

[21] MIRAZ, D., ALI, M., EXCELL, P., AND PICKING, R. A review on internet

of things (iot), internet of everything (ioe) and internet of nano things (iont).

pp. 219–224.

[22] MOSTROUS, D., AND VASCONCELOS, V. T. Affine sessions. In Coor-

dination Models and Languages (Berlin, Heidelberg, 2014), E. Kühn and

R. Pugliese, Eds., Springer Berlin Heidelberg, pp. 115–130.

BIBLIOGRAPHY 77

[23] PEDERSEN, M. V., AND ASKAROV, A. From trash to treasure: Timing-

sensitive garbage collection. 2017 IEEE Symposium on Security and Privacy

(SP) (2017), 693–709.

[24] SERRANO, M., GALLESIO, E., AND LOITSCH, F. Hop: a language for

programming the web 2.0. pp. 975–985.

[25] VOLPANO, D., IRVINE, C., AND SMITH, G. A sound type system for secure

flow analysis. J. Comput. Secur. 4, 2-3 (Jan. 1996), 167–187.

[26] ZHANG, N., MI, X., FENG, X., WANG, X., TIAN, Y., AND QIAN, F.

Dangerous skills: Understanding and mitigating security risks of voice-

controlled third-party functions on virtual personal assistant systems. In

2019 IEEE Symposium on Security and Privacy (SP) (May 2019), pp. 1381–

1396.

[27] ZHANG, W., MENG, Y., LIU, Y., ZHANG, X., ZHANG, Y., AND ZHU,

H. Homonit: Monitoring smart home apps from encrypted traffic. In Pro-

ceedings of the 2018 ACM SIGSAC Conference on Computer and Commu-

nications Security (New York, NY, USA, 2018), CCS ’18, Association for

Computing Machinery, pp. 1074–1088.

	Sommario
	Summary
	Introduction
	Secure Information Flow
	The Lattice Model
	Noninterference
	Covert Channels in Programming Languages

	Web Security
	Web Session Integrity
	Session Hijacking
	CSRF attacks

	Internet of Things
	Security Issues

	Session Types
	Binary Session Types
	Multiparty Session Types
	Projection of a Multiparty Protocol
	Safety Properties

	Multitier Programming
	Hop
	A dual language
	Communication and service calls

	Links

	Webi
	Client and Server languages
	Client Language
	Server Language

	Webi configurations
	Webi Semantics

	WebiLog: Adding Login History to Webi
	 WebiLog Semantics
	Examples
	Example 1: A secure WebiLog Session
	Example 2: An insecure WebiLog Session

	Future work
	Session types for WebiLog
	Types
	Type Checking
	Examples

	Session Integrity for WebiLog

	Conclusions
	Bibliography

