
Alma Mater Studiorum · Università di Bologna

Scuola di Scienze
Dipartimento di Fisica e Astronomia
Corso di Laurea Magistrale in Fisica

Loop Quantum Gravity: Quantum Space
and New Coherent States from Twisted Geometries

Relatore interno:

Prof. Roberto Balbinot

Relatore esterno:

Dott. Simone Speziale

Presentata da:

Andrea Calcinari

Anno Accademico 2018/2019





To Ætsula





Abstract

La teoria della Gravità Quantistica a Loop (LQG) raffigura il concetto di spazio dinamico
come un oggetto quantistico. Predice infatti una nozione discreta e quantizzata di geometria,
la quale deve essere riconciliata in qualche modo con l’idea classica di spazio curvo. L’intento
perseguito nel redigere questa tesi è quello di fornire uno strumento utile a studiare questa
riconciliazione, il quale è dato dal risultato originale di una nuova classe di stati coerenti. In
questo documento ci si pone dunque il problema di come una geometria che appare continua
possa essere recuperata dagli stati fondamentali della LQG, e si presenta quindi una nuova
famiglia di stati coerenti per la teoria a grafo fissato.

Il punto di partenza di questa tesi è un’introduzione generale alla teoria, con particolare
attenzione agli aspetti legati ai quanti di spazio. La LQG segue un approccio non perturbativo,
dando valore alle lezioni chiave della GR: indipendenza da un background e covarianza generale.
La struttura cinematica della LQG non è altro che una quantizzazione canonica della formu-
lazione di Ashtekar della GR, nello spirito di Wheeler - de Witt e seguendo le idee di Dirac sulla
quantizzazione di teorie vincolate. Il risultato è uno spazio di Hilbert in cui vivono le cosid-
dette reti di spin, le quali hanno un’affascinante interpretazione in termini di una geometria
spaziale quantizzata e dunque discreta. Questa descrizione viene recuperata anche a partire da
un processo di quantizzazione formale di idee puramente di tipo matematico e geometrico.

Gli stati coerenti giocano un ruolo essenziale nell’analisi semiclassica della teoria. La
famiglia di stati coerenti usata in letteratura è data dai cosiddetti stati coerenti del nucleo
del calore (heat-kernel). La ricerca degli ultimi anni ha messo in evidenza una parametriz-
zazione alternativa dello spazio delle fasi della LQG, in termini di variabili che descrivono uno
spazio metrico discreto, come generalizzazione delle geometrie di Regge. Questa alternativa è
data dalle cosiddette Twisted Geometries, e suggerisce la definizione di nuovi stati coerenti con
diverse proprietà di piccatezza. Il lavoro svolto tramite la tesi ha permesso di costruire questa
nuova classe di stati coerenti, studiare le loro proprietà, e confrontarli con quelli del heat-kernel.

Il risultato è un set di stati coerenti che permettono di interpretare la natura discreta dello
spazio in termini di poliedri semiclassici. Questi stati godono delle opportune proprietà di
piccatezza e overcompletezza, e fungono dunque da ponte tra una teoria classica discretizzata,
come approssimazione della continua, e la teoria quantistica. A livello applicativo, questi stati
possono dimostrarsi molto utili per corroborare o eventualmente alterare i risultati ottenuti
nelle letteratura adoperando gli stati coerenti del nucleo del calore, unici utilizzati fino ad ora.
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Introduction

Loop Quantum Gravity depicts the very concept of physical space itself as a quantum ob-
ject. It predicts in fact a discrete and quantized notion of geometry which must be reconciled in
some manner to the classical idea of continuous space. The aim of this thesis is to provide a tool
in order to bridge the quantum space picture emerging from LQG to the classical continuous
geometry interpretation, as brought forth from General Relativity. This tool is provided by an
appropriate use of coherent states, which in this scenario are quantum states of discrete space,
that are peaked on a discrete geometry. Therefore the question we address here is understanding
how a seemingly smooth classical geometry can be recovered from the fundamental quantum
states of LQG. This is a very important theme for the semiclassical analysis of the theory, and as
the path that leads there is rather long, it is now described step by step since the very beginning.

It is clear since a long time that a theory of quantum gravity is needed, and yet missing.
Profound modifications of existing theoretical structures will be mandatory in order to find an
answer to the problem. The success of the known frameworks such as Quantum Field Theory
(QFT) or General Relativity (GR) has an astounding degree of accuracy, but each of them
describes its respective intended domain of physical phenomena. Of course, a question arises
quite naturally concerning whether an overlapping domain of quantum gravitational phenomena
exists and if so, how we could describe and observe it. It is argued that an interface of both
frameworks is needed to provide a satisfying description of the microstructure of spacetime
together with matter at the Planck scale. This is the natural scale where effects of quantum
gravity are expected to occur and it is relevant for instance to understand the fundamental
singularities of GR such as the nature of black holes or the Big Bang. Furthermore, a careful
analysis of the underlying elementary and universal assumptions of these frameworks leads to
the observation that they are mutually incompatible from a conceptual point of view. The
need to overcome this confusion in fundamental physics has spurred research on quantum
gravity for more than 80 years and has led to the development of a plethora of approaches
each with their individual strengths and weaknesses. Nevertheless a complete and consistent
solution has remained yet elusive, as all candidates suffer from formal and conceptual problems.
One of the main paths that is worth to mention here is the so called covariant, or functional
integral, approach. This is a standard quantum field theory and as such, it involves the need
of a fixed geometrical background where small fluctuations are treated in a perturbative way.
While there is a number of very interesting results obtained by this approach, there also is
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2 Introduction

a fundamental difficulty with it. As for any quantum field theory, divergences appear when
considering the effects of arbitrarily small (ultraviolet) fields fluctuations. These infinities are
usually dealt with the procedure of renormalization which, while succeeding for gauge theories,
fails for gravity. This can be expected already from dimensional arguments, and the rigorous
proof that perturbative quantization of GR fails because of non-renormalizable UV divergences,
was obtained in the late eighties [19]. This means that this effective theory can be used for
low-energy calculations but it would be inconsistent if taken seriously at all energy scales. A
setting where the quantized gravitational field is represented as a graviton field propagating
over a flat background spacetime seems rather questionable in light of the fact that spacetime
is dynamical in general relativity, being the gravitational field nothing but the geometry of
spacetime itself. This represents a valid reason to expect that a successful theory of quantum
gravity should be formulated as a background independent quantum field theory. That is,
the theory should be expressed in a way in which no reference is made to any fixed, non-
dynamical background spacetime. Nevertheless there is a consistent representative insisting on
the perturbative approach which is String Theory: this path attempts to provide a description
which unifies all fundamental interactions through more fundamental objects living on a higher-
dimensional target space. Essentially, the idea is to increase the amount of symmetries as
compared to GR and QFT with the aim to regain perturbative renormalizability. This is
strongly inspired by the replacement of the perturbatively non-renormalizable Fermi model for
the weak interaction, by the renormalizable electroweak theory. We will not deal nor mention
the jungle of technicalities that accompanies the partial successes or the difficulties of this
path. This thesis focuses on non-perturbative approaches, that value the role of background
independence and general covariance as unveiled by GR, and keep them as guiding principles
for the construction of a quantum theory. In this perspective, the spacetime continuum is
abandoned and is instead replaced by degrees of freedom of discrete and combinatorial nature.
As a matter of fact the key lessons of general relativity are the following. The world is relational:
only events independent from coordinates are meaningful and physics must be described by
generally covariant theories. The geometry of spacetime, namely the gravitational field, is
fully dynamical: gravity defines the geometry on top of which its own degrees of freedom and
those of matter and other fields propagate. GR is not a theory of fields living on a (possibly
curved) background geometry, it is a theory of fields moving on top of each other, namely it
is background independent. This, together with the assumptions of quantum mechanics, is the
starting point of the canonical approach to the problem, known as Loop Quantum Gravity
(LQG).

As briefly reviewed in chapter 1, the kinematical framework of LQG is essentially the out-
come of a canonical quantization of the Ashtekar formulation of GR, in the spirit of Wheeler - de
Witt, following the ideas laid out by Dirac on the quantization of generally covariant theories.
Thus, the only basic inputs which go into the construction of the theory are quantum mechanics
and general relativity, including in particular the idea that background independence is of fun-
damental importance. Loop quantum gravity does not require the introduction of any radically
new physical assumptions – such as additional spacetime dimensions which would have to be
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compactified in an ad hoc manner, or the existence of supersymmetric particles which continue
to evade the best efforts of the experimentalists to detect them – for the internal consistency of
the theory. At the kinematical level, the structure of loop quantum gravity is well understood.
The kinematical Hilbert space of the theory is spanned by the so-called spin network states,
which have a compelling physical interpretation as states describing discrete, quantized spatial
geometries. Thanks to this, loop quantum gravity is able to provide a concrete realization of
the idea of the quantized gravitational field as a dynamical object, whose excitations are the
elementary quanta out of which spacetime itself is built.

Chapter 2 contains the precise meaning of the notion of quantum space, emerging both from
a pure mathematical or geometrical point of view, and from the theory of LQG. Remarkably
enough, the two paths lead to the same result as one might expect from the physical interpre-
tation of GR. The quantum geometry appearing in LQG naturally cuts UV divergences due to
discrete spectra of geometric operators and background independence. The Hamiltonian (con-
straint) of the theory, including standard model matter, is formally a finite and well defined
operator without the need of renormalization, even though its spectrum and the dynamics it
gives are not known. Loop quantum gravity is thus a candidate for a rigorous definition of quan-
tum field theory, but much work remains to be done. The first thing is to improve the control
over the dynamics. The task of deriving any non-trivial solutions of the Hamiltonian constraint
in explicit form has turned out to be extremely challenging. The difficulties encountered in
working with the Hamiltonian constraint have motivated many researchers of loop quantum
gravity to look for alternative ways of formulating the dynamics of the theory. Perhaps the
most popular among these is the spin foam formalism, also often referred to as covariant loop
quantum gravity, which completely abandons the canonical formulation of the dynamics. It
introduces instead a particular implementation of the path integral for general relativity, which
enables one to define the dynamics by associating transition amplitudes to spin network states.
This is a very interesting development of the theory, naively describing the quantum structure
and dynamics of spacetime, although this thesis will not focus on these aspects. Another open
question in this approach is the recovery of classical spacetime, diffeomorphism invariance and
GR as an effective description for the dynamics of the geometry in an appropriate limit. This
thesis tries to go a step further in order to address the first problem. In other words, the
fundamental quantum geometry present in loop quantum gravity has to be coarse grained in
order to yield a smooth classical spacetime. To be precise, the notion of quantum geometry
has three main peculiar features: the quantization of spectra, the distributional nature, and
the non-commutativity. The first one is historically the reason of why a concept of quantum
geometry emerged in the first place. We shall see that geometric operators have a quantized
spectrum as opposed to their classical counterparts. This is in fact a standard situation in
quantum mechanics and to recover the classical results one usually needs to take some con-
tinuum limit which will involve some quantum number to go to infinity. With distributional
nature we mean that the states of quantum geometry only capture a finite number of compo-
nents of the original field, that is their values along paths and surfaces. As we will describe
in detail, this happens because the states are defined on a graph and the full theory will be
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recovered only when a sum over all possible graph is considered. In other words, one would
need a graph to be infinitely refined. This is reminiscent of what happens in lattice theories,
where the continuous field gets discretized on a fixed lattice and only a finite number of degrees
of freedom are captured. The difference here however lies in the fact that the lattice is in fact
the quantum description of space itself, and the lattice spacing cannot really be sent to zero,
due to the discreteness of geometry mentioned above. Finally, the non commutativity describes
the fact that there are geometric operators which do not commute among themselves. This
is also standard in quantum mechanics, and this is where coherent states come into play. In
spite of these differences with the classical notion of geometry, a correct theory must admit
a semiclassical regime where a smooth geometry emerges. Coherent states might help in the
following sense: since they are a linear superposition of spin network states peaked on the
classical phase space, they can be the bridge to a smooth geometry. The Ashtekar formulation
describes GR in terms of variables called connection and triad, therefore a coherent state will
be peaked on a point in the phase space spanned by them, which in turn define an intrinsic
and extrinsic geometry. A family of coherent states with these properties has been introduced
bt Thiemann and collaborators. They do minimize some uncertainty relations but in order to
recover a smooth geometry everywhere, the coherent states will have to have support over an
infinite number of graphs. This last point turned out to be a formidable task, and for practi-
cal purposes one works with a fixed graph, with the idea that it could be enough to address
specific physical questions. The Hilbert space of a single graph represents a truncation of the
full theory, which may still be sufficient to capture the physics of appropriate regimes. This
is similar in spirit to introducing an upper bound ih the usual Fock space, and the associated
truncation of higher energy degrees of freedom. However the analogy cannot be pushed too far
since a concept of energy is not well defined in GR. Once the truncation has been made, the
coherent states will live in the Hilbert space of the fixed graph. The question is then about
how one can assign a classical geometrical interpretation to these states. They will be peaked
on points on the phase space consisting of classical quantities that capture a finite number
of degrees of freedom of a continuum geometry. In general, they cannot determine a smooth
3-geometry completely. The problem is analogue to interpolate a continuous function if one
is given a finite number of its values. Of course there exist in general several interpolation
procedures and each of these will have specific advantages. In the present case, the one which
will give an approximation of a continuous geometry is based on the idea of a discrete metric
space. A construction of discrete geometries determined by classical variables gave rise to the
so called Twisted Geometries, which are a generalization of Regge geometries.

As described in chapter 3, the idea is to reparametrize the classical phase space of GR
in terms of a suitable set of variables, and to define a class of discrete metric spaces defined
over a cellular decomposition dual to the graph. The building blocks of space itself will be
considered flat and equipped with an orthonormal reference frame. They will have a clear
geometrical interpretation as in fact they will turn out to describe polyhedra attached to each
other. There is therefore a map between the twisted geometries variables and the usual Ashtekar
GR variables, and the space of twisted geometries will turn out to be symplectomorphic, other
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that isomorphic, to the classical phase space of GR. From these quantities one can construct
now a metric, but this will be in general discontinuous, as it is interpreted as a bunch of
polyhedra glued together. The name ’twisted’ is in fact justified by two reasons: first they
have a nice mathematical connection with Twistors, and moreover they define a metric which
is locally flat but discontinuous, since the polyhedra will not have in general shape matching
faces, even though they will have the same area. It is very interesting to notice also that when
one imposes these shapes to match among themselves, one recovers a Regge model for discrete
gravity in three dimensions, generalized to generic polyhedra defined by edge lengths. With all
these information, one can now go back to the concept of coherent states (CS). As mentioned,
Thiemann’s states are properly labelled by a point in the discrete classical phase space of LQG
on a single graph and they also fulfil a number of important properties. Nevertheless there
are reasons to search for alternatives: the distributions to study are in fact horrible functions
of the holonomy and the flux, and furthermore the expectation values are well peaked on the
norm of the fluxes but they do not single out nicely their direction. Moreover Thiemann’s
states are heavily used in phenomenological applications and one might ask to what extent the
results obtained in the literature depend on the choice of coherent states. On the other hand,
the spin foam formalism suggests a different approach, where the phase space is described by
quantities referring to discrete geometries. That is why the twisted geometries are the key to
the construction of our new coherent states for LQG on a fixed graph. These will help to single
out the directions more clearly and are indeed useful for a discrete geometrical interpretation.

To be able to construct and study the new family, some preliminary work is necessary. In
chapter 4 some standard coherent states are revised and studied explicitly. These includes two
well known examples motivated by the twisted geometries - the sphere and the particle on the
circle - and also a new original class of coherent states for the harmonic oscillator, motivated
by analogy with other structures of the LQG case. These states were a turning point for the
final construction of the so called Twisted Geometries Coherent States. In fact this preliminary
work has allowed us to understand the proper framework and thus, starting from there and
combining the right ingredients, we have finally defined a new family of coherent states for
LQG on a fixed graph, based on the twisted geometries parametrization.

In chapter 5, their definition and properties are presented. In particular we prove that they
are an overcomplete basis on the correct space and we show their peakedness properties. We
compare them to the known coherent states and highlight the origin of the improved peakedness
in the direction. Then we discuss the gauge invariance. This is one of the main advantages of
the twisted geometry parametrization, namely the locality at the level of the nodes. In particu-
lar, the new states naturally incorporate the so called coherent intertwiners, which have proven
to be very useful in defining the dynamics of spin foam models and studying its semiclassical
limit; this was in fact another motivation to introduce this new set of states. Coherent inter-
twiners are indeed nothing but the states of semiclassical polyhedra. Now due to the truncation
mentioned above, coherent states on a fixed graph are not peaked on a smooth and continuous
classical geometry. The twisted geometries offer a way to see them as peaked on a discrete
geometry, to be viewed as an approximation of a smooth geometry on a cellular decomposition
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dual to the graph. The above results provide a compelling picture of these geometries in terms
of polyhedra, and thus of coherent states intriguingly describing the structure of space itself as
a collection of semiclassical fuzzy polyhedra.

We wish to point out that the new family of CS introduced here is in a sense weaker that
the traditional ones. It is true that they resolve the identity and that they are peaked on the
classical values, with relative uncertainties vanishing in the large spin limit. However, they
are not eigenstates of a destruction operator, at least not one that we were able to identify.
As a consequence, they do not define as they stand a holomorphic representation, nor it is
know if and which Heisenberg relation they saturate. We believe they have enough interesting
properties to make them useful in spite of these drawbacks, like their peakedness and vanishing
of relative uncertainties in the large scale limit. Moreover, since the Hamiltonian constraint
in the LQG dynamics is very hard to treat, recent works have been put forward concerning
the use of coherent states in simplified models. In these mini-superspace models and effective
dynamics theories, one usually needs to compute expectation values of the Hamiltonian. Up
until now, all these computations have been made with Thiemann’s CS, and since these result
can in fact also give rise to interesting physical interpretations, we believe that a new set of
coherent states is in a sense useful to check whether the same results would be confirmed or
changed.



Chapter 1

The path to Loop Quantum Gravity

This chapter introduces the basic concepts needed to describe the theory of Loop Quantum
Gravity [39]. Starting from General Relativity and its Hamiltonian formulation, a path is
described following the major steps taken in the last decades, in order to build the theory of loops
[15]. We will not review the covariant approach to quantum gravity which in short fails when
it comes to renormalization procedures, due to the inadequacy of perturbative quantization for
General Relativity. We will therefore follow the canonical approach and focus on the structuring
of the theory from the beginning.

1.1 Canonical formulation of General Relativity

In this section the Hamiltonian formulation of General Relativity (GR) is introduced. This
formalism is crucial to understand the symmetries of the classical theory and therefore, to build
the quantum theory which respects those classical symmetries. We will use the standard ADM
foliation of spacetime and we will see that the canonical analysis underlines the role played by
the diffeomorphism symmetry of the theory, i.e. the background independence of GR.

1.1.1 Review of metric GR

Before proceeding to the canonical analysis, let us briefly recall the metric formulation.
General Relativity asserts that spacetime is modelled as a four dimensional differentiable man-
ifoldM, equipped with a metric tensor gµν with a Lorentzian signature (−,+,+,+) and a rule
of parallel transport ∇ or equivalently, a spacetime connection. This rule of parallel transport
is taken to be the unique torsionless and metric - compatible connection, which is the so called
Levi - Civita connection. With these assumptions, the gravitational field is described by the
Einstein-Hilbert action1

SEH(gµν) =
1

16πG

∫
M
d4x
√
−g R (1.1)

where G is Newton’s constant and we have set c = 1 (see Appendix B for a comment on this).
The dynamical field is the four dimensional metric tensor itself and the Ricci scalar R is built

1We will set the cosmological constant Λ = 0 in the whole analysis, without loss of generality.

7
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contracting the Riemann tensor. It is in fact the only scalar leading to equation involving at
most second order derivatives of the metric. Using the Levi Civita connection, the definitions
are

R = gµνRµν(Γ(g)) Rσ
ρµνv

ρ = [∇µ,∇ν ] v
σ (1.2)

for any vector field v, where the connection enters the covariant derivative as ∇µv
ν = ∂µv

ν +

Γν
ρµ(g)v

ρ. The Riemann tensor describes the curvature of the manifold. It satisfies geometrical
identities which arise because of the invariance under coordinates transformations. Those are
called Bianchi identities and using the Levi Civita connection they are simply

Rαβµν +Rανβµ +Rαµνβ = 0 ∇λRαβµν +∇νRαβλµ +∇µRαβνλ = 0 (1.3)

As a matter of fact the Riemann tensor in terms of the Levi Civita connection is given by

Rσ
ρµν = ∂µΓ

σ
ρν − ∂νΓσ

ρµ + Γσ
λµΓ

λ
ρν − Γσ

λνΓ
λ
ρµ (1.4)

where the Levi Civita connection is completely determined by the first derivatives of the metric

Γσ
µν =

1

2
gσρ (∂µgρν + ∂νgρµ − ∂ρgµν) (1.5)

and as a result of the torsionless requirement, Γ is symmetric in the last two indices. Putting
some matter lagrangian LM in the game, the Einstein Hilbert action becomes

SEH =

∫
M
d4x
√
−g
(

1

16πG
R+ LM

)
(1.6)

and from there one gets the Einstein’s fields equation which describe the dynamic of the grav-
itational field coupled to matter

Gµν ≡ Rµν −
1

2
gµνR = 8πGTµν (1.7)

where Tµν is the source of gravity, the energy momentum tensor which is defined as

Tµν = − 2√
−g

δLM
δgµν

(1.8)

The contracted second Bianchi identity leads to the ”conservation” law of the Einstein tensor
∇µG

µν = 0. However the Bianchi identities are purely geometrical constraints and do not
refer to the dynamics. This means that one never uses the field equation to obtain them.
The symmetry behind them is the invariance under coordinate transformation which is a non
dynamical symmetry. That is why the covariant ”conservation” of the Einstein tensor is not a
true conservation law.

The field equation imply another conservation, namely the one of the energy momentum
tensor ∇µT

µν = 0 which on the contrary is obtained only when the dynamics is taken into
account. So there is a dynamical symmetry behind it which is nothing else that the invariance
of the theory under diffeomorphisms. This fact is usually called background independence.



1.1. Canonical formulation of General Relativity 9

The metric field which dictates the geometry and the causality of the spacetime has now
the very same status as any field in physics. Within this new framework, the classical fields
do not propagate in space through time, i.e. in a given spacetime, but they simply interact
with another dynamical field, namely the metric tensor. Due to the gauge invariance of the
theory under diffeomorphisms, one cannot speak about the value of a field at the point A in
spacetime since this field can always be pushed forward to another point B and relabelled by a
diffeomorphism which does not modify the physical content of the theory (see the hole argument
originally proposed by Einstein). From this observation, one is led to a very unusual picture
of reality, where spacetime as a fixed arena on top of which the other field live disappears, to
let only the dynamical gravitational field interact with the other fundamental fields. There
is no more a fixed background on which one can do physics. The physical reality is truly
background independent and localization in presence of gravity is purely relational. For more
on this ”disappearance” of spacetime see [36]. This status of the diffeomorphisms in General
Relativity becomes crystal clear in the Hamiltonian formulation of the theory, which was worked
out in the sixties by Arnowitt, Deser and Misner (ADM) [4]. The canonical analysis of General
Relativity unravels the true dynamical variables of the theory and the gauge symmetry under
which the theory is invariant.

1.1.2 The ADM formalism

In order to put the action (1.1) into canonical form we need to identify the canonically
conjugated variables, and then perform the Legendre transform. The idea is to make a 3 + 1

decomposition, selecting a foliation of the four dimensional spacetime into a family of space-like
Cauchy hypersurfaces Σ. Therefore we assume the topology M ' R × Σ, where Σ is a three
dimensional manifold with space-like signature. This assumption does not pose any restriction
if M is globally hyperbolic. As a matter of fact, at each point of any space-like Σ there is a
unit vector n ∈ TpM which is time-like and normal to Σ. So the vector n connects two events
in M for which the time interval is greater than the space interval, i.e. gµνnµnν = −1. It is
known that if spacetime is globally hyperbolic than it must necessarily be diffeomorphic to the
topology given by the decomposition above.

So M foliates into a one-parameter family of hypersurfaces Σt = Xt(Σ). Thanks to this,
one can identify the coordinate t ∈ R as a time parameter. However this time should not
be thought as an absolute quantity, because of the diffeomorphism invariance of the theory.
We can always work with a chosen foliation but the invariance will guarantee that physical
quantities are independent of the choice. Given some local ADM coordinate adapted to the
foliation, the time evolution vector field (or time flow) between two Cauchy hypersurfaces Σt

and Σt+dt is defined by

τµ ≡ ∂xµ

∂t
(1.9)

This should not be confused with the unit normal vector nµ defined above, because they are
both time-like, gµντµτν = g00 and gµνn

µnν = −1, but not parallel in general. The time flow
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can be decomposed in its normal and tangential parts with respect to Σ

τµ(x) = N(x)nµ +Nµ(x) (1.10)

and if we parametrize the normal as nµ = (1/N,−Na/N), we have Nµ = (0, Na) where latin
indices are spatial, i.e. a = 1, 2, 3. N is called lapse function and Na shift vector. Their
geometrical meaning is the following: the lapse function gives the proper distance Ndt in the
normal direction between the two hypersurfaces Σt and Σt+dt, whereas the shift vector gives
the tangential deformation Nadt that is applied to the points of Σt if the embedding is changed
from Σt to Σt+dt, with constant x.

Figure 1.1: Spacetime foliation

It is easy to see that

gµντ
µτν = g00 = −N2 + gabN

aN b g0a = gabN
b ≡ Na (1.11)

so that the ADM metric tensor reads

ds2 = gµνdx
µdxν = (−N2 +NaN

a)dt2 + 2Nadx
adt+ gabdx

adxb (1.12)

where a are spatial indices and are contracted with the three dimesnional metric gab. Notice
that this is not in general the intrinsic metric on Σt which is instead given by

qµν = gµν + nµnν (1.13)

and is in fact the first fundamental form of Σ. It is the spatial metric in the sense that qµνnµ = 0

thus tensors on Σ can equivalently be contracted with g or q. So now we can define tensorial
calculus on the spatial slice starting from the one onM by projecting with qµν . One can in fact
define the extrinsic curvature

Kµν ≡ qρµqσν∇ρnσ (1.14)

which is nothing but the second fundamental form of Σ. This is also spatial since Kµνn
µ = 0,

it is symmetric and can be written as a Lie derivative of the intrinsic metric

Kµν =
1

2
Lnqµν (1.15)
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The extrinsic curvature of Σ is needed to express the usual four dimensional Ricci scalar R in
terms of the three dimensional one R on the spatial submanifold plus additional terms. So in
order to decompose the Riemann tensor it is convenient to construct a differential Dµ which is
compatible with the metric qµν2

Dµf ≡ qνµ∇ν f̃ Dµvν ≡ qρµqσν∇ρṽσ (1.16)

so that it is the common covariant derivative which is spatially projected after its application.
Here the function f and the vector v are defined on the spatial slice whereas f̃ and ṽ are
arbitrarily smooth continuation of the formers in a neighbourhood of Σ in M.

With the above definitions, one can express the Riemann curvature tensor of Σt associated
with Dµ in terms of the usual four dimensional Riemann tensor of M associated with ∇µ

Rµ
νρσ = qµαq

β
ν q

γ
ρq

δ
σ R

α
βγδ +KνσK

µ
ρ −KνρK

µ
σ (1.17)

Due to the simetries of the Riemann tensor one can finally get the so called Gauss-Codazzi
equation between the Ricci scalars

R = R+KµνK
µν − (Kµ

µ )
2 − 2∇µ(n

ν∇νn
µ − nµ∇νn

ν) (1.18)

where the last term is a total derivative and it will not affect the action. Plugging this into
(1.1) one can finally write the so called ADM action

SADM =
1

16πG

∫
R
dt

∫
Σ
d3x
√
qN
[
R+KabK

ab − (Ka
a )

2
]

(1.19)

where q = det(q) and Ka
a is the trace of the extrinsic curvature. Notice that the time derivatives

of the three dimensional metric only appears in terms involving the extrinsic curvature. The key
point to notice is that the action (1.19) depends on N and Na but not their time derivatives.
This means that when performing the Legendre transform to go over a Hamiltonian formulation,
the momentum maps will be non-invertible, being the Lagrange density singular3.

The canonical conjugated momenta are

π ≡ δL
δṄ

= 0 πa ≡
δL
δṄa

= 0 πab =
δL
δq̇ab

=

√
q

16πG
(Kab − qabKc

c ) (1.20)

so the true dynamical variables are the spatial components of the metric only, and the lapse
and the shift must be considered as Lagrange multipliers. This is the case of a constrained
Hamiltonian system. Following Dirac algorithm for such systems, we get the primary constraints

C ≡ π = 0 Ca ≡ πa = 0 (1.21)

called scalar and vector constrain respectively. So now one has to perform the Legendre trans-
form for the remaining variables and neglecting boundary terms this yields

S =
1

16πG

∫ ∫
d3x

[
πabq̇ab −NaHa −NH

]
(1.22)

2The differential compatible with gµν is denoted ∇µ.
3This singularity is in fact generated by the diffeomorphism invariance of the theory.
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where
Ha = −2qacDbπ

bc (1.23)

is the (spatial) diffeomorphism constraint and

H =
1
√
q

[
qacqbd −

1

2
qabqcd

]
πabπcd −R√q (1.24)

is the Hamiltonian constraint. Note that the above are nothing but the Hamilton-Jacobi equa-
tions. Requiring consistency of the primary constraints with the equation of motion, one has
to vary the action with respect to the Lagrange multipliers to get

Ha(q, π) = 0 H(q, π) = 0 (1.25)

and one can check that there are no further constraints. Physical configurations must satisfy
(1.25) which encode the four Einstein equation G0µ = 0 whereas the others Gab = 0 are encoded
in the equations of motion of the spatial metric. From the action (1.22) one can easily see that
the ADM Hamiltonian for General Relativity is

HGR =
1

16πG

∫
d3x [NaHa +NH] (1.26)

and it clearly vanishes on shell! It is in fact proportional to the Lagrange multipliers and thus
there is no true dynamics and no physical evolution in t. General Relativity is an example of
a constrained Hamiltonian system, and this intriguing absence of a physical Hamiltonian is a
consequence of the above mentioned diffeomorphism invariance. This means that t is a mere
parameter devoid of absolute physical meaning. This is also known as the problem of time in
GR [36].

The symplectic structure is given by definition by the canonical Poisson brackets among
the coordinates of the Phase Space of General Relativity

{πab(t, x), qcd(t, x′)} = 16πGδa(c δ
b
d)δ

3(x− x′) (1.27)

the other brackets being null. From this relation one can evaluate the brackets among the
constraints to find the algebra (we know choose units in which 16πG = 1)

{Ha(x),Hb(x
′)} = Ha(x

′)∂bδ
3(x− x′)−Hb(x)∂

′
aδ

3(x− x′)
{Ha(x),H(x′)} = H(x)∂aδ

3(x− x′)
{H(x),H(x′)} = Ha(x′)∂aδ

3(x− x′)−Ha(x)∂′aδ
3(x− x′)

(1.28)

The right hand sides of the above brackets vanish on the constraint surface (1.25) as expected
from first class constraints. This means that the Poisson flow generated by the constraints
preserve the constraint surface (1.25). As it is known, first class constraint generate gauge
transformation on the surface. To see the explicit gauge transformation in the present case,
one has to define the smearing of the constraints

H( ~N) =

∫
Σ
d3xHa(x)Na(x) H(N) =

∫
Σ
d3xH(x)N(x) (1.29)
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and compute
{H( ~N), qab} = L ~Nqab {H( ~N), πab} = L ~Nπ

ab (1.30)

These show that the vector constraint is the generator of space-diffeomorphism on Σ. And then

{H(N), qab} = L~nNqab {H(N), πab} = L~nNπab +
1

2
qabNH − 2N

√
q qc[a q b]dRcd (1.31)

The first bracket is the action of the time or Hamiltonian diffeomorphism on qab. The second
one is subtle: it gives the same on πab thanks to the first term but has two additional pieces.
These extra terms vanish on the constraint surface (H = 0) and for physical solution (Rµν = 0).
Therefore we can say that the constraints are the generators of spacetime diffeomorphism group
on physical configurations. Therefore this invariance is a dynamical symmetry, i.e. it constraints
the equations of motion.

In general, not referring only to physical trajectories of the phase space, equations (1.28)
define the algebra of hypersurfaces deformation. This in particular is not a Lie algebra in fact
the smeared Poisson brackets are

{H(N1),H(N2)} = H(qab(N1∂bN2 −N2∂bN1)) (1.32)

The ”structure constants” outside the constraint surface contain the field qab itself, so are not
constant at all. What this all means is that, given a foliation, we have the symmetry of diffeo-
morphism as discussed above, which acts by changing the foliation. Moreover we have another
symmetry, the last one pointed out, which act deforming the foliation. These two symmetries
coincide on physical configurations. To summarize, when we consider on shell Poisson brackets,
we discover that the constraints Ha and H are the generators of infinitesimal diffeomorphisms
along spatial direction in Σ and along the normal vector n, respectively.

Figure 1.2: Counting dimensions and degrees of freedom
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One last comment about degrees of freedom is now in order. In general, the number of de-
grees of freedom is defined to be half the dimension of the phase space. In constrained system,
such as GR or gauge theories, one has to be careful. Let us distinguish between the physical
phase space and the kinematical phase space. The latter one is defined by the symplectic struc-
ture of the theory so it has points (qab, π

ab) with Poisson brackets (1.27). Excluding the ∞3

degeneracy given by space dependence, it has dimension 6 + 6 = 12. On this space we have
constraints that define a hypersurface, i.e. the space of (qab, πab) such that (1.25) holds. This
is the constraint surface and it has dimension 12− 4 = 8. Being a first class constraint, we are
guaranteed that gauge transformations generated by the constraints preserve the hypersurface.
The trajectories obtained by gauge transformations are called orbits. Points along a orbit cor-
respond to the same physical configuration therefore one must divide by the gauge orbits in
order to obtain physical degrees of freedom. This is what happens in gauge theories. The orbits
span a 4 dimensional manifold at each spatial point so we are left with 8− 4 = 4 dimensions.
This is the physical phase space. It has dimension 4 per space point, so that the theory has 2
degrees of freedom which have physical meaning. This result is consistent with the linearised
analysis done in the covariant perturbative approach, where the degrees of freedom correspond
to the two helicities of a massless spin 2 particle. What are these degrees of freedom in the
ADM formulation of GR?

To address that question one would have to control the general solution of the theory. This
task has never been solved due to the highly non-linearity of the equations, in spite of many
attempts.

Having a canonical Hamiltonian formulation of GR, one could build a quantum theory from
the classical phase space. But following the Dirac quantization procedure, one encounters the
Hamiltonian constraint (which is a gauge transformation and generates the whole GR dynamics)
that is highly non-trivial. The fact that the constraints contain the whole dynamics is heavily
exploited by the quantization program proposed by Dirac, which is based on the definition
of dynamical physical states as the ones annihilated by the quantum constraints. One has
first to build a representation of the quantum algebra generated by the canonical variable
promoted to operators

(
π̂ab, q̂ab

)
in an auxiliary ”kinematical” Hilbert space Hkin, where as

usual {·, ·} → (i~)−1 [· , ·]. One has also to promote the constraints to the operators Ĥµ ∈ Hkin.
Now one imposes the first class constraints on the quantum states Ĥµψ = 0 ∀ψ ∈ Hphys which
extracts the physical quantum states from the whole set of states, that live now in Hphys. These
states respect the symmetries of the theory. This is all hypothetical: one would need to know
explicitly the scalar product onHphys to complete these steps and have a physical interpretation
of the quantum observables. If we apply the above to the ADM formulation of GR, we look for
a functional space carrying a representation of the quantum algebra[
q̂ab(x), π̂

cd(x′)
]
= i~δcd(ab)δ

3(x, x′)
[
q̂ab(x), q̂

cd(x′)
]
= 0

[
π̂ab(x), π̂

cd(x′)
]
= 0 (1.33)

If we follow by analogies the known cases, for instance the scalar field theory, and consider a
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Schrödinger representation

q̂ab(x) = qab(x) π̂ab(x) = −i~ δ

δqab(x)
(1.34)

acting on wave functionals ψ[qab(x)] of the three-metric, we encounter some difficulties. For
instance one would need the scalar product for the Hilbert space which formally reads∫

dg ψ[g]ψ′[g] ≡ 〈ψ|ψ′〉 (1.35)

but there is no Lebesgue measure on the space of metrics modulo diffeomorphisms that can
be used to define dg. Without it one cannot even check whether q̂ab and π̂ab are hermitian,
nor that q̂ab has a positive definite spectrum as needed to be a space-like metric. But let’s
ignore these issues and try to proceed formally assuming that everything is well defined. One
therefore comes to the constraints (1.25) transformed into operators. Their action characterizes
the space of solutions

Hkin
Ĥa=0−−−−→ HDiff

Ĥ=0−−−→ Hphys (1.36)

The first constraint behaves very nicely. In the Schrödinger representation, the smeared version
gives, after integration by parts

Ĥ(Na)ψ[qab] = 2i~
∫
Σ
d3xDbNa

δψ

δqab
= 0 (1.37)

and that implies
ψ[qab + 2D(aN b)] ≡ ψ[qab] (1.38)

which means that the solution of the vector constraint are the functionals which are diffeomor-
phism invariant. This is exactly the correct action one expects at the quantum level. However,
the space HDiff is again ill defined since it inherits from Hkin the lack of a measure theory.
Proceeding we have the Hamiltonian constraints which yields

Ĥψ[qab] =

[
−~2

2
Gabcd :

1√
det q̂

δ2

δqab(x)δqcd(x)
: −
√

det q̂R(q̂)

]
ψ[qab] (1.39)

where Gabcd = qacqbd+ qadqbc− qabqcd is called supermetric, and the colon : means that the
ordering of the operators needs a prescription. This is the so called Wheeler-DeWitt equation
and it is more subtle than anything above. It requires the definition of products of operators
at the same point, notoriously very ill defined objects. Even if one managed to give a suitable
ordering prescription and regularize the differential operator, the problem with the equation
is that we do not have any characterization of the solutions, not even formally as for the
diffeomorphism constraint above. And of course, one again would have no clue on the knowledge
of the physical Hilbert space and scalar product. In conclusion, given the highly non triviality
of the scalar constraint, no one has never succeeded to build a quantum theory from the ADM
phase space. It is therefore natural to look for another formulation of GR in order to have
a proper classical theory from which we can launch the quantization program. One way to
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obtain such formulation is to provide the mathematical tools to reformulate General Relativity
in terms of connection (and vielbein or tetrads) just as in Yang Mills theories. This is the key
to Loop Quantum Gravity: instead of changing the gravitational theory or the quantization
paradigm, we just use different variables to describe gravity.

1.2 Tetrads formulation

The standard GR formulation is described in the metric notation. This formalism, which is
the one introduced by Einstein himself, is however incomplete. The whole theory can in fact be
formulated in terms of the tetrad notation, which gives a clearer and more accurate understand-
ing of the physical gravitational interaction. The latter is in fact a a 1-form eI(x) = eIµ(x)dx

µ

with values in the Minkowski space. Geometrically speaking, this idea trades the manifold M
with a new structure which is a G-principal bundle (just like for Yang-Mills theories) where G
is the Lorentz group SO(3, 1).

A tetrad (or vielbein) is a quadruple of 1-forms eIµ(x) which is related to the metric as

gµν(x) = eIµ(x)e
J
ν (x)ηIJ (1.40)

where the indices I, J = 0, 1, 2, 3 are raised and lowered by the Minkowski metric ηIJ .
By definition, the tetrad provides a local isomorphism between a general reference frame

and an inertial one, characterized by the flat metric ηIJ . A local inertial frame is defined up to
Lorentz transformations, and in fact one can write

eIµ(x)→ ẽIµ(x) = ΛI
J(x)e

J
µ (1.41)

Therefore the internal index I carries a representation of the Lorentz group. The isomorphism
mentioned above is between the tangent bundle T (M) and a Lorentz principal bundle. Ge-
ometrically speaking, on this bundle there is a connection ωIJ

µ that is a 1-form with values
in the Lorentz algebra. This is actually also a quite natural object from the gauge theories
perspective: one asks there for a covariant derivative under the local Lorentz transformation
seen above. As usual, the construction of this covariant derivative requires the introduction of
a gauge field which is the connection ω so that the covariant differentiation of the fibre is

Dµv
I(x) = ∂µv

I(x) + ωI
µJ(x)v

J(x) (1.42)

where vI = vIµdx
µ ≡ eIµv

µ. The derivative (1.42) is the analogue of the covariant derivative
∇µ = ∂µ + Γµ for vectors in T (M). It is immediate to see that ω is antisymmetric, imposing
the invariance of the Minkowski metric4. One can also define the derivative for objects with
both indices, such as a tetrad

Dµe
I
ν = ∂µe

I
ν + ωI

µJe
J
ν − Γρ

νµe
I
ρ (1.43)

4Namely DµηIJ = 0 which implies ωIJ = −ωJI since ∇µηIJ = 0.
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The Levi-Civita connection (1.5) is metric-compatible, i.e. ∇µgνρ = 0, and similarly one
requires the connection ωµ to be tetrad-compatible, i.e. Dµe

I
ν = 0. We call such a connec-

tion spin connection. If we split indices into their symmetric and antisymmetric parts, the
compatibility implies

∂(µ e
I
ν) + ωI

(µJ e
J
ν) = Γρ

(µν)e
I
ρ ∂[µ e

I
ν] + ωI

[µJ e
J
ν] = Γρ

[µν]e
I
ρ ≡ 0 (1.44)

Therefore we can obtain a relation between the spin and Levi-Civita connections

ωI
µJ = eIν∇µe

ν
J (1.45)

and
DeI = deI + ωI

J ∧ eJ = (∂µe
I
ν + ωI

µJe
J
ν ) dx

µ ∧ dxν = 0 (1.46)

where d is the exterior derivative and D the covariant exterior derivative. As a matter of fact
the above is the definition of the torsion 2-form

T I = DeI (1.47)

and a tetrad field determines uniquely a torsion-free spin connection imposing T I = 0. The
explicit solution of this equation is in fact

ω[e]IµJ = eνJ(∂µe
I
ν − Γρ

µνe
I
ρ) (1.48)

in accordance with (1.45).
Given a connection, one can define its curvature as

RIJ = dωIJ + ωI
K ∧ ωKJ (1.49)

whose components are

RIJ
µν = ∂µω

IJ
ν − ∂νωIJ

µ + ωI
µKω

KJ
ν − ωJ

µKω
KI
ν (1.50)

Now, using (1.45) in the definition of the curvature, one can explicitly compute

RIJ
µν(ω(e)) = eIρeJσRµνρσ(e) (1.51)

where Rµνρσ(e) is the familiar Riemann tensor built out of the tetrad (from which one can
define the metric tensor). This relations show that GR is a gauge theory whose local gauge
group is the Lorentz group and the Riemann tensor is nothing but the field strength (which
is just another name for the curvature form, just as in the electromagnetic case where it is
called Fµν) of the spin connection. The definition of the Torsion and Curvature forms are in
fact simply the first and second Cartan structure equations and in general the first and second
Bianchi identities take the form

DT I = RIJ ∧ eJ DRIJ = 0 (1.52)
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These definition are the general expression of the identities5 (1.3) and the second one is valid
more loosely for any connection in a principal bundle. It does not restrict the class of connec-
tions but implies that taking successive derivative of the curvature RIJ does not generate new
independent tensors.

Now the goal is to rewrite the Einstein Hilbert action (1.1) in terms of the tetrad, and
setting 16πG = 1 it is easy to see that

SEH(gµν(e)) =

∫
d4x
√
−g gµνRµν =

∫
d4x e eµI e

νIRµρνσe
ρ
Je

σJ =

∫
d4x e eµI e

ρ
JR

IJ
µρ(ω(e))

=
1

4

∫
d4x εIJKLε

µραβ eKα e
L
βR

IJ
µρ(ω(e)) =

1

2

∫
εIJKL e

I ∧ eJ ∧RKLω(e)

(1.53)

where we used the property e eµI eνJ = εIJKLε
µνρσeKρ e

L
σ and the fact that g = det g = −(det e)2 =

−e2. This formulation not only has the invariance under diffeomorphisms, it also possesses an
additional gauge symmetry under local Lorentz transformations. The key point now is to view
the connection as an independent variable, and consider therefore the action

S(eIµ, ω
IJ
µ ) =

1

2
εIJKL

∫
eI ∧ eJ ∧RKL(ω) (1.54)

This is sometimes called Einstein-Palatini action. Remarkably enough, even if it depend on
extra fields, this action gives the same equations of motion as the Einstein-Hilbert action. In
fact, the extra field equation coming from varying the action with respect to ω simply imposes
the form of the spin connection (i.e. tetrad compatible), and therefore GR is recovered (a
completely analogous thing happens with g and Γ). Explicitly, since δωRKL(ω) = DδωKL one
has

δωS =
1

2
εIJKL

∫
eI ∧ eJ ∧DδωKL = −1

2

∫
D
(
eI ∧ eJ

)
∧ δωKL (1.55)

and imposing the vanishing of the variation, one obtains the field equation

εIJKLe
I ∧DeJ = 0 (1.56)

If we define the inverse of the tetrad eµI (x) and we assume it exists, then the above implies

DeJ = 0 (1.57)

which as a solution implies the form (1.45) of ω in terms of the Levi-Civita connection of the
metric associated to eIµ(x). Therefore we are left with the other variation which gives the
equation of motion

εIJKLe
I ∧RJK = 0 (1.58)

5To be precise, while the second one is straightforward, one has to impose DT I = dT I + ωI
J ∧ T J =

RI
J ∧ eJ ≡ 0 to make it become Rρσµν + Rρµνσ + Rρνσν = 0, which means assume a Levi-Civita connection,

as it is the case for GR.
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This is nothing but Einstein equation in vacuum, i.e. eIνGνα = 0 or equivalently Gµν = 06.

So, since it gives the same equations of motion, the Einstein-Palatini action (1.54) can be
used as the action for GR. Notice that only first derivatives appear, this is in fact called first
order formulation of GR. However, if one wants to build the most general action and insists on
keeping the connection as a independent variable, there exist another term that is compatible
with all the symmetries (in particular it’s a Lorentz scalar) and has mass dimension equal to
four, which is

δIJKLe
I ∧ eJ ∧RKL(ω) (1.59)

where δIJKL = δI[K δL]J . This term is invisible in the ordinary second order metric, since when
(1.45) holds

δIJKLe
I ∧ eJ ∧RKL(ω(e)) = εµνρσRµνρσ(e) = 0 (1.60)

by the first Bianchi identity. Therefore it is not inconsistent and we are allowed to add it to
the integrand in the action. Calling the coupling constant 1/γ one obtains the so called Holst
action [21]

SH(e, ω) =

(
1

2
εIJKL +

1

γ
δIJKL

)∫
eI ∧ eJ ∧RKL (1.61)

Once again, it is remarkable that this action leads to the same field equations of general
relativity. The first piece is in fact as above and gives

ωIJ
µ = eIν∇µe

Jν Gµν(e) = 0 (1.62)

The above result is independent of the value of γ which is irrelevant in classical vacuum GR
(but it’s important if one has torsion). It will play a crucial role in the quantum theory where
it is known as Immirzi parameter.

Computing the variations explicitly and imposing them to vanish, one gets the field equation
from the Holst action(

1

2
εIJKL +

1

γ
δIJKL

)
eI ∧DeJ = 0

(
1

2
εIJKL +

1

γ
δIJKL

)
eJ ∧RKL(ω) = 0 (1.63)

Easily enough, from equation (1.60) and thanks again to the form of the connection, the Holst
action gives the same identical equations of motion (1.62) of the Einstein-Palatini and therefore
of the Einstein-Hilbert actions. The added term is not of topological nature (i.e. it cannot be
written as a total derivative) but vanishes on histories on which ω is tetrad compatible.

To summarize, in the Palatini and Holst actions of GR, where the connection is treated
as independent of the tetrad field, the extra equation of motion implies that the torsion form
vanishes and selects the unique torsionless connection. Once this has been solved, the remain-
ing equation reduces to the usual vacuum Einstein equation. This is true also with the extra

6Given the curvature form (1.49) RIJ = RIJ
µνdx

µdxν it is enough to define the Ricci tensor RI
µ = RIJ

µνe
ν
J

and scalar R = RI
µe

µ
I in terms of the tetrad, so that equation (1.58) becomes RI

µ − 1
2
ReIµ = 0.
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Holst piece as shown above. However, contrary to what happens in the second order formalism,
General Relativity is obtained only on shell, i.e. when the torsionless equation has been solved
and assuming an invertible tetrad.

Now, performing the canonical analysis is quite difficult because it involves second class
constraints. Moreover one obtains a new first class constraint which encodes the new Lorentz
gauge invariance of the theory, the so called Gauss constraint. In order to simplify things and
in view of the quantum theory it is convenient to introduce now the Ashtekar’s formulation of
GR which is the starting point for the quantization program of Loop Quantum Gravity. We
will deal with that in the next section, but before doing so let us remark some physical aspects
about the tetrad formulation and the interpretation of gravity.

1.2.1 The physical gravitational field

According to [36], there are several reasons to call ”gravitational field” the tetrad field
rather that Einstein’s metric field. First of all the standard model cannot be written in terms
of g because fermions require the tetrad formalism; e represents the gravitational field in a
more conceptually clean way than g thanks to the Local Lorentz invariance, and lastly, from
a quantum gravity point of view, the tetrad field is simply more suitable than g. Les us talk
about these aspects.

As Einstein understood, the gravitational field is the entity or the field that at each point
of spacetime determines the preferred frames in which motion is inertial. If we pick arbitrary
coordinates xµ we can describe an event A in spacetime. In general, motion described by an
arbitrary set of coordinates is not inertial. But we can always find a local inertial frame around
A: let’s denote it zI and take the event at the origin. One can express the z coordinates as
functions of the x ones

zI = zI(x) (1.64)

In the arbitrary x coordinates, the non linearity of motion in A is gravity. Therefore gravity
is the information of change of coordinates that brings to inertial ones. But only the value of
the function (1.64) in a small neighbourhood of A are relevant, if one moves away the inertial
frame will change. So we Taylor expand (1.64) and keep the first non-vanishing term

zI(x) = eIµ(xA)x
µ (1.65)

where we have defined

eIµ(xA) ≡
∂zI(x)

∂xµ

∣∣∣∣
xA

(1.66)

The field eIµ(xA) contains all the information needed to know the local inertial frame. The
construction can be done at each point x, where now zI(x) are local coordinates at x

eIµ(x) ≡
∂zI(x)

∂xµ

∣∣∣∣
x

(1.67)
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This is the gravitational field in x. It is the Jacobian matrix of the change of coordinates from
a general frame x to an inertial local frame zI . The field is called tetrad or vielbien or even
’soldering form’ because solders a Minkowski vector bundle to the tangent bundle.

Of course, the index I transforms as a Lorentz index under a local Lorentz transformation,
since any other local coordinate system yJ = ΛJ

Iz
I defines a local inertial frame too. So the

filed eIµ(x) and
e′Jµ (x) = ΛJ

Ie
I
µ(x) (1.68)

represent the same physical gravitational field. Moreover, if instead of x we had used coordinates
y = y(x), we would have obtained

eIν(y) =
∂xµ(y)

∂yν
eIµ(x(y)) (1.69)

Now, the transformation properties of the tetrads (1.68) and (1.69) are exactly the ones under
which the GR action is invariant: local Lorentz transformations and diffeomorphism gauge
transformations. From a geometrical point of view, these are also precisely the transformation
laws of a 1-form field valued in a vector bundle P over the spacetime manifoldM, whose fibre
is Minkowski space, associated with a principal SO(3, 1) Lorentz bundle. The spin connection
introduced above is the connection associated to this bundle. This setting realizes the picture
of a patchwork of Minkowski spaces, carrying Lorentz frames. Better said, the gravitational
field is a map e : T (M)→ P that sends tangent vector to Lorentz vectors.

At each point x of the spacetime manifold M, the gravitational field e defines therefore a
map from the tangent space Tx(M) to the Minkowski space M

Tx(M) → M

vµ 7→ vI = eIµv
µ

(1.70)

It is in this sense that the metric tensor is not a fundamental object but it is composite

ds2 = ηIJe
IeJ = ηIJe

I
µe

J
ν dx

µdxν = gµνdx
µdxν (1.71)

The metric g is not affected by a local Lorentz transformation so the tetrad has more in-
dependent components. Indeed, while gµν has 10, the tetrad has 16 independent components.
The additional 6 are simply given by the possible Lorentz transformations. They underline the
infinite possible reference frames in a tangent space of a point that one can choose. Therefore,
for one given metric tensor, there are infinitely many tetrads which reproduce it.

Now we can go back to the task of finding new suitable variables for the quantum theory of
general relativity.
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1.3 Ashtekar’s variables

Proceeding as in section 1.1, one could now define the Hamiltonian formulation assuming
again a 3+1 splitting of spacetime (M' R×Σ) and ADM coordinates (t, x). So one introduces
again the lapse function and shift vector (N,Na) and the ADM decomposition of the metric
(1.12). It’s necessary now to split both the spacetime and internal indices into their components.
For the tetrad field, the decomposition is

e0µdx
µ = e00dx

0 + e0adx
a = Ndx0 + e0adx

a eiµdx
µ = ei0dx

0 + eiadx
a = N idx0 + eiadx

a (1.72)

where we can write N i = Naeia and N = e00 (the indices i and a run over 1, 2, 3). Moreover

δije
i
ae

j
b = qab (1.73)

with the triad eia being defined as the spacial part of the tetrad. The goal will be to use (a
suitable modified version of) the triad as one half of the new canonical variables. The so called
co-triad eia = qabe

bi is the inverse of eai both with respect to the spatial and internal indices

eiae
a
j = δij eiae

b
i = δba (1.74)

So the spatial metric (and its inverse) can be expressed in terms of the triad as qab = eiaebi.
To simplify the discussion it is customary to work in the so called ”time gauge” eIµnµ = δI0 in
which

e0µ = (N, 0), eI0 = (N,Naeia) = (N,N i) (1.75)

This gauge basically means that the pull-back of the tetrad components e0µ to the spacelike
hypersurface Σ is zero, i.e. e0a = 0. So it reduces the non vanishing terms of the 4 × 4 matrix
of the tetrad which transforms under SO(3, 1), to the 3× 3 matrix eia which transforms under
SU(2), plus the lapse e00 and the shift ei0. The time gauge selects therefore the compact sub-
group SU(2) from the initial non compact Lorentz group.

So as before, one has to identify the canonically conjugated variables and perform the Leg-
endre transform. But as mentioned, the first difference with section 1.1 is that the tetrad
formulation has introduced a new symmetry in the action: the invariance under local Lorentz
transformations. As a consequence a richer class of constraints it’s expected, containing also the
generators of the new local symmetry7. Another important new feature which complicates the
analysis is the use of the tetrad and connection as independent fields. Therefore the conjugate
variables are now function of both eIa and ωIJ

a (and their derivatives) instead of being functions
of the metric qab only. One gets a much more complicated structure that in particular has a
second class constraint algebra. Luckily enough, there is a particular choice of variables which

7In particular note that equation (1.73) is invariant under rotations (or SU(2) transformations). This means
that there are three rotational degrees of freedom contained in eia and not qab: we are using the nine eia to
describe the six independent components of qab. If one acts on the internal index of the triads in (1.73) with
rotations it will not change the metric, hence to formulate GR in terms of these redundant variables one has
to impose an additional constraint.
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simplifies the analysis and brings back the constraint algebra to being first class. These are the
famous Ashtekar’s variables which we now introduce.

The first definition of variable that we make is of the densitized triad

Ea
i ≡
√
qeai = e eai =

1

2
εijkε

abcejbe
k
c (1.76)

where e is the determinat of the triad, and from here it’s easy to see that the inverse spatial
metric is related to the densitized triad by

q qab = Ei
aE

j
bδij (1.77)

By taking the time derivative of this equation one finds

q̇ab =
1

q

(
Ėa

i E
bi + Ea

i Ė
bi − qabĖc

iE
ci
)

(1.78)

which can be used to show that the canonical term in the ADM action becomes∫
d4xπabq̇ab =

∫
d4xEa

i K̇
i
a (1.79)

where Ki
a is related to the extrinsic curvature by

Ki
a = Kabe

bi =
1√

detE
KabE

b
jδ

ij (1.80)

This suggests that the denzitized triad can indeed be considered a canonical momentum, with
the corresponding configuration variable being Ki

a. As a matter of fact one should show that
the Poisson brackets

{Ea
j (x),K

i
b(x

′)} = 8πGδab δ
i
jδ(x, x

′) {Ea
j (x), E

b
i (x

′)} = 0 = {Kj
a(x),K

i
b(x

′)} (1.81)

which define a symplectic structure for the new canonical pair of coordinates, are equivalent to
the ones of the ADM variables, namely equation (1.27). It turns out that they are satisfied if
the following holds

Ei
aK

bi = Eb
iK

ai (1.82)

which is equivalent to say that Kab is symmetric. The above constraint can also be written in
the following form

Gi ≡ εijkEajKk
a = 0 (1.83)

and it suggests that it is the generator of rotations associated with the invariance of the spatial
metric under internal SU(2) transformation of the triad, as mentioned above.

One could now express the Hamiltonian and Spatial diffeomorphism constraints in terms of
the new variable and a bit of algebra shows that

Ha =
1

8πG

(
Db(K

i
aE

b
i )−Da(K

i
bE

b
i )
)

(1.84)
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and

H = − 1

16πG

(
Ea

i E
b
j√

detE
(Ki

aK
j
b −K

j
aK

i
b) +
√
detER

)
(1.85)

We can therefore write the action as

S =
1

16πG

∫
R
dt

∫
Σ
d3x

(
2K̇j

aE
a
j −

[
ΛjGj +NaHa +NH

])
(1.86)

This will generate the same dynamics as the ADM action up to SU(2) gauge transformations.
Thus, as long as rotationally invariant observables are concerned (i.e. on the constraint hyper-
surface Gi = 0) this extended formulation is identical to the physical ADM system.

Although we now have an internale SU(2) gauge freedom, none of our variables transforms
as a connection. There is however a natural choice for this. We recall here the covariant
derivative (1.43) projected in the three dimensional hypersurfaces (i.e. with spatial indices)

Dae
i
b = ∂ae

i
b − Γc

abe
i
b + ωi

ake
k
b (1.87)

Now since the connection ω is antisymmetric (even before being called spin connection, i.e.
before requiring the compatibility Dae

i
b = 0), we see that we can rewrite it as

ωij
µ = εijkω

k
µ ⇔ ωk

µ =
1

2
εkijω

ij
µ ≡ −Γk

µ (1.88)

The last definition is due to some notations in which the derivative (1.87) is written

Dae
i
b = ∂ae

i
b − Γc

abe
i
b + εijkΓ

j
ae

k
b (1.89)

where, if Γj
a = −ωj

a, the last term is in fact equivalent to ωi
ake

k
b thanks to equations (1.88) and

the antisymmetry of ε. So now we require triad-compatibility, i.e. that (1.87) must be zero,
then we call Γi

a (or sometimes ωi
a which differs only by a sign) spin connection. Its explicit

expression in terms of the densitized triad reads

Γi
a =

1

2
εijkebk

(
∂beaj − ∂aebj + ecje

l
a∂becl

)
=

1

2
εijkEb

k

(
∂bEaj − ∂aEbj + Ec

jE
l
a∂bEcl + Eaj

∂b detE

detE

) (1.90)

We can finally define the celebrated Ashtekar connection

Ai
a = Γi

a + γKi
a (1.91)

where γ is the same encountered in the above: it is a free parameter constituting an ambiguity
in the construction of the connection variable. In the Ashtekar’s original formulation it could
only take the values γ = ±i because this choice turns out to significantly simplify the form of
the Hamiltonian constraint. However this was coming at a price of having to impose reality
conditions later, which are in fact very difficult to deal with. The connection (1.91) with
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arbitrary values of γ was consider later by Immirzi and Barbero. For this reason we will call
it Barbero-Immirzi parameter and we will only consider the case in which it is real-valued. Of
course, thanks to what we have seen above, one could also define the connection with a global
minus sign, expliciting the dependence on ω

Ãi
a = γω0i

a +
1

2
εijkω

jk
a (1.92)

where ω0i
a = −Ki

a and the only irrelevant difference would be in a sign of the Poisson brackets.
Notice also that the Ashtekar variables could be derived performing a 3 + 1 decomposition of
the Holst action (1.61). In fact, the introduction of the second or ’Holst’ term is required for
the canonical formalism in order to have a dynamical theory of connections. Without it, as
shown by Ashtekar [5], the connection variable would not survive the Legendre transform.

As a matter of fact the Ashtekar connection turns out to be canonically conjugate to the
densitized triad, although this is not obvious at first sight. A quick way to see this is to take
the antisymmetric part of equation (1.87) or equivalently (1.89), exploiting the fact that the
Levi-Civita term is not going to count. Then one takes the time derivative of that equation
and contracts suitably with a triad, to get

Ea
i Γ̇

i
a = −1

2
ε jki e eaj e

b
kDaė

i
a (1.93)

This shows that Ea
i Γ̇

i
a is a total derivative so that up to boundary term the canonical piece in

the action is
1

8πG

∫
d3xEa

i K̇
i
a =

1

8πγG

∫
d3xEa

i Ȧ
i
a (1.94)

suggesting that A and E are canonically conjugate. One can in fact check that the symplectic
structure

{Ai
a(x), E

b
j (x

′)} = 8πγG δbaδ
i
jδ

3(x, x′) {Ai
a(x), A

j
b(x

′)} = 0 = {Ea
i , E

b
j (x

′)} (1.95)

follows from (1.81), which in turn followed from the ADM structure (1.27). The canonical vari-
ables Ai

a and Ea
i are are called Ashtekar variables or sometimes Barbero-Ashtekar variables.

We now translate the constraint in the new variables. The clever definition of the Ashtekar
connection allows to to put the constraint (1.83) in the exact form of a Gauss law used in a
SU(2) gauge theory. For this reason Gj is called Gauss constraint. Since Ei

a is constant with
respect to the covariant derivative of the spin connection (because it is both triad- and spatial
metric- compatible), one can write the Gauss constraint as

Gi =
1

8πγG
DaE

a
i (1.96)

where Dav
i = ∂av

i + εijkA
j
avk is now the covariant derivative of the Ashtekar connection.
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In order to re-express the diffeomorphism and Hamiltonian constraint, the key identity is

F i
ab = Ri

ab + γ(DaK
i
b −DbK

i
a) + γ2εijkK

j
aK

k
bE

b
i (1.97)

which is the relation between the curvature tensors of the spin connection and the Ashtekar
connection

Ri
ab = ∂aΓ

i
b − ∂bΓi

a + εijkΓ
j
aΓ

k
b

F i
ab = ∂aA

i
b − ∂bAi

a + εijkA
j
aA

k
b

(1.98)

Notice that the first of (1.98) is simply (1.50) rearranged and projected on the spatial hyper-
surface. If we contract the relation (1.97) with Eb

i , we get an equation that allows to rewrite
the diffeomorphism constraint (1.84) as

Ha =
1

8πγG

(
F i
abE

b
i − (1 + γ2)εijkK

j
aK

k
bE

b
i

)
=

1

8πγG

(
F i
abE

b
i − (1 + γ2)Ki

aGi

)
(1.99)

where we used the Gauss constraint expressed as (1.83). One actually does not have to consider
it because Gi = 0, and it is there only for completeness. From now on we will ignore any term
proportional to the Gauss constraint. Contracting similarly the relation (1.97) with ε jk

i Ea
jE

b
k

one gets an equation which allows to rewrite the Hamiltonian (1.85) constraint as follows

H =
1

16πG

εklj E
a
kE

b
l√

detE

(
F j
ab − (1 + γ2)εjmnK

m
a K

n
b

)
(1.100)

again up to terms proportional to the Gauss constraint. Let us recall that a constraint is
called first class if the Poisson brackets of it with other constraints can be written as a linear
combination of the constraints again. This means that the parts of the scalar and vector
constraints which do not depend on Gi will describe the same system on the hypersurface
Gi = 0, that is why one can work with them disregarding the Gauss constraint. Summarising
the Holst action (1.61) can be rewritten in the new variables

S[A,E,N,Na] =
1

8πγG

∫
R
dt

∫
Σ
d3x

[
Ȧi

aE
a
i −Ai

0DaE
a
i −NaHa −NH

]
(1.101)

This action is similar to (1.22) with (A,E) as canonically conjugated variables instead of (q, π).
Lapse and shift are still Lagrange multipliers and consistently we still refer to H(A,E) and
Ha(A,E) as the Hamiltonian and space-diffeomorphism constraints. The new formulation has
introduced the extra constraint (1.96) Gj = DaE

a
j = ∂aE

a
j + εjklA

j
aEal = 0 which is exactly

a Gauss constrain as in the gauge theories and it generates gauge transformations. It is in
fact easy to check that Eb

j and Ai
a transform respectively as an SU(2) vector and an SU(2)

connection under such transformations.
First we define the smeared Gauss constraint

G(λ) =

∫
d3xGi(x)λ

i(x) (1.102)
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and then evaluate its Poisson brackets with the canonical variables (putting 8πG = 1)

{Ea
i , G(λ)} = γε k

ij λ
jEa

k {Ai
a, G(λ)} = −Daλ

i (1.103)

where the right hand sides are the variations of Aa = Ai
aτi and Ea = Ea

i τ
i under un infinitesimal

version of the gauge transformations Aa → gAag
−1 + g∂ag

−1 and Ea → gEag−1. These are
the standard transformations of the connection and electric field in Yang-Mills theories.
The algebra of the constraints is still first class and the algebra of the new Gauss constraint is

{G(λ1), G(λ2)} =
γ

2
G([λ1, λ2]) (1.104)

where [λ1, λ2]
i = εijkλ

j
1λ

k
2 is the SU(2) commutator.

Even though we should not be surprised about the appearance of the new Gauss constraint
due to the tetrad formalism, one might be perplexed by the fact that the local gauge invariance
of the action was the full Lorentz group, but the action (1.101) is only invariant under SU(2).
The origin of this lies exactly in the change of variables: the Ashtekar connection is an SU(2)

connection, not a Lorentz one. It is therefore an auxiliary variable useful to cast the algebra
in a first class form. It is only on the case γ = i that the link with the original Lorentz group
is manifest: in this case SU(2) corresponds to the selfdual subgroup of the the Lorentz group.
Even though that choice simplifies the constraints, it yields complex variable which are difficult
at the quantum level. That is why LQG mostly focuses on real γ, as we do here.

Summarizing the theory of General Relativity is described by an extended phase space of di-
mension 18 per space point, with fundamental Poisson brackets (1.95). The old 12-dimensional
phase space can be recovered on the constraint surface Gi = 0 dividing by gauge orbits gener-
ated by Gi. We are almost ready to quantize the theory.

1.4 Holonomy-flux algebra

Due to the usual complications, one cannot quantize all functions on phase space, but only
a subset. The choice of such a preferred subset in loop quantum gravity is, as we shall see,
closely related to the choice of variables in lattice gauge theory. In the case of general relativity,
these variables should be defined in a background-independent manner, without reference to
a metric or any other fixed background structures on the spatial manifold Σ. The Ashtekar
variables (Ai

a, E
a
i ) do not provide a suitable starting point for quantization. However, natural

geometric objects related to those variables are holonomies of the connection along curves, and
fluxes of the (densitized) triad through surfaces in the spatial manifold. Similar variables are
well-known in the context of lattice gauge theories but the main difference is that we do not
consider only a given set of holonomies and fluxes specified by a choice of lattice, but all possible
holonomies and fluxes obtained by choosing arbitrary curves and surfaces. The key point is
that the Ashtekar variables have a different tensorial nature. Being the non-trivial geometry of
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spacetime the main goal, we have to smear these variables with extra care.

Looking at the definition of the densitized triad (1.76), we see that it is a 2-form and
therefore it is natural to smear it on a surface. Introducing coordinates (σ1, σ2) on the surface
S, the flux is defined as

Ei(S) ≡
∫
S
d2σ na(σ)E

a
i (σ) (1.105)

where na = εabc
∂xb

∂σ1

∂xc

∂σ2
is the normal 1-form to the surface.

The connection on the other hand is a 1-form, so it is natural to smear it along a path. Recall
that a connection defines the notion of parallel transport of the fibre over the base manifold.
Then the holonomy is the SU(2)-valued parallel propagator of the Ashtekar connecton along a
curve e in the spatial manifold. In other words, if e is parametrized by s ∈ [0, 1] and if u is any
constant vector then the covariant derivative of u(s) along e must vanish. From this it follows
that the holonomy satisfies the differential equation

d

ds
he[A]− he[A]A(e) = 0 (1.106)

with he(0) = 0 and Aa = Ai
aτi. Integrating one gets, calling

∫
A =

∫
dsAi

a
dxa

ds τi

he[A] = 1 +

∫ s

0
ds′A(e(s))he[A] (1.107)

and by iterating repeatedly

he[A] =
∑
n

∫ 1

0
ds1

∫ 1

s1

ds2 · · ·
∫ 1

sn−1

dsnA(e(S1))A(e(s2)) · · ·A(e(sn)) (1.108)

or in a compact form

he[A] = P exp

(∫
e
A

)
(1.109)

where P stands for the path-ordered product. The holonomy gives the parallel transport for
points at finite distance.

The important thing to notice here is that since the algebra of A and E is singular (a delta
function appears) one needs to smear the basic variables with certain test functions, as usual
in field theories. In standard field theories on a background, the fields are usually smeared
over 3-dimensional spatial regions but here the functional of A and E are obtained such that
the total smearing is just enough to absorb the delta function in the Poisson brackets (1.95),
making the one between the holonomy and the flux non-singular.

To obtain the Poisson brackets between the holonomy and the flux, one needs to find the
derivative of the holonomy with respect to the connection. After a bit of algebra and calling
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e(s, s0) the segment of e extending from the value s0 to s of the parameter, one obtains

δhe[A]

δAi
a(x)

=

∫ 1

0
ds ẋaδ(3)(x, e(s))he(1,s)τihe(s,0) (1.110)

if x is inside e. Hence, one may now compute the Poisson bracket between the holonomy and
the flux

{he[A], Ei(S)} = 8πγG

∫ 1

0
ds

∫
S
d2σ ẋa(s)na(σ)δ

(3)(x(σ), e(s))he(1,s)τihe(s,0) (1.111)

where σ are the coordinates of the surface. Now notice that the delta function has support
only in the intersection point. The integral clearly vanishes if the curve e does not intersect
the surface S, and also if e intersects S tangentially, in which case ẋa is orthogonal to na at
the intersection point. In the case of a single transversal intersection the factor

ẋana = εabc
∂xa(s)

∂s

∂xb(σ)

∂σ1
∂xc(σ)

∂σ2
(1.112)

is the Jacobian of the coordinate transformtaion (σ, s)→ xa(σ)+xa(s) around the intersection
point. After the change of variable we see that we can get rid of the delta function and the
integral is equal to ±1 depending on the relative orientation of S and e∫

S

∫ 1

0
dσ1dσ2ds εabc

∂xa(s)

∂s

∂xb(σ)

∂σ1
∂xc(σ)

∂σ2
δ(3)(x(s), x(σ)) = ±

∫
d3xδ(3)(x) = ±1 (1.113)

Thus8

{he[A], Ei(S)} = 8πγGκ(S, e)he(1,s0)τihe(s0,0) (1.114)

where s0 is the value of the curve parameter at the intersection point, and the factor κ(S, e)
is +1 if the orientation of S agrees with the one of e, −1 if the orientations are opposite and
0 if e intersects S tangentially or not at all. If S and e intersect at multiple points, then each
intersection contributes with a term of the form (1.114). For the purpose of choosing appropri-
ate classical variables for the construction of the quantum theory, the most important feature
of the result (1.114) is that the algebra of the holonomy and the flux closes, in the sense that
their Poisson bracket depends on a finite number of the basic variables. This would not be the
case if one had chosen a three-dimensional smearing of the densitized triad.

Other important properties of the holonomy are:

• The holonomy of the path e taken with opposite orientation, namely e−1 is the inverse
of the holonomy of e

he−1 [A] = h−1
e [A] (1.115)

8Here the point of intersection is not the beginning nor the ending point of e. In those cases, the result
(1.114) gets multiplied by 1

2
because the delta function in (1.110) gets integrated over half the domain.
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• The holonomy of the composition of two paths is the product of the holonomies of each
path

hα[A]hβ[A] = hα◦β[A] (1.116)

• Under a local gauge transformation g(x) ∈ SU(2), the holonomy transforms as

h(g)e ≡ he[A(g)] = gs(e)he[A]g
−1
t(e) (1.117)

where s(e) and t(e) are the source and target points of the path e.

• Under the action of a diffeomorphism φ on the spatial manifold Σ, the holonomy trans-
forms as

he[A
(φ)] ≡ he[φ∗A] = hφ◦e[A] (1.118)

The proofs of these properties follow almost straightforwardly from the definitions above.

Summarizing: the most natural regular (i.e. with no delta functions) version of the Poisson
algebra (1.95) is the smeared algebra of he[A] and Ei(S) which is called holonomy-flux algebra.

1.5 Kinematical Hilbert space of LQG

Following the Dirac steps for quantizing a gauge theory, one has first to define an Hilbert
space on which the Poisson brackets among the elementary classical variables are represented by
commutation relations between the corresponding quantum operators. However the difference
between a gauge theory and GR is that the former is defined on a background and one can
use a metric to define a integration measure. In GR the metric is a fully dynamical quantity
and we do not have a background metric at disposal, hence we need to define a measure on the
space of connection without relying on any fixed background.

In order to do so one has to introduce the notion of cylindrical functions which are
functionals of the connection that depends only on some subset of the field itself. Here the field
is the connection and the cylindrical function will depend on it only through the holonomies
along some finite paths.

Consider a graph Γ defined as a collection of oriented paths e ⊂ Σ meeting at most at
their endpoints. Given Γ ⊂ Σ we call L the total number of paths (also called edges or links)
that it contains. A Cylindrical function is a couple (Γ, f) of a graph and a smooth function
f : SU(2)L → C such that

〈A|Γ, f〉 ≡ ψ(Γ,f)[A] = f(he1 [A], ..., heL [A]) ∈ CylΓ (1.119)

The space of functionals CylΓ can be turned into a Hilbert space if we equip it with a
scalar product, and the fact that we passed from the connection to the holonomy is crucial to
this point. The holonomy is an element of SU(2) and the integration over this group is well
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defined. In particular there is a unique gauge-invariant and normalized measure dµH called
Haar measure. Using L copies of the Haar measure, we define on CylΓ the scalar product

〈ψ(Γ,f)|ψ(Γ,f ′)〉 ≡
∫ ∏

e

dµHf(he1 [A], ..., heL [A])f
′(he1 [A], ..., heL [A]) (1.120)

This define an Hilbert HΓ space associated to the graph Γ. The Hilbert space of all cylindrical
functions for all graphs will be defined as the direct sum of Hilbert spaces on a given graph

Hkin =
⊕
Γ∈Σ
HΓ (1.121)

The scalar product on Hkin is easily induced from the one on HΓ. If ψ and ψ′ have different
graphs, say Γ1 and Γ2 we use the freedom to take any other graph Γ12 which contains both the
others as subgraphs and view the functions as cylindrical on Γ12. Then we extend trivially the
functions f1 and f2 to Γ12 and define

〈ψ(Γ1,f1)|ψ
′
(Γ2,f2)

〉 = 〈ψ(Γ12,f1)|ψ
′
(Γ12,f2)

〉 (1.122)

Now, the key result and next step is to notice that (1.121) defines an Hilbert space over
gauge connections A on Σ, namely

Hkin = L2[A, dµAL] (1.123)

This result is due to Ashtekar and Lewandowski, and the integration measure over the space of
connections takes its name from them. This means that the scalar product (1.122) above can
be seen as a scalar product between cylindrical functions of the connection with respect to the
Ashtekar-Lewandowski measure

〈ψ(Γ1,f1)|ψ(Γ2,f2)〉 ≡
∫
dµALψ(Γ1,f1)(A)ψ

′
(Γ2,f2)

(A) (1.124)

In order to find a representation of the holonomy-flux algebra, it is convenient to introduce
now an orthogonal basis in the Hilbert space (which does not require a background metric). We
can use the Peter-Weyl theorem, which states that an orthonormal basis on L2[G, dµH ] with
G any compact Lie group, is given by the matrix elements of the irreducible representation of
the group. In the SU(2) case the functions√

djD
(j)m

n(he) (1.125)

provide an orthonormal basis, where the D(j)(he) are the Wigner matrices. If we forget about
the normalization, this means that a function on the group can be expanded as

f(g) =
∑
j

f̃ jmnD
(j)
mn(g) (1.126)

where
f̃ jmn =

∫
SU(2)

dgD(j)
mn(g)f(g) j = 0,

1

2
, 1, ... m = −j, ..., j (1.127)
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and the Wigner matrices Dj
mn(g) give the spin j irreducible matrix representation of the group

element g. This applies also to Hkin which is essentially a tensor product of L2[SU(2), dµH ],
therefore the (non-normalized) basis elements are

〈A |Γ; je,me, ne〉 ≡ D(j1)
m1n1

(he1) · · ·D(jn)
mnnn

(hen) (1.128)

and a general function ψ(Γ,f)[A] ∈ Hkin can be written as

ψ(Γ,f)[A] =
∑

je,me,ne

f̃ j1,...jnm1,...mn,n1,...nn
D(j1)

m1n1
(he1 [A]) · · ·D(jn)

mnnn
(hen [A]) (1.129)

On this basis, one can give a Schrödinger representation. In general, one can in fact intro-
duce several basic operators on the kinematical Hilbert space. Let’s start with the quantum
counterparts of the classical elementary variables. For simplicity we consider the fundamental
representation j = 1/2 in which he ≡ D( 1

2
)(he) The holonomy operator acts by multiplication

ĥγ [A]he[A] = hγ [A]he[A] (1.130)

and the flux through the derivative (1.110)

Êi(S)he[A] = −i~γ
∫
S
d2σ na

δhe[A]

δAi
a(x(σ))

= ±i~γhe1 [A]τihe2 [A] (1.131)

where e1 and e2 are the two new edges defined by the point at which the triad acts and the sign
depends on the relative orientation of e and S, as described in the previous section. Moreover,
as mentioned above, the action of the flux vanishes when e is tangential to S or S ∩ e = 0.

Now, for instance, let’s consider the action of the scalar product between two fluxes

Êi(S)Ê
i(S)he[A] = −~2γ2he1 [A]τ iτihe2 [A] (1.132)

where the scalar contraction of the algebra generators in the fundamental representation τ iτi ≡
C2 defines the Casimir operator of the algebra, which in particular commutes with all group
elements. Hence

Êi(S)Ê
i(S)he[A] = −~2C2γ2he1 [A]he2 [A] (1.133)

This will be useful to study the area operator.
On the other hand, if two fluxes act on the same endpoint we get

Êi(S)Êj(S)he[A] = −~2γ2he[A]τiτj (1.134)

from which one immediately sees that two flux operators do not commute[
Êi(S), Êj(S)

]
he[A] = −~2γ2he[A] [τi, τj ] = −~2γ2ε k

ij he[A]τk (1.135)

The action of the holonomy-flux algebra (1.130),(1.131) trivially extends to a generic base
element D(j)(he) in a generic representation j. The action of the holonomy is the same and in
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the right hand side of (1.131) one has to replace the τi with the generators Ji in the arbitrary
irreducible j representation. Therefore the Casimir will be C2 = −j(j + 1)12j+1 so that for
instance equation (1.133) becomes

Êi(S)Ê
i(S) = ~2γ2 j(j + 1)D(j)(he) (1.136)

Thanks to the linearity, the action is also extended to the whole Hkin.

The construction of this representation may seem somewhat arbitrary, so it is natural to ask
how much freedom there would be in building different, inequivalent kinematical representations
for loop quantum gravity. The answer to that is remarkable and is provided by a uniqueness
theorem called LOST theorem (Lewandowski, Okolow, Sahlmann, Thiemann). The represen-
tation described above of the holonomy-flux algebra is in fact unique on Hkin and this result
can be compared to the Von Neumann theorem in quantum mechanics about the uniqueness of
the Schrödinger representation. As it is known, this result does not extend to interacting field
theories on flat spacetime, but remarkably, insisting on background-independence reintroduces
such uniqueness also for a field theory.

We have defined a proper Kinematical Hilbert space for General Relativity and the elemen-
tary operators have been set on it. It carries a representation of the canonical algebra and this
is unique. The next stage of quantization consist of imposing the constraints

Hkin
Ĝi=0−−−→ HG

kin
Ĥa=0−−−−→ HDiff

Ĥ=0−−−→ Hphys (1.137)

as we shall do.

1.6 Gauge invariance and Spin networks

The first constraint is the Gauss law. Solution to the Gauss constraints are those states
in Hkin which are SU(2) gauge invariant. These states will define a new Hilbert space, called
HG

kin because we have to remember that there are still constraints to solve before arriving to
the physical space.

The approach most in line with Dirac’s ideas on quantizing a constrained theory is to
construct a quantum operator corresponding to the Gauss constraint and then find all the
states annihilated by that operator. This turns out to give the same result as the one we
outline here below, simply imposing gauge invariance. The only thing to do then is to show
that imposing the gauge invariance amounts to solve the Gauss constraint Ĝiψ = 0. To this
end consider a gauge invariant node n and a surface S centred in n of radius ε. The action of
the total flux operator through S on n vanishes identically

lim
ε→0

Ê(S)|n〉 = 0 (1.138)
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In fact, using (1.131) at each link one notices that the above limit produces the infinitesimal
gauge transformation gα = 1−αiτ

i ∈ SU(2) at the node and since the latter is gauge invariant,
such action vanishes.

Now, recall that under a gauge transformation the holonomy transforms as

he → hge = gs(e)heg
−1
t(e) (1.139)

where g ∈ SU(2). Similarly in a generic irrep j one has

D(j)(he)→ D(j)(hge) = D(j)(gs(e)heg
−1
t(e)) = D(j)(gs(e))D

(j)(he)D
(j)(g−1

t(e)) (1.140)

and this means that gauge transformations act on the sources and targets of the links, namely
only on the nodes of a graph. As a consequence, imposing gauge invariance implies requiring
the cylindrical functions to be invariant under the group at the nodes

f(h1, . . . , hL) = f(gs1heg
−1
t1 , . . . , gsLhLg

−1
tL ) (1.141)

and we will see this can be implemented via group averaging. Before doing that, one could also
notice that the solution of the Gauss constraint can be done by inspection.

What we see from the above, is that in order to construct a gauge invariant state, we have
to choose the cylindrical functions such that the transformations at the endpoints of holonomies
cancel each other. This means that we need to look for tensors which are invariant w.r.t. the
action of SU(2) and contract all holonomies ending or starting at a given vertex with such a
tensor, in a way that no free indices remain.

The simplest example is known as a Wilson loop: one there takes a single curve with coin-
ciding endpoints (a loop) and simply trace over the holonomy. This corresponds to contracting
its group indices with the metric tensor of the group, which is of course an invariant tensor of
SU(2). The next simplest example is a three-valent vertex: here the invariant tensors turn out
to be the familiar Clebsch-Gordan coefficients or the related Wigner 3j-symbols (see appendix
A) which enjoy a higher symmetry. From there on, all the invariant tensors can be built con-
tracting the 3-j symbols in a suitable way.

To be more precise, let’s consider a single node of a graph Γ with N incoming edges and
N ′ outgoing edges. The ingoing links (e1, ..., eN ) carry the spins (j1, ..., jN ) and similarly for
the outgoing ones. To this node we associate a tensor of the form tn1···nN

m1···mN′ which has a lower
index for each edge coming into the node and un upper index for each edge going out of the
node. These tensors are required to form an orthonormal basis of the space

Hj1 ⊗ · · · ⊗ HjN ⊗Hj′1 ⊗ · · · ⊗ Hj′
N′ (1.142)

but are otherwise arbitrary. Now one can define the basis functions

fΓ(je,me,ne)
(he1 , · · · , heN ) =

(∏
v∈Γ

(tv)
n1···nN′
m1···mN

)(∏
e∈Γ

D(je)me
ne
(he)

)
(1.143)
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where the contraction of SU(2) indices is carried out according to the structure of the graph
Γ. This is nothing but a generalization of the basis (1.128) and in fact it is a basis of Hkin

itself. Of course if one wants an orthonormal basis, it’s enough to put in the second brackets
the factor

√
dje , as seen in (1.125).

From the equations above it follows that each edge ending in the node v contributes with a
D(je)(gv) while each edge starting from v with a D(je)(g−1

v ) where gv is the value of the group
element at the node. Hence the gauge transformation effectively replaces the tensors tv with
the transformed one

(t(g)v )n1···nN′
m1···mN

= D(j1)µ1
m1

(gv) . . . D
(jN )µN

mN
(gv)D

(j′1)n1
ν1
(g−1

v ) . . . D
(j′

N′ )nN′
νN′ (g

−1
v )(tv)

ν1···νN′
µ1···µN

(1.144)
at each node of the graph, but a part from this the form of the states 〈A |Γ; je, tv〉 is preserved.
From these considerations it is clear that gauge invariant states can be obtained by restricting
the tensors to satisfy t(g)v = tv for every g ∈ SU(2). In particular, if we call

Inv
(
Hj1 ⊗ · · · ⊗ HjN ⊗Hj′1 ⊗ · · · ⊗ Hj′

N′

)
(1.145)

the subspace of (1.142) whose elements are invariant under SU(2) in the sense of equation
(1.144), then we can take the tensors ıv from any orthonormal basis of (1.145) and build an
orthonormal basis on the gauge invariant Hilbert subspace for a fixed graph as

ψ(Γ,je,ıv)[he] ≡ 〈A |Γ; je, ıv〉 =

(∏
v∈Γ

(ıv)
m1···mN
n1···nN

)(∏
e∈Γ

√
djeD

(je)me
ne
(he)

)
(1.146)

The entire gauge invariant Hilbert space HG
kin is then spanned by the states (1.146) on all

possible graphs.

If one is not convinced about the method outlined above, let us return to the group averaging
approach and show that it will give the same result. Let us consider the (formal) projection
operator

PG =

∫
dg U(g) (1.147)

where U(g) is the unitary operator which implements the gauge transformation on cylindricl
functions and dg is some appropriate measure constructed using the SU(2) Haar measure. Now
given any cylindrical function ψ, the function PGψ has to be gauge invariant. Since the gauge
transformations are completely determined by the value of g at the nodes of Γ, the proper form
of the projector on a graph will be

PΓ
G =

∫
dgv1

. . . dgvM
U(g) (1.148)

and recalling (1.139) one sees that the function

PGψ(he1 , . . . , heL) =
∫ ∏

v

dgv ψ(gs1heg
−1
t1 , . . . , gsLhLg

−1
tL ) (1.149)
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is indeed gauge invariant and satisfies (1.141). In order to see the explicit expression one now
has to expand the function ψ on the basis (1.143) as

ψ(he1 , . . . , heL) =
∑

je,me,ne

c(je,me,ne)f
Γ
(je,me,ne)

(he1 , . . . , heL) (1.150)

Inserting above and using the identity∫
dgD(j1)m1

n1
(g) · · ·D(jN )mN

nN
(g)D

(j′1)m
′
1

n′
1
(g−1) · · ·D(j′N )m′

N

n′
N
(g−1) =

∑
α

(ıα)
m1···mN

m′
1···m′

N
(ıα)

n′
1···n′

N

n1···n′
N

(1.151)
where the sum runs over any orthonormal basis of the so called intertwiner space Hv which
is defined as Inv

(
Hj1 ⊗ · · · ⊗ HjN ⊗Hj′1 ⊗ · · · ⊗ Hj′

N′

)
≡ Inv

[
⊗eH(je)

]
, we find that group

averaging indeed produces

PGψ(he1 , . . . , heL) =
∑
je,ıv

c(je,ıv)

(∏
v

ıv

)(∏
e∈Γ

√
djeD

(je)
mene

(he

)
(1.152)

which consistently is a linear combinations of the states (1.146).

From a more geometrical point of view, what we have done is projecting down on the gauge
invariant Hilbert space, using at each node the operator

P =

∫
dg
∏
e

D(je)(g) (1.153)

where the integrand is an element in the tensor product of the SU(2) irreducible representations∏
e

D(je)
mene

(he) ∈
⊗
e

Hje (1.154)

and therefore transforms non-trivially under gauge transformations and it is in general reducible⊗
e

Hje =
⊕
i

Hji (1.155)

This means that the integrand in (1.153) selects the gauge invariant part of
⊗

eH(je) which is
the singlet H0, if the latter exists. One can decompose (1.153) in terms of a basis of this H0

P =

dimH(0)∑
α=1

ıαı
∗
α =

∑
α

|ıα〉〈ıα| (1.156)

and the invariants appearing here are the same intertwiners as above: invariant tensors residing
at the nodes of a graph. Equation (1.156) is in fact nothing but (1.151). Therefore the facts that
the action is only on the nodes of the graph that labels the basis of Hkin, and the decomposition
(1.156), imply that the action of the projector on elements of Hkin can be written as a linear
combination of products of matrices D(j)(he) contracted with intertwiners.
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So as mentioned above (1.146), the states labeled with a graph, an irreducible representation
D(j) of spin j of the holonomy along each link, and an element ı of the intertwiner space Hv in
each node, are called spin network states and can be written compactly (forgetting about the
normalization) as

ψ(Γ,je,ıv)[he] =
⊗
v

ıv
⊗
e

D(je)(he) (1.157)

where v are the vertices (or nodes) and e are the edges (or links) of Γ. The indices of the
matrices and itertwiners are hidden for simplicity of notation, their contraction pattern can be
easily recognized from the connectivity of Γ.

Figure 1.3: Example of Spin Network

As previously, different graphs select different orthogonal spaces thus the full gauge invariant
Hilbert space of Loop Quantum Gravity decomposes as a direct sum over spaces on a fixed graph

HG
kin =

⊕
Γ∈Σ
HG

Γ (1.158)

The spin network represents the basis of the cylindrical functions living in this Hilbert space.
They are built over graphs which are embedded in the three dimensional manifold Σ therefore a
vertex remains located at a fixed point of the manifold so there is no diffeomorphism invariance
yet.

The gauge invariant Hilbert space associated to a graph HG
Γ is denoted

HG
Γ = L2

[
SU(2)L/SU(2)N , dµH

]
(1.159)
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and it decomposes as a sum over intertwiner spaces

HG
Γ =

⊕
je

(⊗
v

Hv

)
(1.160)

where Hv = Inv[⊗eHje ] is the gauge invariant Hilbert space associated to each vertex. To
understand this, one has to remember that associating a Wigner matrix D

(je)
mene to an edge

means that the Wigner matrix is a linear map from Hje to Hje . Graphically, the source s(e)
carries the Hilbert space Hje and the target t(e) carries Hje . The edge is therefore the linear
map between them. For a general n valent vertex, the space Hv will be the tensorial product of
all the Hilbert spaces associated to the sources and dual Hilbert spaces associated to the targets.

Concluding, spin network states form a complete basis of the Hilbert space of solution to
the quantum Gauss law, HG

kin. The structure of this space is in fact nicely organized by the
spin network basis. The physical interpretation of these as states of quantum space will be given
in the next chapter. For details about the intertwiners space see Appendix A or the following
example.

1.6.1 Theta Graph

Let’s consider the so called theta graph Γθ. It contains three edges (e1, e2, e3) which recouple
at two vertices (v1, v2)

Figure 1.4: The simple Theta graph

Thanks to the Peter-Weyl theorem, a generic cylindrical function can be written as

ψΓθ
(h1, h2, h3) =

∑
ji,mi,ni

f̃ j1,j2,j3m1,m2,m3,n1,n2,n3
D(j1)

m1n1
(h1)D

(j2)
m2n2

(h2)D
(j3)
m3n3

(h3) (1.161)

If one applies a gauge transformation, one would see that it is obviously not SU(2) invariant.
Since the gauge transformations act only on the group elements, the gauge invariant part of
(1.161) will be obtained by looking at the gauge invariant part of the product of the Wigner
matrices. Using group averaging one sees that the invariant part of the basis is[
D(j1)

m1n1
(h1)D

(j2)
m2n2

(h2)D
(j3)
m3n3

(h3)
]
inv

=

∫
dg1dg2D

(j1)
m1n1

(g1h1g
−1
2 )D(j2)

m2n2
(g1h2g

−1
2 )D(j3)

m3n3
(g1h3g

−1
2 )

(1.162)
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where we integrate with the Haar measure over gv1
≡ g1 and gv2

≡ g2 to get rid of the
dependence on gauge transformations at the vertices. Now we introduce the tensorial projector
on the gauge invariant space (more precisely on the tensor product of the SU(2) irreducible
representations)

Pm1m2m3 α1α2α3
=

∫
dg1, D

(j1)
m1α1

(g1)D
(j2)
m2α2

(g1)D
(j3)
m3α3

(g1)

=

(
j1 j2 j3
m1 m2 m3

)(
j1 j2 j3
α1 α2 α3

)
= ım1m2m3α1α2α3

(1.163)

where we used the property of the Wigner matrices to be written in terms of the Clebsch-
Gordan coefficient or Wigner 3-j symbols, which give the components of the SU(2) invariant
tensor ı. Therefore, the projectors to be inserted in (1.162) act as the successive action of two
intertwiners. Considering two representations and their associated spaces Hj1 and Hj2 , the
intertwiners map the tensorial product of those spaces into the Hj , i.e. they provide usual
recouping of two representations into another one. The interwiners live in

[Hj1 ⊗Hj2 ⊗Hj3 ]inv (1.164)

and this space is non-empty only when |j2 − j3| ≤ j1 ≤ j2 + j3 as the theory of angular
momentum teaches us (see appendix A for more details on this). Equation (1.162) becomes[
D(j1)

m1n1
(h1)D

(j2)
m2n2

(h2)D
(j3)
m3n3

(h3)
]

inv
= Pm1m2m3α1α2α3

Pβ1β2β3n1n2n3
D

(j1)
α1β1

(h1)D
(j2)
α2β2

(h2)D
(j3)
α3β3

(h3)

=

(
j1 j2 j3
m1 m2 m3

)(
j1 j2 j3
α1 α2 α3

)(
j1 j2 j3
β1 β2 β3

)(
j1 j2 j3
n1 n2 n2

)
D

(j1)
α1β1

(h1)D
(j2)
α2β2

(h2)D
(j3)
α3β3

(h3)

=

(
j1 j2 j3
m1 m2 m3

)(
j1 j2 j3
n1 n2 n2

)∏
e

D(je)(he)
∏
v

ıv

(1.165)
where ıv is not casually a shorthand notation for the 3-j symbols. They are in fact the invariant
tensors in the space of all the spins that enter the node v. From here it follows that the invariant
part of (1.161) is

ψinv
Γθ

(h1, h2, h3) =
∑
je

∏
e

D(je)(he)
∏
v

ıv
∑
mene

f̃ j1,j2,j3m1,m2,m3,n1,n2,n3

(
j1 j2 j3
m1 m2 m3

)(
j1 j2 j3
n1 n2 n2

)
=
∑
je

f̃ j1,j2,j3
∏
e

D(je)(he)
∏
v

ıv

(1.166)

where the new coefficient f̃ j1,j2,j3 include the sums over the magnetic indices me and ne. This
equation generalises to (1.157). To each edge (here 3) one can associate a given representation
of the holonomy, and in order to obtain a gauge invariant quantity, one associates to each
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vertex an intertwiner which couples the ingoing representations with the outgoing ones. In the
three-valent case, the dimension of the singlet space H0 is 1 and the unique intertwiner is given
by the 3-j Wigner symbol.

For a n-valent vertex the space can have larger dimension. To build higher valence intertwiner
one can use the basic one, and the epsilon tensor. It is in fact easy to visualize it adding firstly
two irreps only, and then a third one and so on. This gives rise to a decomposition over virtual
links (see appendix A)

k
k1 k2

To conclude the section let us summarize the main results. We have built the kinematical
Hilbert space of LQG and imposed the first constraint, namely the Gauss law, to reduce the
space Hkin to the gauge invariant HG

kin. This space decomposes as a direct sum over spaces
on fixed graphs and we have found that the spin network represent the basis for this Hilbert
space. The quantum numbers of these states are the graph Γ, a spin je on each link of Γ and an
intertwiner iv at each node. Furthermore, the space (1.159) decomposes as (1.160) and this is
nothing but the analogue in LQG of the Fock decomposition of the Hilbert space of a free field
in Minkowski spacetime into a direct sum of n-particle states, and play an equally important
fundamental role. Before turning to the physical interpretation in terms of quantized spatial
geometries, we briefly outline how to implement the two missing constraints which will give rise
to the dynamics of the theory.

1.7 Dynamics of LQG: outline

We want to give here a very concise overview regarding the LQG dynamics. Since the
present work will focus on kinematical aspects only, there will be no details at all about the
solution of diffeomorphisms and Hamiltonian constraints, nor about other approaches. We will
only sketch, for completeness reasons, the various paths and developments achieved in these
essential aspects of the theory.

1.7.1 Spatial diffeomorphisms constraint

To be precise, the solution of the spatial diffeomorphisms constraint, does not concern the
dynamics yet. It is nevertheless often separated from the construction of the kinematical Hilbert
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space, playing an intermediate (and fundamental) role.

We have learned that spin network states ψ(Γ,je,ın)[A] live inHG
kin, namely where Ĝiψ(Γ,je,ın)[A] =

0 holds. The next step in the Dirac program is to implement the spatial diffeomorphisms con-
straint, namely to find invariant states such that

Ĥa ψ[A] = 0 (1.167)

Let us consider a finite diffeomorphism φ, its action on the holonomy being (1.118). This
induces an operator φ̂ on the space of cylindrical functions such that

φ̂ : CylΓ 7→ Cylφ◦Γ (1.168)

This is an action onto the graph structure of the spin network states such that

φ̂ ψΓ = ψφ◦Γ (1.169)

Since the Ashtekar-Lewandowski measure dµAL is also diffeomorphism invariant, this action
is well-defined and unitary. However, CylΓ and Cylφ◦Γ are orthogonal Hilbert spaces, regardless
of what the diffeomorphism is. This means that we can not define the action of an infinitesimal
diffeomorphism but that they are all finite from the perspective of cylindrical functions. We
can nevertheless proceed with the construction of HDiff by group averaging as we did for the
Gauss constraint, and we will build states invariant under finite diffeomorphisms. There are two
subtleties to take into account now. The first one has to do with the existence of symmetries
of the graphs. Namely, for each graph there are always some diffeomorphisms that act trivially
on it, leaving it unchanged. Let us distinguish two cases : the diffeomorphisms that exchange
the links among themselves without changing Γ, called GSΓ, and those that also preserve each
link, and merely shuffle the points inside the link, called TDiffΓ. The latter have to be taken
out, because their infinite-dimensional trivial action would spoil the group averaging procedure.
Thus the group of graph symmetries is

GSΓ = DiffΓ/TDiffΓ (1.170)

where DiffΓ is the group of diffeomorphisms preserving the labelled graph. The group (1.170)
is finite and acts non-trivially on HG

kin.

The next thing to notice is that unlike imposing the Gauss law, imposing the invariance
under diffeomorphisms will not result in a subspace of HG

kin since the group (1.170) is non-
compact. So we first define a projection map which averages states in HG

kin with respect to
GSΓ

P̂Γ
Diff ψΓ =

1

nΓ

∑
φ∈GSΓ

φ̂ ψΓ (1.171)

where nΓ denotes the number of elements of GSΓ. The second averaging is now done with
respect the diffeomorphism which move the graph Γ. To achieve this, we can consider the
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Figure 1.5: A diffeomorphism can change the way a graph is embedded in Σ, but not the
presence of knots within the graph.

algebraic dual space HG∗
kin consisting of elements η(ψΓ). The latter are diffeomorphic invariant

functionals if
η [φ̂ ψ] = η[ψ] ∀ψ ∈ HH

kin (1.172)

The subspace of such functionals is denoted H∗
Diff and it is the space of diffeomorphism invari-

ant functionals due to the diffeomorphism invariance of the scalar product on the kinematical
Hilbert space. Hence η defines a map

η : HG
kin 7→ H∗

Diff (1.173)

and on H∗
Diff the Hermitian inner product reads

〈η(ψΓ)|η(ψ′
Γ′)〉 = η(ψΓ)[ψ

′
Γ′ ] (1.174)

So now we can implement the group averaging as

η(ψΓ) [ψ
′
Γ′ ] =

∑
φ∈Diff(Σ)/DiffΓ

〈φ̂ P̂Γ
Diff ψΓ|ψ′

Γ′〉 (1.175)

where the angular brackets denote the inner product on the kinematical Hilbert space. Thanks
to the map (1.173), this dual space is the space of diffeomorphism invariant functionals.

Therefore one can define a projector PDiff on HDiff such that

〈ψ|ψ′〉Diff ≡ 〈ψ|PDiff |ψ′〉 =
∑

φ∈Diff/TDiffΓ

〈φ̂ψ|ψ′〉 (1.176)

where the sum is over all the diffeomorphism mapping Γ to Γ′ except those corresponding to the
trivial ones TDiffΓ, and now we have a new scalar product between diffeomorphisms invariant
states.

The result of this procedure are spin network states defined on equivalence classes of graphs
under diffeomorphisms. These equivalence classes are called knots, see figure 1.6. The study
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of knots forms an elegant branch of mathematics and one can find interesting applications in
physics [6]. The diff-invariant Hilbert space of loop quantum gravity is spanned by knotted
spin networks.

Figure 1.6: The first few knots, without nodes.

The physical interpretation coming out of this is very precise: passing from a spin net-
work state to a knot state we preserve all the information, expect for its localisation in the
3-dimensional manifold. This is precisely the implementation of the diffeomorphism invariance
also in the classical theory, where the physical geometry is an equivalence class of metrics under
diffeomorphisms. In other words, two spin network states are equal if their graphs lie in the
same equivalence class, and the latter differ from one another if their underlying graphs are
differently knotted. This scheme represents a discrete quantized geometry, which is formed by
abstract quanta of space not living on a 3-dimensional manifold. They are only localized one
respect to another.

The fact that all information about the embedding in Σ has been washed out in this con-
struction, suggests that the smooth manifold structure, on which LQG is originally built, can be
replaced by that of a piecewise linear manifold. Spin network graphs are then defined using ab-
stract graphs which are combinatorial objects dual to cellular decompositions. This perspective
is central to the spin foam approach for the covariant quantisation of LQG.

1.7.2 Hamiltonian constraint

Finally one approaches the last step of Dirac’s program. So we want to define the Hamil-
tonian constraint on the space of knotted spin networks HDiff , and study its solution. The
classical scalar constraint is given by equation (1.100), and can be written

H(N) = HE(N)− (1 + γ2)T (N) (1.177)

introducing the shorthand notation HE(N) (E stands for Euclidean part) and T (N). As with
the ADM Hamiltonian constraint, this expression is non-linear. This anticipates difficulties to
turn it into an operator. However, a trick due to Thiemann allows us to rewrite it in a way
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amenable to quantization. Denoting V =
∫ √

det(E) the volume of Σ and using the classical
brackets (1.95), the Thiemann’s trick [45] lets us write

HE(N) =

∫
d3xNεabcδijF

i
ab{Aj

c, V } (1.178)

T (N) =

∫
d3x

N

γ3
εabcεijk{Ai

a, {HE(1), V }}{Aj
b, {H

E(1), V }}{Ak
c , V } (1.179)

(1.180)

The advantage of this reformulation is that the non-linearity is mapped into Poisson brack-
ets. The next step is to rewrite these expressions in terms of holonomies and fluxes, so that we
can turn them into operators. Notice that we will see the volume operator in the next chapter,
and its spectrum can be explicitly computed. This is very promising towards the prospect of
knowing the action of the Hamiltonian constraint. Next, the connection and curvature have
to be written in terms of holonomies. This requires a regularization procedure. We describe it
here only for the Euclidean part, the regularisation of the remaining terms in the Hamiltonian
constraint works similarly, although the resulting expression is more cumbersome (see [48]).

The connection can be easily expressed in terms of the holonomies. From (1.108), we have
that for a path ea of length ε along the xa coordinate

hea [A] ' 1 + εAi
aτi +O(ε2) ⇒ h−1

ea {hea , V } = ε{Ai
a, V }+O(ε2) (1.181)

For the curvature, consider an infinitesimal triangulation loop αab lying on the ab - plane and
with coordinate area ε2. At the lowest order we have

hαab
= 1 +

1

2
ε2F i

abτi +O(ε4) ⇒ hαab
− h−1

αab
= ε2F i

abτi +O(ε4) (1.182)

At this point we introduce a cellular decomposition of Σ and regularize the integral as a Riemann
sum over the cells CI

HE = lim
ε→0

∑
I

εNI 3εabcTr(Fab{Ac, V })

= lim
ε→0

∑
I

NIε
abcTr

(
(hαab

− h−1
αab

)h−1
ec {hhc

, V }
) (1.183)

It is more convenient to specify the cellular decomposition in terms of a triangulation,
namely a collection of tetrahedral cells. The loop αab can then be adapted to the triangular
faces of this decomposition, as in the above figure.
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Expression (1.183) can now be promoted to an operator in the quantum theory,

ĤE = lim
ε→0

∑
I

NIε
abcTr

(
(ĥαab

− ĥ−1
αab

)ĥ−1
ec

[
ĥec , V̂

])
(1.184)

This is a well-defined operator, whose action is explicitly known. It inherits the property of the
volume operator of acting only on the nodes of the spin network, which we will see explicitly
in chapter 2. From the holonomies, it modifies the spin network by creating new links carrying
spin 1/2 around the node, see figure 1.7a.

(a) Creation of links (b) Construction of a triangulation

Figure 1.7: Action of the Hamiltonian on a node

Finally, its amplitude depends on the details of the action of the volume operator. This is
the so called graph changing Hamiltonian originally constructed by Thiemann.

To better understand this let us look at the example above with more details. In order to
prescribe the edges on which the holonomies in the operator are defined, one first constructs
a triangulation of Σ adapted to the graph Γ underlying the spin network acted upon. Then,
around a vertex, the triangulation is used to prescribe a segment s of an edge as well as a loop α,
as shown in figure 1.7b. One averages over all possible such prescriptions. The size (fineness)
of the triangulation works so far as a finite regulator in this definition. However, when one
evaluates the result on a diffeomorphism-invariant state, this regulator can be removed, i.e. the
triangulation infinitely refined, since two arcs of different size are related by a diffeomorphism.
These precise choices lead to a certain notion of on-shell anomaly-freedom.

An alternative approach to defining a Hamiltonian constraint is to prescribe a graph-
preserving regularisation. In doing this, one fixes once and for all an underlying graph on
which quantum states can have support. The regularisation then strongly resembles that of
lattice gauge theory, with the difference that the underlying metric is an operator. From a
fundamental point of view however, one would prefer a graph-changing operator that creates
new generic vertices, in particular to be able to describe an expanding universe only in terms
of low spin.
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To summarize, we have a perfectly well-defined Hamiltonian constraint, whose action is ex-
plicitly known and finite. An infinite number of states solutions of Ĥ are known, and the Dirac
algebra is anomaly-free on physical states. Comparing this with the old-fashioned Wheeler-De
Witt equation, which was badly ill-defined, one sees the full force of the use of the Ashtekar
variables to quantize general relativity. We do not mention here other past an current attempts
to improve the understanding of the dynamics, such as the Master constraint or the Group
field theory approach [29, 30, 31], and several others. Since the present work focuses on the
kinematics, we invite the reader interested in the dynamics to use the literature [48, 47, 37].

To conclude, it is necessary to say that although the kinematics of loop quantum gravity is
beautifully under control, the dynamics is still work in progress.

1.7.3 Spinfoams

This section is literally just a glimpse of the concept of spinfoam and it will not contain any
detail since they will not be needed in this work.

Figure 1.8: A spin network containing a three valent vertex evolves under the path integral into
a new spin network, containing an additional arc reminiscent of the action of the Hamiltonian
constraint seen above.

Spinfoam models are a covariant path integral approach to defining the dynamics of loop
quantum gravity. They grew out of state-sum models and their development was influenced
by the dynamics defined by the Hamiltonian constraint as well as the quantum kinematics.
The first important model was the Barrett-Crane model, followed by the improved EPRL/FK
model, which cured problems with the graviton propagator.

There are two basic strategies to arrive at the currently known spinfoam models. In the
first, one formally tries to define a projector on the physical Hilbert space by giving sense to



1.7. Dynamics of LQG: outline 47

the expression

|ψphys〉 ≡ δ(Ĥ)|ψ〉 =
∫

[DN ] exp

(
i

∫
d3xN(x)Ĥ(x)

)
|ψ〉 (1.185)

In practise, one then computes a path integral between two kinematical (or diff-invariant)
boundary states whose value defines the physical scalar product as

〈ψphys|ψ′
phys〉 ≡ 〈ψdiff|δ(Ĥ)|ψ′

diff〉Diff =

∞∑
n=0

in

n!

∫
[DN ] 〈ψdiff|Ĥ[N ]n|ψ′

diff〉Diff (1.186)

Different terms in this sum than can be interpreted as Feynman graphs, with the simplest
example shown in figure 1.8.

The aim of the spinfoam formalism is to provide an explicit tool to compute transition
amplitudes in quantum gravity. These are expressed as a sum over paths and here the ’paths’
summed over are spinfoams. A spinfoam can be thought as the world-surface swept by a spin
network. Spinfoams are background independent combinatorial objects: they do not need a
spacetime to live in, they represent a quantum spacetime themselves, in the same sense in which
a spin network describes space.

(a) The worldsheet of a spin network (b) An edge cuts off in three edges, like in figure 1.8
giving a spinfoam with one vertex

The second way of seeing this is to consider the formulation of general relativity as a
constrained BF-theory. A BF-theory is a topological theory with action

SBF =

∫
M
d4x Tr [B ∧ F (A)] (1.187)

where F is the curvature of a connection A and B is a Lie algebra valued two-form.

The equations of motion of this action tells us that F (A) = 0 so that the theory is topo-
logical. Moreover, calling D(A) the covariant derivative, we see that

D(A)B = 0 (1.188)
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which corresponds to a Gauss law. Using the gauge group SO(1, 3), we recover General Rela-
tivity provided that

BIJ = εIJKL e
K ∧ eL (1.189)

where eI = eIµdx
µ is the co-tetrad. The reason is that equation (1.188) turns into the torsion-

free condition with respect to the tetrad, and the action reduces to the Einstein-Hilbert action.
The condition (1.189) can conveniently be expressed in terms of a quadratic expression

εIJKLB
IJ
µνB

KL
ρσ ∝ εµνρσ (1.190)

up to a topological sector, known as simplicity constraints. The main idea is then to quantize
(1.187) as a topological quantum field theory and to impose the simplicity constraints at the
quantum level. Much care has to be taken here since the simplicity constraints turn out to
be non-commuting and imposing all of them strongly seems to restrict the physical degrees of
freedom too much.

The spinfoam formalism provides an independent approach to the dynamics. It is clearly
motivated by the canonical framework and with a (roughly) identical kinematics, but it is not
known whether the dynamics is the same. In the context of large spins, a promising relation to
discretized GR has been highlighted.

Figure 1.10: A spinfoam is a two-complex with coloured faces and edges, namely a spin
representation associated to each face, which is the evolution of a link, and an intertwiner to
each edge, which is ethe evolution of a node.



Chapter 2

Quantum Geometry

In chapter 1 we introduced the concept of spin network states which are in fact the building
blocks of LQG. In this chapter we will give a very fascinating geometrical interpretation as
we will find that the space itself is quantized. Each node of a spin network represents in fact
a quantum of volume and these ”chunks” of space that define the fabric of the manifold, are
separated from each other by elementary surfaces. The latter are governed by the link that
crosses them and are in fact quantized as well. Therefore there will be quantum numbers
associated with the nodes ( the intertwiners), and with the links (the spins). In short we will
see that a spin network states determines a discrete quantized spatial geometry. Inspired by
these results of LQG, and trusting the physical interpretation of GR, we will also compare them
with a formal quantization approach applied to the pure mathematical concept of geometry.
Fascinatingly enough, it will turn out that the results of a quantum notion of space itself will
be the same.

2.1 Geometric operators in LQG

The basic strategy for constructing operators in loop quantum gravity is to re-express the
classical functions in terms of holonomies and fluxes, which are the elementary variables that
can be promoted into well-defined operators in LQG.

2.1.1 Area operator

The area of a two-dimensional surface is probably the simplest geometric operator of LQG.
The standard definition of the classical area in in terms of the metric is

A(S) =

∫
S
dσ1σ2

√
det

(
gab

∂xa

∂σα
∂xb

∂σβ

)
(2.1)

where σα = (σ1, σ2) are the coordinates on the surface. In order to write it in terms of densitized
triads (or better, fluxes) we have to expand the determinant as

det

(
gab

∂xa

∂σα
∂xb

∂σβ

)
= gabgcd

[
∂1x

a∂1x
b∂2x

c∂2x
d − ∂1xa∂2xb∂c1∂2xd

]
(2.2)

49
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where ∂1 stands for ∂
∂σ1 . Rearranging and after a bit of algebra one gets

det

(
gab

∂xa

∂σα
∂xb

∂σβ

)
= 2ga[bgc]d∂1x

a∂1x
b∂2x

c∂2x
d = g gefnenf (2.3)

where we used the identities

ga[bgc]d =
1

2
εaceεbdfg g

ef na = εab
∂xa

∂σ1
∂xb

∂σ2
(2.4)

Using the definitions of the densitized triads (1.76) one finds

A(S) =

∫
S
d2σ
√
e2 eai e

binanb =

∫
S
dσ1dσ2

√
Ea

i E
binanb (2.5)

At this stage, the area is not expressed in terms of fluxes yet. At the quantum level, we
know that the flux acts as a functional derivative (1.131). Moreover, we have also seen the
action of the scalar product of two fluxes, equation (1.133), for the case in which the surfaces
is intersected only once by the holonomy path. The general case can be dealt with if one
regularizes the area expression in the following way. We introduce a decomposition of S in N

cells, a set of infinitesimal surfaces. Then the integral can be written as a limit

A(S) = lim
N→∞

AN (S) (2.6)

where the Riemann sum is

AN (S) =

N∑
I=1

√
Ei(SI)Ei(SI) (2.7)

and N is the number of cells, and Ei(SI) is the flux of Ei through the I-th cell. This concludes
the classical preparation for constructing the area operator since now the area is expressed as
a function of fluxes, and therefore can be easily promoted into an operator in the quantum
theory. Accordingly the area operator is defined to be

Â(S) = lim
N→∞

ÂN (S) (2.8)

where the Ei(SI) is simply replaced by Êi(SI). This operator now acts on a generic spin
network state ψΓ where the graph Γ is generic and can intersect S multiple times. We already
know from the previous chapter that Êi(SI)Ê

i(SI) gives zero if SI is not intersected by any link
of Γ. Therefore once the decomposition is sufficiently fine so that each surface SI is punctured
once and only once, taking further refinement has no consequences. This means that the above
limit amounts to simply sum the contributions of the finite number of punctures p of S caused
by the edges of the graph.

Ergo, using equation (1.136)

Â(S)ψΓ = lim
N→∞

N∑
I=0

√
Êi(SI)Êi(SI)ψΓ =

∑
p∈S∪Γ

~γ
√
jp(jp + 1)ψΓ (2.9)
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Figure 2.1: Closed loop intersecting a quantum of area

where we assumed that each puncture is caused by a link crossing the surface. The key remarks
to make about this formula are two: first of all, the spectrum of the area operator is completely
known and quantized, i.e. the area can only take discrete values with minimal excitations
proportional to the squared Planck length (easy to see also restoring 8πG 6= 1). Secondly, the
operator has a diagonal action on spin network, therefore the latter are eigenstates of this op-
erator with eigenvalue 8π~γG

√
j(j + 1) (see Appendix B for a comment on the Planck length).

Figure 2.2: A partition of S and multiple intersections

Another thing to notice is that the regulator introduced in the definition of the area is
such that the limit N → ∞ is reached already at some finite value of N . The fact that
a regulator involved in constructing a quantum operator out of a classical function can be
removed trivially at the end of the construction is a recurring theme in loop quantum gravity;
it is one of the distinctive, powerful features of the background-independent framework of the
theory. Concluding we have a well defined area operator which is evidently gauge invariant
but of course not diffeomorphism invariant. Its spectrum is quantized even though discreteness
of geometry is never imposed by hand at any point in the development of the kinematical
structure, and it comes out naturally.
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2.1.2 Volume operator

The classical definition of the volume of a give region R ⊂ Σ of space is

V (R))

∫
R
d3x
√
g =

∫
R
d3g

√∣∣∣∣ 13!εabcεijkEa
i E

b
jE

c
k

∣∣∣∣ (2.10)

where the quantity in absolute value can be identified with the determinant of the densitised
triad. The steps leading from this expression to the quantum volume operator1 are similar to
those required for the area operator. First we replace the integral over R by the limit of a
Riemann sum. We consider a partition in cubic cells CI so that R ⊂ ∪ICI and the integral can
be approximated from above by the sum of the volume of the cells. This partition allows us to
rewrite the operator in terms of fluxes. Let’s in fact consider the integral

WI =
1

48

∫
∂CI

d2σ1

∫
∂CI

d2σ2

∫
∂CI

d2σ3

∣∣∣εijkEa
i (σ1)na(σ1)E

b
j (σ2)nb(σ2)E

c
k(σ3)nc(σ3)

∣∣∣ (2.11)

where (σ1, σ2, σ3) is a suitably chosen set of surfaces associated with the cell. In the continuum
limit we send the size ε of the cell to zero, shrinking it to a point x, so that

WI =
1

48
εabcnanbnc detE

a
i (x)ε

6 ' detEa
i (x)ε

6 (2.12)

which roughly speaking is the square of the volume of the cell CI . Therefore

V (R) = lim
ε→0

∑
I

√
WI (2.13)

We can never stress enough the fact that the regularized expression (2.13) does not depend
on the parameter ε. This is a reflection of the fact that the integrand in (2.10) is a density of
weight 1, and guarantees that the regulator can be removed so that (2.13) can be promoted
into a well defined operator in the quantum theory.

For the sake of notation let us subdivide each ∂CI into surfaces Sα so that ∂CI = ∪αSα
I .

Then one can write WI as a sum of fluxes over three surfaces and thus

V (R) = lim
ε→0

∑
I

√
1

48

∑
α,β,γ

∣∣∣εijkEi(Sα
I )Ej(S

β
I )Ek(S

γ
I )
∣∣∣ (2.14)

Finally one can simply turn the classical fluxes to operators and obtain the explicit expression
for the quantum volume operator

V̂ (R) = lim
ε→0

∑
I

√
1

48

∑
α,β,γ

∣∣∣εijkÊi(Sα
I )Êj(S

β
I )Êk(S

γ
I )
∣∣∣ (2.15)

As for the area, one finds that there is an optimal subdivision after which the result remains
unchanged with any further refinement, so that the limit can be safely taken. In the area case,

1This is the Rovelli-Smolin volume operator. There exist another well defined volume operator due to
Ashtekar and Lewandowski, but it is not discussed here.
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this consisted in the surfaces being punctured only once at most. Something similar happens
here for the volume. The nodes of the graph Γ can fall only in the interior of the cells, and a
cell CI contains at most one node. If a cell contains no nodes, then we assume it contains at
most one link. Also, the partition of the surfaces ∂CI in Sα

I is refined so that edges of Γ can
intersect a cell Sα

I only in its interior and each Sα
I is punctured at most by one link.

Let us turn to study the action of this operator. The first thing to notice is that the
presence of the epsilon tensor requires all three fluxes to be different. This means that the
volume operator does not act on links since if no nodes is present then two of the Sα

I have to be
the same. The important result here is therefore that the volume operator acts only on nodes
of the graphs.

Let’s start considering a single node, i.e. the I-th contribution to (2.15). The cubic operator
for each cell is

Û =
1

48

∑
α,β,γ

∣∣∣εijkÊi(Sα)Êj(S
β)Êk(S

γ)
∣∣∣ (2.16)

We now look at the gauge invariant spin networks, so each node is labeled by an intertwiner
|ı〉. First of all, the action of (2.16) on a three-valent node is zero. In fact the Gauss law tells
us that the sum of the fluxes thorough a surface around a gauge invariant vertex is zero. In
the three-valent case, only three Sα give non vanishing fluxes, thus[

Êi(S
α) + Êi(S

β) + Êi(S
γ)
]
|ı〉 = 0 ⇒ Êi(S

α)|ı〉 = −
[
Êi(S

β) + Êi(S
γ)
]
|ı〉 (2.17)

and using this in (2.16) we get zero because one always has two identical fluxes

εijkÊi(Sα)Êj(S
β)Êk(S

γ)|ı〉 = −εijk
[
Êi(S

β) + Êi(S
γ)
]
Êj(S

β)Êk(S
γ)|ı〉 = 0 (2.18)

Therefore non-zero contribution to the volume only come from nodes of valence four or
higher. In fact those are the case in which the intertwiner is not unique but a genuine indepen-
dent quantum number. This means that (2.16) probes exactly the degrees of freedom hidden
in the intertwiners. Let’s consider the four-valent case. Of all the surface cells Sα, only four
are punctured by the links. So the Gauss law has four contributions and one can eliminate one
flux in favour of the remaining three

Êi(S
4) = −Êi(S

1)− Êi(S
2)− Êi(S

3) (2.19)

The sum in (2.16) reduces to the contributions from the four punctured surfaces and thanks to
the last equation, these contribution are all equal. A simple combinatorial exercise shows that
there are 48 identical terms, therefore

Û =
∣∣∣εijkÊi(S

1)Êj(S
2)Êk(S

3)
∣∣∣ = ∣∣∣~3γ3εijkJ1

i J
2
j J

3
k

∣∣∣ (2.20)

where in the last step we used the action of the fluxes in terms of the SU(2) generators ~Ja in
the spin ja representation, as given by the generalization of equation (1.131)2. Notice that the

2Namely, Êi(S)D
(j)(he) = ±i~γD(j)(he1) Ji D

(j)(he2) where e is separated into two parts e = e1 ∪ e2 by
the intersection point.
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orientation sign ± (between the edge and surface) is irrelevant due to the modulus.

Thus (2.15) is a well defined operator, whose action spectrum is again discrete, with minimal
excitation proportional to (8πγG~)3/2 namely the Planck length cube (see Appendix B). The
general case will look more complicated and can be cast as

V̂ (R)|Γ; je, ıv〉 = (8πγG~)3/2
∑

v∈R⊂Γ

√
|qv| |Γ; je, ıv〉 (2.21)

where
qv =

1

48

∑
eI ,eJ ,eK

κ(eI , eJ , eK)εijkJ
(eI)
i J

(eJ)
j J

(eK)
k (2.22)

Here each sum runs over all edges at the node and the orientation factor κ equals +1 is the
triple of tangent vectors (ėI , ėJ , ėK) at the node v is positively oriented, −1 if it is negatively
oriented and 0 if the tangent vectors are not linearly independent.

Summarizing, the volume operator acts only on nodes of the graph. Its matrix elements van-
ish between different intertwiner spaces and since every intertwiner space is finite-dimensional,
its spectrum is discrete with minimal excitation proportional to the Plank length cube.

Figure 2.3: At the vertices of the graph there can be non vanishing action of the volume
operator, determined by the invariant map ı. The area operator is non trivial when the
intersection is by edges labeled with j 6= 0. The emerging picture is that of a discrete
geometry of the spatial slide Σ, where quanta of volume are connected by the graph edges,
which, at the same time, determine the area quanta separating two volume quanta.

Together with the discreteness of the area operator, this result shows that in Loop Quantum
Gravity the space geometry is discrete at the Plank scale. The point is that the quantum area
of a surface receives a contribution from each edge of a spin network intersecting the surface,
while the quantum volume of a region receives a contribution from each node of a spin network
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contained inside the region. This naturally suggests a physical interpretation where a spin
network is a state of discrete, quantized spatial geometry, consisting of quantized excitations
of volume (at the nodes) separated from each other by quantized excitations of area (at the
edges). Within this interpretation, the graph of a spin network state is seen as dual to the
quantized geometry defined by the state, each node of the graph being dual to an elementary
quantum of volume, while each edge being dual to an elementary quantum of area.

It is important to stress that this concept of quantum geometry described by spin networks
is not a built-in discretization, as in lattice approaches to quantum gravity. Nowhere it was
imposed as a postulate or assumed. It is a pure result of the quantum theory of General
Relativity, similar to the quantization of the energy levels of an harmonic oscillator or the radii
of the atomic orbitals. Thanks to this fundamental discreteness, the theory is expected to have
no ultraviolet divergences and to resolve the problem of the classical singularities of GR.

One last remark is that after the diffeomorphism constraint is imposed, the excitations of
quantum geometry are not localized in any background manifold. Hence the picture is truly
background independent, the only physically meaningful information being the relative local-
ization of the quanta of geometry with respect to each other.

In conclusion, a spin network corresponds to a quantum state where the geometry is excited
in such a way that there are quanta of volume at the vertices of the graph, as well as quanta
of area on surfaces intersected by it. The edges of the graph thus define a certain notion
of connectedness for two neighbouring quanta of volume, associated with the magnitude of a
surface separating them.

Figure 2.4: Spin network and chunks of space

2.2 Quantum Polyhedra

Studying the spectral problems associated to some geometrical operators, we found two
families of quantum numbers which have a direct geometrical interpretation: SU(2) spins,
labeling the links of the spin network, and SU(2) intertwiners, labeling its nodes. A four-valent
node, for instance, can be interpreted as a ”quantum tetrahedron” as we will see below: an
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elementary ”atom of space” whose face areas, volume and dihedral angles are determined by
the spin and intertwiner quantum numbers.

The connections between geometric objects and angular momenta in Quantum Mechanics
have been observed in many ways since long ago, and the properties of some invariants which
can be obtained from SU(2) representations have been used by Ponzano and Regge [35] to
build a quantum gravity model in three dimensions.

The remarkable fact here is that the same geometrical interpretation outlined in the previous
sections resulting from the LQG theory, can be obtained from a formal quantization of the
degrees of freedom of the geometry of polyhedra (for instance the tetrahedron) without any
reference to the complete quantization of General Relativity. We will see as an example that
one can obtain the Hilbert space describing a single quantum tetrahedron [9] which will contain
states describing its quantum geometry, the latter being coincident with the one defined by
LQG. Then we move to general polyhedra.

2.2.1 Classical Tetrahedron

As a first example let us look at the simplest case which was first introduced in [9]. A tetra-
hedron can be seen as the complex envelope of four points in the three-dimensional Euclidean
space.

Figure 2.5: Classical tetrahedron

We can see from the figure 2.5 that a triad ~e1, ~e2, ~e3 of independent vectors (nine numbers)
defines completely the tetrahedron. If we are interested in its geometry, meaning only in prop-
erties independent from space orientation, then the relevant independent parameters become
six due to the factorization of the rotation group.

Let us now consider the vectorial areas of the tetrahedron given by

~n1 = −~e1×~e2 ~n2 = −~e2×~e3 ~n3 = −~e3×~e1 ~n4 = ~e4×~e5 ≡ −~n1−~n2−~n3 (2.23)

where the last equation is simply the closure condition3 and it shows that only three of these
vectors called normals are independent. Now we want to see whether the geometry of the
tetrahedron can be reconstructed from the normals rather than the edges.

3In the form
∫
S
~nda = 0 it holds for any closed surface S
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The independent parameters must belong to the set of invariants which can be built from
~n1, ~n2, ~n3, ~n4, namely: their squares and their mutual scalar products. We also notice that the
triple product ~n1 · ~n2 × ~n3 is invariant and we shall add it to our set.

We have therefore ten numbers which are not independent due to the last equation in (2.23).
Taking the scalar products of the triple product with the normals we obtain four independent
equations

(n1)
2 + n12 + n13 + n14 = 0

(n2)
2 + n12 + n23 + n24 = 0

(n3)
2 + n13 + n23 + n34 = 0

(n4)
2 + n14 + n24 + n34 = 0

(2.24)

where (ni)
2 = ~ni ·~ni and nij = ~ni ·~nj . It is now easy to verify that the independent parameters

are the four squared areas (ni)
2 and two dihedral angles associated to edges sharing a vertex,

e.g. n12 and n23. With this choice, and using the relation between couples of angles associated
to opposite edges, the second equation in (2.24) gives the relation between n13 and the chosen
variables

n13 =
1

2

[
(n4)

2 − (n1)
2 − (n2)

2 − (n3)
2
]
− n12 − n23 (2.25)

As it is known from the literature, taking various scalar products one can obtain an algebraic
system with just quadratic and constants terms. Provided some geometrical non-holonomic
restrictions such as (ni)

2 > 0 and |nij | < [(ni)
2(nj)

2]1/2 are satisfied, the system has two sets
of opposite roots. The correct solution is clearly the one with ~ei · ~ei > 0, the other one corre-
sponding to pure imaginary edges.

One last thing to point out regarding the classical geometry, is that the volume of the
classical tetrahedron in terms of the normals is given by

V 2 = − 1

36
εabcn

a
1n

b
2n

c
3 = −

1

36
~n1 · ~n2 × ~n3 (2.26)

To summarize, the values of the four areas and of two ”non opposite” dihedral angles
actually describe and define completely the six-dimensional tetrahedron geometry.

2.2.2 Quantum Tetrahedron

Now we want to quantize only the degrees of freedom of a tetrahedron, instead of referring
to the full LQG theory. The first step is to associate to the four faces of the tetrahedron four
unitary irreducible representations of SU(2) acting on the spaces Hji . Here i = 1, 2, 3, 4 labels
the face and j is the spin of the representation. The tensor products of those spaces carries a
reducible representation of SU(2) that can be decomposed in its irreducible components (recall
(1.155)). Let’s denote the ensemble of the spin-zero components, i.e. the SU(2) invariant
components of the tensor product, as

Ij1...j4 = Inv

[
4⊗

i=1

Hji

]
(2.27)
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This space can be interpreted as the space of quantum states of a quantum tetrahedron whose
i-th triangle has area given by the (square root of the) SU(2) Casimir operator, Ai = l2P C(ji).
The areas Ai are nothing but the normals ni described in the previous section, up to a factor.
The Hilbert space H =

⊗
j Ij1...j4 describes the degrees of freedom associated to the volume

and the dihedral angles of this atom of quantum geometry.
The geometric quantization of the classical degrees of freedom is based on the identification

of the SU(2) generators ~Ji as the quantum operators corresponding to the ~ni. The squared
normals will therefore be the SU(2) Casimirs C2(j), as in LQG. As mentioned, this construction
gives directly the same quantum geometry that one finds via a much longer path by quantising
the phase space of general relativity. A quantum state of a tetrahedron with fixed areas must
live in the tensor product

⊗4
i=1Hji of the spin ji representations spaces. The closure constraint

now reads
4∑

i=1

~Ji = 0 (2.28)

and imposes that the state of the quantum tetrahedron is invariant under global rotations. This
means that it will be a singlet state, namely an intertwiner map

4⊗
i=1

Hji → Hj=0 ≡ C (2.29)

which is nothing but the Hilbert space of intertwiners Ij1...j4 given in (2.27).

The operators J2
i , ~Ji · ~Jj are well defined on this space and so is the operator

Û = −εabcJa
1J

b
2J

c
3 (2.30)

which is the quantum counterpart of (2.26). To be precise, the absolute value of U can be
identified with the classical squared volume 36V 2, which is again in agreement with the standard
LQG results.

To find the angle operators, we have to introduce the quantities ~Jij = ~Ji+ ~Jj . Their geomet-
rical interpretation can be found applying the same arguments with the classical counterparts
~ni+~nj (not to be confused with the notation of the previous paragraph nij). It turns out that√
J2
ij is proportional to the area Aij of the internal parallelogram, whose vertices are given by

the midpoints of the segments belonging to either the face i or the face j but not both. Given
these quantities, the angle operators θ̂ij can be obtained from

JiJj cos θ̂ij = ~J1 · ~J2 =
1

2

(
J2
ij − J2

i − J2
j

)
(2.31)

Thus we can conclude that the quantum geometry of a tetrahedron is encoded in the oper-
ators J2

i , J2
ij , and U , acting on H.

An important point to make here is that out of the six independent classical variables, only
five commute in the quantum theory. In fact it’s easy to see that we have of course[

J2
k ,

~Ji · ~Jj
]
= 0 (2.32)
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but we also have [
~J1 · ~J2 , ~J1 · ~J3

]
=

1

4

[
J2
12 , J

2
13

]
= iεabcJ

a
1J

b
2J

c
3 ≡ −iÛ 6= 0 (2.33)

A complete set of commuting operators is given by {J2
i , J

2
12}. Said differently, a basis for Ij1...j4

is provided by the eigenvectors of any one of the operators J2
ij . The corresponding eigenbasis

is denoted |j〉ij so that, for instance, the basis |j〉12 diagonalizes the four triangle areas and the
dihedral angle θ12 (or equivalently, the area A12 of the internal parallelogram).

As it is known [49], the relation between different basis is easily obtained from SU(2)

recoupling theory: the matrix describing the change of basis in the space of intertwiners is the
usual Wigner {6j} symbol (see Appendix A)

Wjk = 12〈j|k〉13 = (−1)
∑

i ji
√
djdk

{
j1 j2 j

j3 j4 k

}
(2.34)

so that
|k〉13 =

∑
j

Wjk|j〉12 (2.35)

Notice that the 6j symbol can be associated to a labelling of the six edges of a tetrahedron
by irreducible representations of SU(2). This abstract association is traditionally used simply
to express the symmetry of the 6j –symbol as an algebraic object but it has a deeper geometrical
meaning [34].

The physical interpretation in terms of a quantum language of these geometrical result is
the following: the states |j〉12 are eigenvectors of the five commuting geometrical operators
{J2

i , J
2
12}, thus the average value of the operator corresponding to the sixth observable, say

J2
13, is maximally spread on these states. This means that a basis state has an undetermined

classical geometry or, in other words, is not an eigenstate of the geometry. In order to study
the semiclassical limit of the geometry, one is led to consider superpositions of states. Suitable
ones could be constructed for instance requiring that they minimise the uncertainty relations
between non–commuting observables, such as

(∆J2
12)

2 (∆J2
13)

2 ≥ 1

4

∣∣〈[J2
12 , J

2
13

]
〉
∣∣2 ≡ 4|〈Û〉|2 (2.36)
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and they would be in fact coherent states. In general, equation (2.36) implies that the geom-
etry of the quantum tetrahedron cannot be defined exactly, because of quantum fluctuations,
so when we speak about geometry we mean it in a semiclassical sense, or ”on average”. Semi-
classical states for the tetrahedron have been studied in [38] where they are built in Ij1...j4 such
that all the relative uncertainties vanish in the large scale limit4. This is something that we
will also use later in the work for new semiclassical states, built out of the so called Twisted
Geometries which will be discussed in the next chapter.

Figure 2.6: The geometry of a tetrahedron cannot be sharp in the quantum theory, in the
same sense in which the three components of angular momentum can never be all sharp. Due
to the non-commutativity, the geometry is fuzzy at the Planck scale.

To conclude, in the quantum geometry seen above not all the variables describing the ge-
ometry of the tetrahedron turn out to commute. Consequently, in general there is no state
in H that corresponds to a given classical geometry of the tetrahedron. This fact raises im-
mediately the problem of finding semiclassical quantum states in H that approximate a given
classical geometry, in the sense in which wave packets or coherent states approximate classical
configurations in ordinary quantum theory.

2.2.3 Semiclassical geometry

We have seen that spin network states form a basis in the kinematical Hilbert space and
diagonalize geometric operators. In particular, the quantum numbers carried by a spin network
define a notion of quantum geometry5, as outlined above. One would like now to compare
these quantum labels with the kinematical6 metric gab defining the classical geometry of space.

4This does not necessarily mean that they minimize equation (2.36), so those states would be coherent in
a different sense.

5the graph Γ determines the contiguity relations between chunks of space and it is the dual graph of a
decomposition of the physical space.

6We use the word kinematical to mean that it is an arbitrary metric, not necessarily a solution of Einstein’s
equations, just like an arbitrary spin network spans the kinematical Hilbert space, not necessarily solving the
diffeomorphisms and Hamiltonian constraints.
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However the quantum geometry is very different from the classical one and it seems largely
insufficient to reconstruct a metric.

The three main features of quantum geometry are:

(i) Quantized spectra: the spectra of geometric operators are discrete, as opposed to the
continuum values of their classical counterparts. This is a standard situation in quantum
mechanics, not different from the discretization of energy levels of the harmonic oscillator,
for instance.

(ii) Non commutativity: not all geometric operators commute among themselves. This is
a consequence of the non-commutativity of the fluxes. This is also standard, like the
incompatibility of position and momentum observables.

(iii) Distributional nature : the states capture only a finite number of components of the
original fields, that is their values along paths (for the connection) and surfaces (for
the triad). This is reminiscent (but not physically identical) of what happens in lattice
theories, where the continuum field theory is discretized on a fixed lattice and only a
finite number of degrees of freedom are captured.

Despite these differences, the theory must admit a semiclassical regime in which a smooth
geometry emerges. The first point (i) is easier to deal with: also the orbitals of the hydrogen
atoms are quantized, placed at distances labelled by an integer n. The classical Keplerian be-
haviour is recovered if we look at the large n limit. Similarly, continuum spectra are recovered
in the large spin limit jl → ∞. Points (ii) and (iii) are more subtle and the key to deal with
them is the use of coherent states, namely linear superpositions of spin network states peaked
on a smooth geometry. We will focus on these later on the work but roughly speaking and by
analogy with simple systems, coherent states for loop quantum gravity are peaked on a point
(Ai

a(x), E
a
i (x)) in the classical phase space, which defines an intrinsic (through the triad) and

extrinsic (through the connection) 3-geometry. State that minimize some uncertainties between
operators where introduced by Thiemann and collaborators and will be discussed in the next
section. They address the second point (ii). In order to address (iii) and recover a smooth
geometry everywhere on the spatial submanifold Σ, the coherent states must have support over
an infinite number of graphs. This is a formidable task and for practical purposes one needs to
approximate the theory.

The convenient move is to allow only states living on a fixed graph Γ. Then the Hilber space
HΓ provides a truncation of the theory which may still be sufficient to capture the physics of
appropriate regimes. However the coherent states in HΓ will capture only a finite number of
components of a continuum geometry therefore, to be able to interpret these truncated coherent
states in a physical sense, one needs to use these data to approximate a continuum geometry.
Fortunately, a notion of interpolating geometry emerges naturally. The insight comes from the
structure of the space HΓ. As we have seen (1.160), it decomposes in terms of SU(2) invariant
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spaces which we now call HF . As shown above, for a 4-valent node, the intertwiner represents
the state of a quantum tetrahedron. For a generic F -valent node one would expect a relation
to polyhedra with F faces, as it is the case.

Figure 2.7: Random polyhedron with many faces

The phase space of polyhedra

The first important fact is that HF is the quantization of some classical phase space, SF ,
introduced by Kapovich and Millson in [23]. As it turns out, to each point in SF there is
associated a unique convex polyhedron with F faces of given areas. This is guaranteed by an
old theorem by Minkowski. Therefore

polyhedra with F faces ←→ classical phase space SF ←→ intertwiner space HF

(2.37)
An immediate consequence of this is a complete characterization of coherent states at a fixed
graph: they uniquely define a collection of polyhedra associated to each node of the graph.
This provides a simple and compelling picture of the degrees of freedom of HΓ in terms of
discrete geometries. As we will see, these are associated with a parametrization of the classical
holonomy-flux variables in terms of twisted geometries, described in the next chapters.

Classically speaking, a convex polyhedron is the convex hull of a finite set of points in 3d
Euclidean space. It can be represented as the intersection of finitely many half-spaces as

P = {x ∈ R3|ni · x ≤ ai, i = 1, . . . ,m} (2.38)

where ni are arbitrary vectors and ai are real numbers. That definition is not unique and it is in
fact redundant: the minimal set of half-spaces needed to describe a polyhedron corresponds to
taking their number m equal to the number of faces F of the polyhedron. We want to express
the polyhedron in terms of the areas of its faces and the unit normals to the planes that support
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such faces. So let’s consider a set of unit vectors ni ∈ R3 and a set of positive real numbers Ai

such that the following closure condition is satisfied

C =

F∑
i=1

Aini = 0 (2.39)

Now it’s easy to obtain a convex polyhedron with F faces having areas Ai and normals ni.
Consider the plane orthogonal to each vector ni, then translate this plane at a distance ai from
the origin. The intersection of the half-spaces bounded by the planes defines the polyhedron,
ni ·x ≤ ai. One can then adjust the heights ai = ai(A) so that the faces have area Ai. Remark-
ably, a convex polyhedron with such areas and normals always exists. Moreover, it is unique,
up to rotations and translations. These results are established by the following theorem due to
H. Minkowski [27]

If n1, . . . , nF are non-coplanar unit vectors and A1, . . . , AF are positive numbers such that
the closure condition (2.39) holds, then there exists a convex polyhedron whose faces have
outwards normals ni and areas Ai. If each face of a convex polyhedron is equal in area to the
corresponding face with parallel external normal of a second convex polyhedron and conversely,
then the two polyhedra are congruent by translation.

Figure 2.8: In the case F = 4 we recover the case seen above

Let us now consider F vectors that have given norms A1, . . . , AF and such that they sum up
to zero. The space of such vectors modulo rotations has the structure of a symplectyc manifold
and it is the phase space introduced by Kapovich and Millson

SF = {ni ∈ (S2)F |
F∑
i=1

Aini = 0}/SO(3) (2.40)

The Poisson structure on this 2(F−3) -dimensional space is the one that descends via symplectic
reduction from the natural SO(3)-invariant Poisson structure on each of the F spheres S2. To
see where the dimension comes from, it is enough to notice that from F we go to 2F − 3

due to the closure condition. Then, we have to further consider the rotation symmetry which
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decreases the degrees of freedom of 3 more, so that we only need 2(F − 3) numbers to specify
a polyhedron.

It’s easy to see why this is interesting for us: polyhedra can be glued together to approxi-
mate a smooth manifold and their geometry will induce a discrete metric of some sort. So the
intertwiners seen in the LQG theory will be quantized polyhedra.

We will call (2.40) the space of shapes of polyhedra with fixed areas and thanks to Minkowski’s
theorem, a point in SF with non coplanar normals identifies a unique such polyhedron. Leaving
aside the details about degeneracy (configurations corresponding to coplanar normals) and the
reconstruction procedure of the polyhedra from holonomies and fluxes7 we are now interested
in the connection with the quantum theory.

Relation to LQG

In the first chapter we have seen that intertwiners are the building blocks of spin network
states, an orthonormal basis of the Hilbert space of loop quantum gravity. Moreover, it is a fact
that intertwiners are also the quantization of the phase space SF . It is therefore understood
that an intertwiner is the state of a quantum polyhedron, and spin network states are a collection
of adjacent quantum polyhedra associated with each vertex.

Consider again the space of vectors in 3d-Euclidean space with norm j. This is a phase
space, the Poisson structure being the rotationally invariant one, typical of the 2-sphere S2

j of
radius j. As it is known, its quantization is the representation space Hj of SU(2), with the
half-integer spin j quantizing the norm of the vectors. We are interested in the phase space
SF , that is the space of F vectors that sum to zero, up to rotations. The Poisson structure
on SF is obtained via the symplectic reduction of the Poisson structure on the product of F
spheres of given radius. Thanks to Guillemin-Sternberg’s theorem that quantization commutes
with reduction, we can quantize first the unconstrained phase space ⊗iS

2
ji

, and then reduce it
at the quantum level exctracting the subspace of ⊗iHji that is invariant under rotations. This
gives precisely the intertwiner space HF = Inv

[
⊗F

i=1Hji
]
. The situation is summarized by the

commutativity of the following diagram,

�
i S

2
ji

⊗iHji

SF HF

Symplectic reduction Quantum reduction

As for the tetrahedron, the correspondence between classical quantities and their quantiza-
tion is the following: up to a constant, the generators ~Ji of SU(2) acting on each representation

7The details can be found in [10]
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space Hji are understood as the quantization of the vectors Aini. The mentioned constant in
LQG is the Immirzi parameter γ times Plank’s area 8πl2p

Aini → Êi = 8πγl2p ~Ji (2.41)

The closure condition (2.39) on the normals is promoted to an operator equation (as seen for
the 4-valent case)

F∑
i=1

~Ji = 0 (2.42)

This equation defines the space of intertwiners and corresponds to the Gauss constraint of
classical General Relativity in Ashtekar variables. Then one can proceed to associate operators
to the observable we are interested in. In agreement with what we studied in the first chapter,
we find again that the area of a face of the quantum polyhedron is

Âi =

√
Êi · Êi = 8πγl2p

√
ji(ji + 1) (2.43)

The scalar product between two generators of SU(2) associated to two faces of the polyhe-
dron measures the angle θij between them

θ̂ij = arccos
~Ji · ~Jj√

ji(ji + 1)jj(jj + 1)
(2.44)

in agreement with (2.31). Notice that as mentioned above, the angle operators do not commute
among themselves, therefore it is not possible to find a state for a quantum polyhedron that has
a definite value of all the angles between its faces. In fact an eigenstate of a maximal commuting
set of angles is far from the state of a classical polyhedron: it is an infinite superposition of
polyhedra of different shapes (including different combinatorial classes).

2.2.4 Coherent intertwiners

Semiclassical states for a quantum polyhedron were introduced in [25] and are called Livine-
Speziale (LS) coherent intertwiners. They naturally describe the concept of a semiclassical
polyhedron: the areas are in fact sharp and the expectation value of the non-commuting angle
operators θij reproduces the classical angles between faces in the large spin limit.

Their definition is quite simple: in order to desribe a semiclassical polyhedron with F faces,
one first considers the tensor product of F SU(2) coherent states8

|j1, ~n1〉 · · · |jF , ~nF 〉 ≡ |j1, ~n1 · · · jF , ~nF 〉 ∈ Hj1 ⊗ · · · ⊗ HjF (2.45)

and then one projects down onto the invariant part HF = Inv
[
⊗F

i=1Hji
]
. The resulting state

will describe a semiclassical polyhedron. To implement the projection explicitly, one has to
8these are described with a little more detail in chapter 4.
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integrate over the SU(2) actions on the state, proceeding by group averaging as explained in
chapter 1 (see also appendix A). Therefore the LS coherent intertwiner are defined as

||j, n〉LS =

∫
dh

F⊗
e=1

h|je, ~ne〉 (2.46)

and it can easily be seen that expanding in the intertwiner basis one gets

||j, n〉LS =
∑
k

ck(j, n)|k〉 (2.47)

with coefficient ck(j, ~n) = 〈j1, · · · , jF ; k|j1, ~n1 · · · jF , ~nF 〉 ≡ 〈k|j1, ~n1 · · · jF , ~nF 〉, where the
intertwiner basis is

ı(k)m1,...,mF
|j1,m1〉 · · · |jF ,mF 〉 = |j1, · · · , jF ; k〉 ≡ |k〉 (2.48)

As a matter of fact, the projection implemented via group averaging in equation (2.46) is
nothing but the action of the operator

P =
∑
k

|k〉〈k| (2.49)

which, if applied to the tensor product state made of coherent states of SU(2), gives

P |j1, ~n1〉 · · · |jN , ~nN 〉 =
∑
k

ck(j, n)|k〉 (2.50)

The coherent intertwiners have a number of properties, and have been very important for
the development of the theory. For a more complete discussion see [25]. Notice however that
they are coherent states for the space of intertwiners only and should not be confused with
coherent spin network states for loop quantum gravity. The latter will be presented in the rest
of this work, first following the literature [48, 46, 40] and then proposing a new set of states
based on twisted geometries [12].

2.3 Thiemann’s Coherent states

The first coherent states that were proposed for Loop Quantum Gravity are called Heat
Kernel Coherent States and were introduced and studied by Thiemann and collaborators [46,
42, 43, 44]. Coherent states describe the nearly classical configurations of a quantum system.
The spin network states are not good candidate since, being eigenstates of geometric operators
they will be maximally spread with respect to the corresponding conjugated variables.

2.3.1 The complexifier method

A systematic algorithm for constructing coherent states is provided by the so-called com-
plexifier method. The complexifier C(q, p) is a function on the classical phase space, which



2.3. Thiemann’s Coherent states 67

is assumed to satisfy certain requirements. In particular, the complexifier must be a positive
function, and must have a stronger than linear dependence on the momentum variable. By
canonically quantizing the classical function C(q, p) the corresponding quantum operator C,
which we also refer to as the complexifier. The complexifier is used to construct coherent
states in the following way. We start by applying the operator e−C to the delta function of the
configuration variable, obtaining the function

ψq0(q) = e−Cδ(q, q0) (2.51)

The effect of the operator e−C is to smooth out the delta function, producing a function which
has a peak of finite width concentrated around the point q = q0. The next step is to make
coherent the functions (2.51) by complexifying the label q0, i.e. analytically extending them to
complex values of q0. Symbolically

ψz0(q) =
[
e−Cδ(q, q0)

]
q0→z0

(2.52)

where the complexification rule is specified by

z(q, p) =
∑
n

in

n!
{q, C(q, p)}(n) (2.53)

where {q, C}(n) is the Poisson brackets iterated n times, i.e. {q, C}(n+1) = {{q, C}(n), C} with
{q, C} = q. Equation (2.53) also provides the relation between the label z and the variables of
the classical phase space, thereby defining the point in the classical phase space on which the
coherent state (2.52) is supposedly peaked.

The construction of the states (2.52) guarantees that they are eigenstates of an annihilation
operator a, which is defined through a quantum analog of the classical relation as

a = e−CqeC =
∑
n

1

n!
[q, C](n) (2.54)

with [q, C](n) the n times iterated commutator. A simple calculation shows that the state ψz0

is an eigenstate of the operator a with complex eigenvalue z0

aψz0 = z0 ψz0 (2.55)

This result provides the main motivation for why the states (2.52) can be expected to be
legitimate coherent states. Indeed the eigenvalue equation above implies that they are optimally
peaked with respect to the Hermitian operators

Q =
1

2
(a+ a†) P =

1

2i
(a− a†) (2.56)

in the sense that the uncertainty relation

∆Q∆P ≥ 1

2
|〈[Q,P ]〉| (2.57)

is minimized when both sides are evaluated in the state (2.52). However, it is not guaranteed
that the states also posses other semiclassical properties such as the vanishing of the relative
uncertainty, and they should be checked separately in each case.
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2.3.2 Heat Kernel Coherent States

In order to derive coherent states from the complexifier construction, one must start by
considering the form of the delta function on the appropriate Hilbert space. For instance, on
the gauge invariant Hilbert space HG

Γ associated to a fixed graph, the delta function δΓ should
satisfy ∫

dµΓ(ge)δΓ(ge, qe)f(ge) = f(qe) (2.58)

where dµΓ denotes the Haar measure on HG
Γ defined for functions of the same graph. It’s easy

to verify that the expansion of the delta function in the spin network basis is given by

δΓ(ge, qe) =
∑
je,ıv

ψ(Γ,je,ıv)[qe]ψ(Γ,je,ıv)[ge] (2.59)

Thus, an explicit expression for coherent states on HG
Γ can now be written down, assuming

that the spin network states are eigenstates of the complexifier. Denoting the eigenvalues by
λ(je, ıv), we have

ψΓ
{ze}(ge) = e−λ(je,ıv)

∑
je,ıv

ψ(Γ,je,ıv) ze(A,E)ψ(Γ,je,ıv) (2.60)

This expression is of course not of much practical use, unless an explicit expression is available
for the eigenvalues of the complexifier. Amongst the operators whose spectra are known in
closed form, the area operator seems like a natural candidate for a complexifier, due to the
simplicity of its action on spin networks. Coherent states based on using (a suitable version of)
the area operator as the complexifier are commonly known as heat kernel coherent states and
where introduced by Thiemann [7, 8] who was inspired by a different context studied by Hall
[20].

The specific complexifier chosen by Thiemann is a variant of the squared area operator,
defined in terms of the parallel transported flux operator. To each edge e of a spin network
there is associated a corresponding surface Se, which intersects e but does not intersect any
other edges of the spin network. Using the surface Se, one then defines a parallel transported
flux E(x0)

i (Se), in which points on the surface are transported to a fixed point x0 on the edge
through a path inside the surface that first goes to the edge and then along it until it reaches
x0. The complexifier associated to the edge is then defined as

Ce =
t

2
(px0

)2 (2.61)

where (px0
)i = (8πGγ)−1E

(x0)
i (Se) and t is a parameter which will control the peakedness

properties of the resulting coherent states.

Before continuing, and also in order to convince ourself about the method that is being used
here, let us briefly look at the simple case of the Harmonic Oscillator. Applying this meth-
ods in standard quantum mechanics with a complexifier C = tp2/2, the action of the operator
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e−tp2/2 on the delta function δ(x − x0) = (2π)−1
∫
dkeik(x−x0) gives the well known Gaussian

ψx0
(x) ∼ e−(x−x0)2/2t. Then, complexifying x0 → z0 = x0 + itp0 one gets the familiar Gaus-

sian coherent state ψ(x0,p0)(x) ∼ eip0xe−(x−x0)2/2t. Of course in this simple example equations
(2.55), (2.56) and (2.57) are easy and very well known.

Going back to Thiemann’s states, now we see that the operator corresponding to Ce acts
only on the edge e, so it is enough to carry out the construction of coherent states within the
Hilbert space He = L2[SU(2)] of a single edge. After the construction is completed, coherent
states on a fixed graph can be obtained at the non-gauge invariant level as tensor products of
the single-edge coherent states, and gauge invariant coherent states will be given by projections
of such tensor products onto the gauge invariant Hilbert space.

The expansion of the delta function on He is given by

δ(g, h) =
∑
j

djχ
(j)(h g−1) (2.62)

where χ(j) = TrD(j)(g) is the character of the spin j representation of SU(2), and dj = 2j+1.
Now since the complexifier operator acts diagonally on the spin j subspace, with eigenvalue
(t/2)j(j + 1) ≡ (t/2)λj , one immediately finds

ψH(g) =
∑
j

dj e
− t

2
λj χ(j)(H g−1) (2.63)

as the expression for coherent states onHe. Here H is the complexification of the SU(2) element
h and is therefore a element of SL(2,C), as can be verified computing H from equation (2.53).
In fact a bit of algebra shows that computing

H =
∑
n

in

n!
{he ,

t

2
(px0

)2}(n) (2.64)

gives the two equivalent following expressions

H = h e
t

2
~p0·~σ H = e

t

2
~p′
0·~σ h (2.65)

where we have relabeled he → h, (ps(e))i → (p0)i and (pt(e))i → (p′0)i, s(e) and t(e) being the
source and the target of the edge. This confirms that H is indeed an element of SL(2,C), since
the expressions above are the standard decomposition of an SL(2,C) element into a SU(2)

rotation and a boost. The variables of the two decompositions are related to each other by

~p′0 · ~σ = h (~po · ~σ)h−1 (2.66)

reflecting the relation Et(e)(S) = heE
s(e)(S)h−1

e between the flux variables at the endpoints
of the edge e.
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2.3.3 Properties

From the Complexifier method one gets the Heat Kernel CS and one finds the expression
(2.63), for the coherent states on He, where H ∈ SL(2,C) is the complexification of h ∈ SU(2).
As it is known, an orthonormal basis in He is given by the states |j, a, b〉, where now we consider
them as already normalized such that 〈g|j, a, b〉 =

√
djD

(j)a
b(g). So one sees that from (2.63)

the CS ψH(g) = 〈g|h, ~p0〉 can be expanded as

|h, ~p0〉 =
∑
j,a,b

√
dje

− t

2
j(j+1)D

(j)a
b(h e

i t

2
~p0·σ) |j, a, b〉 (2.67)

Resolution of the Identity

An important property of the HKCS |h, ~p0〉 is that they resolve the identity n the space
He = L2[SU(2), dg]

1 =

∫
dµ(g, p)|h, ~p0〉〈h, ~p0| (2.68)

and therefore provide an overcomplete basis in He. In equation (2.68), the integral is taken
over the classical phase space and theintegration measure has the factorized form [42]

dµ(g, p) = dg dν(p) (2.69)

where dg is the Haar measure and the factor involving p is

dν(p) = d3 pe−
t

4

(
t

π

)3/2 sinh(tp)

tp
e−tp2 (2.70)

where we denote |~p| = p. In order to check that (2.68) is the unit operator on He it is enough
to compute its matrix elements 〈j, a, b|1|j′, a′, b′〉. After inserting the expression (2.67), the
integral over g can be calculated immediately using the orthogonality of the Wigner matrices,
and one is left with

〈j, a, b|1|j′, a′, b′〉 = δjj′δ
a
a′e−tj(j+1)

∫
dν(p)D

(j)b′

b(e
t~p·~σ) (2.71)

Let us call the remaining integral on the RHS Ib′ b. The key to evaluate it is to view it as
a tensor in the space He ⊗ He and observe that the rotation invariance of the measure dν(p)
implies that Ib′ b is invariant under the action of SU(2)

D
(j)a′

b′(g
−1)Ib

′

bD
(j)b

a(g) = Ia
′

a (2.72)

So Ib′ b is an element of the space Inv
[
He ⊗He

]
and must be proportional to δb′b which is

the only invariant tensor carrying one upper and one lower index in that space. The coefficient
of proportionality Ib′ b = c(j) δb

′

b can be determined by contracting both sides with δbb′

c(j) =
1

dj

∫
dν(p)χj(e

t~p·~σ) =
1

dj

∫
dν(p)

sinh(djtp)

sinh(tp)
= etj(j+1) (2.73)
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where the trace χj(e
t~p·~σ) was evaluated in the basis where D(j)(et~p·~σ) is diagonal with eigen-

values
etjp, et(j−1)p, . . . , ee

−tjp . Putting everything together we have that

〈j, a, b|1|j′, a′, b′〉 = δjj′δ
b
b′δ

a′

a (2.74)

from which one can conclude that (2.68) is an expression for the identity operator on He.

Peakedness properties

The construction of the heat kernel coherent states (2.63) guarantees that they are sharply
peaked with respect to the operators (2.56), where a is given here by a quantization of the clas-
sical variable g e

t

2
~p·~σ. It is therefore not immediately obvious that the states are also properly

peaked on the holonomy and the flux. These properties were established by direct calculations
[42] and we here summarize their results.

The possible peakedness of the state (2.63) with respect to the holonomy is described by
the probability distribution in ’holonomy space’

ρH(g) =
|ψH(g)|2

〈ψH |ψH〉
(2.75)

where the denominator is necessary because the state |ψH〉 is in general not normalized. If the
state |ψH〉 is properly peaked on the holonomy, then the function (2.75) should have a sharp
peak concentrated around the point g = h (recall that H = h e

t

2
~p·~σ). Now we notice that the

following relation
ψH(g) = ψe~p0·σ/2(h−1g) (2.76)

allows us to replace the problem of showing that (2.75) is peaked on g = h with the equivalent
of showing that the distribution

ρe~p0·σ/2(g) (2.77)

is peaked on the identity g = 1 independently of the value of ~p0. A long and tedious calculation,
Thiemann and collaborators managed to show that this is the case. The width of the peak is
characterized by the parameter t with the peak becoming sharp as t→ 0.

The only thing that we recall here, is the key role played by the Poisson summation formula

∞∑
−∞

f(tn) =
2π

t

∞∑
−∞

f̃

(
2πn

t

)
(2.78)

where f̃ denotes the Fourier transform of f . The importance of the Poisson summation for-
mula to the present problem is that it allows one to convert a sum like (2.63), which converges
extremely slowly in the limit t→ 0, into a sum which typically is converging very rapidly when
t→ 0, and which can be approximated very well by keeping only the leading term.
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In order to study the peakedness of the state |ψH〉 with respect to the flux operator, one
need to expand the state in the momentum basis

|ψH〉 =
∑
j,a,b

ψH(j, a, b) |j, a, b〉 (2.79)

where the coefficient of the expansion are of course

ψH(j, a, b) =
√
dje

− t

2
j(j+1)D

(j)a
b(H) (2.80)

The probability of the state |ψH〉 to have a specific momentum configuration is then de-
scribed by the (discrete) probability distribution

ρH(j, a, b) =
|ψH(j, a, b)|2

〈ψH |ψH〉
(2.81)

By making use of estimates based on the explicit expression for the Wigner matrix elements
D

(j)a
b(H), Thiemann and collaborators showed that

ρH(j, a, b) .

√
t

4
√
πp0

exp

[
−t
(
j +

1

2
− p0

)2

− j

2

(a/j − p′0z/p0)2

1− (p′0z/p0)
2
− j

2

(b/j − p0z/p0)2

1− (p0z/p0)2

]
(2.82)

where p0z and p′0z refer to the two decompositions of the SL(2,C) element

H = h e
t

2
~p0·~σ H = e

t

2
~p′
0·~σ h (2.83)

So the peakedness properties of the state |ψH〉 with respect to the flux operator can be read
off from equation (2.82) and one can see that the probability distribution (2.81) is peaked on
the values

j = p0 −
1

2
a ' p′0z

b ' p0z
(2.84)

and the peak becomes sharp in the limit of large p0, specifically when p0 � 1/
√
t (where

the value of t is fixed for example requiring that the state is sufficiently well peaked on the
holonomy).

They also showed that the overlap function for these coherent states

i(H1,H2) =
|〈ψH1

|ψH2
〉|2

〈ψH1
|ψH1
〉〈ψH2

|ψH2
〉

(2.85)

is peaked on H1 = H2, with the peak falling off exponentially fast around the maximum (at
least in the limit if small t). Intuitively, if one sees the CS |ψH〉 = |h, ~p0〉 as a state-vector
valued function on the classical phase space, then the peakedness of the state function means
that |h, ~p0〉 differs significantly from zero only within a small neighbourhood (controlled by t)
around the point (h, ~p0) in T ∗SU(2).
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2.3.4 Gauge invariance

So far the discussion was restricted to a single spin network edge. The generalization of
the coherent states on a fixed graph is rather trivial, at least at the non gauge-invariant level.
Coherent states for a fixed graph Γ are simply given by tensor products of the single edge
coherent states (2.63) over the edges of the graph (where now we call He = he to make the
notation lighter)

φΓhe
(ge1 , . . . , geN ) =

∏
e∈Γ

∑
je

dje e
− te

2
λjeχ(je)(heg

−1
e ) (2.86)

On the other hand, gauge invariant states are not so easy to construct, at least not explicitly.
The operation to do is group averaging the tensor product states (2.86) with respect to the
gauge transformations at each node of the graph9

ΦΓ
he
(ge1 , . . . , geN ) =

∫
da1 . . . daM φΓhe

(at(e1)ge1a
−1
s(e1)

, . . . , at(eM )geMa
−1
s(eM )) (2.87)

Inserting in (2.86) we obtain

ΦΓ
he
(ge1 , . . . , geN ) =

∏
e∈Γ

∑
je

dje e
− te

2
λje D(je)me

ne
(he)D

(je)m′
e

n′
e
(g−1

e )


×
∫
da1 . . . daM

∏
e∈Γ

(
D

(je)ne

m′
e
(as(e))D

(je)n′
e
me

(a−1
t(e))

) (2.88)

So at each node of the graph we have an integral of the form∫
dav

(∏
eout

D
(je)ne

m′
e
(av)

)(∏
ein

D(je)n′
e
me

(a−1
v )

)
(2.89)

which can be viewed as an SU(2) tensor and it is essentially a normalized projection operator
onto the intertwiner space of the node. Therefore it can be written as∑

ı

ın1···no
m1···mi

ı
n′

1···n′
i

m′
1···m′

o
(2.90)

where the sum runs over any orthonormal basis of the intertwiner space, and the indices refer
to the edges coming into the node (i) and going out of the node (o). So now from equation
(2.88) we see that the gauge invariant coherent states can be written in the form

ΦΓ
he
(ge) =

∑
je,ıv

(∏
e

e−
te
2
λje

)
ψ(Γ,je,ıv)(he)ψ(Γ,je,ıv)(ge) (2.91)

where ψ(Γ,je,ıv) are the standard spin network states.

9Recall that the holonomy transforms as he → a(t(e))he a
−1(s(e)) where a(x) ∈ SU(2) is a gauge function.
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It is not immediately obvious how the group averaging operation affects the peakedness
properties of the coherent states. In their paper Thiemann and Winkler argue that peakedness
with respect of holonomies at the gauge invariant level follows from the corresponding properties
of the non gauge invariant coherent states. On the other hand, the situation is much more
transparent with respect to the flux operators, although to see it clearly, one needs another
parametrization that links the Heat Kernel coherent states with the Livine-Speziale coherent
intertwiners. The alternative decomposition of the SL(2,C) element was given in [11] and was
inspired by the twisted geometries to which now we turn.



Chapter 3

Twisted Geometries

The main task is now to assign a geometry to the states on a graph Γ. Since this is a
truncation of the theory, it captures only a finite number of degrees of freedom and thus the
semiclassical states in the Hilbert space HΓ do not represent smooth geometries. But they can
represent a discrete geometry that is an approximation of a smooth one, on the given graph.
The problem is basically a choice of interpolation. So the idea is to capture this finite amount
of information with a discrete metric space. In this chapter we show how to parameterize the
phase space of LQG in terms of quantities describing the intrinsic and extrinsic geometry of the
triangulation dual to the graph. These are defined by the assignment to each face of its area,
the two unit normals as seen from the two polyhedra sharing it, and an additional angle related
to the extrinsic curvature. These quantities do not define a Regge geometry, since they include
extrinsic data, but a looser notion of discrete geometry which is twisted [16] in the sense that it
is locally well-defined, but the local patches lack a consistent gluing among each other. It is only
thanks to these twisted geometries that we can see each classical holonomy-flux configuration
on a fixed graph as a collection of adjacent polyhedra with extrinsic curvature between them.
The name of these geometries refers to both their link with the concept of twistors and to
some properties that justify the term twisted: they define a metric which is locally flat but
discontinuous since two adjacent polyhedra are attached by faces with same area (since they
share a link) but different shape.

3.1 Motivation and definition

As we have seen the geometrical operators have discrete spectra, with minimal excitation
proportional to the Planck length. In spite of the key role played in the theory, spin network
states lack a low-energy physical interpretation. How can we bridge from the Planck scale quan-
tum geometry they describe, to a smooth and classical three dimensional geometry? To answer
this question, one is interested in the construction of coherent states, namely superpositions of
spin networks peaked on classical geometries labeling the phase space of the theory. We will
construct them in the following chapters, using the parametrization introduced in this one.

75



76 Chapter 3. Twisted Geometries

3.1.1 The phase space of LQG

As seen in the first chapter, the continuum phase space of loop quantum gravity is defined
by the Ashtekar-Barbero connection Ai

a and the densitized triad field Ea
i , satisfying the Poisson

algebra (1.95)
{Ai

a(x), E
b
j (x

′)} = 8πγG δbaδ
i
jδ

3(x, x′) (3.1)

The link with the ADM phase space of General Relativity is establish thanks to the split of the
connection (1.91)

Aa = Γa + γ Ka ∈ su(2) (3.2)

As known, an important step towards quantization is the smearing of the algebra (3.1).
This is achieved introducing a graph Γ embedded in the spatial manifold Σ and replacing
(A,E) with the pair (ge, Xe) ∈ SU(2) × su(2) on each edge. These variables are holonomies
ge = P exp

(∫
eA
)

and fluxes Xe =
∫
e∗(gE)aNad

S where P denotes the path-ordered product,
e∗ is the face dual to the edge e with normal Na and g is the parallel transport from a vertex
to the point of integration on a path adapted to Γ.

Since SU(2) × su(2) ∼= T ∗SU(2) we see that the phase space of LQG on a fixed graph is
the direct product of SU(2) cotangent bundles. The complete phase space of the theory will
be recovered taking the union over all possible graphs.

Usually, the new variables (ge, Xe) are seen as a distributional version of the continuum ge-
ometric interpretation. However, one might wonder whether there exists also an interpretation
of these variables in terms of discrete geometries. In particular, an interpretation which would
include the equivalent of the splitting (3.2) with a clear separation between intrinsic and extrin-
sic geometry, and possibly, a nice description of the gauge invariant reduction of the phase space.

Immirzi was the first one [22] to think about labeling the states of loop quantum gravity
in terms of some notion of discrete geometries: he suggested a connection with Regge calculus
as the analogue of the lattice description of QCD. However we don’t show here a connection
with Regge geometries, but with a looser notion of them. Twisted geometry are in fact locally
well defined but with a notion of extrinsic curvature too, that makes them more general. The
difference between the two is captured by a natural closure condition which can be satisfied or
not by the labels.

The motivation for these labels come from the coherent intertwiners which have proved
useful to construct the new EPR-FK-LS spin foam models, but also spin foam graviton cal-
culations and area-angle Regge calculus. Twisted geometries will also be crucial to study the
semiclassical limit of the theory as it turns out that they allow a interpretation of the states
in terms of convex polyhedra, as seen in the last chapter. The new parametrization provides
a a direct and simple route towards quantisation of the LQG phase space in terms of coherent
states labelled by twisted geometries. This will be the subject of chapter 5.
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3.1.2 Towards twisted geometries

Consider an oriented graph and assume for simplicity that it is four-valent so that it is dual
to a triangulation. Assign a real number je to each edge which represents the oriented area of
the dual triangle, and four unit vectors Ne(v) to each vertex representing the normals to the
four triangles in the tetrahedron dual to the node. The graph Γ carries the space

P ′
Γ ≡
�
e

Re

�
v

Pv where Pv ≡
�
e|v⊂e

S2
e (3.3)

where we used the fact that unit vectors define elements on the two-sphere. So by assumption,
each edge is labeled by je and two unit vectors, Ne = Ne(s) and Ñe = Ne(t) where s and t are
the source and target of the edge e. Thus one can factorize the edges

P ′
Γ =
�
e

P ′
e where P ′

e = S2
e × S2

e × Re (3.4)

So the variables associated to each edge are the triple (Ne, Ñe, je). The goal is to try and use
these to define a notion of (discrete) metric. Regge showed long ago that in order to do so one
has to assign the edges lengths. So we need suitable conditions to reconstruct them starting
from the variables above. As it turns out, there are two such conditions called closure and
gluing constraints. The closure constraint is defined on each vertex by

Cv =
∑
e⊃v

jeNe(v) = 0 (3.5)

which of course is not surprising compared to what we have seen in the last chapter. When
(3.5) is satisfied, the variables (Ne(v, je)) in the constrained space

Tv = {Ne(v ∈ Pv|Cv = 0)} (3.6)

define the geometry of a flat tetrahedron (we are dealing with a four valent node) embedded in
R3. This geometry is unique up to rotations and in fact it is useful to recall the space of shapes
of the tetrahedron (2.40) already encountered

Sv = Tv/SU(2) (3.7)

which is the space of closed normals modulo rotations. At fixed areas the space is two dimen-
sional and it can be parametrized by two (non-opposite) dihedral angles. Moreover it is known
[23, 13] that this space is a symplectic manifold isomorphic to S2, and that the SU(2) orbits in
Tv are generated precisely by the closure condition (3.5); therefore Sv can be obtained imposing
it and dividing out the action of the gauge transformations that it generates. We will denote
this symplectic reduction by a double quotient Sv = Pv//Cv. If one now considers the space
on the whole graph (3.3), one can apply the reduction and impose the closure at each node.
The result is

KΓ ≡ P ′
Γ//C =

�
e

Re

�
v

Sv (3.8)
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where C =
∏

v Cv. The constrained space KΓ of oriented areas and angles defines a precise
classical 3d geometry on each tetrahedron. The next step would be to ensure that the indi-
vidual tetrahedra glue together to form a consistent geometry on the whole triangulation. By
construction, two neighbouring tetrahedra induce different geometries on the shared triangle,
with same area but, in general, different shape.

Figure 3.1: Two tetrahedra sharing a link

To match the shapes one needs additional gluing constraints, which involve only the dihe-
dral angles, and are local on each pair of tetrahedra. They will not be discussed here as they
don’t play any role for our purposes. It is enough to say that together, the closure and gluing
constraints guarantee that a Regge geometry (given by a unique set of edge lengths) can be
reconstructed from areas and angles.

A similar construction can be generalized to vertices of any valency. As seen above, each
n-valent vertex can be thought of as a flat convex polyhedron with n faces. As described in
the last chapter, there is a phase space of shapes like (3.7) associated to the n-vertex, this time
2(n − 3)-dimensional, which is still a symplectic quotient generated by the closure condition,
and whose geometrical data can be used to label the quantum states.

But now the question is more ambitious: can we relate the new variables not only to Regge
geometries, but to the full LQG phase space variables? As we recalled above, also the loop phase
space takes a form factorized on edges, thus one can directly look at the edge contributions,
respectively P ′

e and T ∗SU(2). The problem is however not easy: the dimension of those spaces
are different, as well as the topology and the former does not seem to carry any information
about the connection. If areas and angles are complete geometrical data, we should be able to
reconstruct a notion of local frame, and the corresponding rotations mapping one local frame
onto the next. Where is the information on such rotation?

The answer to that question lies at the heart of the definition of the Twisted Geometries.

Consider two adjacent vertices and the edge connecting them. The five variables (Ne, Ñe, je)

represent the area of the triangle and its normals in the two frames sharing it (see figure 3.1).
The crucial presence of two normals allows us to write down a natural compatibility condition
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for a finite connection ge as the group element rotating one normal into the other, i.e.

Ne = R(ge)Ñe (3.9)

This equation can be solved for ge ∈ SU(2), with R the rotation matrix in the adjoint
representation. The connection ge so introduced defines a notion of parallel transport by which
the normal ne of the triangle in the frame of its source tetrahedron is mapped into the frame
of its target tetrahedron. This is exactly the rotation that answer our question.

Notice however that (3.9) does not fully determine ge because it gives only two independent
equations, therefore R(ge) will be determined up to rotations along the Ñ axis. This means
that if ḡe is a solution, then ge(Ne, Ñe, ξe) = ḡee

ξeÑ i
eτi is also a solution1, for an arbitrary angle

ξ ∈ [−π, π]. It is easy to find a solution of the compatibility condition (3.9) by constructing a
group element ne rotating τ3 into N i

eτi, that is

R(ne)τ3 = N i
eτi (3.10)

and similarly ñe for Ñe. Then, once ne and ñe are found, the most general solution will be

ge(Ne, Ñe, ξe) = ñee
ξeτ3n−1

e (3.11)

Therefore, in order to uniquely define a connection associated to (Ne, Ñe) one needs an extra
angle per edge ξe. Including it, the space of variables associated with an edge of the graph is
6-dimensional, (Ne, Ñe, je, ξe). Accordingly, one can define the extended space (which justifies
the previous symbols P ′ for (3.3))

PΓ =
�
e

Pe where Pe = S2
e × S2

e × T ∗S1
e (3.12)

where we used the obvious isomorphism of Re×S1
e with the cotangent bundle to the circle T ∗S1

e .
This is the space of twisted geometries, which is in fact lacking the required constraints to read
a Regge geometry off these variables. The first thing to notice is that the edge component Pe

of the space of twisted geometries has the same dimension of T ∗SU(2). More precisely, the
following claims were shown by Freidel and Speziale in [16]:

(1) PΓ is a presymplectic2 manifold and its reduction P̄Γ exists and is a phase space vith
conjugate variables (je, ξe)

(2) as a phase space, it is globally symplectomorphic to the non-gauge-invariant phase space
of loop quantum gravity on a fixed graph,

P̄Γ
∼=
�
e

T ∗SU(2)e (3.13)

1We use the SU(2) fundamental representation with generators τi = −iσi/2.
2A manifold is presymplectic if it is equipped with a closed but possibily degenerate 2-form Ω. The reduction

is then the quotient by the kernel of Ω.
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If one considers the closure constraint on the extended space P̄Γ, one gets the notion of
closed twisted geometries associated to

SΓ =
�
e

T ∗S1
e

�
v

Sv (3.14)

where Sv is the space of the shapes of the polyhedron corresponding to the valency of the
vertex. The last result then is that

(3) SΓ is presymplectic and its reduction S̄Γ is symplectomoprhic to the gauge-invariant space
of loop quantum gravity

S̄Γ =
�
e

T ∗SU(2)e//SU(2)V (3.15)

where V is the number of vertices in the graph and the double quotient means again
imposing Gauss law at each vertex and dividing out the action of the SU(2) gauge
transformation it generates.

We will not give the complete proofs here (see [16] for details) but we will quote the key
points which are useful to understand and to carry on with the work. Before doing that let us
remark a few things.

Twisted geometries are particularly useful because they naturally parametrize also the
gauge-invariant phase space: the only thing to take into account is the closure condition on
the labels, and this can be implemented going from the normals to suitable cross sections.
The result (3.14) implies that the parametrization in terms of twisted geometries factorises the
gauge-invariant phase space of gravity as a product of phase spaces associated with edges and
vertices. This factorization provides a classical analogue to the well known factorization of the
SU(2) spin network Hilbert space associated with a graph Γ as a sum over intertwiner spaces,
HΓ =

⊕
je
(
⊗

vHv) where Hv = Inv [⊗eHje ].

Those results mean that both the non-gauge-invariant and the gauge-invariant phase spaces
of loop gravity can be parametrized in terms of a notion of discrete geometry. These twisted
geometries are then candidate labels for full coherent states of the theory. These results are in
fact the starting point for the construction of new coherent states, described in details later.

3.2 Phase space of Twisted Geometries

Consider the edge space (dropping the label e)

P ≡ S2 × S2 × T ∗S1 (3.16)

with variables (N, Ñ, j, ξ). Given the cartesian factorization (3.12), it is enough to show a
symplectomorphism to T ∗SU(2). The first step is noticing that each factor of the Cartesian
product (3.16) is a symplectic manifold on its own:
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• T ∗S1 has a symplectic 2-form ΩT ∗S1 = dξ ∧ dj and Poisson brackets {ξ, j} = 1.

• S2
R, where R is the radius, has a symplectic 2-form given by the area form ΩS2 =

±R sin θdθ∧dφ where θ and φ are olar and azimuthal angles and the sign depends on the
orientation of the sphere. The Poisson bracket is conveniently given in terms of the com-
ponents of the unit vector N = (cosφ sin θ, sinφ sin θ, cos θ) as {RN i, RN j} = ±εijkRN

k.

Now we extend the above brackets to the space P taking the to sphere in (3.16) to have
radius j and opposite orientation3, and such that the brackets between N and Ñ vanish. At
this point one has still to chose the brackets between ξ and N , Ñ . Let’s give them in terms of
a certain function L : S2 → R3, so that the whole Poisson structure is

{jN i, jN j} = εij kjN
k {jÑ i, jÑ j} = −εij kjÑ

k {N i, Ñ j} = 0 {ξ, j} = 1

{N i, j} = 0 {Ñ i, j} = 0 {ξ, jN i} ≡ Li(N) {ξ, jÑ i} ≡ Li(Ñ)

(3.17)
In [16] it is shown that Li is in fact unique up to canonical transformations, such that the

Poisson algebra closes an P is locally symplectomorphic to T ∗SU(2). As it turns out, Li is
in fact unique up to a change of sections and for the Hopf section described below, it will be
Li(−z̄, z, 1).

3.2.1 Hopf map and section

The Hopf map is a projection π : S3 → S2, such that, roughly speaking, every point
on S2 comes from a circle on S3. Since SU(2) ∼= S3 and S2 ∼= SU(2)/U(1), where U(1)

is for instance generated by τ3, the map can be defined in terms of group elements. In the
fundamental representation of SU(2), the Hopf map is

π : SU(2)→ S2

g 7−→ N(g) = gτ3g
−1

The vector N(g) ∈ S2 is a function of two variables and we can parametrize g with two
complex numbers z0 and z1 as

g =
1√

|z0|2 + |z1|2

(
z̄1 z0
−z̄0 z1

)
(3.18)

Then, calling ζ ≡ z0/z1, one can calculate directly

N(g) = gτ3g
−1 =

1

1 + |ζ|2
[(
1− |ζ|2

)
τ3 − 2τ+ − ζ̄τ−

]
=

i

2(1 + |ζ|2)

(
|ζ|2 − 1 2ζ

2ζ̄ 1− |ζ|2

)
(3.19)

where τ± = τ1± iτ2. Notice that z is the Hopf map for the stereographic projection of S2 from
the hemisphere with z1 = 0.

3This is just a matter of convention, one could also take the same orientation.



82 Chapter 3. Twisted Geometries

Equation (3.19) shows that SU(2) can be seen as a bundle (called Hopf bundle) over S2

with a U(1) fibre. Now, on this bundle, one can define an inverse map, that is a section

n : S2 → SU(2)

N 7−→ n(N)
(3.20)

such that π(n(N)) ≡ N , and it is given by

n(N(z)) =
1√

1 + |ζ|2
[
1+ iζτ+ − iζ̄τ−

]
=

1√
1 + |ζ|2

(
1 ζ

−ζ̄ 1

)
(3.21)

This section associates an SU(2) element n to each point of the S2 sphere, the latter being
parametrized by the stereographical projection4 ζ. The choice (3.21) is not unique but that is
the one we will use in the rest of the work, calling it simply n with abuse of notation. Moreover
we will write the Hopf map simply as N = nτ3n

−1.

As it turns out, the function Li mentioned above that closes the algebra (3.17) acts in fact
as a connection in preserving the Hopf section. But this is not enough to say that the algebra
closes and in order to do so, one hs to discuss the properties of the symplectic 2-form.

3.2.2 Symplectic potential

It is conveninet to introduce the symplectic potential Θ, or canonical 1-form, such that
Ω = −dΘ. For the cotangent bundle to the circle, we have seen that the canonical 2-form is

ΩT ∗S1(ξ, j) = dξ ∧ dj (3.22)

therefore it is straightforward to see that the symplectic potential will be

ΘT ∗S1 = jdξ (3.23)

In the case of a two-sphere of radius j, say with right-handed orientation, we can use the
Hopf section to write the potential as

ΘS2(N) = j Tr
(
Ndnn−1

)
= j(cos θ − 1)dφ (3.24)

and in fact one can easily verify that the associated 2-form reads

ΩS2 = −dΘS2 = j Tr
(
Ndnn−1 ∧ dnn−1

)
= j sin θdθ ∧ dφ (3.25)

Let us come to the Poisson algebra (3.17) of the twisted geometries and to its symplectic
2-form ΩP = −dΘP . By inspection we see that ΩP should contain ΩT ∗S1 and two ΩS2 with
radius j and opposite orientation. Remarkably, it can be shown [16] that ΘP turns out to be

4For instance, taking the projection from the south pole, one has ζ = − tan θ
2
e−iφ in terms of the familiar

(θ, φ).
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a sum of the elementary symplectic potentials of each factor in the cartesian decomposition
P = S2 × S2 × T ∗S1

ΘP ≡ ΘS2(N) + ΘS2(Ñ) + ΘT ∗S1

= j Tr
(
Ndnn−1

)
− j Tr

(
Ñdññ−1

)
+ jdξ

(3.26)

This is equivalent to say that the brackets (3.17) are given by

ΩP = −dΘP =j Tr
(
Ndnn−1 ∧ dnn−1

)
− j Tr

(
Ñdññ−1 ∧ dññ−1

)
− dj ∧

[
dξ +Tr

(
Ndnn−1

)
− Tr

(
Ñdññ−1

)] (3.27)

The detailed calculations can be found in [16]. This was the construction of the phase space
of twisted geometries, and now we have to link it to the standard phase space of loop quantum
gravity.

3.3 Symplectomorphism with SU(2) phase space

It is very well known that a Lie group G is a manifold and as such its cotangent bundle T ∗G

has a symplectic structure associated with it [3, 28]. For instance, the harmonic oscillator’s
configuration space is the real line R, and in fact the phase space is simply the plane T ∗R.
Another example encountered in the above is a particle in the circle S1 which has the phase
space given by the T ∗S1 ∼= R × S1. Now in LQG one is interested in the edge phase space
which is simply T ∗SU(2) so let’s see how to deal with this cotangent bundle.

The Lie algebra su(2) is isomorphic to the set of right-invariant vector fields on SU(2). As a
matter of fact the group acts on itself by either left or right multiplication. Both actions can be
used to get an isomorphism5 of vector fields with the Lie algebra, and to trivialize the cotangent
bundle. In other words, the tangent space of a Lie group, seen as a differential manifold, has
a natural Lie algebra structure at the identity. Here we choose the right multiplication, but a
similar construction can be carried over choosing the left multiplication. Then a right-invariant
vector field in the direction of X ∈ su(2), which is denoted ∇L

X , acts on functions of the group
as the left derivative

∇L
X f(g) ≡ d

dt
f(e−tXg)|t=0 (3.28)

The right derivative is obtained under the adjoint transformation g 7−→ gXg−1

∇R
X f(g) ≡ d

dt
f(getX)|t=0 = −∇L

(gXg−1) f(g) (3.29)

Similarly, the map from the vector fields to element X of the algebra is provided by algebra-
valued right-invariant 1-forms dgg−1, such that

iX̂(dgg−1) = (LX̂g)g
−1 = −X (3.30)

5To be a little more formal, one can identify su(2) with R3 via Xi = Tr
(
Xτ i

)
where the cyclic trace

Tr(XY ) ≡ −2 tr1/2(XY ) for any (X,Y ) ∈ su(2). Of course tr1/2 is the trace in the fundamental representation
and τi = −iσi/2 satisfy [τi, τj ] = εijkτk.
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The set of right-invariant 1-forms is isomorphic to the dual algebra su(2)∗, thus the cotangent
bundle trivialises as T ∗SU(2) = SU(2) × su(2)∗. To study the functions on T ∗SU(2), recall
that each element X ∈ su(2) of the algebra determines a linear function hX on the dual
algebra su(2)∗. With the positive pairing given by the trace one can define the linear action as
hX(Y ∗) = Tr(XY ) = XiY

i and identify su(2) with its dual su(2)∗. Thanks to this identification
one can parametrize su(2)∗ with elements X of the algebra. So the six-dimensional cotangent
bundle T ∗SU(2) is then trivialized by the following symplectic potential

SU(2)× su(2)∗ → T ∗SU(2)

(g,X) 7−→ Θ = Tr
(
Xdgg−1

) (3.31)

The symplectic 2-form is then computed to be

Ω = −dTr
(
Xdgg−1

)
=

1

2
Tr
(
dX̃ ∧ g−1dg − dX ∧ dgg−1

)
(3.32)

where X̃ ≡ −g−1Xg. From the symplectic 2-form one gets the following Poisson brackets

{hY , hZ} = h[Y,Z] {hY , f(g)} = ∇L
Y f(g) {f(g), h(g)} = 0 (3.33)

Now we have to show explixicty the symplectomorphism. The key to construct the right
isomorphism is the Hopf map (3.19). We consider the sections n(N) and ñ(Ñ) such that

n(N) = nτ3n
−1 ñ(Ñ) = ñτ3ñ

−1 (3.34)

Then we define the map

(N, Ñ, j, ξ)→ (X, g) : X = j nτ3n
−1 = jN

g = ñeξτ3n−1
(3.35)

which also implies that X̃ = −gXg−1 = −j ñτ3ñ−1 = −jÑ . The map is two-to-one6, as
the configurations (N, Ñ, j, ξ) and (−N,−Ñ ,−j,−ξ) give the same pair (X, g), and it can be
inverted at each branch provided that |X| 6= 0

j = ±|X| N = ± X

|X|
Ñ = ±gXg

−1

|X|
ξ = ±Tr

(
τ3 ln

(
ñ−1gn

))
(3.36)

Then the map gives the isomorphism

P̄ /Z2
∼= T ∗SU(2) (3.37)

where we recall P̄ = P/KerΩP is the true phase space, being P presymplectic, and the Z2

symmetry is the identification of the two configurations with opposite signs.

Now the main result here is that it can be shown that the isomorphism (3.37) is also a
symplectomorphism, namely it preserves the Poisson structure of the symplectic spaces. As a

6This point will be important for considerations about coherent states in the following
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matter of fact this is a direct consequence of the identification of the two symplectic potentials
(3.26) and (3.31). So the map (3.35) provides an invertible symplectomorphism between the
space P̄e of twisted geometries with Poisson brackets (3.17) and T ∗SU(2) with Poisson brackets
(3.33).

It is very straightforward to prove this: a direct computations gives

ΘT ∗SU(2) = j Tr
[
nτ3n

−1
(
dnn−1 + ndξτ3n

−1 − neξτ3 ñ−1dññ−1e−ξτ3n−1
)]

= j Tr
(
Ndnn−1

)
+ jdξ − j Tr

(
Ñdññ−1

)
= ΘP

(3.38)

It is nevertheless instructive to check the symplectomorphism at the level of Poisson brack-
ets. To that end, it is convenient to use the identification seen above of su(2) with R3 via
Xi = Tr

(
τ iX

)
and write the Poisson brackets (3.33) of linear function on T ∗SU(2) in the

equivalent and simple form

{Xi, Xj} = εijkX
k {Xi, g} = −τ ig {X̃i, g} = gτ i (3.39)

Now, the first Poisson bracket is immediately verified using (3.17) with the definition (3.35).
The others can be checked without too much effort, using the defining map (3.35),the algebra
(3.17) and the usual properties outlined above.

Let’s conclude this section by recapitulating where we stand. We have introduced the
phase space P̄ of twisted geometries with Poisson brackets (3.17) and we have seen that it is
symplectomorphic to T ∗SU(2). This extends straightforwardly to the whole graph, so one can
conclude that

P̄Γ ≡
�
e

P̄e/Z2
∼=
�
e

T ∗SU(2) (3.40)

This symplectomorphism allows us to give a completely new parametrization of the kinematical
phase space of loop quantum gravity on a fixed graph as the space of twisted geometries. This
result shows that there is a natural discrete geometry associated with the space of holonomy-
flux variables: the latter space can be written in terms of areas, normals and an abelian
“connection” ξ ∈ S1. Notice that this discrete geometry is not a Regge geometry, in particular,
it is discontinuous because the shapes of the triangles do not match in general.

3.3.1 Gauge invariance

The description of the kinematical phase space of loop gravity in terms of the discrete,
discontinuous twisted geometries is particularly useful when one works at the gauge-invariant
level. As anticipated in the previous chapter, one expects 2 variables for each edge and 2(n−3)

variables for each n-valent vertex. The question is then how to conveniently extract this set of
variables from the initial (ge, Xe), and the answer lies on twisted geometries.
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Recall that the gauge-invariant phase space of loop gravity is obtained imposing the Gauss
law constraint at each vertex, and then dividing out the action of the SU(2) gauge transfor-
mation it generates,

S̄Γ ≡
�
e

T ∗SU(2)e//SU(2)VΓ (3.41)

where VΓ is the total number of vertices in the graph. In order to impose the Gauss law one has
to recall that the kinematical space is given by the assignment of the holonomy-flux variables
(ge, Xe) on a fixed, oriented graph. Under reversal of the orientation of an edge, g−e = g−1

e

and X−e = −g−1
e Xege ≡ X̃e. This means that under reversal of the orientation we get the

left-invariant vector fields, because we are trivializing T ∗SU(2) with the right-invariant ones.
Thanks to this fact, the Gauss law can be defined as

Cv =
∑

e|s(e)=v

Xe +
∑

e|t(e)=v

X̃e = 0 (3.42)

at each vertex. Notice the “non-local” nature of the quotient in (3.41): each edge subspace is
affected by the two vertices it connects. This is a complicate feature that our new parametriza-
tion (3.35) simplifies, since we assign to every edge two unit vectors, Ne to the source vertex
and Ñe to the target one, moreover the relation X−e = −g−1

e Xege is automatically taken into
account. Then the Gauss law can be imposed and the quotient by SU(2)VΓ can be taken
separately at each vertex.

It is important to point out here also that, through the map (3.35), the Gauss law coincides
with the closure constraint discussed above [13].

Cv =
∑

e|s(e)=v

jeNe −
∑

e|t(e)=v

jeÑe = 0 (3.43)

In details, consider the presymplectic kinematical space (3.12), parametrized by the twisted
geometries. We can factorize it as a product over edges and vertices, analogously to what we
did with (3.3) at the beginning

PΓ =
�
e

T ∗S1
�
v

(�
e⊃v

S2
je

)
(3.44)

We now identify the Gauss law with the closure condition, and take the symplectic quotient
locally at each vertex. As discussed at the beginning of this chapter, this amounts to impose
the classical closure condition (3.5) and to divide by the SU(2) rotations it generates. The
result on each vertex is the space of shapes of the polyhedron, Sv ≡

�
e S

2
e//SU(2), which is

a 2(n− 3)-dimensional phase space.
On each edge, although the closure does not affect the ξe directly as a constraint, it does

as the generator of SU(2) transformations, since

{ξe, Ci
s(e)} = Li(ze) {ξe, Ci

t(e)} = −L
i(z̃e) (3.45)
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This double action on each ξe has the role of shifting the Hopf sections. Hence, the reduction
requires a gauge-fixing of the choice of Hopf sections in the ξe variable.

Now a tricky question could be how to find a gauge-invariant reduction of the ξe variables.
To understand this problem, consider first the simple example of a single edge closed on itself.

In this degenerate case the unique closure C = jN−jÑ = 0 implies only N = Ñ i.e. z̃ = z.
Then it’s easy to see from (3.45) that {ξ, C} vanishes on shell, hence ξ is a gauge invariant
variable. However, this vanishing would be lost had we chosen a non-matching section between
n and ñ. In other words, although we are free to choose the sections of the Hopf bundle at
the kinematical level, imposing the gauge invariance removes this freedom. Hence, finding a
gauge-invariant angle ξe requires also finding a consistent choice of sections throughout the
graph. This is something yet to be studied. For now, let us assume that the graph is such
that this fixing can be done globally without ambiguities. Then, denoting ξ0e the gauge-fixed
variables, one has

SΓ =
�
e

T ∗S1
�
v

Sv (3.46)

This is a factorization of the presymplectic gauge-invariant phase space in terms of a 2-
dimensional phase space assigned to each edge, and a 2(n − 3)-dimensional phase spaces as-
signed to each n-valent vertex. The procedure is then completed as before, dividing by the
kernel of the gauge-reduced symplectic 2-form. This results in a symplectic space SΓ isomor-
phic by construction to the gauge-invariant phase space (3.41), namely we obtain (3.14).

This decomposition shows that the gauge-invariant space is described by closed twisted ge-
ometries, and factorises as a product of phase spaces associated with edges and vertices. This
factorization offers a classical analogue to the decomposition HΓ = L2[SU(2)L/SU(2)N ] =

⊕je (⊗vHv) of the gauge-invariant Hilbert space on a fixed graph of the quantum theory. In
particular, closed twisted geometries realize explicitly the counting described earlier: 2 vari-
ables per edge and 2(n − 3) per vertex. The edge variables are still the abelian pairs (je, ξ

0
e ),

whereas the vertex variables are suitable cross ratios parametrized by n− 3 complex variables.
This complete factorisation and the related abelianization of the loop quantum gravity gauge-
invariant phase space is the most remarkable property of the new parametrisation introduced
here. It will play a key role in the construction of coherent states.

3.4 Spinors and Twistors

In this chapter we have introduced a parametrization of the phase space of loop quantum
gravity. The latter was given by holonomies of the gravitational connection and fluxes of the
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triad field, and the new parametrization is in terms of quantities descriving the intrinsic and
extrinsic discrete geometry of a cellular decomposition dual to the graph. The name twisted
was meant to stress the discontinuous nature, but also to imply the existence of a relation to
twistors as we now shall see [17].

3.4.1 Symplectic reduction

For the purpose of finding the connection with the edge phase space of LQG, the twistor
space is simply

T = C2 × C2 (3.47)

with coordinates (zA, z̃A), where the components zA and z̃A (A = 0, 1) are 2-dimensional
spinors. In these C2 spaces we introduce the two standard Poisson algebras

{zA, zB} = iδAB and {z̃A, z̃B} = −iδAB (3.48)

in terms of spinors and of course we endow C2 with the standard positive inner product

〈w|z〉 = wAz
A = w0z0 + w1z1 (3.49)

and norm
||z||2 = 〈z|z〉 = zAz

A = z0z0 + z1z1 = |z0|2 + |z1|2 (3.50)

In each of the two C2 we can also introduce the two (not independent) spinors

|z〉 =

(
z0
z1

)
|z] =

(
−z1
z0

)
(3.51)

and we will also have the z̃ counterpart. In general a spinor can be used to define a Minkowski
4-vector which is future-pointing and null. Choosing7 for example |z̃〉 we can construct X̃µ =

(X̃0, X̃i) such that
|z̃〉〈z̃| = X̃012 + X̃iσi (3.52)

where 12 is the 2× 2 Identity matrix and σi are the Pauli matrices. We also have

X̃i = 〈z̃|σ
i

2
|z̃〉 X̃0 =

1

2
〈z̃|z̃〉 = | ~̃X| (3.53)

whose explicit components are easy to compute

~̃X =
1

2

 z̃1z̃0 + z̃0z̃1
i(z̃1z̃0 − z̃0z̃1)
|z̃0|2 − |z̃1|2

 =

 Re[z̃0z̃1]

Im[z̃0z̃1]
1
2(|z̃0|

2 − |z̃1|2)

 X̃0 =
1

2
(|z̃0|2 + |z̃1|2) (3.54)

It is also often convenient to use X̃3 and X̃± ≡ X̃1±iX̃2 where X̃+ = z̃0z̃1 and X̃− = z̃0z̃1.
Notice that these are nothing but the classical version of Schwinger representation of angular

7See appendix B for conventions.
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momentum in terms of two harmonic oscillators. An analogous definition will hold for Xµ, with
a global minus sign according to the algebras (3.48).

It’s easy to see that both Xi and X̃i satisfy the algebra

{X̃i, X̃j} = εijkX̃
k (3.55)

in fact using X̃i = 1
2σ

i
AB z̃Az̃B

{X̃i, X̃j} = 1

4
σiABσ

j
CD{z̃Az̃B, z̃C z̃D}

=
1

4
σiABσ

j
CD(z̃Az̃D{z̃B, z̃C}+ z̃B z̃C{z̃A, z̃D})

=
1

4
σiABσ

j
CD

(
−iδBC z̃Az̃D + iδADz̃B z̃C

)
=
−i
4

(
σiACσ

j
CDz̃Az̃D − σ

j
CAσ

i
AC z̃B z̃C

)
= − i

4
〈z̃|
[
σi, σj

]
|z̃〉 = 1

2
εijk〈z̃|σ

k|z̃〉 = εijkX̃
k

(3.56)

being
[
σi, σj

]
= 2iεijkσ

k. This will hold also for the right vector field since the minus sign in its
definition is compensated by the spinor algebra. This is nothing but a first piece of the twisted
geometries algebra.

So going back to the original task, we wish to show the connection between these spinor
variables and the edge phase space of LQG. We have now two spinors which encode 8 degrees
of freedom. The space we are interested in is T ∗SU(2) which is only 6 dimensional. Thus we
wish to make a reduction like

C4 : 8d −→ 6d : T ∗SU(2) (3.57)

To do so we need a constraint, namely the norm matching constraint

H ≡ X0 − X̃0 = 0 (3.58)

which will be interpreted as an area matching constraint in the twisted geometries language.
Naively speaking, the requirement that the spacial vectors ~X and ~̃X have the same norm,
generates the action of U(1) transformations. So it first removes a degree of freedom being a
1-dimensional constraint but then we also have to ”divide” by the U(1) orbits to get in fact
(8− 1)/U(1) = 6 degrees of freedom left.

T : 8d
H =0−−−→ 7d

/U(1)−−−→ 6d : T ∗SU(2) (3.59)

Without going into much details, it is enough to define the reduced variables

j ≡ 1

2

(
X0 + X̃0

)
ξA ≡ −i

(
ln
zA
zA

+ ln
z̃A

z̃A

)
(3.60)
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The first one is the common norm of the spacial vectors and for which it is useful to introduce
the unit vectors

N i =
Xi

j
Ñ i = −X̃

i

j
(3.61)

which, once parametrized with stereographic complex coordinates (3.19), are the ingredient of
the twisted geometries. The second variable ξ in (3.60) is needed because (j,N i, Ñ i) span a
5-dimensional subspace commuting with the constraint that is not enough. The reduced phase
space needs also a sixth angular variable such that altogether they satisfy

{j,H} = 0 {ξA,H} = 0 {ξA, j} = 1 (3.62)

which means that the new variables commute with the constraint and both ξ0 and ξ1 are
conjugated to j. They are thus equally valid choices for the reduced space, related by a the
canonical transformation. One could now extract the same algebra of the twisted geometries
with variables (N i, Ñ i, j, ξA) so that the space reduction is complete. The key point is that
this algebra comes naturally from a reduction of the canonical Poisson structure of two spinor
spaces or equivalently a twistor space. So far we have the brackets (3.55) written in terms of
(3.61), and the last bracket in (3.62). It is also immediate to see that j commutes with both
N and Ñ . The only remaining brackets to evaluate are

{ξA , jN i} = Li
A(N) (3.63)

which give, in cylindrical components i = 3,−,+

Li
0(N(z)) = (1,−z,−z̄) Li

1(N(z)) = (1, 1/z̄, 1/z) (3.64)

Here L(N) ≡ L0(N(z)) is exactly the function introduced in section 3.2 and L1(N) = L(N(−1/z̄)) =
L(−N(z)). From now on, we take ξ = ξ1 as the reduced variable. As explained in [16], the
existence of canonical transformations which shift the ξ variable and L are related to changes
of section in the Hopf map. Collecting the brackets we find

{jN i, jN j} = εijk jN
k {jÑ i, jÑ j} = −εijk jÑ

k {N i, Ñ j} = 0 {ξ, j} = 1

{N i, j} = 0 {Ñ i, j} = 0 {ξ, jN i} = Li(N) {ξ, jÑ i} = Li(Ñ)

(3.65)
exactly as (3.17). Notice that in the original paper [17] a slightly different choice was used:
the orientation of the spheres were in fact chose to be the same, so that the second brackets
would have a plus sign exactly as the first ones. As mentioned in the above, this is nothing but
convention. In the present case it would change the definition Ñ i in (3.61) simply removing
the minus sign, and it would affect the isomorphism (3.35) with T ∗SU(2) in a minor way

(N, Ñ, j, ξ)→ (X, g) : X = jN

g = ñeξτ3 ε n−1
(3.66)
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namely, by the introduction of ε = iσ2 which is nothing but the metric tensor in the spinor
space. Here one would therefore have X̃ = jÑ = −gXg−1, but in fact one could make even
different choices8.

In any case, we have shown that the twisted geometries algebra descends in a simple way
from the canonical Poisson brackets on twistor space. Another thing that could have been done
is to show another symplectic reduction, namely from twistor space to the cotangent bundle of
SU(2). Of course we already know from the previous sections that this is isomorphic to the
twisted geometries space but for completeness and later convenience, we also explore this very
simple alternative reduction.

If we forget about the twisted geometries parametrization, we recall that we can trivialize
T ∗SU(2) ∼= su(2) × SU(2) as the pair (X, g). If X is a right-invariant vector field then the
adjoint

X̃ = −gXg−1 (3.67)

is left-invariant. So the Poisson brackets read

{Xi, Xj} = εijkX
k {X̃i, X̃j} = εijkX̃

k {Xi, g} = −τ ig {g, X̃i} = gτ i (3.68)

The first two brackets hold automatically in the reduction of the twistor space, since Xi

and X̃i commute with the constraint (3.58) and satisfy (3.55). To close the algebra we now
need to find a g(zA, z̃A) ∈ SU(2) such that commutes with the constraint H and satisfy the
above algebra. It is easy to see that

g(zA, z̃A) =
|z̃〉〈z|+ |z] [z̃|
||z|| ||z̃||

=
|z̃〉〈z|+ |z] [z̃|√
〈z|z〉〈z̃|z̃〉

(3.69)

fulfils those requirements. It is a proper element of SU(2) and the following properties hold

g|z〉 = |z̃〉 g |z] = |z̃] (3.70)

thanks to gg† = g†g = 1. It can also be written in terms of components

gAB =
z̃AδBḂ z̄

Ḃ + δAȦ ¯̃zAzB

||z|| ||z̃||
=

1

||z|| ||z̃||

(
z̃0z̄0 + ¯̃z1z1 z̃0z̄1 − ¯̃z1z0

z̃1z̄0 − ¯̃z0z1 z̃1z̄1 + ¯̃z0z0

)
(3.71)

The commutation with the constraint H is straightforward and less trivially one could also
show that the matrix elements commute among themselves in the surfaces where H = 0 is
satisfied. Furthermore, the property (3.67) follows from (3.70) and the brackets (3.68) from the

8It is worth to stress that all such choices are equivalent and just a matter of conventions: one could also
define the map g = ñεeξτ3n−1 that together with X = jN would also imply X̃ = −gXg−1 = jÑ . Moreover
one could use two epsilons in g = ñεeξτ3εn−1 and get the same convention as (3.35) with no epsilons at all,
namely X̃ = −gXg−1 = −jÑ . Of course, the important point is to be consistent with the choice made. This
liberty will be reflected in the choice of the sphere coherent states that compose the twisted geometries coherent
states.
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definitions (3.54) and the algebra (3.48). Finally, under local SU(2) transformations g(z, z̃)
transforms exactly as the holonomy of an SU(2) connection

(|z〉, |z̃〉) SU(2)−−−−→ (h1|z〉, h2|z̃〉) ⇒ g(z, z̃)
SU(2)−−−−→ h1g(z, z̃)h

−1
2 (3.72)

Summarizing, in terms of the standard holonomy-flux parametrization which is given by
(3.69) and (3.53), we obtain a spinorial representation such that the space reduction considered
reads

T 3 (|z〉, |z̃〉) −→ (X(z), g(z)) ∈ T ∗SU(2) (3.73)

To be precise, starting from the natural symplectic structure on T one can derive the reduced
symplectic structure for g and X which (on the constraint hypersurface, i.e. when H = 0 is
satisfied) turns out to be

{Xi(z), Xj(z)} = εijkX
k(z) {gIJ(z, z̃), gKL(z, z̃)} = 0 {Xi(z), gIJ(z, z̃)} = −τ igIJ(z)

{X̃i(z), X̃j(z)} = εijkX
k(z) {X̃i(z), gIJ(z, z̃)} = gIJ(z)τ

i (3.74)

which is identical to the standard symplectic structure on T ∗SU(2) (3.39). This symplectic
reductions gives a spinorial representation of holonomies and fluxes.

Applied to loop gravity this gives an interesting picture: consider a graph consisting simply
of one edge e between vertex v1 and vertex v2. Then, instead of assigning a group element g
and a Lie algebra element X to the edge, one can equally well assign doublet of spinors |z〉
and |z̃〉 to the vertices. Thus, the dynamical degrees of freedom are shifted to the nodes of the
graph where these new spinor variables ”are sitting”, in this interpretation.

3.4.2 Null twistors

Up to now, we have connected twisted geometries to a pair of spinors in C4. The true
relation is in fact with twistors and in particular null ones. Let us very briefly review some
basic notions about twistor, following the literature [32].

A twistor Zα ∈ C4 can be viewed as a pair of spinors Zα = (|ω〉, |π〉), where |π〉 defines
a null direction pπ = |π] [π| in Minkowski space, while |ω〉 defines a point x in complexified
Minkowski space via |ω〉 = ix|π〉.

On twistor space there is a natural hermitian pairing given by

ZαZ
α = 〈ω|π〉+ 〈π|ω〉 (3.75)

and the quantity s = ZαZ
α/2 is called helicity of the twistor. When a twistor is null, namely

s = 0, the matrix x is hermitian and thus identifies a point in real Minkowski space. However,
x is defined only up to the addition of a null momentum pπ, since pπ|π〉 = 0. The resulting
null ray x+ λ pπ can be explicitly obtained as

x(λ) =
|ω〉〈ω|
i〈ω|π〉

+ λ |π] [π| λ ∈ R (3.76)
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Hence, a null twistor defines a null generator pπ and a null ray in Minkowski space. These
together are called ”ruled” null ray in the following, since the ray has a specific generator.

Now, the relation with the twisted geometries is established by the map

|ω〉 ≡ |z〉+ |z̃] |π〉 ≡ |z〉 − |z̃] (3.77)

Under this map, the twistor hermitian pairing (3.75) becomes

s =
1

2
(〈ω|π〉+ 〈π|ω〉) = 〈z|z〉 − [z̃|z̃] (3.78)

Then, the constraint H = 0 in (3.58) is equivalent to the statement that Zα(z, z̃) is a
null twistor, and its U(1) action translates into a global rescaling of Zα. Therefore, the space
{(|z〉, |z̃〉)} reduced by H = 0 can be interpreted as a phase space of null twistors TN up to
a global phase. This is the connection between (null) twistors and twisted geometries. This
mathematical correspondence shows that we can think of an element of the edge phase space
of loop quantum gravity, as a ruled null ray in Minkowski space. Whether this is just a math-
ematical correspondence, or it has a deeper geometrical origin, is still to be understood.

One remark is now in order, regarding the geometrical interpretation of the constraint
He associated to the edge. Consider a cellular decomposition dual to the graph. A twisted
geometry assigns to each face (dual to the edge e) its oriented area je, the two unit normals
Ne and Ñe as seen from the two vertex frames sharing it, and an additional angle ξe related
to the extrinsic curvature between the frames. Working with C4

e = {(zA, z̃A)} corresponds to
relaxing the uniqueness of the area and assigning to each face two areas X0

e and X̃0
e , one for

each polyhedra sharing the link. The constraint He then imposes the matching of these areas.
What we have shown is that the phase space of loop quantum gravity on a fixed graph can be
obtained starting from a geometric intepretation of twistors and imposing an area matching
condition, which is equivalent to say that the twistors are null. For a detailed analysis on the
relation with twistors see [41].

3.5 From twistors to Regge geometries

We have seen that twisted geometries describe a notion of discrete geometry associated to
the kinematical phase space of loop quantum gravity. Then we have noticed that after the
closure condition is imposed over the whole graph, one has the space of closed twisted geome-
tries corresponding to gauge-invariant phase space of LQG. This reduced space still describes
discontinuous metrics, because of the shape-matching problem discussed above.

At this point, one might also wonder what happens if the shapes are made to match. To
make the shapes match and the geometries continuous, one needs to add gluing constraints.
Since the reduction by the gluing constraints of areas and normals alone corresponds to Regge
calculus, the reduction of the closed twisted geometries gives a notion of phase space for Regge
calculus, described by the (now continuous) piecewise flat Regge metrics, and their extrinsic
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Figure 3.2: Two high valency nodes and the link connecting them. Left panel: in general two
adjacent polyhedra do not glue well: even if the area of the grey face is the same because
there is a unique spin associated with the link, the shapes will be different in general. Right
panel: if one imposes the appropriate conditions on the polyhedra the shapes can be made to
match.

curvature. As these constraints provide a further restriction than the Gauss law, such a Regge
phase space is smaller than the gauge-invariant loop gravity phase space on a fixed graph. This
should not come as a surprise: each configuration of holonomies and fluxes in corresponds in
fact to infinite possible continuous metrics, but in general none of these will be piecewise flat.
Such characterization requires additional conditions, which thanks to the twisted geometry
parametrization of the gauge-invariant phase space, are manifestly identified precisely by the
gluing constraints.
Moreover we have also pointed out a connection with a ”bigger” space, namely the twistor space.
We know that the space of twisted geometries, isomorphic to T ∗SU(2), is related to null twistors
in C4. Since the phase space of LQG on a fixed graph is just the cartesian product

�
e T

∗SU(2),
it then can be derived from the larger space

�
eC4, imposing the area (or norm) matching

constraint (3.58) at each edge. The derivation can be done in both the usual holonomy-fux
parametrization (ge, Xe) or in the twisted geometries parametrization (Ne, Ñe, je, ξe), as seen
above. An interesting aspect of the twistor description is that it admits a complete factorization
over the vertices, as opposed to the edges�

e

C4 =
�
v

C2F (v) (3.79)

where F (v) is the valency of the vertex v. This result follows straightforwardly once we use the
orientation of the edges to assign |z〉 to say the source vertex and |z̃〉 to the target one.

Twistors and twisted geometries form natural spaces that can be associated to a graph.
They admit simple geometric interpretations, and are related to the kinematical (i.e. prior
to imposing the Gauss law implementing gauge-invariance) phase space of loop gravity on a
fixed graph. We can see a picture forming here, going down from the twistor space to the
Regge geometries. Let us recall that gauge-invariance is achieved reducing the space of twisted
geometries by the closure condition (3.5)

Cv =
∑
e⊃v

jeNe(v) = 0 (3.80)
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at each vertex. The resulting space of closed twisted geometries is isomorphic to the gauge-
invariant space of LQG,

�
e T

∗SU(2)//SU(2)V . The variables parametrize it as
�

e T
∗S1

e

�
v Sv,

where T ∗S1 is the cotangent bundle to a circle and Sv is the space of shapes of polyhedra. Closed
twisted geometries define a local flat metric on each polyhedron. However, this metric is discon-
tinuous: although each face has a unique area, it acquires a different shape when determined
from the variables associated to the two polyhedra sharing it, since there is nothing enforcing a
consistent matching of the faces. This discontinuity can be traced back to the fact that the nor-
mals carry both intrinsic and extrinsic geometry. Finally, as anticipated here above, for graphs
dual to triangulations, the space of closed twisted geometries can be related to the phase space
of Regge calculus9 when one further imposes the gluing or shape matching conditions.

The following scheme summarizes the hierarchy in which twisted geometries fit in.

Twistor space

Twisted geometries Phase space of LQG

Closed Twisted Geometries Gauge invariant LQG

Regge phase space

area matching

closure

shape matching

From top to bottom, we move from larger and simpler spaces, with less intuitive geometrical
meaning, to smaller and more constrained spaces, with clearer geometrical meaning. The results
establish a path between twistors and Regge geometries, via loop gravity.

3.6 Geometrical picture

The unique correspondence between closed normals and polyhedra studied in chapter 3,
together with the decomposition of the space of twisted geometries (3.14), mean that each clas-
sical holonomy flux configuration on a fixed graph can be visualized as a collection of polyhedra,
with a notion of parallel transport between them. Just as the intertwiners are the building blocks
of the quantum geometry of spin networks, polyhedra are the building blocks of the classical
phase space in the twisted geometries parametrization.

9Regge was dealing with tetrahedra only, so for an arbitrary graph one would have a generalization of a 3d
Regge geometry to arbitrary cellular decomposition. Notice however that the variables are not equivalent any
more to edge lengths, since these do not specify uniquely the geometry of a generic polyhedron. Rather, these
general Regge geometries must use areas and normals as fundamental variables.
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These results will be fundamental for the constructions of coherent states. As we know,
coherent states for loop quantum gravity have been introduced and extensively studied by
Thiemann. It turns out that in practical terms, it is often convenient to truncate the theory
to a single graph. This truncation provides a useful computational tool, to be compared to
a perturbative expansion, and has found many applications, from the study of propagators to
cosmology. In many of these applications, control of the semiclassical limit requires a notion of
semiclassical states in the truncated space. The truncation can only capture a finite number
of degrees of freedom, thus coherent states are not peaked on a smooth classical geometry.
Twisted geometries offer a way to see them as peaked on a discrete geometry, to be viewed as
an approximation of a smooth geometry on a cellular decomposition dual to the graph. In fact
the reparametrization in terms of them achieves precisely a prescription for an interpolation
procedure: starting from holonomies and fluxes on a graph, we can assign to them a specific
twisted geometry which is nothing but a bunch of fuzzy polyhedra. This chapter allows one to
see the geometrical picture of twisted geometries in terms of quantum polyhedra, and thus of
coherent states as a collection of semiclassical polyhedra.

Figure 3.3: Geometrical interpretation of a spin network in terms of adjacent quantum poly-
hedra, to be compared to the generic chunks of figure 2.4



Chapter 4

Coherent states

This chapter contains bibliographical content but also some original work. The concept of
coherent states (CS) goes back to the year 1926 when Schrödinger himself introduced them.
Since then, several mathematical generalizations have been proposed and the many approaches
to coherent states that we have nowadays almost transmit the impression of purely arbitrary
definitions. Sometimes CS are introduced as the states such that the expectation values of
some suitable operators, taken with respect to them, satisfy the classical equations of motion.
Furthermore they are often introduced as eigenstates of some annihilation operator and this
is related to the minimization of some Heisenberg uncertainties relations. In the simplest case
of the Harmonic Oscillator, more formally, CS can be seen as generated by the action of the
Heisenberg group over the vacuum state. Only for this simple system however, all these as-
pects and definitions coincide; in general this will not happen. It is clear now that for general
systems, one always need to be careful when talking about coherent states. Whether they are
defined through a modern geometrical or algebraic formulation, one has to clarify in which
sense among the above, some states are considered coherent. In general CS are wanted to be
”quasi-classical”, namely the quantum states which best approximate the classical behaviour.
The weakest requirement for CS is probably the fact that they form an overcomplete basis and
they resolve the identity operator, a feature that will be used in what follows. This chapter is
not a comprehensive review of coherent states, it is merely the description of the ones needed
to build the Twisted Geometries CS. In general, there is no better definition of coherent states
and this depends on the context and on what they will be used for.

In the case of LQG, as described in chapter 2, the existing heat kernel coherent states are
in fact eigenvectors of an certain destruction operator and there are some peakedness proofs.
However, the destruction operator for instance is a horrible function of holonomies and fluxes
and at the same time the various properties are very hard to prove and one needs very cum-
bersome techniques to argue the peakedness. For example the direction of the fluxes is not so
nicely singled out. Here lie some of the motivations for a new set of coherent states which have
similar properties but have a nicer and clear geometrical interpretation, since for example they
single out clearly the relevant things useful to have a discrete geometrical description.
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In this chapter we recall the existing coherent states for quantum systems useful for our pur-
pose, namely the SU(2) and T ∗S1 CS motivated by the twisted geometries parametrization, and
we also introduce a new set of CS for the harmonic oscillators. These new states are needed due
to the Z2 symmetry technical problem featuring the twisted geometries parametrization, which
exclude the possibility to use the standard T ∗S1 CS. The known states will be only reviewed
whereas the new harmonic oscillator states, which will play a key role for the construction of
the final Twisted Geometries LQG coherent states, will be discussed in more detail.

4.1 Sphere

The sphere coherent states are very well known objects, therefore this section will be just
a short review on the topic, where we recall the useful properties which will be needed in the
following.

Following [33], the so called SU(2) coherent states (also spin or Bloch CS) are those that
minimize the uncertainty ∆ = |〈J2

i 〉 − 〈J〉2| in the direction of the angular momentum. To be
precise, SU(2) is the exponentiation of the real Lie algebra su(2) (which has generators Ji such
that [Ji, Jj ] = iεijkJk), and its unitary irreducible representations of are the Hilbert spaces
Hj . These are labelled by a half integer spin j and spanned by the magnetic basis |j,m〉 with
m ∈ {−j, · · · , j}. This basis diagonalises simmultaneously Jz and the Casimir ~J2

Jz |j,m〉 = m |j,m〉 ~J2 |j,m〉 = j(j + 1) |j,m〉 (4.1)

A simple calculation shows that on basis state, the uncertainty ∆ = j(j + 1) − m2 is
minimized when j = ±m. The maximal and minimal weight vectors, |j, j〉 and |j,−j〉, are thus
coherent states for arbitrary choice of spin j and angular momentum axis Jz.

Figure 4.1: The cone represents the spread which scales as 1/
√
j

It is in fact elementary to check that for example the state |j, j〉 for which

Jz|j, j〉 = j|j, j〉 =⇒ 〈Jz〉 = j (4.2)
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holds, saturates the Heisenberg relation

∆Jx∆Jy =
1

2
|〈Jz〉| (4.3)

since ∆Jx = j
2 = ∆Jy. Another immediate property is that in the large j limit the relative

uncertainty scales like 1/
√
j and there fore the state becomes sharp for j → ∞. The same

arguments hold for the state |j,−j〉.
Starting from the two families above, an infinite set of coherent states on the sphere are

constructed through the group action, and to keep track of the difference we use the notations

|j, n〉 = n(ζ) |j,−j〉 |j, n] = n(ζ) |j, j〉 (4.4)

Note that they are sometimes denoted |j, ~n〉 but we omit the arrows1 upon the vectors inside
the bra and ket. We will use the common notation |j, ~n〉 = n |j,±j〉 to represent both the
highest and lowest weight together.
The group element n can be decomposed as n(ζ) : S2 � SU(2) times a U(1) phase. The unit
sphere S2 can be parametrized by a complex number ζ ∈ C (expect from one point) by the
stereograhical projection

~n(ζ) =
1

1 + |ζ|2

−ζ − ζ̄i(ζ̄ − ζ)
1− |ζ|2

 (4.5)

which defines a point or direction on the sphere. Formally, in [33] they show that the group
U(1) is the so called isotropy subgroup of SU(2) which stabilises the states up to a phase,
so we have the isomorphism SU(2)/U(1) ∼= S2. We denote the representative for each class
~n(ζ) ∈ S2 with the same symbol n ∈ SU(2)

n(ζ) =
1√

1 + |ζ|2

(
1 ζ

−ζ̄ 1

)
(4.6)

which are the group elements that enter the definitions (4.4). Equation (4.6) is nothing but the
Hopf section defined in chapter three, see equation (3.21).

Simply put, the group action rotates the z direction in the ~n direction. Explicitly, taking
~n =

(sin θ cosφ, sin θ sinφ, cos θ), we choose n = exp{iθm · ~J} where m = (sinφ,− cosφ, 0) is a unit
vector orthogonal to both the directions z and ~n. So just as |j, j〉 has direction z with minimal
uncertainty, |j, n] has direction ~n with minimal uncertainty as can be easily verified. The same
holds for the lowest weight case for which, for example,

〈j, n|Ji|j, n〉 = 〈j,−j|J ′
i |j,−j〉 (4.7)

where J ′
i = nJin

−1 is the rotated generator.

1This implies that the same notation is used for the group and the sphere element.
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Figure 4.2: Generic direction on the sphere

A coherent state can be decomposed in terms of the usual magnetic basis as

|j, n(ζ)〉 = 1

(1 + |ζ|2)j
j∑

m=−j

(
2j

j +m

) 1

2

ζj+m|j,m〉

|j, n(ζ)] = 1

(1 + |ζ|2)j
j∑

m=−j

(
2j

j +m

) 1

2

ζj−m|j,m〉

(4.8)

These states are normalized but not orthogonal. Consequently they provide an overcomplete
basis for the irreducible representations j, and the resolution of the identity can be written as

1j = dj

∫
S2

d2n |j, n〉〈j, n| = dj

∫
S2

d2n |j, n] [j , n| (4.9)

where d2n denotes the normalized measure on the sphere (namely it includes the factor (4π)−1).

Among the important properties that these states satisfy, we point out that the SU(2) CS
are eigenstates of ~n · ~J (here ± stands for highest and lowest respectively)

~n · ~J |j, ~n〉 = ±j|j, n〉 =⇒ 〈j, ~n|Ji|j, ~n〉 = ±jni (4.10)

This is the analogous relation of (4.2) in an arbitrary direction. Another important property
concerns the square of a component of a SU(2) generator

〈j, ~n|J2
i |j, ~n〉 =

j

2
+ j

(
j − 1

2

)
n2i (4.11)

which is identical for both families of CS and follow from the more general formula

〈j, ~n|JiJj |j, ~n〉 =
j

2
(δij ± iεijknk) + j

(
j − 1

2

)
n2i (4.12)

depending whether |j, ~n〉 highest (+) or lowest (-) weight. Equation (4.11) must not be confused
with

〈j, ~n| ~J2|j, ~n〉 = j(j + 1) (4.13)
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which involves the Casimir operator.

From all these properties one immediately sees that the uncertainty

∆2 ≡ 〈j, ~n| ~J2|j, ~n〉 − 〈j, ~n| ~J |j, ~n〉〈j, ~n| ~J |j, ~n〉 = j (4.14)

as anticipated and that for instance the Heisenberg relation

∆J1∆J2 ≥
1

2
|〈J3〉| (4.15)

is minimized, similarly to what we had in equation (4.3).

To make a contact with twisted geometries we also notice that thanks to the properties
listed above, these coherent states satisfy

〈j,±j|n−1(ζ)Jin(ζ)|j,±j〉 = ±j Ni (4.16)

where N ≡ nτ3n
−1 is one of the Twisted Geometries variables introduced in chapter 3. It is a

unit vector identifying a point on the sphere with spherical components

N+(ζ) = −
2ζ̄

1 + |ζ|2
, N−(ζ) = −

2ζ

1 + |ζ|2
, N3(ζ) =

1− |ζ|2

1 + |ζ|2
(4.17)

Finally from equations (4.10) and (4.11), they minimize the uncertainty in the angular momen-
tum direction, in the sense that the relative uncertainty vanishes in the large spin limit

(∆Ji)
2

〈Ji〉2
=

(1− n2i )
2jn2i

−−−→
j→∞

0 (4.18)

where they become sharp. This is exactly the property we will look for in the new LQG coher-
ent states, to look at their peakedness. The SU(2) coherent states were used in the quantum
gravity community since the introduction of the coherent intertwiner discussed in chapter 2,
and they turn out to be a very natural object for this subject.

Let us also recall that the two families of CS are related by the SU(2) metric tensor εab =
(−1)j−aδa,−b which satisfy ε|j,−j〉 = |j, j〉, where in the fundamental representation ε = iσ2.

4.2 Particle on the circle

We describe here the coherent state for the space T ∗S1 which is the classical phase space of
a particle on a circle. We do not derive all the results since they are known and can be found in
the literature [24], nevertheless we show in a little more details the calculations, compared to
what we did with the SU(2) CS, in order to clarify some interesting topics not clearly discussed
elsewhere.
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We call the conjugated variables ξ ∈ [−2π, 2π] which is the angle and j ∈ R which is the
momentum. As it is well known they satisfy the following Poisson bracket at the classical level
which gets quantized by the operator algebra given by the commutator

{ξ, j} = 1
~−−−−→

[
ξ̂, ĵ
]
= i (4.19)

where of course ~ is set to 1. Note that we have chosen for future convenience the periodicity
in ξ to be 4π, so that the spectrum of ĵ is quantized in half-integer steps.

The Hilbert space is spanned by states |ψ〉 which are 4π-periodic functions of the angle
ψ(ξ + 4πn) = ψ(ξ), with scalar product

〈ψ|ψ〉 = 1

4π

∫ 2π

−2π
dξ|ψ(ξ)|2 (4.20)

Let us denote |ξ〉 the eigenstate of e
i

2
ξ̂ and |j〉 those of ĵ such that

e
i

2
ξ̂ |ξ〉 = e

i

2
ξ |ξ〉 ĵ |j〉 = j |j〉 (4.21)

From the canonical commutator one has[
e

i

2
ξ̂ , ĵ

]
= −1

2
e

i

2
ξ̂ (4.22)

And from there one can derive
e

i

2
ξ̂ |j〉 = |j + 1/2〉 (4.23)

since
e

i

2
ξ̂|j〉 = −2

(
e

i

2
ξ̂ ĵ − ĵe

i

2
ξ̂
)
|j〉 = −2j e

i

2
ξ̂|j〉+ 2ĵe

i

2
ξ̂|j〉 (4.24)

Therefore
ĵe

i

2
ξ̂|j〉 =

(
j +

1

2

)
e

i

2
ξ̂|j〉 (4.25)

which implies (4.23). So from now on we take j ∈ Z/2. We are using the same notation for
the classical variable and the eigenvalue of its operator, as usually done. We will use extra care
when needed.

Coherent states for this space have been studied e.g. in [7, 8, 24] and more recently in [18].
They can be defined as eigenstates |ω〉 of the (non-unitary) operator eiω̂, where ω̂ ≡ ξ̂ + itĵ

and t is just a real parameter for later convenience

eiω̂ |ω〉 = eiω |ω〉 (4.26)

and they are defined to be
|ω〉 ≡

∑
j∈Z/2

e−
t

2
j2e−iωj |j〉 (4.27)

To check this, it is enough to compute

eiω̂ |j〉 = eiξ̂−tĵ |j〉 = e−
t

2 eiξ̂e−tĵ |j〉 (4.28)
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where we used the BCH formula. Now, using the known action of the operators we get

eiω̂ |j〉 = e−
t

2 e−tj |j + 1〉 = e
t

2
j2e−

t

2
(j+1)2 |j + 1〉 (4.29)

where we rearranged the terms in the last equality. Now, plugging it in (4.26) it is straightfor-
ward to see that

eiω̂|ω〉 =
∑
j

e−
t

2
j2e−iωj eiω̂|j〉 = eiω|ω〉 (4.30)

4.2.1 Properties

The scalar product of these states computes to

〈ω′|ω〉 =
∑
j∈Z/2

e−tj2e−i(ω−ω̄′)j (4.31)

Notice that they are not normalized. They provide a resolution of the identity

1 =

∫
dµ(ω)e−

Im(ω)2

t |ω〉〈ω| where
∫
dµ(ω) ≡

∫ 2π

−2π

dRe(ω)

4π

∫ ∞

−∞

d Im(ω)√
πt

(4.32)

as it is easy to verify

1 =

∫
dµ(ω) e−

Im(ω)2

t

∑
j,k

e−
t

2
(j2+k2)e−iRe(ω)(j−k)eIm(ω)(j+k)|j〉〈k|

=
∑
j,k

e−
t

2
(j2+k2)

∫ 2π

−2π

dRe(ω)

4π
e−iRe(ω)(j−k)

∫ ∞

−∞

d Im(ω)√
πt

eIm(ω)(j+k)e−
Im(ω)2

t |j〉〈k|

=
∑
j

e−tj2
∫ ∞

−∞

d Im(ω)√
πt

e2 Im(ω)je−
Im(ω)2

t |j〉〈j|

=
∑
j

|j〉〈j|

(4.33)

where we used
∫ 2π
−2π dx e

−ix(j−k) = 4πδjk and then
∫∞
−∞ dx e2xje−

x2

t =
√
πt etj

2 .

Now these states are semiclassical in the sense that they reproduce the classical variables
in phase space. First of all we have the to compute the normalized expectation values

〈ω|ĵ|ω〉
〈ω|ω〉

〈ω|eiξ̂|ω〉
〈ω|ω〉

(4.34)

where, from (4.31) we have

〈ω|ω〉 =
∑
j

e−tj2e2 Im(ω)j ≡ D (4.35)
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So we obtain

〈ω|ĵ|ω〉
〈ω|ω〉

=

∑
j j e

−tj2+2 Im(ω)j∑
j e

−tj2+2 Im(ω)j
=

∑
j j e

−t
(
j− Im(ω)

t

)2

+ Im(ω)

t∑
j e

−t
(
j− Im(ω)

t

)2

+ Im(ω)

t

=

∑
j j e

−t
(
j− Im(ω)

t

)2

∑
j e

−t
(
j− Im(ω)

t

)2

'
∫
dj j e

−t
(
j− Im(ω)

t

)2

∫
dje

−t
(
j− Im(ω)

t

)2 =

√
π
t√
π
t

Im(ω)

t
=

Im(ω)

t

(4.36)

where we approximated the sum with continuous integrals and used the Gauss integral. More-
over

〈ω|eiξ̂|ω〉
〈ω|ω〉

=
1

D

∑
j,k

e−
t

2
j2eiω̄je−

t

2
k2

e−iωk〈j|k + 1〉 = 1

D

∑
k

e−
t

2
(k+1)2eiω̄keiω̄e−

t

2
k2−iωk

=
1

D

∑
k

e−tk2

e−tke−
t

2 e2 Im(ω)keiω̄ =
1

D
e−

t

4
+iω̄
∑
k

e
−t

(
k+ 1

2

)2

e2 Im(ω)k

=
1

D
e−

t

4
+iω̄
∑
k′

e−tk′2
e2 Im(ω)k′−Im(ω) = e−

t

4 eiω̄−Im(ω)

∑
k′ e−tk′2

e2 Im(ω)k′∑
j e

−tj2e2 Im(ω)j

= eiRe(ω)− t

4

(4.37)

where we completed the square at the exponent and we renamed k+1/2→ k′. This last result
does not belong to the circle but one should not be alarmed by this fact: an expectation value
can normally be ill-defined even for Hermitian operators. A well-defined expectation value can
be defined via the reference ket |ω0〉

〈ω|eiξ̂|ω〉/〈ω|ω〉
〈ω0|eiξ̂|ω0〉/〈ω0|ω0〉

=
eiRe(ω)− t

4

eiRe(ω0)− t

4

= ei[Re(ω)−Re(ω0)] = eiRe(ω) where ω0 = i (4.38)

With these definitions of expectation values, the states are peaked on the classical pair (ξ, j) =
(Re(ω), Im(ω)/t). In order to look at the uncertainties (without using the reference ket for the
expectation value) we need (

∆êiξ
)2

= 〈(êiξ)2〉 − 〈êiξ〉2 (4.39)

where of course from (4.37)
〈êiξ〉2 = e2iRe(ω)− t

2 (4.40)

and recalling (4.35)

〈(êiξ)2〉 = 〈ω|(e
iξ̂)2|ω〉
〈ω|ω〉

=
1

D

∑
k

e−
t

2
(k+2)2eiω̄(k+2)e−

t

2
k2

e−iωk =
1

D
e2iω̄−2t

∑
k

e−tk2

e2 Im(ω)ke−2kt

=
1

D
e2iω̄−t

∑
k

e−t(k+1)2e2 Im(ω)k =
1

D
e2iω̄−t−2 Im(ω)

∑
j

e−tj2e2 Im(ω)j = e2iRe(ω)−t

(4.41)
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where we completed the squared and renamed j = k + 1. So(
∆êiξ

)2
= e2iRe(ω)−t − e2iRe(ω)− t

2 = e2iRe(ω)−t
(
1− e

t

2

)
(4.42)

Now coming to ĵ we have
(∆ĵ)2 = 〈ĵ2〉 − 〈ĵ〉2 (4.43)

where from (4.36)

〈ĵ〉2 = Im(ω)2

t2
(4.44)

and

〈ĵ2〉 = 〈ω|ĵ
2|ω〉

〈ω|ω〉
=

∑
j j

2 e
−t

(
j− Im(ω)

t

)2

∑
j e

−t
(
j− Im(ω)

t

)2

'
∫
dj j2 e

−t
(
j− Im(ω)

t

)2

∫
dje

−t
(
j− Im(ω)

t

)2 =
2 Im(ω)2 + t

2t2

(4.45)

where again we used Gaussian integral in the limit. Therefore

(∆ĵ)2 =
2 Im(ω)2 + t

2t2
− Im(ω)2

t2
=

1

2t
(4.46)

4.2.2 Minimization of uncertainties relations

So one now expects that the Heisenberg relation

(∆ĵ)2(∆êiξ)2 ≥ 1

4
〈êiξ〉2 (4.47)

is minimized. However this is not the case, in general. If one insists and consider the small t
limit in (∆êiξ)2 ∣∣∣(∆êiξ)2∣∣∣ ∼ t

2
e2iRe(ω) (4.48)

it would be closer but still not satisfying

(∆ĵ)2(∆êiξ)2 =
1

4
e2iRe(ω) 6= 1

4
e2iRe(ω)− t

2 (4.49)

As a matter of fact there is a case in which this holds. As suggested by Kowalski and collabo-
rators in [24], one could pick the reference ket |ω0〉 with ω0 = i such that the expectation value
〈eiξ〉 = eiRe(ω), as seen above. In that case, the minimization would hold although one should
justify the specific choice for the normalization of the expectation value.

So strictly speaking, the states do not saturate the Heisenberg inequality between those
operators. Nevertheless, as shown in [24], one can actually find and build new operators for
which these coherent states do minimize some uncertainties relations. They are

Q :=
X +X†

2
P :=

X −X†

2i
(4.50)
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where X = eiω̂ and ω̂ = ξ̂ + itĵ. One can in fact show that

∆Q∆P =
1

2
〈[Q,P ]〉 (4.51)

To show this we have to compute

[Q,P ] =
1

4i

[(
X +X†

)
,
(
X −X†

)]
=

1

4i

(
−
[
X,X†

]
+
[
X†, X

])
=

1

2i

(
−XX† +X†X

)
=

1

2i

(
−e2tX†X +X†X

)
=

1

2i

(
1− e2t

)
X†X = − 1

2i

(
e2t − 1

)
X†X

(4.52)

where we used X†X = e−2tj−t and XX† = e−2tj+t = e2tX†X. So now
〈ω| [Q,P ] |ω〉
〈ω|ω〉

= − 1

2i

(
e2t − 1

)
e−2t Im(ω) (4.53)

It is in fact easier t check the square of the uncertainties so we will need
1

4
〈[Q,P ]〉2 = − 1

16
e−4 Im(ω)t

(
1 + e4t − 2e2t

)
(4.54)

to confront with
(∆Q)2(∆P )2 =

(
〈Q2〉 − 〈Q〉2

) (
〈P 2〉 − 〈P 〉2

)
(4.55)

where

〈Q〉 ≡ 〈ω|Q|ω〉
〈ω|ω〉

=
1

2
〈eiξ〉ω +

1

2
〈(eiω)†〉ω

=
1

2

(
eiω + e−iω̄

)
=

1

2

(
eiRe−t Im(ω) + e−iRe−t Im(ω)

)
= e−t Im(ω) cos(Re(ω))

(4.56)

Similarly

〈P 〉 ≡ 〈ω|P |ω〉
〈ω|ω〉

= e−t Im(ω) sin(Re(ω)) (4.57)

Thus
〈Q〉2 = e−2 Im(ω)t cos2(Re(ω)) 〈P 〉2 = e−2 Im(ω)t sin2(Re(ω)) (4.58)

Moreover
〈Q2〉 ≡ 〈ω|Q

2|ω〉
〈ω|ω〉

=
e−2 Im(ω)t

4

[
2 cos(2Re(ω)) + e2t + 1

]
(4.59)

〈P 2〉 ≡ 〈ω|P
2|ω〉

〈ω|ω〉
= −e

−2 Im(ω)t

4

[
2 cos(2Re(ω))− (e2t + 1)

]
(4.60)

Using the above ingredient one can explicitly compute (4.55), in fact thanks to various trigono-
metric identities

(∆Q)2(∆P )2 = −e
−4It

16

[
1− 2e2t + e4t

]
(4.61)

in agreement with (4.54).
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4.3 New harmonic oscillator CS

The twisted geometries parametrization describes holonomies and fluxes in terms of vari-
ables (j, ξ,N, Ñ) ∈ T ∗S1 × S2 × S2. This is analogous to the SL(2,C) polar decomposition
(X, g) � H = eiXg ∈ SL(2,C) which is used for the HK CS. Similarly, we can take (j, ξ,N, Ñ)

as a starting point to construct new coherent states based on the tensor product of the CS for
T ∗S1 and S2. The SU(2) CS are nicely peaked on the direction and related to the coherent
intertwiners, and as a bonus, these useful properties will be inherited by the new family. How-
ever there is a subtlety. As briefly mentioned in chapter 3, the twisted geometry map is 2 to 1,
namely the pair (g,X) is invariant under the Z2 transformation

(j, ξ,N, Ñ) 7→ (−j,−ξ,−N,−Ñ) (4.62)

The isomorphism (3.37) means in fact the space of twisted geometries is in some sense the
double cover of T ∗SU(2). Therefore we cannot use directly the CS for the particle on the
circle, but we have to restrict the momenta to have positive values.

Below we show how this can be done . Namely, one can start from the T ∗S1 CS, reduce
by parity to only even functions, and this will provide a basis for the harmonic oscillator. The
basis is coherent in the sense that it is overcomplete and provides a resolution of the identity
as an integral over the phase space. It is not however in the sense of being eigenstates of some
destruction operator. We thus not know if they saturate inequalities, but we prove peakedness
and vanishing of the relative uncertainties.

4.3.1 Proposal

Inspired by the coherent states for the particle on the circle, we propose new coherent states
for the harmonic oscillator

|ω〉 =
∑

n∈N/2

e−
t

2
n2

cos(nω)|n〉, ω ∈ C (4.63)

Let’s also recall the basic property:

cos(nω) = cos (nRe(ω) + in Im(ω))

= cosh(nI) cos(nR)− i sinh(nI) sin(nR)
(4.64)

which will be used below. Here and in the following I = Im(ω) and R = Re(ω).

Let’s compute the normalization

〈ω|ω〉 =
∑
m,n

e−
t

2
(n2+m2) cos(mω̄) cos(nω)〈m|n〉

=
∑
n

e−tn2

cos(nω̄) cos(nω)
(4.65)



108 Chapter 4. Coherent states

Now it is easy to manipulate the product cos(nω̄) cos(nω) as follows

cos(nω̄) cos(nω) =
1

2
[cos(2nRe(ω)) + cos(2in Im(ω))] =

1

2
[cos(2nR) + cosh(2nI)] (4.66)

and then, treating the sum as an integral
∑

n →
∫∞
0 dx, we can get the result

〈ω|ω〉 ' 1

2

∫ ∞

0
dxe−tx2

[cos(2Rx) + cosh(2Ix)] =
1

4

√
π

t

(
e

I2

t + e
−R2

t

)
(4.67)

To solve these integrals it’s in fact enough to complete the squares at the exponents, in the
definition of the cosine and hyperbolic cosine functions. Then the direct integration gives error
functions which vanish in the domain. So the two contributions of (4.67) are∫ ∞

0
dxe−tx2

cos(2Rx) =
1

4

√
π

t
e−

R2

t

[
erf

(
tx+ iR√

t

)
+ erf

(
tx− iR√

t

)]∞
0

=
1

2

√
π

t
e−

R2

t

(4.68)
and similarly ∫ ∞

0
dxe−tx2

cosh(2Ix) =
1

2

√
π

t
e

I2

t (4.69)

Note also that we have another way to express the product (4.66) which relies in the property
(4.64), that is cos(nω̄) cos(nω) = (cosh2(nI) cos2(nR) + sinh2(nI) sin2(nR)). Of course inte-
grating this gives the same result (4.67) but we write it here because we might need an analogy
later.

So the normalized coherent state would be

|ω〉N = N|ω〉 N = 2
(π
t

)− 1

4
(
e

I2

t + e−
R2

t

)− 1

2 (4.70)

in such a way that

N 〈ω|ω〉N = N 2〈ω|ω〉 = 1 (4.71)

4.3.2 Resolution of Identity

Denoting d2ω = dRdI where R ∈ [−2π, 2π] and I ∈ [0,∞[, we have

1 =

∫
d2ωµ(ω)|ω〉〈ω|

=
∑
n,m

∫
d2ωµ(ω)e−

t

2
(n2+m2)|n〉〈m|×

× [cosh(nI) cos(nR) cosh(mI) cos(mR) + i cosh(nI) cos(nR) sinh(mI) sin(mR)

−i sinh(nI) sin(nR) cosh(mI) cos(mR) + sinh(nI) sin(nR) sinh(mI) sin(mR)]

(4.72)
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If we call Lt
m,n(ω) = µ(ω)e−

t

2
(m2+n2)|n〉〈m| ≡ L(ω), we get

1 =
∑
m,n

∫ 2π

−2π
dR cos(nR) cos(mR)

∫ ∞

0
dI cosh(nI) cosh(mI)L(ω)

+ i
∑
m,n

∫ 2π

−2π
dR cos(nR) sin(mR)

∫ ∞

0
dI cosh(nI) sinh(mI)L(ω)

− i
∑
m,n

∫ 2π

−2π
dR sin(nR) cos(mR)

∫ ∞

0
dI sinh(nI) cosh(mI)L(ω)

+
∑
m,n

∫ 2π

−2π
dR sin(nR) sin(mR)

∫ ∞

0
dI sinh(nI) sinh(mI)L(ω)

(4.73)

Now we will focus on the R integrals and we assume that the ’measure function’ µ(ω) can only
depend on Im(ω) as in fact it will be the case. Now using the trigonometric addition formulae
it’s easy to get ∫ 2π

−2π
dR cos(nR) cos(mR) =

sin(2π(n−m))

(n−m)
= 2πδ2m,2n (4.74)

where we used properly the limit sin(2πx)/x → 2π for x → 0. Notice that although the
notation δ2n,2m might seem redundant or useless, it is necessary to remind us that m,n are
semi-integers and the Kronecker delta is only defined for integers. Now the R integrals in the
second and third lines of (4.73) are identical and immediately equal to zero, since the integrand
is odd and the domain of integration even. The last integral is trivially equal to the first one
(4.74) and the result is the same 2πδm,n. Therefore we are left with

1 = 2π
∑
n

∫ ∞

0
dI cosh2(nI)e−tn2

µ(ω)|n〉〈n|

+ 2π
∑
n

∫ ∞

0
dI sinh2(nI)e−tn2

µ(ω)|n〉〈n|

= 2π
∑
n

e−tn2 |n〉〈n|
∫ ∞

0
dI
[
cosh2(nI) + sinh2(nI)

]
µ(ω)

(4.75)

Finally, it is easy to check that if µ(ω) = e−
I2

t the integral above is∫ ∞

0
dI
[
cosh2(nI) + sinh2(nI)

]
e−

I2

t =
1

2

√
πtetn

2 (4.76)

So that the resolution of the Identity reads

1 =

∫ 2π

−2π

dR

π

∫ ∞

0

dI√
πt
e−

I2

t |ω〉〈ω| =
∑
n

|n〉〈n| (4.77)

Let us show explicitly the integral (4.76). We first rewrite

cosh2(nI) + sinh2(nI) = cosh(2nI) =
1

2

(
e2nI + e−2nI

)
(4.78)
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Then we will just have to complete the squares in the exponents, as we get∫ ∞

0
dI
[
cosh2(nI) + sinh2(nI)

]
e−

I2

t

=
1

2

∫ ∞

0
dI
(
e2nI−

I2

t + e−2nI− I2

t

)
=

1

2

∫ ∞

0
dIe

tn2−t
(

I

t
−n

)2

+
1

2

∫ ∞

0
dIe

tn2−t
(

I

t
+n

)2

=
1

2

(√
πt

2
etn

2

erf(n
√
t) +

√
πt

2
etn

2 −
√
πt

2
etn

2

erf(n
√
t) +

√
πt

2
etn

2

)
=

1

2

√
πtetn

2

(4.79)

Normalized version

We can do the same computation using normalized coherent states, and this will only change
the measure of the integrals

1 =

∫
d2ωµ(ω)|ω〉NN 〈ω| =

∫
d2ωµ(ω)N 2|ω〉〈ω| (4.80)

where as above
N 2 = 4

(π
t

)− 1

2
(
e

I2

t + e−
R2

t

)−1
(4.81)

And now it will be enough to choose µ(ω) such that µ(ω)N 2 = e−
I2

t to get something similar
to the above resolution, thus

1 =

∫
d2ωµ(ω)|ω〉NN 〈ω| µ(ω) =

1

4

√
π

t
e−

I2

t

(
e

I2

t + e−
R2

t

)
(4.82)

4.3.3 Expectation values

So now that we have our coherent states (4.63) that resolve the Identity, we are interested
in another property which is the minimization of some uncertainty relations. Let’s start com-
puting the expectation values of the number operator N̂ .

We first need to know the action of a, a† but since they are acting directly on |n〉

a†|ω〉 =
∑
n

e−
t

2
n2

cos(nω)
√
n+ 1|n+ 1〉 (4.83)

a|ω〉 =
∑
n

e−
t

2
n2

cos(nω)
√
n|n− 1〉 (4.84)

it is pretty straightforward to get

N̂ |ω〉 =
∑
n

e−
t

2
n2

cos(nω)n|n〉 (4.85)
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We will be interested in normalized expectation values, so we have to compute

〈ω|N̂ |ω〉
〈ω|ω〉

=

∑
n ne

− t

2
n2

cos(nω̄) cos(nω)∑
n e

− t

2
n2

cos(nω̄) cos(nω)
(4.86)

In the same ’continuum’ approximation used in the above, this becomes

〈ω|N̂ |ω〉
〈ω|ω〉

'
∫∞
0 dxxe−tx2

[cos(2Rx) + cosh(2Ix)]∫∞
0 dxe−tx2 [cos(2Rx) + cosh(2Ix)]

(4.87)

and, computing the integral at the numerator, using (4.67) for the denominator, we get

〈ω|N̂ |ω〉
〈ω|ω〉

'
2
√
t+ iR

√
πe−

R2

t erf( iR√
t
) + I

√
πe

I2

t erf( I√
t
)

t
√
π
(
e−

R2

t + e
I2

t

) ≡ 〈N̂〉 (4.88)

Now we want to consider the limit I →∞, so we first rewrite

〈N̂〉 = 2
√
πt
(
e−

R2

t + e
I2

t

) +
iRe−

R2

t erf
(

iR√
t

)
t
(
e−

R2

t + e
I2

t

) +
I

t

e
I2

t erf
(

I√
t

)
(
e−

R2

t + e
I2

t

) (4.89)

and notice that the last one is the only non vanishing term. Since the error functions expands
like

erf

(
I√
t

)
=

1√
t

√
t+ e−

I2

t

(
−
√
t√
πI

)
+O(2) (4.90)

we get

〈N̂〉 −−−→
I→∞

I

t
(4.91)

like in the T ∗S1 case (see (4.36)).

In order to continue the analogy with the particle on the circle, we need an operator that
plays the role of eiξ. For the harmonic oscillator this can be achieved by ladder operators
defined2 as

Ê+ = â†(N̂ + 1)−1/2 ⇒ Ê+|n〉 = |n+ 1〉 (4.92)

Ê− = (N̂ + 1)−1/2â ⇒ Ê−|n〉 = |n− 1〉 (4.93)

so that
Ê±|ω〉 =

∑
n

e−
t

2
n2

cos(nω)|n± 1〉 (4.94)

2Formally, one has to quantize directly the cosine and sine functions appearing in the description of the
classical harmonic oscillator, described in terms of action and angle variables. Then the exponential opera-
tors E± will be proper composition of the cosine and sine operators. Given their definition in terms of the
number operator N as well as creation and annihilation operators a and a†, their action on the states |n〉 is
straightforward.
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Given the similarity with the action of eiξ on |j〉 we focus on E+, and we compute

〈ω|Ê+|ω〉 =
∑
m,n

e−
t

2
(n2+m2) cos(mω̄) cos(nω)〈m|n+ 1〉

= e−
t

2

∑
n

e−tn2−tn cos[(n+ 1)ω̄] cos(nω)
(4.95)

As we did before, we now have to rewrite the product cos[(n + 1)ω̄] cos(nω) in a convenient
way

cos[(n+ 1)ω̄] cos(nω) =
1

2
[cos(2nR+ ω̄) + cos(2niI − ω̄)]

=
1

2
[cos[(2n+ 1)R− iI] + cos[−R+ iI(2n+ 1)]]

=
1

2
[cosh(I) cos(R(2n+ 1)) + cosh(I(2n+ 1)) cos(R)

+ i sinh(I) sin(R(2n+ 1)) + i sinh(I(2n+ 1)) sin(R)]

(4.96)

So we get, again taking the ’continuum limit’,

〈ω|Ê+|ω〉 '
1

2
e−

t

2 cosh(I)

∫ ∞

0
dxe−tx2−tx cos((2x+ 1)R)

+
1

2
e−

t

2 cos(R)

∫ ∞

0
dxe−tx2−tx cosh((2x+ 1)I)

+
i

2
e−

t

2 sinh(I)

∫ ∞

0
dxe−tx2−tx sin((2x+ 1)R)

+
i

2
e−

t

2 sin(R)

∫ ∞

0
dxe−tx2−tx sinh((2x+ 1)I)

(4.97)

which can also be written as

〈ω|Ê+|ω〉 '
1

4
e−

t

2 cosh(I)

∫ ∞

0
dxe−tx2−tx

(
ei(2x+1)R + e−i(2x+1)R

)
+

1

4
e−

t

2 cos(R)

∫ ∞

0
dxe−tx2−tx

(
e(2x+1)I + e−(2x+1)I

)
+

1

4
e−

t

2 sinh(I)

∫ ∞

0
dxe−tx2−tx

(
ei(2x+1)R − e−i(2x+1)R

)
+
i

4
e−

t

2 sin(R)

∫ ∞

0
dxe−tx2−tx

(
e(2x+1)I − e−(2x+1)I

)
(4.98)

And the result is

〈ω|Ê+|ω〉 '
1

8
e−

t

4 cosh(I)e−
R2

t

√
π

t

(
2 + erf

(
2iR− t
2
√
t

)
− erf

(
2iR+ t

2
√
t

))
+

1

8
e−

t

4 cos(R)e
I2

t

√
π

t

(
2 + erf

(
2I − t
2
√
t

)
− erf

(
2I + t

2
√
t

))
+

1

8
e−

t

4 sinh(I)e−
R2

t

√
π

t

(
erf

(
2iR− t
2
√
t

)
+ erf

(
2iR+ t

2
√
t

))
+
i

8
e−

t

4 sin(R)e
I2

t

√
π

t

(
erf

(
2I − t
2
√
t

)
+ erf

(
2I + t

2
√
t

))
(4.99)
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Now using these relations concerning Real and Imaginary parts of the erf function

Re[erf(x+iy)] =
erf(x+ iy) + erf(x− iy)

2
Im[erf(x+iy)] =

erf(x+ iy)− erf(x− iy)
2i

(4.100)
and organizing the terms, (4.99) can be rewritten as follows

〈ω|Ê+|ω〉 =
1

4
e−

t

4

√
π

t

(
e−

R2

t cosh(I) + e
I2

t cos(R)
)

− 1

4
e−

t

4
−R2

t

√
π

t

(
cosh(I)Re

[
erf

(
2iR+ t

2
√
t

)]
− i sinh(I) Im

[
erf

(
2iR+ t

2
√
t

)])
+

1

8
e−

t

4
+ I2

t

√
π

t

(
eiR erf

(
2I − t
2
√
t

)
− e−iR erf

(
2I + t

2
√
t

))
(4.101)

In this way it is simpler to look at the limit I → ∞ which will be taken in a moment. As a
matter of fact we want to consider normalized expectation values, exactly as above with N , so
we have to divide by (4.67) to get

〈ω|Ê+|ω〉
〈ω|ω〉

= e−
t

4
e−

R2

t cosh(I) + e
I2

t cos(R)

e−
R2

t + e
I2

t

− e−
t

4 e−
R2

t

cosh(I)Re
[
erf
(
2iR+t
2
√
t

)]
− i sinh(I) Im

[
erf
(
2iR+t
2
√
t

)]
e−

R2

t + e
I2

t

+
1

2
e−

t

4 e
I2

t

eiR erf
(
2I−t
2
√
t

)
− e−iR erf

(
2I+−t
2
√
t

)
e−

R2

t + e
I2

t

(4.102)

This might look ugly at first sight, but it is in fact not difficult to notice that the limit I →∞
of the second line vanishes, as well as thee first bit in the first line, and using the limits of the
erf we are left with

〈ω|Ê+|ω〉
〈ω|ω〉

−−−→
I→∞

e−
t

4 cos(R) + e−
t

4 i sin(R) = eiRe−
t

4 (4.103)

just like (4.37) for the particle on the circle!

4.3.4 Uncertainties

The next step would be, aiming to compute the uncertainties ∆Ê+ and ∆N̂ , to calculate
the squares of the above results and also the (normalized) expectation values of the squares of
those operators so that

(∆N̂)2 = 〈N̂2〉 − 〈N̂〉2 (4.104)

(∆Ê+)
2 = 〈Ê2

+〉 − 〈Ê+〉2 (4.105)



114 Chapter 4. Coherent states

Let’s start with computing 〈N̂2〉

〈ω|N̂2|ω〉
〈ω|ω〉

=

∑
n n

2e−
t

2
n2

cos(nω̄) cos(nω)∑
n e

− t

2
n2

cos(nω̄) cos(nω)
(4.106)

These are not known sums so we pass to the continuum approximation

〈ω|N̂2|ω〉
〈ω|ω〉

'
∫∞
0 dxx2e−tx2

[cos(2Rx) + cosh(2Ix)]∫∞
0 dxe−tx2 [cos(2Rx) + cosh(2Ix)]

(4.107)

and we get

〈N̂2〉 '
e−

R2

t

(
−2R2 + t

)
+ e

I2

t

(
2I2 + t

)
2t2
(
e−

R2

t + e
I2

t

) (4.108)

Now, we need also 〈N̂〉2, and starting from (4.88), we will just write (for the moment)

〈N̂〉2 =

2√t+ iR
√
πe−

R2

t erf( iR√
t
) + I

√
πe

I2

t erf( I√
t
)

t
√
π
(
e−

R2

t + e
I2

t

)
2

(4.109)

so that the uncertainty can be written in this cumbersome way

(∆N̂)2 =
e−

R2

t

(
−2R2 + t

)
+ e

I2

t

(
2I2 + t

)
2t2
(
e−

R2

t + e
I2

t

) −

2√t+ iR
√
πe−

R2

t erf( iR√
t
) + I

√
πe

I2

t erf( I√
t
)

t
√
π
(
e−

R2

t + e
I2

t

)
2

(4.110)
which eventually has to be simplified or rewritten in a clever way if possible.

We start by rewriting (4.110)

(∆N̂)2 =
e−

R2

t

(
−2R2 + t

)
+ e

I2

t

(
2I2 + t

)
2t2
(
e−

R2

t + e
I2

t

) −

2√t+ iR
√
πe−

R2

t erf( iR√
t
) + I

√
πe

I2

t erf( I√
t
)

t
√
π
(
e−

R2

t + e
I2

t

)
2

=
e−

R2

t

(
−2R2 + t

)
+ e

I2

t

(
2I2 + t

)
2t2
(
e−

R2

t + e
I2

t

) − 1

d

[
4t−R2πe−

2R2

t erf2
(
iR√
t

)
+ I2πe

2I2

t erf2
(
I√
t

)

+4iR
√
πte−

R2”

t erf

(
iR√
t

)
+ 4I

√
πte

I2

t erf

(
I√
t

)
+ iRIπe−

R2

t
+ I2

t erf

(
iR√
t

)
erf

(
I√
t

)]
(4.111)

where
d = t2π

(
e−

R2

t + e
I2

t

)2
(4.112)

Now we take the common denominator and we call it D

D = 2t2π
(
e−

R2

t + e
I2

t

)2
(4.113)
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and the above (4.111) becomes

(∆N̂)2 =
1

D

[
π
(
e−

R2

t + e
I2

t

)
e−

R2

t

(
−2R2 + t

)
+ π

(
e−

R2

t + e
I2

t

)
e

I2

t

(
I2 + t

)
− 8t

+ 2R2πe−
2R2

t erf2
(
iR√
t

)
− 2I2πe

2I2

t erf2
(
I√
t

)
− 8iR

√
πte−

R2

t erf

(
iR√
t

)
−8I
√
πte

I2

t erf

(
I√
t

)
− 2iRIπe−

R2

t
+ I2

t erf

(
iR√
t

)
erf

(
I√
t

)] (4.114)

Now we separate conveniently the terms in order to get an expression ready for the limit

(∆N̂)2 =
e−

R2

t

(
−2R2 + t

)
2t2
(
e−

R2

t + e
I2

t

) +
e

I2

t

(
2I2 + t

)
2t2
(
e−

R2

t + e
I2

t

) − 4

πt
(
e−

R2

t + e
I2

t

)2
+
R2e−

2R2

t erf2
(

iR√
t

)
t2
(
e−

R2

t + e
I2

t

)2 − I2e
2I2

t erf2
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Finally, we note that every term except for the second and fifth vanishes in the limit I → ∞,
and the two that remain seem to diverge, individually. Nevertheless if we put them together
we see that

e
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) − I2e
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t2
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1
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(4.116)

which promisingly enough, is again what we had in the T ∗S1 case (4.46). As a matter of fact
we could have decomposed the problem since even the single contributions coming from the
limit of 〈N̂2〉 and 〈N̂〉2 individually, coincide already with the results of the particle on the
circle, (4.44),(4.45). Therefore when put together we expect nothing new but the known result
of (4.116) for T ∗S1, which was (∆ĵ)2 = 1/2t.

But now let’s turn to the other operator. We need 〈Ê2
+〉 and we start from

Ê2
+|ω〉 =
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n

e−
t

2
n2

cos(nω)|n+ 2〉 (4.117)

So

〈ω|Ê2
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[(n+2)2+n2] cos [(n+ 2)ω̄] cos(nω) = e−2t

∑
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(4.118)
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Now we rewrite the product of those cosines in a similar way as in (4.96)
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(4.119)

And we take again the continuum limit to compute 〈ω|Ê2
+|ω〉 as
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the calculation is similar to the one we did above and the result is
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It is then convenient to write it in this way as well
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4.3. New harmonic oscillator CS 117

and dividing by (4.67)
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We’ll come to this later, taking the familiar limit. That was only the expectation value of the
squared operator 〈Ê2

+〉. We also need the square of the expectation value (4.102)
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And then compute (∆Ê+)
2. One might expect

∆N̂∆Ê ≥ 1

2
〈Ê〉 (4.125)

is minimized by the new states. But exactly as in the T ∗S1 case, this will not be true.

In order to compute the above expressions, we first keep the two contribution coming from
〈Ê2〉 and 〈Ê〉2 separate, to simplify the calculation. We begin by considering the limit I →∞
of 〈Ê2〉 which is similar to what we’ve seen for 〈Ê〉. As a matter of fact, looking at (4.102),
(4.103) and comparing with (4.123) it’s easy to see that
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e2iRe−t (4.126)

which is again the same as for the particle on the circle 〈(êiξ)2〉, (4.41). Then, in order to
calculate (4.124) let us call
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so we get
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And now, noticing that in the limit I → ∞ very few terms survive (the ones in the first and
third line with exp

(
2I2/t

)
, which also appears in the last line implicitly), we are left with
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that is identical to the T ∗S1 result 〈êiξ〉2, (4.40). Finally we put the pieces together to get
(∆Ê+)

2 = 〈Ê2
+〉 − 〈Ê+〉2

(∆Ê+)
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e−te2iR − e−
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(4.130)

that with no surprise is again what happens with the particle on the circle, see equation (4.42).

Thanks to the close analogy, it is not even worth spending time trying to check whether
(4.125) is minimized and in fact just looking at (4.130) and (4.116) we see that it does not
happen.

This is nothing new. It is just like what happens with the particle on the circle with (∆ĵ)2

and (∆êiξ)2. So every calculation done above behaves, in the limit considered (I →∞), exactly
as in the T ∗S1 case. For this reason, it’s not surprising at all that the uncertainties relations
between N̂ and Ê are not properly minimized, it is actually a well known result.

Now an interesting point would be to extend the analogy also to the new operators that
were found [24] for the particle on the circle. Namely one might wonder if operators like (4.50)
exist in our case here. We have different states (4.63) so we expect different operators. In fact
our X in the definitions above (4.50) must be the operator for which (4.63) is the eigenstate.
However, it turns out the this is yet to be found, if it exists.
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So even though we don’t know what exactly is minimized by the new harmonic oscillator
coherent states discussed above (4.63), we still trust the fact that they behave just like the T ∗S1

case and so they will probably work just fine as coherent states. Plus, we have a resolution of
the Identity which is enough to carry on and use them for the Twisted Geometries coherent
states, outlined in the next chapter.

4.3.5 Inexistence of Holomorphic representation

Concerning these new HO coherent states, it is easy to show that the holomrphic repre-
sentation of the algebra does not exist, and since this is one of the building blocks of the
twisted geometries CS, the same argument will hold for the latter ones. This fact is also con-
nected to the inexistence of the operators for which some uncertainties relations are minimized
∆Q∆P = 1

2〈[Q,P ]〉, namely

Q =
X +X†

2
P =

X −X†

2i
(4.131)

where X is the destruction operator for which the coherent state is eigenstate. This operator
does not exist for the HO CS |ω〉 =

∑
n exp

(
−tn2/2

)
cos(nω)|n〉, and this is the key difference

between this scenario and the particle on the circle case, where all the above operators exist
and a Heisenberg relation is minimized.

In order to prove that there are no such operators, it is enough to show that the basis
operators which span the whole algebra do not exist in the so called Fock-Bargmann space. So
for example let us show that the annihilation operator a such that a|n〉 =

√
n|n − 1〉 doesn’t

exist on the space of functions
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2
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on which its action must be
A(ω)ψt

n(ω) =
√
nψt

n−1(ω) (4.133)

The most general form of A(ω) is a linear combination of functions of ω and derivates with
respect to it

A(ω) =
∑
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so that its action on (4.132)
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We already see that for this to be true, the functions fi(ω) must depend on t. Now it is easy
to see that the equality reduces to∑
i even

f ti (ω)(−n2)
i

2 c(nω) +
∑
i odd

f ti (ω)(−n2)
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2
+tn [c(nω)c(ω) + s(nω)s(ω)]

(4.137)
which has to be true for all n and ω, and we called c(x) = cos(x) and s(x) = sin(x). But this
is not the case for instance if we pick a value, say ω = 0 because the equation∑

i∈2N
f ti (0)(−n2)

i

2 =
√
ne−

t

2 etn (4.138)

is not solvable for any functions f . One can convince himself by expanding the exponential
as a sum and then square both sides to see explicitly that there can never be a matching of
even and odd powers of those polynomials. The same arguments hold for the creation operator
and therefore for every other operators, a and a† being a basis. Since we wanted to impose a
formula valid for all n and ω, it was enough to find a value for which that was not true. So the
claim is that it is impossible to find the homomorphic representation of the annihilation and
creations operators, i.e. there are no A and A† such that (4.133) and its counterpart hold in
general. Therefore we conclude that the homomorphic representation does not exist at all.



Chapter 5

Twisted Geometries CS for LQG

In chapters 1 and 2 we have seen that spin network states are the building blocks of LQG:
they are a basis of the kinematikal Hilbert space and diagonalize some geometrical operators.
They also carry a notion of quantum geometry. In order to recover a smooth (intrinsic and
exstrinsic) classical geometry, one needs a superposition of spin network states which are suit-
baly peaked. Examples of such coherent states for LQG were introduced by Thiemann and
discussed in chapter 2. They satisfy a number of important properties, in particular they are
peaked on a point in phase space, that is a configuration of holonomies of the gravitational
connection and fluxes of the triad fields. However, when performing explicit calculations, one
typically considers one single graph at a time, and the associated Hilbert space HΓ. As dis-
cussed above this truncation captures only a finite number of degrees of freedom. One then
can associate a classical phase space to HΓ and view its points as distributional configurations
of classical holonomies and fluxes. It would be useful to have a picture of the classical degrees
of freedom captured by HΓ in terms of discrete geometries, to provide some approximate de-
scription of smooth 3d geometries. This is what we studied in chapter 3: the parametrization
of this same phase space can be done in terms of twisted geometries, which are discrete and
possibly discontinuous 3-geometries assigned to a cellular decomposition dual to the graph.
This provides a simple and compelling picture of the degrees of freedom of HΓ in terms of
discrete geometries which can be seen as a collection of quantum polyhedra associated to the
nodes with non-trivial extrinsic curvature among them. Therefore coherent spin network states
in HΓ can be interpreted as a collection of semiclassical polyhedra, instead of distributional
holonomies and fluxes.

Coherent states on a fixed graph have played an important role in the spin foam formalism
for the dynamics of the theory. More recently, they have found many applications in mini-
superspace models and effective dynamics, both in cosmological and black hole contexts. All
applications are so far based on the heat kernel coherent states. It would be nice to include the
structure of the coherent intertwiners in the concept of coherent states, as they proved to be
very useful when analysing the theory. This was mentioned and partially done in [11] but the
question we would like to ask is whether one can introduce an altogether new family of coherent
states, such that they always include the coherent intertwiners, and not just in some limiting
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case. The answer is suggested by the twisted geometry parametrization, and was indeed one of
the original motivations to study that. One advantage of this parametrization with respect to
the holonomy flux is the locality at the level of the nodes. This advantage will be inherited by
the new class of coherent states. Their reduction to the gauge invariant class is simpler than
for the HK states, and we can show that the LS coherent intertwiners always appear. The
family of CS that we will introduce is however weaker than the traditional HK one: the new
ones are coherent in the sense that they provide a resolution of the identity. They furthermore
are peaked on the classical values, with relative uncertainty vanishing in the large spin limit.
On the other hand, they are not eigenstates of a destruction operator, at least not one that we
were able to identify. As a consequence, they do not define a holomorphic representation, and
we don’t know if and which Heisenberg relation they saturate.

5.1 Preliminaries

The Hilbert space on a fixed graph decomposes as a tensor product over edge contributions,
HΓ = ⊗eHe which are the building blocks of loop quantum gravity. The edge contribution
He = L2[SU(2), dµH ] = ⊕j

[
Hj ⊗Hj

]
is the space of functions ψ(u) : SU(2) → C which

are square integrable with respect to the Haar measure dµH . The edge space is associated to
each oriented link of a graph and carries a representation of the holonomy-flux algebra. We
define the fluxes as right-invariant vector fields R̂ associated with the source node of the link
and the adjoint representation L̂ = −ĝR̂ĝ−1, associated with the target node of the link1. Two
orthonormal basis are the holonomy basis |g〉 of eigenvectors of the holonomy operator, and
the momentum basis |j,m, n〉 which diagonalizes L̂2, L̂z and R̂z. The transformation between
the two is given by the Wigner matrices

〈g|j,m, n〉 =
√
djD

(j)
mn(g) =

√
dj〈j,m|g|j, n〉 (5.1)

where dj = 2j + 1. With that normalization convention, the property∫
dg D

(j)
ab D

(k)
cd (g) =

1

dj
δjkδacδbd (5.2)

becomes simply

〈j, a, b | k, c, d〉 = δjkδacδbd ⇒ 1 =

∫
dg |g〉〈g| =

∑
j,a,b

|j, a, b〉〈j, a, b| (5.3)

Expression (5.1) invites the convenient interpretation |j,m, n〉 =
√
dj |j, n〉 ⊗ 〈j,m|, in

line with the Peter-Weyl decomposition L2[SU(2), dµH ] = ⊕j

[
Hj ⊗Hj

]
. This Hilbert space

with the holonomy-flux algebra provides a quantization of the classical phase space T ∗SU(2),
with its canonical SU(2) invariant symplectic structure. Since T ∗SU(2) ' SU(2) × su(2) '
SL(2,C), a point on this space phase can be identified by an SL(2,C) group element in the

1These fields were called X and X̃ in chapter 3 and in the original papers [16],[17]. See appendix B for
conventions and notations adopted.
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polar decomposition H = eiLg. Thus one can label a point with the left invariant vector field
and the holonomy (g, L) ∈ T ∗SU(2). In chapter 2 we summarized the work of Thiemann on
coherent states and we recall here only the expression

Ψt
H(g) = 〈g|H, t〉 =

∑
j

dje
− t

2
j(j+1)χ(j)(Hg−1) (5.4)

In chapter 3 we also showed that the same space can be parametrized by a complex number
ω ∈ C and two unit vectors N and Ñ in R3. This map allowed us to interpret the holonomy-flux
variables in terms of discrete and possibly discontinuous 3-geometries. The parametrization also
suggests a new complex structure for the space space, the one induced by the natural complex
structures of the building blocks of the twisted geometries phase space. Let us briefly recall the
twisted geometries parametrization (3.35)

R = Anτ3n
−1 g = ñeξτ3n−1 L = −Añτ3ñ−1 (5.5)

where τi = −(i/2)σi, n = n(ζ) is the Hopf section defined in chapter 3, and A is what was
called j in the previous chapters: the new name is used to avoid confusion and to remember its
area interpretation. As known, this parametrization replaces the pair (g, L) on each link with
the three pairs

(A, ξ) ∈ R+ × [−2π, 2π), ζ ∈ CP 1, ζ̃ ∈ CP 1, (5.6)

which we collectively denote Ω (and sometimes we write n(ζ) = n instead of ζ, labelling the same
thing). The use of this parametrization is convenient with a certain geometric interpretation.
First, fix once and for all the set of surfaces to which the fluxes are associated, by taking a
cellular decomposition dual to the graph. Each face of the cell is associated to the link. We
can then construct a piecewise flat geometry using these data. The geometric interpretation
that turns out is that A is the area of the link, ζ the direction of the flux in the source frame,
and ζ̃ the direction of the flux in the target frame. Upon imposing the closure constraint, the
normals are outgoing and we have the nice polyhedral picture described in the above with the
twist angle ξ which is pure gauge. Now we can write

H = geiR = ñeωτ3n−1 where ω = ξ + iA (5.7)

It is worth to mention that one can straightforwardly see from (5.4) that

Ψt
H(g)

A 7→∞−→ e
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d
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j e
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(
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)2−iξjD

(j)
jj (n

−1g−1ñ) (5.8)

This shows that in the limit of large area, the magnetic part of the heat kernel coherent states
behaves like an SU(2) coherent states. This fact was used in [11] to make a first link between
these coherent states and the coherent intertwiners. In fact, it follows that at the gauge invariant
level, H0 = L2[SU(2)L/SU(2)N ]

H0 3 |H, t〉0 =
∑
jl,in

∏
l

d
1

2

jl
e−

t
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∑
jl,in

∏
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jl(jl+1)+(Al−iξl)jl

∏
n

cin(nl) |Γ, jl, in〉
(5.9)
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where ci(nl) are the coefficients of the coherent intertwiners and |Γ, jl, in〉 are spin network
states. Careful as we use n for node, for the magnetic index, and for the SU(2) matrix. This
limit shows that the spread is not minimal for the states with finite A. The properties (5.8)
and (5.9) only show that the limiting set A 7→ ∞ of heat-kernel coherent states has minimal
spread in those directions. This is not enough to claim that coherent intertwiners can be used
to construct coherent states in H0

Γ. Notice however that one can take the right-hand side of
(5.8) as the definition of a new family of coherent states, for any A ∈ R+

Ψt
G(g) :=

∑
j

dje
− t

2
(j−A)2−iξjDjj(n

−1g−1ñ) (5.10)

where G stands for Gaussian. This family is not anymore coherent in the stronger sense of being
eigenvectors of a destruction operator, but they still have satisfactory peakedness properties,
and provide a resolution of the identity, with measure this time given by

∫
T ∗SU(2)

dµ(G) :=
e−

t

4

(πt)
3

2

∫
R+

dA

1 + erf(A
√
t)

∫
S2

d2Ω

∫
SU(2)

dg (5.11)

What we propose is in a similar spirit, but with a broader mathematical structure, a more
elegant integration measure, and nicer peakedness properties.

5.2 Definition and first properties

As discussed in the previous chapters, the Z2 symmetry problem has led us to consider the
new set of coherent states of the harmonic oscillator introduced in chapter 4, instead of the
T ∗S1 ones. Using these and the sphere coherent states we are ready to build a new family
of coherent states for LQG. Consider an oriented edge of the graph, and associate n with the
source vertex and ñ with the target. We first ’make coherent’ the magnetic indices (a, b) by
taking the sphere coherent states |j, ñ] and |j, n〉

|j, a, b〉 ≡
√
dj |j, b〉 ⊗ 〈j, a|�

∑
a,b

〈j, b|j, ñ]〈j, n|j, a〉 |j, a, b〉 ≡
√
dj |j, ñ]⊗ 〈j, n| ≡ |j, n, ñ〉

(5.12)
Note that we have made a specific choice in doing so regarding the highest or lowest weight
SU(2) coherent state. This is one of the conventions but all the possible combination2 will work
just the same and we take the liberty to consider the most convenient one when needed. This
liberty is what we anticipated in chapter 3 and it is related to the simple property ε|j,−j〉 =
|j, j〉. Then we also make coherent the remaining part, summing over j ∈ N/2 with the weights

2On the course of this work we realised that a more generic construction can be made. It is nevertheless
instructive to show the results with this simpler form of coherent states, and we will also provide the most
general expression in the last section. The latter will include a combination of more than one of such choices.
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of the new harmonic oscillator coherent states (4.63), and we define

|Ω〉 ≡ |ω, n, ñ〉 =
∑
j∈N/2

d
3

2

j e
− t

2
j2 cos(jω) |j, ñ]⊗ 〈j, n|

≡
∑
j∈N/2

dj e
− t

2
j2 cos(jω)|j, n, ñ〉

(5.13)

where we chose the factor dj for later convenience.

We recall that |j, n〉 = n|j,−j〉 and |j, n] = n|j, j〉 and by definition one has

〈j, n|j, a〉 = 〈j,−j|n−1|j, a〉 = D
(j)
−ja(n

−1) 〈j, b |j, ñ] = 〈j, b|ñ|j, j〉 = D
(j)
bj (ñ) (5.14)

Therefore one can write

|Ω〉 =
∑
j,a,b

dje
− t

2
j2 cos(jω)〈j, b |j, ñ] 〈j, n|j, a〉|j, a, b〉

=
∑
j,a,b

dje
− t

2
j2 cos(jω)D

(j)
bj (ñ)D

(j)
−ja(n

−1)|j, a, b〉
(5.15)

From here it follows that

Ψt
Ω(g) = 〈g|Ω〉 =

∑
j

d
3

2

j e
− t

2
j2 cos(jω)〈j, n|g |j, ñ]

=
∑
j,a,b

d
3

2

j e
− t

2
j2 cos(jω)D

(j)
bj (ñ)D

(j)
−ja(n

−1)D
(j)
ab (g)

=
∑
j

d
3

2

j e
− t

2
j2 cos(jω)D

(j)
−jj(n

−1gñ)

(5.16)

Where we used the basic properties
∑

aD
(j)
−ja(n

−1)D
(j)
ab (g) = D

(j)
−jb(n

−1g) and∑
b

D
(j)
−jb(n

−1g)D
(j)
bj (ñ) = D

(j)
−jj(n

−1gñ) = 〈j,−j|n−1gñ|j, j〉 = 〈j, n|g |j, ñ] (5.17)

In a very similar way one can see that

Ψt
Ω
(g) = 〈Ω|g〉 =

∑
j

d
3

2

j e
− t

2
j2 cos(jω) [j, ñ| g−1|j, n〉 =

∑
j

d
3

2

j e
− t

2
j2 cos(jω)D

(j)
j−j(ñ

−1g−1n)

(5.18)
where [j, ñ| g−1|j, n〉 = 〈j, j|ñ−1g−1n|j,−j〉 = Dj

j,−j(ñ
−1g−1n).

The squared norm of the coherent state (5.16) is

||Ψt
Ω(g)||2 = 〈Ω|Ω〉 =

∑
j

d2je
−tj2 cos(jω̄) cos(jω) (5.19)

This expression has a (subleading, but not vanishing) dependence on the real part of ω and
it cannot be simplified any further. This will be instead done with the generalized family of
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coherent states of section 5.6, where the Jacobi’s theta functions appear. Nevertheless, thanks
to the Poisson resummation formula, one can approximate for small t the sum in (5.19) with
an integral, to get3

〈Ω|Ω〉 ' 1

2

∫ ∞

0
dx(2x+ 1)2e−tx2

[cos(2Re [ω]x) + cosh(2 Im [ω]x)]

=
e−

R2

t

4t
5

2

[
−4R2√π + 2

√
πt+ 8e

R2

t t
3

2 +
√
πt2 + 4iR

√
πt erf

(
iR√
t

)
+
√
πe

R2

t
+ I2

t

(
4I2 + t(t+ 2) + 4It erf

(
I√
t

))] (5.20)

This formula is what will be used for practical calculations.

5.2.1 Resolution of the Identity

The states provide the following resolution of the identity in He, which is a weak but
necessary condition to require for coherent states

1 =

∫
S2

d2n

∫
S2

d2ñ

∫
D
dµ(ω)e−

I2

t |Ω〉〈Ω|,
∫
D
dµ(ω) =

∫ 2π

−2π

dR

π

∫ ∞

0

dI√
πt

(5.21)

whereR and I denote the real and imaginary part of ω, thus they in fact are ξ andA respectively.
Let’s check it by explicitly computing the integral∫

S2

d2n

∫
S2

d2ñ

∫
D
dµ(ω)e−

I2

t |Ω〉〈Ω|

=
∑
j,k

djdke
− t

2
(j2+k2)

∫
S2

d2n

∫
S2

d2ñ

∫
D
dµ(ω)e−

I2

t cos(jω̄) cos(kω)|j, n, ñ〉〈j, n, ñ|

=
∑
j,k

djdke
− t

2
(j2+k2)

∑
a,b,c,d

∫
S2

d2n〈k, c|k, n〉〈j, n|j, a〉
∫
S2

d2ñ 〈j, b|j, ñ] [k, ñ|k, d〉

×
∫ 2π

−2π

dR

π

∫ ∞

0

dI√
πt
e−

I2

t cos(jω̄) cos(kω)|j, a, b〉〈k, c, d|

(5.22)

Now, as we did in the harmonic oscillator case, we write the product of cosines as follows

cos(jω̄) cos(kω) = [cosh(kI) cos(kR) cosh(jI) cos(jR) + i cosh(kI) cos(kR) sinh(jI) sin(jR)

−i sinh(kI) sin(kR) cosh(jI) cos(jR) + sinh(kI) sin(kR) sinh(jI) sin(jR)]

(5.23)

Notice that the R dependance is only here, and upon integration over
∫ 2π
−2π dR, the only non

vanishing terms of (5.23) are the first and the fourth ones which are both equal to 2πδ2n,2m

3Using the property (4.66).
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(see section 4.3). Thus (5.22) is∑
j

d2je
−tj2

∑
a,b,c,d

∫
S2

d2n〈j, c|j, n〉〈j, n|j, a〉
∫
S2

d2ñ 〈j, b|j, ñ] [j, ñ|j, d〉

×
∫ ∞

0

2dI√
πt
e−

I2

t

[
cosh2(jI) + sinh2(jI)

]
|j, a, b〉〈j, c, d|

=
∑
j

e−tj2
∑
a,b,c,d

δa,cδb,d

∫ ∞

0

2dI√
πt
e−

I2

t

[
cosh2(jI) + sinh2(jI)

]
|j, a, b) (j, c, d|

=
∑
j,a,b

|j, a, b〉〈j, a, b| = 1

(5.24)

where we used the integral computed in section 4.3, equation (4.79). This proves that (5.16) is
an overcomplete basis in L2[SU(2), dµH ].

5.3 Expectation values and peakedness properties

In order to study the peakedness properties of the coherent states, we have to study the
operator algebra. We expect the states to be peaked on the phase space variables (g, L).

5.3.1 Action of the algebra

The operator algebra is spanned by ĝ, L̂i and R̂i, where the holonomy acts by multiplication
and the vector fields by left and right derivatives which, given an element of the algebra X =

Xiτ
i, are defined as

∇R
Xf(g) =

d

dt
f
(
getX

)∣∣
t=0

∇L
Xf(g) =

d

dt
f
(
e−tXg

)∣∣
t=0

(5.25)

So we introduce the operators

R̂i f(g) = i∇L
i = −

∑
j,a,b

f̃jabD
(j)
ac (Ji)D

(j)
cb (g)

L̂i f(g) = i∇R
i =

∑
j,a,b

f̃jabD
(j)
ac (g)D

(j)
cb (Ji)

(5.26)

in terms of the hermitian generators Ji = iτi. From the above expression and the structure of
a generic function

ψ(g) =
∑
j,a,b

f̂jab〈g|j, a, b〉 ∈ He = ⊕j

[
Hj ⊗Hj

]
(5.27)

we can see how these operators act on the momentum basis of states |j, a, b〉. Denoting also
the Casimir operator as Ĉ = L̂iL̂

i = R̂iR̂
i, we read

Ĉ|j,m, n〉 = j(j + 1)|j,m, n〉 (5.28)
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as well as

R̂3|j,m, n〉 = −m|j,m, n〉 L̂3|j,m, n〉 = n|j,m, n〉 (5.29)

and

R̂±|j,m, n〉 = −c∓(m)|j,m∓ 1, n〉 L̂±|j,m, n〉 = c±(n)|j,m, n± 1〉 (5.30)

where c±(a) =
√

(j ∓ a)(j ± a+ 1) =
√
j(j + 1)− a(a± 1).

Concerning the holonomy operator, things will be a little bit more complicated. However
as mentioned, the twisted geometries parametrization will help to single out the only relevant
operators. We can immediately write

ĝAB D
(j)
ab (g) = gABD

(j)
ab (g) = D

( 1

2
)

AB(g)D
(j)
ab (g) =

∑
J,M,N

CJM
1

2
AjmC

JN
1

2
BjnD

(J)
MN (g) (5.31)

where the C are Clebsh Gordan coefficient, J = j − 1
2 , j +

1
2 and M,N = −J, ..., J . We can

rename labels and indices and consider the product

D
( 1

2
)

m1n1(g)D
(j)
m2n2

(g) =

k=j+ 1

2∑
k=j− 1

2

k∑
m,n=−k

Ckm
1

2
m1jm2

Ckn
1

2
n1jn2

D(k)
mn(g)

=
∑
m,n

C
j− 1

2
,m

1

2
m1jm2

C
j− 1

2
,n

1

2
n1jn2

D
(j− 1

2
)

mn (g) +
∑
m,n

C
j+ 1

2
,m

1

2
m1jm2

C
j+ 1

2
,n

1

2
n1jn2

D
(j+ 1

2
)

mn (g)

(5.32)

but we already see the complication here. If one wants to write down the explicit action on the
momentum basis, looking at the equations (5.31) and (5.32) we get

ĝ a1

b1
|j, a2, b2〉 = g a1

b1
|j, a2, b2〉

=
∑
m,n

C
j+ 1

2
,m

1

2
a1jam2

C
j+ 1

2
,n

1

2
b1jb2
|j + 1/2,m, n〉+

∑
m,n

C
j− 1

2
,m

1

2
a1jam2

C
j− 1

2
,n

1

2
b1jb2
|j − 1/2,m, n〉

(5.33)

It’s already pretty clear that this is not easy to treat and in general will not give nice and
clean results for the expectation value. That is why for the holonomy we will consider the
spinorial approach to single out the only useful operators that appear in the parametrization
of the twisted geometries.

5.3.2 Flux peakedness

Using the action of the operator and taking advantage of the SU(2) coherent states and
their properties (4.10) and (4.16), one can easily compute the expectation value

〈Ω|L̂i|Ω〉 =
∑
j

j d2je
−tj2 cos(jω̄) cos(jω)Ñi (5.34)
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and in the same integral approximation used for the norm one can show

〈Ω|L̂i|Ω〉 '
1

2

∫ ∞

0
dxx(2x+ 1)2e−tx2

[cos(2xR) + cosh(2xI)] Ñi

=
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R2

t

4t
7

2

[
2
√
πt(−2R2 + t) + 2e
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t
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t

√
πt(2I2 + t) + 2e
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√
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+
√
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(
Ie
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t
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t (4I2 + t(6 + t)) erf

(
I√
t

)
− iR(4R2 − t(6 + t)) erf

(
iR√
t

))]
Ñi

(5.35)

where as always we call ω = ξ + iA = R+ iI. Now we normalize it, dividing by (5.20)

〈L̂i〉Ω :=
〈Ω|L̂i|Ω〉
〈Ω|Ω〉

=
1

t

1

D

[
2
√
πt(−2R2 + t) + 2e

R2

t
+ I2

t

√
πt(2I2 + t) + 2e

R2

t

√
t(−2R2 + 2I2 + t(4 + t))

+
√
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(
Ie
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t
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(
I√
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− iR(4R2 − t(6 + t)) erf

(
iR√
t
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(5.36)

where D is

D =− 4R2√π + 2
√
πt+ 8e

R2

t t
3

2 +
√
πt2 + 4iR

√
πt erf

(
iR√
t

)
+
√
πe

R2

t
+ I2

t

(
4I2 + t(t+ 2) + 4It erf

(
I√
t

)) (5.37)

These expressions look a bit chaotic, but now we are about to take the large spin (or area)
limit I →∞, and so it is easy to notice that given the last term in D, only few term are going
to survive in the numerator (5.36), namely

〈L̂i〉Ω ∼
1

t

2e
R2

t
+ I2

t

√
πt(2I2 + t) +

√
πIe
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t
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I√
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πe
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4I2 + t(t+ 2) + 4It erf

(
I√
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=
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I√
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)
4tI2 + 2t2 + t3 + 4It2 erf

(
I√
t

) Ñi −−−→
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Ñi

(5.38)

So to summarize, in the large area (or spin) limit

〈L̂i〉Ω = f(ω)Ñi f(ω) ≡
∑

j j d
2
je

−tj2 cos(jω̄) cos(jω)∑
j d

2
je

−tj2 cos(jω̄) cos(jω)
' Im(ω)

t
=
A

t
(5.39)

From the basic properties of the SU(2) CS depicted in chapter 4, it also follows that

〈Ω|R̂i|Ω〉 = −
∑
j

j d2je
−tj2 cos(jω̄) cos(jω)Ni 〈R̂i〉Ω = −f(ω)Ni ' −

Im(ω)

t
Ni = −

A

t
Ni

(5.40)
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These result are exactly the same as the ones encountered in the previous chapter. To see the
peakedness one has now to compute the whole uncertainty (∆ΩL̂i)

2 = 〈L̂2
i 〉Ω − 〈L̂i〉2Ω. Let’s

start with the square of (5.36) and denote it

〈L̂i〉2Ω :=

[
〈Ω|L̂i|Ω〉
〈Ω|Ω〉

]2
≡ N

2

t2D2
Ñ2

i (5.41)

The first thing to notice is that when we square the denominator D, we get many terms
that will not be relevant in the limit I → ∞, since in that regime it will be controlled by the
squared of the very last term in (5.37). So, to the leading order we have
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[
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πt+ 8e
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2 +
√
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√
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(5.42)

At the same time, while squaring the numerator in (5.36) one has to notice that everything
not proportional at least to e2

I2

t will vanish in the limit, due to (5.42). So again to the leading
order we have

N 2 ∼ 4e2
R2

t
+2 I2

t πt2(4I4 + t2 +4I2t) + πI2e2
R2

t
+2 I2
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√
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(5.43)
If we now put everything together according to (5.41), and we consider the correct limit of the
error functions, we get

〈L̂i〉2Ω ∼
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t2
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(5.44)
which is in fact what was expected.

In order to compute 〈Ω|L̂2
i |Ω〉, we need the slightly more complicated property (4.11) of the

SU(2) CS. In the same spirit as above, one finds the much more cumbersome expression
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(5.45)

Once again one has to normalize it using (5.20), and in the usual limit we get to the leading
order

〈Ω|L̂2
i |Ω〉

〈Ω|Ω〉
∼ 1

2t2
8Ñ2

i I
2 + 4tI3(1 + Ñ2
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4I2
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≡ 〈L̂2
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because as above, only the pieces proportional to e
I2

t matter, and when they simplify out with
the denominator, that is what is left at the leading order.

Finally, the uncertainty can be read from the above expressions

(∆ΩL̂i)
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and this is enough to prove that the relative uncertainty vanishes, namely

(∆ΩL̂i)
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2IÑ2
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∝ 1

Im(ω)
−−−→
I→∞
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which is very very similar to the simple angular momentum case for SU(2), (4.18) and it
behaves exactly like it. Similarly we’ll have something identical for R̂i , namely

(∆ΩR̂i)
2 ∝ A ⇒ (∆ΩR̂i)

2

〈R̂i〉2Ω
∝ 1

A
−−−−→
A→∞

0 (5.49)

where we recall that the imaginary part Im(ω) = A is the area.

We are still investigating whether the same results hold in different limits involving t other
than Im(ω) = A, concerning the validity of our integral approximation and possibly a truncation
of the above sums. The final words about this will appear in [12], where we explore the new
and more general family of TGCS, briefly previewed in section 5.6.



132 Chapter 5. Twisted Geometries Coherent States for LQG

5.3.3 Holonomy peakedness

In order to consider the holonomy operator, it is necessary to recall some aspects of its
spinorial representation introduced in chapter 3. As mentioned there, the spinor variables
realize the classical counterpart of the Schwinger representation (see Appendix B for details on
this). Here we are only interested in the part concerning the holonomy, since we have already
dealt with the fluxes even without the spinorial representation. Starting from (3.71) , we exploit
the twisted geometry parametrization

g = ñeξτ3n−1 (5.50)

and focus only on the twist angle part. Recall in fact that the twisted geometry picture suggests
to shift attention from the holonomy-flux operators to the right and left-invariant fluxes plus
the twist angle operator. We therefore wish to quantize eiξ in terms of harmonic oscillators.
Let us first find its classical explicit expression. Starting from (5.50) and using the conventions
defined in chapter 3, we can write

g = ñeξτ3n−1

=
1√

1 + |ζ|2
1√

1 + |ζ̃|2

(
1 ζ̄

− ¯̃ζ 1

)(
e−

i

2
ξ 0

0 e
i

2
ξ

)(
1 −ζ
ζ̄ 1

)

=
|z1|
||z||
|z̃1|
||z̃||

(
e−

i

2
ξ e

i

2
ξ ζ̄

−e−
i

2
ξ ¯̃ζ e

i

2
ξ

)(
1 −ζ
ζ̄ 1

)

=
1

||z||
1

||z̃||

(
|z̃1|e−

i

2
ξ z̃0e−i arg z̃1

e
i

2
ξ

−¯̃z0ei arg(z̃1)e−
i

2
ξ |z̃1|e

i

2
ξ

)(
|z1| −z0e− arg z1

z̄0ei arg z
1 |z1|

)
(5.51)

so that with the choice

ξ = 2arg z̃1 − 2 arg(z1) = −i ln
(
z̃1 z1

z̃
1
z1

)
(5.52)

(which justifies (3.60) with A = 1) one recovers

g =

(
¯̃z1z1 + z̃0z̄0 −z0 ¯̃z1 + z̃0z̄1

−z1 ¯̃z0 + z̄0z̃1 ¯̃z0z0 + z̃1z̄1

)
(5.53)

which is exactly what we had (3.71). It follows that

eiξ = e2i(arg z̃
1−arg z1) =

z̃1 z1

z̃
1
z1

(5.54)

Now, the quantization of (5.54) has to have the correct action on |j,m, n〉 (respecting the
range of m,n = −j · · · , j), which in particular has to vanish on |0, 0, 0〉. Moreover, since
we classically have {A, ξ} = 1 ⇒ {A, eiξ} = ieiξ, at the quantum level we should recover[
Â, êiξ

]
= −êiξ. It turns out that, calling z → a, z̄ → a†, a definition consistent with all the

requirements is
êiξ = (a1†)2(n1)−1(ñ1)−1(ã1)2 (5.55)
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The first thing to notice is that classically it reproduces exactly (5.54). Its complete action on
the basis states is

êiξ|j,m, n〉 =
√

(j − n)(j − n− 1)(j −m)(j −m− 1)

(j −m)(j − n)
|j − 1,m+ 1, n+ 1〉 (5.56)

which is written in this way because one has to remember that the operator ordering in (5.55)
is important. In fact if m or n are equal to j, j − 1, the action vanishes thanks to the square
roots at the numerator given by the action of the operators a1†, ã1. The latter act before the
operators ñ1 and n1 which will end up acting on zero before the denominator can give troubles.
Moreover

êiξ|0, 0, 0〉 = 0 (5.57)

and one can also easily check that[
Â, êiξ

]
=

[
ñ0 + ñ1

2
, êiξ
]
= −(a1†)2(n1)−1(ñ1)−1(ã1)2 = −êiξ (5.58)

Therefore, given the action on the basis (5.56) one can write the complete expression of the
expectation value

〈Ω|êiξ|Ω〉 =
∑
j

√
C(j) d

3

2

j−1d
3

2

j e
− t

2
−tj2+tj cos [(j − 1)ω] cos(jω)

×D(j−1)
j−1,m+1(ñ

−1)D
(j−1)
m+1,−(j−1)(n)D

(j)
jn (ñ)D

(j)
m,−j(n

−1)

(5.59)

where we denoted
√
C(j) =

√
(j−n−1)(j−m−1)

(j−m)(j−n) . Now we call

W (j) = D
(j−1)
j−1,m+1(ñ

−1)D
(j−1)
m+1,−(j−1)(n)D

(j)
jn (ñ)D

(j)
m,−j(n

−1) (5.60)

for the sake of notation, and we notice that the following consideration will not depend on
these numeric coefficients. Now we complete the square at the exponent, we write the cosines
in terms of exponentials and we rearrange everything that does not depend on j in front of the
sum, to get

〈Ω|êiξ|Ω〉 = e−
t

4 e−iω̄
∑
j

√
C(j) (2j − 1)

3

2 (2j + 1)
3

2 e
−t

(
j− 1

2

)2 (
e2ijξ + e2jA

)
W (j)

+ e−
t

4 eiω̄
∑
j

√
C(j) (2j − 1)

3

2 (2j + 1)
3

2 e
−t

(
j− 1

2

)2 (
e−2ijξ + e−2jA

)
W (j)

(5.61)

Even if it is not clear at first sight, this result does look promising. First of all we have to
consider the normalized expectation value

〈êiξ〉Ω :=
〈Ω|êiξ|Ω〉
〈Ω|Ω〉

(5.62)
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Now one might recognize that a very similar problem was analysed in chapter 4, while
dealing with the particle on the circle or even better with the new harmonic oscillator coherent
states. In the latter, we recovered the result of the particle on the circle in the large Im(ω) limit
which is here the large area or spin limit A → ∞. Instead of treating the sums as integrals
and then go to the large A regime, for now we limit ourselves to the following considerations.
Since iω̄ = A+ iξ, in the large area limit we immediately see that the first piece of (5.61) will
not contribute. Moreover, when considering the normalized expectation value, we will have
something very similar to what happened in the above examples, and in the same limit the
only contribution that will survive will be the one with eiξ−t/4, namely one might expect

〈êiξ〉Ω ∼ eiξ−
t

4 for A→∞ (5.63)

This would be nothing but the same result obtained in (4.103) and (4.37).

This is still work in progress, the difficulty arising from both the analytical and numerical
analysis needed for the above non trivial coefficients. Nevertheless, given the similarities and
the analogies, if that will be the case it would mean that our coherent states can both be
peaked also in the holonomy (or its twist angle component) as well as on the fluxes, with clear
directions. These complete results, especially concerning the new and more general family of
CS introduced below in section 5.6, will appear in [12] and we will discuss all the methods and
investigations used.

5.4 Relation with Heat Kernel CS

Thiemann’s coherent states can be associated with the complex structure induced by the
parametrization

(g,X) → H ∈ SL(2,C)
H ≡ eiLg = geiR

(5.64)

The corresponding coherent states are given by (the analytic continuation of) the heat kernel
over SU(2)

ψt
H(u) =

∑
j∈N/2

dje
− t

2
j(j+1)χ(j)(Hu−1) (5.65)

where χ(j) is the character in the irreducible representation j. Notice that if the Twisted
Geometries parametrization is chosen to be4

g = ñ ε eξτ3n−1 R = Anτ3n
−1 L = −gRg−1 = Añτ3ñ

−1 (5.66)

where ε = iσ2, then the element H can be written as5

H = ñ ε eωτ3n−1 (5.67)
4It’s easy to see that since N = nτ3n

−1 and Ñ = ñτ3ñ
−1, then L = −Añe−ξτ3ετ3 ε

−1 eξτ3 ñ−1 = AÑ because
ετ3ε

−1 = −τ3.
5H = eiLg = eiAñτ3ñ

−1

ñ ε eξτ3n−1 = ñ ε eijτ3eξτ3n−1 = ñ ε eωτ3n−1 = geiR.
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where τ3 = −iσ3/2 and ω = ξ + iA. This choice is made to make the comparison more
transparent and as it is explained in the above, it only represent a different choice of SU(2)

coherent states composing (5.13), or a different orientations of the two spheres. For instance,
we choose the combination in (5.68) to match Thiemann’s state. For more comment in this
regard see the end of this section. Thanks to (5.67) we see that the two parametrizations are
related. The first difference with the new coherent states

ψt
Ω(u) =

∑
j∈N/2

d
3/2
j e−

t

2
j2 cos(jω) [j, n|u−1|j, ñ〉 (5.68)

is the prefactor, namely the spin weights. But remembering that

[j, n|u−1|j, ñ〉 = 〈j, j|n−1u−1ñ|j,−j〉 = D
(j)
j,−j(n

−1u−1ñ) = D
(j)
j,j (n

−1u−1ñ ε) (5.69)

we see that the true key difference lies in the dependence on the labels. In the HK coherent
states we have

χ(j)(Hu−1) = D
(j)
ab (H)D

(j)
ba (u

−1) = D
(j)
ab (ñ ε e

ωτ3n−1)D
(j)
ba (u
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In the new states we have instead
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(j)
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(j)
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(5.71)

where we used

2 cos(jω) = eiωj+e−iωj = 〈j,−j|eωτ3 |j,−j〉+〈j, j|eωτ3 |j, j〉 = D
(j)
−j,−j(e

ωτ3)+D
(j)
jj (e

ωτ3) (5.72)

since ε|j,−j〉 = |j, j〉. A comparison of (5.70) and (5.71) shows that the difference boils down
to a different matrix structure

D
(j)
ab (ñ ε e

ωτ3n−1) 6= 1

2

∑
a,b

D
(j)
a,−j(ñ)D

(j)
−j,−j(e

ωτ3)D
(j)
−j,b(ε

−1n−1)+
1

2

∑
a,b

D
(j)
aj (ñ ε)D

(j)
jj (e

ωτ3)D
(j)
jb (n

−1)

(5.73)
This comparison highlights the role of the different complex structures used: in the new states,
the complex structures of S2 and T ∗S1 stay separated, while they are mixed up in the SL(2,C)
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complex structure, namely in Thiemann states.

We will show however that the two sets of states coincide in the limit of large area A =

Im(ω). The first thing to notice is that in the new states, namely the RHS of (5.73), it will
survive only the second part since eiωj = D

(j)
−j,−j(e

ωτ3) −−−→
I→∞

0. Next, concerning the Thiemann
states, we first rewrite

D
(j)
ab (ñ ε e

ωτ3n−1) =
∑
c,d

D(j)
ac (ñε)D

(j)
cd (e

ωτ3)D
(j)
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−1) (5.74)

Then notice that

D
(j)
cd (e

ωτ3) = 〈j, c|eωτ3 |j, d〉 = 〈j, d|j, c〉e−iωd = δcde
−iωd (5.75)

will effectively project on the maximal spin j since in the limit Im(ω)→∞ I have

lim
I→∞

D
(j)
ab (ñ ε e

ωτ3n−1) =
∑
c

D(j)
ac (ñε)

(
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e−iωc

)
D

(j)
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−1) (5.76)

where
e−iωc = e−iωje−iω(c−j) ∼ e−iωje(c−j) Im(ω) (5.77)

now since c runs over {−j, j} then (c−j) ≤ 0 and therefore in the sum over c, when Im(ω)→∞,
it will only survive the first contribution. Thus, being e−iωj = D

(j)
jj (e

ωτ3) we have

lim
I→∞

D
(j)
ab (ñ ε e

ωτ3n−1) = D
(j)
aj (ñε)D

(j)
jj (e

ωτ3)D
(j)
jb (n
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which is exactly what remains in the same limit on the RHS of equation (5.73), again up to
factors.

A remark concerning the conventions is now in order. First of all, the choice of the
parametrization (5.66) and (5.67) is simply made in order to see clearly the comparison between
the two sets of CS. Any other choice would have been possible, providing that the suitable ad-
justment had been taken in (5.68). For example, the element H could be parametrized without
the use of the epsilon tensor or with two of them, but in that case one would need two highest
or two lowest weight SU(2) coherent states, rather than a mixed combination, in (5.68). As a
matter of fact all these choices define coherent states and as we will see, there is indeed a more
general definition that will include more than one of them, defining a generalized family of CS.
These states will be easily compared to Thiemann’s states and the comparison will not have
any sort of dependence upon the above choices.

Concluding, as we anticipated, the HK coherent states show a nice and separated structure
only in the large area limit, whereas our states are already factorized in vertices and edges
contributions.
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5.5 Gauge invariance

An advantage of the new coherent states is that the geometrical interpretation associated to
the labels is carried through quite naturally at the gauge invariant level. In fact as discussed in
chapter 2, an application of the Guillermin-Sternberg theorem guarantees us that imposing the
Gauss constraint amounts to impose the closure conditions on the labels and then divide out by
the rotation group. This symplectic reduction provides exactly 2(n− 3) classical parameters in
place of the n− 3 intertwiners. As we know, this leaves us in the space of shapes of polyhedra,
hence the interpretation of the coherent states is naturally in terms of flat polyhedra associated
to each vertex.

Implementing the Gauss constraint will result in a well factorized state, in terms of the
coherent intertwiners discussed in chapter 2. The final result is nothing but a superposition of
spin network states with suitable coefficients

|Ω〉0 =
∑
je

Aje

∏
v

cv(n) |Γ, je, ıv〉 (5.79)

where we have denoted
Aje = d

3/2
je
e−

t

2
j2e cos(jeωe) (5.80)

and the coefficient cv(n) are the ones appearing in the coherent intertwiners.
Let us see how to obtain that result, and prove it in the holonomy representation. Starting
from equation (5.16), we can express the edge coherent state as

ΨΩ(g) =
∑
j

d
3

2

j e
− t

2
j2 cos(jω)〈j, n|g |j, ñ] =

∑
je

AjeD
(j)
−j,j(n

−1gñ) (5.81)

Then the coherent states on a fixed graph Γ are simply given by tensor products of the single-
edge CS over the links of the graph

ΨΓ,Ω(g1, . . . , gL) =

L⊗
e=1

∑
je

AjeD
(je)
−je,je

(n−1
e geñe) (5.82)

where g1, . . . , gL stands for ge1 , . . . , geL , so the index e runs over the links from 1 to L. Now by
definition, the gauge invariant states will be given by group averaging

Ψ0
Γ,Ω(ge1 , . . . , geL) =

∫ ∏
v

dhv
⊗
e

∑
je

AjeD
(je)
−je,je

(n−1
e hs(e)geh

−1
t(e)ñe) (5.83)

The edge e is an index in the equation, and therefore also each subscript of the Wigner
matrix, has implicitly another index, which will be taken into account in the tensor product
over all the edges.

Let us focus on the the last matrix, and decompose it as

D
(je)
−je,je

(n−1
e hs(e)geh

−1
t(e)ñe) = D−jeae

(n−1
e )Daebe(hs(e))Dbece(ge)Dcede

(h−1
t(e))Ddeje(ñe) (5.84)
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Now recall that the last and first pieces of that multiplication of matrices are nothing but

D−jeae
(n−1

e ) = 〈je, ne|je, ae〉 Ddeje(ñe) = 〈je, de|je, ñe] (5.85)

and of course there will be many of such pieces ”tensor producted” together, due to the
product over e. We also need to recall the property∫

SU(2)
dhD(j1)m1

n1
(h) · · · D(jN )mN

nN
(h) =

∑
ı

ım1···mN ın1···nn
(5.86)

which of course holds also if the arguments are h−1 thanks to the invariance of the Haar measure.
In view of the decomposition (5.84), this means that in each v-th integral of equation (5.83),
we can recognize the integrand as a product of Wigner matrices evaluated hs(e) or h−1

t(e). So
thanks to (5.86) we can introduce the invariant tensors i on their behalves, the other matrices
being untouched by the integration over hv. Remember that these tensors are exactly the ones
that define the intertwiner basis

ı(k)a1,...,aN
|j1, a1〉 · · · |jN , aN 〉 = |j1, · · · , jN ; k〉 ≡ |k〉 (5.87)

and in fact the projector onto the gauge invariant subspace is nothing but

P =
∑
k

|k〉〈k| (5.88)

which, if applied to the tensor product state made of coherent states6 of SU(2), gives

P |j1, ~n1〉 · · · |jN , ~nN 〉 =
∑
k

ck(j, n)|k〉 (5.89)

where
ck(j, n) = 〈j1, . . . , jN ; k|j1~n1, · · · , jN~nN 〉 (5.90)

We will recognize the definition of the coherent intertwiners discussed in chaper 2

||j, n〉LS =

∫
dh
⊗
e

h|je, ~ne〉 =
∑
k

ck(j, n)|k〉 (5.91)

which naturally emerge when group averaging the new states. Let us show it explicitly, going
back to the original task. We see that when we consider the tensor product over the edges of
the Wigner matrix with argument hs(e) and h−1

t(e), we obtain a sum over the intertwiners. So
leaving the explicit tensor product for the non integrated part, we have

(⊗
e

〈je, ne|je, ae〉Dbe,ce(ge)〈je, de|je ñe]

)∑
i(v)a1,...,aN

ib1,...,bN(v)

∑
i(v)c1,...,cN i

d1,...,dN

(v) (5.92)

6|j, ~n〉 can be highest weight |j, n] or lowest weight |j, n〉



5.5. Gauge invariance 139

and using what said above we recognize the coefficients (5.90) appearing in the last expres-
sion, namely

id1,...,dN

(v) (⊗e〈je, de|je ñe]) = 〈j1, . . . , jN ; v|j1ñ1, · · · , jN ñN ] = cv (5.93)

and
(⊗e〈je, ne|je, ae〉)i(v)a1,...,aN

= 〈j1n1, . . . , jNnN |j1, . . . , jN ; v〉 = cv (5.94)

Something is left untouched in this operation. But this is exactly the contraction dictated
by the connectivity of the graph (here between indices be and ce) of the intertwiners tensors
with a Wigner matrix of the original variables Dbe,ce(ge). When the product over the edges is
taken into account, this is nothing but a spin network state as it was expected, being the most
natural gauge invariant basis.

In conclusion, since we have v such integrals, the gauge invariant coherent states are

Ψ0
Γ,Ω(ge1 , . . . , geL) =

∑
je

Aje

∏
v

cv(n)ψ
SN
Γ (ge1 , . . . , geN ) (5.95)

a coherent superposition of gauge invariant spin network states.

It is worth to recall that this is similar to the so called ”coherent spin network” [11], the
difference being in the coefficient characterizing our new coherent state, A. However notice the
the new set of states introduced here is truly coherent thanks to the properties discussed above.
The coherent spin networks (CSN) just mentioned were simply defined as the gauge invariant
projection of a product over links of the heat-kernel for the cotangent bundle of SU(2). The
labels of these states are written in terms of the twisted geometries variables which, as we
know, can be easily mapped to an element of SL(2, C). As a matter of fact the CSN simply
use an alternative parametrization but coincide with the heat-kernel coherent states. It is true
that they can be interpreted as a cluster of semiclassical polyhedra, instead of distributional
holonomies and fluxes associated to the graph. However, they reproduce a superposition of
spin networks with nodes labelled by Livine-Speziale coherent intertwiners, only in the large
spin limit. On the contrary, the TGCS are truly different and coincide with the others only in
the large spin limit.

Thus we see from (5.95) that after imposing the Gauss law, the result is a factorization on
vertex and edge contributions. This factorization is exact, for any spin, i.e. it does not require
a large spin limit, contrary to what happens with the states known so far.
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5.6 Generalization and new TGCS

As anticipated, on the course of this work it was realized that a more general definition
was possible. This resolves some of the arbitrariness of the so far discussed coherent states.
Moreover it will have more palatable features, dealing with nicer mathematical structures and it
will have an elegant relation to known special functions such as the Jacobi’s theta functions. In
general, they will have similar (if not identical) properties to the one discussed above, therefore
we will not detail the calculations here, some of which are yet to be completed. This general
version of twisted geometries coherent states will appear in [12] where all the details can be
found. Here we give a brief review and picture of the work in progress.

5.6.1 A new family

The first step in this realization was made by including a simple shift in the ω parameter of
the original coherent states, in order to look slightly more similar to Thiemann CS. Then we
noticed that since the original idea was to deal with the Z2 symmetry of the twisted geometry
parametrization, this could be done both using the coherent states introduced in section 5.1,
or more generally considering the following family of CS
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which can be written in the momentum basis as

|Ω, t〉 = e−
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. (5.97)

This more generic definitions will be called from now on twisted geometries coherent states,
whereas we will refer to the old ones as the simplified version. The main difference between the
heat-kernel and the twisted geometries coherent states (5.96) is that the trace in (5.4) has been
replaced by a projection on highest and lowest weights. The fact that this is possible while still
providing an over-complete basis in L2[SU(2)] is one of the main point of this family of CS,
and will be proved below.

The states coincide with the heat-kernel ones for large A, as can be seen comparing (5.8)
and the same limit on (5.96). The only difference is in the prefactor, but this is only because
we kept it explicitly to have the norms given precisely by the theta functions. The states as
defined are in fact not normalized; their squared norm can be computed to be∥∥Ψt

Ω

∥∥2 = 2e−
t

4

∑
j

d2je
−tj(j+1) cosh(djA)

= (1− 4∂t)
(
ϑ2(iA, e

−t) + ϑ3(iA, e
−t)− 1

) (5.98)

where ϑi(u, q) are Jacobi’s theta functions in the conventions of Wolfram Mathematica. The
differential operator acting on the theta functions is a consequence of the d2j factor. Without
this factor, the norm of the states would be directly given by the theta functions. The factor is
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however important and cannot be removed from the definition, because it encodes the radius
of the spheres. We remark that the second theta is there merely to take into account the
half-integer representations. If one were interested in L2[SO(3)] instead of L2[SU(2)], the sum
in (5.96) would be over the natural numbers only. Finally, let us comment on the pre-factor
exp(−t/8) in (5.96). This would naturally be present also in the heat-kernel coherent states
(5.4), but it can be always removed modifying the normalization of the measure in the resolu-
tion of the identity. Keeping it permits the match with the theta functions.

The reason for the two terms is due to the Z2 symmetry of the twisted geometry parametriza-
tion of T ∗SU(2), and the existence of two families of SU(2) coherent states, those associated
with the lowest or highest weight.

For most practical purposes, it is possible to consider the simplified family given by

Ψt
Ωs
(g) := 2

∑
j

d
3

2

j e
− t

2
j(j+1) cos

(
1
2djω

)
D

(j)
−j−j(n

−1gñ), (5.99)

or in the momentum basis

|Ωs, t〉 =
∑
jmn

dje
− t

2
j(j+1) cos

(
dj
2
ω

)
D

(j)
−jm(n−1)D

(j)
n,−j(ñ). (5.100)

This family is in fact a simple modification to the coherent states discussed before this section
(5.16). It also has the property of being a holomorphic function in (ω, ζ̄, ζ̃)7, even though unfor-
tunately this does not lead to the possibility of constructing a new holomorphic represetation
for the holonomy-flux algebra. It also has slightly less desirable features, for instance its norm
is ∥∥∥ ◦

Ψ
t
Ω

∥∥∥2 = 4
∑
j

d2je
−tj(j+1)(cosh(djA) + cos(djξ)) (5.101)

This expression has a subleading dependence on the real part of ω, and lacks the elegant con-
nection to the theta functions. The latter is the reason why we removed the e−t/8 prefactor in
their definition to put it in the measure.8 All the properties of these simplified family can be
deducted by the analysis carried in the first sections of this chapter.

The convergence of the sum in (5.98) depends mainly on t, improving for larger t, and
secondarily on A, improving for smaller A. For t ≤ 1, numerical investigations show that the
sum converges within an error smaller than 105 for a cut off that scales roughly with t−1/2. This
is an upper bound that permits to include large ranges of A. For small t, it is also possible to
approximate the sum with an integral. We are still investigating what are the best regimes for
which the approximations hold, and we will give a complete report in [12]. The same arguments
will hold for the various expectation values we illustrate below.

7A version holomorphic in (ω, ζ, ζ̃) is obtained taking mixed highest/lowest weights Dj−j .
8As it is done with the heat-kernel coherent states.
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5.6.2 Resolution of identity

The necessary, and weakest condition that one can require of coherent states, is that they
provide a resolution of the identity as an integral over the classical phase space [2]. With the
new family of coherent states, the resolution of the identity is given by the following measure

1 =

∫
S2

d2n

∫
S2

d2ñ

∫ 2π

−2π

dξ

4π

∫ ∞

0

dA√
πt
e−

I2

t |ω, ζ, ζ̃〉〈ω, ζ, ζ̃| (5.102)

where the notation |Ω, t〉 = |ω, ζ, ζ̃〉 is simply a way to make it different from |Ω〉 = |ω, n, ñ〉
which was used with the previous states, but it labels the same things. To prove the resolution
of the unity, it is sufficient to evaluate

〈j,m, n| k, p, q〉 = e−
t

4djdke
− t

2
Cj− t

2
Ck

∫
S2

d2n

∫
S2

d2ñ

∫ 2π

−2π

dξ

4π

∫ ∞

0

dA√
πt
e−

A2

t (5.103)(
e−
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2
(A+iξ)djD

(j)
m,−j(ñ)D

(j)
−j,n(n

−1) + e
1

2
(A+iξ)djD

(j)
m,−j(ñ)D

(j)
−j,n(n

−1)
)

(
e−

1

2
(A−iξ)dkD

(k)
p,−k(ñ)D

(j)
−k,q(n

−1) + e
1

2
(A−iξ)dkD

(k)
p,−k(ñ)D

(k)
−k,q(n

−1)
)

and verify that it results in a product of Kronecker deltas. To proceed, it is simpler to first
integrate over ξ. There are four possible terms, and the relevant integrals give

∫ 2π

−2π

dξ

4π
e−iξ(j+ 1

2
)e±iξ(k+ 1

2
) =

{
δ2j,2k
δ2j+2,−2k

(5.104)

With the chosen parametrization of SU(2), the period of ξ is 4π and this includes the half-
integer representations. We will from now on use a shorter notation djk including the half-
integers, as customary in SU(2) theory. Since the spins are only positive, this integral kills
the mixed terms between the second and third line of (5.103). This leaves sphere integrals,
that give deltas on the magnetic indices thanks to the resolution of the identity satisfied by the
SU(2) coherent states, ∫

D
(j)
m,−j(n)D

(k)
p,−k(n) =

1

dj
δjkδmp (5.105)

and similarly δnq comes from the second sphere integral. The final integration gives

〈j,m, n| k, p, q〉 = δjkδmpδnqe
− t

4 e−tCj

∫ ∞

0

dA√
πt
e−

A2

t

(
e

1

2
Adj + e−

1

2
Adj

)
= δjkδmpδnq. (5.106)

This proves that (5.96) is an overcomplete basis in L2[SU(2), dµH]. The resolution of the
identity for the alternative, simpler definition (5.99) can be proved along similar lines (see
section 5.2), and with the same measure. Finally, a similar procedure shows that the Gaussian
ansatz works with the less elegant measure (5.11).
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5.6.3 Expectation values and peakedness

The peakedness properties of these states will follow almost directly from the ones obtained
with the simplified version. However this piece of work is yet to be completed, especially re-
garding the limit in which some approximation are used.

The holonomy peakedness, and therefore the one of the operator associated to the expo-
nential of the twist angle ξ, will be done in close analogy with the simplified version sketched
in section 5.3.

Regarding the fluxes, of course for example a simple calculation shows immediately that

〈Ω, t| ~̂L |Ω, t〉 = f(A, t)~nL, f(A, t) := 2e−
t

4

∑
j

d2je
−tj(j+1) sinh(djA)j. (5.107)

and that dividing by the norm of the coherent states, we arrive at

〈~̂L〉 := 〈Ω, t|
~̂L |Ω, t〉∥∥Ψt
Ω

∥∥2 =
f(A, t)∥∥Ψt

Ω

∥∥2~nL ∼
A

t
~nL for t� 1. (5.108)

This simple expression shows the advantage of using the SU(2) coherent states to peak on the
direction. Similarly for the right-invariant fluxes,

〈Ω, t| ~̂R |Ω, t〉 = −f(A, t)~nR, 〈 ~̂R〉 ∼ −A
t
~nR for t� 1. (5.109)

These expression look pretty much the same as we obtained before, but we are still probing
via numerical investigation what are the right expressions to use while doing the calculations.
Moreover we will need

〈Ω, t| L̂2
i |Ω, t〉 = 2e−

t

4

∑
j

d2je
−tj(j+1) sinh(djA)

(
j

2
+ j

(
j − 1

2

)
n2i

)
(5.110)

and we will exhibit all the details to arrive at the vanishing of the relative uncertainty.

In the forthcoming article [12], we will show all the details missing here, and also investigate
other properties of these new states concerning the gauge invariance, the relation with the other
existing coherent states and other interesting features as well as future applications.
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Conclusion and outlook

To conclude, we briefly comment on the results obtained in this work, elucidating the mo-
tivations and explaining what is left to do together with possible new interesting applications
that can follow the present thesis.

The task of building coherent states for Loop Quantum Gravity dates back to quite a long
time ago. Even though the spin network states play a key role in the theory, they lack a
low energy physical interpretation and therefore are not suitable for a semiclassical analysis.
If one wishes to bridge the Planck scale quantum geometry they describe to a smooth and
classical geometry, one needs coherent states which are superposition of spin networks peaked
on classical geometries labelling the phase space of general relativity. After an early attempt
with the weave states, a proper answer to the problem was extensively developed by Thiemann
and collaborators. Their heat-kernel coherent states (HKCS) are superpositions of spin networks
with the same graph, and are properly labelled by a point in the discrete phase space of loop
gravity associated to the graph. These states fulfil a number of important properties, however
they have some limitations which provide a first motivation for our new family of coherent states.
While the HKCS are well peaked on the norm of the fluxes, they do not single out so nicely their
directions. This instead is very clearly obtained with the twisted geometries coherent states
(TGCS). Other motivations date back to the spin foam graviton calculations as well as other
progresses in the spin foam formalism, since they were a first hint suggesting a classical phase
space described by quantities referring to discrete geometries. Another incentive to search
for alternatives was the work of [11], where it was shown that Thiemann’s CS reproduce a
superpositions of spin networks with nodes labelled by Livine-Speziale coherent intertwiners,
but only some of them. The new family has this property for all of them.

A useful idea for the new family of coherent states came from the structure underlying the
twisted geometries parametrization. To clarify this point, recall that in the spirit of geometric
quantization, coherent states are associated to complex polarizations of the phase space. Dif-
ferent polarizations lead to different sets of coherent states with their specific properties. The
parametrization in terms of twisted geometries comes with a natural complex structure which
differs from the one behind Thiemann’s states. It is using this new complex structure that we
were in fact able to introduce the new set.
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The main achievements of this thesis are the following. The new family of states is coherent
in the sense that they provide a resolution of the identity in T ∗SU(2), are peaked on classical
values and the relative uncertainties of the concerned operators can be shown to vanish in
the large area or spin limit, as it happens with the simple SU(2) case. Even though they
do not sharply minimize some uncertainties relation nor are eigenvector for some destruction
operator, an important feature is that they automatically and naturally incorporate the coherent
intertwiners at the gauge invariant level. This does not happen in a certain limit as for the
coherent spin network, but it is always true thanks to the locality at the nodes of the twisted
geometries. In this sense the reduction to the gauge invariant level is much simpler, even
compared to the heat kernel coherent states. In fact the TGCS are truly different from the
previous ones and they reconcile only in the large spin limit. This is why, after imposing the
Gauss law, the result will be a factorization on vertex and edge contributions. This factorization
is exact, for any spin, i.e. it does not require a large spin limit, contrary to what happens with
the states known so far.

We conclude recalling that a generalization of the present thesis is still work in progress and
will appear in [12]. This will contain all the details missing in the last section of this thesis where
we only present the new family, and it will generalize the results obtained here. Finally, several
future applications are possible regarding the twisted geometries coherent states. Interest was
in fact recently put into new models and phenomenological applications as an alternative to
the complicated dynamics proposed by LQG. Since the Hamiltonian constraint is very difficult
to treat, mini-superspace models regarding cosmology and black holes are have recently been
considered (for example [14, 26, 1], but also others). The basic logic behind their idea is that one
starts with the Hamiltonian operator and defines a mini superspace depending on the context.
Then one uses coherent states to compute expectation vale of the constraint in order to obtain
an effective Hamiltonian, which will be considered generator of an effective dynamics. So far,
everything is done using the HKCS, and we believe that a new family of coherent states is a
way to test the extent to which we can trust the predictions we have until now.



Appendix A

SU(2): recoupling and intertwiners

The quantum degrees of freedom of the discrete, quantized spatial geometries of loop quan-
tum gravity are encoded in intertwiners, or invariant tensors of SU(2). An indispensable tech-
nical tool for carrying out such calculations quickly and efficiently is provided by the graphical
formalism of SU(2) recoupling theory. However since this is not needed for the present work,
we will not give here a description of it. This formalism consists of a diagrammatic notation for
the basic elements of SU(2) recoupling theory, together with a set of simple rules according to
which diagrams appearing in a graphical calculation can be manipulated. We refer the reader
to the main references for the graphical techniques, as we here only introduce the basic concept
on basic representation and recoupling theory of SU(2), emphasizing the crucial role of the
intertwiners.

A.1 Clebsch-Gordan coefficients

Consider the tensor product space Hj1 ⊗Hj2 . The familiar basis of this space is provided
by the tensor product states |j1,m1〉|j2,m2〉, which are eigenstates of the commuting operators

(J (1))2 (J (2))2 J (1)
z J (2)

z (A.1)

As it is known from the theory of angular momentum, another set of commuting operators
can be chosen to be

(J (1))2 (J (2))2 (J (1) + J (2))2 J (1)
z + J (2)

z (A.2)

Denoting their eigenstates |j1j2; jm〉, they must be related to the first set since they both
span the space Hj1 ⊗Hj2 , by a unitary transformation

|j1,m1〉|j2,m2〉 =
∑
j,m

C(j1j2 j) m
m1m2

|j1j2; jm〉 (A.3)

and vice versa
|j1j2; jm〉 =

∑
m1,m2

C(j1j2 j)m1m2
m|j1,m1〉|j2,m2〉 (A.4)
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The coefficient are known as Clebsch-Gordan coefficients which are denoted in the literature
as Cjm

j1m1,j2m2
= 〈j1m1, j2m2|jm〉. The particular index notation used above is not necessary but

it is designed to display the tensorial structure of the coeffieicents when seen as SU(2) tensors.
From the theory of addition of angular momenta, it is known that the following properties hold

• They are trivially zero unless the condition for the spins j1, j2 and j

|j1 − j2| ≤ j ≤ j1 + j2 (A.5)

holds. This is called Clebsch-Gordan or triangular condition.

• If m 6= m1 +m2 then Cjm
j1m1,j2m2

= 0

• Since |jm〉 is an orthonormal basis, one also has the orthogonality relations∑
j,m

C(j1j2 j) m
m1m2

C(j1j2 j)m′
1m

′
2

m = δm
′
1

m1
δm

′
2

m2
(A.6)

and ∑
m1,m2

C(j1j2 j) m
m1m2

C
(j1j2 j′)m1m2

m′ = δjj′δ
m
m′ (A.7)

• The Condon-Shortley phase convention also fixes them such that Cjm
j1m1,j2m2

∈ R.

Under this convention the numerical value between C(j1j2 j) m
m1m2 and the inverse C(j1j2 j)m1m2

m

is the same, and that is why they are usually not distinguished in the physics literature.

It is also important to show another property that justify the index notation chosen above.
Let us consider the effect of a SU(2) action on equation (A.3). On the LHS, the rotation acts
as D(j1)(g)⊗D(j2)(g) where D(j)(g) are the Wigner matrices1 whereas on the RHS the terms
with a given j tranform according to D(j)(g)

D(j1)(g)|j1,m1〉D(j2)(g)|j2,m2〉 =
∑
j,m

C(j1j2 j) m
m1m2

D(j)(g)|j1j2; jm〉 (A.8)

Now taking the product from the left of this equation with 〈j1, n1|〈j2, n2| and using (A.3) one
gets the Clebsch-Gordan series

D(j1)m1
n1
(g)D(j2)m2

n2
(g) =

∑
j,m,n

C(j1j2 j)m1m2
mC

(j1j2 j) n
n1n2

D(j)m
n(g) (A.9)

Finally contracting the last equation with a Clebsch-Gordan coefficient and using the orthonor-
mality relation (A.7), one has

D(j1)m1
n1
(g)D(j2)m2

n2
(g)C(j1j2 j) m

n1n2
= C(j1j2 j) n

m1m2
D(j)m

n(g) (A.10)

which shows that the coefficient itself behaves under SU(2) transformations and justifies the
index structure used in the notation above.

1The action of SU(2) over Hj defines a linear action of the group by exponentiation. The Wigner matrix
D(j2)(g) represents the action of g ∈ SU(2) in the |j,m〉 basis. It is thus a square matrix of size 2j + 1 with
elements D

(j)
mn(g) = 〈j,m|g|j, n〉.
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A.2 The 3-j symbols

The Wigner 3− j symbols are defined by lowering the upper index of the Clebsch-Gordan
coefficients using the antisymmetric epsilon tensor., and multiplying with a suitable factor (in
order to optimize the symmetries properties)(

j1 j2 j3
m1 m2 m3

)
=

1√
dj3

(−1)j1−j2+j3C(j1j2j3) n
m1m2

ε(j3)nm3

=
1√
dj3

(−1)j1−j2−m3C(j1j2j3) −m3
m1m2

(A.11)

These objects are usually introduced as a more symmetric version of the Clebsch-Gordan co-
efficient, but the relevance to LQG follows from their behaviour under SU(2) transformation.
As a matter of fact, starting from (A.10) one can show that the 3− j symbol is invariant under
the action of SU(2)

D(j1)m1
n1
(g)D(j2)m2

n2
(g)D(j3)m3

n3
(g)

(
j1 j2 j3
m1 m2 m3

)
=

(
j1 j2 j3
n1 n2 n3

)
(A.12)

In the language of the angular momentum, the Clebsch-Gordan coefficient couples two
angular momenta j1 and j2 to a total angular momentum j, whereas the 3− j symbol couples
three angular momenta j1, j2 and j3 to zero. The SU(2) invariance of the 3j symbols implies
that

|Ψ0〉 =
∑

m1,m2,m3

(
j1 j2 j3
m1 m2 m3

)
|j1,m1〉|j2,m2〉|j3,m3〉 (A.13)

is rotationally invariant and hence is eigenstate of the total angular momentum with eigenvalue
zero.

The properties of the Wigner 3jm symbols follow from those of the Clebsch-Gordan coeffi-
cient:

• The value of the 3j symbol can be non zero only if

|j1 − j2| ≤ j3 ≤ j1 + j2 and m1 +m2 +m3 = 0 (A.14)

• The orthogonality relations (A.6) and (A.7) read

∑
j,m

(
j1 j2 j

m1 m2 m

)(
j1 j2 j

m′
1 m′

2 m

)
=

1

dj
δm

′
1

m1
δm

′
2

m2
(A.15)

and ∑
m1,m2

(
j1 j2 j

m1 m2 m

)(
j1 j2 j′

m1 m2 m′

)
=

1

dj
δjj′δ

m′

m (A.16)
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• When the Condon-Shortley phase convention is chosen the 3j-symbol is real valued and
thanks to the definition (A.11) it also satisfy a number of symmetry properties.

For example, interchanging any two columns in the symbol produces the factor (−1)j1+j2+j3(
j2 j1 j3
m2 m1 m3

)
= (−1)j1+j2+j3

(
j1 j2 j3
m1 m2 m3

)
(A.17)

This in particular implies that the symbol is invariant under cyclic permutations of ot columns(
j1 j2 j3
m1 m2 m3

)
=

(
j3 j1 j2
m3 m1 m2

)
=

(
j2 j3 j1
m2 m3 m1

)
(A.18)

The same phase factor arises from reversing the sign of all the magnetic numbers(
j1 j2 j3
−m1 −m2 −m3

)
= (−1)j1+j2+j3

(
j1 j2 j3
m1 m2 m3

)
(A.19)

Notice also that the coefficient C(j0j) n
m0 is simply equal to δnm. Using this result in (A.11),

one also obtains that when one of the angular momenta is zero , the 3j symbol reduces to the
epsilon tensor (

j j′ 0

m n 0

)
= δjj′

1√
dj
εmn (A.20)

One last remark which will be useful is that it can be shown that∫
SU(2)

dgD(j1)
m1n1

(g)D(j2)
m2n2

(g)D(j3)
m3n3

(g) =

(
j1 j2 j3
m1 m2 m3

)(
j1 j2 j3
n1 n2 n3

)
(A.21)

for which a proof will be give shortly. Further properties of the 3j symbol, relations satisfied by
it, and explicit expression for particular values can be found in any of the standard references
on angular momentum theory. The most comprehensive source is the book by Varshalovich,
Moskalev and Khersonskii [49].

A.3 Three-valent intertwiners

The invariant tensors of SU(2), or intertwiners, play a crucial role in LQG as they represent
the building blocks of the spin network state (see main text). Equation (A.12) shows that the
3j-symbol is nothing more than such an invariant tensor. To emphasise the tensorial nature
one can introduce the notation

ım1m2m3
=

(
j1 j2 j3
m1 m2 m3

)
(A.22)

As a matter of fact, the 3j symbol is the only (up to normalization) three-valent invariant
tensor with indices in three given representations j1, j2 and j3. So the symbol alone spans the
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Figure A.1: A three valent intertwiner in its graphical representation

one-dimensional space of three-valent intertwiners denoted Inv [Hj1 ⊗Hj2 ⊗Hj3 ]. This is in
fact the invariant subspace of the tensor product of three SU(2) irreducible representations. It
is easy to see that the orthogonal projector over this space is nothing but

P =

∫
SU(2)

dg D(j1)(g)D(j2)(g)D(j3)(g) (A.23)

in fact thanks to the invariance and normalization of the Haar measure this integral is in-
variant under the action of SU(2) and satisfies P 2 = P and P † = P . Therefore, seen as
an operator on Hj1 ⊗ Hj2 ⊗ Hj3 , P is the projection operator onto the invariant subspace
Inv [Hj1 ⊗Hj2 ⊗Hj3 ], namely the space of intertwiners. Recall that if |ı〉 is an orthonormal
basis of Inv [Hj1 ⊗Hj2 ⊗Hj3 ], then P can also be written as

P =
∑
ı

|ı〉〈ı| (A.24)

Putting together the (A.23) and (A.24) nd expressing them in the magnetic basis, one sees that∫
SU(2)

dgD(j1)m1
n1
(g)D(j2)m2

n2
(g)D(j3)m3

n3
(g) =

∑
ı

ım1m2m3ın1n2n3
(A.25)

where the sum runs over any orthonormal basis of the intertwiner space. Notice that thanks to
the notation (A.22), the last equation (A.25) is exactly (A.21).

Now, for instance, by using the epsilon tensor to raise an index of (A.22), one obtains the
tensor

ım1
m2m3

= εm1m ımm2m3
(A.26)

which spans the intertwiner space Inv
[
Hj1 ⊗Hj2 ⊗Hj3

]
. The epsilon tensor therefore is simply

a map between the spaces Hj and its dual Hj . Up to a prefactor, the tensor ım1
m2m3

is equal
to the Clebsch-Gordan coefficient C(j2j3j1) m1

m2m3 seen above. Elements of a space such as this
one are invariant under the action of SU(2) in the sense of equation (A.10), namely when a
matrix D(j)(g) acts on each lower index while an inverse D(j)(g−1) acts on each upper index.

The symmetry relation (A.19) and the condition m1 +m2 +m3 = 0 imply that the tensor
obtained raising all the indices of the intertwiner (A.22) is numerically equivalent to ım1m2m3

ım1m2m3 = εm1n2εm2m3εm3n3ın1n2n3
(A.27)

The orthogonality relation (A.16) then implies that the three-valent (A.22) is normalized

ım1m2m3ım1m2m3
= 1 (A.28)
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A.4 Higher valence intertwiners

The invariant tensors ım1m2m3
and εmn are the basic objects from which intertwiners of

higher valence can be built. For instance one can consider the tensor product space of the
addition of four angular momentaHj1⊗Hj2⊗Hj3⊗Hj4 which can be decomposed as a direct sum
of irreducible representations. Then one can consider the invariant subspace Inv

[⊗4
i=1Hji

]
and it turns out that an orthonormal basis of this space is given by

|ı(j)12 〉 =
∑

m1,m2,m3,m4

√
dj

(
j1 j2 j3 j4
m1 m2 m3 m4

)(j) 4⊗
i=1

|ji,mi〉 (A.29)

with j ∈ {max(|j1 − j2| , |j3 − j4|), . . . ,min(j1 + j2 , j3 + j4)} and(
j1 j2 j3 j4
m1 m2 m3 m4

)(j)

≡
(
ı
(j)
12

)
m1m2m3m4

=
∑
m

(−1)j−m

(
j1 j2 j

m1 m2 m

)(
j j3 j4
−m m3 m4

)
(A.30)

(a) The graphical 4-valent intertwiner
(b) In the case a coherent intertwiner, we also have
a geometrical interpretation

It is easy to see that the four valent intertwiner was obtained contracting the three-valent
one with an epsilon, coupling the spins j1 and j2

(
ı
(j)
12

)
m1m2m3m4

=

(
j1 j2 j

m1 m2 m

)
εmn

(
j j3 j4
n m3 m4

)
=

(
j1 j2 j3 j4
m1 m2 m3 m4

)(j)

(A.31)

where the last notations denotes the so called Wigner 4jm symbol and can be used as well as
the tensor notation, similarly to (A.22).

The invariance of the three valent intertwiner and the epsilon tensor, implies that the four-
valent intertwiner is indeed invariant under the action of SU(2) on its indices

D(j1)m1
n1
(g)D(j2)m2

n2
(g)D(j3)m3

n3
(g)D(j4)m4

n4
(g)
(
ı
(j)
12

)
m1m2m3m4

=
(
ı
(j)
12

)
n1n2n3n4

(A.32)

As the ”internal” spin j runs over all the values allowed by the Clebsch-Gordan conditions, the
tensors (A.31) span the intertwiner space Inv

[⊗4
i=1Hji

]
. Using the orthogonality relations of
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the 3j symbols one finds

〈ı(j)12 |ı
(j′)
12 〉 =

√
dj
√
dj′
(
ı
(j)
12

)m1m2m3m4
(
ı
(j′)
12

)
m1m2m3m4

= δjj′ (A.33)

showing that the basis (A.29) is orthonormal (whereas the basis expressed in terms of the tensor
defined in (A.31) needs to be multiplied by

√
dj to be normalized).

Among the other things, it is interesting to note that this basis diagonalises the operator
( ~J1 + ~J2)

2

( ~J1 + ~J2)
2 |ı12〉 = j(j + 1) |ı12〉 (A.34)

Finally, similarly to (A.21) or (A.25) one also has that

∫
SU(2)

dgD(j1)
m1n1

(g)D(j2)
m2n2

(g)D(j3)
m3n3

(g)D(j4)
m4n4

(g) =
∑
j

dj

(
j1 j2 j3 j4
m1 m2 m3 m4

)(j)(
j1 j2 j3 j4
n1 n2 n3 n4

)(j)

(A.35)
Now the basis (A.29) or its tensorial counterpart (A.31) was a choice. It was built from one

possible decomposition of the tensor product space into irreps. Another possible decomposition
leads to another basis on the four valent intertwiner space in which the spins j1 and j3 are
coupled to the internal spin

|ı(k)13 〉 =
∑

m1,m2,m3,m4

√
dj

(
j1 j3 j2 j4
m1 m3 m2 m4

)(k) 4⊗
i=1

|ji,mi〉 (A.36)

where this time(
j1 j3 j2 j4
m1 m3 m2 m4

)(k)

≡
(
ı
(k)
13

)
m1m2m3m4

=

(
j1 j3 k

m1 m3 m

)
εmn

(
k j2 j4
n m2 m4

)
(A.37)

Again notice that this basis diagonalizes the operator ( ~J1 + ~J3)
2.

So one has two inequivalent bases for the four-valent intertwiner space

j

j2

j1 j3

j4

k

j1 j3

j2j4

and they simply represent the different spins one chooses to recouple. This freedom was of
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course not present in the three-valent case. Notice that according to the equations above, the
label of the intertwiner is given by the virtual spin (or spins for higher valence). The change of
basis is given by

Wjk ≡ 〈
(j)
12 ı|ı

(k)
13 〉 = (−1)j2+j3+j+k

√
djdk

{
j1 j2 j

j4 j3 k

}
(A.38)

so that
|ı(k)13 〉 =

∑
j

Wjk|ı
(j)
12 〉 (A.39)

where the 6j symbol was introduced{
j1 j2 j3
j4 j5 j6

}
=

∑
m1,...,m6

(−1)
∑6

i=1(ji−mi)

(
j1 j2 j3
−m1 −m2 −m3

)(
j1 j5 j6
m1 −m5 m6

)
×

×

(
j4 j2 j6
m4 m2 −m6

)(
j3 j4 j5
m3 −m4 m5

) (A.40)

or equivalently as a contraction of four three-valent intertwiners{
j1 j2 j3
j4 j5 j6

}
= ım1m2m3 ı m5

m1 m6
ı m6
m4m2

ı m4
m3 m5

(A.41)

This actually shows that the 6j vanishes unless the triples of spins indicted by the little circles{
◦ ◦ ◦

} {
◦
◦ ◦

} {
◦

◦ ◦

} {
◦

◦ ◦

}
(A.42)

satisfy the Clebsch-Gordan conditions. Moreover the 6j symbol satisfy the orthogonality rela-
tion ∑

l

dl

{
j1 j2 l

j3 j4 j

}{
j1 j2 l

j3 j4 k

}
=

1

dj
δjk (A.43)

which in turn implies ∑
i

WijWjk = δjk (A.44)

The Wigner 6j symbols satisfy several symmetry properties, for instance a symbol is unchanged
by any permutation of its column{

j1 j2 j3
j4 j5 j6

}
=

{
j1 j3 j2
j4 j6 j5

}
=

{
j2 j3 j1
j5 j6 j0

}
= . . . (A.45)

and by interchanging the upper and lower spins simultaneously in any two columns{
j1 j2 j3
j4 j5 j6

}
=

{
j1 j5 j6
j4 j2 j3

}
= . . . (A.46)
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Let us also mention the relation between a 6j symbol and a tetrahedron. It is true that they
share the same algebraic symmetries (in a way that can be easily understood), but there is also
a purely geometric significance behind it. Ponzano and Regge, expanding on work of Wigner,
gave a striking asymptotic formula relating the value of the 6j – symbol, when the dimensions
of the representations are large, to the volume of an genuine Euclidean tetrahedron whose edge
lengths are these dimensions. This played a very important role in the three-dimensional theory
[34].

Now that the game is understood, it is straightforward to continue. The Wigner 9j symbols
will arise when changes of bases between five-valent intertwiners spaces are performed. From
here it will follow that a 9j symbol is in fact defined as a contraction of six three-valent inter-
twiners, or 3j symbols. And one can also see that the 9j symbol can have a non zero value only
if the Clebsch-Gordan conditions are satisfied by the spins in each row and each column. Of
course this symbol will have a high degree of symmetry. As an example, notice that a five-valent
intertwiner will be labelled by two virtual spin

k1 k2

(A.47)

Everything concerning these and also 12j or 15j symbol can be found in the literature [49],
or easily deducted from there.

The point here is that intertwiner of arbitrarily high valency can be derived by continu-
ing to attach three-valent intertwiners by contraction with epsilon. An N -valent intertwiner
will be labelled by N − 2 internal spins, which determine the eigenvalues of the operators
(J1 + J2)

2, (J1 + J2 + J3)
2, . . . , (J1 + · · ·+ JN−2)

2.
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A useful fact of the N -valent intertwiner space concerns the integral

P (j1,...,jN ) =

∫
SU(2)

dg

N⊗
i

D(ji) (A.48)

which is easily recognized as the projection operator acting on
⊗N

i=1Hji which projects over
the invariant subspace Inv

[⊗N
i=1Hji

]
, i.e. the intertwiner space. In fact the integral (A.48) is

invariant under the action of SU(2) thanks to the Haar measure and satisfies P 2 = P = P †.
Generalizing the above results for three-valent intertwiners (A.25) one sees that the integral
can be expressed as P (j1,...,jN ) =

∑
ı |ı〉〈ı|, or∫

SU(2)
dgD(j1)m1

n1
(g) · · · D(jN )mN

nN
(g) =

∑
ı

ım1···mN ın1···nN

where the sum runs over an orthonormal basis of Inv [Hj1 ⊗ · · · ⊗ HjN ].
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Conventions and Notations

B.1 Physical constants

In the main text we usually consider the most convenient units depending on the context.
However, it is always important to remember the physical dimensions of the quantities, and
this is especially true in a theory of quantum gravity where all the fundamental constants come
into play.

The first thing to remark is that in the whole thesis the speed of light is set to be c = 1, as
customary. The only exception is this appendix. Of course if this were not the case, we would
have differences starting from the very first equation of this document (1.1), which would prop-
agate from there into all the calculations. Without the speed of light one is left with the factor
8πG that again sometimes is killed in the main text, choosing units where it amounts to unity.

The second comment concerns the Planck length

lP =

√
~G
c3
∼ 10−35m (B.1)

which is fundamental for a theory of quantum gravity, since this tries to understand what
happens at that extreme short-distance scale. This is in fact the fundamental length scale. It
not only sets the scale of quantum gravitational phenomena, it also determines a physical limit.
It literally sets a lower limit to the divisibility of physical space. Quantum gravity in this sense
is a realisation that space (-time) itself is not continuum. There is a finite discrete granular
structure, in the same way as for instance there is a limit to the divisibility of matter.

Regarding the equation in the main text, expression (B.1) dictates for example that con-
sidering the correct physical dimension, the area and volume operators will have spectra with
eigenvalues

8πG~γ
c3

= 8πγl2P and
(
8πG~γ
c3

) 3

2

= (8πγ)
3

2 l3P (B.2)

respectively, the first one being in accordance with (2.43). Notice that in units where 8πG =

1 = c they simply become ~γ and
√
~3γ3 as in equations (2.9), (2.21).
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B.2 Schwinger representation and Twisted Geometries

We briefly report here the conventions adopted in the main text, particular choices or
changes in notations, regarding the link between twisted geometries, spinors and the Schwinger
representation.

Fluxes

We start with the right- and left- invariant vector fields. They were called X and X̃

respectively in the original papers [16, 17]. However, in order to avoid a tilde symbol flying
around, in chapter 5 we decided to intuitively call them R and L at the classical level, so that
the operators will simply be R̂ and L̂. In accordance with chapter 3, their classical algebra is

{Ri, Rj} = εijkRk {Li, Lj} = εijkLk (recall X = R , X̃ = L) (B.3)

and they are in fact defined in terms of the derivatives

∇R
i f(g) =

d

dt
f
(
getX

)∣∣
t=0

∇L
i f(g) =

d

dt
f
(
e−tXg

)∣∣
t=0

(B.4)

simply as
Ri = i∇L

i Li = i∇R
i (B.5)

Consistently, they are related by

L = −gRg−1 (or for the last time X̃ = −gXg−1) (B.6)

as one can easily check

g−1∇Rg = g−1gX = X = −(∇Lg)g−1 ⇒ g−1L = −Rg−1 (B.7)

The quantization rule chosen [·, ·] = i{·, ·} is therefore such that[
R̂i, R̂j

]
= iεijkR̂k

[
L̂i, L̂j

]
= iεijkL̂k (B.8)

The explicit construction of these quantum operators is given below in terms of the Schwinger
representation of the angular momentum, for which one has to introduce spinorial variables.

Spinors

In agreement with the main text, the spinor variables are chosen to satisfy the classical
algebra

{zA, zB} = iδAB {z̃A, z̃B} = −iδAB (B.9)

and in view of the twisted geometries parametrization we choose to call the ratios

ζ̃ =
z̃0

z̃1
ζ =

z0

z1
(B.10)
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The relation between these variables and the fluxes is the straightforward link between spinors
and vectors. For the left - invariant vector field the one has

|z̃〉〈z̃| = A1+ Liσi (B.11)

where A is, in accordance to chapter 5, the name of the twisted geometries variable which was
originally called j in [16]. Thus

Li = 〈z̃|σ
i

2
|z̃〉 ⇒ Li =

1

2

 z̃1z̃0 + ãz0z̃1
i(z̃1z̃0 − z̃0z̃1)
|z̃0|2 − |z̃1|2

 =

 Re[z̃0z̃1]

Im[z̃0z̃1]
1
2(|z̃0|

2 − |z̃1|2)

 (B.12)

or equivalently, using L± = L1 ± iL2

L+ = z̃
0
z̃1 L− = z̃0z̃

1 (B.13)

This is of course the classical version of the Schwinger representation. Moreover the following
identification holds in agreement with chapter 3

A = |~L| = 1

2
〈z̃|z̃〉 = 1

2
(|z̃0|2 + |z̃1|2) (B.14)

Similarly we will have for the right - invariant vector field

Ri = −〈z|σ
i

2
|z〉 ⇒ Ri = −1

2

 z1z0 + z0z1
i(z1z0 − z0z1)
|z0|2 − |z1|2

 = −

 Re[z0z1]

Im[z0z1]
1
2(|z0|

2 − |z1|2)

 (B.15)

or equivalently, again using R± = R1 ± iR2 (á la Schwinger)

R+ = −z0z1 R− = −z0z1 (B.16)

Remember that when using two spinors, one is describing something bigger than the edge space
of LQG (see chapter 3). In fact from 8 degrees of freedom one goes to only 6 associated to the
T ∗SU(2) imposing the area matching constraint, which is nothing but the matching between
the norms of the spinors. Therefore we will also have

A = |~R| = 1

2
〈z|z〉 = 1

2
(|z0|2 + |z1|2) (B.17)

Notice also that due to the above definitions (B.9) one can explicitly check the algebras (B.3)
since, being for example Li = 1

2σ
i
AB z̃Az̃B

{Li, Lj} = 1

4
σiABσ

j
CD{z̃Az̃B, z̃C z̃D}

=
1

4
σiABσ

j
CD(z̃Az̃D{z̃B, z̃C}+ z̃B z̃C{z̃A, z̃D})

=
1

4
σiABσ

j
CD

(
−iδBC z̃Az̃D + iδADz̃B z̃C

)
=
−i
4

(
σiACσ

j
CDz̃Az̃D − σ

j
CAσ

i
AC z̃B z̃C

)
= − i

4
〈z̃|
[
σi, σj

]
|z̃〉 = 1

2
εijk〈z̃|σ

k|z̃〉 = εijkL
k

(B.18)
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because
[
σi, σj

]
= 2iεijkσ

k. This will hold also for the vector R since the minus sign in (B.15)
is compensated by the algebra (B.9).

The holonomy in terms of the spinors is chosen to be

gAB =
z̃AδBḂ z̄

Ḃ + δAȦ ¯̃zAzB

||z|| ||z̃||
=

1

||z|| ||z̃||

(
z̃0z̄0 + ¯̃z1z1 z̃0z̄1 − ¯̃z1z0

z̃1z̄0 − ¯̃z0z1 z̃1z̄1 + ¯̃z0z0

)
(B.19)

such that
g|z〉 ∝ |z̃〉 g |z] ∝ |z̃] (B.20)

Thanks to the twisted geometries, we will not need to quantize the expression (B.19) but a
convenient constituent of it. This is done in the main text and reported below within the
Schwinger representation quantizing the spinorial variables.

Twisted Geometries

Regarding the fluxes, for the Twisted Geometries parametrization we make the choice

L = −Añτ3ñ−1 ≡ −AÑ R = Anτ3n
−1 ≡ AN (B.21)

which is consistent with the above ones. In fact, to check whether the signs in (B.21) are
correct, one can for example see explicitly that

L3 =
|z̃0|2 − |z̃1|2

2
=
ñ0 − ñ1

2
(B.22)

where in the last equality we called ñ0 = ¯̃z1z̃1 = |z̃0|2 and ñ1 = ¯̃z1z̃1 = |z̃1|2 in view of the
Schwinger representation for the angular momentum in terms of harmonic oscillators. Starting
from L = Liτi = − i

2L
iτi which implies Li = i tr(σiL), we have

L3 = i tr(σ3L) = −
1

2
A tr

(
σ3ñσ3ñ

−1
)
= −A1− |ζ̃|2

1 + |ζ̃|2
= −A |z̃

1|2 − |z̃0|2

||z̃||2
=
|z̃0|2 − |z̃1|2

2
=
ñ0 − ñ1

2
(B.23)

where we used ||z̃||2 = 2A and tr
(
σ3ñσ3ñ

−1
)
= 21−|ζ̃|2

1+|ζ̃|2 . Given the area matching constraint
discussed above which implies also ||z||2 = 2A , one now clearly sees that R3 will have a global
minus sign in accordance with (B.21) and (B.15). The same will hold of course for the other
components of the fluxes.

Regarding the holonomy, in the twisted geometries parametrization the choice is

g = ñeξτ3n−1 (B.24)

where n = n(ζ) and ñ = ñ(ζ̃) are the Hopf sections of chapter 3. It is shown in the main text
that in order to recover (B.19), one has to define

ξ = 2arg z̃1 − 2 arg(z1) = −i ln
(
z̃1 z1

z̃
1
z1

)
(B.25)
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which implies

eiξ = e2i(arg z̃
1−arg z1) =

z̃1 z1

z̃
1
z1

(B.26)

To quantize this we need the following representation.

Schwinger representation

Calling z → a and z̄ → a†, one obtains the commutators of harmonic oscillators starting
from the classical algebras (B.9) and the usual quantization rule[

ãA , ãB†
]
= δAB

[
aA , aB†

]
= −δAB (B.27)

Therefore, calling as customary nA = aA†aA, the Schwinger representation is realized as follows

|n0, n1, ñ0, ñ1〉 = |j,m, n〉 where |j,m, n〉 =
√
dj |j, n〉 ⊗ 〈j,m| (B.28)

with

j =
n0 + n1

2
=
ñ0 + ñ1

2
= j̃ m =

n0 − n1

2
n =

ñ0 − ñ1

2
(B.29)

or equivalently

ñ1 = j − n, ñ0 = j + n, n1 = j −m, n0 = j +m (B.30)

We are not putting a hat above the ”a” operators since they already differ from their classical
”z” spinor counterparts. In this representation, according to the above results, the fluxes are

L̂±,3 =

(
ã0†ã1, ã0ã1†,

ñ0 − ñ1

2

)
(B.31)

and
R̂±,3 = −

(
a0†a1, a0a1†,

n0 − n1

2

)
(B.32)

and their actions can indeed be checked to be

R̂3|j,m, n〉 = −m|j,m, n〉 L̂3|j,m, n〉 = n|j,m, n〉 (B.33)

and

R̂±|j,m, n〉 = −c∓(m)|j,m∓ 1, n〉 L̂±|j,m, n〉 = c±(n)|j,m, n± 1〉 (B.34)

where c±(a) =
√

(j ∓ a)(j ± a+ 1) =
√
j(j + 1)− a(a± 1).

Those action are rather quick to check. It is very easy to see that L̂3 acts on the ket |j, n〉
of (B.28) from the left, and given the identifications (B.29) and (B.30), it clearly is an eigen-
state with eigenvalue n. Similarly, since R̂3 has a sign of difference and it acts from the right,
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it will act on the bra 〈j,m| with eigenvalue −m. This is true because the number operator
acts identically from the left and from the right, since the creation and annihilation operators
switch role (other than position) passing from the ’ket’ to the ’bra’ action. Concerning L̂±,
from (B.31) and the usual identifications (B.29), (B.30), its action immediately follows from
the standard action of the harmonic oscillators on the ket |j, n〉. On the contrary, when dealing
with R̂±, we have to remember that we are acting from the right on the bra 〈j,m| with (B.32),
so that again the oscillator operators exchange roles. That is why one gets the coefficient −c∓,
with the minus sign coming from the definitions.

Concerning the operator (B.26), it is already shown in the main text that a suitable quan-
tization in accordance with all the requirements is given by

êiξ = (a1†)2(n1)−1(ñ1)−1(ã1)2 (B.35)

with action and features described in chapter 5.
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