
ALMA MATER STUDIORUM – UNIVERSITY OF BOLOGNA
CAMPUS OF CESENA

School of Engineering
Master’s degree in Computer Science and Engineering

JOB RECOMMENDATION BASED ON DEEP LEARNING

METHODS FOR NATURAL LANGUAGE PROCESSING

Project in
Text mining

Rapporteur
Prof. Gianluca Moro

Presented by
Lorenzo Valgimigli

Third Deegre Session
Accademic year 2018-2019

KEY WORDS

Natural Language Processing

Recommendation System

Deep Neural Networks

Job Embeddings
Python

Index

1 Introduction 1
1.1 Natural Language Processing 2

1.1.1 Word Embeddings . 3
1.2 Deep Neural Network in NLP 4

1.2.1 New Word Embeddings 5
1.2.2 Contextual Word Embeddings 6

1.3 Recommendation Systems . 7
1.3.1 Collaborative Filtering 8
1.3.2 Content-Based Filtering 8

1.4 This project . 8

2 Domain of the project 11
2.1 Job Recommendation System 11
2.2 LinkedIn: an example . 13
2.3 The data . 15

2.3.1 window_dates.tsv . 17
2.3.2 users.tsv . 17
2.3.3 user_history.tsv . 18
2.3.4 jobs.tsv . 19
2.3.5 apps.tsv . 19
2.3.6 Other files . 19

2.4 Contribution of this work . 20

3 Available Technologies 21
3.1 Attention Mechanism . 21

3.1.1 First implementation . 21
3.1.2 Multi-Dimensional Attention 22
3.1.3 Self Attention . 23
3.1.4 Conclusion . 23

3.2 Flair and Contextual String Embedding 24
3.2.1 Experiments and Results 24
3.2.2 Model . 25

v

vi INDEX

3.2.3 Contextual Word Embedding Extraction 26
3.2.4 How to use . 27

3.3 ELMo - Embeddings for Language Models 27
3.3.1 Overview . 27
3.3.2 Model . 28
3.3.3 Performances of ELMo 30
3.3.4 How to use . 31

3.4 Transformers . 32
3.4.1 Overview . 32
3.4.2 Model . 32
3.4.3 Attention Mechanism in Transformer 33
3.4.4 Multi-Head Attention . 35
3.4.5 Feed Forward Neural Network 35
3.4.6 Input and Output . 36
3.4.7 How to use . 37

3.5 Bidirectional Encoder Representation from Transformer 37
3.5.1 Overview . 37
3.5.2 BERT Performance . 37
3.5.3 Model . 38
3.5.4 Inputs and Outputs . 39
3.5.5 BERT Framework . 39
3.5.6 How to use . 41

3.6 ROBERTA . 41
3.6.1 Overview . 41
3.6.2 ROBERTA Performances 42
3.6.3 Differences from BERT 43
3.6.4 How to use . 44

3.7 Sentence BERT . 44
3.7.1 Sentece-Bert Results . 45
3.7.2 Model . 46
3.7.3 How to use . 47

3.8 SHA-RNN Model . 47
3.8.1 The sha-rnn model . 49
3.8.2 Model results . 49

4 Experiments and Results 51
4.1 Development Environment . 51

4.1.1 Server . 51
4.1.2 Google Colaboratory . 52
4.1.3 Python and Frameworks 53

4.2 ROBERTA Model and Set-Up 54

INDEX vii

4.2.1 Fine Tuning . 55
4.3 Multiple Losses Training . 57

4.3.1 Job Title - Description 58
4.3.2 Users to Job Application Task 62
4.3.3 Job History to last Job Task 65

4.4 Further tests and considerations 67
4.4.1 User to Job Application tests 67
4.4.2 Job History Last Job Test 70

5 Other Experiments and future works 73
5.1 Last Job Prediction using Job Embeddings 74
5.2 Possible solutions and future works 77

Conclusions and future prospects 81

Thanksgivings 83

Bibliography 85

List of Figures

1.1 Vector space representations. In the figure is possible to see
how the relationships between words are contained within the
boundaries of this space . 4

1.2 Deep Neural Network overview 5
1.3 Intuitive representation of a model that extracts contextual word

embeddings from a sentence. Figure from Contextual String
Embeddings Paper . 6

1.4 Picture from paper Deep Neural Networks for YouTube Recom-
mendations [1]. High level representation of the Neural Networks
used by You Tube to recommend videos 7

2.1 Recommendations on Amazon 12
2.2 Overview of the LinkedIn recommendation system 14
2.3 Abstract overview of LinkedIn Internal structure for Recruiter

system . 15
2.4 Overview of the time windows from which data has been taken. 16
2.5 Users table view using Pandas 17
2.6 user_history table view using Pandas 18

3.1 Graphical representation of attention during translation 22
3.2 Results obtained by using Contextual String Embeddings 25
3.3 Bidirection LSTM Neural Network 26
3.4 LSTM Layers in ELMo Model 28
3.5 Character-Level CNN used in a lot of models including ELMo.

Picture from paper [2] . 29
3.6 Highway model. Picture from paper [3] 31
3.7 Encoder-Decoder Architecture of Transformer 33
3.8 Model Architecture of Transformer 34
3.9 Multi-Head Attention . 36
3.10 Accuracy for GLUE Task. Picture took from Bert Paper[4] . . . 38
3.11 Bert Model. Picture from Bert Paper[4] 40
3.12 Bert Inputs. Picture took from Bert Paper[4] 41
3.13 GLUE Results for ROBERTA model 42

viii

LIST OF FIGURES ix

3.14 RACE results for ROBERTA 43
3.15 SentEval results for SBERT . 45
3.16 Results of SBERT and other models in Semantic Textual Simi-

larity (STS) benchmark . 45
3.17 SBERT Architecture for compute cosine similarity 46
3.18 sha-rnn architecture . 48
3.19 Results on enwink8 task got by SHA-RNN 49

4.1 Colab Interface . 52
4.2 Tokenization performed by Roberta Tokenizer 58
4.3 Model results tested by using unbalanced datasets 68
4.4 Metrics variation using different split points 69
4.5 Results of the model in last job classification task using unbal-

anced datasets . 71

5.1 Keras representation of the model used for job prediction 76
5.2 Idea for future models for job prevision 79

Chapter 1

Introduction

From the very beginning of the history human kind had always tried to
figure out how to solve the problems they had to face every day learning
from experience, improving their intelligence and their skills. History tells us
how they handle them, how they grew improving technology, techniques and
personal skills but hard to solve problems still exist.

Today, different from the past, we have more tools and more experience to
handle such problems and to try to find solutions. One of the most important
tools is the computer that has lead us to new solutions and new ways to
approach them. The computer has worked fine to face problems which can be
rigorous and formally described and for years it has been used to handle these
kinds of tasks. However, there are problems which humans can face more or
less easily but they can’t be described using rigorous ways. Let’s think, for
examples of a man or woman’s face and the goal is to guess if it is smiling or
not. This task is incredibly easy for anyone, but it is impossible to describe
with some rigorousness. For the human mind it is simple to face those kind of
problems, but for a such schematics technology as computers it is impossible.

To face them Artificial Neural Networks were born. ANNs are inspired
to simulate the human brain and how it works. Indeed, they use as basic unit
the Neuron that, like in the brain, is linked to more neurons and receives
inputs from other neurons. Another similarity between the human mind and
ANN is that both learn from experience but in the first case the experiences are
limited and it must learn fast from them. The second case is different in the
fact that it can live a lot of experiences in a few seconds. This makes the ANN
very powerful and, for some tasks, they surpass humans by reaching better
results. From the first promising results Neural Networks has been deployed
in many fields: Natural Language Understanding, Events Prevision, Medical
Diagnostic System, Products Recommendations and so on.

To face more complex problems Artificial Neural Networks has been modified

1

2 Introduction

by adding inner Neuron Layers to let them model those problems better and
better. These modified artificial neural networks are called Deep Neural
Networks and, nowadays, they represent a very promising solution for tasks
that before were impossible to solve.

1.1 Natural Language Processing

Natural Language Processing is the point where the linguistic field and
computer science come together. It concerns all methods, algorithms and tools
used by software to process and extract information from human language data.
This field includes different tasks as Natural Language Understanding,
Speech Recognition and Natural Language Generation.

For humans understanding their own language is easy and natural, but it is a
very hard task for a computer that doesn’t have the ability to deeply understand
the semantic of a word. In the human mind exists a special dictionary that
links a word to its meaning composed by experiences and sensations. If we
read the word ice-cream we get access to a lot of personal information like last
time we tasted it or our favourite flavours or ice-cream shop and all of these
well define the concept of ice-cream. But computers don’t have such a pool of
experiences and this in not the only problem they face. In fact, this field raises
other issues:

• Syntax. Syntax structure differs from language to language

• Polysemy. Words can have different meaning according to their usage.

• Synonymy. Different words have the same meaning.

• Irony. Sentences written to have a meaning that has to be extracted
form the sentence indirectly.

• Orthographic errors. If sentences are hand-written they can contain
errors to be corrected.

• Abbreviations or Special Symbols as the emojis. If the aims are
tweets abbreviations and special symbols are very common and they have
important meaning within the phrase.

To handle all of these problems data preprocessing is a common way to
proceed. This phase is composed by well-known steps which aim to clean the
text, remove synonymy and errors. These steps can vary from task to task but
the most common ones are:

1.1. Natural Language Processing 3

• Case folding. All words are turned in lower or upper case.

• Segmentation. Sentences are split in lists for the composed words.

• Normalization. This step aims to reduce the dictionary size using
technique as Lemmatizations or Stemming.

After this phase data appears divided into basic units called Tokens, but
to teach a computer the meaning of these tokens is still a problem to face. The
basic idea is to create relationships between words looking at the ones that
come before the target word and the ones that follow it. To better understand
this concept it necessary to define the Context of a word Cwk

as the set of the
N words before wk and the M words after.

Cwk
= [wk−n, . . . , wk−1, wk+1, . . . , wk+m]

In this way for each word (or token) it’s possible to create a context and
then join the contexts of the same tokens which have more recurrences and
lastly list those tokens which appear several times. For each word, looking at its
context, a list of features can be created using the frequencies of the presence
of other words in its context. In this way two words could have a relationship
if they share the same or similar context. For example the word ice-cream and
the word cold appear to be related in some way because the second is often in
the context of the first. This leads computer to create relationships between
words and these relationships are the keys to understand the meaning of them.

1.1.1 Word Embeddings

Using this context is also possible, for each word, to create a vector of
features composed by real numbers that describes the word itself. This vector
is called Word Embeddings and maps the word into a vector space. An
intuitive way to create such a vector could be by using a matrix with words
in rows and columns. Cell cij contains a natural number that indicates how
many times the word in the column wj appears in the context of the word
in the row wi. This kind of matrix is known as Co-occurrence Matrix. In
this way for each word in the dataset it possible to create a high dimensional
vector that brings information about relationships with other words. At this
point, using some advanced techniques as Singular Value Decomposition
each vector is mapped to another vector with less features but bringing under
light relationships between words (Latent Semantic Analysis). This phase is
called Dimensionality reduction and aims to create a vector space where

4 Introduction

Figure 1.1: Vector space representations. In the figure is possible to see how
the relationships between words are contained within the boundaries of this
space

similar words are put close together while different words are placed at some
distance. A graphical view of this concept can be found at figure 1.1.

The above explained process is just the basic concept behind the algorithms
used in Natural Language Understanding tasks. It is just an intuition of a
more complex word, that is the ground on which, works by many researchers
has been built. One of this work highlights the importance of studying the
frequency of the term in a document in relation to the frequency of that term
in the whole corpus [5]. The study of that frequency is fundamental aspect for
the Word Embedding creation.

Word Embeddings are the key to solving NLP problems and to create good
ones is still an on going task and a lot of techniques have been created to
further improve them.

1.2 Deep Neural Network in NLP

In today’s Deep Neural Network era a lot of old techniques have become
useless. The Deep Neural Networks bring with them some advantages which
make these new models the most favored in many fields of data science. First
of all, they don’t need a strong formalism to describe a problem but a lot of
examples (x, y) where x is the input of the net and y is the desired output
to train the network. Thanks to the new technologies and the coming of big
data, Deep Neural Networks achieved exactly what they wanted and they were

1.2. Deep Neural Network in NLP 5

Figure 1.2: Deep Neural Network overview

able to expand limitlessly, leading research into unexplored territory. Today
they are used to reach state of the art performance, growing day by day, ever
improving their results. They are also used in concrete fields like market. One
example is the work done by Professor Gianluca Moro regarding how to predict
the stock market Dow Jones Index using Tweets [6].

For each data science field a specific Neural Network exists as Recurrent
Neural Network for data represented by sequence like sentences or Convo-
lutional Neural Network for matrices of data and they are widely used in
Imagine Processing and so on. The following paragraph will try to explain how
deep neural network changed the NLP field.

1.2.1 New Word Embeddings

The basic and most important element for each Natural Language Processing
task is word representation in a vector space that shows the relationships
between words. This representation is called Word Embedding and the
creation of this is a very well studied topic by lot of researchers.

A good way to generate these vectors comes from Deep Neural Networks.
The main ingredient to generate them is the Context of a word Cw0 so Deep
Neural Networks are trained to recreate the right word belonging to a specific

6 Introduction

Figure 1.3: Intuitive representation of a model that extracts contextual word
embeddings from a sentence. Figure from Contextual String Embeddings Paper

[7]

context. For example, masking a word in a sentence and the model has to read
the words prior to it and after it and then generate a probability distribution
over the dictionary to guess the masked word. Using a large dataset (more than
100 GB) and a lot of training time the model can achieve very good results.
This kind of approach forces model to learn relationships between words, to
guess which words are nearer to others and how often they occur, but without
creating any explicit data structure with this information. In this way, the
network learns internally how to model the language. As we know, Deep Neural
Networks are by definition, Multi-layered Neural Networks and each layer has
a hidden state composed by the state of each neurons. Using these hidden
states, which somehow contain what model learned about the language, it is
possible to create vectors to use as word embeddings. This is the basic idea
on how to use Deep Neural Networks to generate word embeddings but each
implementation brings differences and variations which need to be studied.

1.2.2 Contextual Word Embeddings

Using the previously explained approach, the model can read the words prior
to the target word and the ones after it and therefore generate a probability
distribution over the entire dictionary according to what it has seen.

Let’s define X0:T = (x0, x1, . . . , xT) the language dictionary, wj the masked
word and Cj = (w0, . . . , wj−1) ∪ (wj+1, . . . , wn) its context. So the model tries
to predict the right probability distribution over X0:T .

P (X0:T |Cj)

1.3. Recommendation Systems 7

Figure 1.4: Picture from paper Deep Neural Networks for YouTube Recommen-
dations [1]. High level representation of the Neural Networks used by You Tube
to recommend videos

From this description it’s easy to see that the context heavily influences the
result of the model. This means that the same word in a different sentence,
generates different word embeddings. Using old approaches each word was
mapped to a unique vector. With this new technique, however, each word
gets a vector strongly correlated to the context and such vectors are called
Contextual Word Embeddings. This allows Deep Neural Networks to
create better embeddings and reach a new state of the art performance in this
field.

1.3 Recommendation Systems

ARecommendation System orRecommender System is a technology
that seeks to predict the preference a user would give to an item in the system.
For example You Tube Recommendation System [1] is a Neural Network
model that tries to predict the favourite videos in the corpus for each user.
Improving and deploying recommendation systems are often the main objectives
of global companies such as Amazon, Netflix, It’s a fundamental solution
to enhance the user’s experience especially when considering the number of
available items grows day by day and for this reason much research and study
goes into this field.

8 Introduction

1.3.1 Collaborative Filtering

There are two main approaches for the design of a recommendation system:
Collaborative[8], Content-Base. In the first case the idea behind it is: two
users with similar histories will probably make similar decisions. In this system
the user is defined by a series of items e0, e1, . . . , en ∈ E that is to say that
the collection of the previously selected items like videos viewed on You Tube,
films watched on Netflix or items purchased on Amazon. If two users have a
similar items history, this approach assumes that if item ek will be the next
choise for the first user it will probably be the next choise even for the second
user. Matching user items histories the system tries to suggest items with the
highest probability of being selected.

1.3.2 Content-Based Filtering

The second approach is based on the description of the item to profile the
user preferences. The idea behind it is: the user that has been using the system
to buy food and not electronic devices will probably keep doing so in the future.
The system will then recommend pizzas rather than smart phones. Also in this
case the user is defined by items he previously selected. The model, using these
items and the correlating data, tries to create a User-specific Classifier that
has to determine whether for each item the user will like it or not. Usually,
Recommendation Systems incorporate both of these approaches to achieve the
best results[9].

1.4 This project

The goal of this project is to test new technologies as Deep Neural Networks
tries to manage problems that classic machine learning algorithms can’t. One of
these problems is how to interpret textual data, maybe hand-written, in tasks
which aren’t NLP tasks. In particular this work focuses on job recommendation
systems where data is not well structured and most of them are hand written
by users. In fact, the entire job history is written by each users using his
terminology, his descriptions, his detail level, It can be seen immediately
this kind of approach brings a lot of problems:

• Two different jobs can be addressed with the same name. For example a
medical assistant or a university professor assistant can be referred using
just Assistant but they are very different in particular if the system has
to model concepts such as Careers.

1.4. This project 9

• The same job can be named differently. Two Java developers can refer to
themselves using terminologies as Java Developer, Java Programmer or
Object Oriented Programmer using Java. So the same job can lead to a
erroneous representation of the job histories of two users because they
are written in different ways.

• Not all users express themselves with the same degree of verbosity. Some
can use informative job titles adding extra information while others can
do the opposite using short and meaningless job titles. This means the
model’s approach is to focus where there is more information and ignore
those where there is less.

If the goal is to create a model capable to work with this data it is necessary
that it can read and understand the sequence of the jobs in a job history. It has
to model complex data and work with them. The idea behind this project is to
create a system that takes the job history and perhaps some further information
about the user and therefore predict the last job of this user. It’s impossible
know which is the best job for each user so this project is based on this assertion:
the last job of a user was one of the best jobs for him before doing it. Let’s
define user u as a list of jobs that he did until time t: u0 =< j0, j1, ..., jn >. So
at the given time t− 1 user is u0 =< j0, j1, ..., jn−1 >. In this case it is possible
to assume that the job jn is one of the best jobs for him because it is the one he
did next. However, guessing the last job is one of the many possibilities: in fact
the data also contains job posting and job applications for each user and other
information such as level of education, time, location, All of them compose
a variegate picture that brings possibilities and problems. So the question
still remains: can Deep Neural Networks make use of these opportunities by
overcoming problems?

Chapter 2

Domain of the project

The project was born from recent European interesting in the field of the
Job Recommendation. Some projects in this direction have been financed by
governs and by private companies in the last few years highlighting how much
important is this aspect. Find the best worker for a given jobs or find the
best job for a worker is the key point for an healthy working system that the
big companies with thousand of employs know well. Today, part of this work
relies on personal specialized in finding the best workers in the market, meeting
them and selecting a few of them according to little information. This is a very
expansive mechanism that doesn’t guarantee the best results. Therefore one
question arises: how new Deep Neural Networks Technologies can be applied
to this field and what results they can achieve?

2.1 Job Recommendation System
The efficiency of the Artificial Neural Networks and the Machine Learning

Models in Recommendation Field is not deniable. Today many systems relies
on this kind of technology to improve the User Experience on one side and
to optimize the server computational cost on the other. People interact with
this system every day even without knowing it. It is enough to think about
Amazon.com Recommendation System that uses a Item based collaborative
filtering[10] to recommend items to each user according to his past history.
Similar examples can be found everywhere in the web, but all of those systems
use well structured data which have a very accessible and explicit information.
Automatize these kinds of tasks has been a target for many researchers for years.
Job seeking was tricky, tedious and time consuming process because people
looking for new position had to collect information from many different sources.
To automatize this processJob Recommendataion systems were proposed. They
have been used and improved year after year with the best machine learning

11

12 Chapter 2. Domain of the project

Figure 2.1: Recommendations on Amazon

algorithms [11].
But now, the question is how Deep Neural Networks can be applied in Job

Recommendation tasks even if data are unstructured. First of all it is useful,
in order to understand the problem, to formally describe the task. Let’s define
a worker wk as a user uk with all information about his working history. This
information can vary from dataset to dataset but they often are:

• Jobs History. This is probably the most important information about
the user because it contains all jobs done by the user. Sometimes this
job history comes with other useful information for each job like salary,
duration, rating, . . .

• Education Level. This information allows the system to better classify
the user. Often it contains information as final vote, graduation, extra
experiences,

• User’s preferences. The user can indicate some preference on which
field he would like to work. Sometime, this information extrapolated by
using user’s researches.

• User’s skills. User can select or write some skills he thinks to have.
This information can be useful to pair the user with a job that requires
explicitly or implicitly some skills.

Now let’s define a company ck as the element in the system that produces job
postings. Each company can have a description about itself and some other

2.2. LinkedIn: an example 13

textual information but, the key points are the job postings it produces. They
are defined as j ∈ J and they have some information as:

• Description of the position. This could be a textual information
about the job and it gives a brief introduction about duties and tasks
employ has to fulfill.

• Structured information. These are a series of information like salary,
location, work hours which help to formally define the boundary of the
job.

• Hard and soft skills. Job posting can indicate which skills are required
(Hard Skills) and which are welcome (Soft Skill). This information can
help the system to find the right worker for this job posting.

• Experience required. This information tells how many years and which
kind of experience the candidate should have. It can be used to filter a
huge quantity of candidates.

Once job postings j ∈ J and user u ∈ U are defined it is necessary to define a
function of satisfaction S(j, u)→ s that, for each pair user ui and job posting
jk, produces a real number that indicates how good is the user for the selected
job. The perfect Job Recommender System JRS is the one that is capable
of generating the pairs (jk, ui) that maximize the function S. Let’s define
DKX2 ∈ D as the matrix that contains into the rows the pairs (jk, ui) and D
is the space of all possible matrices D. JRS has to generate DKX2n that:

S(DKX2n) >= S(DKX2i)∀DKX2i ∈ D

Obviously there are some problems and limitations designer has to face to
get good results. First of them is the data quality. Data can be structured
and gives explicit information or can be unstructured as textual data. In this
second case system needs a set of tools to retrieve latent information from them.
The quantity of the data is also an important piece of this puzzle. In order to
get a good collaborative system a huge amount of data is needed.

2.2 LinkedIn: an example
Job Recommendation system already exists and they are very important

for job seeking. In this filed, one of the most important and famous service
is LinkedIn. It’s an American company that operates via web site or mobile
apps and try to help worker find best jobs and company find best candidates.
One of the key point of its success is the Recommendation System[12] inside.

14 Chapter 2. Domain of the project

Figure 2.2: Overview of the LinkedIn recommendation system

It had been improved in the past years and fed with tons of data and now it is
capable to suggest very good recommendations. But a growing dataset with a
complex query to satisfy represent a unique and hard challenge that machine
learning experts have to manage. One piece of this system is called Recruiter
System and, like the name says, it is the component that recruits candidates
for a given job posting. This system has to respond to queries respecting the
following criteria:

• Relevance. The results must be relevant for the positions.

• Query Intelligence. The query shouldn’t look for just specific criteria
but also for similar ones.

• Personalization. Possibility to personalize searches using customized
search criteria

The initial recommendation experience in LinkedIn Recruiter was based on a
linear regression model. This model was easy to interpret and debug but failed
to find non-linear correlations. So engineers decided to improve experience
deploying a new and most efficient model: Gradient Boosted Decision
Trees [13] that combined different models in a complex tree structure. It
improved the recommendation system in general but it failed to address some
key challenges.

To solve this problem, LinkedIn added a series of context-aware features
based on a technique called Pairwise optimization. Essentially, this method
made model be capable of comparing candidates’ context finding the one who
best fit current search context. This is just a little piece of the LinkedIn
structure of Recommendations System but it is useful to underline the role
Deep Neural Network can play in this field.

2.3. The data 15

Figure 2.3: Abstract overview of LinkedIn Internal structure for Recruiter
system

2.3 The data

The dataset used during the course of this project is provided by Kaggle
(https://www.kaggle.com/). Kaggle is a web site where many datasets are
stored and it provides not just data but tutorials, resources to develop your own
model and global competitions. To get access to all of these benefits an account
is needed but it is completely free. The dataset for this work comes from a
kaggle challenge called Job Recommendation Challenge and sponsored by
careerbuilder (https://www.careerbuilder.com/) that is an online service for
job postings. This competition was about creating a model that was capable to
predict for a given user which jobs he would apply. The prediction was based
on user’s previous applications and some other related information.

It took place 7 years ago with the technologies of that period and now, it
would have been interesting adapt the best solution to the new technologies
and check the results but no solution had been released so this comparison is
impossible. Data within the dataset were collected by carrerbuilder and stored
in its internal database. They were about users, job postings, job application
that user made to job posting.

In total the applications spanned 13 weeks. This period had been divided
in seven parts called windows and each users or job posting has been assigned

https://www.kaggle.com/
https://www.careerbuilder.com/

16 Chapter 2. Domain of the project

Figure 2.4: Overview of the time windows from which data has been taken.

to only one of these windows. Job is assigned to a window with a probability
proportional to the time it was public on the site in that window. Each user
is assigned to a window with a probability proportional to the number of
applications made by him in that window and during that window. Each
window is split in two parts: train split and test split. All data are stored in
relational tables contained in the following file:

• Window_dates.tsv that contains information about timing of each
window.

• users.tsv that contains information about users. Each user is identified
by ID called UserID.

• test_users.tsv contains a list of the Test UserIDs and windows.

• user_history.tsv contains information about users’ work history.

• jobs.tsv contains information about job postings.

• splitjobs.zip contains the same information of jobs.tsv but with jobs
grouped in the timing windows.

• apps.tsv contains information about applications.

• popular_jobs.csv is a submission file.

• popular_jobs.py is a python script that produces popular_jobs.csv

2.3. The data 17

Figure 2.5: Users table view using Pandas

2.3.1 window_dates.tsv

This file, as the others, contains data and it is a tsv format file that means
tab separated value. Each value inside the file is separated from the others by
using a TAB. In this file there is a relational table that contains information
about time and windowing. It is divided in 4 columns:

• Window this column contains the window ID as an integer.

• Train Start. It is a date and it represents the beginning time of the
train split.

• Train End / Test Start. It is a date and it represents the end of train
split and the beginning of the test split.

• Test End. It is a date and it represents the end of the test split.

This table contains 7 rows, one for each window.

2.3.2 users.tsv

This file contains information about all the users in the system and these
infromation are spread over 15 columns:

• UserID and WindowID. These two columns contain two integers which
identify the user and the window in which user has been assigned to.

• Split that contains a string that represents the split (train or test).

• City, State, Country and ZipCode contain information about where
user lives. Users are from 10734 different cities, from 221 states and from
120 countries.

18 Chapter 2. Domain of the project

Figure 2.6: user_history table view using Pandas

• DegreeType, Major and Graduation Date. They contain informa-
tion about the education level of the user. DegreeType is a value from
seven: None, High School, Associate’s, Bachelor’s, Master’s, PhD, Voca-
tional.

• WorkHistoryCount, TotalYearsExperience, CurrentlyEmployed,
ManagedOthers, ManagedHowMany. They contain information
about professional career of the users.

This table contains a lot of information about users but some of them like
Major are hand-written by the users. In the whole dataset users are 389708
and this table contains NaN values.

2.3.3 user_history.tsv

This file contains a table in which there are users’ job histories. This table
has four columns:

• UserID and WindowID. These two columns contain two integers that
identify the user and the window in which user has been assigned.

• Split that contains a string that represents the split (train or test).

• Job Title that contains the title of the job hand-written by the user.

• Sequence. It is an integer number that indicates the position of the job
inside the sequence. 1 for the first, 2 for the second and so on.

This file contains one job history for each user, but in this table users are
375531 that means not all the users in the system have submitted their job
histories. There are 14177 users without any indication of their past jobs.

2.3. The data 19

2.3.4 jobs.tsv

This file contains a table with information about Job Postings made by a
Company. It has the following columns:

• JobID and WindowID. These two columns contain two integers that
identify the Job and the window in which job posting has been assigned.

• Title, Description and Requirements. These contains information
about the kind of work, but the requirements are not obligatory so many
case this field is empty or contains indication that invites lecturer to
check the description.

• City, State, Zip5 and Country contain information about where com-
pany resides. Job Posting are from 11074 different cities, from 60 states
and from 66 countries.

• StartDate and EndDate. These two columns are the beginning and
the end of the period job posting is public.

The title, description and requirements fields are hand-written by the Company.
The total number of job posting in the table is 1091923.

2.3.5 apps.tsv

This file contains a table with the application submitted by the users to a
job posting in the related table. It is composed by 5 columns:

• JobID, UserID and WindowID. These three columns contain integers
which identify the Job posting, the users and the window which job
application has been done.

• Split that contains a string that represents the split (train or test).

• ApplicationDate contains the dates when application has been done.

This table contains 1603111 job applications.

2.3.6 Other files

The other files in the dataset contain the same information or information
obtainable from the file described above. test_users.tsv is a table containing
users for whom to predict the applications in a given window for the challenge
submission. splitjobs.zip contains the same table as jobs.tsv but job posting
are grouped in windows according to their visible period.

20 Chapter 2. Domain of the project

2.4 Contribution of this work
During the progresses of the project a lot of technologies have been tested

but, after all of this work, two models were created. These models reached very
good results opening the path to new researches in this field. Today, the most
used method to approach this kind of task is to convert jobs and structured
information into some vector representations using specific models or algorithms
and to use another model for the prediction or the recommendation. All of this
system is based on very structured data.

In this work the best results have been reached using the same model for
both the duties. This model is RoBERTa3.6 model that was fine-tuned and
trained for the specific task. It is capable to understand, given a job history
and some user information, if the last job is part or not of the given job history
with a precision of 74%. It is also capable reading a users’ job history and a
job posting, to say with a precision of 92.527% if the given job posting has
been submitted by the users in input.

These results underline that this kind of approach and new technologies
can help to create very precise Recommendation System, even without well
structured data, but they still have some limitations. For both tasks the model
is the same, it is RoBERTa default model, but it has been trained on different
task specific datasets.

Chapter 3

Available Technologies

The technologies for downstream NLP tasks are growing faster, changing
every day and pushing the State-Of-Art a little forward. Researchers from
public and private groups as Google, Zalando, Amazon are developing more
and more accurate algorithms day by day. In this chapter the most important
technologies in the scope of this project will be explained in detail. This is
important in order to fully understand the context of this work.

3.1 Attention Mechanism
[14] For years Recurrent Neural Networks like LSTM[15] or GRU[16] have

represented the best solution to work with information modelled by sequences
of data. Despite achieving better performances compared to purely statistical
methods, the RNNs-based network suffers from two serious drawbacks. They
are forgetful meaning old information tends to disappear after multiple steps
and, second, there is no explicit word alignment. To address these problems,
Attention Mechanism was introduced in neural network in particular in neural
network translation machine. The basic idea of this new mechanism is to create
a Context c for each data in the sequence. Each data is represented by a vector
v and this context contains information about similarity with other data in the
sequence in order empower latent relationship between data. In other word,
using attention mechanism, model wonders on which other part of the input
sequence should pay attention to fully understand a given data.

3.1.1 First implementation

To formally discuss about attention mechanism it is necessary to define
V = {~vi} ∈ Rnxdv as a sequence of vectors. First of all it is needed to compute
a vector ~α called Attention Score

21

22 Chapter 3. Available Technologies

Figure 3.1: Graphical representation of attention during translation

ei = a(~u, ~vi) (3.1)

αi =
ei∑
i ei

(3.2)

In the first equation ~u ∈ Rd
u is the vector in the input that is going to

be matched with all the others. It is called Pattern Vector. This match is
performed using a function a(~u,~v) that produces a scalar score ei that indicates
the quality of the match. After that, those scores are normalized to create the
final α that can be used to compute the context vector c:

c =
∑
i

αi~vi (3.3)

3.1.2 Multi-Dimensional Attention

The previous kind of attention mechanism can be seem as a 1D attention
because ~α is a vector containing the normalized score. Multi-Dimensional
Attention is proposed to improve the previous simple mechanism to work with
more complex relationships and to capture multiple interactions between terms
in different representation spaces. The idea is to map vectors to K different

3.1. Attention Mechanism 23

vector spaces end to compute attention for each of them. In order to do that
it’s needed W = Wk ∈ RKXdXd that is a 3D tensor composed by K matrices
WdXd and each of them maps vectors V into a different vector space. At the
end all matching scores are concatenated to create the final ei

~e1 = concat(a(~uTWk~vi)) (3.4)

The equation 3.4 shows that in multi-dimensional attention ~ei is a vector
containing all match scores from all different vector spaces.

3.1.3 Self Attention

Self attention is a special attention mechanism where the pattern vector u
is not independent from V , like in the classic implementations, but its a part
of it. In this approach V is split in many v that, one per step, become the
u. Self attention was created to better model the latent relationships between
the various parts of the same sequence. This kind of attention is wide used in
Transformers3.4.

a = softmax(
~uKT

√
dk

)V (3.5)

The above equation is the typology of Self Attention adopted by Trasformers.
In this kind of mechanism ~u is the part of the input sequence, Knxd is the
matrix of the keys with one row for each data in the input sequence and Vnxd
is a matrix of the values similar to K. Both are created multiplying the input
sequence to two matrices: Wk for keys and Wv for the values. This procedure
is repeated for each part of the sequence.

3.1.4 Conclusion

Attention mechanism proved itself to reach better result even than Recur-
rent Neural Networks. It is used with success in Natural Language Processing
Tasks to create Context Word Embeddings, but also in image recognition tasks
used in combination with a Convolutional Neural Network[17]. Despite its
wide usage a deep formal and mathematical justification about it success is
still needed and searched. It could be useful to find it in order to improve this
mechanism and to apply it into different fields.

Compared to its wide usage in various NLP tasks, attempts to explore its
mathematical justification still remain scarce. Recent works that explore its
application in embedding pre-training have attained great success and might be
a prospective area of future research - Dichao Hu[14]

24 Chapter 3. Available Technologies

3.2 Flair and Contextual String Embedding
[7] A crucial component of each Natural Language Processing Task is the

word embeddings. Their quality impacts heavily on the results of the model
and recent studies have underlined their importance. Find the best word
embeddings is the goal for a lot researchers nowadays. The state of art methods
to create them are three:

• Classical word embeddings pre-trained over very large dataset. They
aim to capture latent semantic and syntactic similarities

• Character-level features[18]. They are not pre-trained but generated
using task data to better represent task features.

• Contextual Word Embedding[19] that represent word in the context
to address problems as polysemous.

The idea behind the Contextual string embeddings is to combine the
attributes of the above embeddings in order to create best vector representations.
According to the result of recent works[20] that show how natural languages can
be modelled using probability distribution over characters instead words, these
Contextual String Embeddings come from a Character Level Neural Model.
This kind of vectors reached state of art in some NLP task as NER, PoS, . . .

3.2.1 Experiments and Results

The proposed embeddings have been compared with the other kinds in the
following tasks:

• Named entity recognition using both CoNLL03 English and German.
Data contains entity of four types PER for person, ORG for organization,
LOC for location and MISC for miscellaneous names.

• Chunking using CoNLL2000. The task consists in dividing a text in
syntactically correlated parts. It is an intermediate step toward full
parsing.

• Part of Speech tagging using data fromThe Penn Treebank Project
(https://web.archive.org/web/19970614160127/http://www.cis.upenn.edu/ tree-
bank/)

Furthermore the contextual string embeddings used for testing and evalua-
tions are generated using 4 different approaches.

• Proposed. Just Contextual String Embeddings alone

https://web.archive.org/web/19970614160127/http://www.cis.upenn.edu/~treebank/
https://web.archive.org/web/19970614160127/http://www.cis.upenn.edu/~treebank/

3.2. Flair and Contextual String Embedding 25

Figure 3.2: Results obtained by using Contextual String Embeddings

• Proposed + word. An extension in which they concatenate pre-trained
static word embeddings with Contextual String Embeddings.

• Proposed + char. Similar extension in which they concatenate task
trained character embeddings to their Contextual String Embeddings.

• Proposed + word + char where concatenation is made by using
Contextual String Embeddings, word embedding, task trained character
embeddings.

• Proposed + all putting every kind of embedding together.

In each task Contextual String Embeddings help model to reach state of
art. Results are shown in the figure3.2

3.2.2 Model

The selected model for the generation of these kind of Contextual String
Embeddings is a bidirectional Long Short Term Memory (LSTM). It is a famous
variant of Recurrent Neural Network the got recent success. Atomic input units
are the characters so, at each step, the network has an internal representation
of the current character given by its hidden states. The target of this model,
as each character level models, is to estimate a good probability distribution

26 Chapter 3. Available Technologies

Figure 3.3: Bidirection LSTM Neural Network

over characters of the input language.

P (C) =
T∏
t=0

P (ct|c0:t−1) (3.6)

The above equation shows the target function in which C is the set of all
characters in the input sentence < c0, ..., cn > and P (ct|c0:t−1 is the probability
assigned to ct to appears after c0:t−1. Training the model to generate a good
probability distribution forces it to well understand characters, relationships
between them, words, sentence, semantic and syntactic rules.

3.2.3 Contextual Word Embedding Extraction

From the model described above it’s possible to extract, using its internal
hidden layers, information about input characters which can be manipulated
to create Word Representation Vectors. To do this it is necessary to define
input sentences as a sequences of characters < c0, ..., cn >. To create the
representation vector of a word w0 in the sentence model must be used in both
direction: forward and backward. Word is composed by characters and it is
a sub-sequence of the sentence: < c0, ..., cb, ..., cf , ..., cn > where cb is the first
character in the word and cf the last. Model is fed in forward direction by
giving to it all characters from c0 to cf . In this way it can get information
from the context prior to the target word. The same process is repeated but
in the backward direction using characters from cn to cb. From these two
steps, after the last character in the sequence, it is possible to get two word

3.3. ELMo - Embeddings for Language Models 27

vector representations by taking the hidden states: ~hf and ~hb. Then they are
concatenated to create the final Contextual Word Embedding.

~w0 =
[
~hf , ~hb

]
(3.7)

3.2.4 How to use

The model to produce those embeddings and the code for training or
fine-tuning it can be found at the link https://github.com/zalandoresearch/flair

3.3 ELMo - Embeddings for Language Models

3.3.1 Overview

Pre-trained word representation are the key components in many NLU
tasks. A good representation of the word and its characteristics leads model to
achieve better results. But a representation to be considered a good one has to
be capable to model:

• Complex characteristics of word usage (Syntax and Semantics)

• How these uses vary across linguistic contexts (Polysemy)

ELMo wants to address both of these challenges using aDeep Contextualized
Word Representation. In order to do that ELMo is based on a Bidirectional
Deep Neural Network (biLM) capable to model a word according to the context
into it is inserted. But differently from other models ELMo applies a function
to create the embeddings using all of the internal layers of the net rather than
using just to the last one (like FlairEmbeddings. See chapter 3.2). ELMo Team
claims that different layers give word representations specialized on different
aspects.
Using intrinsic evaluations, we show that the higher-level LSTM states capture
context-dependent aspects of word meaning (e.g., they can be used with-out
modification to perform well on supervised word sense disambiguation tasks)
while lower-level states model aspects of syntax (e.g., they can be used to do
part-of-speech tagging)
From ELMo Paper [21]

This strategy demonstrates to work extremely well in practice improving
the State-of-Art in different tasks.

https://github.com/zalandoresearch/flair

28 Chapter 3. Available Technologies

Figure 3.4: LSTM Layers in ELMo Model

3.3.2 Model

ELMo Model is based on different kinds of neural network working together.
There are LSTM neural network and CNN. It takes in input a sequence of
words from a sentence. Each of them is turned into a matrix and it is given to
a Character-level Convolutional Neural Network that, applying some
filters, produces a feature vector for the input word. Feature Vector is a vector
representation context-independent. To put context information into the word
representation, the vector is passed to a BiLSTM with N layers. All of them
produce hidden states and then, those hidden state are concatenated performing
a weighted sum into a unique vector. The following lines explain the above key
concept in detail in order to give to the reader a deep understanding of the
ELMo model.

• Character-level CNN. ELMo needs context-independent word em-
beddings to be trained. Authors chose to use Character-CNN based
model. They trained a 2048 channel char-ngram CNN followed by two
highway layers and a linear projection down to 512 dimension. A good
overview of this part is in the paper Character-Aware Neural Lan-
guage Model[2]. According to this paper the input sentence is split
in word [k0, k1, ..., kj] ∈ V and each word is composed by [c1, c2, ..., cl]
characters where l is the length of the word k. Characters are turned
into fixed-sized vector multiplying the one-hot encoding of the character

3.3. ELMo - Embeddings for Language Models 29

Figure 3.5: Character-Level CNN used in a lot of models including ELMo.
Picture from paper [2]

30 Chapter 3. Available Technologies

by a weight matrix Wv. In this way a word k is represented by a matrix
Cdxl where each column is the vectoring representation of each character.
After that filters Hdxw with w ∈ W (weights of filters) are applied and for
each filter a feature vector is computed. The feature vector is generated
using this formula:

fk[i] = tanh(< Ck[∗, i : i+ w − 1],H > +b)

From each feature vector the max value yi is extracted to create the final
representation of the word k. If H0, H1, ..., Hi are the filters used the
final vector yk for the word k will be [yk0 , y

k
1 , ..., y

k
i]. After this CNN there

are placed two HighWay Neural Network [3] which give to the model
the possibility to choose to apply affine function followed by a non linear
function (as in a classical layer) or not. To give to the network this ability
a layer in the Highway Neural Network performs this function:

y = F (x,Wf) ∗ T (x,Wt) + x ∗ (1− T (x,Wt))

So the layer is controlled by the paramenters T () and it is the net itself
to choose the right value into it.

y =

{
x if T (x,Wt) = 0

F (x,Wf) if T (x,Wt) = 1

• ML-biLSTM Layers. ELMo uses a Multi Layers biLSTM neural net-
work. A biLSTM is the combination of two LSTM Neural Networks that
have learned how to extract information from input sequence in both the
directions: from beginning to the end and backward. This architecture
performs very well in NLP tasks and it is wide deployed. What differs
in ELMo model from others is how output is compute. In ELMo y is a
weight sum of all hidden states.

ELMo(k) = γ
L∑

j=0

sj ∗ hk,j

Where k is the token in input, L the number of hidden layers, h the state
of a hidden layer, s a weight vector and γ a scalar used according to the
task model is performing.

3.3.3 Performances of ELMo

Authors suggest to use ELMo with another Model in order to improve
the system. The Idea behind is to use ELMo just to produce better Word

3.3. ELMo - Embeddings for Language Models 31

Figure 3.6: Highway model. Picture from paper [3]

Embeddings so, if there is another model for a specific task, ELMo can be
added anyway to improve the performances. In many benchmarks for NLP
Tasks ELMo has been added to the best model and it helped to get new States
of the Art.

• SQuAD. Stanford Question Answering Dataset contains more than 100K
crowd sourced question-answer pairs where the answer is a span in a
given Wikipedia paragraph. The previous best model was a Bidirectional
Attention Flow Model[22] with 81% of F-measure. After adding ELMo
as embedding components the F-measure improved by 4.7%.

• Semantic Role Labeling. This task is performed on OneNotes bench-
mark with more than 2.9 million words and it consists to understand
which words are the subjects, the verbs and the objects. The best score
is obtained using a deep biLSTM interleaved neural network [23]. Adding
ELMo the F-measure jumped up by 3.2% from 81.4% to 84.6%

3.3.4 How to use

Elmo can be used trough the AllenNLP packages for python from this
site https://allennlp.org/elmo. There are also free pre-trained model available
Small with 13.6M parameters, Medium with 28.0M parameters, Original and
Original 5.5B both with 93.6M parameters.

https://allennlp.org/elmo

32 Chapter 3. Available Technologies

3.4 Transformers

A new kind of Neural Network Architecture has recently proved his power
in Sequence to Sequence tasks as translation. It is called Transformer [24] and
it is created to solve a specific problem. All sequence translation models are
based on complex recurrent neural network as RNN, LSTM, BiLSTM, GRU
. . . . They work reading just one word per step and precluding any form of
parallelization within training examples. This leads to a critical performance for
wide input sentences. Transformer wants to overcome this limits but without
worsening performances.

3.4.1 Overview

Transformers are build without using Recurrent Neural Network in order to
untied them from input sequence constrain, however the ordering of the word
is a important information for Natural Language Processing. So Transformers
employ a mechanism called Attention that is often used with advanced Recur-
rent Neural Network. Attention helps a Neural Network to focus on interesting
elements and to ignore others. Trsformers use a special kind of attention called
Self-Attention, sometimes Intra-Attention and it is a mechanism that cre-
ates relationships between pieces of a single input sequence. For each piece of
the sequence (like words for sentence or number for numeric series) it creates a
vector representation of its relationships with other pieces and this vector is
called Context Vector. This kind of attention has been used successfully in a
number of NLP tasks (please refer to section 3.1.

3.4.2 Model

The Transformer architecture is based on Encoder-Decoder architecture.
This kind of Neural Notwork are widely employed in Sequence to Sequence
tasks because their good performances. The encoder maps a input sequence of
embeddings x0, x1, ...xn to an output sequence z0, z1, ...zn. These vectors become
the input of the decoder that generates a sequence of symbols y0, y1, ...ym. Model
is auto-regressive, consuming the previously generated symbols as additional
input at each step. This mechanism is shown in 3.7. Transformer encoder is
composed by a stack of N = 6 layers and each layer contains two sub-layers:
Multi-Head Self-Attention Layer and Feed Forward Neural Network.
The output of the first sub-layer is combined with his input and becomes
the input of the second sub-layer oi = LayerNorm(xi + sublayer(xi)). This
technique is called Residual Connection. The output of the entire layer is
the input of the next layer in the stack. Transformer decoder, as encoder, is

3.4. Transformers 33

Figure 3.7: Encoder-Decoder Architecture of Transformer

composed by a stack of N = 6 layers. Each layer contains three sub-layer: two
Multi-Head Self Attention layers and a Feed Forward Neural Network.
Between each sub layer there is a Residual Connection. At the end of the
Decoder stack there is a Linear Layer that takes in input zi from the decoder
with size d and generates and output y with size equal to natural language
vocabulary size. After this layer there is a SoftMax Layer that generates a
probability distribution over the vocabulary. A visual representation of the
architecture is in the figure3.8

3.4.3 Attention Mechanism in Transformer

In both encoder and decoder there are sub-layers called Multi-Head At-
tention. Attention is representable as a function Attention(K,V,Q) that
produces as result Z.

• Knxd It’s a matrix containing in each row a key k that represents a value.

• Vnxd It’s a matrix containing in each row a vector of values v.

• Qqxd It’s a matrix containing in each row a query q.

34 Chapter 3. Available Technologies

Figure 3.8: Model Architecture of Transformer

3.4. Transformers 35

• Zqxd It’s a matrix containing for each query a representation with attention
z.

In general NLP tasks q is a word and model looks for related words in a given
Sentence. k and v are vectors associated to those words. To compute Z this
formula is used:

Zqxd = SoftMax(
Qqxd ∗KT

dxn√
dk

) ∗ Vnxd (3.8)

where d is the size of the model. Transformer has d = 512and uses this
different kinds of this mechanism in each layer this way:

• Encoder: It use Self attention. It is performed using just input sequence
X. Each xi in input is multiplied by three matrices Wk,Wv,Wq randomly
initialized. Wk is used to generate K, Wv to generate V and Wq to
generate Q. Transformer, during training phase, has to modify those
matrix in order to improve the model.

• Decoder: there are two layers here which perform Attention. The first
takes as input the decoder output tokens it has produced until now
and works like the encoder. It converts them into vectors and perform
a self attention. The second layer use a Simple Attention in fact it
computes K and V using the output of encoder and Q with the output
from previous layer.

3.4.4 Multi-Head Attention

Transformers adds another level of complexity to attention mechanism
employing Multi-Head Attention. Instead of compute a single attention
function they got better result to linearly project the queries, keys, values h
times. To do it transformer uses in each Attention Level h triples ofWk,Wv,Wq.
In this way h Z are computed but at the end of each Multi-Head Attention
Layer all Z are concatenated and multiplied by a weight matrix to create the
output vector with the right size.

Zqxd = [Z0
qxd, Z

1
qxd, ..., Z

h
qxd] ∗Whdxd

3.4.5 Feed Forward Neural Network

Each layer in both, Encoder and Decoder, has a sub-layer containing a Feed
Forward Neural Network. This Neural Network consists in two layers with

36 Chapter 3. Available Technologies

Figure 3.9: Multi-Head Attention

ReLu activation function. It can be represent as:

FFN(X) = max(0, Y W1 + b1)W2 + b2 (3.9)

The output of this Sub-Layer is given directly to the Attention sub-layer of
the next layer.

3.4.6 Input and Output

Transformer takes in inputs embedding representations of the words in a
sentence. But the problem is that transformer can’t know the position of the
word in input sentence but this information can be very interesting. To fill that
lack a positional information is injected in each word embedding at the bottom
of the encoder and decoder stacks. It is called Positional Encoding and it is
a vector with the same size of the embeddings and each cell is filled following
Sine and Cosine function at different frequencies. The value is computed using
this formula:

PE(pos,i) =

sin(
pos

10000
k

dmodel

), if i = 2k

cos(pos

10000
k

dmodel

) if i = 2k + 1
(3.10)

According to this formula all even dimensions are encoded using a sine
function and all odd dimensions using cosine. The positional encoding vectors,

3.5. Bidirectional Encoder Representation from Transformer 37

generated from the formula above, are summed to the embedding vectors. This
allows to each word to be mapped to a different frequency function according
to its position in the sentence. So model can get this information directly from
the word encoding.

xi = E(wi) + PE(wi, i) (3.11)

These vectors are the input for the transformer, differently it happens on the
other side of the it. The output of the transformer is a probability distribution
P (x) over the entire output vocabulary. To do that, Transformer uses two
layers: a Linear Layer and a Softmax Layer. The first, which is a fully
connected neural network, takes in input the output Oi from last layer of the
decoder and it produces a vector with size equal to the number of words in
the output vocabulary. The SoftMax layer turns this vector in the probability
distribution.

3.4.7 How to use

Transformers are freely available using the package tensor2tensor. It
comes from repository https://github.com/tensorflow/tensor2tensor

3.5 Bidirectional Encoder Representation from
Transformer

Bidirectional Encoder Representation from Transformer[4] orBert
is a new language representation model created by Google AI Language
Team.

3.5.1 Overview

Unlike recent language representation models, BERT model is pre-trained
on unlabeled text and it was forced to retrieve information from both, left or
right, contexts in all layers. It can be fine-tuned adding an output layer to
create state-of-art models for a wide range of tasks such as Question Answering
and Language Inference.

3.5.2 BERT Performance

Bert has proven to excel in Natural languages Understand Tasks and
sometimes it has overcame the current State of The Art. Next lines contains

https://github.com/tensorflow/tensor2tensor

38 Chapter 3. Available Technologies

Figure 3.10: Accuracy for GLUE Task. Picture took from Bert Paper[4]

Bert results.

• General Language Understanding Evaluation : BERT Score 80,5%
(7,7% Absolute improvement). GLUE [25] is a benchmark for the eval-
uation of a model on Natural Language Understanding (NLU). It com-
prehends different tasks as Question Answering, Sentiment Analysis and
Textual Entailment. All single task results are in the picture

• Multi-Genre Natural Language Interface (MultiNLI). BERT ac-
curacy 86,7. It collects 433000 sentence pairs annotated with textual
entailment information. It pairs a written or spoken text with a Hypoth-
esis. Task wants the model to classify the entailment between text and
Hypothesis as ENTAILMENT, CONTRADICTION, NEUTRAL.

• Stanford Question Answering Dataset 1.1 (SQuAD v1.1 []): Ques-
tion answering Test F-Score 93.2. Previous F-Score was 91.2 held by
Humans. This dataset is a collection of 100K crowd-sourced question/an-
swering pairs. Given a sentence from Wikipedia and a question, the
task is to predict the answer text span in the given passage. Sometimes
question could be unanswerable and model should not answer.

• Stanford Question Answering Dataset 2.0 (SQuAD v2.0 []) BERT
F1-Score 83.1. Previous best score was 78.0. This new version contains
100k more data and adding questions which need more complex answers.

3.5.3 Model

BERT architecture is just the encoder piece of the Transformer architec-
ture (see section 3.4). The idea is the Transformer uses encoder to generate an
embedding representation zi of a word and decoder, to fulfill the task, has to
associate to that vector a probability distribution over the output dictionary.
It could be worth to use the zi representation as embedding for NLP tasks.
Following this idea, BERT Team deploys two models: base and large. The

3.5. Bidirectional Encoder Representation from Transformer 39

first is composed by the Encoder with L = 12 layers, H = 768 hidden size (or
model dimension) and A = 12 heads in multi-head attention mechanism. The
second, a little bit bigger, is an Encoder with L = 24 layers, H = 1024 hidden
size and A = 16 heads.

3.5.4 Inputs and Outputs

BERT input is a pair of sentences and in order to create the input for BERT
there are some steps to follow:

• Tokenization. Sentence is split in tokens using WordPiece Tokens [].
It is a vocabulary of 30000 tokens and after that special tokens are added
to the sentence: [CLS] at the beginning of each sentence and [SEP] to
separate the first sentence to the second. Once all tokens are present they
are converted into their IDs from vocabulary.

• Token Embedding. IDs are scalars. Each of them is multiplied with
vector of size dmodel to generate the embedding of that token. During
train phase these vectors are modified by optimizer to generate even
better embedding.

• Position Embedding As in Transformer model the positional embed-
ding is add to each Token Embedding. See the section 3.4 for more
details.

• Segment Embedding. When BERT deals with sentence pairs [SEP]
tokens help to divide the first sentences to the seconds. To improve this
separation an extra vector is used. Each sentence has its vector and it is
summed to each token of the sentence. The vectors of the two sentences
are different and they are modified during training phase.

3.5.5 BERT Framework

The idea behind BERT is to pre-train Encoder in order to make it learn
how to represent words, latent semantics and all useful information. Once it
has been trained, it can be deployed to do some NLP tasks just adding a Neural
Network at the end of the encoder. This Neural Network takes as input some
or all outputs from the Encoder and produces a result. This proceedings is
called Fine-Tuning and it is performed trough this steps:

• Pre-training: during this phase model is trained using unlabeled data
and two different tasks. The data comes from BookCorpus[26] and
English Wikipedia while the tasks are:

40 Chapter 3. Available Technologies

Figure 3.11: Bert Model. Picture from Bert Paper[4]

– Masked LM Masked Language Model. In this task a token from
inputs is masked using MASK token and Bert must be able to
retrieves it. This process forces Bert to put attention on both
directions: the piece of sentence prior to the masked word and the
one after. MLM works masking some percentage of the input tokens
randomly and model must predict them. The outputs corresponding
to the MASKs are given to a SoftMax Layer to predict, using a
probability distribution, the target word. Problem is that MASK
token does not appear during fine-tuning phase. To mitigate this
they take 15% of the whole tokens and the 80% of them is turned
into MASK tokens, 10% of them is turned in random token and the
others are left unchanged. In this way Model is obliged to learn the
context of each word.

– Next Sentence Prediction (NSP). In this task BERT is fed
with two sentences separated by a special token SEP and, at the
beginning of them, there is a another special token called CLS.
BERT must learn to classify the pair A and B as IsNext if the
sentence B is the actual next sentence of A, or NotNext. To do this,
the representation of CLS token is given to a classifier layer that has
the duty to label the pair. For this task is used a dataset of A,B
sentences where in the 50% of the time B is the actual B and 50%
of the time B is replaced with a random one.

• Fine-tuning: During this phase the model is trained using supervisioned
training data from other downstream tasks. The parameters of the
Encoder are initialized using those from pre-training phase while an

3.6. ROBERTA 41

Figure 3.12: Bert Inputs. Picture took from Bert Paper[4]

extra layer is added at the end of the pre-trained model. According to
the task this extra layer could be a SoftMax, Sentiment Classifier,
Entailment Classifier, This gives to BERT the power to be used
in different tasks without long training sessions.

3.5.6 How to use

BERT is freely provided by google to anyone. It comes in two versions:

• base : Trained using BooksCorpus (800M words) and English Wikipedia
(2.5 Billions words). It is a model with 12 layers, 768-hidden size, 12
heads (for multi-head attention), 110M Parameters

• Large. It is trained like base version, but it deploys a bigger model with:
24 layers, 1024-hidden size, 16 heads (for multi-head attention), 340M
Parameters

You can download them directly from https://github.com/google-research/bert

3.6 ROBERTA

3.6.1 Overview

After the wide success of BERT a lot of studies have been conducted in
order to improve it or to overcome its limitations as the computational cost
for training the model or just to finetuning it. A lot of advanced models have
followed and one of them, from facebook AI and University of Washington, has
reached some good results. It’s called RoBeRTa that means: A Robustly
Optimized BERT Pretraining Approach.

https://github.com/google-research/bert

42 Chapter 3. Available Technologies

Figure 3.13: GLUE Results for ROBERTA model

We present a replication study of BERT pretraining that carefully measures
the impact of many key hyperparameters and training data size. We find that
BERT was significantly undertrained, and can match or exceed the performance
of every model published after it. From paper [27]

The idea behind this work is that BERT is good, but it could be better with
a well studied training process. This idea leads the researchers to develop this
new model that has the same architecture of BERT, but a completely different
training phase.

3.6.2 ROBERTA Performances

ROBERTA training process demonstrates to improve BERT results and to
reach states of art for some tasks:

• General Language Understanding Evaluation[25]. For this task
model was fine tuned using two approaches:Single task where model is
fine-tuned before each tasks and Esambles. As it is shown in figure it
surpasses BERT in all tasks and some times it reaches the state of the
art.

• RACE. In this task model has to predict the right answer from four
and a given textual passage that contains information about answer. It
reaches a new state of art for both tasks. Results are in figure

This proves that preforming a good training sessions it is possible to reach
better results.

img:roberta_glue

3.6. ROBERTA 43

Figure 3.14: RACE results for ROBERTA

3.6.3 Differences from BERT

The Artificial Neural Network behind is the same for BERT and ROBERTA
in fact all differences lie in the training phase. For a detailed view of the model
see relative section itemize

Train Data Size. The first factors that is different from BERT is the amount
of data used for training. As Baevski [28] underlines in his work, the quantity
of data can improve the results of the model. So ROBERTA was trained using
more data than BERT for a total of 160GB of English corpora.

• Bookcorpus[26] plus Wikipedia that is the original dataset used to
train BERT.(16GB)

• CC-News. It contains 63 million English news and articles. (76 GB)

• OpenWebText. It contains web contents extract from URLs shared on
Reddit. (38GB)

• Stories.[29] It contains story-like text style of Winograd schemas (31GB)

Dynamic Masking. BERT relies on masking technique for training. During
preprocessing phase some random words were hidden under a token MASK
and model has to retrieve those words. But in this way masking was static
because, in each training epoch, model has to work on the same masked words.
ROBERTA training used a dynamic masking to avoid to reuse the same masks.
To do that dataset was duplicated 10 times so that each sequence was masked
in 10 different ways.

NSP Loss removed. BERT is trained using two different losses: Mask
prediction and Next Sequence Prediction that means model has to guess the
masked word and, in the meanwhile, to guess if the sentence B is the next
sentence of sentence A. Some studies as Lample and Conneau[30] has questioned
the necessity of the NSP loss so ROBERTA was trained without that Loss
Function.

sec:bert

44 Chapter 3. Available Technologies

BPE[31]. Byte-Pair Encoding is method to create language dictionary with a
size between 10K - 100K. BERT uses a character-level BPE vocabulary of size
30K. For ROBERTA the vocabulary raise to 50K sub-word units.

All of this training differences make ROBERTA different and better than
BERT. Furthermore researchers underline that training phase still needs to be
well studied.

3.6.4 How to use

Authors released the model freely using directly pytorch. They released the
code for pretraining and finetuning the model at https://github.com/pytorch/fairseq

3.7 Sentence BERT

After the success of BERT some researchers started to study limits and
issues of this big model in order to make it better. Roberta was created to
address a bad training phase but others still exists. One of them is that Bert
(and Roberta) inputs are sentence pairs and that makes Bert extremely slow in
similarity comparison task. Let’s imagine having a dataset of 1M strings and
we want to find the most similar string in the database to a given one. In order
to fulfill this task Bert has to produce a similarity score between each couple
of sentences composed by the target string and the others in the dataset and
then it will be possible to find the one with the higher score. Let’s imagine
now that we want to find the most similar sentence for each one in the dataset.
This leads us to a task with a very elevate computational cost: 1MX1M and
if we didn’t have a lot of resources we would never get the result. The heart
of this problem lies in Bert’s lack of creating word embeddings but just to
compute and to use them internally. Some studies in this direction have been
conducted but it was impossible to find solid way to extract embeddings from
the hidden layer of the model. For this reason researchers have developed Sen-
tence Bert[32]. It is a modification of the BERT network using siamese and
triplet networks that is able to force the model to create meaningful embeddings.

Researchers have started to input individual sentences into BERT and to derive
fixed-size sentence embeddings. The most commonly used approach is to average
the BERT output layer(known as BERT embeddings) or by using the out-put of
the first token (the [CLS] token). As we will show, this common practice yields
rather bad sentence embeddings, often worse than averaging GloVe embeddings
- Nils Reimers and Iryna Gurevych[32]

https://github.com/pytorch/fairseq

3.7. Sentence BERT 45

Figure 3.15: SentEval results for SBERT

Figure 3.16: Results of SBERT and other models in Semantic Textual Similarity
(STS) benchmark

3.7.1 Sentece-Bert Results

The word embeddings extracted from this model were compared with others
extrated directly from BERT or from other models. Sentence Bert has always
produced better embeddings than BERT, in fact, they were tested in different
Benchmarks and the vectors created by SBERT have got the higher results.

• Semantic Textual Similarity. It as dataset that contains pairs of
sentences with a score from 0 to 5 that represents semantic relatedness.
As it is shown in figure 3.16 SBERT has proven itself to create good
embeddings while BERT, on the other hand, reached worse results even
than Glove.

• Argument facet similarity[33]. It is a dataset composed by 6000
sentential argument pairs from social media divided in three controversial
topics: gun control, gay marriage and death penalty. Each pair has
a value from 0 to 5 where 0 means different topic and 5 the same topic.
For this task SBERT worked better than Glove but not than BERT that,
reading both sentence in the same time it can use the attention on them
while SBERT can’t.

• SentEval[34]. It is a popular toolkit to evaluate the quality of a sentence

46 Chapter 3. Available Technologies

Figure 3.17: SBERT Architecture for compute cosine similarity

embeddings using a logistic regression classifier already trained. This
benchmark is composed by more tasks:

– MR: sentiment prediction for movie Reviews

– CR: sentiment prediction of customer product reviews

– SUBJ: subjectivity prediction of sentences from movie reviews.

– MPQA: phrase level opinion polarity classification from newswire.

– SST Stanford sentiment treebank with binary labels.

– TREC: fine grained question-type classification from TREC.

– MRPC: Microsoft Research Paraphrase Corpus from parallel news
source.

In these embedding oriented tasks SBERT has reached the state of art
for 5 out of 7 of them. Results are shown in the figure 3.15

3.7.2 Model

SBERT model is based on BERT (or ROBERTA) model adding a pooling
operation to the output of BERT to derive a fixed sized sentence embedding.
The pooling strategy tried are three CLS using as vector the output of class

3.8. SHA-RNN Model 47

token, MEAN and MAX and the selected is MEAN. In order to fine-tuned
the model SBERT use a siamese and triplet network[35] to update weights.
In this way, the model is forced to create sentence embeddings semantically
meaningful and they can be compared by using consine similarity. This network
has been trained using different kinds of Objective functions with differences
for each of them:

• Classification. The embeddings u and v are concatenated with the
element-wise difference and multiply with the trainable weight matrix Wt

o = softmax(Wtconcat(u, v, |u− v|) (3.12)

• Regression. The cosine similarity between u and v is computed.

• Triplet Objective function. Given an anchor sentence a a positive
sentence b and a negative sentence c, the distance between a and b must
be smaller than the distance between a and c.

max(||sa − sb|| − ||sa − sc||+ ε, 0) (3.13)

3.7.3 How to use

The code to use this model is freely distributed. All code, documenta-
tions and examples can be found at https://github.com/UKPLab/sentence-
transformers

3.8 SHA-RNN Model
The direction of recent works is to use more and more resources, compu-

tational power and memory with massive parallelization system to improve
the results and reach new states of the art. This approach makes this field
accessible just for the big farms but a bit too far for single researchers or
little organizations. That seams like the field of the research and the new
technologies is a private world for big company as Google, Facebook, Za-
lando, The author of this work S. Merity asks himself if this is the only
direction and, in response, he presents a very light model with very good results
to demonstrate that using more resources is the easiest way but not the only one.

This work has undergone no intensive hyper-parameter optimization and lived
entirely on a commodity desktop machine that made the author’s small studio
apartment far too warm in the midst of a San Franciscan summer. The final
results are achie-able in plus or minus 24 hours on a single GPU as the author
is impatient. The attention mechanism is also readily extended to large contexts
with minimal computation. - Stephen Merity[36]

https://github.com/UKPLab/sentence-transformers
https://github.com/UKPLab/sentence-transformers

48 Chapter 3. Available Technologies

Figure 3.18: sha-rnn architecture

3.8. SHA-RNN Model 49

Figure 3.19: Results on enwink8 task got by SHA-RNN

3.8.1 The sha-rnn model

Model architecture comes from AWD-LSTM one of author’s recent works. It
is based on Long Short Term Memory Model (LSTM) but it applies single
attention layer on it. Precisely, model consists in a trainable embedding layer,
one or more layers of stacked single head attention recurrent neural networks
and a softmax classifier. Embedding and softmax classifier utilize tied weights
as suggested in the paper Hakan[37]. Internally The single head attenetion
recurrent layer is composed by LSTM as first sub layer and single head attention
after. They are linked by a residual connection. At the end of the model there
is a Boom Layer. This layer performs a dimensional stretching of the input
vector and then reduces the size back to the initial one. To do that the input
vector ~v ∈ RH is multiplied with a matrix MHXM where M is N ∗H so it is a
multiple of the initial size of the input vector. This create a vector u ∈ R(N∗H)

and this vector is split in N vectors with size H. After that, these vectors are
summed and they generate the output vector o ∈ RH

3.8.2 Model results

The model is tested against the enwik8 dataset or The Hutter Prize
Wikipedia. It is a byte level dataset creating using the first 100 million bytes
from Wikipedia XML dump. The task is to create a model capable to compress
the dataset (1GB) less than 116MB losslessly. The model performed well on
this task without reaching the state of art but getting very close results. The
results can be seen in the figure 3.19.

Chapter 4

Experiments and Results

During the progression of this project many tests have been conducted and
some have failed but others have succeed. Each technology brought vantages
and limits that were used in this work trying to reach better and better results or
underlining new problems to face. This chapter contains all majors experiments
done with their results and all of the models trained. Particular focus is on
ROBERTA model and it will be explained in detail and all steps performed
will be shown: how it was fine-tuned, how it was trained and how it works. It
reached some results and they will be discussed deeply.

4.1 Development Environment

To develop the entire project it was used a physical server provided by
Professor G. Moro and Google Colab. The latter is a cloud service created
to develop machine learning model on virtual environments. The models
used in this work are very huge with millions of parameters and dataset
contains millions of data, therefore the development environment must have the
necessary resources. The two solutions used in the project are well explained
in the following sections.

4.1.1 Server

The server provided for the project by professor Gianluca Moro is a powerful
environment built to develop and train Deep Neural Networks. It has 32GBs
of ram and a powerful CPU. It is an Intel(R) Core(TM) i5-6400 that
reaches the frequency of 2.70GHz with 4 cores. This server also has a powerful
GPU Nvidia TITAN Xp with 12GB of dedicated Memory and full Cuda
support. The operative system on this machine is Ubuntu and it comes with

51

52 Chapter 4. Experiments and Results

Figure 4.1: Colab Interface

all most important python frameworks as Pytorch, TensorFlow, Numpy,
... pre-installed.

4.1.2 Google Colaboratory

Google Colab is a cloud service provided by google (https://colab.research.google.com)
and it is a virtual machine that has enough resources to train machine learning
model and Deep Neural Networks. It comes with all frameworks you need and
pip tool installed in order to let you catch all frameworks that are not present
in the default environment. This service is based on Jupyter Notebook, in
fact the basic interactions you can perform are to add code cells or text cells
and to run them. But all notebooks the user can create are launched on virtual
machine with a lot of resources. User can also choose which hardware deploy
between three configurations:

• None. This configuration allows user to use just CPU

• GPU Accelleration. User can use GPU and Cuda.

• TPU Accelleration User can use TPU Technology.

The hardware of this environment is composed by a cpu Intel(R) Xeon(R)
2.30GHz with 2 available cores, 12GBs of ram but, in case user needs more,
they can be expanded to 25GBs and a GPU NVIDIA Tesla P4 with 8GBs
of dedicated memory. This service is free but there is a limit about usage time.
This service allows users to run short GPU tasks for free while for long GPU
tasks user has to pay a fee. For these reasons some tasks as data preprocessing

https://colab.research.google.com

4.1. Development Environment 53

or small neural network train have been conducted on Colaboratory while
longer tasks as Fine-Tuning or big Network train have been executed on the
server.

4.1.3 Python and Frameworks

To the project development the chosen programming language is Python
version 3. It is one of the most successful language in the Data Science
field because it is easy to use and learn but powerful whit a lot of well done
frameworks created by the community. Furthermore python and all tools are
free and that makes their usage, their solidity and their community really
strong. The principal frameworks used for this project are:

• Pickle. It is a library containing functions to write and read python
object from/to a file.
https://docs.python.org/3/library/pickle.html

• Numpy to work with multidimensional vectors thank its ndarray object.
https://numpy.org/

• Pandas to work with tables and relational data stored in tsv files.
https://pandas.pydata.org/

• SciPy. The scientific version of numpy.
https://www.scipy.org/

• Pytorch. Framework created by Facebook with the idea to develop high
level functions to create and work with neural networks.
https://pytorch.org.

• TensorFlow. Famous framework for Machine learning and Neural Net-
work models creation.
https://www.tensorflow.org/

• Keras. It is a framework born to provide to developer very high level
functions to easily and with a few line of code create model and train
them.
https://keras.io/

• Transformers. Framework that provides easy access to state of art
models of NLP tasks as Transformers, BERT, ROBERTA,
https://github.com/huggingface/transformers

https://docs.python.org/3/library/pickle.html
https://numpy.org/
https://pandas.pydata.org/
https://www.scipy.org/
https://pytorch.org
https://www.tensorflow.org/
https://keras.io/
https://github.com/huggingface/transformers

54 Chapter 4. Experiments and Results

• Sentence-transformers. It’s a Framework that contains the implemen-
tation of Sentence-Bert.
https://github.com/UKPLab/sentence-transformers

• Flair. It’s a very simple framework for state of the art NLP. It also
contains Contextual Embeddings.
https://github.com/flairNLP/flair

4.2 ROBERTA Model and Set-Up
The selected model for the project was ROBERTA Model and it was

selected because it recently reached the state of art in many NLP tasks. It
demonstrated itself robust and very precise beating a lot of other models.
One possible alternative was represented by BERT model, but ROBERTA
demonstrated its limitations getting better results and in many tasks it reached
the state of the art surpassing the BERT Model. To better understand its
advantages read the section 3.6 about ROBERTA. The selected model comes
in more versions:

• robera-base. 12-layers, 768 hidden size, 12 heads, 125M parameters.

• robera-large. 24-layers, 768 hidden size, 16 heads, 355M parameters.

• robera-large-mnli. 24-layers, 768 hidden size, 16 heads, 355M parame-
ters but it has been trained on MNLI dataset.

The better versions which have highest results, are the large ones. The roberta-
large version got better result and it detains the state of art in some NLP tasks
but it has a deep limitation. It is very big with a lot of parameters and the
available resources deployed for this project wasn’t enough so it was chose to
work with a smaller model. So the final model is Roberta Base.

To get the model there are a lot of ways. You can develop the model on
your own using pytorch or tensorflow but it can be hard, otherwise you can
download a pre-build model trough one of the many repository online. For the
project it was used Transformers as basic framework to get and to work with
ROBERTA pre-build model. Trasformers is a easy framework to work with
state of art models including ROBERTA and it provides numerous tools to
help users in all phases of model development. Using it, every one can get with
a few lines of code a pretrained models ready to use.

In [1]: pip install transformers

The above code is for install transformers in your virtual environment using
Pip tool.

https://github.com/UKPLab/sentence-transformers
https://github.com/flairNLP/flair

4.2. ROBERTA Model and Set-Up 55

In [2]: from transformers import RobertaModel
In [3]: model = RobertaModel.from_pretrained(

"roberta-base")

The above code can be used to download a pre-trained base model. This model
is pre-trained using general sentences about everything and this model works
fine for NLP tasks on general arguments. In the case you want to specialize
the model on a specific domain as Jobs like the case of this project you need
some more steps. There are two main possibilities: training the network or
fine tuning the model. In the first case all weights previously learned by the
Neural Network are dropped and the model is trained against a dataset on that
domain.

This option required a lot of data and a lot of time, in particular for neural
network complex as ROBERTA and it often is not the best solution. The
second option, fine tuning, means to use data about specific domain to train
the network but without dropping previously learned weights. This forces
network to adjust the knowledge learned before to fit it in the new domain.
This approach is very fast and requires less data, in fact it is the most chosen
solution when a complex pre-trained network need to be specialized.

4.2.1 Fine Tuning

The idea, now, is to use a well studied technique called Cross-Domain
that force model to move previously learned acknowledged on one domain to
another one. This approach is widely used because it permit model to work in
domain where data are not enough for train. A lot of studies were conducted
about that topic, applying this technique to all the fields. For examples, the
work of Professor Moro[38] uses it in the sentiment analysis with success. The
idea is to train model using a lot of reviews from heterogeneous source domains
and that transfer that knowledge to a specific domain.

To specialized the network on the jobs domain it was necessary some textual
data about jobs and a fine tuning script. Dataset contained a table called
jobs.tsv that had a lot of job postings inside and, each of them, had title and
description. The idea was to create an unique text file with all job titles and
descriptions from the entire table that contained 1091923 different job postings.

ROBERTA, for the fine tuning phase, needs some text to read and nothing
more so that made this task very easy. The fine-tuning script to use in order to
automatize this process, was the one provided by Transformer Framework
Repository. It is a pytorch script that loads the model and data and wants
some training parameters, then it executes and manages the fine-tuning phase
for the target network.

56 Chapter 4. Experiments and Results

The data

The table selected to get some textual information about jobs was the
one containing job postings: jobs.tsv. This table contains for each job post-
ing: the title, the description and some requirements. Those three columns
could be used to create a file containing a lot of text about jobs. How-
ever, requirements field often contains only some references to the descrip-
tion and, for this reason, it was dropped. First of all tables were loaded in
a pandas.Dataframe that is an object for modeling relational tables. Use-
less columns and rows containing NaN cells were dropped. After that, all
JobTitles and JobDescriptions were combined and saved in a textual
file and at last the obtained dataset was split in two pieces: trainset and
testset stored on two files: jobs_descriptions_for_ft_train(1,7G) and
jobs_descriptions_for_ft_eval(87M).

Training Script

The repository of Transformers Framework also contains some useful scripts
including the one for fine tuning. This scripts can be used for training a model
and can be heavily customized using input parameters. The command used in
this project to execute the fine-tuning of the ROBERTA model was:

python3 run_lm_finetuning.py
--do_train
--train_data_file=jobs_descriptions_for_ft_train
--output_dir=roberta_ft_outputs
--model_type=roberta
--model_name_or_path=roberta-base
--do_eval
--eval_data_file=jobs_descriptions_for_ft_eval
--mlm
--save_step=300000
--num_train_epochs=5
--overwrite_output_dir

The above scripts performs the fine-tuning of the specified model through
the parameter –model_type and –model_name_or_path to specify the ver-
sion of the model to download or the directory where model was previously
stored. Using the flag –do_train the scripts performs a training session and
similar the with the flag –do_eval scripts performs evaluation after train-
ing. –train_data_file is used to tell to the script where training data
are located and –eval_data_file do the same but for the evaluation data.
–output_dir is used to specify the directory to store results and the new

4.3. Multiple Losses Training 57

model, –overwrite_output_dir is a flag that tells to the scripts to overwrite
output directory in case it already exists and –save_step indicates the saving
frequency for the model. Finally the flag –mlm tells to train the model using a
masked language modeling and the parameter –num_train_epochs to specify
how many training epochs perform. A lot of other parameters are set by default
and can be changed. The most importants of them are:

• –mlm_probability default: 0.15 and it is the ratio of tokens to mask for
masked language modeling loss.

• –block_size default: -1. The size of the block in which tokens are split
before training. If -1 it will be used the largest for the selected model.

• –per_gpu_train_batch_size default 4. It is the batch size per GPU for
training.

• –gradient_accumulation_steps default 1. It indicates number of up-
date steps to accumulate before performing a backward pass.

• –learning_rate default 5e−5. It is the learning rate to use during train.

• –weight_decay default 0.0. It is the weight decay to apply.

This script produces a fine-tuned model saved into the output directory that
can be used and load by using pytorch or other Transformers tools. Running
the script the model roberta-base was downloaded and the file with the text
for the train was opened. The text was turned into tokens using ROBERTA
dictionary with 50k elements during a process called Tokenization and then,
tokens were replaced with their ids. So the entire text was turned into a list
of ids. After this phase the dataset was split in subsequences of 510 ids and
two special tokens <CLS>(id 0) and <SEP> (id 2), converted into their ids, were
added. One was placed at the beginning of the sub-sequence and the other at
the end of it. An example of that phase can be seen at figure 4.2.

Now training could take place, this sub-sequences were the input of the
model. First of all the 15% of the ids was masked with a <MASK> token because
the task was: the model had to read the other ids in the input sequence and to
try to guess the one under the mask. Model was trained for five epochs and for
each epoch it did read the entire dataset. It was a big dataset with milions of
sub-sequence, therefore it required some times to be complete.

4.3 Multiple Losses Training
After fine-tuning phase model had to be trained to fulfill a specif task.

Model, thank to the previous training, obtained some knowledge about jobs

58 Chapter 4. Experiments and Results

Figure 4.2: Tokenization performed by Roberta Tokenizer

in general, but it had to use those kind of notions to reach good results in
some useful tasks. To do that model was trained again, but using a task level
datasets. The tasks designed for that model were three and where binary
classification tasks:

• Job Title - Description. For this task model had to express a prob-
ability that indicated how much a given description corresponded to a
given title.

• User - Job Application task. For this task model had to process a
user and an application and it had to express a real number that indicated
the probability the user did that application.

• Last Job Classification. For this task model got in input a job history
without the last job and a single job. It has to express a probability level
that the single job is the last job of the given job history.

The following sections contain a detailed description of the above tasks and
their results.

4.3.1 Job Title - Description

The first task for the model was to express a real number that was the
probability that a given description was about a given job title. Those data,

4.3. Multiple Losses Training 59

job description and job title, came from Job Posting and the idea behind that
task was to force the model to internally link information from description to
the job title.

The problem was job history contained just a list of job title very short with
no other information. To fulfill any kind of task on that data it was necessary
the model was capable to know what a job title meant. This task was designed
to let the model get that kind of knowledge by training it to link a job title to
the information contained in the description.

This task was fundamental for the later experiments so it was performed as
first. The dataset for this task was created using data from Job Posting table
and the model, used for the classification, was the one fine-tuned in the phase
before. After the training phase model achieved very good results guessing
with a precision of 97,67%.

Dataset

For this task dataset came from job posting table. This table contained a
lot of information about jobs and, for each job, it had the job title and the job
description. That made that table the only solution to create this dataset. The
idea was to create inputs that contained bot job title and a job description
and, for each input, to assign a binary flag that expressed if the description
was about title or not.

INPUT: <CLS> Job Title <SEP><SEP> Job Description <SEP>
FLAG: [0,1]

In order to create this dataset the following steps were performed:

1. Dataset Preprocessing. Dataset contained NaN cells and they have
to be removed. Dataset also had more data then we need, so the rows
containing NaN values were just dropped.

In [1]:
import pandas as pd
dataset = pd.read_csv(

"jobs.zip",
sep = '\t'
error_bad_lines = False

)

In [2]:
dataset = dataset[['Title', 'Description']]

60 Chapter 4. Experiments and Results

In [3]:
dataset.dropna(inplace=True)

After that, dataset still remained too large so it was selected just a part
of it. For this task it was chosen to use 90000 jobs (60000 for training
and 30000 for test).

2. Create true and false examples. Now dataset was composed by Job
Title and its Job Description so it was necessary to turn dataset into
a list of tuple containg job title, job description, flag.

(Job Title, Job Description, Flag)

Now dataset had to be split in two parts of 45000 elements which the
first part contained the true samples and the second the false ones. In
order to create that list of tuples, the elements form the first true part
were taken and placed in a tuple adding the right flag and then appended
to a list. Elements from second part were added in the same way but
before, the descriptions were randomly shuffled. Doing that each job title
was paired to the description of another job.

3. Roberta Tokenization. To feed the model with data they had to be
turned into tokens. To do this it was used the tokenizer from the
library Transformers. However, before this phase, HTML tags had to
be removed by using the following code:

In [1]:
re.sub('<[^>]*>',' ', desc, flags=re.I|re.U)

After HTML tags elimination the tokenization process started. To tok-
enize a sentence it was possible to use the following command:

In [2]:
from transformers import RobertaTokenizer as tokenizer
tokenizer.encode(jobTitle, jobDescription)

There were cases where description was too long and the block size limit
(512 ids) was reached. In this case description was truncated taking a
piece of it from a random point, but enough large to fit the block size. in
other cases Job Title and Job Description were too short and the block
size was less than 512. For these cases, ROBERTA Team suggests to pad
the block with zeros and add a mask. Mask was an array composed by
0 and 1 where 1 represented data from dataset and 0 represented pad
values. After this step data appeared:

4.3. Multiple Losses Training 61

(RobertaInputBlock, Mask, Flag)

After the above steps dataset was ready to be used to train model.

Classification Model

The classification model was composed by two parts: ROBERTA model
and a binary classifier. The model fine-tuned was just ROBERTA model
without any classifier but, according to the paper, one of the key points of
BERT and so ROBERTA was: they could be trained adding other layers on
the top of them using all or some of the model outputs. The model produces
vectors with 768 dimensions, one per input tokens, so it produces embeddings
also for the <CLS> and <SEP> tokens.

For the classification tasks authors suggest to use the output vector from
the first token <CLS> and to give it in input to the classifier. This chain doesn’t
interrupt the back-propagation and both, model and classifier, can be trained
together. For the project the selected classifier was the one that came with the
RobertaForSequenceClassification model included in the Transformers
repository. It contains a lot of tools and models to cover most NLP tasks.
The selected model it was composted by ROBERTA pre-trained model and
a classifier, but it was possible to change ROBERTA model with the one
fine-tuned, from the previous task, and than to train the whole model again
for this new task.

In [1]:
from transformers import RobertaForSequenceClassification
model = RobertaForSequenceClassification.from_pretrained(

'path_to_finetuned_model'
)

The classifier mounted on the top of ROBERTA was a two layers classifier. It
was composed by a dense layer with a non-linear activation function: Tanh.

tanh(x) =
expx− exp−x

expx +exp−x
(4.1)

This first layer was composed by 768 neurons so it produced as output a vector
of the same size of the input one, but performing the following equation:

tanh(~X ∗W+B) (4.2)

The second layer was composed by as many neurons as the number of the
classes were, but for binary classification just one was needed. So, at the end,
classifier produced a real number that could be used as affinity ration between
input couples. For this task it represented the probability of the description to
be related somehow to the given job title.

62 Chapter 4. Experiments and Results

Training

Model was trained using the trainset composed by 60000 samples balanced
between positives and negatives for just 2 epochs using a batch size of 8
elements. Greater batch size would had led to a Cuda memory crash so
it was impossible test with different batch size. The target function was
CrossEntropyFunction that works fine with classification problems.

H(p, q) = −
∑
x∈X

p(x) ∗ log q(x) (4.3)

The selected optimizer for the train was AdamW with a learning rate of 5e−5
and an ε equal to 1e−8. After the train model was tested using the testset
composed by 30000 data of the same kind of the trainset and it achieved very
good results:

• Precision: 97,67%

• Accuracy: 97,45%

• Recall: 97,22%

As said before, the model produced a real number that had be used to decide
if the input sample was in the class or not. To do so, it was used an empirical
value of 0.6 and all the samples for which model generated a number lower
were considered 0 and the others 1.

4.3.2 Users to Job Application Task

The second task was about train a model to guess if a given user submitted
a given application. For this task the inputs were pairs user-application and,
likely to the first task, the output was the probability that the user performed
the given application. The users was defined by combining some of its studies
information and its job history while for the application was used just the job
title. For this task model reached good results with an accuracy of 91,95%.

Dataset

Differently from the first task this dataset did not come from a single table
but it needed data from more tables:

• users.tsv. This table contained information about study level.

• user_history.tsv. This one contained the job history of each user.

4.3. Multiple Losses Training 63

• apps.tsv. This table contained the userids of the users that submitted
applications and the jobid of the job posting.

• jobs.tsv. This table contained the job title of the jobs.

To create the dataset it was necessary to merge data from all of the above
tables. Final data was in the following format:

Input= <CLS> Users information, job history <SEP><SEP> Job Title <SEP>

In order to create that dataset these following steps were performed:

1. Dataset Preprocessing. Tables contained Nan values and they had to
be removed. Dataset had more data then it was necessary, so the rows
with Nan cells were simply dropped.

In [1]:
import pandas as pd
dataset = pd.read_csv(

"table.tsv",
sep = '\t'
error_bad_lines = False

)

In [2]:
dataset.dropna(inplace=True)

2. Group applications and job histories by user. The next step after
cleaning the data by the NaN values was to group data from apps.tsv
table by the users. In this way it was easier to get from each user its own
applications.

In [3]:
grouped_app = apps.groupby(by=UserID)
grouped_jobs = job_history.groupby(by=UserID)

3. Join the tables. Once all tables were indexed by UserID they had to
be merged. To do this it was possible to use pandas the merge command,
but in the project this join was made by using a loop cycle over all the
job histories, getting the users and its applications and creating the new
dataset. From each user table it was kept the State, the DegreeType, the
Major, the TotalYearsExperience and the WorkHistoryCount while, from
the jobs, just the JobTitle of the job application.

64 Chapter 4. Experiments and Results

4. True and false sample creation. As in the previous task the dataset,
by now, contained only positive examples of users and their applications.
In order to create also negative items, dataset was reduced to 90000
samples and half of them were turned into negative samples just shuffling
the job applications.

5. Roberta Tokenization. To feed the model with the data they had to
be turned into tokens. To do this it was possible to use the tokenizer
from the library Transformers. However, before this phase, HTML tags
had be removed by using the following code:

In [1]:
re.sub('<[^>]*>',' ', desc, flags=re.I|re.U)

After the HTML tags elimination step, the tokenization process started.
To tokenize a sentence it used the following command:

In [2]:
from transformers import RobertaTokenizer as tokenizer
tokenizer.encode(users, jobTitle)

The lists of tokens, generated by this way, often were smaller than block
size (512) so they were padded with zeros and a mask vector was created
for each sample. This vector contained 512 cells with 1 if the same cell in
the input vector was an ids or 0 if it was a padding value.

After those steps the data were in the right format to be used by the model.

Training

The model was the same of the previous task. After it, the model was
saved to be used for this task and, doing this, a chain of losses was created in
order to train a single model. For this task, model was trained on a training
set of 60000 samples that was balanced between positives and negatives. It
was trained for just 2 epochs using a batch size of 8 elements. Greater batch
size would have led to a Cuda memory crash and, even for this task, it was
impossible test the model with different batch size. The target function was
CrossEntropyFunction that worked fine with classification problem. See
equation 4.3. The selected optimizer for the training was AdamW, like in
the previous task, with a learning rate of 5e−6 and an ε equal to 1e−8. After
training phase model was tested using the other 30000 data and, again, it
reached very good results.

4.3. Multiple Losses Training 65

• Precision: 94,71%

• Accuracy: 91,95%

• Recall: 88,86%

• F-Measure: 91,69%

As for the previous task it was used 0.6 as split value and all values produced
by the model below of it were considered 0 and all values above were considered
1.

4.3.3 Job History to last Job Task

The last task was to train the net to guess if a given job was the last job of
a given job history. This was the most complex task because, to fulfill the task,
model had to understand the meaning of the job titles hand-written in the job
history. The idea was that: the other 2 tasks, on which the model were trained
until now, helped the model to better understand job titles and to get good
results even for this task. Dataset for this task was composed by samples in
this format:

<CLS> USER user's info JOB job history <SEP><SEP> last job <SEP>

Also for this task more tables had to be merged in order to give to the model
some user’s information for a better classification. After the train model reached
a good result. It classifies the input samples with an accuracy of 75%

Dataset

The data for this dataset came from the following tables:

• users.tsv. This table contained information about users.

• user_history.tsv. This table contained the job histories of each user.

To create the dataset for that task the following steps were performed:

1. Dataset Preprocessing. Like the previous tasks, tables contained Nan
values so the rows with those values had to be dropped.

In [1]:
import pandas as pd
dataset = pd.read_csv(

"table.tsv",

66 Chapter 4. Experiments and Results

sep = '\t'
error_bad_lines = False

)

In [2]:
dataset.dropna(inplace=True)

2. Creating Job History. Users_history table contained a row for each
job indicating the user that did that job. It was better to groups jobs by
the user that did them using the command groupby provided by pandas
dataframe.

In [3]:
grouped_jobs = job_history.groupby(by=UserID)

3. Last job extraction. Now performing a loop over the job histories it
was possible to extract the last job from them and to create a list of
tuples with that format:

(UserID, JobHistory, LastJob)

4. Add user’s information and flag. For each tuple, using the UserID,
it is possible to find the related user and his information and put them in
the dataset. The selected information of the user used in this task were:
DegreeType, Major. In the same time it was possible to add the flag
that, for now, it was positive creating data in this format:

(User + JobHistory, LastJob, Flag)

5. Creating negative samples. By now, the job histories are more than
300k so dataset needed to be reduced to 90000 samples. After that
reduction, from those selected samples which were just positives, it was
necessary to create negative samples. Dataset was split in two equal parts
and one part it was turned into negative samples shuffling the last jobs.

6. Tokenization. Like the other tasks, the entire dataset had be converted
into tokens ids. To do this it was used the default Tokenizer provided by
transformers framework.

In [4]:
from transformers import RobertaTokenizer as tokenizer
tokenizer.encode(JobHistory, LastJob)

4.4. Further tests and considerations 67

Training

Once dataset was created, it was split in the trainset, with 60000 samples,
and testset, with the other 30000 samples, then model was trained. Model
was the one from previous task that was ready to be trained for the third
and last task. For this task, the model was trained for 2 epochs using a
batch size of 8 elements. As in the previous tasks the loss function was
CrossEntropyFunction and the optimizer was AdamW with a learning rate
of 5e−6 and a ε of 1e−8. After this train phase, the model was tested using the
testset and it reached the following results:

• Precision: 73,34%

• Accuracy: 74,59%

• Recall: 77.25%

For this task the empirical split point used was 0.4.

4.4 Further tests and considerations
Model reached very good results in two tasks: to express the probability

that a given user submitted a given job application and that a given job history
with some user’s information contained, as last job, a given one. These two
tasks were tested using a balanced dataset, but the reality it’s different.

The first task, that link a user to its job application, in a real scenario had
find the right applications between a lot of wrong ones. They aren’t necessarily
wrong and the application done are not the only ones right. therefore, the
number of good job postings for a given user is very smaller than the wrong
ones. The same concept is correct even for the other task, so the model were
tested with unbalanced datasets from both of these tasks.

Another parameter out of the model is the split point for the classification.
Samples can be positive or negative so they can flagged as 0 or 1, but the
output of the model is a real number. It was selected empirically a number
called Split Point equal to 0.6 for both the tasks and for all the samples model
produced a value. If that value was above the Split Point it was considered 1
otherwise it was considered 0. It was interesting to use different Split Points
with the unbalanced datasets.

4.4.1 User to Job Application tests

For these tests 5 datasets were created by using unseen data. The datasets
had different rations between positive and negative samples: 1-1, 1-2, 1-4, 1-8,

68 Chapter 4. Experiments and Results

Figure 4.3: Model results tested by using unbalanced datasets

1-16. All of them were composed by 60000 never seen before samples and the
metrics to evaluate the model were:

• Accuracy: TP+TN
TP+TN+FP+FN

• Precision: TP
TP+FP

• Recall: TP
TP+FN

• F-Measure: 2 ∗ Precision∗Recall
Precision+Recall

As it is possible to see in the figure4.3 model demonstrated itself to work really
good with balanced or slightly unbalanced datasets (1-1, 1-2, 1-4), but with
strong unbalanced dataset the precision and so the F-Measure fell down.
Metrics for dataset 1-4 :

• Accuracy: 93.58%

• Precision: 81.37%

4.4. Further tests and considerations 69

Figure 4.4: Metrics variation using different split points

• Recall: 88.06%

• F-Measure: 84.58%

Metrics for dataset 1-16 :

• Accuracy: 94.66%

• Precision: 52.68%

• Recall: 90.11%

• F-Measure: 66.49%

This probably happened because the model tended to classify as positive class
easier then negative. This brought to have almost all of the positive samples
selected but with some negative samples within.

This is good, or not to bad, if system has to provide to an user a list of job
postings and user has to choose between them because it guarantees the right
job postings are shown. But for a company looking for the best candidates
the situation is harder because it doesn’t want to select a wrong one. For this
case it would be better to get less positive samples but without negative ones
within.

70 Chapter 4. Experiments and Results

For all these tests it was used the same Split Point 0.6. It was also interesting
to check result variations by using different values. By now, the model had
favored the positive class, so the idea was to use higher threshold in order to
help a better recognition of negative samples and to improve precision even
worsening a bit the recall.

The model was tested using the dataset 1-16 but with different split points:
0.63, 0.65, 0.67, 0.69, 0.7, 0.71, 0.73, 0.75, 0.77, 0.79, 0.8. As it is possible to
see from the results shown in the figure 4.4, the value of the Split Point played
a very important role in the classification. Raising the value to 0.73 as results
demonstrate, F-Measure was maximized so the ration between precision and
recall was maximum.
Metrix for 0.73 split point :

• Accuracy: 96.03%

• Precision: 62,65%

• Recall: 80,48%

• F-Measure: 70,45%

Metrix for 0.63 split point :

• Accuracy: 94.87%

• Precision: 53,95%

• Recall: 89,29%

• F-Measure: 67,26%

Increasing the split point over 0.73 precision kept to raise but recall fell down
quickly. This demonstrates that for unbalanced model to study the split value
can lead to a better results.

4.4.2 Job History Last Job Test

Even for this task model was tested against unbalanced datasets in the
same proportions of the previous: 1-1, 1-2, 1-4, 1-8, 1-16. But the previous
task model worked really fine for balanced model so it had a good start point.
For the second task it was impossible to say the same. It got some good results
but much worse than in the other task.

Like for the other tests metrics used for the evaluations were: Accuracy,
Precision, Recall and F-Measure. After these tests results showed the

4.4. Further tests and considerations 71

Figure 4.5: Results of the model in last job classification task using unbalanced
datasets

difficulty of the model working with unbalanced datasets. From the dataset
1-2 the results started worsening a lot, in particular the Precision.
Metrics for dataset 1-2

• Accuracy: 75.27%

• Precision: 61.06%

• Recall: 71.25%

• F-Measure: 65.76%

Metrics for dataset 1-16

• Accuracy: 76.84%

• Precision: 16.42%

• Recall: 71.83%

• F-Measure: 26.73%

72 Chapter 4. Experiments and Results

This results show the difficulty to work with job written in the same job
history. It can be possible to see the job posting as the last job of the current
job history but in the future. If users and company accept to work together
the job posting, somehow, becomes the last job of the users job history.

Under this light the tasks are very similar but the results are so different.
One of the main difference between the two tasks is the first has to classify
the job posting title that have more words and more information, while the
second case it has to classify a job title hand-written by the user that has no
gain adding more information. This could be a point to start for a future work
for improving this model.

Chapter 5

Other Experiments and future
works

During the evolution of this project other experiments were done and other
models were tested without reaching good results. They need to be explained
anyway to specify what technology worked and what didn’t for future studies
in this field.

The initial idea was to predict the last job from each job history. Job
histories were defined as matrices JNXD where N is the number of the jobs
contained in the job history and D is the dimension of the vector used to
represent jobs called Job Embedding. A good representation of the jobs
leads to create a Jobs Vector Space where similar jobs are closed together and
different jobs are placed at some distance computed by using Cosine distance.
This vector space is fundamental in order to create a model capable of predict
the last job.

JNXD =

j1,1 j1,2 · · · j1,d
j2,1 j2,2 · · · j2,d
...

...
jn,1 jn,2 · · · jn,d

 (5.1)

Last job extracted from the job history is ~jn and the other jobs in sequence
are the vectors ~j0,~j1, . . . ,~jn−1 that represent the jobs user did before the job to
predict. As in NPL task where the model has to create a probability distribution
over a natural language dictionary after reading some words to predict the last,
in this case the model has to read the previous jobs and predict the last. These
tasks look really similar but they have some deep differences and they deserve
to be well described to fully understand the results.

• Dictionary Size. The words in natural language can be collected into
a dictionary with 30K (as BERT Dictionary) to 50K (as ROBERTA

73

74 Chapter 5. Other Experiments and future works

Dictionary) items. For each words exists tons of examples and usages
which model can be trained with. Job History are hand-written and
that fact leads to have an enormous dictionary because each job can
be written in a lot of different ways. Our dataset has a dictionary of
270k jobs for 360k Job Histories. That means that most jobs have one
occurrence and that makes a prediction really hard.

• Context Size. For NLP context size is limited by just the model input
limits however the context can be very long and full of useful information.
Using the Job Histories context is limited to the size of them which
generally have 6 or 7 jobs and this makes context to be very short.

• Dataset Size. Last difference, but it played a key role in the project, was
the dataset size. Natural Language Model are trained over dozens of GBs
of textual data with billions of samples. Dataset for the project contains
only 360K job history which aren’t few but not enough to overcome the
problems above.

One of the first ideas to approach the task was to convert all the jobs inside
the job histories into Job Embeddings hopping to create some density based
clusters and, somehow, to reduce the size of the jobs dictionary. After that the
idea was to create a model that has to read the sequence of jobs in the job
history and to try to predict the embedding of the last job. Then it has to take
the prediction and to check the closest K jobs in order to find the target job
using cosine similarity.

This task has been repeated using different models and technologies but
without reaching any good results. After this first difficulty it was decided to
try different paths, one of them was to test this new technology very promising
called BERT and the model ROBERTA explained in the section 4.2.

Other paths were to avoid explicit Job Embeddings trying to use an Embed-
ding layer inside the model and producing a probability distribution from the
last layer output. This strategy was too prone to dataset problems and no good
results were achieved. The only good results obtained are from ROBERTA
model in binary classifications task but predicting the last job, using this dataset,
is still an open task and it needs further experiments and investigations.

5.1 Last Job Prediction using Job Embeddings
For this task some embedding models were used like Flair,BERT, Sentence-

Bert. All of them promise to create the best word embeddings but none of
them could help in this task. The task was to guess the last jobs after reading
the previous jobs in the job history. All jobs were converted in job embeddings

5.1. Last Job Prediction using Job Embeddings 75

before the task using one specific model. The Neural Network deployed for
the prediction was based on an LSTM and the loss function used was cosine
distance between the output of the model and the job embeddings of the
target jobs.

X =

~j1
~j2
...
~jn−1

 (5.2)

Y = ~jn (5.3)

Y ′ =Model(X;σ) (5.4)

loss = ConsineDistance(Y ′, Y) (5.5)

During tests the model was evaluated by using a special function called KJob-
sAccuracy that checked if within the K closest jobs to the predicted vectors
there was the target job. So, given a certain K, it was possible for the model
to evaluate its accuracy.

KJ = KClosestJobs(Y ′, J,K) (5.6)

KJobsAccuracy =

∑N
i resi
N

(5.7)

res =

{
1 if Y ∈ KJ
0 if Y not ∈ KJ

(5.8)

First test was performed by using Flair contextual embeddings created by
chaining Forward Vectors (2048 dimensions), Bakward Vectors (2048 dimen-
sions) and Glove Vectors (100 dimensions). In that way the final vectors had
4196 dimensions. Each Job Embedding was created converting all words in
the job title into vectors and mixing them using mean pooling function. After
that job histories with less than 3 jobs were dropped and the others were zero
padded or truncated in order to have 5 jobs plus the target job in each job
history.

The model, shown in picture 5.1, was created using Keras with an input
shape of 4196 size, two hidden layers of 1024 neurons and a Dense Layer of 4196

76 Chapter 5. Other Experiments and future works

Figure 5.1: Keras representation of the model used for job prediction

neurons. So this model could take in input a sequence of 5 jobs embeddings
with 4196 dimensions and it could produce a vector of 4196 size like the other
Job Embeddings. The activation function for all the layers was Tanh and the
output was compared to target job by using Cosine Distance as loss function.

CosineDistance(~y, ~y′) =
~y~y′

||~y||||~y′||
(5.9)

. The model was trained with 18000 job histories for 60 epochs and tested using
others 10000. It was trained using a learning rate of 1e−3 and RMSProp for
optimizer. The average of cosine distances produced during test was 0.327 and
this showed model didn’t learn how to predict the last job. In the training
set cosine distance reached 0.074 and this fact was caused probably to an
over-fitting. Model was also evaluated using KJobsAccuracy function with 10k
jobs from test set but result was 25,3% with K=500.

To handle this problem other two experiments were conducted. In the first
case 2 dropout layers (with 0.2 value of dropout) were added to the model after
the two hidden layers and in the second case, model (with dropout) was trained
using 60000 data. The train phase was equal for both of them, but results
didn’t improve. The first reached 25 % of accuracy using KJobsAccuracy while
the other reached 27%. Maybe, flair contextual word embeddings were not

5.2. Possible solutions and future works 77

sufficient to represent jobs correctly so it was decided to test model with other
Job Embeddings.

Job embeddings were recreated by using first BERT and then Sentece-BERT.
It’s important underline that BERT Model has no official embedding extraction
methods. Using BERT3.5 to generate word embeddings is more similar to an
empirical procedure because it has a lot of internal layers and the embeddings
can be extracted from all of them or concatenating some of them.

Many different embeddings were created and best results were obtained
concatenating the first two layers using mean function. Sentence-BERT3.7,
differently, is a model that uses BERT but it is trained to create vectors which
can be compared using cosine distance. So jobs in job histories were turned
into Job Embeddings using both of them and tested using LSTM model written
in Keras.

The model, equal for both the tasks, was composed by three layers of LSTM
and a dense layer as output layer. The first layer had an input shape of 768 as
the input vector size, the second and the third have 1536 neurons while the last
dense layer has 768 neurons. The output was compered with target by using
Cosine Distance as loss function. BERT embeddings with this model reached
an accuracy using KJobsAccuracy function of 19,2% and, using Sentence-BERT,
they reached 27,1%.

None of the obtained results was good enough so these results brought to
light the problem about job embeddings quality. Jobs hand-written have some
problems like polysemy or synonymy that lead model to hardly create feature
vectors that well represent the jobs. How can a model predict the last job in a
meaningless vector space?

5.2 Possible solutions and future works

Jobs in a Job History are sequences of data a Recurrent Neural Network
can use. These kind of Networks showed good results in sequence tasks so
probably the problem is not the predictor model but the jobs representation
that does not provide enough information to fulfill the task.

However ROBERTA Model reached good results in the binary classification
tasks using jobs in job history (See section 4) and creating internally the job
embeddings using attention mechanism. It was impossible extract these embed-
dings but somehow and somewhere these useful information were computed and
turned in some feature vectors. Maybe it was the Attention mechanism the key
point to solve the problem but the concept that this works wants to highlight
is: the best results come from model that internally creates job embeddings.

This fact suggests that granting model more autonomy better results it

78 Chapter 5. Other Experiments and future works

can reach and this fact is also highlighted by the history of the Deep Neural
Networks models. The first and easiest model, the Feed Forward Model has
just the power on its weights and nothing more in fact it was used with good
results in very easy tasks . The Neural Networks that come after starts to get
more tools to decide alone how to handle data. Recurrent Neural Networks
are capable to handle sequences and to decide how much information keep and
how much forget from the old data. Attention mechanism allows network to
learn which data have more information and which are useless and then select
just the useful ones. Convolutional Neural Networks, for example, can decide
to which features give more importance and to which give less.

All of the above networks reached good results first in his field and then
in others improving all deep neural network world. From them is possible
to see that the common characteristic from all is they get some autonomy.
In the future, networks with more autonomy can obtain better and better
results and maybe, this can be a future direction also for researches in Job
Recommendation filed. Following this idea the future network for this task may
have more autonomy to map job title hand-written to a vector space created
directly within the network and not before and then to decide which works are
important and which meaningless. Following this idea a proposed model that
resume those concepts may looks like the one in the figure 5.2.

This model is composed by the following layers:

• Embeddings Layer. This layer has the duty to create best embeddings
for Job Title representation. Results showed BERT was very good to
extract these features so this layer is just a BERT sub-layer composed by
Self-attention Mechanism and a feed forward neural network. (Check
section 3.5 relative to BERT for more information)

• Recurrent Neural Network. This layer is composed by a Recurrent
Neural Network like LSTM or GRU. The idea is to have a model that
can check the sequentially of the jobs in the job history and models
concepts like careers.

• Output Layer. In the picture 5.2 the last layer is a softmax layer that
produces a distribution over a job dictionary. This requires a well done
Job Dictionary maybe created using some clustering technique.

The model proposed is just an idea to assemble all concepts expressed above
but more investigations and tests must be conduct in this direction to prove
the goodness of what has been said.

5.2. Possible solutions and future works 79

Figure 5.2: Idea for future models for job prevision

Conclusions and future prospects

The initial problem was about the Job Recommendation system and how new
technologies could help it. New Deep Neural Networks have shown themselves
to surpass results ever achieved before becoming one of the most promising
technologies of this historical moment and bringing solution in a numerous
fields from artificial vision to decision support.

This project wants to focus on the Job Recommendation world because it
has been subject to recent attention from major companies. This field relies on
old machine learning models that have limits which can’t be easily overcome
and on well structured data. It is important to test this system with the Deep
Neural Networks. The dataset used comes from a Kaggle Competition and
brings some issues which need to be addressed. One of them is data in Job
Histories are Job Titles hand-written by each users introducing polysemy
calling the same job with different names and synonymy calling two different
jobs with the same job title. Another problem is the lack of a context that can
help better understand those titles and improve the predictions.

The initial task was to create a model capable of predicting the last job of
each job history by reading the previous job titles, but things turned out to
be harder than imagined. Using different kinds of Job Embeddings it was
impossible create a good vector space to well represent the job titles and none
of the models were able to predict the last job. So the task was modified to
become a binary classification task in order to test BERT Model. The task was
to predict if a given Job Title was the last job of a given Job History.

A model based on the BERT model and called ROBERTA (please refer to
3.6) was used for this task. It used an attention mechanism to handle fixed
sized sequences and got very impressive results in some NLP tasks. The model
was fine-tuned and trained with two other tasks to better prepare it for the
last job classification. The other two tasks were: guess if a job description was
about a given job title and guess if a certain job application was submitted by
a given user. The model demonstrated itself to be very efficient in these tasks
reaching very good results (over 90% of accuracy in a balanced dataset)(Please
refer to 4). With no doubt about its potential it was tested against the Job
Classification Task. The results were good, but did not achieve high accuracy:

81

82 Conclusions

74%.
These results underline how inaccurate hand-written job titles can be

represented as vectors for job recommendation task. For sure a lot of models
and new technologies can be tested in this task, perhaps reaching even better
results. Indeed, this work has highlighted the need of further research and a
specialized Deep Neural Networks field. Out of all the possibilities one of them
seems to be more interesting: Autonomy. The model that reached the best
results was ROBERTA and it was the one that created embeddings internally
instead of getting them in input. Maybe if the model were able to extract
features by itself, it would be possible to achieve what today seems impossible
and obtain better results even in more demanding tasks such as the one dealt
with in this project.

Thanksgivings

The first person I want to thank is my Professor Gianluca Moro for all
the support he gave to me, feeding my personal interesting for this marvellous
word and making this work possible. The second person I want to thank is
my girlfriend Lia for the moral support and for the patience she always had,
accompanying me during this project. Thank to my family for its sustain, to
all of my friends and to all the people wanting or not wanting helped me during
this piece of my life.

83

Bibliography

[1] Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks
for youtube recommendations. In Shilad Sen, Werner Geyer, Jill Freyne,
and Pablo Castells, editors, Proceedings of the 10th ACM Conference on
Recommender Systems, Boston, MA, USA, September 15-19, 2016, pages
191–198. ACM, 2016.

[2] Yoon Kim, Yacine Jernite, David Sontag, and Alexander M. Rush.
Character-aware neural language models. In Dale Schuurmans and
Michael P. Wellman, editors, Proceedings of the Thirtieth AAAI Con-
ference on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona,
USA., pages 2741–2749. AAAI Press, 2016.

[3] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway
networks. CoRR, abs/1505.00387, 2015.

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
BERT: pre-training of deep bidirectional transformers for language under-
standing. In Jill Burstein, Christy Doran, and Thamar Solorio, editors,
Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies,
NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1
(Long and Short Papers), pages 4171–4186. Association for Computational
Linguistics, 2019.

[5] Giacomo Domeniconi, Gianluca Moro, Roberto Pasolini, and Claudio Sar-
tori. A study on term weighting for text categorization: A novel supervised
variant of tf.idf. In Markus Helfert, Andreas Holzinger, Orlando Belo, and
Chiara Francalanci, editors, DATA 2015 - Proceedings of 4th International
Conference on Data Management Technologies and Applications, Colmar,
Alsace, France, 20-22 July, 2015, pages 26–37. SciTePress, 2015.

[6] Giacomo Domeniconi, Gianluca Moro, Andrea Pagliarani, and Roberto
Pasolini. Learning to predict the stock market dow jones index detecting

85

86 Bibliography

and mining relevant tweets. In Ana L. N. Fred and Joaquim Filipe, edi-
tors, Proceedings of the 9th International Joint Conference on Knowledge
Discovery, Knowledge Engineering and Knowledge Management - (Vol-
ume 1), Funchal, Madeira, Portugal, November 1-3, 2017, pages 165–172.
SciTePress, 2017.

[7] Alan Akbik, Duncan Blythe, and Roland Vollgraf. Contextual string
embeddings for sequence labeling. In COLING 2018, 27th International
Conference on Computational Linguistics, pages 1638–1649, 2018.

[8] Jonathan L. Herlocker, Joseph A. Konstan, and John Riedl. Explaining
collaborative filtering recommendations. In Wendy A. Kellogg and Steve
Whittaker, editors, CSCW 2000, Proceeding on the ACM 2000 Confer-
ence on Computer Supported Cooperative Work, Philadelphia, PA, USA,
December 2-6, 2000, pages 241–250. ACM, 2000.

[9] Justin Basilico and Thomas Hofmann. Unifying collaborative and content-
based filtering. In Carla E. Brodley, editor, Machine Learning, Proceedings
of the Twenty-first International Conference (ICML 2004), Banff, Alberta,
Canada, July 4-8, 2004, volume 69 of ACM International Conference
Proceeding Series. ACM, 2004.

[10] Brent Smith and Greg Linden. Two decades of recommender systems at
amazon.com. IEEE Internet Computing, 21(3):12–18, 2017.

[11] Giacomo Domeniconi, Gianluca Moro, Andrea Pagliarani, Karin Pasini,
and Roberto Pasolini. Job recommendation from semantic similarity of
linkedin users’ skills. In Maria De Marsico, Gabriella Sanniti di Baja, and
Ana L. N. Fred, editors, Proceedings of the 5th International Conference
on Pattern Recognition Applications and Methods, ICPRAM 2016, Rome,
Italy, February 24-26, 2016, pages 270–277. SciTePress, 2016.

[12] Krishnaram Kenthapadi, Benjamin Le, and Ganesh Venkataraman. Per-
sonalized job recommendation system at linkedin: Practical challenges and
lessons learned. In Paolo Cremonesi, Francesco Ricci, Shlomo Berkovsky,
and Alexander Tuzhilin, editors, Proceedings of the Eleventh ACM Confer-
ence on Recommender Systems, RecSys 2017, Como, Italy, August 27-31,
2017, pages 346–347. ACM, 2017.

[13] Si Si, Huan Zhang, S. Sathiya Keerthi, Dhruv Mahajan, Inderjit S. Dhillon,
and Cho-Jui Hsieh. Gradient boosted decision trees for high dimensional
sparse output. In Doina Precup and Yee Whye Teh, editors, Proceedings
of the 34th International Conference on Machine Learning, ICML 2017,

Bibliography 87

Sydney, NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of
Machine Learning Research, pages 3182–3190. PMLR, 2017.

[14] Dichao Hu. An introductory survey on attention mechanisms in NLP
problems. CoRR, abs/1811.05544, 2018.

[15] Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. LSTM neural
networks for language modeling. In INTERSPEECH 2012, 13th An-
nual Conference of the International Speech Communication Association,
Portland, Oregon, USA, September 9-13, 2012, pages 194–197. ISCA, 2012.

[16] Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua
Bengio. On the properties of neural machine translation: Encoder-decoder
approaches. In Dekai Wu, Marine Carpuat, Xavier Carreras, and Eva Maria
Vecchi, editors, Proceedings of SSST@EMNLP 2014, Eighth Workshop on
Syntax, Semantics and Structure in Statistical Translation, Doha, Qatar,
25 October 2014, pages 103–111. Association for Computational Linguistics,
2014.

[17] Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng, and Alexander J. Smola.
Stacked attention networks for image question answering. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2016,
Las Vegas, NV, USA, June 27-30, 2016, pages 21–29. IEEE Computer
Society, 2016.

[18] Xuezhe Ma and Eduard H. Hovy. End-to-end sequence labeling via bi-
directional lstm-cnns-crf. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics, ACL 2016, August 7-12, 2016,
Berlin, Germany, Volume 1: Long Papers. The Association for Computer
Linguistics, 2016.

[19] Matthew E. Peters, Mark Neumann, Luke Zettlemoyer, and Wen-tau Yih.
Dissecting contextual word embeddings: Architecture and representation.
In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii,
editors, Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing, Brussels, Belgium, October 31 - November 4,
2018, pages 1499–1509. Association for Computational Linguistics, 2018.

[20] Andrej Karpathy, Justin Johnson, and Fei-Fei Li. Visualizing and under-
standing recurrent networks. CoRR, abs/1506.02078, 2015.

[21] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christo-
pher Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word
representations. In Proc. of NAACL, 2018.

88 Bibliography

[22] Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Ha-
jishirzi. Bidirectional attention flow for machine comprehension. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net,
2017.

[23] Peng Zhou, Zhenyu Qi, Suncong Zheng, Jiaming Xu, Hongyun Bao, and
Bo Xu. Text classification improved by integrating bidirectional LSTM
with two-dimensional max pooling. In Nicoletta Calzolari, Yuji Matsumoto,
and Rashmi Prasad, editors, COLING 2016, 26th International Conference
on Computational Linguistics, Proceedings of the Conference: Technical
Papers, December 11-16, 2016, Osaka, Japan, pages 3485–3495. ACL,
2016.

[24] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention
is all you need. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio,
Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett, editors, Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017, 4-9
December 2017, Long Beach, CA, USA, pages 5998–6008, 2017.

[25] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and
Samuel R. Bowman. GLUE: A multi-task benchmark and analysis platform
for natural language understanding. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019. OpenReview.net, 2019.

[26] Yukun Zhu, Ryan Kiros, Richard S. Zemel, Ruslan Salakhutdinov, Raquel
Urtasun, Antonio Torralba, and Sanja Fidler. Aligning books and movies:
Towards story-like visual explanations by watching movies and reading
books. In 2015 IEEE International Conference on Computer Vision, ICCV
2015, Santiago, Chile, December 7-13, 2015, pages 19–27. IEEE Computer
Society, 2015.

[27] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi
Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
Roberta: A robustly optimized BERT pretraining approach. CoRR,
abs/1907.11692, 2019.

[28] Alexei Baevski, Sergey Edunov, Yinhan Liu, Luke Zettlemoyer, and
Michael Auli. Cloze-driven pretraining of self-attention networks. In

Bibliography 89

Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan, editors, Proceed-
ings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language
Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7,
2019, pages 5359–5368. Association for Computational Linguistics, 2019.

[29] Trieu H. Trinh and Quoc V. Le. A simple method for commonsense
reasoning. CoRR, abs/1806.02847, 2018.

[30] Alexis Conneau and Guillaume Lample. Cross-lingual language model
pretraining. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer,
Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Ad-
vances in Neural Information Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019, NeurIPS 2019, 8-14
December 2019, Vancouver, BC, Canada, pages 7057–7067, 2019.

[31] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine
translation of rare words with subword units. In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics, ACL
2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers. The
Association for Computer Linguistics, 2016.

[32] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings
using siamese bert-networks. In Kentaro Inui, Jing Jiang, Vincent Ng,
and Xiaojun Wan, editors, Proceedings of the 2019 Conference on Empir-
ical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019,
Hong Kong, China, November 3-7, 2019, pages 3980–3990. Association for
Computational Linguistics, 2019.

[33] Amita Misra, Brian Ecker, and Marilyn A. Walker. Measuring the similarity
of sentential arguments in dialogue. In Proceedings of the SIGDIAL 2016
Conference, The 17th Annual Meeting of the Special Interest Group on
Discourse and Dialogue, 13-15 September 2016, Los Angeles, CA, USA,
pages 276–287. The Association for Computer Linguistics, 2016.

[34] Alexis Conneau and Douwe Kiela. Senteval: An evaluation toolkit for
universal sentence representations. In Nicoletta Calzolari, Khalid Choukri,
Christopher Cieri, Thierry Declerck, Sara Goggi, Kôiti Hasida, Hitoshi
Isahara, Bente Maegaard, Joseph Mariani, Hélène Mazo, Asunción Moreno,
Jan Odijk, Stelios Piperidis, and Takenobu Tokunaga, editors, Proceedings
of the Eleventh International Conference on Language Resources and

90 Bibliography

Evaluation, LREC 2018, Miyazaki, Japan, May 7-12, 2018. European
Language Resources Association (ELRA), 2018.

[35] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A
unified embedding for face recognition and clustering. In IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA,
USA, June 7-12, 2015, pages 815–823. IEEE Computer Society, 2015.

[36] Stephen Merity. Single headed attention RNN: stop thinking with your
head. CoRR, abs/1911.11423, 2019.

[37] Hakan Inan, Khashayar Khosravi, and Richard Socher. Tying word vectors
and word classifiers: A loss framework for language modeling. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net,
2017.

[38] Giacomo Domeniconi, Gianluca Moro, Andrea Pagliarani, and Roberto
Pasolini. On deep learning in cross-domain sentiment classification. In
Ana L. N. Fred and Joaquim Filipe, editors, Proceedings of the 9th Interna-
tional Joint Conference on Knowledge Discovery, Knowledge Engineering
and Knowledge Management - (Volume 1), Funchal, Madeira, Portugal,
November 1-3, 2017, pages 50–60. SciTePress, 2017.

	Introduction
	Natural Language Processing
	Word Embeddings

	Deep Neural Network in NLP
	New Word Embeddings
	Contextual Word Embeddings

	Recommendation Systems
	Collaborative Filtering
	Content-Based Filtering

	This project

	Domain of the project
	Job Recommendation System
	LinkedIn: an example
	The data
	window_dates.tsv
	users.tsv
	user_history.tsv
	jobs.tsv
	apps.tsv
	Other files

	Contribution of this work

	Available Technologies
	Attention Mechanism
	First implementation
	Multi-Dimensional Attention
	Self Attention
	Conclusion

	Flair and Contextual String Embedding
	Experiments and Results
	Model
	Contextual Word Embedding Extraction
	How to use

	ELMo - Embeddings for Language Models
	Overview
	Model
	Performances of ELMo
	How to use

	Transformers
	Overview
	Model
	Attention Mechanism in Transformer
	Multi-Head Attention
	Feed Forward Neural Network
	Input and Output
	How to use

	Bidirectional Encoder Representation from Transformer
	Overview
	BERT Performance
	Model
	Inputs and Outputs
	BERT Framework
	How to use

	ROBERTA
	Overview
	ROBERTA Performances
	Differences from BERT
	How to use

	Sentence BERT
	Sentece-Bert Results
	Model
	How to use

	SHA-RNN Model
	The sha-rnn model
	Model results

	Experiments and Results
	Development Environment
	Server
	Google Colaboratory
	Python and Frameworks

	ROBERTA Model and Set-Up
	Fine Tuning

	Multiple Losses Training
	Job Title - Description
	Users to Job Application Task
	Job History to last Job Task

	Further tests and considerations
	User to Job Application tests
	Job History Last Job Test

	Other Experiments and future works
	Last Job Prediction using Job Embeddings
	Possible solutions and future works

	Conclusions and future prospects
	Thanksgivings
	Bibliography

