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Abstract

English version

Time series of GPS coordinates longer than two decades are now available at

many stations around the world. The objective of this study is to investigate large

networks of GPS stations to identify and analyze spatially coherent signals present

in the coordinate time series and, at the same locations, to identify and analyze

common patterns in the series of environmental parameters and climate indices.

The study is confined to Europe and the Mediterranean area, where 107 GPS

stations were selected from the archive of the Nevada Geodetic Laboratory (NGL)

on the basis of the completeness and length of the data series. The parameters

of interest for this study are the stations GPS Up coordinate, the atmospheric

surface pressure (SP), the terrestrial water storage (TWS) and various climate

indices, namely NAO (North Atlantic Oscillation), EA (East Atlantic), AO (Artic

Oscillation), SCAND (Scandinavia Index), TNA (Tropical North Atlantic) and

MEI v2 (Multivariate ENSO Index version 2).

The Principal Component Analysis (PCA) is the methodology adopted to extract

the main patterns of the space/time variability of these parameters. The work also

focused on the coupled modes of space/time interannual variability between pairs

of variables using the Singular Value Decomposition (SVD) methodology. The

coupled variability between all the aforementioned parameters is investigated. It

shall be pointed out that PCA and SVD are mathematical tools providing common

modes on the one hand, and statistical correlations between pairs of parameters on

the other. Therefore, these methodologies do not allow to directly infer the physical

mechanisms responsible for the observed behaviors which should be explained

through appropriate modelling.

This study has identified, over Europe and the Mediterranean, main modes of

variability in the time series of GPS Up coordinates, SP and TWS. For example,

regarding the stations GPS Up coordinate, the first mode explains about 30% of the

variance and the spatial pattern is coherent over the entire study area. The SVD

analysis of coupled parameters, namely GPS Up-SP and GPS Up-TWS, showed that

most of the common variability is explained by the first 3 modes. In particular, 70%

for the GPS Up-SP and 49% for the GPS Up-TWS pair. Moreover, the correlation

between the stations GPS Up coordinate and the climate indices was estimated to
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investigate the possible influence of climate variability on the GPS Up coordinate

behavior. To do so, the stations GPS Up coordinate were represented using the first

four modes of variability to reduce the potential effect of local anomalies. More

than 30 stations, over the total of 107, show significant correlations up to about

0.3 with the AO, TNA and SCAND indices. The correlation coefficients with MEI

v2 and EA turn out to be significant and up to 0.5 for about half of the stations.
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Italian version

Attualmente sono disponibili serie temporali di coordinate GPS più lunghe

di vent’anni per molte stazioni GPS intorno al mondo. L’obiettivo di questo

studio è quello di identificare segnali spazialmente coerenti nelle serie temporali

delle coordinate GPS di un network di stazioni e, negli stessi siti, di identificare e

analizzare pattern comuni nelle serie di parametri ambientali e indici climatici.

Lo studio è confinato in Europa e nel Mediterraneo, dove 107 stazioni GPS sono

state selezionate dagli archivi del Nevada Geodetic Laboratory (NGL) sulla base

di completezza e lunghezza temporale delle serie di dati. I parametri di interesse

per questo studio sono la coordinata Up del GPS, la pressione atmosferica alla

superficie (SP), l’acqua accumulata sulla superficie terrestre (TWS) e vari indici

climatici, ossia NAO (North Atlantic Oscillation), EA (East Atlantic), AO (Artic

Oscillation), SCAND (Scandinavia Index), TNA (Tropical North Atlantic) e MEI

v2 (Multivariate ENSO Index version 2).

L’analisi delle componenti principali (PCA) è la metodologia che è stata adottata

per estrarre i principali pattern di variabilità spaziale/temporale di questi parametri.

Il lavoro è stato incentrato anche sull’analisi dei modi di variabilità comuni tra

coppie delle variabili menzionate sopra, ottenuti tramite la decomposizione ai

valori singolari (SVD). Bisogna puntualizzare che PCA e SVD sono strumenti

matematici che forniscono rispettivamente modi comuni di variabilità all’interno

dei dati e correlazioni statistiche tra coppie di variabili. Pertanto, questi metodi

statistici non consentono di dedurre direttamente i meccanismi fisici responsabili

dei comportamenti osservati, i quali dovrebbero essere spiegati attraverso modelli

appropriati.

Questo studio ha identificato, in Europa e nel Mediterraneo, i principali modi

di variabilità delle serie temporali di coordinata Up GPS, SP e TWS. Per esempio,

riguardo alla coordinata Up delle stazioni GPS, il primo modo di variabilità spiega

il 30% della varianza del sistema e il pattern spaziale è coerente su tutta l’area di

studio. L’analisi SVD di coppie di parametri, ossia GPS Up-SP e GPS Up-TWS, ha

mostrato che la maggior parte della variabilità comune è spiegata dai primi 3 modi.

In particolare, il 70% per la coppia GPS Up-SP e 49% per la coppia GPS Up-TWS.

Inoltre, è stata stimata la correlazione tra la coordinata Up delle stazioni GPS e

gli indici climatici, in modo tale da investigare la possibile influenza del clima sul

movimento verticale delle stazioni GPS. Per ridurre l’effetto delle anomalie locali,

le serie temporali della coordinata Up delle stazioni sono state ricostruite tramite i

primi quattro modi di variabilità. Più di 30 stazioni, su un totale di 107, hanno
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mostrato correlazioni significative fino a 0.3 con gli indici AO, TNA, SCAND. La

correlazione con il MEI v2 e l’EA sono risultate significative e fino a 0.5 per quasi

la metà delle stazioni.
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The Earth’s crust has always been subjected to surface deformations. The

deformations might have several causes and could take place at variable time scales

and with different magnitude. For example, there exist diurnal and semi-diurnal

deformations, which are driven by the gravitational attraction exerted by the Sun,

the Moon and the planets of the Solar system. These motions of the Earth surface

are called solid Earth tides and the main component has meter-level amplitude.

Other deformations are of tectonic nature, such as the displacements induced by

earthquakes. Another well-known deformation is the Glacial Isostatic Adjustment

(GIA) which is the process the Earth is undergoing to reach an equilibrium state

in reaction to ice-age burden and the subsequent melting. The Earth deforms if

stressed by loadings, such as the pressure exerted by the atmosphere, the liquid

water and the snow.

Geoffrey Blewitt et al. (2001, 2002), showed that the most significant annual

motions of the Earth’s crust are driven by environmental mass redistribution,

which generates changes in gravitational and surface forces that produce a stress

response in the solid Earth, accompanied by characteristic patterns of surface

deformation (Farrell, 1972; T.M. van Dam and Wahr, 1998). It has long been

acknowledged that atmospheric pressure loading causes deformations of the surface

of the Earth (Darwin, 1882) and it was observed that this loading can induce

vertical displacements of up to 18 mm in mid-to high-latitudes (Gegout et al.,

2009; Petrov and Boy, 2004; Tregoning and T. van Dam, 2005). Furthermore,

the terrestrial water storage loading, which can be defined as the loading induced

by the summation of all water on the land surface and subsurface including the
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water stored in the vegetation (Girotto and Rodell, 2019), can cause vertical

displacements up to 15 mm at the same latitudes (T. van Dam, Wahr, et al., 2001).

Also the oceans play a key role when dealing with crustal deformations. On the

one hand, the oceans exert the so called ocean loading. This effect is due to the

elastic response of the Earth’s crust to ocean tides, which produces a deformation

of the sea floor and a surface displacement up to several cm of the adjacent lands

(Subirana, Zornoza, and Hernández-Pajares, 2011). On the other, the oceans exert

the so called non-tidal ocean loading, which concerns both the “normal” ocean

circulation (e.g., Zerbini, Matonti, et al., 2004, T. van Dam, Collilieux, et al., 2012)

and special occasions like storm surges (e.g., Fratepietro et al., 2006), which can

cause a vertical displacement of a few centimeters within hours (Geng et al., 2012).

The changes in the climate system can be observed by monitoring environmental

parameters, such as the atmospheric pressure and the terrestrial water content.

Variations in such parameters modify crustal loadings. As a consequence, the crustal

deformation patterns are expected to be related to the climate change and to climate

indices, which are a tool by which monitoring climate variability. The Earth’s

climate has changed throughout history, but the current changes are of particular

significance because most of them are likely to be the result of human activity

since the mid-20th century and are proceeding at a rate that is unprecedented

over decades to millennia (NASA JPL Earth Science Communications Team, 2019;

Working Group I to the Fifth Assessment Report of the IPCC, 2013). Earth-

orbiting satellites and other technological advances have enabled scientists to see

the big picture, collecting many different types of information about our planet and

its climate on a global scale. These data, collected over many years, reveals the

signals of a changing climate, which can be linked to crustal deformations thanks

to satellite positioning techniques.

The purpose of this work is to study, by means of an appropriate statistical

analysis, the principal modes of variability of non-linear and non-tidal vertical

displacements of the crust and some of the environmental parameters mentioned

previously, namely the atmospheric surface pressure and the terrestrial water storage,

which could be responsible for the observed surface deformations. Also the coupled

modes of variability between the vertical displacements and the environmental

parameters will be investigated. Finally, the study also investigates the correlation

between vertical displacements and a few climate indices.

In the following Sections, the technique through which vertical displacements

are measured and the statistical theory that is behind the analysis carried out in

this work are discussed.
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1.1 Global Positioning System (GPS)

The detection of crustal displacements with mm accuracy are nowadays possible

thanks to the availability of space geodetic techniques and, in particular, of the

Global Navigation Satellite System (GNSS). GNSS is the ensemble of different

positioning systems, among which the GPS (Global Positioning System) constella-

tion. GNSS allows accurate and frequent positioning of dense networks of stations

globally distributed. For this reason, the present work uses data provided by this

space geodetic technique for monitoring vertical displacements.

The first realization of the GNSS was the GPS, which is defined, according to

Wooden (1985), as:

“The NAVSTAR Global Positioning System is an all-weather, space-based

navigation system developed by the U. S. Department of Defense (DoD) to

satisfy the requirements for the military forces to accurately determine their

position, velocity, and time in a common reference system, anywhere on, or

near, the Earth on a continuous basis.”

The GPS is a satellite-based radio navigation system providing precise three

dimensional position, navigation and time information to suitably equipped users

(Seeber, 2003). The final configuration of the GPS consists of nominally 24 satellites

placed in orbits at about 20200 km above the surface of the Earth (Figure 1.1).

The navigation principle is based on the measurement of the so-called pseudoranges

between the user and, at least, four satellites (Figure 1.2).

Figure 1.1: The Global Positioning
System (GPS), 24 satellite configu-
ration (Seeber, 2003).

Figure 1.2: Basic principles of positioning
with GPS (Seeber, 2003).

The coordinates of the user antenna can be obtained by knowing the satellite

coordinates (i.e. the ephemeris) in a suitable reference frame. From the geometrical

point of view three ranges, i.e. three observable satellites, would be sufficient,
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but since the GPS uses the one-way ranging technique1 a fourth observation is

necessary in order to correct the synchronization error. This synchronization error

is the reason for the term ”pseudorange”.

Data collected by the GPS receiver are available in the form of RINEX files

which contain the code and phase pseudoranges. A code pseudorange is a measure of

the travel time, converted into distance, of a GPS signal, from a satellite to a station,

using the C/A code or the P code2. A phase pseudorange is a measure, converted

into distance, of the phase difference of the GPS signal between the emission at

the satellite and the reception at the station. Code and phase pseudoranges are

affected by several error sources, including the errors of the satellite and stations

clocks. Moreover, phase pseudoranges are ambiguous by an integer number of

cycles (i.e., the phase cycle ambiguity). Despite this, the phase pseudoranges are

much precise than code pseudoranges (a few millimeters compared to roughly 1

meter precision).

The GPS signal, which is an electromagnetic wave in the microwave spectrum,

travels through multiple atmospheric layers after leaving the satellite and until

reaching the receiver antenna. The signal interacts both with the dry and wet

troposphere3 and the ionosphere4. This interaction implies that the signal propaga-

tion is delayed, therefore corrections should be applied when evaluating the phase

pseudoranges. The correction for the dry troposphere can be achieved by means of

a rather simple model, while the wet component is more difficult to be accounted

for because it is highly variable in space and time. However, a description of

these error modeling is beyond the scope of this work. GPS signals interact with

the ionosphere; in fact, the induced ionospheric effects on the code (delay) and

phase (advance) pseudoranges have been used to study the ionosphere and related

phenomena (Thomas, 2018). However, the advance of the GPS signal phases due

to ionospheric refraction is frequency-dependent, therefore if phase pseudoranges

are measured by a dual frequency receiver, it is possible to cancel (at least to the

first order) the ionosphere-induced error.

These corrections and the preprocessing of the GPS signals are made by using

1In the one-way mode it is assumed that either the clocks in the satellite and in the receiver
are synchronized with each other or that a remaining synchronization error can be determined
through the observation technique (Seeber, 2003).

2The C/A (coarse acquisition) code and the P code (precise code) are the modulation codes,
which are a series of −1/ + 1. These codes modulates the signal generated by the satellite at a
fixed frequency given by the atomic clock given by the satellite itself.

3The troposphere is the lowest layer of the atmosphere of Earth. The total average height of
the troposphere is 13 km. The wet troposphere is the water vapour component of the total air
mass of the troposphere. The dry troposphere is constituted by the remaining components of the
troposphere which are not water vapour (oxygen, nitrogen, argon, carbon dioxide and others)

4The ionosphere is the ionized part of the upper atmosphere of Earth, from about 60 km to
1,000 km altitude.
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sophisticated software packages, allowing the high-accuracy evaluation of the

receiver coordinates. Among the most well-known software for the GPS and, in

general, GNSS data processing are the Bernese (developed at the Astronomical

Institute of the University of Berne) and GIPSY-OASIS II (developed by the NASA

Jet Propulsion Laboratory in Pasadena, California).

1.1.1 East, North and Up (ENU) coordinate system

The coordinates provided by the software are the (x, y, z) Earth-Centered Earth-

Fixed (ECEF) and the East, North and Up (ENU). Both are defined with respect to

the ellipsoid which best approximates the Earth surface. Since the Earth undergoes

deformations, this ellipsoid is updated periodically together with the geodetic

datum5. Nowadays the global geodetic datum are the IGS14 and the ITRF146.

ECEF is a Cartesian coordinate system in which the point of coordinates (0,0,0)

is center of mass of the Earth. The z axis direction is towards the true North, the x

axis is perpendicular to the z axis and intersects the prime meridian in Greenwich

and the y axis completes the triad of coordinates (Figure 1.3). The ECEF rotates

with the Earth, such that coordinates of a fixed point on the surface of the Earth

do not change.

ENU are local coordinates and are formed considering a plane tangent to Earth

surface, fixed at a specific location, in which the North direction follows the local

meridian, the East direction follows the circle of latitude and the Up is outward

with respect to the Earth surface and perpendicular to east and north axis (Figure

1.3).

In this work, the coordinate used for studying the vertical displacements of the

locations of interest is the Up coordinate, obtained by means of GPS measurements

at the selected network of stations.

1.2 Principal Component Analysis (PCA)

The Principal Component Analysis (PCA) is a statistical method used for the

analysis of the spatial and temporal variability of a dataset. The origin of the PCA

method can be traced back to E. Beltrami (1835-1899), C. Jordan (1838-1921), J.

5A geodetic datum is a coordinate system and a set of reference points used for locating places
on the Earth.

6The IGS14 is a GNSS reference frame, while the ITRF14 is built with a combination of GNSS
and other geodetic techniques.
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Figure 1.3: The East, North and Up (ENU) and the (x, y, z) ECEF coordinate systems.

J. Sylvester (1814-1897), E. Schmidt (1876-1959) and H. Weyl (1885-1955), who,

independently from each others, laid the foundation of this statistical method

(Stewart, 1993). The official introduction of the PCA in literature is commonly

attributed to K. Pearson in 1901 (Pearson, 1901), but its modern formalization is

due to H. Hotelling, who proposed the term ”principal component” in 1933 (Abdi

and Williams, 2010).

Subsequently, the PCA became a widespread method in many fields requiring

data analysis, in particular, in geophysical sciences. For example, nowadays the PCA

are used for climatological research purposes in order to try to link environmental

parameters to historical time series related to specific locations (e.g., Eccel et al.,

2012) or to study the effects of climate changes (e.g., Sagredo and Lowell, 2012).

The PCA is also applied to space geodetic observations in order to monitor co-

seismic and post-seismic deformations (e.g., Savage and Svarc, 2010) or tectonic

deformations (e.g., Pan et al., 2018). The PCA can also be used to identify the

principal spatial pattern of variability of a dataset and their time variations and

to reduce the dimensionality of the data, representing the dataset through the

principal modes of variability (Zerbini, Raicich, et al., 2013).
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1.2.1 Mathematical definition

In order to define the PCA, the dataset has to be organized in a matrix. It is

assumed that the dataset consists of measurements of the same variable taken at:

• the locations x1, ..., xp;

• the epochs t1, ..., tn.

At each epoch ti, the measurements taken at different positions represents a map

or a field. The measures are organized in a matrix Fij, where i is the time-index

and j is the space-index. Therefore the column j is the time series of the location

xj, while the row i represents a map at the epoch ti:

Fij =



f11 f1,2 . . . f1p

f21 f22 . . . f2p

f31
. . .

...
...

. . .
...

fn1 fn2 . . . fnp


=



f(t1, x1) f(t1, x2) . . . f(t1, xp)

f(t2, x1) f(t2, x2) . . . f(t2, xp)

f(t3, x1)
. . .

...
...

. . .
...

f(tn, x1) f(tn, x2) . . . f(tn, xp)


. (1.1)

Each of the p columns is then standardized in order to have columns with unit

variance and avoid that time series with greater variability dominate over the others

at the end of the analysis.

Since each column is a standardized time series, the matrix R = 1
n−1

F TF is the

correlation matrix and the relative eigenvalue problem is:

RC = CΛ , (1.2)

where

Λ =


λ1

. . .

λp


is the diagonal matrix whose values are the eigenvalues of the correlation matrix R

and the columns ~ci of the matrix

C =
[
~c1 . . . ~cp

]
are the eigenvectors of R related to the eigenvalues λi. C e Λ are p× p matrices.

Since R is a symmetric matrix, according to the Spectral theorem, there exist

an orthogonal matrix C and a diagonal one Λ such that

Λ = CTRC .
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These are the same matrix of the equation (1.2) and as a consequence the matrix

C (C−1 = CT ) and the vectors ~ci are orthogonal. The vectors ci are called spatial

patterns and their orthogonality implies that they are uncorrelated in space.

The vectors ci (i.e., the spatial patterns) are ordered for decreasing eigenvalue

λi
7, i.e. based on how much variance they explain, because the eigenvalues λi are

the squared variance explained by the mode of variability. Plotting the spatial

patterns, stationary oscillations are obtained and their time evolution is given by:

~ai = F~ci , (1.3)

where the vectors ~ai are the time components. The time components might be

interpreted as the projections of the maps in F (i.e., the rows of the matrix F )

over the spatial patterns (Bjornsson and Venegàs, 1997).

Furthermore, from (1.3) derives

A = FC ⇐⇒ ACT = F ⇐⇒ F =

p∑
i=1

~ai~ci
T . (1.4)

At this point, spatial patterns are commonly used to obtain a cleaner version of the

data set, truncating the summation to an i = p′ � p, i.e. it is assumed that the

first p′ eigenvalues capture the dynamic behaviour of the system and the remaining

eigenvalues are random noise. This procedure is called dimensionality-reduction.

1.2.2 Interpretation

Recovering the matrix representation (1.1)

Fij =



f11 f1,2 . . . f1p

f21 f22 . . . f2p

f31
. . .

...
...

. . .
...

fn1 fn2 . . . fnp


=


~fT1
...
...
~fTn

 ,

in which every row of F can be seen as a map over a fixed epoch or as a vector

in a p-dimensional space. Therefore, the points of this space are the observations

and, if these observations were completely random they would be distributed as

an homogeneous cloud of points. On the contrary, if the observations were not

random (i.e. if there are regularities in the data), a cluster would appear along a

particular direction.

7The first spatial pattern will be the one with higher eigenvalue, etc.



1.2. Principal Component Analysis (PCA) 9

The method consists in searching for the orthonormal base vectors em (m =

1, . . . , p) in this p-dimensional space, which maximize the projection of the vectors ~fi

along these base vectors (em are p vectors of dimension p, while fi are n of dimension

p) and coincide with the eigenvectors of the correlation matrix R. Mathematically

the problem is to maximize

n∑
i=1

(eTmfi)
2 = eTmF

TFem = eTmRem

with m = 1, . . . , p under the constraint

eTi ej = δij .

The standard approach is to use the Lagrange multiplier method, that consist

in solving the equation

∇(~xTR~x)− λ∇(~xT~x) = 0 (1.5)

for each vector ~x = ~em, where ∇ is the gradient operator and λ is the Lagrange

multiplier. Manipulating the Equation (1.5)

∇(~xTR~x) = ∂i(xjRjmxm) = Rimxm+Rjixj = xm(Rim+RT
im) = 2Rimxm = 2R~x ,

λ∇(~xT~x = λ∂i(xjxj) = 2λ~x ,

gives the equation

2Rimxm = 2R~x = 2λ~x , (1.6)

which is the eigenvalues equation analogous of (1.2). Therefore, the spatial patterns

emerge when searching a new coordinate system along the data regularities.

Since the matrix R is symmetric, according to the Spectral representation

theorem, it can be decomposed into:

R = λ1c1c
T
1 + λ2c2c

T
2 + · · ·+ λpcpc

T
p .

This means that the greater is λi, the better the related spatial pattern ci represents

R, i.e. the system variability. Thus the series can be truncated at a p′ < p retaining

only those eigenvalue that represent, for example, 90% of variability:

p′∑
i=1

λi

Tr Λ
≤ 90% .

From this decomposition it can be inferred the amount of variance explained by

the i-th mode, which is equal to λi
Tr Λ

. Usually the first few eigenvalues (in order
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of magnitude) dominates over the others, and this means that the largest part of

data behaviour can be explained in terms of few base vectors, so that it is possible

to reduce data to few variability modes. Thus data can be viewed as a subspace

of the p-dimensional space. For example, if just the first p′ eigenvalues are large,

the space which generated the data is p′-dimensional. In this case p′ eigenvalues

explain almost the whole variance of the system, and the original series in Equation

(1.4) can be recalculated truncating the summation:

F '
p′∑
i=1

~ai~ci
t . (1.7)

1.2.3 Singular Value Decomposition (SVD)

The Singular Value Decomposition (SVD) method can be thought of as a

generalization to rectangular matrices of the diagonalization of square symmetric

matrices, like a PCA analysis (Bjornsson and Venegàs, 1997), and is usually applied

in geophysics to study two data fields (for example, surface pressure and a GPS

coordinate). It allows extracting orthogonal components that are common to both

variables and therefore representing modes of coupled variability.

The SVD is widely used in many different geophysical fields, such as: climatology,

where the SVD analysis is used, for example, to study the climate variability (e.g.,

Venegàs, Mysak, and Straub, 1996); meteorology, in which the SVD method has

been used to characterize local phenomena (Bigot and Planchon, 2003), or to

perform the downscaling8 (e.g., Bertacchi Uvo et al., 2001); seismology, in which

the SVD approach has been used, for example, to attenuate the random noise in

seismic data (Gan et al., 2015); topography, where the SVD analysis is used in

order to compare geographical maps (e.g., Dvorský, Snášel, and Vožeńılek, 2009);

geodesy, in which the SVD analysis has been used in order to find common modes

of variability between geodetic and environmental parameters (Zerbini, Raicich,

et al., 2013).

In order to apply the SVD analysis to two fields, two data matrices are considered,

namely S and P . Each of them is organized as in (1.1) and is related to a different

variable (e.g., surface pressure and a GPS coordinate).

These matrices are allowed to have different dimensions, since each of the two

variables might be measured in different locations: for example, given n the number

of epochs, S might be n × p and P might be n × q, where p and q are number

of locations. In this work each variable is measured at the same locations: this

8Downscaling is any procedure to infer high-resolution information from low-resolution vari-
ables.
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implies that p and q are equal. As specified in Secection 1.2.1, each column of S

and P is a standardized time series for a fixed location and each row contains a

map for a fixed time.

Once defined the cross-correlation matrix as Rcross = STP , the SVD of Rcross

consists in finding the orthogonal matrices U and V and a diagonal matrix L so

that

Rcross = ULV T . (1.8)

The singular vectors for the matrix S are the columns ~ui of U , and the singular

vectors for P are the columns ~vi of V . Each pair of singular vectors is a mode of

co-variability between the fields S and P and represents a spatial pattern. The

time series describing the oscillation in time of each mode, i.e. the time components

of the mode of co-variability, are contained in the matrices

A = SU , B = PV , (1.9)

where the columns are the time components of each mode. The orthogonality of

U and V leads to S = AUT and P = BV T . A measure of the importance of the

i-th mode of variability is given by the fraction of squared cross-correlation (SCF)

explained by this mode:

SCFi =
li

Tr (L)
, (1.10)

in which li = L(i, i) are called singular values and Tr (L) is the trace of the matrix

L. Generally only the modes of co-variability that jointly explain at least a SCF

equal to 50% are taken into account.

Algorithms based on SVD have shown to be numerically more stable with

respect to those based on PCA (Nakatsukasa and Higham, 2013; Wu, Massart, and

Jong, 1997). This is the reason for which, in this work, the algorithms based on

SVD are used also to perform PCA analysis, considering that:

• Rcross = R;

• λi =
l2i
n−1

;

• the eigenvectors of R are the column vectors of V .

In order to check the validity of this procedure, the last condition in the Equation

(1.4) was verified.
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In this study, three types of parameters were studied: the Up component of

GPS stations coordinates located in the European and Mediterranean area, the

surface pressure (SP) and terrestrial water storage (TWS) at the same sites. For

each of these variables, weekly time-series were used and the locations were chosen

according to criteria described in Section 2.1.1.

Europe and the Mediterranean is the area of interest for this study. In total,

the number of selected locations is 107, on the basis of the availability of the GPS

data in the Nevada Geodetic Laboratory archive.

In this chapter the data sets preparation will be described by illustrating the

procedure and the various steps carried out. On the one hand, the GPS data were

subjected to a detailed process, starting from the standard data pre-processing

(outliers removal and offsets correction) to the interpolation of the signals based on

the Principal Component Analysis. On the other, SP and TWS data were only

spatially interpolated, detrended and deseasonalized, in order to build time series

at the locations of interest.
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2.1 GPS data

For the study, it was used a subset of the GPS data sets made available online

(Blewitt, Hammond, and Kreemer, 2018; http://geodesy.unr.edu/) by Nevada

Geodetic Laboratory (NGL). NGL is a center of research which among other

activities routinely provides time series of coordinates of more than 17,000 GNSS

(Global Navigation Satellite System, including GPS) stations located all over the

world.

The GPS data provided by NGL are analyzed through the GISPY-OASIS II

(GOA II) software package (Section 1.1) and analysis products are provided to

the NGL itself by the Jet Propulsion Laboratory, Pasadena, California. The NGL

uses GOA II for the calculation of the ENU coordinates (Section 1.1.1) and the

data analysis strategy adopted include the correction of ionosphere, wet and dry

troposphere, solid tides, ocean tide loading and phase cycle ambiguities (Section

1.1). The NGL provides the ENU coordinates in meters, splitting the integer and

the decimal part. The integer part does not change in time, while the decimal part

varies in time. In this work the time series of the decimal part of the Up coordinate

are those taken into account.

In the following, the steps of GPS data preparation carried out are described.

They are respectively:

• choice of the GPS stations (Section 2.1.1);

• outlier removal and residuals estimation (Section 2.1.2);

• offsets detection (Section 2.1.3);

• data interpolation (Section 2.1.4);

• seasonal annual signal detection (Section 2.1.5).

2.1.1 Stations selection

In the NGL database, thousands of temporary or continuous GPS stations are

available in the European/Mediterranean area. From this ensemble, a subset of

about 100 stations was extracted. Filtering operation was performed according to

the following criteria:

• the station location shall provide a homogeneous coverage of the area;

• the time span of the data set shall cover the period 2011-2018, in order to

give the continuity to the work presented in Zerbini, Raicich, et al., 2013;

http://geodesy.unr.edu/
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• the data quality.

First of all, stations in the European/Mediterranean area were selected. A

rectangle was identified with the following latitude φ and longitude λ ranges:

• 35◦ ≤ φ ≤ 71.3◦;

• −9.6◦ ≤ λ ≤ 45◦.

Stations characterized by continuous data acquisition between 2011 and 2018

were selected. In a subsequent step, the stations the time series of which turned

out to be below the following threshold were eliminated:

Cth =

(
N

τ

)
th

,

where N is the number of daily data and τ is the time range of activity in days.

The ratio C = N
τ

can be labelled ”completeness” and can be interpreted as an

index of the quality of the data set. The completeness threshold value was at first

set to be Cth = 92%. Each of the selected station started to acquire data at a

different epoch, therefore the subsequent step was to cut the time series over the

period of maximum time overlap.

However, the completeness, as defined above, is a value related to the whole

time series, and not to the period that will be considered for the data analysis.

This should not be a problem, since the probability that high completeness stations

have a large amount of missing data exactly in the period under consideration is

low.

In order to have a spatially uniform distribution of stations, it was decided to

include about 20 additional stations, even if they did not comply with the com-

pleteness requisite. These additional stations are characterized by a completeness

between 86% and 92%, excluded the station SRJV, whose completeness is about

55%.

In the Up coordinate time series, in addition to the completeness (i.e. missing

data occurrences), it is even more relevant the problem generated by the number

of contiguous missing weeks of data. A simple statistics concerning this property is

presented in Figure 2.1. The histogram shows the frequencies at which the number

of missing weeks occurs. As expected, it can be seen that the distribution peaks

towards the lower values and goes to zero for a time period longer than 40 weeks.

Considering the adopted criteria, the total number of stations to be analyzed is

107 (Appendix A), the time series of which cover the period from June, 9, 2010 to

September, 5, 2018 (i.e. the time span of maximum overlap). There are two regions
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Figure 2.1: Distribution of missing data in the weekly time series of the GPS stations up
coordinate between 2008 and 2019 in log-scale. The number of occurrences is in log-scale.

(Figure 2.2), namely the Balkans and Eastern Europe, that are characterized by a

smaller density of stations. The reason is due to critical problems shown by the

stations, such as long time data gaps.

2.1.2 Outliers

Every time measurements are performed and a data distribution is obtained, it

may happen, for some reason, that a few or several values can differ significantly

from the series of observations. These observations are usually labelled as outliers:

An outlier is an observation that deviates so much from other obser-

vations as to arouse suspicions that it was generated by a different

mechanism (Hawkins, 1980).

This is not a precise definition, because it does not say how mathematically or

physically a sample of measurements shall fit together, but such a definition does

not exist.

In geodesy the term outlier is defined on the basis of a statistical hypothesis test

necessary for identifying gross measurements errors in the observations (Baarda,

1968; Pope, 1976). Observations that are rejected by such a test are called outliers.

Outliers in the time series of GPS coordinates are generally related to variations
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Figure 2.2: Location of the GPS stations.

in positioning accuracy, which might depend upon a number of factors, among

them according to Ordóñez et al. (2011):

• failure of the receiver;

• errors in the satellite clock and ephemeris;

• errors in the receiver clock;

• badly estimated atmospheric delays;

• satellite geometry (distribution of satellites in azimuth and elevation).

The procedure adopted in this work to remove the outliers is based on a 3-σ

rejection criterion, which identifies as outliers those observations that deviate from
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the mean by an amount equal or greater than three times the standard deviation.

It is a simple method widely adopted in many fields (Lehmann, 2013)1.

In this work it was decided to cut each time series of the stations Up coordinate

into a 3-months window, and apply first a 2-σ and then a 3-σ rejection criteria.

The reason for this choice is that, to apply the σ rule, it is necessary to deal with a

quasi-linear behaviour. In fact, when screening the GPS Up coordinate time series,

in general one recognizes the occurrence of seasonal (yearly) oscillations; therefore,

a 3-months window appears to be an appropriate choice for meeting the linear

behaviour requirement. Moreover, the fact that an initial 2-σ rejection is applied

to the series is due to the relatively high level of noise that characterize the GPS

data.

The outliers removal procedure is time consuming because each station has its

own peculiarities. For this reason, each Up coordinate time series was checked after

cleaning, in order to monitor the amount of data removed. An example of time

series before and after applying the outliers removal is reported in Figure 2.3, in

which the red dots are the identified outliers and the green dots are the cleaned

data series.

Figure 2.3: Up coordinate time series of the TRIE GPS station. The red dots are the
identified outliers, while the green dots are up coordinates after the outliers removal.

Lastly, the residuals were estimated.

1Some authors even refer to this rule for the definition of the outliers (e.g., Hekimoglu and
Koch, 2000)
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2.1.3 Offsets

When dealing with GPS coordinates time series and, in particular, with the Up

coordinate, it can be seen that the series are characterized by linear, non-linear

variations and sudden jumps. The last ones are offsets or discontinuities, which

can be defined as a sharp change of the mean resulting in a long-lasting effect on

the estimate of the station horizontal and vertical motions (Gazeaux et al., 2013).

If the discontinuities are not properly accounted for and removed, they will

have a detrimental effect on position and velocity estimation and, therefore, will

impact the proper understanding of the station motion.

Offset detection, also known as data segmentation or homogenization, is a

problem investigated in a large number of scientific fields, from climate/meteorology

(J. Gazeaux et al., 2011) to marketing (Fonf and DeSarbo, 2007), to geodesy, where

the discontinuities detection and their magnitude evaluation play an important

role.

In particular, the discontinuities affecting the GPS time series shall be treated

carefully, since a not negligible percentage of offsets of unpredictable magnitude

occurs at unknown epochs. However, a high percentage of offsets has a well known

cause (Figure 2.4), and this allows to identify the epoch at which the jump took

place. The most common causes for such discontinuities are: earthquakes, changes

in the station equipment, antenna mounting problems, multipath2, vandalism and

data analysis procedure (e.g., change of the reference frame). As shown in Figure

2.4, the main difference between offsets with known and unknown cause is within

their full width at half maximum, which is higher for offsets generated by equipment

change and seismic event than for offsets with unknown cause. For this reason, the

latter are, in general, smaller than the other discontinuities making them especially

difficult to detect.

The Nevada Geodetic Laboratory (NGL), from which the GPS data were

obtained, provide for each site a list of epochs at which discontinuities occurred,

but only if their causes are:

• equipment changes (antenna code, elevation cutoff, receiver type and model

and random code change);

• earthquakes (for which a potential step record appears when the distance

station-epicenter is less than 10(M
2
−0.8) km, where M is earthquake magni-

tude);

2The interference by multipath is generated when a signal arrives, by different ways, at
the antenna. Its principal cause is the antenna closeness to the reflecting structures, and it is
important when the signal comes from the satellite with low elevation.

3The Scripps Orbit and Permanent Array Center, http://sopac.ucsd.edu/.
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Figure 2.4: SOPAC3offsets characterization since 1995 over 340 sites (560 offsets): type
of offset (a); frequency of occurrence of offsets with a certain magnitude (b).

• change of reference frame (from IGb08 to IGS14, for the data used in this

work).

Offsets with a different origin shall be detected with appropriate methodologies.

Once the epochs are known, it is possible to proceed by correcting the dis-

continuities. This was done for each jump identified at a generic epoch t, in 3

steps:

1. two 30-days windows were selected before and after occurrence of the discon-

tinuity;

2. on each window separately, the parameters of a linear fit were evaluated;

3. called a ( the ”after” window) and b (the ”before” window) the values of the

linear interpolation at the epoch t, the difference a − b is added to all the

data taken before the time t.

Figure 2.5a shows an example of the presence of discontinuities. Panel b shows

the time series after having removed the discontinuities. Figure 2.6 shows a case

in which jumps are not clearly recognizable, but their impact is clear after the

correction is applied.

Once the jumps were removed, residuals were calculated again and weekly

means were estimated from the new time series. The mean was computed if and

only if there were at least 3 data in a week, leading to the data distribution shown

in Figure 2.1 (Section 2.1.1).
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Figure 2.5: Up coordinate time series of the GPS station EUSK before ((a), red dots)
and after ((b), blue dots) the offset correction. The green triangles identify the epochs of
the discontinuities, corresponding to information given by the NGL.

Figure 2.6: Up coordinate time series of the GPS station GAIA before ((a), red dots) and
after ((b), blue dots) the offset correction. The green triangles identify the epochs of the
discontinuities, corresponding to information given by the NGL.
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2.1.4 Interpolation using PCA

The methodologies adopted to extract the main patterns of the space/time

variability/co-variability of the various parameters are the Principal Component

Analysis (PCA) and the Singular Value Decomposition (SVD) (Section 1.2). These,

as well as the other standard multivariate techniques, are based on the eigendecom-

position of a cross-product positive semi-definite matrix (e.g., correlation matrix)

and thus require complete data sets. If there are missing data, performing PCA (or

SVD analysis) may or may not lead to a positive semi-definite correlation matrix,

i.e. the eigenvalues can be negative. Therefore, when facing the problem of deciding

which spatial patterns and time patterns are relevant, the selection criteria can no

longer rely on the magnitude of the eigenvalues (Section 1.2.1), but should also

take into account the effect of the negative eigenvalues (Beckers and Rixen, 2003).

Time series of GPS coordinates are often characterized by missing observations,

therefore a particular attention is needed during the statistical analysis and the

use of PCA. Different strategies are envisaged to apply PCA on incomplete data

sets. The most common approach is to discard those time series with missing

observations and perform standard PCA (Dray and Josse, 2014). According to

this approach, GPS Up coordinate time series which have just one missing value

should not be taken into account. Considering that almost all the series are

characterized by missing data, this would lead to a massive loss of information

and would reduce the ability to detect common patterns. Another approach is

to find, by applying appropriate algorithms, a proper estimate of the covariance

matrix starting from incomplete data sets (Boscardin and Zhang, 2004), but they

are heavy from the computational point of view (Ilin and Raiko, 2010). A third

and final strategy consists in the imputation (i.e. the process of replacing missing

data with substituted values) of missing values and then the application of PCA

on the completed data set.

In this work, this last method (i.e. imputation of missing values) was adopted.

The simplest approach to generate missing data is to provide values derived by

the time averaging of the series. Other methods are based on iterative algorithms,

for example the Papoulis-Gerchberg algorithm (Gerchberg, 1974; Papoulis, 1975)

and the Expectation Maximization algorithm (Roweis, 1998), which are the most

commonly used. However, the iterative characteristics of these methods, with the

relevant computational burden, and the low convergence rates, preclude their use in

a number of applications (Oliveira and Gomes, 2009). As a consequence, Oliveira

and Gomes (2009) developed a more sophisticated procedure: a non-iterative

methodology for the interpolation of signals with missing data supported by the

PCA method. This approach is based on the following assumption:
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Assumption The missing information on the multidimensional sam-

pled signals are negligible and the available samples, in a number greater

than the selected principal components, are representative of the original

signal.

This assumption is verified for the GPS Up coordinate time series used in this

work, since the percentage of missing data does not exceed 4% of the total (except

for the station SRJV, where 14% of data is missing).

To perform the interpolation, it is necessary first to define unbiased estimators

for the mean and the covariance of the discrete time signals with missing data.

Then the PCA-based interpolation, defined through these unbiased estimators, is

performed carried out on a series-by-series basis.

2.1.4.1 Mean and covariance estimators with missing data

The estimators for the mean and covariance generally used do not take into

account possible missing values. Hence, new estimators must be introduced.

Consider a set of M signals (signals intended a time series of a generic nature)

xi ∈ `2, i.e. with finite energy, with i = 1, . . . ,M , from a discrete time real-valued

stochastic process corrupted by zero mean noise (e.g. a GPS Upcoordinate time

series, Zanetti, 2007), represented as column vectors of length N . Consider also an

indicator index l(j), with j = 1 . . . N , which is set to 1 if the j-th component of

signal x is available and zero otherwise. In the latter, the component x(j) is set to

zero without loss of generality.

Lemma I Given a set of M signals xi, with associated indexes li, and

the auxiliary vectors of counter c =
M∑
i=1

li and C =
M∑
i=1

lil
T
i ,

i) the estimator for the j-th component of the ensemble mean mx(j),

j = 1 . . . N ,

mx(j) =
1

c(j)

M∑
i=1

li(j)xi(j) , (2.1)

ii) the estimator for the covariance element Rxx(j, k), j, k = 1 . . . N ,

given yi = xi −mx,

Rxx(j, k) =
1

C(i, j)− 1

M∑
i=1

li(j)li(k)yi(j)yi(k)T , (2.2)

are unbiased and efficient4.

4For the proof, see (Kay, 1993).
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To be noted is the fact that the correlation matrix is proportional to yi(j)yi(k)T

and not to yi(j)
Tyi(k). In this case, the method is called PCA in T-mode (Com-

pagnucci, Araneo, and Canziani, 2001) and is usually applied in order to analyse

spatial fields in different times, while, the traditional method, also known as PCA in

S-mode, involves the analysis of time series corresponding to different space-points

and attempts to isolate subgroups of points that covary similarly (Richman, 1983,

Richman, 1986).

2.1.4.2 Solution to the interpolation problem

To solve the interpolation problem, consider that each signal xi is obtained

from the original signal ri due to missing data, verifying the relation xi = Liri.

The matrix Li ∈ RN×n is diagonal and filled with the indicator index li. Consider

also the following quantities:

• U = [u1u2 . . .uN ], the matrix composed by the N orthogonal column vectors

of the basis which verifies the eigenvalue problem

Rxxuj = λjuj , j = 1 . . . N , (2.3)

where Rxx, the covariance matrix defined above;

• assuming that the eigenvalues λi are ordered (i.e. λ1 ≥ λ2 ≥ · · · ≥ λN) and

that n� N is the number of chosen principal components, Ũ = [u1u2 . . .un]

is the matrix with dimension RN×n, composed by the n eigenvectors u

associated with the first n eigenvalues λ (analogous to the PCA procedure

illustrated in Section 1.2.1);

• v = UT (r−mx), the vector projection of r in the basis defined by v itself.

The interpolation procedure can be now formulated as finding r̃i that minimizes

the weighted `2 norm of the error and the latter is computed as the estimation

error on the components of the signal which are known:

Lemma II Considering the original signal ri, from which there is only

available a signal with samples indexed by Li, the optimal interpolated

signal r̃i (in the minimum error energy sense) can be obtained solving

the weighted least mean square problem

min
r̃i∈RN

∥∥Li(r̃i − ri)
∥∥2

2,W
, (2.4)
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given the symmetric positive semi-definite weight W ∈ RN×N , where

the solution based on PCA is given by

ṽi = (ŨTLiWLiŨ)−1ŨTLiW
T (xi − Limx) , (2.5)

which leads to the interpolated signal

r̃i = Ũṽi + mx . (2.6)

It can be also demonstrated that the optimal choice of the weight is W = R−1
xx

(Oliveira and Gomes, 2009, Kailath, Sayed, and Hassibi, 2000).

According to the Assumption, the minimization is well posed in the case where

the expected number of samples available are greater than the selected number

of principal components. Given η, i.e. the percentage of missing samples in the

signal, the assumption translates into N(1− η) > n and therefore into an interval

of validity for the interpolation equal to:

0 ≤ η ≤ N − n
N

. (2.7)

Remarkable is the fact that no limitation on the amount of missing data was

found for the application of the method, even if the lower is the number of missing

data, the greater is the number of main components that can be considered and

the better is the quality of the interpolation.

2.1.4.3 Implementation and results

In Lemma I the number M of signals involved in the interpolation appears:

they are signals generated by the same stochastic process and share the same time

patterns. This implies that in order to perform the interpolation, each GPS Up

coordinate time series has to be divided into a subset of M signals of length N ,

which are called mosaics. Let S be the length of the original signal (missing data

included), then the number of mosaics is M = S −N + 1. If si is the value of the

signal at the epoch ti, the mosaics are organized as follows:

x1
s1

s2

...

sN



x2
s2

s3

...

sN+1

 . . .

xM
sS−N

sS−N+1

...

sS

 , (2.8)

where each of the mosaics corresponds to the aforementioned signals xi.
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Once the mosaic structure is obtained, the signal can be interpolated. The

interpolation result is an ensemble of vectors ṽi, which are filtered in order to

remove possible outliers, merged into a single signal of length S (through a weighted

average on the number of missing data) and finally used to obtain the final signal

(equation (2.6)).

The interpolation is repeated until there are no more missing data.

Figure 2.7 shows an example of the interpolation results: interpolated data (red

dots) follow the same time pattern of the original ones (blue dots).

Figure 2.7: Example of interpolation of the Up position component of the GPS station
CORL; red dots are interpolated data, blue dots are the original ones.

2.1.5 Seasonal variability of the GPS Up time series

The detection of the seasonal (annual) signal was the last step in the pre-

processing of the GPS Up coordinate time series. The seasonal signal is a pattern

that is generally present in each time series. For this reason, a mean annual cycle

(as well as a linear trend) has to be removed, in order to identify the interannual

variations of GPS Up time series.

To derive the annual signal, the GPS Up coordinate time series were analyzed

according to the following procedure:
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1. first, the outliers were removed;

2. a linear trend was estimated and removed. In this way a residual series was

created;

3. the residual series was further analyzed to identify the presence of possible

interannual signals. If present, they were removed by fitting a polynomial of

appropriate order;

4. the residual series obtained in this way was used in a stacking procedure to

generate the mean annual cycle.

The annual cycle thus computed was removed from interpolated GPS Up

coordinate time series (2.1.4). These are the data used in the analysis described in

the following chapters.

Figure 2.8 is an example which illustrates the steps of the procedure outlined

above. It refers to the GPS Up coordinates of the DEVA station, located in Eastern

Europe (Figure 2.2).
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Figure 2.8: Steps of the deseasonalizing procedure applied to the time series of the GPS
Up coordinate of station DEVA: (a) original series after having removed the outliers
(black line), linear trend (red line); (b) the residual time series, where outliers and linear
trend were removed; (c) the time series after removal of a 5th order polynomial (black
line), mean annual cycle (red line); (d) weekly interpolated time series after removal of
the linear trend and of the mean annual cycle.
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2.2 Surface pressure and terrestrial water stor-

age data

Surface pressure (SP) and terrestrial water storage (TWS) are the environmental

parameters used in this study. The respective time series were derived from different

sources described in the following.

2.2.1 Surface pressure (SP)

SP is the atmospheric pressure at a location on Earth’s surface (terrain and

oceans). SP time series used are the NCEP Daily Global Analyses over the period

2010-2019 on a 2.5◦× 2.5◦ grid that covers the latitudinal range 10◦ W-37.5◦ E and

the longitudinal range 30◦ N-70◦ N (Figure 2.10). NCEP daily SP is given in mb and

values are of the order of 103 mb. Data are provided by the NOAA-ESRL Physical

Sciences Division (PSD) from their Web site at https://www.esrl.noaa.gov/

psd/data/gridded/data.ncep.html (NOAA/OAR/ESRL PSD, 1979 to present).

Figure 2.9: NCEP SP data grid.

Technically speaking, this is an analyzed data set, which is a obtained from

observational and model data. In fact, sampled observations are currently interpo-

lated into a grid and analyzed through forecasting models in order to fill possible

missing values due to the non homogeneous data coverage.

https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.html
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.html
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In this work, these SP data were interpolated in order to derive pressure values

at the location of the 107 GPS sites (Figure 2.2). Then, the resulting time series

were detrended and deseasonalized. Finally, weekly means were derived.

2.2.2 Terrestrial water storage (TWS)

The TWS can be defined as the summation of all water on the land surface

and in the subsurface. It includes surface soil moisture, root zone soil moisture,

groundwater, snow, ice, water stored in the vegetation, river and lake water (Girotto

and Rodell, 2019).

The TWS data set used in this work is the ”M2T1NXLND” (MERRA-2

tavg1 2d lnd Nx, V5.12.4, Global Modeling and Assimilation Office (GMAO),

2015), which is one of the products of Modern-Era Retrospective analysis for

Research and Applications version 2 (MERRA-2), i.e. the project that places the

NASA Earth Observation System (EOS) suite of observations in a climate context.

These data are available on the NASA Goddard Earth Sciences (GES) Data and

Information Services Center (DISC) Web site at https://disc.gsfc.nasa.gov/.

These data span over the period 2010-2019 and cover the same latitudinal and

longitudinal ranges of the SP data. The daily TWS data are provided on a grid of

spatial resolution 0.5◦ × 0.625◦ and were interpolated in order to obtain the values

of TWS at the location of interest (Figure 2.2).

Lastly, the daily time series were detrended and deseasonalized and weekly time

series were estimated.

https://disc.gsfc.nasa.gov/
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Figure 2.10: MERRA-2 TWS data grid.
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In this chapter, the principal modes of variability of the GPS Up coordinate,

surface pressure (SP) and terrestrial water storage (TWS) and their behavior will

be described.

The Principal Component Analysis (PCA, Section 1.2) has been chosen to

study the time series variability. This is not the only available approach, but it

appears the most appropriate since the aim of this work is to compare the results

with climate indices, that are also obtained from a PCA analysis (Chapter 4).

Coupling of different fields is explored via Singular Value Decomposition (SVD),

which has the same mathematical basis as that of the PCA, but it is applied to

two fields of variables.

3.1 PCA results

In this section are shown the results of the PCA analysis, performed on GPS

Up coordinate, SP and TWS residuals.

As mentioned in Section 1.2.1, the three data sets are organized in three matrices

where each column is a detrended, deseasonalized and standardized weekly time

series. The correlation matrix was computed and from this the spatial pattern

coefficients and the time components were derived.
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The maps of the spatial pattern coefficients were obtained by assigning the

proper value to the station point on the map, and then filling the map through a

nearest neighbors interpolation, which returns the value at the data point closest

to the point of interpolation. Furthermore, the spatial pattern coefficients were

multiplied by 100, since they are always lower than 1. The plot color bar was

created in such a way that the zero value is always in the middle of the bar. The

spatial pattern coefficients and the time components are complementary and must

be studied together.

3.1.1 GPS Up

The GPS Up time series were analyzed first. The most relevant are the first

four modes of variability, which explain about the 50% of the total variability.

The first spatial pattern shows a rather homogeneous behaviour in the central

European area and the Mediterranean, while Northern Great Britain, Ireland, and

the Scandinavian zone are not characterized by the same behaviour (Figure 3.1). In

particular, the station LOVJ shows a spatial pattern coefficient close to zero. The

first time component (Figure 3.2) is characterized by high frequency oscillations

and three pronounced slopes appear during 2011, mid 2015 and mid 2017. This

time component explains the 28.65% of the total variance (Table 3.1): this is a

significant amount, considering the large number of degrees of freedom (107).

The second spatial pattern shows a Northeast to Southwest gradient (Figure

3.3). Again, the station LOVJ seems anomalous. The second time component

(Figure 3.4) shows a quasi decadal oscillation, where two anomalous peaks can

be recognized: one around mid 2015 and the other in mid 2018. This component

explains 11.60% of the total variance (Table 3.1), which is about one third of the

first one.

The third spatial pattern (Figure 3.5) presents a gradient orthogonal to that of

the second mode. It shows a positive maximum on the Great Britain side and a

negative one over Southeastern Europe. The third time component does not show

any particular behaviour and explains the 9.07% of the data total variability (Table

3.1).

The fourth spatial pattern (Figure 3.7) explains only a small percentage of

the variance (4.17%, Table 3.1) and it shows a different pattern in Northern and

Southeastern Europe. The fourth time component (Figure 3.8) shows a multi-

annual oscillation, whose period varies from one to two years, superimposed over

an oscillation of long period (3-to-4 years).

Figures 3.9 and 3.10 present two regionalization maps: different colours identify

the different spatial patterns and each zone is coloured according to which one
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Modes Percentage of variance explained

1 28.65%

2 11.60%

3 9.07%

4 4.17%

Table 3.1: Percentage of variance explained by each mode of variability of the GPS Up
coordinate data set.

best represents the relative GPS site. In Figure 3.9 the regionalization was created

using all the four main spatial patterns. Central Europe is best described by the

first mode, Scandinavia by the second, Great Britain and the Southeastern Europe

by the third. The fourth mode instead does not identify a clear behaviour over

the whole Europe. In Figure 3.10 the regionalization was created using only the

first three spatial patterns and shows a behaviour similar to that of Figure 3.9.

The main differences are in the Eastern part of the Adriatic, represented by the

first mode, and in the Central Southern Italy and Eastern Spain, described by the

second spatial pattern.

3.1.1.1 Two decades series

The results previous shown might be sensitive to the time period taken into

account and to the number of chosen time series. In order to verify if the spatial

patterns and time components are affected from this bias, the PCA were applied

on two decades GPS Up time series. In order to obtain at least a distribution of 40

GPS sites, the chosen time period goes from September, 19, 2001 to September, 5,

2018. In Figure 3.11 is shown the new distribution of stations. From figure 3.12 to

figure 3.19 are shown the results of the PCA performed on these two decades time

series.

The spatial patterns of the first three modes of variability (Figures 3.12, 3.14

and 3.16) exhibit the same behaviour of those obtained with the 107 time series

(Figures 3.1, 3.3 and 3.5). The fourth spatial pattern (3.18) differs from the pattern

shown in Figure 3.7 because is characterized by positive coefficients in Eastern

Europe, France and the Iberian Peninsula, and by negative coefficients elsewhere.

In the time period between June, 6, 2010 and September, 5, 2018 the first three

time components (Figures 3.13, 3.15 and 3.17) show the same behaviour as the

previous ones, which were presented in Figures 3.2, 3.4 and 3.6. The fourth time

component of the two decades GPS Up time series (Figure 3.19) show a completely

different behaviour on the period between June, 6, 2010 and September, 5, 2018

with respect to the fourth time component in Figure 3.8, since is characterized by a
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decreasing linear trend on which is superimposed a short period (annual/bi-annual)

oscillation.

From this results, it is possible to infer that the first three modes of variability do

not show neither a dependence on the length of the time period, nor a dependence

on the number of stations selected. Conversely, the fourth mode of variability

seems to be sensitive to the time period or the number of stations chosen.
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Figure 3.1: First spatial pattern of the weekly GPS Up coordinate residuals.

Figure 3.2: First time component of the weekly GPS Up coordinate residuals.
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Figure 3.3: Second spatial pattern of the weekly GPS Up coordinate residuals.

Figure 3.4: Second time component of the weekly GPS Up coordinate residuals.
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Figure 3.5: Third spatial pattern of the weekly GPS Up coordinate residuals.

Figure 3.6: Third time component of the weekly GPS Up coordinate residuals.
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Figure 3.7: Fourth spatial pattern of the weekly GPS Up coordinate residuals.

Figure 3.8: Fourth time component of the weekly GPS Up coordinate residuals.
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Figure 3.9: Regionalization map of the first four spatial patterns of the GPS Up coordinate
residuals.

Figure 3.10: Regionalization map of the first three spatial patterns of the GPS Up
coordinate residuals.
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Figure 3.11: Location of the GPS stations related to the two decades time series.
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Figure 3.12: First spatial pattern of the two decades weekly GPS Up coordinate residuals.

Figure 3.13: First time component of the two decades weekly GPS Up coordinate
residuals.
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Figure 3.14: Second spatial pattern of the two decades weekly GPS Up coordinate
residuals.

Figure 3.15: Second time component of the two decades weekly GPS Up coordinate
residuals..
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Figure 3.16: Third spatial pattern of the two decades weekly GPS Up coordinate residuals.

Figure 3.17: Third time component of the two decades weekly GPS Up coordinate
residuals.
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Figure 3.18: Fourth spatial pattern of the two decades weekly GPS Up coordinate
residuals.

Figure 3.19: Fourth time component of the two decades weekly GPS Up coordinate
residuals.
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3.1.2 Surface pressure (SP)

The first four spatial patterns of the SP residuals explain almost 90% of the data

variability; the first mode alone contributes 50% (Table 3.2). The time components,

as well as the original data, are characterized by interannual variability, but also

by very short period fluctuations. Thus, for graphical purposes only, the SP time

components have been smoothed by using a 4-week adjacent averaging window.

The map of the first spatial pattern coefficients (Figure 3.20) shows a marked

difference between the Northern, the Central and Southern part of the continent.

Scandinavia and Northeastern Europe are characterized by values close to zero, while

the rest of Europe and the Mediterranean are rather homogeneously represented

by larger spatial pattern coefficients. The first time component (Figure 3.21) is

characterized by positive and negative peaks. The negative peak at the beginning

of the 2018 might be related to the anomalous cold weather conditions all over

Europe that characterized the month of February 2018 (NOAA National Centers

for Environmental Information, 2018d), related to an extratropical cold-core low1.

The map of the second spatial pattern coefficients shows a Northeast to South-

west gradient (Figure 3.22). The second time component (Figure 3.23) is charac-

terized by a positive peak at the beginning of the 2012, which might be associated

with the cold wave that started on January 27, 2012, and brought snow and freezing

temperatures to much of the European continent. In fact, the cold weather was

the result of an extensive area of very high pressure located over the north east

of the continent (World Meteorological Organization (WMO), 2013). The second

time component explains 21.86% of the variability (Table 3.2).

The map of the third spatial pattern coefficients presents a gradient orthogonal

to that of the second mode (Figure 3.24). The coefficients are positive in Great

Britain, Ireland, northern France, the Netherlands and north west Spain and

Portugal, negative in Southeastern Europe. The correspondent time component

(Figure 3.25), which explains 10.80% of the variance (Table 3.2), is characterized

by an annual oscillation. An anomalous peak can be identified between the end of

2013 and beginning of 2014. In that period, namely December 17, 2013, and the

February 14, 2014, the North East Atlantic and the British Isles were characterized

by an exceptional negative pressure anomaly (S. Burt and T. Burt, 2019).

The map of the fourth spatial pattern coefficients (Figure 3.26) explains a small

percentage of the variance (4.67%, Table 3.2). The coefficients are close to zero in

Central Europe, positive over the British Isles and Southern Europe and negative

1An extratropical cold-core low is a low-pressure system which lies in the synoptic scale and
occurs in mid-latitudes. Extratropical cold-core low are most of extratropical cyclones and are
the result of the occlusions of the polar front, i.e. the interface between polar cold and tropical
warm air.
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over the Iberian Peninsula and Scandinavia. In the fourth time component (Figure

3.27), a long term oscillation might be recognized.

Modes Percentage of variance explained

1 50.16%

2 21.86%

3 10.80%

4 4.67%

Table 3.2: Percentage of variance explained by each mode of variability of the SP data
set.

In Figures 3.28 and 3.29 are shown the regionalization maps. In Figure 3.28

the regionalization was created using all four modes of variability. The resulting

patterns are similar to the ones of the regionalization of the GPS Up coordinate

residuals (Figure 3.9), in which Central Europe is best described by the first mode,

while Scandinavia by the second, Great Britain and Southeastern Europe by the

third. In this case, the fourth mode dominates in the Iberian Peninsula and in

Northern Scandinavia. Figure 3.29 shows the map created using only the first

three spatial patterns. In this case, Northern Scandinavia and most of the Iberian

Peninsula are related to the second mode.
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Figure 3.20: First spatial pattern of the weekly SP residuals.

Figure 3.21: First time component of the weekly SP residuals.
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Figure 3.22: Second spatial pattern of the weekly SP residuals.

Figure 3.23: Second time component of the weekly SP residuals.
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Figure 3.24: Third spatial pattern of the weekly SP residuals.

Figure 3.25: Third time component of the weekly SP residuals.
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Figure 3.26: Fourth spatial pattern of the weekly SP residuals.

Figure 3.27: Fourth time component of the weekly SP residuals.
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Figure 3.28: Regionalization map of the first four spatial patterns of the SP residuals.

Figure 3.29: Regionalization map of the first three spatial patterns of the SP residuals.
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3.1.3 Terrestrial water storage (TWS)

The first four spatial patterns of the TWS residuals explain almost 65% of the

variance of the data set.

The map of the first spatial pattern coefficients (Figure 3.30) shows that the

coefficients are positive all over Europe. In particular, the stations in Central and

Southern Europe are characterized by larger magnitude of the first spatial pattern.

The first time component (Figure 3.31), which explains 33.66% of the variance

(Table 3.3), is characterized by a large oscillations, over periods of 1-to-2 years. A

maximum value is recognizable in the beginning of the 2011 and a minimum in the

first few months of the 2012. The 2011 maximum occurs after a period of heavy

rainfalls. This period started in July 2010 and ended in December 20102. In Figure

3.32 are shown the global precipitation anomalies relevant to November 2010. This

month was characterized by the largest magnitude of the anomalies over Europe.

The spring of 2011 was particularly dry in the western part of Europe, many areas

of which received less than 40% of usual annual precipitation (Bissolli et al., 2012).

In December 2011, drought conditions were basically confined to the Mediterranean

area; from January to March 2012, the drought period first spread to Western

Europe and then on Central and Southeastern Europe, where it peaked in March,

i.e. when the minimum occurs in the first time component (Figure 3.31). The

same explanation can be applied to the other minima and maxima. In fact, during

the relevant periods, most Europe was affected respectively by severe drought or

precipitation events, respectively.

The second TWS spatial pattern (Figure 3.33) is similar to the corresponding

ones of the SP and of the GPS Up coordinate data sets (Figures 3.3 and 3.22). This

spatial pattern shows a gradient from North-East to South-West and reaches the

largest magnitude over the Scandinavia, the British Isles and the Iberian Peninsula.

The second time component (Figure 3.34) shows a long-term oscillation on which

are superimposed shorter period oscillations. It can be seen that:

• the minimum values correspond to a positive anomaly of the precipitation

over the Iberian Peninsula, e.g. the minimum that occurs between mid 2014

and early 2015 (NOAA National Centers for Environmental Information,

2014);

• the maximum values correspond to a drought period in the Iberian Peninsula,

e.g. the maximum that occur at the end of 2017 (NOAA National Centers

2NOAA National Centers for Environmental Information, 2018e; NOAA National Centers
for Environmental Information, 2018a; NOAA National Centers for Environmental Information,
2018h; NOAA National Centers for Environmental Information, 2018g; NOAA National Centers
for Environmental Information, 2018f; NOAA National Centers for Environmental Information,
2018b.
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for Environmental Information, 2018c).

This time component explains 12.91% of the TWS data variability (Table 3.3),

which is one third of the first one.

The third spatial pattern (Figure 3.35) presents a different behaviour with

respect to the third spatial patterns of the SP and the GPS Up coordinate. South

Britain and Northern France are characterized by the largest positive values, while

the largest negative coefficients are identified in Eastern Europe. The third time

component (Figure 3.36) explains the 11.04% of the variance (Table 3.3). A

remarkable feature is a large oscillation over a period of about 6 years.

The map of the fourth spatial pattern coefficients map (Figure 3.37) explains

about 7% of the total variance (Table 3.3) and it shows a pattern peaking positively

in Eastern Europe and negatively in Ireland and northern Britain. The fourth

time component, in general, is characterized by an annual oscillation. However,

anomaly in this behaviour is recognized during 2013-2015, when the amplitude

of the oscillation was large and the period was about 2 years. Figure 3.38 shows

a relevant reduction of TWS from mid 2013 until the beginning of 2015. This

shortage of TWS persisted during 2015 and this timing corresponds to the severe

drought that affected Eastern Europe (Ionita et al., 2017; Boczoń et al., 2016).

Modes Percentage of variance explained

1 33.66%

2 12.91%

3 11.04%

4 7.19%

Table 3.3: Percentage of variance explained by each mode of variability of the TWS data
set.

The regionalizations are shown in Figures 3.39 and 3.40. The first one represents

the first four spatial modes. The second concerns the first three ones. These

regionalizations do not exhibit a clearly recognizable pattern. This might be

attributable to a more local nature of the TWS with respect to that of the SP and

of the GPS Up coordinate.
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Figure 3.30: First spatial pattern of the weekly TWS residuals.

Figure 3.31: First time component of the weekly TWS residuals.
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Figure 3.32: November 2010 Precipitation Anomalies in millimeters (NOAA National
Centers for Environmental Information, 2018f).
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Figure 3.33: Second spatial pattern of the weekly TWS residuals.

Figure 3.34: Second time component of the weekly TWS residuals.
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Figure 3.35: Third spatial pattern of the weekly TWS residuals.

Figure 3.36: Third time component of the weekly TWS residuals.
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Figure 3.37: Fourth spatial pattern of the weekly TWS residuals.

Figure 3.38: Fourth time component of the weekly TWS residuals.
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Figure 3.39: Regionalization map of the first four spatial patterns of the TWS residuals.

Figure 3.40: Regionalization map of the first three spatial patterns of the TWS residuals.
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3.2 SVD

The SVD analysis allows identifying significant correlation between pair of

variables (Section 1.2.3). In fact, the SVD analysis performed on two data fields

identifies only those modes representing coupled variability. In this section, inter-

annual variations observed in the residual series of the GPS Up coordinate of 107

stations (Figure 2.2, p. 17) located in the Mediterranean and European area are

compared, by means of the SVD approach, with those present in the residual time

series of the SP and TWS. Lastly, the results of the SVD study are discussed.

The result of the SVD analysis are coupled modes of variability. Each of these

consists of two spatial patterns (one for each variable) and two time components.

The maps of the SVD spatial pattern coefficients were obtained by assigning the

corresponding value to the station point on the map and then filling the map

through a nearest neighbors interpolation. The spatial pattern coefficients were

multiplied by a factor 100, since they are always lower than 1. The plot color bar

was created in such a way that the zero value is always in the middle of the bar.

The time components of the corresponding SVD are also presented and show a

similar time variability, as expected.

3.2.1 GPS Up coordinates and SP

The first three leading SVD modes of the coupled SP and GPS Up coordinates

variations account for 70.11% of the total covariance.

The first coupled mode of variability explains 35.19% of the total covariance.

The first SVD spatial pattern of the GPS Up time series (Figure 3.41a) shows a

gradient from North-West to South-East; the highest negative values characterize

the British Isles, while positive values are found over Southeastern Europe. The

first SVD spatial pattern of the SP (Figure 3.41b) is coherent and negative all over

Europe. These patterns mean that, over the British Isles and Northern Europe,

the SP and the GPS Up exhibit a similar behaviour while, in Southeastern Europe,

they show an opposite one. The first SVD time components (Figure 3.41c) does

not show any long-period oscillation. Short period oscillations are present, however

without an easily recognizable period. As regards SP, a few large peaks characterize

the time series, which should be further investigated. Shorter period oscillations

are superimposed.

The second coupled mode of variability explains 22.93% of the total covariance.

The second SVD spatial pattern of the GPS Up time series (Figure 3.42a) is

coherent with negative values over most of Northern Europe. Exceptions are

Scandinavia and part of the British Isles. Southern Europe is mostly coherent,
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but is characterized by positive coefficients. The second SVD spatial pattern of

the SP (Figure 3.42b) shows the highest positive values in the British Isles and

Scandinavia passing to negative values in Central-Southern Europe and across the

Mediterranean. These patterns present a general anticorrelation that suggest that

this mode could be representative of the vertical crustal deformation induced by

the atmospheric loading. The second SVD time components (Figure 3.42c) show a

long period variability (of about 7 years) on which is superimposed a short-period

(about 1 year) oscillation.

The third coupled mode of variability explains 11.99% of the total covariance.

The third SVD spatial pattern of the GPS Up time series (Figure 3.43a) is char-

acterized by low values all over Europe. Exceptions are found in Eastern Europe

and on the coastlines of Western and Northern Europe. The third SVD spatial

pattern of the SP (Figure 3.43b) shows a zonal gradient and is characterized by

negative values in Western Europe and positive elsewhere. The third SVD time

components (Figure 3.43c) show short period oscillations, characterized by high

intrannual variability.
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(a) First spatial pattern of the GPS Up com-
ponent.

(b) First spatial pattern of the SP.

(c) First time component of SP (magenta line) and GPS Up component (green line).

Figure 3.41: First SVD of GPS Up component and SP.
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(a) Second spatial pattern of the GPS Up com-
ponent.

(b) Second spatial pattern of the SP.

(c) Second time component of SP (magenta line) and GPS Up component (green line).

Figure 3.42: Second SVD of GPS Up component and SP.
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(a) Third spatial pattern of the GPS Up com-
ponent.

(b) Third spatial pattern of the SP.

(c) Third time component of SP (magenta line) and GPS Up component (green line).

Figure 3.43: Third SVD of GPS Up component and SP.
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3.2.2 GPS Up coordinate and TWS

The three leading SVD modes of the coupled TWS and GPS Up coordinate

variations account for 48.1% of the total covariance.

The first coupled mode of variability explain 22.68% of the total covariance.

The first SVD spatial pattern of the GPS Up time series (Figure 3.44a) shows a

gradient from North (negative values) to South Europe (positive values). The first

SVD spatial pattern of the TWS (Figure 3.44b) exhibits an opposite behaviour.

These patterns mean that, if the TWS has a negative variation over a certain area,

the GPS Up has a positive variation in the same area. The observed anticorrelation

suggests this mode could be representative of the vertical deformation due to

loading of the TWS on the Earth’s crust. The first SVD time components (Figure

3.44c) show a long-period variability (6-to-7 years) on which are superimposed

short-period oscillations.

The second coupled mode of variability explains 13.81% of total covariance.

The second SVD spatial pattern of the GPS Up time series (Figure 3.45a) is

characterized by negative values in Western Europe and the Mediterranean and

positive values elsewhere. The second SVD spatial pattern of the TWS (Figure

3.45b) exhibit the same behaviour in the western part of Europe (Iberian Peninsula,

Italy, British Isles and France) and an opposite behaviour over the eastern part.

The second SVD time components (Figure 3.45c) is characterized by a long-term

oscillation, with increasing values till about 2015 followed by a decrease.

The third coupled mode of variability explain 11.61% of the total covariance. The

third SVD spatial pattern of the GPS Up time series (Figure 3.46a) is characterized

by negative values all over Europe, except in the Balkan region. The third SVD

spatial pattern of the TWS (Figure 3.46b) shows an opposite pattern, except in the

Mediterranean. The third SVD time components (Figure 3.46c) is characterized by

a long-period oscillation, on which are superimposed higher frequency oscillations.
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(a) First spatial pattern of the GPS Up com-
ponent.

(b) First spatial pattern of the TWS.

(c) TWS (magenta line) and GPS Up component (green line) first expansion coefficients.

Figure 3.44: First SVD of GPS Up component and TWS.
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(a) Second spatial pattern of the GPS Up com-
ponent.

(b) Second spatial pattern of the TWS.

(c) TWS (magenta line) and GPS Up component (green line) second expansion coefficients.

Figure 3.45: Second SVD of GPS Up component and TWS.
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(a) Third spatial pattern of the GPS Up com-
ponent.

(b) Third spatial pattern of the TWS.

(c) TWS (magenta line) and GPS Up component (green line) third expansion coefficients.

Figure 3.46: Third SVD of GPS Up component and TWS.
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In this chapter, the main climate indices will be introduced and the correlation

with stations GPS Up time series will be studied. In order to reduce potential

effect of local anomalies, the GPS Up residuals were represented using the first four

modes of variability1 previously identified2 (Section 3.1.1). Since climate indices

are provided as series of monthly values, monthly Up residuals were also estimated.

In order to investigate possible correlation between climate indices and the GPS

Up residuals, correlation maps were created. For each climate index, the map was

produced as follows:

• the percentage of correlation between the climate index and the GPS Up

time series of each location (Figure 2.2, p. 17) was estimated;

• the values obtained were assigned to each location;

• a nearest neighbour interpolation was performed.

The climate indices studied in this work are the following:

• East Atlantic (EA) teleconnection pattern;

• North Atlantic Oscillation (NAO);

1This procedure is called dimensionality-reduction (Section 1.2.1).
2This procedure is called dimensional reduction reference background
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• Scandinavia (SCAND) teleconnection pattern;

• Arctic Oscillation (AO);

• Tropical North Atlantic (TNA);

• Multivariate ENSO Index (MEI).

A study of the relevant literature shows that the methodologies adopted to

calculate these climate indices are different, but they are all based on a Principal

Component Analysis (PCA).

4.1 Northern Hemisphere Indices

Northern Hemisphere indices are an ensemble of climate indices that arise

from the same type of analysis. Northern Hemisphere teleconnection indices are

calculated using the Rotated Principal Component Analysis3 (RPCA; Barnston

and Livezey, 1987). This procedure isolates the main teleconnection patterns for

all months and allows the construction of the time series of these patterns (i.e., the

climate indices).

Northern Hemisphere teleconnection patterns and the related indices are cal-

culated by applying the RPCA to monthly mean standardized 500-mb pressure

height anomalies obtained from the CDAS4 in the region between 20◦N and 90◦N.

The anomalies are standardized by the 1950-2000 base period monthly means and

standard deviations. The results of this analysis are sets of ten rotated modes

(one set for each month), which are the dominant teleconnection patterns, that

account for most of the spatial variance of the observed standardized anomaly

map in the month. These patterns are referred to as the North Atlantic Oscilla-

tion (NAO), the Pacific/North American (PNA) teleconnection pattern, the East

(EA) Atlantic pattern, the West Pacific (WP) pattern, the East Pacific–North

Pacific (EP–NP) pattern, the East Atlantic/Western Russia (EA/WR) pattern,

the Tropical/Northern Hemisphere (TNH) pattern, the Polar-Eurasian pattern,

the Scandinavia (SCAND) pattern, and the Pacific Transition (PT) pattern. The

relevant time series are known as climate indices.

3The Rotated Principal Component Analysis (RPCA) consists in scaling the eigenvectors (i.e.,
the spatial patterns) of the data correlation matrix according to the amount of total variance
they explain in the PCA, and then linearly transforming (i.e. rotating) the scaled eigenvalues
under certain constraints to obtain the main circulation patterns. In order to derive the Northern
Hemisphere teleconnection indices, the RPCA method adopted is the varimax, which preserves
the orthogonality of the eigenvectors.

4Climate Data Assimilation System.
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In this work, it was decided to investigate only those indices, among the ones

mentioned above, which have a recognized pattern over Europe and the North

Atlantic and that may influence the European and Mediterranean weather and

climate. The objective is to investigate if significant correlations exist between the

indices and the GPS Up time series of the stations in the network.

4.1.1 North Atlantic Oscillation (NAO)

The North Atlantic Oscillation (NAO) is one the most prominent teleconnection

pattern in all seasons (Barnston and Livezey, 1987) and is the leading rotated

spatial pattern identified by the RPCA procedure. The NAO consists of a north-

south dipole of anomalies, with one center located over Greenland and the other

center of opposite sign spanning the central latitudes of the North Atlantic, between

35◦N and 40◦N (Figure 4.1).

Figure 4.1: Spatial pattern of the NAO from January 1950 to January 2000 (NOAA
CPC, 2000).

The NAO index time series is characterized by intrannual and interannual

variability and exhibits positive and negative phases, which occasionally persists

over periods of several months (Figure 4.2).

Strong positive phases of the NAO tend to be associated with above-average

temperature across Northern Europe and, in winter, with above-average precipita-
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Figure 4.2: The NAO standardized 3-month running mean index (NOAA CPC, 2020e).

tion over Northern Europe and Scandinavia and below-average precipitation over

Central and Southern Europe. Opposite patterns of temperature and precipitation

anomalies are typically observed during strong negative phases of the NAO.

The principal time components of the GPS Up time series does not show any

significant correlation with the NAO index. The second (Figure 4.3) and third

(Figure 4.4) time components show a positive correlation with the NAO index on

the order of 20%, but with a significance level less than 95% (i.e., a p-value higher

than 0.05).

Figure 4.3: Comparison between the GPS Up second time component and the NAO
index.

The correlation map between the GPS Up time series, represented through

the four main modes of variability, and the NAO index (Figure 4.5) shows a

gradient going from Northern to Southern Europe. In particular, positive correlation

coefficients characterize Scandinavia and the British Isles, while negative correlation

coefficients are found in Southeastern Europe and the Mediterranean region. Among

the 107 stations, only 12 GPS Up time series show a correlation with the NAO
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Figure 4.4: Comparison between the GPS Up third time component and the NAO index.

index higher than 10% and a significance level above 95% (Table 4.1). The relative

GPS sites are identified with lilac dots in the map.

N. GPS Up time series

|r| ≥ 10% 58

significance level ≤ 95% 46

|r| ≥ 10% & significance level > 95% 12

|r| ≥ 10% & significance level > 99% 0

Table 4.1: Number of GPS sites for each of the following conditions: correlation coefficient
(r) in absolute value higher or equal to 10%; significance level lower or equal to 95%;
correlation coefficient (r) in absolute value higher or equal to 10% and significance level
larger than 95%; correlation coefficient (r) in absolute value higher or equal to 10% and
significance level larger than 99%.
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Figure 4.5: Correlation map between GPS Up time series and the NAO index. Lilac
points identify the GPS sites whose time series has a significant correlation larger than
10%.
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4.1.2 East Atlantic (EA)

The East Atlantic (EA) pattern is the second prominent mode of variability over

the North Atlantic and appears as a leading mode in all months. The EA pattern

consists of a north-south dipole of anomaly centers, spanning the North Atlantic

from west to east (Figure 4.6). These anomaly centers are displaced southeastward

with respect to the NAO pattern.

Figure 4.6: The EA positive phase spatial pattern during January, April, July and
October (NOAA CPC, 2020b).

The EA pattern exhibits positive and negative phases; however, during the

last 20 years, the EA index shows a positive phase that is strong and persistent

(Figure 4.7). The positive phase of the EA pattern is associated with above-average

surface temperatures in Europe in all months, with above-average precipitation

over Northern Europe and Scandinavia and below-average precipitation across

Southern Europe.
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Figure 4.7: The EA standardized 3-month running mean index (NOAA CPC, 2020c).

The EA index shows a significant anticorrelation, about -30% with a significance

level equal or larger than 99%, with the first and the fourth time components of

the GPS Up time series (Figures 4.8 and 4.9). In both cases, the spatial pattern

coefficients are negative in Central Europe (Figures 3.1 and 3.7).

Figure 4.8: Comparison between the GPS Up first time component and the EA index.

The correlation map between the EA index and the GPS Up time series,

described through the first four time components, shows a pattern coherent in

Central and Southern Europe and over the Mediterranean. Among the 107 time

series, 63 have a significant positive correlation with the EA index (significance

level higher than 95%), of which 41 with a significance level higher than 99% (Table

4.2).

In Section 3.2.2, it was described that the first SVD mode of variability shows

anticorrelation between the GPS Up coordinate and the TWS. Considering that the

positive phase of the EA is associated to below-average precipitation across Southern

Europe and, likely, to below-average TWS in the same area, the correlation found
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Figure 4.9: Comparison between the GPS Up fourth time component and the EA index.

N. GPS Up time series

|r| ≥ 10% 90

significance level ≤ 95% 27

|r| ≥ 10% & significance level > 95% 63

|r| ≥ 10% & significance level > 99% 41

Table 4.2: Number of GPS sites for each of the following conditions: correlation coefficient
(r) in absolute value higher or equal to 10%; significance level lower or equal to 95%;
correlation coefficient (r) in absolute value higher or equal to 10% and significance level
larger than 95%; correlation coefficient (r) in absolute value higher or equal to 10% and
significance level larger than 99%.

between the EA index and the series of GPS Up coordinates might be representative

of the loading effects on the Earth’s crust.
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Figure 4.10: Correlation map of the GPS Up time series and the EA index. The GPS
sites the Up time series of which show a correlation with the EA index larger than
10% and a significance level larger than 95% are identified by lilac points; those sites
with correlation above the same threshold and a significance level larger than 99% are
identified by white points.
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4.1.3 Scandinavia (SCAND)

The Scandinavia pattern (SCAND) consists of a primary circulation center over

Scandinavia and a weaker center of opposite sign over Western Europe, Eastern

Russia and Western Mongolia. The SCAND consists of a succession of positive

and negative phases. The positive phase (Figure 4.11) is characterized by:

• positive pressure anomalies, typically associated to major blocking anticy-

clones over Scandinavia and Western Russia;

• below-average temperature across central Russia and Western Europe;

• above-average precipitation across Central and Southern Europe;

• below-average precipitation over Scandinavia.

The negative phase behaves in the opposite way.

In the last twenty years, neither the positive nor the negative phase persisted

over long periods (Figure 4.12).

The SCAND index shows a significant correlation (25%) with the second time

component of the GPS Up time series (Figure 4.13), the spatial pattern of which

describes the Scandinavian region and the Iberian and Italian Peninsula (Figure

3.3, p. 38).

Moreover, the correlation map between SCAND index and GPS Up time

series (Figure 4.14) shows significant correlations over the Scandinavian region

and anticorrelations over the Iberian and Italian peninsula, i.e. the regions best

described by the second PCA mode of variability. In addition, in Section 3.2.2, it

was found that the second PCA mode of the GPS Up time series was similar to

the second coupled mode of variability between GPS Up and TWS, and the latter

is associated to precipitations, which are strongly correlated with the SCAND

pattern.

The number of GPS Up time series that have a significant correlation with

the SCAND index is 35 (Table 4.3), and the related sites are located both in the

Scandinavian and in the Iberian and Italian Peninsula.
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Figure 4.11: The SCAND positive phase spatial pattern during January, April, July and
October (NOAA CPC, 2020f).

Figure 4.12: The SCAND standardized 3-month running mean index (NOAA CPC,
2020g).
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Figure 4.13: Comparison between the GPS Up second time component and the SCAND
index.

N. GPS Up time series

|r| ≥ 10% 79

significance level ≤ 95% 44

|r| ≥ 10% & significance level > 95% 35

|r| ≥ 10% & significance level > 99% 11

Table 4.3: Number of GPS sites for each of the following conditions: correlation coefficient
(r) in absolute value higher or equal to 10%; significance level lower or equal to 95%;
correlation coefficient (r) in absolute value higher or equal to 10% and significance level
larger than 95%; correlation coefficient (r) in absolute value higher or equal to 10% and
significance level larger than 99%.
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Figure 4.14: Correlation map of the GPS Up time series and the SCAND index. The
GPS sites the Up time series of which show a correlation with the SCAND index larger
than 10% and a significance level larger than 95% are identified by lilac points; those
sites with correlation above the same threshold and a significance level larger than 99%
are identified by white points.
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4.2 Arctic Oscillation (AO)

The Arctic Oscillation (AO) pattern is a climate pattern that characterizes the

northern hemisphere (Figure 4.15).

The AO is the leading mode of a PCA analysis applied to the monthly mean

1000-mb pressure height anomalies over latitudes in the range 20◦N-90◦N (Figure

4.15). The monthly AO index (Figure 4.16) is constructed by projecting the

monthly mean 1000-mb pressure height anomalies onto the leading mode. The

pressure height anomalies time series are normalized by the standard deviation of

the monthly index (1979-2000 base period).

Figure 4.15: The AO spatial pattern (NOAA CPC, 2020a).

The AO pattern is likely related to global weather patterns. In fact, at ap-

proximately 55◦N latitude there are winds circulating counterclockwise around the

Arctic5 and, when the AO is in its positive phase, these winds become stronger

and act in such a way to confine colder air across polar regions. On the contrary,

this belt of winds becomes weaker during the negative phase of the AO, which

allows an easier southward penetration of colder arctic air masses and increased

storminess into the mid-latitudes (Thompson and Wallace, 2001). The positive

phase is associated to a negative pressure anomaly over the Polar region and to a

5Westerlies are eastward winds specific of the Ferrel circulation cell, which oscillate around
the mid-latitudes and generate a jet-stream at high altitudes (9-12 km).
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Figure 4.16: AO positive and negative phases (NOAA NCDC, 2010).

positive one over mid-latitudes, while an opposite behaviour is detected during the

negative phase (Figure 4.17).

Figure 4.17: Graphic representation of the AO positive and negative phases (NOAA
NCDC, 2010).

The AO index shows a significant correlation with the third GPS Up time

component (Figure 4.18), which best describes the British Isles and Southeastern

Europe (Figure 3.5, p. 39). In fact, the correlation map (Figure 4.19) shows

significant positive correlations over Western Europe (the British Isles, Northwestern

France, Denmark, Netherlands, Belgium, the Iberian and Scandinavian Peninsula),

where the number of GPS sites showing a correlation larger than 10% with a
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significance level larger than 95% is 32 (Table 4.4).

Two additional GPS Up time series are correlated with the AO index; they are

MOBN (with a positive correlation coefficient) in Western Russia and AUT1 (with

a negative correlation coefficient) in the Balkans.

Figure 4.18: Comparison between the GPS Up third time component and the AO index.

N. GPS Up time series

|r| ≥ 10% 69

significance level ≤ 95% 37

|r| ≥ 10% & significance level > 95% 31

|r| ≥ 10% & significance level > 99% 14

Table 4.4: Number of GPS sites for each of the following conditions: correlation coefficient
(r) in absolute value higher or equal to 10%; significance level lower or equal to 95%;
correlation coefficient (r) in absolute value higher or equal to 10% and significance level
larger than 95%; correlation coefficient (r) in absolute value higher or equal to 10% and
significance level larger than 99%.
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Figure 4.19: Correlation map of the GPS Up time series and the AO index. The GPS
sites the Up time series of which show a correlation with the AO index larger than
10% with a significance level larger than 95% are identified by lilac points; those sites
with correlation above the same threshold and a significance level larger than 99% are
identified by white points.
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4.3 Tropical North Atlantic (TNA)

The Tropical North Atlantic (TNA) is a climate index calculated using sea

surface temperature (SST) data and the Reynolds Optimum Interpolation (Reynolds

and Smith, 1994). Since the TNA is calculated with SST in the area identified by

the longitude and latitude ranges 55◦W - 15◦W, 5◦N - 25◦N (Figure 4.20), this index

is an indicator of the surface temperatures in the tropical Northeastern Atlantic

Ocean. The TNA definition implies that positive values of the climate index are

associated to positive anomalies of the SST in the North Atlantic Tropical Zones,

while negative values are associated to negative anomalies.

Figure 4.20: Area relevant to the TNA SST index.

The TNA index shows a significant negative correlation (-20%) with the first time

components of the GPS Up time series (Figure 4.21), and a significant correlation

(32%) with the fourth one (Figure 4.22).

The correlation map (Figure 4.23) is characterized by correlation values which

are positive and larger in Western and Northern Europe and the Mediterranean,

while they tend to zero in Eastern Europe, with a few negative values towards South-

West Russia and Ukraine. This pattern might suggest a link between variations of

the SST in the Atlantic Ocean and the observed GPS Up coordinate variations

over Europe and the Mediterranean.

The number of GPS Up time series which exhibit a significant correlation with

the TNA index is 40, 19 of which with a significance level larger than 99% (Table

4.5).
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Figure 4.21: Comparison between the GPS Up first time component and the TNA index.

Figure 4.22: Comparison between the GPS Up fourth time component and the TNA
index.
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Figure 4.23: Correlation map of the GPS Up time series and the TNA index. The GPS
sites the Up time series of which show a correlation with the TNA index larger than
10% with a significance level larger than 95% are identified by lilac points; those sites
with correlation above the same threshold and a significance level larger than 99% are
identified by white points.

N. GPS Up time series

|r| ≥ 10% 78

significance level ≤ 95% 38

|r| ≥ 10% & significance level > 95% 40

|r| ≥ 10% & significance level > 99% 19

Table 4.5: Number of GPS sites for each of the following conditions: correlation coefficient
(r) in absolute value higher or equal to 10%; significance level lower or equal to 95%;
correlation coefficient (r) in absolute value higher or equal to 10% and significance level
larger than 95%; correlation coefficient (r) in absolute value higher or equal to 10% and
significance level larger than 99%.
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4.4 Multivariate ENSO Index Version 2 (MEI

v2)

The last climate index studied in this work is the Multivariate ENSO Index

Version 2 (MEI v2). The MEI v2 combines both oceanic and atmospheric variables

in a single index to provide an assessment of the El Niño Southern Oscillation

(ENSO).

ENSO is a periodic fluctuation (i.e. 2-7 years) in SST and air pressure of the

overlying atmosphere across the equatorial Pacific ocean (NOAA CPC, 2020d).

The ENSO consists in the alternation of two phases:

• a warm phase called El Niño, in which the trade winds6 experience a weakening

and this causes a warming of the equatorial East Pacific and a cooling of the

West Pacific, near Indonesia (Figure 4.24a);

• a cold phase called La Niña, in which the trade winds becomes stronger, the

equatorial East Pacific becomes cooler and the West Pacific becomes warmer

(Figure 4.24b).

It is well known that ENSO affects global climate variability and teleconnections

with Central and Eastern Europe have been reported (Bartholy and Pongracz, 2006

and Shaman and Tziperman, 2011).

The MEI v2 index gives real time indications of ENSO intensity. This climate

index is the time series of the leading combined PCA of five different variables:

• sea level pressure;

• sea surface temperature;

• zonal components of the surface winds;

• meridional components of the surface winds;

• outgoing longwave radiation.

These variables are related to the tropical Pacific basin (30◦S-30◦N and 100◦E-

70◦W). The PCA study is applied to 12 overlapping bi-monthly ”seasons” (Dec-Jan,

Jan-Feb, Feb-Mar,..., Nov-Dec) in order to take into account the seasonality of

ENSO, and reduce effects of higher frequency intraseasonal variability (NOAA

PSD, 2019).

6The trade winds or easterlies are the permanent east-to-west prevailing winds that flow in
the Earth’s equatorial region (between 30◦N - 30◦S).
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Figure 4.24: Schematic representation of El Niño (a) and La Niña (b) (Doyle, 2018). Red
and blue mean higher and lower SST, respectively.
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The positive and negative phases of ENSO correspond to positive and negative

values of the MEI v2 index (4.25).

Figure 4.25: The MEI v2 time series; red represents the warm phase (El Niño) and blue
the cold phase (La Niña).

The MEI v2 index shows significant correlations with the second (26%), third

(-24%) and fourth (-46%) time component of the GPS Up time series (Figures 4.26,

4.27 and 4.28).

The correlation map between the MEI v2 index and the GPS Up time series

represented through the first four modes shows significant correlations particularly

in Central-Eastern Europe, where the Up time series of many GPS stations show

a correlation coefficient with the MEI index greater than 30% with a significance

level larger than 99%.

The number of GPS sites which exhibit a significant correlation with the MEI

v2 index is approximately half of the total number of stations considered in this

work (46 out of 107; Table 4.6), and is second only to the corresponding number of

GPS sites in the EA study (Table 4.2, p. 79).

In the case of the comparison with the MEI v2 index, three of the four principal

modes of variability of the GPS Up coordinate show a significant correlation. This

behaviour can also be related to the results obtained by the SVD analysis of the

pairs TWS-GPS Up and SP-GPS Up showing the effects of water and pressure

variations over Europe and the Mediterranean. However it has been proved that

phenomenon ENSO induces effects at global scale, capable of changing the Earth’s
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Figure 4.26: Comparison between the GPS Up second time component and the MEI
index.

Figure 4.27: Comparison between the GPS Up third time component and the MEI index.

shape, most notably the Earth’s polar flattening (Cheng and Tapley, 2004; Cheng,

Tapley, and Ries, 2013).
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Figure 4.28: Comparison between the GPS Up fourth time component and the MEI
index.

N. GPS Up time series

|r| ≥ 10% 79

significance level ≤ 95% 33

|r| ≥ 10% & significance level > 95% 46

|r| ≥ 10% & significance level > 99% 31

Table 4.6: Number of GPS sites for each of the following conditions: correlation coefficient
(r) in absolute value higher or equal to 10%; significance level lower or equal to 95%;
correlation coefficient (r) in absolute value higher or equal to 10% and significance level
larger than 95%; correlation coefficient (r) in absolute value higher or equal to 10% and
significance level larger than 99%.
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Figure 4.29: Correlation map of the GPS Up time series and the MEI index. The GPS
sites the Up time series of which show a correlation with the MEI index larger than
10% with a significance level larger than 95% are identified by lilac points; those sites
with correlation above the same threshold and a significance level larger than 99% are
identified by white points.
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Conclusions

The Earth’s crust undergoes deformations of different nature. In this thesis,

vertical displacements were studied in relation to changes in environmental pa-

rameters, such as atmospheric surface pressure (SP) and terrestrial water storage

(TWS), and to climate indices. In fact, loading effects due to variations of the mass

of the atmosphere and of that of TWS cause elastic deformation of the solid Earth.

It is worth recalling that, in the case of the atmospheric pressure, this effect can

reach 15-20 mm. Among the GPS stations, with time series of coordinates freely

available, 107 location were selected in the European and Mediterranean area.

The stations were chosen in such a way to create a network as uniform as

possible over the area of interest and on the basis of the length and completeness

of the coordinate time series.

The coordinate analyzed in this work is the height of the stations, represented

by the local Up coordinate, because it is the one for which the loading/unloading

effects caused by the environmental parameters are best explained.

The data series of the investigated parameters cover a period of about 8 years,

from June, 9, 2010 to September, 5, 2018. All time series were detrended (linear

trend removed) and deseasonalized (annual cycle removed) so that the residual

time series of the parameters should be representative of intra-and inter-annual

variations.

A principal component analysis (PCA) was adopted to identify the main modes

of variability of the three parameters, namely the GPS Up coordinate, the SP

and the TWS. Each mode is described by both a spatial pattern and by a time

component.

In all the three cases, the first four modes of variability were considered because

they explain a large percentage of the total variability. Significant interannual

signals were identified in the time components. In the case of the GPS Up and

the TWS, the first four modes of variability explain about 50% and 65% of the

total variance, respectively. Different short-term local effects might be the source

of the remaining variance in the time series. In the case of SP, the first mode alone

explains 50% of the total variance, while the first four modes together account for

90% of the total variance. This indicates that the SP residual time series represent

continental-scale features well emerging above local characteristics.
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All the first time components are characterized by a peak at the end of 2010,

which represents a negative variation for the SP and the GPS Up, but a positive

one for the TWS. This behaviour is followed by a change of slope in early 2011.

In fact the whole late 2010 was characterized by a strong rainfall period all over

Europe, followed by a drought that started in the spring 2011 in Southeastern

Europe and that extended to the rest of the continent till about 2012. It is possible

to identify, in the second time component of the SP, in the first and third GPS Up

coordinate and in the first one of the TWS a peak in the early 2012 that might be

attributed to the extensive area of high pressure in Northeastern Europe that was

responsible, in general, for precipitation deficits in the continent.

In order to check if the results of the principal component analysis applied

to the GPS Up time series are sensitive to the selected time interval and to the

number of available stations, the analysis was also performed considering a smaller

ensemble of GPS Up time series (42). In this case, the period is of about 17 years,

from June, 9, 2001 to September, 5, 2018. The analysis confirmed that the first

three modes of variability are nearly independent from these two constraints.

In order to identify possible common modes of variability between pairs of

variable, the SVD methodology was adopted. The studied pairs were the GPS

Up coordinate and the SP and the GPS Up with the TWS. This analysis mostly

confirms the expected coupled variability between the two pairs of parameters.

As regards the GPS Up coordinate and the SP, the first three modes explain

about 70% of the total covariance. The first mode explains 35.2% and the spatial

pattern of the SP is coherent all over the study area, while the spatial pattern of

the GPS Up does exhibit complete coherence over the European and Mediterranean

area. Clear exceptions are the British Isles and a few zones in the Scandinavia.

However, most Central-Northern Europe and the central Mediterranean behave in

a coherent way. The two spatial patterns are anti-correlated for about 70 of the

total 107 locations. The anticorrelation can be explained with the loading effect

caused by atmospheric pressure variations on the Earth’s crust. In those areas

where anticorrelation is not found, additional factors shall be investigated that may

mask the well-known loading effect.

For the pair GPS UP and TWS, the first three modes explain about 50% of the

total covariance. The spatial pattern of the first modes are mostly characterized by

anticorrelation indicating that this mode could represents the vertical deformation

induced by hydrological mass loading. The time series are in general agreement

with the behaviour of the annual European precipitation relative to 1981-2010, as

provided by ERA-Interim, which shows loss of rain between 2010-2011, 2014-2015

and 2016-2017, while there was a recovery between 2011-2014 (Copernicus Climate

Change Service, 2017).
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Figure 4.30: Annual European precipitation anomalies from 1979 to 2017, relative to the
annual average for the period 1981-2010 (Copernicus Climate Change Service, 2017).

The principal modes of variability of the GPS Up coordinate were also compared

with climate indices (NAO, EA, SCAND, AO, TNA, MEI) and correlation maps

between the climate indices and the dimensionality-reduced GPS Up time series

were analyzed. The correlation patterns found in all the Northern Hemisphere

pressure indices (NAO, EA, SCAND) present strong similarities with the spatial

patterns of the first four GPS Up modes of variability. The lowest correlation

was found between the NAO index and the GPS Up time series, of which only

12 among the total of 107 showed a significant correlation. The SCAND index

shows a north-est to south-west gradient, presenting significant correlations with

the GPS Up time series of stations in Scandinavia and anticorrelations with those

in the Iberian Peninsula, France and the Mediterranean area. The EA index has

significant correlations with more than half of the GPS Up time series taken into

account (63 over 107). The correlation map between the EA index and the GPS

Up time series exhibit the same features of the first spatial pattern of the GPS

Up. In fact, the time series of this climate index shows the same characteristics of

the first time component of the GPS Up. The AO index is defined as the leading

mode of a PCA analysis applied to Northern Hemisphere sea level pressure data.

The correlation map with the GPS Up shows significant positive correlations in

the area of the British Isles and northern France. The TNA index is an indicator

of the surface temperature in the tropical Northeastern Atlantic Ocean. The

correlation pattern obtained shows significant and positive correlation values in

Western, Central Europe and the Mediterranean area.

The results of the PCA presented in this thesis have shown that interannual

vertical movements of the Earth’s crust at continental scale are likely responsive to

the forcing caused by variations of a number of climate-related parameters (Zerbini,

Raicich, et al., 2013). The MEI v2 index reflects the characteristics of the ENSO
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phenomenon and is based on five main variables. They are: sea-level pressure,

sea surface temperature, zonal and meridional components of surface winds and

outgoing longwave radiation. The comparison of the first four time components of

the GPS Up with the MEI v2 index shows correlations with significance equal or

larger than 99% for the second, third and fourth modes of variability. In particular,

the fourth time component (Figure 3.8), although explaining a small percentage of

variance, is characterized by a correlation coefficient with MEI v2 equal to -0.46.

The slope change occurring at the beginning of 2015 at the end of 5-year ENSO

negative state is recognizable in both the MEI (Figure 4.25) and in the fourth

time component of the GPS Up coordinate (Figure 3.8). Similar features can also

be recognized in the third (Figure 3.6) and second (Figure 3.4) time components.

The spatial distribution of this modes of variability seems to indicate two different

coherent behaviours over the network. One is that of the stations located in the

north and in the south, namely in Ireland, northern Great Britain, Scandinavia,

central and southeastern Mediterranean. The other one refers to the stations

located in Spain, Central and Eastern Europe.

These results are indicative of the fact that fingerprints of ENSO, which is a

complex global scale phenomenon, can be clearly identified in the time series of

the height coordinate of the GPS stations. Nevertheless, the physical processes

causing the observed modulations of the observed signals are still lacking adequate

understanding.
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Venegàs, S., Lawrence A. Mysak, and David N. Straub (1996)

“Evidence for interannual and interdecadal climate variability in the South

Atlantic”. In: Geophysical Research Letters 23.19, pp. 2673–2676. doi: 10.

1029/96GL02373. eprint: https://agupubs.onlinelibrary.wiley.com/doi/

pdf/10.1029/96GL02373. url: https://agupubs.onlinelibrary.wiley.

com/doi/abs/10.1029/96GL02373.

Wooden, W.H. (1985)

“NAVSTAR Global Positioning System: 1985”. In: Proceedings 1st International

Symposium on Precise Positioning with the Global Positioning System. Ed. by

C. Goad. Vol. 1. US Department of Commerce, pp. 403–412. url: https:

//apps.dtic.mil/dtic/tr/fulltext/u2/a140793.pdf.

Working Group I to the Fifth Assessment Report of the IPCC (2013)

“Summary for Policymakers”. In: Climate Change 2013: The Physical Science

Basis. Ed. by T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J.

Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley. New York: Cambridge

University Press.

World Meteorological Organization (WMO) (2013)

Assessment of the observed extreme conditions during late boreal winter 2011/2012.

url: http://www.wmo.int/pages/prog/wcp/wcdmp/documents/Coldspell2012.

pdf (visited on 12/30/2019).

Wu, W., D.L. Massart, and S. de Jong (1997)

“The kernel PCA algorithms for wide data. Part I: Theory and algorithms”. In:

Chemometrics and Intelligent Laboratory Systems 36.2, pp. 165–172. issn: 0169-

7439. doi: https://doi.org/10.1016/S0169-7439(97)00010-5. url: http:

//www.sciencedirect.com/science/article/pii/S0169743997000105.

Zanetti, Francesco (2007)
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Appendix A

GPS Stations list

GPS station name Latitude (◦) Longitude (◦)

ACOR 43.3644 N 8.3989 W

ALME 36.8525 N 2.4594 W

ALSA 42.8915 N 2.1644 W

AMUR 40.9072 N 16.6040 W

APPL 51.0569 N 4.1996 W

ARAC 37.8939 N 6.5654 W

ARSP 40.2067 N 5.0827 W

AUT1 40.5668 N 23.0037 E

BAIA 47.6518 N 23.5577 E

BMHG 49.6592 N 1.8296 W

BNAF 37.2324 N 8.1267 W

BOR1 52.2769 N 17.0735 E

BPDL 52.0353 N 23.1274 E

BUCK 57.6761 N 2.9615 W

CACI 47.0569 N 3.9328 E

CANT 43.4720 N 3.7981 W

CASB 53.8507 N 9.2873 W

CASC 38.6934 N 9.4185 W

CEU1 35.8920 N 5.3064 W

CLFD 45.7610 N 3.1111 E

CORL 37.8944 N 13.3039 E

COST 44.1615 N 28.6575 E

CRAO 44.4132 N 33.9910 E

CTAB 49.4098 N 14.6802 E

DENI 38.8348 N 0.1037 E

DEVA 45.8784 N 22.9135 E
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ELBA 42.7529 N 10.2111 E

EOST 48.5798 N 7.7625 E

EUSK 50.6741 N 6.7635 E

FFMJ 50.0956 N 8.665 E

GAIA 41.1060 N 8.5891 W

GIUR 40.1244 N 18.4301 E

GLOS 49.1215 N 0.2816 E

GLSV 50.3642 N 30.4967 E

HERS 50.8673 N 0.3363 E

HIRS 57.5911 N 9.9676 E

INGR 41.8281 N 12.5148 E

KIRK 54.8395 N 4.0474 W

KIRU 67.8573 N 20.9685 E

KLOK 39.5647 N 22.0144 E

KLRE 54.9649 N 6.6180 W

KRAW 50.0661 N 19.9205 E

KURE 58.2556 N 22.5101 E

LAMA 53.8924 N 20.6700 E

LANU 39.8827 N 9.5484 E

LBUG 44.9454 N 0.9211 E

LDB2 52.2091 N 14.1209 E

LEIJ 51.3540 N 12.3741 E

LERM 42.0266 N 3.7568 W

LLIV 42.4781 N 1.9732 E

LODZ 51.7787 N 19.4595 E

LOVJ 67.8909 N 34.6159 E

LPPZ 48.4463 N 4.7604 W

LROC 46.1589 N 1.2193 W

LUMI 42.6029 N 8.8274 E

MABZ 46.6860 N 10.5511 E

MACY 52.5889 N 3.8518 W

MALL 39.5526 N 2.6246 E

MAN2 48.0186 N 0.1553 E

MAR6 60.5951 N 17.2585 E

MARS 43.2788 N 5.3538 E

METS 60.2175 N 24.3953 E
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MIMZ 44.2006 N 1.2283 W

MOBN 55.1149 N 36.5695 E

MSEL 44.5200 N 11.6465 E

MSRU 38.2638 N 15.5083 E

MUEJ 48.1490 N 11.5682 E

NOA1 38.0471 N 23.8641 E

NOT1 36.8758 N 14.9898 E

OPMT 48.8359 N 2.3349 E

ORID 41.1273 N 20.7941 E

OROS 46.5552 N 20.6714 E

OSLS 59.7366 N 10.3678 E

OXFR 51.8239 N 1.2885 W

PACA 40.8704 N 14.5564 E

PENC 47.7896 N 19.2815 E

POLV 40.6026 N 34.5429 E

PTBB 52.2962 N 10.4598 E

RAT0 63.9856 N 20.8956 E

RSTO 42.6584 N 14.0015 E

SKE0 64.8792 N 21.0483 E

SMID 55.6406 N 9.5593 E

SMSP 49.1152 N 4.5813 E

SOFI 42.5561 N 23.3947 E

SONS 39.6753 N 3.9639 W

SPRN 47.6836 N 16.5831 E

SPT0 57.7149 N 12.8914 E

SRJV 43.8678 N 18.4139 E

STAS 59.0177 N 5.5986 E

SVTL 60.5328 N 29.7809 E

SWAN 53.7365 N 0.5050 W

SWKI 54.0986 N 22.9282 E

TERU 40.3505 N 1.1243 W

TGGC 45.1243 N 25.7406 E

TLIA 43.5614 N 1.4806 E

TORI 45.0634 N 7.6613 E

TRDS 63.3714 N 10.3192 E

TRIE 45.7097 N 13.7635 E
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TUC2 35.5332 N 34.0706 E

VAAS 62.9612 N 21.7706 E

VARS 70.3364 N 31.0312 E

VIL0 64.6978 N 16.5599 E

VIS0 57.6539 N 18.3673 E

WARN 54.1698 N 12.1014 E

WSRT 52.9146 N 3.6045 E

ZIMM 46.8771 N 7.4653 E

Table A.1: GPS station name, latitude and longitude.
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