
Alma Mater Studiorum
University of Bologna

Campus of Cesena
Department of Informatics - Science and Engineering
Master’s degree in Engineering and computer science

AutoML: A new methodology to
automate data pre-processing pipelines

Thesis in the subject of
Data Mining

supervisor presented by
Professor Matteo Golfarelli Joseph Giovanelli

in collaboration with
Professor Alberto Abelló
Dr. Besim Bilalli

March 19th 2020



2



Thesis advisor: Professor Matteo Golfarelli Joseph Giovanelli

AutoML: A new methodology to automate data
pre-processing pipelines

Abstract

It is well known that we are living in the Big Data Era. Indeed, the exponential growth of
Internet of Things, Web of Things and Pervasive Computing systems greatly increased
the amount of stored data. Thanks to the availability of data, the figure of the Data
Scientist has become one of the most sought, because he is capable of transforming
data, performing analysis on it, and applying Machine Learning techniques to improve
the business decisions of companies. Yet, Data Scientists do not scale. It is almost
impossible to balance their number and the required effort to analyze the increasingly
growing sizes of available data. Furthermore, today more and more non-experts use
Machine Learning tools to perform data analysis but they do not have the required
knowledge. To this end, tools that help them throughout the Machine Learning process
have been developed and are typically referred to as AutoML tools. However, even
with the presence of such tools, raw data (i.e., without being pre-processed) are rarely
ready to be consumed, and generally perform poorly when consumed in a raw form. A
pre-processing phase (i.e., application of a set of transformations), which improves the
quality of the data and makes it suitable for algorithms is usually required.
Most of AutoML tools do not consider this preliminary part, even though it has already
shown to improve the final performance. Moreover, there exist a few works that actually
support pre-processing, but they provide just the application of a fixed series of trans-
formations, decided a priori, not considering the nature of the data, the used algorithm,
or simply that the order of the transformations could affect the final result. In this
thesis we propose a new methodology that allows to provide a series of pre-processing
transformations according to the specific presented case. Our approach analyzes the
nature of the data, the algorithm we intend to use, and the impact that the order of
transformations could have.

3



To all who have always been there.

4



Acknowledgments

The success of this thesis is certainly merit of my supervisor, Matteo Golfarelli, who gave me
the opportunity to undertake the amazing experience at UPC, Universitat Politècnica de la
Catalunya, who always offered me technical support, despite the distance, and continues to
offer me professional growth opportunities. I would like to thank Alberto Abello and Besim
Bilalli in the same way, they followedme step by step throughout the research. The welcome
in Barcelona was the best and your collaboration was precious. Not least I can thank the two
corresponding research groups. Regarding the prof. Golfarelli’s one, in Cesena, I would like
to thank Enrico, Matteo, Anna, Nicola and Sara for their support, even in the most disori-
ented moments. In the same way I would like to thank the whole research group of prof.
Abello in Barcelona, especially Moditha, Rediana and Jam. The Spanish experience would
not have been the same without you.
Afterwards, I’d like to thank someone who is not here today, for all the support she gave me,
not in just these last five years. Thanks Ilaria, for a long time you were everything and, if it
were not for you, I would be a different person today. I would like also to thank Elena, Pa-
trizio, Giovanni, Giacomo and Teresa. I think it is a shared hope to be able to understand
the importance of the things not only whenwe have lost them. About this I would really like
to start from here and thank the people who have always been there for me. First of all, my
parents. Sometimes we do our worst just with the people who least deserve it, those who are
closest to us. Thank youMum. Thank you Dad. Not only for making this day possible but
also for enduring me day after day and continuing to give me love in the most sincere way,
without expecting anything back. I love you both. Thanks brother, your speeches are always
the most teaching ones. You have always been a reference point for me and you always will
be. When I was a child I thought there was no better family, I wish you knew that I still think
so. Thanks Alba for bringing bright into this family, which is now yours too, with Blue and
Lupo.
A lot things have been going on and there are some people that have always huggedme, talked
tome andhelpedme to get up. Those people aremyFriends. Not just simple friends, those of
a lifetime. In all these years, I messed up, a lot, I haven’t beenmyself at all, sometimes perhaps
too much but in any case they accepted me and they never made me feel alone. Who knows

5



me, knows how much this matters to me. I want to thank Alessandro who has always been
ready to come to me and pick me up, every time I went to slam, not just figuratively. I would
like to thank in the same way Edoardo T., Edoardo C., Alessandra, Eugenio, Sara, Michele,
Federica, Claudio and Camilla G. I have a really different relationship with each of you, but
each one is, in his own, special. You have always been close to me, most of you since kinder-
garten and, above all, you have always been a shoulder to lean on. I also would like to thank
Filippo, Camilla P., Giacomo B., Giovanni, Giacomo C., Alberto, Francesca, Lodovico and
Giulia. They would all deserve more than just a thank you line, but believe me, you would
have to read until tomorrow. My gratitude can never overcome laughter, tears, smiles, hugs
and so on.
Last but not least, in these five years I have had the possibility tomeet a lot of wonderful peo-
ple. I collaborated with them and developed numerous projects but not only; between beers,
football games, dinners and anything else we have had the opportunity to become friends
more than ever. Thanks Matteo, Andrea C., Marcello, Diego P., Luca, Giulia, Andrea P.,
Marco, Andrea D., Eugenio, Silvio, Diego M. and Vincenzo. Although, among all of them,
I feel I should thank in a particular way Giuseppe. We have been roommates, soccer team-
mates, classmates, project mates and so forth. In these five years we have shared a lot, thanks
for everything.

Thank you all, I feel really lucky to have you all in my life.

6



Contents

1 Introduction 13

2 Towards AutoML 17
2.1 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 The Machine Learning role in Data Science . . . . . . . . . . . . . . . 25

2.2.1 Domain & Data understanding . . . . . . . . . . . . . . . . . . 26
2.2.2 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.3 Data mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 The AutoML approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4 The state-of-the-art solutions . . . . . . . . . . . . . . . . . . . . . . . 42

2.4.1 Distributed tools . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.4.2 Cloud-based tools . . . . . . . . . . . . . . . . . . . . . . . . 44
2.4.3 Centralized tools . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 Bayesian techniques for AutoML 51
3.1 Bayesian techniques and the SMBO algorithm . . . . . . . . . . . . . . 52

3.1.1 Gaussian Processes (GP) regression . . . . . . . . . . . . . . . 55
3.1.2 Tree-structured Parzen Estimator (TPE) approach . . . . . . . . 56
3.1.3 Sequential Model-based Algorithm Configuration (SMAC) . . . 56

3.2 CASH and DPSO problems . . . . . . . . . . . . . . . . . . . . . . . . 58
3.2.1 SMBO as a CASH resolution . . . . . . . . . . . . . . . . . . . 61
3.2.2 SMBO as a DPSO resolution . . . . . . . . . . . . . . . . . . . 63

4 Automated Data Pre-processing 67
4.1 General architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2 Offline phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2.1 Intermediate table building . . . . . . . . . . . . . . . . . . . . 75
4.2.2 SMBO experiments and insights interpretation . . . . . . . . . 79
4.2.3 Meta-learning process . . . . . . . . . . . . . . . . . . . . . . 85

7



4.3 Online phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.3.1 Data pipeline prototypes building . . . . . . . . . . . . . . . . 93
4.3.2 Data pipeline prototypes optimization . . . . . . . . . . . . . . 96

5 Evaluation 97
5.1 Data Pre-processing importance . . . . . . . . . . . . . . . . . . . . . . 98
5.2 Evaluation of the Automated Data Pre-processing approach . . . . . . . 100

6 Conclusions and future developments 107

References 111

8



Listing of figures

2.1 Machine Learning process scheme . . . . . . . . . . . . . . . . . . . . 18
2.2 Graphic representation of the outcome of a classifier . . . . . . . . . . 21
2.3 Graphic representation of the cross validation technique . . . . . . . . . 24
2.4 Decision Tree example . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5 Example of how Decision Tree splits work . . . . . . . . . . . . . . . . 35
2.6 Two-dimensional representation of K-Nearest Neighbor . . . . . . . . . 36
2.7 Trend of the growth of human and machine-generated data . . . . . . . 39
2.8 MLBase infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.9 Auto-Sklearn infrastructure . . . . . . . . . . . . . . . . . . . . . . . . 47
2.10 Auto-Sklearn Pre-processing operators and machine learning algorithms 48
2.11 A Quemy’s pipeline instance . . . . . . . . . . . . . . . . . . . . . . . 49
2.12 Quemy’s reseacrh space . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1 SMBO algorithm example . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 Gaussian Processes (GP) interpolation . . . . . . . . . . . . . . . . . . 55
3.3 Example of a Regression Decision Tree . . . . . . . . . . . . . . . . . 57
3.4 Example of Random Forest . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5 Machine Learning problems scheme . . . . . . . . . . . . . . . . . . . 59
3.6 A combined hierarchical hyper-parameter optimization problem example 61
3.7 Hierarchical Dependencies in CASH and DPSO problems . . . . . . . . 63
3.8 Quemy’s experiments results, accuracy changes in 100 iterations . . . . 64
3.9 Quemy’s experiments results, best pipelines explored . . . . . . . . . . 65

4.1 Case in which the global application of the transformations is incorrect . 69
4.2 Previous case applying the transformations only to compatible attributes 69
4.3 Domain and Co-domain of the considered transformations . . . . . . . 70
4.4 Naive approach to consider all the data pipeline prototypes . . . . . . . 71
4.5 Online phase of our approach . . . . . . . . . . . . . . . . . . . . . . . 72
4.6 Online phase on how to find the data pipeline prototypes . . . . . . . . 72

9



4.7 Offline phase that allows us to build the Dependency table . . . . . . . 74
4.8 Table resulting from the compatibility analysis . . . . . . . . . . . . . . 75
4.9 Compatibility analysis, Encode-Normalize representation . . . . . . . . 76
4.10 Compatibility analysis, Discretize-Normalize representation . . . . . . 76
4.11 Table of constraints not considering the used framework . . . . . . . . . 77
4.12 Intermediate table construction . . . . . . . . . . . . . . . . . . . . . . 78
4.13 Graphical representation of the performed SMBO experiments . . . . . 80
4.14 Result label extraction from the winning data pipeline . . . . . . . . . . 81
4.15 Enumeration of all possible pipelines . . . . . . . . . . . . . . . . . . . 82
4.16 Graphs depicting the number of valid and invalid results . . . . . . . . 83
4.17 Graphs depicting the labels about the valid results . . . . . . . . . . . . 84
4.18 Graphs depicting the labels about the valid results . . . . . . . . . . . . 84
4.19 Meta-learning working . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.20 Graphs depicting the labels before and after the grouping . . . . . . . . 87
4.21 Effects of Rebalancing step . . . . . . . . . . . . . . . . . . . . . . . . 90
4.22 Example of assigning an order to the no_order instances . . . . . . . . 91
4.23 Comparison of how to order no_order instances . . . . . . . . . . . . . 91
4.24 Study of meta-learners with different seeds . . . . . . . . . . . . . . . . 92
4.25 Comparison of performances between GBM and XGBoost . . . . . . . 93
4.26 Table of constraints after the SMBO experiments . . . . . . . . . . . . 94
4.27 BPMN scheme representing the possible data pipeline prototypes . . . . 95

5.1 Comparison between Pre-processing and Modeling optimizations . . . . 99
5.2 Comparison between our approach and the Quemy’s one . . . . . . . . 101
5.3 Estimation of how much the winning approach improves the result . . . 103
5.4 Discretization transformation’s role in our pipeline . . . . . . . . . . . 104
5.5 Comparison between our approach and the Pseudo-exhaustive one . . . 105

10



List of Tables

2.1 Confusion Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 A combined hierarchical hyper-parameter optimization problem example 62

4.1 Rules for validating and assigning the result label to two configurations . 82
4.2 Feature - Rebalance results . . . . . . . . . . . . . . . . . . . . . . . . 89
4.3 Feature - Rebalance results with oversampling . . . . . . . . . . . . . . 89

5.1 Comparison between Pre-processing and Modeling optimizations results 99

11



12



1
Introduction

Coca-Cola [25], with more than 500 drink brands sold in more than 200 countries, is the
largest beverage company in theworld. Amonitoring system throughout all the supply chain
generates a large amount of data and the company exploits it by supporting new product de-
velopment.
Heineken [26], a worldwide brewing leader, is looking to catapult its success in the United
States by leveraging the vast amount of data they collect. From data-driven marketing [29],
to the Internet of Things [24], to improving operations through data analytics [17], Heineken
looks to improve its operations, marketing, advertising and customer service.
As we can see, the concept ofMachine Learning [10] is growing in popularity, specially in the
world of e-commerce and business activity. In Computer Science, Machine Learning is a
field of study that gives computers the ability to learn without being explicitly programmed.
In a nutshell, it means to acquire the capacity to observe, see patterns such as grouping of
similar objects and then apply what it has been discovered. This is typically a human skill but

13



machines are even better in it because they can usemore data and datawithmore dimensions.
Most of the methods used in Machine Learning are exploited in Data Science [9] to analyze
and extract information from the data. Vice versa, some Data Science techniques are fre-
quently applied to improveMachine Learning results. In particular, in this thesis we analyze
in detail the Pre-processing [20] techniques. Data Scientists transform the data through these
techniques based on the nature of the data and the Machine Learning algorithm to be used.
The Pre-processing step has become really important in the process of extracting knowledge
from data, because nowadays more and more raw data perform poorly or cannot be directly
consumed by Machine Learning algorithms as they are. All this comes from an exponential
growth of Internet of Things, Web of Things [15], and Pervasive Computing [33] systems that
produce large amounts of data, often unstructured, or otherwise not suitable for the algo-
rithms in question. This growth has also led to an increase in the need to analyze such data
and derive profit from it. TheData Scientist has becomeone of themost sought figures of the
twenty-first century, but the numerous skills expected (IT, mathematics, statistics, business,
cooperation)make it difficult to increase the number ofData Scientists. All this leads to non-
expert users performing data analysis and Machine Learning without having the adequate
knowledge. The result is that non-experts are overwhelmed by the large amount of available
and applicable techniques, hence automatic tools that help them throughout the Machine
Learning process are required. These tools are typically referred to as AutoML tools. Yet,
they focusmoreon the applicationofMachineLearning algorithms andpay little attention to
the Pre-processing part. Moreover, the few ones that actually support the automation of this
phase provide just the application of a fixed series of transformations, called pipelines [32]. A
fixed pipelinemeans that it is decided a priori, and it does not consider the nature of the data,
the used algorithm, or simply that the order of transformations could affect the final result.
The fixed pipeline approach is widely used, since trying out several different Pre-processing
pipelines on a data-set is a highly expensive operation and the number of possible pipelines
increases with the increase of the number of transformations involved.
In this thesis, we propose a new methodology that allows to recommend a Pre-processing
pipeline according to the specific presented case. We studied the transformations, trying
to understand their domain, co-domain and how they work. Thanks to this study we re-
alized that, in some cases the semantics of transformations imposes a predetermined order.

14



In other cases, instead, it is the used technology that does not allow some pipelines. In this
way we managed to decrease the total search space and therefore the number of pipelines to
be tested. Moreover, since some constraints are not imposed neither by the semantics of the
transformations nor by the used technology, but rather by the nature of the data-set and by
the used algorithm, we had to perform some experiments. Specifically, we collected several
different data-sets and, considering the most used Machine Learning algorithms, we tested
various Pre-processing pipelines. In this way, we discovered hidden insights that the seman-
tics of transformations did not show. But above all, we collected enough data to be able to use
theMachine Learning algorithms themselves to discover the dependencies between transfor-
mations, data-sets, and used algorithms. We were able to discard some other pipelines, and
hence test just the promising ones. In order to evaluate the pipelines and choose the best one,
we used the Bayesian techniques [3], which is state-of-the-art in this regard. Our approach
takes into account the nature of the data, the algorithmwe intend to use, and the impact that
the order of transformations could have. This will open the road to more effective AutoML
tools.
In chapter 2, we give a comprehensive introduction toMachine Learning, Data Science, and
the application of these branches to real-case problems. In addition, we offer an analysis of
the state-of-the-art of the available AutoML tools, with related pros and cons. In chapter 3,
we provide a detailed explanation about Bayesian techniques and how they are applied in the
AutoML field. Indeed, they underlie most AutoML tools, including ours. In chapter 4, we
illustrate our approach and in 5, we discuss the results of some experiments performed with
the aim to evaluate it. Finally, in 6, we discuss the contribution given by our research, the
limitations of this work and outline future work.

15



16



2
Towards AutoML

In order to have a clear comprehension of the thesis, in this chapter it is given an introduction
to the topic. Before talking aboutAutoML,which stands forAutomatedMachine Learning,
a background ofMachine Learning is needed and, no less important is its link with the Data
Science field. In fact, the value of the entire project resolves around this connection.
Once this knowledge is provided, we expose the objectives of the AutoML but also the need
and the causes that led to the development of this branch. Further, we present a state-of-the-
art overview and the related works on this topic.

17



2.1 Machine Learning

We usemachines to solve problems, thus we write down a sequence of instructions and com-
pose an algorithm, which in turn is capable of transforming an input to an output. Although
this approach allows us to to solve a lot of problems, some others are not easily solved with
an algorithm. For example, we can devise an algorithm to sort an array but not to distinguish
spam and legitimate emails. We know the input and the output, respectively an email doc-
ument and an answer yes/no indicating whether the message is spam or not, but we do not
how to transform the input to the output.
We know that humans learn from their past experiences and machines follow instructions
given by humans. But what if humans can train the machines to learn from past data? In
other words, we would like to collect a set of messages, which we know if they are spam or
not, and we would like the computer to learn how to distinguish them when a new email
arrives.

Figure 2.1: This scheme summarizes a typical Machine Learning flow.

18



In Figure 2.1 we can see a scheme that describes well the above mentioned example. The
collected set ofmessages, fromwhich themachinewill learn to tell spamemail from legitimate
ones, is also calledTrain Set, sometimes abbreviated toTS.This name is coming from the fact
that the computer is using it to train itself to understand the class (or label) of messages. In
this case, the class is one of “spam” / “not spam”. TheMachine Learning Algorithm is the
core of the process, indeed, applying it themachine can learn. This phase is calledTraining or
Learning Phase. The result isModel, the outcome of an induction process on the training set
data. Through this a newmessage can be categorized: a prediction of the class can be inferred.
Machine learning (ML) tasks are typically classified into three broad categories, depending on
the nature of the learning method:

• Supervised learning, examples of inputs and relateddesired outputs are presented, thus
the goal is to learn a general rule that maps inputs to outputs;

• Unsupervised learning, no desired output is given and the goal is to find a structure in
the input;

• Reinforcement learning, the idea here is to learn through a dynamic environment.
Some actions are performed and we want to understand which ones have a positive
effect and which not. To achieve this goal, in addition to past data, the environment
tells us, through a score, how well we are doing.

Another categorization of Machine Learning tasks arises when one considers, instead, the
kind of input and output:

• Classification task, inputs are divided into two or more classes, and the learner must
produce a model that assigns unseen inputs to one or (multi-label classification) more
of these classes. This is typically tackled in a supervised way;

• Regression task, also a supervised problem, the outputs are continuous rather than
discrete. For instance, predict the price of a used car given some car attributes that
could affect a car’s worth, such as brand, year, mileage, etc.;

• Clustering task, a set of inputs has to be divided into groups. Unlike in classification,
the groups are not known beforehand, making this typically an unsupervised task;

19



• Density estimation, the goal is to find the distribution of inputs in some space;

• Dimensionality reduction, simplifies inputs bymapping them into a lower-dimensional
space.

Machine Learning covers a wide range of problems and, in order to fully understand them,
each one requires its own in-depth study on the subject.
In this thesis, we focus on Supervised learning, in particular Classification problems. An
example would be the problem of distinguishing between “spam” and “non spam” emails.
First of all, we list the three different Classification types:

• Binary, assign an instance to one of two possible classes (often called positive and neg-
ative one),

• Multiclass, assign an instance to one of n > 2 possible classes;

• Multilabel, assign an instance to a subsetm ≤ n of the possible classes.

Regardless of the number of the classes, the problem can be formalized as follows:

• TheMachine Learning algorithm is providedwith a set of input/output pairs (xi, yi) ∈
X × Y,

• The learned model consists of a function f : X −→ Y which maps inputs into their
outputs (e.g. classify emails).

Training a model implies searching through the space of possible models (aka hypotheses).
Such a search, typically aims at fitting the available training examples well according to a cho-
sen performance measure. There are several measures with different meanings, and they are
explained below.
Considering aBinaryClassificationproblem,wehave instances belonging to the positive class,
for example “spam”, and others to the negative class, “not spam”. Usually the positive class is
the one we are looking for, the one we are interested in distinguishing. Given theN instances
to be classified, the result of each of the classification attempts can be:

• True Positive (TP): a positive instance has been correctly assigned to the positives;

20



• True Negative (TN): a negative instance has been correctly assigned to negatives;

• False Positive (FP): a negative instance has been incorrectly assigned to positives. Also
called Type I or False error;

• FalseNegative (FN): a positive instancehas been incorrectly assigned tonegatives. Also
called Type II or Miss error.

In Figure 2.2 we have a graphic representation.

Figure 2.2: Graphic representaঞon of the outcome of a classifier. FromWikimedia Commons, the free media repository.

TheConfusionMatrix (Table 2.1) evaluates the ability of a classifier basedon these indicators.

Predicted Class
Actual Class Positive Negative

Positive TP FN
Negative FP TN

Table 2.1: Confusion Matrix.

21

https://commons.wikimedia.org/wiki/File:Precisionrecall.svg


In the cells TP,TN, FP andFN there are the absolute frequencies of the relative classifications
and we can define the following metrics:

Accuracy :
TP + TN

TP + TN + FP + FN
=

TP + TN
N

Misclassificationerror :
FP + FN

TP + TN + FP + FN
= 1 − Accuracy

Accuracy is the most widely used metric to synthesize the information of a Confusion Ma-
trix but is not appropriate if the classes differ a lot in terms of the number of instances they
contain. Considering a Binary Classification problem in which we have

• 9990 records of the first class;

• 10 records of the second class;

Amodel that always returns the first class will have an accuracy of 9990
10000 = 99.9%. A data-set

like this one is called imbalanced data-set.
Precision and Recall are two metrics used in applications where the correct classification of
positive class records ismore important. Considering the positive class the “rare” one, we can
have a clearer idea of the classifier’s behavior on these instances:

• Precisionmeasures the fraction of record results actually positive among all those who
were classified as such. High values indicate that few negative class records were incor-
rectly classified as positive;

• Recall measures the fraction of positive records correctly classified. High values indi-
cate that few records of the positive class were incorrectly classified as negatives;

• F-measure is defined as the harmonic mean of Precision and Recall and, indeed, con-
veys the balance between them.

22



Precision :
TP

TP + FP

Recall :
TP

TP + FN

F −measure : 2 ∗ Precision ∗ Recall
Precision + Recall

Precision, Recall and F-measure are metrics that can be calculated for each class by reversing
the positive class with the negative and vice versa.
In the casewehavemore than one class, the confusionmatrixwill ben×n, therefore a column
and a row for each class, and the above metrics can be calculated for each class considering
the class in question as positive and all the others as negative.
Last but not least, a metric similar to the Accuracy, but which avoids inflated performance
estimates on imbalanced data-sets, is Balanced Accuracy [4,18]. It is the average of recall scores
per class or, equivalently, raw Accuracy where each instance is weighted according to the in-
verse prevalence of its true class. Thus for balanced data-sets, thatmetric is equal toAccuracy.
Now thatwe knowwhat performancemeasures are, we are going to understandhow they can
be used properly. In fact, if we measured the performance on the data used for training, we
would overestimate its goodness.
Itwas alreadymentioned that training amodel aims at learning a functionwhichmaps inputs
into outputs. Even if this process is done through the instances at our disposal, the learned
model should performwell on unseen data. Ideally, in aMachine Learning problemwe have
enough amount of data to both build themodel and test it. Test themodelmeans check effec-
tively that it generalizes, that is, it also performswell onnon-train data. Thismeans evaluating
the above metrics on the new instances. The way this is done is to split the whole amount
of data into two portions: Train and Test Set. The algorithm is trained in the Train Set and
tested in the Test Set. This method is called Hold-Out and generally it could be applied by
keeping 60% (or 80%) of the data for the train and the remaining 40% (or 20%) for the test.
However, in practice it happens that the only data available is that of the Training Set, or
better said, it may happen that the data available is not enough for training and testing the
model. This is where sampling techniques come into play to evaluate the model, without
incurring Over-fitting or Under-fitting. Indeed the risk would be that of keeping the Train-

23



ing set big and the Test set small which leads to better accuracy in the learning phase. The
model perfectly fits the data but it does not “learn the rule” and thus it does not generalize.
The lattermeans that themodel does not performwell on unseen data (Over-fitting). On the
other hand, if the data for training is reduced, the algorithmmay not have enough instances
to build a good model and thus not capture enough patterns. This means it would perform
poorly both in Train and Test Set (Under-fitting). Therefore, what is required is a method
that provides sample data for training the model and also leaves sample data to validate it. K-
Fold cross validation does exactly that. It can be viewed as repeatedHold-Out and we simply
average scores after K different runs. In practice, the data set is divided into groups (folds) of
equal number, iteratively excludes one group at a time and tries to predict it with the groups
not excluded. Every data point gets to be in the Test Set exactly once, and gets to be in the
Train Set k-1 times. This significantly reduces Under-fitting as we are using most of the data
for fitting, and also significantly reduces Over-fitting as most of the data is also being used in
Test Set. In Figure 2.3 we can observe a working example.

Figure 2.3: Graphic representaঞon of the cross validaঞon technique. From Georgios Drakos’s arঞcle in Medium, Cross-
Validaঞon [11].

This method is a good choice when we have a minimum amount of data and we get suffi-
ciently big difference in result quality between folds. Through the number of folds we can
control the used amount of data to train and test the learners in the folds. As a general rule, we

24



choose k=5 or k=10, as these values have been shown empirically to yield test error estimates
that suffer neither from excessively high Bias nor highVariance.

• The Bias error is an error from erroneous assumptions in the learning algorithm. High
Bias can cause an algorithm to miss the relevant relations between features and target
outputs (Under-fitting);

• The Variance is an error from sensitivity to small fluctuations in the training set. High
variance can cause an algorithm tomodel the randomnoise in the training data, rather
than the intended outputs (Over-fitting).

Leave-one-out cross validation is K-fold Cross Validation taken to its logical extreme, with
K equal to N, the number of instances in the set. That means that N separate times, the
function approximator is trained on all the data except for one instance and a prediction is
made for that instance. As before the average error is computed and used to evaluate the
model. The evaluation given by Leave-One-Out Cross Validation is recommended in cases
where the data-set is particularly small and you want to “lose” the least possible number of
instances for the training but, in the meanwhile, we want to validate all the instances. A
drawback of this approach is the cost involved for building as manymodels as the number of
instances. A crucial point of the Cross Validation techniques is that their purpose is not to
come up with our final model: assuming to use 5 folds, we do not use these 5 models to do
any real prediction, for that we want to use all the data because we have to come up with the
best model possible.

2.2 TheMachine Learning role in Data Science

Nowadays several different companies are using Machine Learning techniques behind the
scenes both to impact our everyday lives and to improve their own businesses. Specifically,
a massive quantity of data is collected to make predictions and hence to take decisions that
are more profitable for the company. The application ofMachine Learningmethods to large
databases, with the purpose of extracting knowledge and useful information, is calledData
Mining. The analogy is that a large volumeof earth and rawmaterial is extracted fromamine,
which when processed leads to a small amount of very precious material; similarly, in Data

25



Mining, a large volumeof rawdata is processed to construct a simplemodelwith valuable use.
However,DataMining is just apieceof a larger process calledKnowledgeDiscovery inDatabases,
also abbreviated to KDD. The goal of knowledge discovery is wider than just applying Ma-
chine Learning techniques and finding a suitable model. We are interested on what the data
itself could bring, for example to detect similarities and to find interesting and unexpected
patterns. Most of the time, we want to describe better the data, to reason about the infor-
mation we find, and to understand and explain why there are certain patterns. Discovering
knowledge from data should therefore be seen as a process containing several steps:

1. Domain &Data understanding;

2. Data Preparation, also called Pre-processing;

3. Data mining to discover patterns;

4. Post-processing of discovered patterns;

5. Results manipulations and interpretation, it is important to explain, read and present
the results obtained in the correct way.

Belowwewill go deeper on the first three phases of this process, since they are those onwhich
this thesis focuses.

2.2.1 Domain & Data understanding

Certainly a fundamental requirement for carrying out a useful analysis is having understood
the domain of the data. Without that the Data Scientist, therefore the expert in charge to
discover and reason about data, would not be able to take conscious decisions in the mining
process. He has to knowwhat the inputmeans, how to interpret the results; he has to be able
to recognize if a valuable outcome appears and, if not, why.
On the other hand,whatmakes aData Science task different froma commonMachineLearn-
ing one is not the domain knowledge to acquire but rather that of data. Knowing the nature
of the data allows the Data Scientist to manipulate and transform it coherently. Usually in
Machine Learning problems we have just numerical data, of the set of real numbers. In our

26



case the data-sets are more heterogeneous.
First of all, sincewe definedwhat aClassification task consist of, butwe did not have formally
defined what a data-set is, we proceed to explain it.

We said:

• TheMachine Learning algorithm is providedwith a set of input/output pairs (xi, yi) ∈
X × Y.

The set of all the (xi, yi) pairs provided as input constitutes the data-set. Specifically, each pair
is considered an instance, or record, andwhile yi is the class, therefore a single value belonging
to a finite set, xi is a more complex component. Indeed this latter is formed by columns,
commonly called features or attributes. These columns represent the characteristics of each
instance; in other words they provide a description of it. Previously we also said:

• The learned model consists of a function f : X −→ Y which maps inputs into their
outputs (e.g. classify emails).

Even here, considering what we have just explained, we can go deeper in what themodel con-
sists of. Think, for example, of a supermarket chain that has hundreds of stores all over a
country, selling thousands of goods to millions of customers. The point of sale terminals
record the details of each transaction: date, customer identification code, goods bought and
their amount, total money spent, and so forth. We now know that these represent the fea-
tures. What the supermarket chainwants, is to be able to predictwho are the likely customers
for a product. Considering the product’s type as class, theMachineLearning algorithm is try-
ing to find some patterns in the features that allow the supermarket to determine the prod-
uct’s type. So, the learned model f : X −→ Y establishes relations between the domain of
the features and the domain of the classes.
Features can be of the following types:

• Numerical, express a measurable quantity and they could be of two kinds:

– The ones where the difference between the values has a meaning, i.e. there is a
unit ofmeasurement, for instance the date or the temperature inCelsius degrees;

27



– Theoneswhich also have an absolute zero andhence the ratio between the values
has a meaning too, e.g. age, mass, length and so on;

• Categorical, they express qualitative phenomena and stand out in:

– Nominals, different names of values. We can only distinguish them, e.g. gender
or eyes color;

– Ordinals, values which allow us to sort objects based on the attribute value such
as a rating or the hardness of a mineral.

There are actually many other types of data, such as images, text, space-time data and so on.
Generally the area of datamining focuses on categorical and numerical data, also called struc-
tured data. Another type that we could run into in this category is the Timestamp, sequence
of characters or encoded information identifying when a certain event occurred, usually giv-
ing date and time of day, sometimes accurate to a small fraction of a second.

2.2.2 Data Preparation

As we just said in the previous section, knowing the nature of the data allows the Data Scien-
tist to manipulate and transform it coherently. The transformations which he uses are called
Pre-processing transformations because they are applied before the Machine Learning pro-
cess. It has been proven that they improve the classifier to predict better [2]. In litterature ,
there are several different transformations:

• Imputation;

• Rebalancing;

• Features Engineering;

• Discretization;

• Normalization;

• Encoding.

28



For each one we have many available operators; in this section we will go into detail on each
of them.
We start talking about the Imputation techniques. Sometimes, for some instances, the value
of some attributes could not be present. This could happen because the information was
not collected, e.g. the interviewee did not indicate his age and weight, or the attribute is not
applicable to all objects, e.g. the annual income does not make sense for children. However,
there are several different ways to handle it:

• Delete the objects that contain them, if the data-set is sufficiently numerous;

• Let the algorithm handle them;

• Manually fill in the missing values, generally too time consuming;

• Automatically fill in missing values, using the so called Imputation techniques.

These techniques are divided into:

• Univariate imputation techniques, which enter a constant value in place of missing
values or estimate them with the mean (or the mode) of the attribute in question;

• Multivariate imputation techniques, for each instance predict the value of themissing
attribute basedonother knownattributes. In this case,DataMining algorithmswould
be used to prepare input data for other Data Mining algorithms.

Instead, regarding theRe-balancing techniques, we are using themwhen we have to deal with
data-sets in which one or more classes have a far greater, or lesser, number of instances than
the others. These kinds of data-sets are called imbalanced data-sets and, using the data as it
is, could create problems when Machine Learning algorithms are applied. Since the goal of
the algorithms is to maximize the predictive accuracy, that is equivalent to minimize the mis-
classification error, for the classifier is more convenient to have a prediction tending towards
the majority class. In that way we would have a model which will not generalize. The Re-
balancing, also called re-sampling techniques were conceived to equilibrate the number of
instances for each class, making the algorithm learn on a balanced training data-set.
There are two main different approaches:

29



• Under-sampling, involves dropping some instances from the majority classes;

• Over-sampling, involves supplementing the instances of the minority classes.

Both have several different techniques, most of them based on the K-Nearest Neighbor Ma-
chine Learning algorithm. In a nutshell, the points of the training set are drawn in a multi-
dimensional space and, instead of discarding/adding points randomly, the sampling is done
in such away as tomaintain consistencywith existing points. For theUnder-sampling family
we can mention theNearMiss [37] and CondensedNearestNeighbor [16] techniques which try
to keep the distribution as representative as possible. For the Over-sampling family we can
mention the SMOTE [6] technique which on the other hand generates synthetic data points
based on the distance between the points in the multi-dimensional representation.
The Feature Engineering techniques are used because, as the dimensionality increases (num-
ber of features in the data-set), the data becomes progressivelymore scattered andmanyClus-
tering and Classification algorithms have difficulties when dealing with data-sets that have
high dimensions. The definitions of density and distance between points becomes less sig-
nificant, fundamental in algorithms such as the aforementioned K-Nearest Neighbor. This
phenomenon is called Curse of Dimensionality and the Features Engineering techniques are
used to deal with it:

• Principal Component Analysis (PCA), it is a projection method that transforms ob-
jects belonging to a p-dimensional space into a k-dimensional space (with k < p) pre-
serving the maximum information in the initial dimensions (the information is mea-
sured as total variance of the data-set);

• Feature selection, it aims at completely discarding some features from the analysis. In
particular, it is performed because some of them could be:

– Redundant, therefore duplicate the information contained in other attributes
due to a strong correlation between information;

– Irrelevant, for instance the student’s ID is often useless to predict the average of
the grades.

There are different techniques:

30



– Exhaustive approach, test all possible subsets of attributes and choose the one
that provides the best results on the test set using the predicted accuracy of the
mining algorithm as goodness function. Given n attributes, the number of pos-
sible subsets is 2n − 1;

– Non-exhaustive approaches:

* Embedded approaches, the selection of attributes is an integral part of the
Data Mining algorithm. The algorithm itself decides which attributes to
use (e.g. Decision Trees);

* Filtered approaches, the selection phase takes place before mining and with
criteria independent of the algorithmused (e.g. sets of attributes are chosen
whose element pairs have the lowest correlation level);

* Heuristic approaches, approximate the exhaustive approach using heuristic
search techniques.

Discretization means transformation of numerical attributes into categorical attributes, ag-
gregating values in intervals or categories. Indispensable to use somemining techniques (e.g.
Association Rules) and it can also be used to reduce the number of categories of a discrete
attribute.
Discretization requires to:

• Find the most suitable number of intervals;

• Define how to choose split points.

And there are two kinds of techniques:

• Unsupervised, do not exploit the knowledge about the class to which the elements
belong;

• Supervised, exploit the knowledge on the class to which the elements belong.

For the unsupervised family we can list the following techniques:

• Equi-Width, the range is divided into intervals of equal length;

31



• Equi-Frequency, also called Equi-Height, the range is divided into intervals with the
same, or similar, number of elements;

• K-medians, k groupings are identified in order to minimize the distance between the
points belonging to the same grouping.

Regarding the supervised discretization, the intervals are positioned in order to maximize
their “purity”. We fall into a classification problem: starting from classes, the intervals com-
posed of a single element, contiguous classes are merged recursively. A statistical measure of
purity is the entropy of the intervals. Each value v of an attributeA is a possible boundary for
division into the intervals A ≤ v ∧ A > v. We choose the value which preserves the greatest
information gain, i.e. the greatest reduction in entropy. The process is applied recursively
to the sub-intervals thus obtained, until a stop condition is reached, for example until the
information gain obtained becomes less than a certain threshold d.
Normalization techniques involve the application of a function thatmaps the entire set of val-
ues of an attribute into a new set so that each value in the starting set corresponds to a single
value in the arrival set. This allows the entire set of values to respect a certain property and
this is necessary to compare variables with different variation intervals. For example, think
of having to compare a person’s age with his income. In a classification problem, where you
want to predict the job of a person, an income difference of 50€ between two people means
they are similar, instead, 50 years of difference lead you to consider a completely different
class. We mention the two mainNormalization techniques:

• Max-Min normalization, theA attribute is rescaled so that the new values fall between
a new range: NewMinA andNewMaxA. The new value x′ is calculated from the start-
ing value x as follow:

x′ =
x −MinA

MaxA −MinA
∗ (NewMaxA −NewMinA) +NewMinA

• Z-score normalization, it changes the distribution of theA attribute so that it hasmean
0 and standard deviation 1:

x′ =
x − μA
δ2A

32



μA is the mean of the A attribute and δA its standard deviation.

In conclusion, there are the Encoding techinques. Often some algorithm implementations
are not working with categorical features. This causes an incompatibility between the data
we have and the data accepted. We have to convert the categorical features into numerical:
encode. There are mainly two techniques types:

• Ordinal Encoding, it transforms each categorical feature to one new feature of integers
(0 to n_categories - 1);

• One-Hot Encoding, it transforms each categorical feature with n_categories possible
values into n_categories binary features, with just one of them 1, and all others 0.

2.2.3 Data mining

Many learning techniques seek structural descriptions of what is learned, descriptions that
can become quite complex as sets of rules or decision trees. Since these descriptions can be
understood by people, they serve to explain what has been learned; in other words, to explain
the basis for new predictions. There are also other techniques, such as the Artificial Neu-
ral Networks (ANN), called black box techniques, which generally perform very well but
are effectively incomprehensible. Experience shows that, in many applications of Machine
Learning to Data Mining, the explicit knowledge structures acquired and the structural de-
scriptions are, at least, as important as the ability to obtain good results on new examples.
People often use data mining to gain knowledge, not just predictions. Getting knowledge
from the data is certainly something that enriches the result.
Belowwe illustrate three of themost used algorithms in the field of DataMining. In particu-
lar, since there are many peculiarities for each one, we will only argue the basic idea on which
they are based. Wewill explain the functioning of these particular algorithms, and not others,
both for the high expressiveness of some of them and also because they have been used in this
thesis project.
Decision Trees are one of the most widely used classification techniques that allow to repre-
sent a set of classification rules with a tree. A tree is a hierarchical structure consisting of a set
of nodes, linked by labeled and oriented arcs. There are two types of nodes:

33



• Leaf nodes which identify classes;

• The others which are labeled based on the attribute that partitions the instances.

The partitioning criterion represents the label of the arcs and each root-leaf path represents
a classification rule.

Figure 2.4: Decision Tree example on the Iris data-set, built using the well-known machine learning framework Weka.

In Figure 2.4 we see an example of a Decision Tree built on the Iris data-set. Iris is a genus
of plants that contains over 300 species. In the data-set in question there are 154 instances
of Iris classified according to three species: Iris setosa, Iris virginica and Iris versicolor. The
four features considered are the length and width of the sepal and petal. We can notice that
in the tree’s leafs some numbers are reported. It is not a coincidence that the sum of these
is the size of the data-set, indeed they represent the number of instances of the training set
classified according to the leaf. When only one number is present in the leaf node, it means
that all the instances in question have been correctly classified. Instead, in the case that two

34



numbers are present, the first number represents the instances correctly classified, the second
number counts the elements classified as such but belonging to another class.

Figure 2.5: Example of how Decision Tree splits work.

Decision tree expressivity is limited to the possibility of performing search space partitions
with conditions that involve only one attribute at a time: the decision boundary are parallel
to the axes. In Figure 2.5 we have an example. On the other hand, Decision trees are robust
to strongly correlated attributes because, in each split, they automatically assesses which at-
tributes to divide; and if there is a correlation between two attributes, one of them will not
be considered. A complex issue to address is to find the optimal split point in each attribute
but a Discretization technique can be used to manage the complexity of the search.
K-NearestNeighbor is an algorithm that, unlike the others, does not buildmodels but classify
the new records based on their similarity to the instances in the Train Set, for this reason they
are called lazy learners. We can say that, in a certain way, the Train Set is the model itself.
When a new instance needs to be classified, the nearest k points (neighbors) are used to per-
form the classification. The basic idea is: “if it walks like a duck, quacks like a duck, then it’s
probably a duck”.
In Figure 2.6 a graphical representation is shown.

35



Figure 2.6: Two-dimensional representaঞon of K-Nearest Neighbor.

They require:

• The training set;

• A metric to calculate the distance between records;

• The value of k, which is the number of neighbors to use.

The classification process involves:

• To calculate the distance to the instances in the training set

• To identify the k nearest neighbors

• To use the classes of the nearest neighbors to determine the class of the unknown in-
stance (e.g. choosing the one that appears most frequently)

The classification of a new instance z is obtained through the majority voting process among
Dz, therefore the k closest elements of the training setD:

yz = argmaxy∈Y
∑

(xi,yi)∈Dz

I(yi = y)

36



where Y is the set of class labels and and function I returns 1 if its argument is TRUE, 0
otherwise.
To operate correctly, the attributes must have the same scale of values and must therefore be
normalized during the Pre-processing phase. For example a difference of 0.5 is more signif-
icant on an attribute in which the range varies from 1.5 to 2.5 rather than on an attribute
that varies from 50 to 150. Moreover, they are very sensitive to the presence of irrelevant or
related attributes that will distort the distances between objects. For example if in a data set
of commercial products, in addition to standard attributes such as product category, year of
production and so on, we have the attributes “price without taxes” and “price with taxes”, as
high values of one correspond to high values of the other, the pricewill havemore importance
than normal. A Pre-processing step, such as feature selection or PCA, solves the problem.
Naive Bayes classifiers represent a probabilistic approach by modeling probabilistic relation-
ships between attributes and the class.
The conditional probability P(A|C) is the probability that the event A occurs knowing that
the event C has occurred. P(A,C) is the joint probability of the two events A and C, there-
fore the probability that both occur and it is defined as the conditional probability P(A|C),
multiplied by the probability that C actually occurs:

P(A,C) = P(A|C)P(C) = P(C|A)P(A)

Consequently we can define:

P(C|A) = P(A,C)
P(A)

P(A|C) = P(A,C)
P(C)

37



and with a simple mathematical equation we can reach the Bayes theorem:

P(C|A) = P(A,C)
P(A) =

P(A|C)P(C)
P(A)

P(A|C) = P(A,C)
P(C) =

P(C|A)P(A)
P(C)

Let the vectorA = (A1,A2, ...,An) describe the set of attributes and letC be the class variable.
If C is linked in a non-deterministic way to the values assumed by A we can treat the two
variables as random variables and capture their probabilistic relationships using P(C|A):

• Before the training phase, the probabilities P(C) and P(A) are calculated through the
training set;

• During the training phase, the probabilities P(C|A), called also a priori probabilities,
are learned for each combination of values assumed by A and C;

• Knowing these probabilities and applying the Bayes theorem, for a test record with
certain attributes values a, we calculate for each class c, the posterior probability P(c|a).
Then, we classify the test instance with the class whichmaximizes that posterior prob-
ability.

The main advantage of probabilistic reasoning over logical reasoning lies in the possibility of
reaching rational descriptions even when there is not enough deterministic information on
the functioning of the system. Since it is based on the calculation of the probabilities they are
very robust to: irrelevant features and noise:

• The noise is canceled during the calculation of P(A|C);

• IfA is an irrelevant attribute,P(A|C) is uniformlydistributedwith respect to the values
of C and therefore its contribution is also irrelevant.

A drawback could be that related attributes can reduce effectiveness since the assumption
of conditional independence does not apply to them. However, we already know that this
problem can be resolved through feature selection or PCA techniques.

38



2.3 The AutoML approach

We are overwhelmed with data. The amount of data in the world, in our lives, seems ever-
increasing and there is no end in sight. In fact, it has been reported that 2.5 quintillion bytes
of data is being created everyday and the 90%of storeddata in theworld, has been generated in
the past two years only [27]. Specifically, human and machine-generated data is experiencing
an overall 10x faster growth rate than traditional business data, andmachine data is increasing
even more rapidly at 50x that growth rate. In Figure 2.7 the reported data from [28].

Figure 2.7: Trend of the growth of human and machine-generated data, from the arঞcle IoT, Big Data and AI - the new
“superpowers” in the digital universe published in Forbes [28].

By business data we mean all the data generated in the traditional way so far by companies,
such as interviews, questionnaires and market surveys. However over the years the advance-
ment of technology has led to a change in themarket. With human-generated data wemeans
UGC, short forUser-GeneratedContent, the termwhich describes any formof content such
as video, blogs, discussion form posts, digital images, audio files, and other forms of media
that is created by consumers or end-users of an online system or service. It is becoming an
important part of content marketing, with consumers forming a part of a brand’s strategy. It
is powerful because it builds connections between like-minded people, whether the oppor-
tunity is to share a common experience or win a prize.

39



We instead refer to pervasive computing, or ubiquitous computing, the growing trend of
embedding computational capability into everyday objects to make them effectively com-
municate and perform useful tasks in a way that minimizes the end user’s need to interact
with computers as computers. Pervasive computing devices are network-connected and con-
stantly available. Such devices, equippedwith sensors, measure a substantial amount of data,
called machine-generated data.
It is precisely these phenomena, UGC and pervasive computing, that led to a dizzying in-
crease in human and machine-generated data and led us to the era of data ubiquity: data is
central to all of our existences, whether we’re a giant enterprise or an individual person.
As a consequence of this unceasing growthof data, the need to organize and exploit the stored
data has also increased dramatically. Above all this need is coming from companies, to make
more conscientious business decisions. Essentially, it can be said that theData Scientist is the
expert that the companies are looking for, capable of extrapolating insights and analyzes. His
figure must have heterogeneous skills, ranging from technology to knowledge of the mar-
ket and business, up to the ability to use Machine Learning techniques and programming
languages:

• Math& Statistic skills which comprisesMachine Learning, StatisticalModeling, Data
Science fundamentals, etc.;

• Programming&Database skills which comprises ofComputer Science fundamentals,
scripting and statistical languages, Databases, Big Data tools, etc.;

• Domain Knowledge& Soft skills which comprises of being passionate about the busi-
ness, curios about data, strategic, proactive, creative and so on;

• Communication&Visualizazion skillswhich comprises of being able to translate data-
driven insights into decisions and actions, know how to use visualization tools, be able
to engage with senior management, etc.

However, although this exponential growth in data has led to the new business position of
Data Scientist and with it to new opportunities, it has been reported that the demand is far
greater than the supply. Data Scientists cannot scale: it is almost impossible to balance the

40



number of qualified experts of this field and the required effort to analyze the increasingly
growing sizes of available data [14]. This gap has led to more and more non-expert users to
approach this world and carry out data analysis, using Data Mining techniques. The pro-
cess itself, known as KnowledgeDiscovery inDatabases (KDD), consists of several steps, and
users are overwhelmed by the amount of Machine Learning algorithms and Pre-processing
techniques. These users require off-the-shelf solutions that will assist them throughout the
whole process.
Indeed, the problems are related to these two main KDD phases. Regarding the Model-
ing phase, the difficulty is building a high-quality Machine Learning model; the process to
achieve this result is iterative, complex and time-consuming. The Data Scientist needs to se-
lect among a wide range of possible algorithms (e.g. Decision Trees, K-Nearest-Neighbor,
Naive Bayes, etc.) and to tune numerous hyper-parameters of the selected algorithm. An al-
gorithm hyper-parameter is a parameter that the Machine Learning algorithm cannot learn
by itself and, hence, it must be set a priori. For instance, common parameters in theDecision
Tree are the attributes splits chosen by the algorithm; instead, a hyper-parameter would be
the number of instances reacquired in a leaf to be split again. Regarding the Pre-processing
step, the issue is to find the techniques to use. To automate this process we have to take in
consideration more variables:

• There are several different transformations, e.g. Imputation, Re-balancing, Features
Engineering, Discretization, Normalization, Encoding;

• For each transformationwehave several operators, e.g. NormalizationMin-Max,Nor-
malization Z-score, etc.;

• For each operator we have different parameters;

• The order in which they are applied affects the result.

Moreover, the problem is more complicated because the transformations application de-
pends on both the chosen algorithm and the data-set itself. A sequence of Pre-processing
transformations, with related operators and parameters, is called data pipeline. Instead aMa-
chine Learning pipeline (ML pipeline) consists of a data pipeline and aMachine Learning al-
gorithm with its hyper-parameters defined. The techniqueof automatically configuring ML

41



pipelines is called AutoML.
Unfortunately, existing solutions either do not recommend Pre-processing operators or they
recommend them in a very poor way, not giving too much importance to this step. In-
deed, it has been noticed that the automation of the Modeling problem is performed in
16 out of 19 selected publications while only 2 publications study the automation of Data
Pre-processing [7]. This fact represent an issue because generally raw data do not perform
very well. Indeed, pervasive computing systems greatly increased the amount of machine-
generated data and, since we are talking about data generated by sensors, we are rarely having
data ready to be consumed. All in all, the Pre-processing phase plays a key role in Machine
Learning and it is require a tool which treats all the problems (Modeling and Pre-processing
ones) in all its complexity.

2.4 The state-of-the-art solutions

In this section, we provide an overview of several tools and frameworks that have been imple-
mented to automateModeling andPre-processingproblems. In general, they canbe classified
into three main categories: distributed, cloud-based and centralized. In order to be able to
workwith large quantities of data, distributed and cloud-based distributions use clusters and
therefore different techniques than centralized solutions. A cluster is a set of machines that
work together so that, in many respects, they can be viewed as a single system. For data-sets
with not exaggerated quantities of instances, the overhead of using the cluster is not worth-
while and centralized solutions are preferred.

2.4.1 Distributed tools

MLbase [22,35] has been the first work to introduce the idea of developing a distributed envi-
ronment for Machine Learning algorithm selection and hyper-parameter optimization. It is
based on Apache Spark, an open source framework for distributed computing and a unified
analytics engine for big data processing. In particular MLlib is the Spark library which al-
lows to use theMachine Learning algorithm in distributed manner. MLBase exploit Spark’s
functionalities andMLlib, it consists of three components (Figure 2.8):

42



• ML Optimizer, this layer aims to automating the task of ML pipeline construction.
The optimizer solves a search problem over feature engineering and ML algorithms
included in MLI and MLlib. The ML Optimizer is currently under active develop-
ment;

• MLI [34], an experimentalAPI for feature engineering and algorithmdevelopment that
introduces high-level ML programming abstractions. A prototype of MLI has been
implemented against Spark, and serves as a testbed for MLlib;

• Apache Spark’s distributed ML library. MLlib was initially developed as part of the
MLbase project, and the library is currently supportedby the Spark community. Many
features in MLlib have been borrowed fromML Optimizer and MLI, e.g. the model
and algorithm APIs, multimodel training, sparse data support, design of local / dis-
tributed matrices, etc.

Figure 2.8: MLBase infrastructure. From the official MLBase documentaঞon.

TransmogrifAI [1] is a really recent tool written in Scala. Currently, TransmogrifAI supports
eight different binary classifiers, five regression algorithms and it expects a minimal human
involvement.
MLBox is a Python-based AutoML framework covering several processes, including Pre-
processing, optimization and prediction. It supports model stacking where a new model is

43

http://mlbase.org/


trained from combined predictors of multiple previously trained models and it uses hyper-
opt, a distributed asynchronous hyper-parameter optimization library to perform the hyper-
parameter optimization process.

2.4.2 Cloud-based tools

Google Cloud AutoML is a suite ofMachine Learning products that allows developers with
limited experience in the field of Machine Learning to train high-quality models based on
business needs. It is based on Google’s cutting-edge Transfer Learning (TL) [36] and Neural
Architecture Search (NAS) [12] technologies. Transfer learning focuses on storing knowledge
gained while solving one problem and applying it to a different but related problem. For
example, knowledge gained while learning to recognize cars could apply when trying to rec-
ognize trucks. Over the years, Google has memorized a lot of data about different problems
which allows to have really valid recommendations. Instead, Neural Architecture Search is a
technique for automating the design of Artificial Neural Networks.
Google Cloud AutoML build models in different domains and for various tasks:

• AutoML Vision and AutoML Video Intelligence allow respectively to get insights
from image and perform content detection;

• AutoMLNatural Language and AutoMLTranslation detect the structure andmean-
ing of the text and translate dynamically from one language to another;

• AutoML Tables, automatically develops and deploys the latest generation machine
learning models on structured data.

Focusing on AutoMLTables, it performs automatically both model building and some data
Pre-processing. The data Pre-processing that AutoML Tables does includes:

• Normalization and discretization of numeric features;

• Application of one-hot encoding for categorical features;

• Performing basic processing for text features;

• Extraction of date and time-related features from Timestamp columns.

44



Moreover, missing values are handled according to the type of the features:

• Numerical, a 0.0 or −1.0 is imputed;

• Categorical, an empty string is imputed;

• Text, an empty string is imputed;

• Timestamp, a timestamp set to −1 is imputed.

Then, when the model training kicks off, AutoML Tables takes the data-set and starts train-
ing formultiplemodel architectures at the same time. This approach enablesAutoMLTables
to determine quickly the best model architecture, without having to serially iterate over the
many possible model architectures. AutoML Tables tests includes:

• Linear Regression, one of the most simple but effective regression algorithm;

• Feedforward Deep Neural Network, a kind of Artificial Neural Networks which in
these last years allows to solve a wide range of problems;

• Gradient Boosted Decision Tree, classifier which combines several different Decision
Trees in order to take the best of everyone;

• AdaNet, a particular algorithm which learn the structure of a neural network as an
ensemble of subnetworks;

• Ensembles of variousmodel architectures, like inGradient BoostedDecisionTree and
AdaNet, the goal is to define a combined learner that performs better than a basic one.

Azure AutoML uses collaborative filtering to search for the most promising pipelines effi-
ciently based on a database that is constructed by running millions of experiments of evalu-
ation of different pipelines on many data-sets. With collaborative filter we refer to a class of
tools and mechanisms that allow the retrieval of predictive information regarding the inter-
ests of a given set of users. Collaborative filtering is widely used in recommendation systems,
in this case what is recommended is the ML pipeline.
Amazon Sage Maker provides its users with a wide set of most popular Machine Learning,

45



andDeepLearning frameworks to build theirmodels in addition to automatic tuning for the
model parameters. Moreover, Amazon offers a long list of pre-trained models for different
AI services that can be easily integrated to user applications, such as image and video analysis,
voice recognition, text analytics, forecasting and recommendation systems.

2.4.3 Centralized tools

Several tools have been implemented on top of widely used centralized machine learning
packages which are designed to run in a single node (machine). In general, these tools are
suitable for handling small and medium sized data-sets. Since the problem to address is a op-
timization problem, find a maximum or minimum of a unknown function, various are the
techniques used in this category. However we list only two because they are the most used:

• Genetic algorithms, which are inspired by the branch of genetics, and allow to evalu-
ate different starting evaluations (as if they were different biological individuals) and,
by recombining them (analogous to sexual biological reproduction) and introducing
elements of disorder (analogous to random genetic mutations), they produce new so-
lutions (new individuals) that are evaluated by choosing the best (environmental se-
lection) in an attempt to converge towards “excellent” solutions.

• Bayesian optimization techniques, which are based on Bayes Theorem, start from a
bunch of random evaluations and try to approximate the objective function through
regression techniques and a probabilistic model. There are three different implemen-
tation of it:

– Using Gaussian Procces (GP);

– Tree-structured Parzen Estimators (TPE);

– Sequential Model-based Algorithm Configuration (SMAC).

As this approach has captured more attention recently, a more comprehensive expla-
nation will be provided in the next chapter.

Auto-Weka [21] is considered as the first and pioneer Machine Learning automation frame-
work [21]. It has been implemented in Java on top of Weka, a popular Machine Learning

46



library that has awide range ofmachine learning algorithms. Auto-Weka applies Bayesian op-
timization using SMAC and TPE implementations for both algorithm selection and hyper-
parameter optimization (Auto-Weka uses SMAC as its default optimization algorithm but
the user can configure the tool to use TPE). No Pre-processing recommendation is done.
Auto-Sklearn [13] has been implemented, instead, on top of the competitor framework Scikit-
Learn, a Python package. Auto-Sklearn used SMAC as a Bayesian optimization technique
too but in order to improve the quality of the result introduced a meta-learer. Indeed, the
outcome of these techniques of optimization depends a lot on the start evaluations. The
idea is to retrieve data-sets similar to the one in input and feed SMAC with the solutions of
those similar data-sets. The component in charge of this task is called meta-learner since it
is built through a Machine Learning algorithm and the similarity through data-sets is com-
puted thanks to themeta-data (data that describes data). In addition, ensemblemethodswere
also used to improve the performance of outputmodels. With ensemblemethods we refer to
a set of techniques which aim to improve the quality of the result by combining the results
of the best learner found. In Figure 2.9 we can see the infrastructure just described.

Figure 2.9: Auto-Sklearn infrastructure, from Efficient and Robust Automated Machine Learning published in NIPS
2015 [13].

Unlike the previous tool, this one allows, although poor, some Pre-processing. The included
transformations are as follows, in the following fixed order:

• Encoding (just one operator);

• Imputation (just one operator);

• Normalization (just one operator);

47



• Balancing (just one operator);

• Features Pre-processing (thirteen operators).

TheModeling step followswith a choiceoffifteen algorithms. InFigure 2.10 thePre-processing
operators andMachine Learning algorithms used in [13] are listed.

Figure 2.10: Auto-Sklearn Pre-processing operators and machine learning algorithms, from Efficient and Robust Auto-
mated Machine Learning published in NIPS 2015 [13].

The work of A. Quemy in [32] focuses on applying the Bayesian techniques just to the Pre-
processing pipeline, ignoring the Modeling phase, but extending the research space of Data
Preparation, increasing the number of operations of each transformation. Below an instance
of the data pipeline (Figure 2.11) and the considered research space (Figure 2.12) is shown.

48



Figure 2.11: A Quemy’s pipeline instance, from Data Pipeline Selecࢼon and Opࢼmisaࢼon published in DOLAP 2019 [32].

Figure 2.12: Quemy’s research space, from Data Pipeline Selecࢼon and Opࢼmisaࢼon published in DOLAP 2019 [32].

However, a problem that persists in the Quemy’s solution is the fixed order of transforma-
tions.
TPOT [30] framework represents another type of solutions that has been implemented on
top of Scikit-Learn. It is based on genetic programming and explore many different possible
pipelines of feature engineering and learning algorithms. Then, it finds the best one out of

49



them. The TPOT approach is valid but it is expensive, in fact, Genetic Programming (GP)
optimization methods are typically criticized for optimizing a large population of solutions,
which can sometimes be slow and wasteful for certain optimization problems. Recipe [8]

follows the same optimization procedure as TPOT using genetic programming but it adds
a grammar, that avoids the generation of invalid pipelines, and speeds up the optimization
process. Second, it works with a bigger search space of different model configurations than
Auto-SkLearn and TPOT.
Recipe seems the solutions of all the problems if it were not for that the pipelines produced
are customized for the data at hand. Thenon-expert users have generally no knowledge about
the right transformations order.

50



3
Bayesian techniques for AutoML

In this chapterwe analyze in details theBayesian techniques, state-of-the-art regarding the op-
timization field. In particularwe focus on their incarnation, the SequentialModel-BasedOp-
timization (SMBO) algorithm, which allows to find valuable solutions in a very wide search
space. We discuss different implementations focusing on their pros and cons.
Afterwards, we introduce the reader to a formal definition of the twoproblems faced in a typ-
ical Machine Learning flow. Only then, we can describe how these techniques are exploited
by AutoML tools.

51



3.1 Bayesian techniques and the SMBO algorithm

In an optimization problem we are searching for the best solution among a set of feasible
solutions. It can be simply formalized as follow:

max
x∈A

f(x)

A contains all the feasible solutions, or candidates, and it is typically d-dimensional (A ⊆ Rd).
A specific solution x ∈ A is evaluated through the function f : Rd −→ R, also called the
objective. In general, in this kind of problems, f has no special structure like concavity
or linearity that would make the optimization easier. In fact, we consider it as a “black-box”
function, thatwedonot knowhow itworks; weonly know that itmaps certain inputs, x ∈ A,
to certain outputs, f(x) ∈ R. The aim consists of finding x that maximizes f(x).
Thenaive approach to the problemwouldbe to systematically evaluate all possible candidates
and choose the x which lead to the highest value of f(x). Since this method effectively evalu-
ates all the solutions and always find the best one, it is calledExhaustive Search. Thedrawback
of this approach is that, generally, it cannot be applied in real-cases problems. Indeed, the dif-
ficulties encountered are: a large number of candidates, which are part of a high-dimensional
space, and a really time-consuming evaluation function f. The result is that not all candidates
can be evaluated andwe have to find away to choose themost promising ones. Bayesian tech-
niques are part of the family of “surrogate methods”, which create in fact a surrogate model
to approximate the objective and, based on this, choose the evaluations to perform. In con-
trast to the other methods, Bayesian techniques build the surrogate model through Bayesian
statistics and choose where to evaluate the objective function using a Bayesian interpretation
of that surrogate. Specifically, it starts by evaluating the objective function on a configura-
tion of initial points, then the process becomes iterative: the surrogate model is constructed
on the basis of the made observations and through an acquisition function, therefore the
Bayesian interpretation of the surrogate, the candidate for the next observation is decided.
The process ends when a termination condition is reached, generally expressed in terms of
the number of observations to be done or in terms of time. Given its iterative nature and the
fundamental role of the model, this algorithm is called Sequential Model-Based Optimiza-

52



tion (SMBO). In Algorithm 1 we provide a pseudo-code of it, the budget is expressend in
terms of number of observations.

Algorithm 1: Sequential Model-Based Optimization
Observe f at n0 points according to an initial space-filling experimental design
Set n = n0
while n < N do

Create\Update the model using all available data
Find xn, the maximizer of the acquisition function
Observe yn = f(xn)
Increment n

end
Return the solution: the point evaluated with the highest f(x)

In Figure 3.1, we provide an example run with a 1-dimensional continuous input.

Figure 3.1: SMBO algorithm example which shows the working, through some iteraঞons. From A Tutorial on Bayesian
Opঞmizaঞon of Expensive Cost Funcঞons, with Applicaঞon to Acঞve User Modeling and Hierarchical Reinforcement
Learning, published in ArXiv 2010 [3].

53



In that case the objective function is represented by the black dotted line, while the already
measuredobservations by the black circles. The surrogatemodel is composedof twodifferent
elements:

• The posterior mean μ(x), represented by the black solid line, which tries to estimate
the objective by interpolating the current available observations;

• The posterior uncertainty σ(x), represented by the shaded purple area, which is a con-
fidence interval containing f(x)with probability of 95%;

It can be observed that the uncertainty in the observations already made is zero, since those
values are actually measured and there is no doubt. Furthermore, as the iterations progress,
the whole model converges towards the objective function.
The bottom green distribution represents the acquisition function calculated according to
the surrogate. The point which maximizes that function (red triangles in figure) is the most
promising candidate and, hence, the one that is chosen to be the new observation in the next
iteration (red circles in figure). The acquisition function tends to be high for high poste-
rior mean values (Exploitation) and for high posterior uncertainty values (Exploration). The
explanation of this behavior lies in wanting to maximize f(x), looking for high value of its
estimation μ(x), and in the meanwhile to explore new promising areas, considering high un-
certainty. An example of acquisition function is the Expected Improvement (EI):

EIn(x) = En[[f(x) − f∗n]+]

where
a+ = max(a,0)

Let x be a new candidate, f(x) is its evaluation through the objective, and, f∗n is the highest
evaluation so far. Merely, we have as much improvement as the difference between this two
factors [f(x) − f∗n]+ is greater, but f(x) is unknown until after the evaluation. For this reason
we use En, the f(x) expectation according to the surrogate, built with the already done evalu-
ations (x1, f(x1)), . . . , (xn, f(xn)).

54



The most substantial difference between the several implementations is the methodology
used to build the model. We give, below, a brief overview of them.

3.1.1 Gaussian Processes (GP) regression

In Bayesian statistics, whenever we have an unknown phenomenon, we suppose that it is
coming, by nature, from some random prior probability distribution. GP regression takes
this prior distribution to be as a multivariate normal. To interpolate the already done evalu-
ations, (x1, f(x1)), . . . , (xn, f(xn)), various functions, passing through these points, are gener-
ated. Each of them represent a belief according to the problem constraints (the observations)
and what we can do, as it is shown in Figure 3.2, is compute the mean μ and the variance σ2.

Figure 3.2: An example of Gaussian Processes (G) regression. From An intuiࢼve guide to Gaussian processes in Medium -
Towards Data Science [19].

The random functions are drawn specifying a covariance function or kernel Σ0. The kernel
is chosen in a way that, two points xi,xj, close in the input space, have a large positive correla-
tion. This would encode the belief that they should have more similar function values than
points that are far apart.

55



3.1.2 Tree-structured Parzen Estimator (TPE) approach

The name of this approach is given by its two principal characteristics:

• Tree-structured, because this algorithm manages the d dimensions of x ∈ A ⊆ Rd in
a tree structure. Indeed, unlike what we have for simplicity seen so far, there are opti-
mization problems that involve more than one dimension. In these cases, it may hap-
pen that some dimensions have dependencies to each other and, in literature, the tree
structure is extremely suitable to model this kind of constraints. A further advantage,
derived by using this structure, is that it supports not only continuous dimensions,
but also categorical ones;

• Parzen Estimator, because to build the surrogate it uses a density estimation technique
called Parzen estimator.

In particular, while the other approaches are estimating the objective through a surrogate that
can be seen as p(y|x), where y is the presumed value of the objective in a certain point and
x is the observations done so far, a tree of Parzen estimators models the surrogate through
p(x|y) and p(y). The idea is to learn these two probability distribution applying the density
estimation technique inquestionon the available observations. Oncewehave estimated them
we can derive p(y|x) applying the Bayesian’s rule.

3.1.3 SequentialModel-based AlgorithmConfiguration (SMAC)

Another way to build the desiredmodel is run an ensemble of RegressionTrees. In the previ-
ous chapter of this thesis, 2.2.3DataMining, we treated theDecisionTree algorithmbut only
with regard to theClassification problem. Fortunately the approach does not change, indeed
as we already know, what changes in the Regression problem is just the nature of the result,
that would be continuous instead of categorical. We can estimate the objective through aRe-
gression Tree, the dimensions of the observations would be the features of our data-set and
the functioning of the Decision Tree remains unchanged. In Figure 3.3 we have an example
with just one continuous dimension.

56



Figure 3.3: Example of a Regression Decision Tree.

Aswementioned in the state-of-the-art section (2.4.3), an ensemblemethod is a way to com-
bine different results from different learners in order to improve the quality of the final out-
come. Several are the ensemble techniques available but, using the Decision Trees, the most
known one is Random Forest. It operates by constructing a multitude of trees at training
time and outputting the class that is the mode of the classes (Classification) or the mean of
the predictions (Regression) of the individual trees (Figure 3.4).

Figure 3.4: Example of Random Forest, from Random Forest Regression published in Towards Data Science [5].

57



Since the Decision Tree algorithm is the same for each of the built trees, to have a different
result from each one of them, they are fed by different samples of training set and are able to
use a limited number of all the features.
The Sequential Model-based Algorithm Configuration (SMAC) implementation uses Ran-
dom Forest as regressor to build the model and, for this reason, allows to work with:

• Conditional dependencies between the dimensions;

• Categorical dimensions;

• High-dimensional data;

• Structured data.

3.2 CASH andDPSO problems

As the definition suggests, AutoML aims to automate the Machine Learning process. Ac-
cording to what we have said in 2.3 Automated Machine Learning, the two phases that we
focus on are: Data Pre-processing and Modeling. In fact, a Machine Learning pipeline is
composed by:

• A data pipeline, related to the Pre-processing phase;

• An algorithm configuration, related to the Modeling phase.

Regarding the Modeling phase we have a pool of algorithms and the aim is to select the
one which performs best. Besides, for the chosen algorithm we have to provide its hyper-
parameter configuration.
Instead, a data pipeline consists of a succession of transformations in a specific order. It is
important to choose the right transformations and concatenate them in the right order be-
cause both of these aspects affect the result. Furthermore, we have to choose an operator for
each transformation and, for each operator, we need to find the parameters configuration
(the ones that perform best).
Over time, these problems have been formalized as follows:

58



• Data Pipeline Selection andOptimization (DPSO), which refers to the problems con-
tained in the Pre-processing phase;

• Combined Algorithm Selection and Hyper-parameter optimization (CASH), which
refers to the problems contained in the Modeling phase.

A scheme is provided in Figure 3.5.

Figure 3.5: Machine Learning problems scheme.

CASHhas been formalized inAuto-WEKA:Combined Selection andHyper-parameterOp-
timization of Classification Algorithms [21].
Given:

• A data-setD divided intoDtrain,Dtest;

• A set of algorithmsA = {A1, . . . ,Ak}with associatedhyper-parameter spacesΛ1, . . . ,Λk;

• And a loss functionL(Ai
λ,Dtrain,Dtest);

we are searching for:

A∗
λ∗ ∈ argminAi∈A,λ∈Λi L(Ai

λ,Dtrain,Dvalidation) (CASH)

The data-setD is divided intoDtrain andDtest, respectively to build and to evaluate the overall
performances, calculated through the loss function L. This latter is nothing more than one
of themetric explained in 2.1,Machine Learning andData Science. Since the problem is for-
malized as a minimization problem, we are trying to minimize the error, e.gMisclassification

59



Error, but it can be turned as a maximization problem by replacing the loss function with
a metric like Accuracy, Balanced accuracy, etc. Regardless of the problem we are setting,
the problem itself is set up as an optimization problem and, as such, it assumes we know
the configuration space we are searching in (the set of algorithms A1, . . . ,Ak and the related
hyper-parameter spacesΛ1, . . . ,Λk).
Therefore, with the above formula, we aim to find the best algorithm A∗ in the set of algo-
rithms and its best hyper-parameters λ∗ in the related hyper-parameter space. DPSOhas been
formalized by A. Quemy in Data Pipeline Selection and Optimization [32]. In this case, since
we have a pipeline, the order of the transformation is an extra issue.
In order to formalize also this problem as an optimization one, it has been simplified: it
requires the prototype of the data pipeline we are going to build. A data pipeline proto-
type is defined as a concatenation of transformations. In the prototype, for each transfor-
mation, we do not specify which operator we are going to use, but, we decide the steps of
the Pre-processing pipeline (the transformation’s order). However, as in the previous prob-
lem, for each transformation we have to know the available operators and their parameter’s
search space. Solving the optimization problem means finding the right configuration for
each transformation (optimal operator and optimal parameters values), not caring about the
order. Anyway, to support different order combinations, despite few, Quemy includes the
None operator in each transformation. In that way, a transformation could be not present.
Thereafter, given:

• A data-setD divided intoDtrain,Dtest;

• A data pipeline prototype Pwith a configuration space P;

• The algorithm A, for which the given pipeline P transforms the data;

• And a loss functionL(P,A,Dtrain,Dtest);

we are searching for:
P∗ ∈ argminP∈P L(P,A,Dtest) (DPSO)

60



3.2.1 SMBO as a CASH resolution

Aswementioned SMBOprovides amethodology to solve optimization problems, so CASH
can be solved through it. To do that, CASH has to be reformulated as a single combined
hierarchical hyper-parameter optimization problem. We defineΛ = Λ1 ∪ · · · ∪ Λk ∪ {λr},
where λr is the root-level hyper-parameter that selects between algorithms Λ1, . . . ,Λk. The
hyper-parameters of each subspaceΛi are made conditional on λr being instantiated to Ai.
For instance, considering just two algorithms, Decision Tree and K-Nearest Neighbor, and
just two hyper-parameters for each, the space looks like the following:

DecisioneTree.num_obj = [2, 3]
DecisioneTree.pruning = [True, False]

K-NearestNeighbor.k = [3, 4]
K-NearestNeighbor.distance_measure = [1 / distance, 1 - distance]

And the dependencies can be interpreted as in Figure 3.6

Figure 3.6: A combined hierarchical hyper-parameter opঞmizaঞon problem example.

Then, by denotingwithΛ1 the hyper-parameter space related to theDecisionTree algorithm,
and with Λ2 the K-Nearest Neighbor’s one; in order to apply SMBO, we can reformulate

61



CASHby introducing λr and joining the hyper-parameter spaces,Λ1 andΛ2, in a single one,
Λ.

Λ1 = { [2, 3], [True, False]}
Λ2 = { [3, 4], [1/ distance, 1 - distance]}

λr = {DecisionTree, K-NearestNeighbor}
Λ = Λ1 ∪ Λ2 ∪ λr

The consequence is that we can consider the Λ space as the domain of our Bayesian prob-
lem and the performances evaluation of those algorithms as the time-consuming function to
be discovered. Indeed, searching for the optimal solution means looking for the best algo-
rithm and, in the meanwhile, optimizing its hyper-parameters. Therefore, solving CASH.
The enabling factor is the additional λr parameter: it allows to consider just the right hyper-
parameter space according to the algorithm, and ignoring the others, so that SMBO can be
performed. In Table 3.1, all the possible combinations of the previous example are listed.

Λ1 Λ2 λr

2, True DecisionTree
2, False DecisionTree
3, True DecisionTree
3, False DecisionTree

3, 1 / distance K-NearestNeighbors
3, 1 - distance K-NearestNeighbors
4, 1 / distance K-NearestNeighbors
4, 1 - distance K-NearestNeighbors

Table 3.1: A combined hierarchical hyper-parameter opঞmizaঞon problem example.

An example of a real application is Auto-Weka which, unlike other frameworks, does not
make any further changes. It simply performs SMBO on a wider range of algorithms and

62



hyper-parameters. As already mentioned in the previous chapter, 2.4.3 Centralized tools,
the two implementations used by it are SMAC and TPE.

3.2.2 SMBO as a DPSO resolution

Also in this case, since DPSO is formalized as an optimization problem, SMBO is proposed
as a valid solution. We saw its application to theModeling step but in reality the process does
not change if we apply it to a sequence of steps, therefore a pipeline. Figure 3.7 provides two
graphical representation about the dependencies in these problems: the ones related to the
Modeling problem (top), with two algorithms and two hyper-parameters for each, and ones
related to the Pre-processing problem (bottom), with two transformations, two operators
each, and in turn, two parameters for each.

Figure 3.7: Hierarchical Dependencies in CASH (top) and DPSO (bo�om) problems.

63



The process of selecting the best algorithm, and its hyper-parameters configuration, is iden-
tical to selecting the best transformation’s operator, and its parameters configuration. The
problem has just one layer more and SMBO can be customized to deal with it.
This approach is, indeed, the one adopted by A. Quemy. His aim was to demonstrate the
effectiveness of the SMBO algorithm on the data pipeline. For this reason he had to run, on
different data-sets with different algorithms, both exhaustive search and SMBO; so that he
could compare the results and demonstrate the goodness of the solutions found by SMBO.
It creates a data pipeline prototype composed by three transformations in the following or-
der: Re-balancing, Normalization and Features Engineering. For each step he includes some
concrete operators, with a configuration space, but it includes also the “None” option, to
give the pipeline the ability to skip a step. The chosen data-sets are three of the well-known
UCI datasets: Iris, Wine and Breast; and the four used algorithms (SVM, Random Forest,
Neural Network and Decision Tree) are evaluated through the 10 cross-validation method.
The framework he usedwas Scikit-learn, in Figure 3.8we can see the results of SMBOand the
exhaustive research in comparison. Just after 20 iterations, SMBO reaches its best solution,
positioning itself very close to the optimal one.

Figure 3.8: Accuracy with SMBO for 100 configuraঞons explored. The results are computed using Random Forest on
Breast. From Data Pipeline Selecࢼon and Opࢼmizaࢼon [32].

64



The goodness of each solution is measured applying the Data Mining algorithm after the
Pre-processing pipeline. Since the hyper-parameters are fixed to the default ones, the accu-
racy of the learner actually measures the effectiveness of the considered data pipeline. In the
Figure 3.9, instead, there are the pipelines of these solutions: on top the optimal one, found
by the exhaustive search, and, in the bottom, the ones found by SMBO.

Figure 3.9: The opঞmal pipeline (top) and the best pipelines found by SMBO. The results are computed using Random
Forest on Breast. From Data Pipeline Selecࢼon and Opࢼmizaࢼon [32].

We can say that Quemy demonstrates the effectiveness of SMBO on the data pipeline and he
provides a DPSO solution approach. However, the case of study was really specific:

• Very limited number of transformations;

• Data-sets with just numerical attributes;

• Transformations applied globally, to all the features;

• Data pipeline prototype fixed and built ad hoc for the used data-sets.

All in all, this study could not be considered a general solution for DPSO. It is comprensible
because he had to run both exhaustive search and SMBO; indeed an exhaustive search on a

65



longer pipeline would have been unfeasible. Now that we know the effectiveness of SMBO
on this problem, we can use the Quemy’s solution as a starting point, and extend it, for the
purpose of solving the current limitations.

66



4
Automated Data Pre-processing

Following, we are going to present our solution to the DPSO problem.
First of all, we start from the limitations of the Quemy’s approach [32] and we describe the
general architecture that emerges as these issues are fixed. This first analysis will pave the way
to introduce the reader to the two main aspects of our architecture.
In fact, afterwards, we are going into details about the Offline and Online Phases. In the
former we explain how the components that constitute our approach are created. In the
latter we, instead, explaining how these components interact and how the data are modified
through the whole flow.

67



4.1 General architecture

Aswe already said, theQuemy’s solution to theDPSOproblemwas valid but he chose a really
specific case of study:

1. Very limited number of transformations;

2. Data-sets with just numerical attributes;

3. Transformations applied globally, to all the features;

4. Data pipeline prototype fixed and built ad hoc for the used data-sets.

Below, we are going to discuss how each bullet has been faced and solved.
Starting from the top, we simply extend the number of available transformations. Quemy
used:

• Rebalancing, with three different operators: NearMiss (undersampling), Condensed-
NearestNeighbour (undersampling) and SMOTE (oversampling);

• Normalization, with four operators: StandardScaler (removes the mean and scales to
unit variance), PowerTransform (transforms the distribution to a Gaussian-like one),
MinMaxScaler (scales each feature between 0 and 1) and RobustScaler (same as Stan-
dardSclaer but removes points outside a percentile range);

• Feature Engineering, with three options: PCA, Features Selection and union of fea-
tures obtaines by PCA and Features Selection.

We added the followings:

• Discretization, with two different operators: KBins Discretization (creates categorical
attributes with K categories) and Binarization (creates categorical attributes with just
two categories);

• Imputation, with two operators: Univariate Imputation (imputes a constant, either
number or sting) and Multivariate Imputation (estimates the missing values through
the other features, by running a Data Mining algorithm);

68



• Encoding, which includes Ordinal Encoding (transforms each distinct value into a
integer) and One Hot Encoding (create a binary attribute for each distinct value).

The second problem is that he used data-sets with only numerical attributes. This fact al-
lowed him to apply all the transformations globally, therefore to all the attributes, without
checking that theywere effectively compatible. In fact, he selected transformations that could
only work with numeric data-sets.
Instead, we support data-sets with numerical, categorical and mixed features and, because of
that, we cannot apply all the transformations to all the features. Indeed, some would not
make sense, for example in Figure 4.1 we cannot normalize categorical features.

Figure 4.1: Case in which the global applicaঞon of the transformaঞons is incorrect.

Hence, we apply transformations only to compatible features (Figure 4.2).

Figure 4.2: Previous case in which the adopted applicaঞon is only to compaঞble a�ributes.

In that way, we defined the domain and co-domain of the transformations. They are listed
in Figure 4.3.

69



Figure 4.3: Domain and Co-domain of the considered transformaঞons.

As we can see, the categorical attributes (CAT in Figure 4.3) are not always colored in blue.
This is because we distinguish between the type of the feature, categorical or numerical, and
its representation, string (blue) or number (red). Indeed, even if a categorical attribute is en-
coded, it would not make sense to consider it as numerical, and hence allow the application
of transformations such as Normalization or Discretization. Although its representation is
numerical, in our approach, the attribute remains categorical and only transformations com-
patible with categorical attributes can be applied.
After all, the data pipeline prototype built by Quemy was fixed. Yet still, different transfor-
mation orders are not considered. We already know that including theNone operator in each
transformation, pipelineswhere some transformations could not be present are included too.
However, even in this case some combinations cannot be generated, e.g. the Features step can
never stand before the Re-balance or Normalize ones.
All the considerationsmade so far correspond to changes toQuemy’s implementation. Now
wewill see how to incorporate its modified solution into a larger architecture in order to con-
sider different prototypes of data pipelines.
ANaive approach to consider the order could be: given the transformations, generate all the

70



possible data pipeline prototypes; run SMBO on each of them; and then take the winner
(Figure 4.4).

Figure 4.4: Naive approach to consider all the data pipeline prototypes.

Unfortunately, this approach is computationally speaking unfeasible.
The basic idea is to divide the selection of the data pipeline from its optimization.

1. Understand the constraints that lie behind the considered transformations, and in that
way, build the promising data pipeline prototypes;

2. Then optimize them, hence, apply SMBO. We will use the Quemy’s code but with
our modifications, because it allows more transformations, mixed data-sets and the
transformations are applied just to the compatible attributes.

Since the best data pipeline prototype depends on: the chosen Data Mining algorithm and
the data-set itself, we need both to be specified. An example of the flow we aim to build is
represented in Figure 4.5.

71



Figure 4.5: Online phase of our approach.

As we said, we want to build the data pipeline prototypes by understanding the constraints
between the transformations we are going to use. Indeed, this is literally what we have done:
by studing the relationships between the transformations, we built a table that, given a pair of
transformations, tells us which one should appear before the other. We refer to that table as
Dependency table, since it represents the order dependencies between the transformations.
Then, through these constraints, we were able to build the desired pipeline prototypes. In
Figure 4.6 we depict the architecture, specifically zooming in on the first step.

Figure 4.6: Online phase on how to find the data pipeline prototypes.

72



So far, we explained the desiderata. In fact, we can call this phase, Online phase, therefore the
flow that is performed once the system is built.
However, unlike steps 1.2 and 2, we do not know the algorithm that allows us to solve the
step 1.1. What we need is to do some “Offline” work, specifically, learn from data.
For this reason we performed some experiments, through SMBO, with: a pool of data-sets,
a pool of algorithms and the already known pool of transformations. These experiments
consist in testing how the order of the transformations affects the result. Precisely we were
interested to know, given a pair of transformationswhat is the best order to concatenate them
(i.e., find the order that yields better performance for theMachine Learning algorithm). The
aim was to build our own Training set, and then, apply one or more learners on top of it.
Given a data-set and an algorithm, those learners would predict the order between two trans-
formations. We refer to this process as Meta-learning because, to complete the goal, we used
the so-called meta-data (the data that describes the data). More precisely the meta-data are
common information (such as number of features, number of instances), statistical indexes
(such as mean of instances per class) and so on, that can be extracted from data-sets them-
selves.
However, in some cases, or better for some transformation’s pair, the data were explicit and
we had statistical confidence to assure that a specific order is, in general, better than the other.
Hence, in these situations, the insights got from the experiments were enough and the meta-
learner turned out unnecessary. Since the high number of experiments to perform, given the
no-small number of combinations between transformations, data-sets and algorithms; it was
decided to reduce the number of pairs of transformations to test. In particular, for some of
themwe could decide a-priori the order inwhich to concatenate, because of some constraints
of the used framework or because the other way around would not make sense. We, hence,
built a Intermediate table andwe integrate it through the experiments insights and theMeta-
learning process outcome.
In Figure 4.7 there is the representation of the above explained process.

73



Figure 4.7: Offline phase that allows us to build the Dependency table.

All in all, the Intermediate table and the outcome given by the insights represent the static
part of theDependency table, the one that does not change, regardless of the data-set and the
algorithm. But, as it stands, it would be incomplete. The meta-model(s), given data-set and
algorithm in input, allow us to complete it. Thereafter, thanks to this knowledge acquired
in advance, we can build the promising data pipelines and, running the SMBO algorithm on
each of them, select the best one.

4.2 Offline phase

In the following sections we are going to explain: how the Intermediate table is built (4.2.1),
the details about the performed experiments and the interpretation of their insight (4.2.2),
and the usedMeta-learning methodology (4.2.3).

74



4.2.1 Intermediate table building

In order to build the intermediate table, first of all, we checked if the framework we use im-
poses some constraints. As we said, Quemy uses Scikit-learn and, since we enriched his solu-
tion, we use it too. For each transformations pair we tested both the possible orders. In some
cases, we noticed that just one of themwas valid and, hence, we could assign the dependency
without running any experiments. In Figure 4.8 that table is shown, with the related legend.

Figure 4.8: Table resulঞng from the compaঞbility analysis.

Observe that the table is triangular. This is because we consider each comparison only once.
In the following we discuss in more details the cells where the order has been assigned.
Regarding the Encode-Normalize case, both configurations seem valid but, the Scikit-learn
method used to select the features on which to apply the transformations cannot manage an
arraywithdifferent elements types as output. For this reason,we can see inFigure 4.9 that, the
second optionwas discarded. The same considerations are valid also in the Encode-Discretize
case.

75



Figure 4.9: Graphical representaঞon of the Encode-Normalize case, regarding the compaঞbility analysis.

In the other two cases in which the Encoding operation is involved, therefore the ones with
Re-balancing and Features Engineering, we put Encoding first because the Scikit-learn oper-
ators of these two latter transformations, cannot operate with attributes in a string format.
Instead, regarding the order fixed by the Imputation techniques, we noticed that the En-
coding, Discretization, Re-balancing and Features Engineering operations do not work with
missing values. Therefore, the Imputation step has to be applied before them.
Afterwards, we asked ourselves if all the compatible combinations actually make sense. For
example, in theDiscretize-Normalize case, we have that, according to the compatibility table,
both of the configurations are valid (Figure 4.10).

Figure 4.10: Graphical representaঞon of the Discreঞze-Normalize case, regarding the compaঞbility analysis.

76



Although, in this case two considerations can be made:

• Applying the Normalization first, the Discretization sets aside the Normalization ef-
fects;

• Applying the Discretization first, there is no point in applying the Normalization af-
terwards, because we do not have any numerical values anymore.

For this reason we created a table which, regardless of the framework, describes the transfor-
mations’ dependencies (Figure 4.11).

Figure 4.11: Table of constraints not considering the used framework.

As we can see, the constraints which applied to the Encoding operations are no longer there,
because those constraints were due to the used framework. Furthermore, we have more
variations in the Normalize column. Leaving out the Encode-Normalize and Discretize-
Normalize cases, because they were discussed above, the two remaining cells to be explained
are Imputate-Normalize and Rebalance-Normalize.

77



Regarding the former, although in Scikit-learn the Normalizers can work with missing val-
ues, we do not see why the Normalization applied first should perform better. Indeed, we
believe that, as with the other transformations, the Imputation first has more benefits.
Instead, regarding the Rebalance-Normalize, we put Rebalance first because the Normaliza-
tion first could affect the sampling process.
All in all, in order to understand in which combinations we still do not have a pre fixed or-
der, we merged the two tables, obtaining the Intermediate table (Figure4.12). For each cell,
we kept the most binding one (i.e., the more restrictive one).

Figure 4.12: Intermediate table construcঞon, by merging the two above menঞoned tables.

Once again, the green cells in the resulting table are the ones where there are no constraints
and hence we would like to understand in which order the transformations in question per-
form better. To do that, we performed the experiments explained in the following section.

78



4.2.2 SMBO experiments and insights interpretation

Since a cell identifies a pair of transformations, the idea is to run, for each pair, the SMBO al-
gorithmonboth thepossible combinations. For instance, taking thepair Features-Rebalance,
SMBO has been run once on the data pipeline prototype Features-Rebalance and once on
Rebalance-Features.
Furthermore, to have a statistical reliability we had to perform the experiments with a col-
lection of heterogeneous data-sets and a selection of different Data Mining algorithms. In
that way we can assure that the performed experiments actually represent a wide real-cases
problems.
Concerning the data-sets, we used theOpenML-CC18 suite. It contains 72 data-sets in total,
that satisfy a large set of bench-marking requirements:

• The number of observations are between 500 and 100′000 to focus on medium-sized
data-sets, that are not too small and not too big;

• The number of features does not exceed 5000 features to keep the run-time of algo-
rithms low;

• The target attribute has at least two classes;

• Have classes with less than 20 observations;

• The ratio of theminority class and themajority class is above 0.05, to eliminate highly
imbalanced data-sets which require special treatment for both algorithms and evalua-
tion measures.

From these, we excluded data-sets which:

• Havemore than 5′000′000 tuples, for reasons of time, given that the duration to train
the models depends on the size of the data-set;

• Contains more than 10% of missing values and contains more than 10% of instances
with missing values;

79



In total we considered 60 data-sets. Regarding the Data Mining algorithms, we used three
of the main ones: Naive Bayes [23], K-Nearest Neighbor [31] and Random Forest [5]. Hence,
taking again the Features-Rebalance case as example, for each data-set in theOpenML-CC18
suite, we run the experiments as shown in the Figure 4.13.

Figure 4.13: Graphical representaঞon of the performed SMBO experiments.

The data-set is modified through the pipeline and given as input to the Data Mining algo-
rithm. In each run, actually, this phenomenon happens as many times as the number of
SMBO iterations. In fact, the optimization algorithm works on the operators of the data
pipeline and tries to find the best ones, and the related best parameter values.
Given a data-set and an algorithm, we have two runs, or configurations: where the order of
the transformations is the opposite. For each run we gave to SMBO a time budget to per-
form: 400 seconds. With this budget per run, just the Features-Rebalance experiment took
more or less 48 hours.
Since the algorithm run each iteration with its default parameters, the accuracy measures the
goodness of the founddata pipeline. In particular, we observedmanydata-setswith anunbal-
anced class problem, hence, we used Balanced accuracy instead of accuracy. However, given

80



a data-set and an algorithm we could compare both configurations and, then, understand
which data pipeline prototype performed best. Although, not in all cases, we could say that
one was better than the other. SMBO has the possibility to disable the transformations and,
if this happens, for that case, it would mean that the disabled transformations should not
have been present. We would like to represent this information in the result and, to do that,
we extracted a label from the winning data pipeline. In Figure 4.14 there are all the possible
labels.

Figure 4.14: Result label extracঞon from the winning data pipeline.

The second issue is given by the very nature of the SMBO algorithm. According to the prob-
lem nature, in the cases where the winning pipeline has one or two disabled transformations,
that pipeline can be found by both the configurations, because the order does not count.
Unfortunately, due to the SMBO indeterminism, we cannot guarantee that this happens.
In general, we cannot ensure that the algorithm, in both of the configurations, built a good
model or had enough time. On the other hand, we can assure that one of the runs has not
”worked well”, if the winning data pipeline found by the winning configuration could have
also been found by the other configuration, but actually failed. We called these cases as in-
valid cases.
In Figure 4.15 we listed all the possible cases. In particular we listed the possible pipelines for
both configurations and then for each possible pair we defined a rule (Table 4.1). That rule
specifies which configuration, according to the pipeline prototypes, must win to be valid. As
we said, given the nature of the problem, an invalid case could occur just when the winning
pipeline contains one ormore transformationswith the “None” operator. Hence, to be valid,
those runs must draw.

81



Figure 4.15: Enumeraঞon of all possible pipelines.

to be valid result
a DRAW BASELINE
b DRAW BASELINE
c DRAW BASELINE
d DRAW or CONF2 draw ⇒ BASELINE, CONF2 ⇒ RF
e DRAW BASELINE
f DRAW or CONF1 or CONF2 R
g DRAW FoR
h DRAW or CONF2 draw ⇒ R, CONF2 ⇒ RF
i DRAW BASELINE
l DRAW FoR
m DRAW or CONF1 or CONF2 F
n DRAW or CONF2 draw ⇒ F, CONF2 ⇒ RF
o DRAW or CONF1 draw ⇒ BASELINE, CONF1 ⇒ FR
p DRAW or CONF1 draw ⇒ R, CONF1 ⇒ FR
g DRAW or CONF1 draw ⇒ F, CONF1 ⇒ FR
r DRAW or CONF1 or CONF2 draw ⇒ DRAW, CONF1 ⇒ FR, CONF2 ⇒ RF

Table 4.1: Rules for validaঞng and assigning the result label to two configuraঞons.

82



Then, as we said, we extract the label from the winning pipeline. It could be that two runs
found different pipelines but with the same Balanced accuracy. Whenever this happens, we
extract the label from the simplest one.
It can be noticed that, since we are focusing on the data pipeline prototype, in the configu-
rations where the two prototypes are the same (f. and m. in Figure 4.15), we are not caring
about the Balanced accuracy, that could be different due to the parameters optimization. If
it were not, we would have had to restrict the validation rule to a draw. All in all, we run the
experiments to understand the order between the transformations that had no constraints in
the Dependency table, therefore: Features - Normalize, Features - Discretize, Features - Re-
balance, Discretize - Rebalance.
In each case, grouping by the algorithm, we observed less than 10% of invalid results (Fig-
ure 4.16).

Figure 4.16: Graphs depicঞng the number of valid and invalid results.

Then, considering only the valid ones, for each data-set, according to the above rules, we
extracted the label from the winning pipeline. Finally, for each algorithm, we counted the
occurrences of each label, depicting the outcomes in Figures 4.17 and 4.18.

83



Figure 4.17: Graphs depicঞng the labels about the valid results.

Figure 4.18: Graphs depicঞng the labels about the valid results.

The legend reports the labels explained in Figure 4.14. The only label that is not present,
considering the Features - Rebalance case, is the FoR one. This is applied when a pipeline
with only the Features transformation and a pipeline with only the Rebalance transforma-
tion draw (g. and l. cases in Figure 4.15).
In the cases of Features - Normalize and Features - Discretize (Figure 4.17), for each algo-
rithm, we had a clear evidence of the winning order. First of all, we removed from the anal-
ysis the labels that SMBO could find regardless of the prototype. Therefore, we kept only
the results that saw both transformations present (columns green and orange in Figure), ex-
cluding draws. In particular, we were searching for a statistical significant difference between
these two frequencies. We run the chi-square test, which assures that the distributions, in
those cases were not random. Plus, we also compared them with a binary-like distribution,

84



where the frequencies of the values are in a 90:10 proportion. We can assure with 95% of
confidence that Normalization before Features Engineering performs better than the other
way around and, likewise, that the Discretization before Features Engineering is better.
These evidences allowus to assign, in theDependency table, an order to thementioned trans-
formations.
Unfortunately, the other two cases do not show any evidence. For this reason we have the
meta-learning process to induce the order.

4.2.3 Meta-learning process

So far, in the SMBO experiments, we classified the data-sets according to some labels. In each
experimentwe considered a pair of transformations and, for a specific data-set and algorithm,
wewere able to understandwhich is the best way to concatenate the transformations in ques-
tion. Since we could not find a generic rule for all the experiments, the idea was to use the
information about the data-sets to train aMachineLearning algorithm and learn to recognize
the transformations’ order. To be able to discriminate among different data-sets, we need to
extract some information that describes them, the meta-data. Those meta-data would be the
features of our Training Set, therefore we call themmeta-features, and the label would be the
class to predict. By training a learner, or better a meta-learner, (Offline phase) we will be able
to predict (Online phase), for a given data-set and a given Data Mining algorithm, which is
the best order to concatenate the specified transformations. Hence, this would mean, we are
going to be able to complete the Dependency table. In Figure 4.19 we depict a scheme that
summarizes the meta-learning process.
First of all, we defined the meta-features extracted from the data-sets:

• General: general information related to the data-set, also known as simple measures,
such as number of instances, attributes and classes;

• Statistical: standard statistical measures to describe the numerical properties of a dis-
tribution of data;

• Information-theoretic: particularly appropriate to describe discrete (categorical) at-
tributes and their relationship with the classes;

85



• Model-based: measures designed to extract characteristics like the depth, the shape
and size of a Decision Tree (DT) model induced from a data-set;

• Landmarking: represents the performance of simple and efficient learning algorithms.

Figure 4.19: Meta-learning working.

Then, analyzing the experiments’ results, we decidednot only to build differentmeta-learners
for different pairs of transformations, but also, to consider separately the results of each algo-
rithm, and hence, to build differentmeta-learners for different algorithm results. To this end,
since we have two pairs of transformations (Features - Rebalance andDiscretize - Rebalance),
and three data mining algorithms (K-Nearest Neighbor, Naive Bayes and Random Forest),
in total we need six different meta-learners.
A further consideration to be done is that, since we are not interested in the labels where one
or both of the transformations are disabled — the order is not crucial for learner purposes,
we have grouped these labels into a class called no_order. Figure 4.20 illustrates how the class
distribution changes in the Features - Rebalance case.

86



Figure 4.20: Graphs depicঞng the labels before (le[) and a[er (right) the grouping.

We have analyzed the problems and we detected the following issues:

• It was not always possible to extract all the meta-features from the data-sets and this
led us to have a high number of missing values;

• We have really few instances and, without taking the right countermeasures, wemight
build over-fitted models;

• We have imbalanced classes.

Regarding the first issue, high number of instances with missing values, we considered two
different approaches:

• Impute those values, inserting a string could lead the algorithm to find some correla-
tions in the data;

• Let the algorithm deal with them.

For this purpose, we considered different frameworks:

• H2O is available in Python andR, two wide-used programming languages in theMa-
chine Learning field. In it we found algorithms capable of managing missing values
during the model building;

87



• Scikit-learn is thePython library used for the SMBOexperiments. Aswe already know,
the algorithms in this package do not work with missing values. This forces us to use
an imputation step. Moreover, the fact that those algorithms cannot work even with
data in the form of strings, obliges us to impute a number;

• In Weka, we found both algorithms that manage missing values and techniques that
impute numbers and strings.

After some trials, we decided to not impute the missing values and let the algorithmmanage
them. Hence, we discarded Scikit-learn.
In order to compareWeka andH2Owe tried different DataMining algorithms (with related
Pre-processing techniques), in particular:

• InWeka:

– K-Nearest Neighbor with PCA, Feature Selection and Normalization;

– Decision Tree and Random Forest with Discretization;

• In H2O:

– Random Forest;

– XGBoost and GBM, boosting of Decision Trees;

Also, we tried the AutoML approaches of those frameworks: Auto-Weka and H2O Au-
toML.The former suggests aK-NearestNeighbor approach, the latter anewensemblemethod
called Stacking. In Table 4.2 we show the results about the Features - Rebalance case, for sim-
plicity we report only the ones without Pre-processing, which in this case was not of partic-
ular help.
The evaluation was made through the Leave One Out validation, in order to exploit the few
instances in both training and testing phases.

88



Random Forest Training Set K-NN Training Set
Framework Algorithm Accuracy
Weka Random Forest 0.72
Weka K-NN 0.67
H2O Random Forest 0.74
H2O XGBoost 0.72
H2O GBM 0.64
H2O Stacking 0.51

Framework Algorithm Accuracy
Weka Random Forest 0.48
Weka K-NN 0.46
H2O Random Forest 0.53
H2O XGBoost 0.56
H2O GBM 0.55
H2O Stacking 0.48

Naive Bayes Training Set
Framework Algorithm Accuracy
Weka Random Forest 0.59
Weka K-NN 0.54
H2O Random Forest 0.52
H2O XGBoost 0.50
H2O GBM 0.59
H2O Stacking 0.50

Table 4.2: Feature - Rebalance results.

The cells in blue are the ones that have achieved the best performance. Since the H2O
framework performed better in all cases, we discardedWeka.
Regarding the imbalanced classes issue we tried to use Rebalancing techniques, in particular
over-sampling techniques because of the low number of instances. In Table 4.3 we show the
already seen H2O results, in the Features - Rebalance case, but with the over-sampling step.

Random Forest Training Set K-NN Training Set
Framework Algorithm Accuracy
H2O Random Forest 0.72
H2O XGBoost 0.67
H2O GBM 0.76

Framework Algorithm Accuracy
H2O Random Forest 0.6
H2O XGBoost 0.55
H2O GBM 0.56

Naive Bayes Training Set
Framework Algorithm Accuracy
H2O Random Forest 0.57
H2O XGBoost 0.55
H2O GBM 0.57

Table 4.3: Feature - Rebalance results with oversampling.

89



In green we can find the cases where the Rebalance step led to an improvement, in red a
worsening. Surprisingly, they do not lead to a substantial improvement in all the cases. Let
us take again the Features - Rebalance case, regarding Random Forest as meta-learner on the
Random Forest Training Set; in Figure 4.21 there is the confusion matrix before and after
the over-sampling step.

Figure 4.21: Confusion matrix of Features - Rebalance case, Random Forest Training Set, running Random Forest as
meta-learner, before (le[) and a[er (right) the over-sampling step.

We can notice that this Pre-processing transformation actually balanced the number of pre-
dictions per class, according to the class distribution. Unfortunately, this is not enough to
distinguish well the classes and, therefore we have discarded this technique.
However, since our aim is to decide the order of the transformations, even when the meta-
learner predicts no_order class, we have to assign an order. The choice has no impact when
the instance classified as such is actually no_order because our choice will never be wrong.
Instead, in the other situations, we have to favor one class over the other. As a matter of fact,
the most convenient choice is to move the no_order instances according to the class that con-
tains moremistakes, in order to turn them into correct predictions and, hence, have a greater
accuracy. A hypothetical case is represented in Figure 4.22, where moving to the minority
class is more convenient, since that is where the learner made more mistakes.

90



Figure 4.22: Example of assigning an order to the no_order instances. Majority class case on top, minority class case in
the bo�om.

Hence, in both Features - Rebalance and Discretize - Rebalance cases, for each meta-learner,
we tried tomove theno_order instances to both options. We compared the performances and
in each case we noted which one reaches the best accuracy. In Figure 4.23 this comparison is
shown.

Figure 4.23: Comparison between assigning the no_order instances to the minority and majority class.

91



It can be noticed that choosing the majority class is almost always the best choice. In addi-
tion, where the minority class is chosen the classes are not so imbalanced. For these reasons
we decided to be uniform and always move to the majority class.
Then, since we want the meta-learners to be all of the same type, we have made some com-
parison in order to elect the best one. Firstly, having noticed that the performance of the
individual meta-learners do not vary much, we tried to understand if this fact was due to
how these algorithms were instantiated from time to time (indeterminism) or if effectively
one was always better than the other. For this purpose we ran those algorithms with differ-
ent seeds, therefore randomizing their instantiation. In Figure 4.24 the results.

Figure 4.24: Study of meta-learners with different seeds.

As we can see, by varying the seed, the Random Forest performance varies as well. On the
contrary, it seems that this phenomenon does not affect the performance of the boosting
approaches. For this reason we discarded Random Forest as meta-learner and in Figure 4.25
we compared the performance of GBM and XGBoost.

92



Figure 4.25: Comparison of performances between GBM and XGBoost.

Thus, the performance of the two algorithms are really close to each other in almost the cases.
In fact, calculating the average, we have 58.27 for GBM and 58.49 for XGBoost. Moreover,
since the latter always maintains an accuracy greater than 0.5, we chose it.
All in all, for the Features -Rebalance andDiscretize -Rebalance cases, themeta-learners built
on top of the experiment results are XGBoost. We have not used any Imputation, Rebalanc-
ing or other Pre-processing techniques. However, it is worth mentioning that whenever an
instance is classified as a no_order, the actual assigned class will be the majority one.

4.3 Online phase

Now, we are going to explain how the bricks built in the offline phase are put together to
achieve our goal. In particular we describe how to derive the data pipeline prototypes (4.3.1)
and then how we optimize them (4.3.1).

4.3.1 Data pipeline prototypes building

We recall that we broke down this step in two phases:

93



• Understand the best order between single transformations, therefore build theDepen-
dency Table;

• Derive the data pipeline prototypes.

Concerning the first one, we already know that almost the whole table is static. Indeed, after
the SMBO experiments, regardless of the data-set and the used algorithm, the Dependency
Table looks like the one in Figure 4.26.

Figure 4.26: Table of constraints a[er the SMBO experiments.

Although, to complete it, we have to assign an order to the cells corresponding to the Fea-
tures - Rebalance and Discretize - Rebalance. This would mean use the meta-models that
we have built through the meta-learning process that we described above. In practice, we
need just to extract the meta-features from the input data-set and give it to the right meta-
models. In fact, for both Features - Rebalance and Discretize - Rebalance, the Data Mining
algorithm we want to use selects the meta-model between the ones available. In each case
we have three models, each one related to a Data Mining algorithm: Random Forest, Naive
Bayes, K-Nearest Neighbor.

94



Once theDependency table is completed, we are able to build the desired data pipeline proto-
types. Indeed, theDependency table is nothingmore than a set of rules. In Figure 4.27, those
rules are represented through the BPMN∗ (Business ProcessModel andNotation) graphical
representation.

Figure 4.27: BPMN scheme represenঞng the possible data pipeline prototypes.

As we expected, due to the compatibility constraints of the Scikit-learn framework, the Im-
putation and Encoding steps are at the beginning of the pipeline. Next the first decision
taken, due to the only red cell in our table, was not to put Normalization and Discretization
in the same pipeline (the combination does not make sense if applied in the same pipeline).
As a matter of fact, two different branches emerge, one where Normalization is present and
the other where Discretization is present. Since we do not know which choice is better, we
should test both of the resulting pipelines. Proceeding with the one that includes the Nor-
malization step, we have to understand just the order between the Rebalance and Features
Engineering transformations. Instead, ragarding the other one, we have to understand also
the relation betweenDiscretization andRebalance. As amatter of fact, in theNormalization

∗http://www.bpmn.org/

95



path, there can never be a conflict, since the relation to clarify is only one. In contrast, in the
other path, the choices of the two meta-models could raise a conflict:

• The meta-model of Features - Rebalance could predict that Rebalance should be ap-
plied after Features;

• Themeta-model of Discretize - Rebalance could predict that Rebalance should be ap-
plied before Discretize.

In all the other combinations there is no conflict, but if that happens, we have to explore both
the options. Hence, the paths to test would raise to three.
Once we have generated those pipelines, we are going to optimize them.

4.3.2 Data pipeline prototypes optimization

With regards to the optimization of the obtained data pipeline prototypes, we just run the
SMBOalgorithmon each one of them. Aswe already discussed, the code ofQuemy has been
adapted to cover more generic cases:

1. More transformations;

2. Mixed data-sets, therefore with numerical and categorical attributes;

3. Transformations applied just to the compatible features.

In thatway, any kind of data-set is supported and the prototypeswe proposed can be ingested
and optimized. Specifically, given a time budget, we need to split it between the pipelines
to test. The difference between us and the approaches with fixed pipelines is that the latter
spend their entire budget on a single pipeline. It is optimized very well, but by not exploring
other orders of transformation combinations, it is not possible to know if that choice is the
right one. Moreover, our approach allow us to not explore all the combinations but just the
most promising ones, because we build those pipelines with previous knowledge, acquired
through the SMBO experiments and the meta-learning process.
In the end, we compare the best performances reached by the optimization of the different
pipeline prototypes and we retrieve the best one. The final outcome is, according our ap-
proach, the best data pipeline for the given data-set and algorithm.

96



5
Evaluation

In this chapter we provide the results of some evaluation experiments. Firstly, we made a
study regarding the importance of the Pre-processing step. We compare the performances
reached by optimizing the data pipeline with the ones achieved by optimizing the algorithm
hyper-parameters. Subsequently, in order to demonstrate the validity of our approach, we
compared it other works from the state of the art. In the following we illustrate the results
and discuss the insights obtained.

97



5.1 Data Pre-processing importance

To understand howmuch the data pipeline is significant, we performed some tests. We used
the same pool of data-sets and the same set of DataMining algorithms utilized in the SMBO
experiments. Our aim is to understand when it is more convenient to optimize the Pre-
processing pipeline and when the algorithm. Hence, for each data-set and algorithm, we ran
SMBOon both phases. Then, we compared the two achieved performances and declared the
winner.
Considering that we have used the same data-sets and the same algorithms to build also the
meta-learners, we need to be careful because, otherwise, we could overestimate the perfor-
mances. In particular, we cannot feed a meta-learner with data-sets already seen in training
phase. For this reason, we used the meta-learners built during the Leave OneOut validation.
In other words, each data-set was fed to the meta-learners which have seen it just in the eval-
uation phase.
The optimization of the Modeling phase simply consists in assigning the entire time budget
to a single SMBO run. Instead, in the Pre-processing phase, the budget must be divided into
several runs. In fact, for that optimization, we used our approach, which involves testing at
least two pipelines. We recall that the best data pipeline, and hence the best result, is found
by comparing the Accuracies of those tested pipelines.
Figure 5.1 shows, grouping by the used Data Mining algorithm, the amount of data-sets
where it was more convenient to optimize the Pre-processing pipeline and where the algo-
rithm. Specifically, for a data-set, the most convenient optimization is the one that reached
the highest Accuracy. For sure, an important insight is the clear value of the Pre-processing
phase. Indeed, in many cases, it is better to spend the SMBO time budget on optimizing the
data pipeline rather than the algorithm. We can also note that the choice of the used Data
Mining algorithm affects a lot. In fact, for RandomForest the hyper-parameter optimization
is more important than in the other cases. This is due to the fact that the Decision Trees are
very robust to features’ correlations, missing values and so on; hence they require much less
Pre-processing. Furthermore, Random Forest has many hyper-parameters that influence its
training. On the contrary, K-Nearest Neighbor andNaive Bayes are very sensitive to the data
and have really few hyper-parameters to set.

98



Figure 5.1: Comparison between Pre-processing and Modeling opঞmizaঞons.

Pre-processing Modeling Draw
Random Forest 25 28 0
Naive Bayes 42 13 0
K-Nearest Neighbor 34 21 2
Summary 101 62 2

Table 5.1: Comparison between Pre-processing and Modeling opঞmizaঞons results.

The Table 5.1 reports the exact numbers of the graph and provides a summary.
We also wondered if there is something in the data-sets that led them to achieve better Accu-
racy by optimizing the algorithm rather than the Pre-processing pipeline, or vice versa. For
this purpose, for each algorithm, we listed the data-sets where optimizing it was more conve-
nient. Then, we counted those in common. If most of them were repeated, it would mean
that there are some characteristics in the data-sets themselves that distinguish them and cat-
egorize them as such, regardless the used Data Mining algorithm. Among the 62 such cases,
we counted only 34 distinct data-sets. Each of these data-sets appears, exclusively, in:

• Just one of the algorithms: Random Forest, Naive Bayes, K-Nearest Neighbor;

99



• Twoof the algorithms: RandomForest andNaiveBayes,RandomForest andK-Nearest
Neighbor, Naive Bayes and K-Nearest Neighbor;

• In all of the algorithms.

In the absence of anyphenomenon that binds this distribution, the data-sets should be placed
uniformly between the above cases. Since there are seven, the expected frequency for each one
would be 34 ∗ 1

7 = 4.85. That would mean to have:

• In average 4.85 ∗ 3 = 14.57 data-sets present in just one of the algorithms;

• In average 4.85 ∗ 3 = 14.57 data-sets present in two of the algorithms;

• In average 4.85 data-sets present in all of the algorithms.

We counted effectively the data-sets for each case and we we had: 15 data-sets in just one al-
gorithm, 10 in common between two algorithms and the remains 9 in common between all
of the three algorithms. Already, at a glance, we can see that the observed frequencies of the
caseswhere the data-sets are common to all the algorithms are twice the expected frequencies.
But, in spite of this first sight, we were interested to prove it through a statistical test. Hence,
we performed the Chi-square test, used to test the validity of a claim (null hypothesis) that is
made about a population using sample data. The alternative hypothesis is the one believed if
the null hypothesis is concluded to be untrue. Through this test we compared the expected
and the observed distributions and we could tell if the the observed one is commonly dis-
tributed or not. The test outcome reports that with a confidence of 0.917 the two distribu-
tions differ and, hence, the observed frequencies are significantly not commonly distributed.
We can say that this is an indication that the results are not simply random but there is some
specific feature that leads certain data-sets to achieve better performance by optimizing the
Modeling phase.

5.2 Evaluation of the Automated Data Pre-processing approach

Regarding the evaluation of the goodness of our approach, we arranged the experiments in
the samewaywe performed those of theData Pre-processing importance. Again, we used the

100



same pool of data-sets and same set of Data Mining algorithms. The only difference is that
we no longer care about the result given by the optimization of theModeling phase. Indeed,
we are going to compare our approach with others that, in their turn, aim to optimize the
Pre-processing phase.
First of all, we were interested in comparing our approach with Quemy’s work, or better, the
effectiveness of the pipeline found by this work with the fixed pipeline proposed by his work.
In fact, the original approach fromQuemy cannotworkwith the data-sets we use. Hence, we
are comparing our approach with the upgraded Quemy approach. Specifically, when we ran
his approach, we still had the fixed pipeline “Normalize −→ Rebalance −→ Features”, but,
since we have also data-sets with categorical attributes, transformations like Normalization
are not applied to all the attributes, but just to the compatible ones. Moreover, some data-
sets have missing values, hence, we add a further step: Imputation as first transformation of
the pipeline. Once the experiments were performed we collected the results (Figure 5.2).

Figure 5.2: Comparison between our approach and the Quemy’s one.

As we can see, our approach achieves better performances in most cases. A possible inter-
pretation is that a fixed data pipeline prototype is not suitable for all the data-sets. Thanks
to the knowledge acquired by the SMBO experiments and the data-set meta-features, we are

101



able, according to the case, to design the most promising pipelines. We have to split the bud-
get between the different pipelines to test but we can effectively explore a wider search space
than a fixed pipeline approach. Hence, the transformations order has proven to be more im-
portant than the parameter optimization. The cases where the Quemy’s approach won are
the ones where his proposed pipeline was effectively the best one and, evidently, the fact that
his approach does not have to split the budget, allows to optimize it better. We can consider,
instead, the draws as a success, because those cases are the ones where the our splitted time
budget was enough to optimize the best data pipeline prototype, indeed by givingmore bud-
get to the Quemy’s one, the performance did not improve.
In order to have a clear understanding of howmuch we improved the result we try to design
an index, or score, that tries to express it. This, based on the Accuracy of the two approaches
and the baseline (performance with no Pre-processing), is higher as much as the winning ap-
proach deviates from the baseline and as much as the losing approach is close to that. Hence,
given the performances of the two approaches on a data-set with a specific algorithm, we
denoted withmax the winning approach’s Accuracy and withmin the one of the losing ap-
proach. The score is calculated as follows:

score =
max − baseline
min − baseline

Figure 5.3 depicts the score in all the cases. In particular, in that figure the score was sub-
tracted by 1, so that the draws have a score of 0, and, to have a better graphical visualization,
the scores where the Quemy’s approach wins have been made negative. With these graphs
we can note that, we do not only win in most of the cases, but also when we do, we do it by
making much more improvement than when the Quemy’s approach wins.
Besides, we tried to understand the differences between the pipelines proposed by the two ap-
proaches. Since we already know the prototype of all the pipelines proposed by the Quemy’s
approach, because it is always fixed, we analyzed the prototypes that, in our approach, have
prevailed. Specifically, we observed the cases where our approach won. In that way we could
understand what was the factor that led us to success.

102



Figure 5.3: Esঞmaঞon of how much the winning approach improves the result.

First of all, we recall that Quemy’s pipeline prototype includes the Normalization step, in-
stead, our approach tries to test also the prototype with the Discretization (see Figure 4.27
for the pipelines tested by our approach and Figure 2.11 for the Quemy’s one). Regarding
the cases won in our favor, Figure 5.4 showswhen theDiscretization transformationwas part
of the pipeline:

• Not present in the prototype (not_in_prototype);

• Present in the prototype but not in the final pipeline (not_in_pipeline), i.e. when
SMBO has preferred to put theNone operator in the step in question;

• Present in the prototype and also in the final pipeline (in_pipeline).

103



Figure 5.4: Discreঞzaঞon transformaঞon’s role in our pipeline.

We have a good part of the results that does not contain the Discretization step in the pro-
totype and, hence, the substantial difference between the two proposed pipelines lies in the
order. We counted 39 such cases, in a total of 100 victories in our favor. We can also see that,
generally, when the Discretization prototype is chosen, SMBO instantiates this transforma-
tion with an operator different than the None one. This insight shows that our approach
is actually understanding when a transformation is needed and when not. In the rest of the
cases, 57 out of 100, theDiscretization appears in both the prototype and the final configura-
tion chosen by SMBO.Even if those cases are themajority, it cannot be said that the inclusion
of the Discretization is the factor that makes us win. Before applying the meta-models, ac-
cording to Figure 4.27, the number of pipelines that should be tested is five, of which three
containDiscretization. We can say that it is reasonable that, more or less, 60% of the pipeline
results contains Discretization inside.
Since our approach is not testing all the five pipelines, we were interested to compare our
results with what we called the Pseudo-exhaustive approach, therefore the one that does. In
order to remain fair to the other approaches, once again, the budget has been divided on
the number of the tested pipelines. Regarding the Pseudo-exhaustive approach, that means
dividing the budget between five. Figure 5.5 shows the results.

104



Figure 5.5: Comparison between our approach and the Pseudo-exhausঞve one.

As it can be noted, we have the same result pattern with all the considered algorithms. The
Pseudo-exhaustive approach won in most of the cases but, we do not consider this results as
bad. Indeed, comparing an approach with one that tests all the possibilities and thinking of
winning is against the odds. We already know that our meta-learning process has not 100%
of Accuracy and, even when we are predicting correct, the Pseudo-exhaustive approach is
also testing the correct pipeline. The only chance we have to win is that, since the Pseudo-
exhaustive has to test more pipelines, the time given to the right one is not enough to find
a solution as good as ours. After all, we can be satisfied given that in 165 cases we scored
41 victories. Moreover, we drew 57 times. Those are the cases where we found the optimal
pipeline but the time we gave to optimize it was too much, and the Pseudo-exhaustive was
able to find that solution too. Hence, we cannot consider those cases as negative, but instead
successful. For sure, winning was not easy, but still it means that we should improve the
meta-learning process. Anyway, looking on the bright side, those cases remark how much
the order is important and howmuch the given time budget is secondary. In fact, even if we
had more time to optimize the pipelines, we were optimizing the wrong ones. The pseudo-
exhaustive, instead, had less time but had the possibility to optimize the right one, which was
never pruned.

105



106



6
Conclusions and future developments

All in all, we are satisfiedwith thework thatwehavedone. Ashasbeen argued in the chapter 2,
Towards AutoML, the application of Machine Learning in real-case problems is a complex
process that requires assistance if the user is not familiar with the techniques he has to work
with. Moreover, in that section it has been seen that often the data withwhich the user has to
deal is not adequate or algorithms do not perform best. Unfortunately, the current tools that
aim to automate theMachine Learning process do not properly take care of the automation
of the Pre-processing phase, which is in charge of transforming the data before the applica-
tion of theMachine Learning algorithms. In fact, the few tools that consider it, simply apply
the well-known SMBO optimization algorithm to a fixed Pre-processing pipelines, not con-
sidering that the transformations’ order is very important to the performance. Our approach
aims to find amethodologywhich recommends a Pre-processing pipeline taking into account
the dependencies of the transformations’ and how the final performances vary according to
their order in the pipeline. Through the evaluation experiments we have demonstrated:

107



• The actual importance of the pre-processing phase;

• The success, in terms of performance, of our approach on a fixed pipeline approach.

In spite of the positive results, these experiments also show some improvement points. In
particular, although themeta-learning approach canbe considered effective, it has beennoted
that there is still room for improvement. Indeed, the comparison of our approach with the
Pseudo-exhaustive one, which also considered the pipelines we excluded, did not have the
best results. In future developments it would be interesting to be able to improve the built
meta- models through:

• The execution of more experiments with a wider suite of data-sets and a larger set of
algorithms;

• Experiments that consider not only dependencies between pairs of transformations.

Furthermore, given the numerous interesting insights obtained from the evaluation exper-
iments, it would be worth to understand what are the characteristics that lead a data-set to
achieve better performance by spending more time optimizing the algorithm rather than the
Pre-processing pipeline, and vice versa.

108



References

[1] Bhaowal,M. (2018). Automl: The assembly line ofmachine learning. DataEngConf.

[2] Bilalli, B., Abelló, A., Aluja-Banet, T., & Wrembel, R. (2018). Presistant: Learning
based assistant for data pre-processing. Data Knowledge Engineering.

[3] Brochu, E., Cora, V.M., & de Freitas, N. (2010). A tutorial on bayesian optimization
of expensive cost functions, with application to active user modeling and hierarchical
reinforcement learning.

[4] Brodersen, K. H., Ong, C. S., Stephan, K., & Buhmann, J. (2010). The balanced
accuracy and its posterior distribution. Pattern Recognition, International Conference
on, 0, 3121–3124.

[5] Chakure, A. (Jun 29, 2019). Random forest regression. Towards Data Science.

[6] Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). Smote: Syn-
thetic minority over-sampling technique. Journal of Artificial Intelligence Research,
16, 321–357.

[7] Crone, S., Lessmann, S., &Stahlbock,R. (2006). The impact of preprocessing ondata
mining: An evaluation of classifier sensitivity in direct marketing. European Journal
of Operational Research, (pp. 781–800).

[8] De Sá, A., Pinto, W., Oliveira, L. O., & Pappa, G. (2017). Recipe: A grammar-based
framework for automatically evolving classification pipelines. (pp. 246–261).

[9] Dhar, V. (2013). Data science and prediction. Commun. ACM, 56(12), 64–73.

[10] Dietterich, T. G. (1997). Machine-learning research. AIMagazine, 18(4), 97.

[11] Drakos, G. (16 Aug 2018). Cross validation. Medium.

[12] Elsken, T., Metzen, J. H., &Hutter, F. (2018). Neural architecture search: A survey.

109



[13] Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., & Hutter, F.
(2015). Efficient and robust automated machine learning. (pp. 2962–2970).

[14] Frankel, S. (May 22, 2015). Data scientists don’t scale. Harvard Business Review.

[15] Guinard, D. & Trifa, V. (2009). Towards the Web of Things: Web Mashups for Em-
bedded Devices, (pp. 1506–1518).

[16] Hart, P. (1968). The condensed nearest neighbor rule (corresp.). IEEE Transactions
on Information Theory, 14(3), 515–516.

[17] Kambatla, K., Kollias, G., Kumar, V., & Grama, A. (2014). Trends in big data analyt-
ics. Journal of Parallel and Distributed Computing, 74(7), 2561 – 2573. Special Issue
on Perspectives on Parallel and Distributed Processing.

[18] Kelleher, J., MacNamee, B., &D’Arcy, A. (2015). Fundamentals ofmachine learning
for predictive data analytics: Algorithms, worked examples, and case studies.

[19] Knagg, O. (Jan 15, 2019). An intuitive guide to gaussian processes. Towards Data
Science.

[20] Kotsiantis, S., Kanellopoulos, D., & Pintelas, P. (2006). Data preprocessing for su-
pervised learning. International Journal of Computer Science, 1, 111–117.

[21] Kotthoff, L., Thornton,C.,Hoos,H.,Hutter, F., &Leyton-Brown,K. (2017). Auto-
weka 2.0: Automaticmodel selection andhyperparameter optimization inweka. Jour-
nal ofMachine Learning Research, 18, 1–5.

[22] Kraska, T., Talwalkar, A., J.Duchi, Griffith, R., Franklin, M., & Jordan, M. (2013).
Mlbase: A distributed machine learning system. Conference on Innovative Data Sys-
tems Research.

[23] Lowd,D.&Domingos, P. (2005). Naive bayesmodels for probability estimation. (pp.
529–536).

[24] Lu Tan & Neng Wang (2010). Future internet: The internet of things. 5, V5–376–
V5–380.

[25] Marr, B. (2019a). Coca-cola: Driving success with ai and big data. BernardMarr.

[26] Marr, B. (2019b). The incredible ways heineken uses big data, the internet of things
and artificial intelligence (ai). BernardMarr.

110



[27] Marr, B. (May 21, 2018). Howmuch data do we create every day? Forbes.

[28] Misauer, L. (October 5, 2017). Iot, big data and ai – the new ‘superpowers’ in the
digital universe. Business2Community.

[29] Mulvenna, M., Norwood, M., & Büchner, A. (1998). Data-driven marketing. Elec-
tronicMarkets, 8(3), 32–35.

[30] Olson, R. & Moore, J. (2019). Tpot: A tree-based pipeline optimization tool for
automating machine learning. (pp. 151–160).

[31] Peterson, L. E. (2009). K-nearest neighbor. Scholarpedia, 4(2), 1883. revision
#137311.

[32] Quemy, A. (2019). Data Pipeline Selection and Optimization.

[33] Satyanarayanan, M. (2001). Pervasive computing: vision and challenges. IEEE Per-
sonal Communications, 8(4), 10–17.

[34] Sparks, E. & Talwalkar, A. (2013). Mli: An api for distributed machine learning.
International Conference on DataMining.

[35] Talwalkar, A. & Kraska, T. (2012). Mlbase: A distributed machine learning wrapper.
Big LearningWorkshop at NIPS.

[36] West, Jeremy; Ventura, D. W. S. (2007). Spring research presentation: A theoretical
foundation for inductive transfer. Brigham Young University, College of Physical and
Mathematical Sciences.

[37] Zhang, J. & Mani, I. (2003). KNN Approach to Unbalanced Data Distributions: A
Case Study Involving Information Extraction.

111


	Introduction
	Towards AutoML
	Machine Learning
	The Machine Learning role in Data Science
	Domain & Data understanding
	Data Preparation
	Data mining

	The AutoML approach
	The state-of-the-art solutions
	Distributed tools
	Cloud-based tools
	Centralized tools


	Bayesian techniques for AutoML
	Bayesian techniques and the SMBO algorithm
	Gaussian Processes (GP) regression
	Tree-structured Parzen Estimator (TPE) approach
	Sequential Model-based Algorithm Configuration (SMAC)

	CASH and DPSO problems
	SMBO as a CASH resolution
	SMBO as a DPSO resolution


	Automated Data Pre-processing
	General architecture
	Offline phase
	Intermediate table building
	SMBO experiments and insights interpretation
	Meta-learning process

	Online phase
	Data pipeline prototypes building
	Data pipeline prototypes optimization


	Evaluation
	Data Pre-processing importance
	Evaluation of the Automated Data Pre-processing approach

	Conclusions and future developments
	References

