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Abstract

The large-scale structure properties of extra-galactic objects provide a fun-

damental tool to infer information about our Universe. The scientific analy-

sis of galaxy catalogues started in the 1920’s with E. Hubble, who proposed

the first classification of galaxies based on their morphological appearance.

During the years, several improvements in the study of the physical galaxy

properties, such as stellar mass and luminosity, have been achieved. Nowa-

days, statistical analyses are performed using primarily the stellar mass

function (SMF) and the two-point correlation function (2PCF), at differ-

ent redshifts. Galaxies are biased tracers of the underlying matter density

field and their clustering allows to infer the spatial distribution of the large

scale structure of the Universe, whose properties depend on the cosmological

model. On the other hand, the SMF can be used to infer information about

the evolution of galaxies and about their formation channels. Despite all

the observational studies that have been conducted, a full and exhaustive

theory for the galaxy formation and evolution is far from be reached, due to

the multitude of different and competitive processes involved. A common

practice to face this issue is to compare observed galaxy properties with

the ones obtained from simulated galaxy samples. Many efforts have been

made to construct increasingly large and detailed galaxy catalogues, but the

requirement of high computational power or, alternatively, the employment

of empirical approximations, makes the realisation of accurate simulations

a difficult task to achieve.

In this Thesis work we present a new free software package based on the

Halo Occupation Distribution (HOD) technique to construct galaxy cata-

logues populating whatever Dark Matter (DM) halo catalogues. This code

has been implemented inside the CosmoBolognaLib environment, which is a

set of free software C++/Python numerical libraries for cosmological cal-

culations (Marulli et al. [2016]). Our code offers the possibility to use dif-
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ferent methods and various parameterisations to populate the DM haloes.

In particular, this code is based on the prescriptions of three different HOD

models, calibrated by Zehavi et al. [2005], Zehavi et al. [2011] and Moster

et al. [2010]. We test these three methods employing a DM halo catalogue

extracted from the Euclid Flagship simulations (Castander et al. [2020, in

preparation]). We compare the SMF of our catalogue with the observed one

obtained by Panter et al. [2007], and with the SMF measured from Flagship

galaxy mock catalogues. We find a good agreement between our predicted

SMF and the observed one. We test then the clustering properties of our

mock galaxy catalogue, measuring the 2PCF and comparing it to the 2PCF

obtained from Flagship HOD galaxy catalogue. As expected, we find an in-

creasing in the clustering as a function of the stellar mass selections applied,

in agreement with theoretical expectations and observational measurements.



Sommario

Le proprietà degli oggetti extra-galattici relative alla struttura a grande

scala rappresentano uno strumento fondamentale per dedurre informazioni

sull’Universo. Lo studio scientifico delle galassie inziò negli anni ’20, con

una prima classificazione morfologica delle galassie fornita da di E. Hubble.

Nel corso del anni sono stati compiuti molti passi avanti nello studio delle

proprietà fisiche delle galassie, come la misura della loro massa e luminosità.

Al giorno d’oggi lo studio statistico delle galassie è svolto principalmente

attraverso la funzione di massa stellare (SMF) e la funzione di correlazione

a due punti (2PCF), per diversi redshift. Le galassie sono un tracciante bi-

assato della distribuzione di massa nell’Universo e il loro clustering permette

di studiare la struttura a grande scala dell’Universo, la quale dipende dal

modello cosmologico. Dall’altro lato abbiamo la funzione di massa stellare,

che può essere usata per dedurre informazioni sull’evoluzione e la formazione

delle galassie. Nonostante tutti gli studi osservativi condotti, siamo ancora

lontani dall’avere a disposizione una teoria completa ed esaustiva per la

formazione delle galassie a causa della complessità dei fenomeni coinvolti,

spesso tra loro competitivi. Per affrontare questa difficoltà è pratica comune

confrontare le proprietà osservate delle galassie con le proprietà ottenute da

galassie simulate. Nel corso del tempo sono stati ottenuti cataloghi simulati

di galassie sempre più dettagliati e grandi, ma l’elevato costo in termini di

tempo di calcolo e la necessità di usare approssimazioni rendono difficile la

simulazione di cataloghi accurati e dettagliati.

In questo lavoro di Tesi presentiamo un nuovo codice in grado di popo-

lare un qualsiasi catalogo di aloni di materia oscura attraverso l’uso delle

funzioni di probabilità definite dal metodo detto Halo Occupation Distribu-

tion (HOD). Questo codice è stato implementato all’interno dell’ambiente

delle CosmoBolognaLib (CBL), che costituiscono un insieme di librerie pub-

bliche progettate per effettuare calcoli cosmologici, e scritte nei linguaggi
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C++/Python (Marulli et al. [2016]). Il nostro codice offre la possibilità di

popolare gli aloni di materia oscura usando diversi modelli e parametriz-

zazioni, calibrate da Zehavi et al. [2005], Zehavi et al. [2011] e Moster et al.

[2010]. Abbiamo testato i diversi modelli popolando un catalogo di aloni di

materia oscura estratto dalle simulazioni Euclid Flagship (Castander et al.

[2020, in preparation]). Abbiamo confrontato la funzione di massa stellare

misurata dal nostro catalogo di galassie simulate con quella misurata da

Panter et al. [2007] e quella ottenuta dal catalogo di galassie simulate nelle

Flagship. Troviamo un buon accordo tra la funzione di massa stellare os-

servata e quella predetta da noi. Inoltre abbiamo testato le proprietà di

clustering del nostro catalogo di galassie misurandone la funzione di corre-

lazione a due punti, per poi confrontarla con quella ottenuta dalle galassie

presenti nelle Flagship. Abbiamo ritrovato l’andamento crescente atteso

per il clustering all’aumentare massa stellare, in accordo con le predizioni

teoriche e le osservazioni.



Introduction

At the present day, the commonly accepted cosmological model is the Λ-

cold dark matter (ΛCDM). This model is based on the theory of the Gen-

eral Relativity (GR) (Einstein [1916]) that is, currently, the best description

of the gravitational force, which is the dominant force on large scales. In

the ΛCDM model the observed accelerated expansion of the Universe is

described by introducing the so-called Cosmological Constant, Λ, in the

Einstein’s field equations. The first evidence of the accelerated expansion of

the Universe was provided by Perlmutter et al. [1998] and Riess et al. [1998]

using the SuperNovae Type Ia as standard candles. The standard cosmolog-

ical model assumes the existence of CDM particles, that are particles which

interact only through gravity. Several indirect evidences for DM have been

found during the last decades. The first that introduced the hypothesis of

the existence of the DM was Fritz Zwicky (Zwicky [1933]). He measured the

velocity dispersion of galaxies in the Coma cluster and, applying the virial

theorem, he found that the majority of the cluster mass was not visible.

Evidences for DM have been also obtained with other independent probes,

e.g. exploiting the rotational curves in spiral galaxies, and using the grav-

itational lensing effect and the X-ray emission from hot gas in cluster of

galaxies.

According to the ΛCDM model, the Universe is composed of ∼ 70% of

Dark Energy (DE), which is described by in the GR field equations, and

∼ 25% of CDM. The remaining ∼ 5% is composed of the so-called baryonic

matter, that constitutes the only component of the Universe directly observ-

able through light. The present day cosmological sources, such as galaxies

and clusters of galaxies, probes the observable cosmological framework. The

standard scenario for the formation of the cosmic structures is based on the

assumption that the initial fluctuations in the primordial matter density

field were Gaussian distributed. These fluctuations started growing driven

i
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by gravity. The baryonic matter started its collapse only after it became

neutral, thus after the so-called recombination. Then it fell into the DM halo

potential wells and rapidly reached the same overdensity values of the DM

field. When overdensities reached unity, their growth became non-linear.

Except for the highly approximated spherical collapse model, there are no

analytical models able to describe the non-linear regime. Therefore numer-

ical simulations are required to describe the non-linear evolution of cosmic

structures.

When the first DM collapsed structures formed, they evolved hierarchi-

cally assembling into even more larger structures, following the path de-

scribed by so-called merger trees. The baryonic matter, interacting also

through the electro-magnetic force, can collapse further than DM, driven

by radiative cooling. The several physical processes involved during the col-

lapse of the baryonic matter make its description even more complicated

than the one of the DM structures. For this reason, there are no general

and complete models yet able to fully describe the formation and evolution

of galaxies. To overcome this issue, the numerical approach is needed once

again. Generally, constructing simulated galaxy catalogues is not an easy

task and several approaches are available. The most accurate one involves

the solutions of the magneto-hydrodynamic equations. However, this set of

equations is strongly non-linear and the computational time required makes

this method computationally demanding. Another approach to simulate the

formation and evolution of galaxies consists of parameterising the physical

processes involved through approximated relations, searching for the pa-

rameter values that make the main properties of simulated galaxies close

to the observed ones. The last method that we report is the most empiri-

cal one, consisting in the calibration of the probability distribution for DM

haloes to contain a certain number of galaxies. This method exploits the

so-called Halo Occupation Distribution (HOD) framework, and allows to

construct mock galaxy catalogues, calibrating the adopted models through

observations. In this Thesis work, we implement a new free software code

for populating DM haloes with galaxies within the HOD framework.

This work is organized as follows:

• In Chapter 1 we introduce the cosmological framework within this

Thesis work is developed. We introduce some basic concepts of GR

and illustrate how the evolution of the Universe can be mathematically



CONTENTS iii

described.

• In Chapter 2 we discuss the formation of cosmological structures, start-

ing from density field fluctuations and coming to the formation of

collapsed DM haloes. We describe also some of the main DM halo

properties, such as the density radial profile and mass function.

• In Chapter 3 we introduce the classification of galaxies and some

galaxy formation and evolution scenarios. We describe the stellar

mass function and discuss how to use it as an observable tool used

to infer information on the cosmological evolution of galaxies. Then

we describe the common techniques used to measure the galaxy stellar

masses. Finally, we define the main estimators for the computation

of the two-point correlation function, showing how the two-point cor-

relation function of galaxies can be exploied as a powerful tool to

investigate the large-scale structures of the Universe.

• In Chapter 4 we present the three main methods to construct simulated

galaxy samples. We start describing the main cosmological simulation

techniques, then the semi-analytic models and, in the end, the HOD

and similar methods. Finally, we describe the Flagship simulations

used in this work, from which we extracted the DM halo catalogue to

populate with galaxies.

• In Chapter 5 we present the new HOD code implemented in this The-

sis work, discussing the parameterisations used to populate the halo

catalogue with galaxies. Then we describe the galaxy properties of the

obtained mock catalogue, comparing our results with some reference

models.

• In Chapter 6 we summarise our work and draw our final conclusions.

Finally, we analyse the future perspectives of this work, focusing on

the possible improvements and applications of our code.



Chapter 1

Cosmological framework

In this Chapter we provide an overview of the Cosmological framework that

we assumed in this Thesis. We summarise the mathematical tools used to

describe the Universe, thought as a four dimensional differentiable manifold,

with the Theory of General Relativity (GR). We introduce the Hubble-

Lemâıtre Law and we define the concept of redshift. After that we will see

how the cosmological structures can grow up in this contest.

1.1 General Relativity

The gravitational force is the predominant force that governs the evolution

of the Universe as a whole. Two of the four fundamental forces of nature -

Strong and Weak nuclear forces - act on very short ranges of distances, so

on large scales we can neglect them. Electromagnetic forces have an effect

also on large scales, but the matter in Universe is overall neutral. Thus the

gravitational force plays the main role in the evolution of the Universe.

The most powerful model to describe this force is the GR, introduced in

1916 by Einstein in order to combine his former theory of Special Relativity

and the force of gravity (Einstein [1916]).

In this framework, gravity is not thought anymore as a force, but as a

property of the space-time itself. In GR space-time is described as a four-

dimensional differentiable manifold. Every point on it is called event and

has four coordinates, that is three space-like and one time-like. How the

coordinates of different points in space-time are connected from one to the

other is described by a metric tensor gµν , which characterize the intrinsic

properties of a manifold or, in other words, is the metric that determines

1
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all the distance relations between points. Indeed the metric tensor, taking

into account the intrinsic curvature of the manifold, describes the geometry

of the space-time. We shall require the geometry to be locally Euclidian.

That is the geometry is Euclidian in the neighborhood of any point.

We can write the displacement between two close events xi = (t, x1, x2, x3)

and xi + dx = (t+ dt, x1 + dx1, x2 + dx2, x3 + dx3) in this way:

ds2 = gikdx
idxk (µ, ν = 1, 2, 3, 4).

The shortest paths between any two events are called the geodesics, and

generalise the concept of straight lines in curved spaces, and can be assessed

by minimising ds2:

δ

∫
ds = 0 ,

where δ represents a small variation in the path with respect to the path

that minimises the distance between any two events. All objects move along

these geodesics. The paths can be obtained by solving the so-called geodesic

equation:

d2xi

ds2 + Γikl
dxk

ds

dxl

ds
= 0 ,

where Γ are the Christoffel’s symbols which contain the metric tensor

Γikl =
1

2
gim
[
∂gmk
∂xl

+
∂gml
∂xk

− ∂gkl
∂xm

]
,

and

gimgmk = δik ,

is the Kronecker delta, which is unity if i = k, and zero otherwise. According

to GR, the metric tensor itself is influenced by how the matter is distributed

and how it moves.

We can describe the main properties of the distribution of matter in

space-time introducing the energy-momentum tensor Tik , which describes

the density, flux energy and momentum of matter. For a perfect fluid with

pressure p and density ρ, the energy-momentum tensor can be written as:

Tik = (p+ ρc2)UiUk − pgik , (1.1.1)

where Ui = gikU
k = gik

dxk

ds is the four-velocity of the fluid and xk(s) is the

world line of a fluid element.
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In differential geometry, the energy conservation law can be found by

imposing that the covariant derivative is null:

T ki ; k = 0 , (1.1.2)

where, conventionally, the semicolon indicates the covariant derivative, which

for a tensor A is defined as:

Akl...pq...; j =
∂Akl...pq ...

xj
+ ΓkmjA

ml...
pq... + ΓlnjA

kn...
pq... + ...− ΓrpjA

kl...
rq... − ΓsqjA

kl...
ps... − ... .

From Eq.(1.1.2), Einstein derived the Poisson’s equation in the classical

limit:

∇2φ = 4πGρ ,

which relates the gravitational potential, φ, to the density, ρ, of the source of

the gravitational field. This means that the metric tensor, gij , is connected

to the energy-momentum tensor, Tij , with an equation which contains only

the first two derivatives of gij , and has zero covariant derivative.

The Riemann–Christoffel tensor, Riklm, can be used to assess whether a

space is curved or flat:

Riklm =
∂Γikm
∂xl

+
∂Γikl
∂xm

+ ΓinlΓ
n
km − ΓinmΓnkl . (1.1.3)

From Eq. (1.1.3) we can construct the so-called Ricci tensor and Ricci scalar,

that describe the curvature:

Rik = Rlilk ,

R = gikRik ,

from which we can define the Einstein tensor as:

Gik ≡ Rik −
1

2
gikR .

It can be shown that:

Gki;k = 0 .

The fundamental equation of GR proposed by Einstein is the following:

Gik ≡ Rik −
1

2
gikR =

8πG

c4
Tik , (1.1.4)

where c is the speed of light and G is the Newtonian gravitational constant.

The quantity 8πG/c4 ensures to obtain the Poisson’s equation in the weak



4 CHAPTER 1. COSMOLOGICAL FRAMEWORK

gravitational field limit. In Eq.(1.1.4) Gik contains second derivatives of the

metric tensor. As it was soon revealed, the solutions of Eq.(1.1.4) describe

an expanding Universe, which at that time was considered physical meaning-

less. Einstein himself proposed an alternative form for his field equation to

obtain solutions without expansion, introducing the so-called cosmological

constant, Λ:

Gik − Λgik = Rik −
1

2
gikR− Λgik =

8πG

c4
Tik . (1.1.5)

The term Λ can be equivalently be interpreted as a modification of gravity,

when it is put on the left-hand side of Eq.(1.1.5), or as an additional energy

component, if it is on the right-hand side. Some years after the introduction

of Λ, the astronomer E. Hubble observed that galaxies are receding from

us with a velocity that is proportional to the distance from Earth. This

observational fact is interpreted as the effect of the expansion of the Universe

and made the cosmological constant useless. However, recent observational

evidences, like the Supernovae type Ia(SNIa) distance diagram, showed that

the Universe is actually accelerating (Perlmutter et al. [1998], Riess et al.

[2019]). So the cosmological constant has been recently reintroduced, though

with an opposite purpose with respect to the original one.

Eq.(1.1.5) tells us how the matter moves due to the shape of space-

time, and that the space-time is curved due to the matter/energy content.

Solving the Einstein’s equation for arbitrary distributions of matter is not

generally possible with analytic techniques. We have to make some a−priori
assumptions that simplify the form of the metric tensor.

1.2 Cosmological Principle

The cosmological principle asserts that the Universe is homogeneous and

isotropic on large scales. Homogeneity means that everywhere in space the

average properties of the Universe are the same, while isotropy means that

the average properties of the Universe are the same in every direction. These

assumptions are observationally confirmed today on sufficient large scale,

r ≥ 200 Mpc (Scrimgeour et al. [2012]). The cosmological principle was

introduced by Einstein himself, based on the Ernst Mach’s philosophical

point of view, that can be summarised with the idea that all laws of physics

are determined by the global distribution of matter in the Universe. Ein-

stein thought that the only way to construct a cosmological theory was to
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assume some global simplicity in the Universe, enabling symmetries in the

local distribution of matter. The Cosmic Microwaves Background radiation

(CMB) provides one of the strongest evidence in support of the Cosmologi-

cal Principle. Indeed, the CMB temperature shows very small fluctuations

in different directions. If we add to this observational evidence the so-called

Coperinican Principle, which claims that we are not in any special place,

we automatically regain also the homogeneity. So the observed isotropy to-

gether with the Copernican Principle implies the Cosmological Principle.

The Cosmological Principle can be taken further with the Perfect Cos-

mological Principle, which says that average properties of the Universe are

the same in all places, in all directions and in all times. This stronger ver-

sion of the Cosmological Principle in addition to the observational fact that

the Universe is expanding, led to develop the so-called steady-state model of

the Universe, which was eventually abandoned from the 1960’s, due to the

discover of CMB radiation.

1.3 Friedman-Lemâıtre-Robertson-Walker Metric

In this section, we describe the metric which satisfies the Cosmological Prin-

ciple. As a consequence of the homogeneity’s hypothesis, the Universe can

be divided into many time slices, Σt, described as sub-manifolds where the

proper time t is the same everywhere. In first approximation, we can treat

the matter content of the Universe as a perfect fluid. A set of comoving

coordinates xi (i = 1, 2, 3) is associated to each element of this fluid.

The metric that describes a homogeneous and isotropic space is the so-

called Friedman-Lemâıtre-Robertson-Walker (FLRW) metric:

ds2 = (cdt)2 − a2(t)

[
dr2

1−Kr2
+ r2(dθ2 + sin2(θ))dφ2

]
, (1.3.1)

where r,θ,φ are spherical comoving coordinates. The scale r is conventionally

dimensionless, while a(t), which is called the scale factor and is a function

of the proper time, has the dimension of a length and accounts for the

expansion of Universe. The term K is called the curvature parameter and

can take only the values: -1, 0, +1. It describes the curvature and thus the

geometrical properties of the Universe. At fixed time t, we are on a time

slice Σt whose topology is determined by the value of K:
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• K=0 or Flat Universe:

dl2 = dr2 +
(
dθ2 + sin2(θ)dφ2

)
= dr2 + r2dΩ2 ,

this means that Σt is flat and has the geometrical properties of an

Euclidean space;

• K= 1 or Closed Universe:

dl2 = dχ2 + sin2(χ)dΩ2 =
dr2

1− r2
+ r2dΩ2 ,

where 0 ≤ χ ≤ π. In this case Σt is a three-dimensional sphere;

• K = −1 or Open Universe:

dl2 = dΨ2 + sinh2(Ψ)dΩ2 =
dr2

1 + r2
+ r2dΩ2 ,

where 0 ≤ Ψ <∞. In this case Σt is a three-dimensional hyperboloid.

1.4 Cosmological Distance and Hubble-Lemâıtre’s

Law

The proper distance, dp, is the distance between a point P0, that we can

locate at in the origin of the coordinate system (r, θ, φ), and another point

P. Ideally, this distance is measured by a chain of rules which connect P and

P0 at time t, so we are in a slice of time Σt, that is with dt = 0 . From the

Friedman-Leimâıtre-Robertson-Walker metric, we can write:

dp =

∫ r

0

a dr′

(1−Kr′2)1/2
= af(r) ,

where the form of f(r) depends on the specific value of K:

f(r) =


sin−1(r) K = 1

r K = 0

sinh−1(r) K = −1

.

The definition of the proper distance is operationally useless as it is not

possible to measure simultaneously all distance elements separating any two

points. The proper distance at time t is related to that at the present time

t0 by:
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dp(t0) = a0f(r) =
a0

a
dp(t) .

One can define another comoving coordinate, instead of r, as:

dc = a0f(r) ,

which is related to the proper distance as follows:

dc =
a0

a
dp(t) .

Since dp depends on time, the proper distance between two points separated

by a fixed value of dp changes due to the expansion of the Universe. In-

stead, dc is time-independent because it is rescaled by a0 from which we can

compute the velocity of the expansion by deriving the proper distance:

vr =
ddp
dt

= ȧf(r) =
ȧ

a
dp . (1.4.1)

This is known as Hubble-Lemêıetre’s Law and it is usually written in terms

of the Hubble′s parameter, H, defined as follows:

H(t) ≡ ȧ(t)

a(t)
.

This parameter at the present time, H(t0) ≡ H0, has a value around H0 ≈
70 km s−1 Mpc−1. Usually, it is convenient to define the dimensionless

parameter h ≡ H0/100 km s−1 Mpc−1. Recently, it comes out that there

is a tension between the values of H0 measured from the CMB angular

spectrum, H0 = 67.4±0.5 kms−1 Mpc−1 (Planck Collaboration et al. [2018]),

and those measured using distance ladders as Cepheids or SNIa where H0 =

74.03± 1.42 km s−1 Mpc−1(Riess et al. [2019]). Indeed, local measurements

of H0 have a discrepancy of 4.2σ with respect to the value of H0 coming

from CMB. It seems unlikely that the tension is totally caused by systematic

errors in the measurements, as different teams using independent methods

obtained consistent results. One possible way to solve the H0 tension is to

introduce a scalar field, the so-called Early Dark Energy (EDE), which acts

just before the appearance of the CMB (e.g. Poulin et al. [2019]). But the

problem is still open.
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1.4.1 Redshift

A fundamental cosmological observable is the redshift in the electromagnetic

spectrum of extra-galactic sources which is directly related to the expansion

of the Universe. The redshift is defined as follows:

z ≡ λ0 − λe
λe

,

where λo is the wavelength of radiation from a source observed at the time

t0 and emitted at the time te. This shift is due to the expansion of the

Universe. Because the light follows null geodesics (ds2 = 0) we have:∫ t0

te

cdt

a(t)
=

∫ r

0

dr

(1−Kr2)1/2
= f(r) . (1.4.2)

The light emitted by a source at time t′e = te + δte reaches the observer

at time the t′0 = t0 + δt0. Since r is a comoving coordinate, and both the

source and observer are moving with the cosmological expansion, f(r) does

not change. Thus we have: ∫ t′0

t′

cdt

a(t)
= f(r) . (1.4.3)

If δt and δt0 are small enough, Eqs. (1.4.2) and (1.4.3) imply

δt0
a0

=
δt

a
.

The time intervals δt and δt0 are related to the frequencies of the radiation

emitted and observed, so we have νea = ν0a0 or, equivalently:

a

λe
=
a0

λ0
.

Thus, according to the redshift definition, we obtain:

1 + z =
a0

a
. (1.4.4)

The more distant is a source from us, the higher is its z. Therefore redshift

measurements are used to infer comoving distances of extra-galactic sources.

1.4.2 Other distance definitions

The proper distance definition can not be used operationally to measure

distances because it depends on a that changes with time. We need other
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ways to measure the distances of astronomical objects. One option is the

luminosity distance, dL, that is defined to preserve the relation between

the flux received by the observer and the luminosity emitted by a source. If

L is the power emitted by a source and l is the flux observed, then:

dL =

(
L

4πl

)1/2

.

The spherical surface centered on the source and passing from the observer

at time t0 is 4πa2
0r

2. The photons that reach the orbserver are redshifted by

a factor a/a0 due to the expansion of the Universe. Also, photons emitted

by a source in the small time interval δt, arrive in an interval δt0 = (a0/a)δt

due to the time dilatation. So the flux reaching the observer is:

l =
L

4πa2
0r

2

(
a

a0

)1/2

.

Using Eq. (1.4.4), the relation between the luminosity distance and the

redshift is the following:

dL = ra0(1 + z) .

This definition has been used to estimate the distance of standard candles,

like SNIa. Another definition of distance commonly used in cosmology

is the angular distance, dA, which is defined to keep the angular size of an

object constant in distance from an observer. Let Dp be the proper diameter

of a source that subtends an angle ∆θ. From Eq. (1.3.1) we have:

Dp = ar∆θ .

So the angular distance becomes:

dA =
Dp

∆θ
= ar . (1.4.5)

The angular distance and the luminosity distance can be measured inde-

pendently from each other. As shown by Etherington [1933] in the FLRW

metric the relation between the two is:

dA ≡
dL

(1 + z)2
.

This observable relation provides a powerful probe to test the validity of the

FLRW metric (e.g. Li et al. [2011]).
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1.5 Friedman Equations

Assuming the Cosmological Principle, we can solve the Einstein’s field equa-

tion (1.1.4), with the FLRW metric (1.3.1) and the energy-momentum tensor

of a perfect fluid (1.1). Under these assumptions, the field equation has only

two independent solutions, called the Friedman equations:

ä = −4πG

3

(
ρ+ 3

p

c2

)
a , (1.5.1)

ȧ2 +Kc2 =
8πG

3
ρa2 . (1.5.2)

Actually Eqs. (1.5.1) and (1.5.2) are not independent. One can be obtained

from the other assuming that the Universe is a closed system and so its

expansion is adiabatic, without loss of energy:

d
(
ρc2a3

)
= −pda3 . (1.5.3)

Friedman was the first that found these solutions in 1922. At that time,

before the Hubble’s observations of receding galaxies, cosmologists thought

that the Universe was static, that is ä = ȧ = 0, and from Eqs. (1.5.1),(1.5.2):

ρ = −3p

c
,

that has no classical physical meanings. As already mentioned in the Section

(1.1), for this reason Einstein decided to introduce the cosmological constant,

Λ, in the modified field equation given by Eq. (1.1.5).

1.6 The Einstein Universe

The field equation with the cosmological constant can be written in terms

of the effective energy-momentum tensor, T̃ik:

Rik −
1

2
gikR =

8πG

c4
T̃ik , (1.6.1)

with:

T̃ik ≡ Tik + Λgik
c4

8πG
.

Defining the effective pressure, p̃ ≡ p − Λc4

8πG , and effective density, ρ̃ ≡
ρ+ Λc2

8πG , the tensor T̃ik can be written as follows:

T̃ik = −p̃gik +
(
p̃+ ρ̃c2

)
uiuk . (1.6.2)
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The mathematical form of the Eq.(1.6.1) is the same as the one of Eq.(1.1.4),

thus also the solutions have to be the same, with pressure p̃ and density ρ̃:ä = −4πG
3

(
ρ̃+ 3p̃

c2

)
a

ȧ2 +Kc2 = 8πG
3 ρ̃a2

. (1.6.3)

In static universes, ä = ȧ = 0. In the dusty assumption, the pressure is null

and Eqs.(1.6.3) give: Λ = K
a2

ρ = Kc2

4πGa2

.

Assuming that p = 0, the only way to have a positive density is to impose

K = 1 that is a closed Universe. This model is known as the Einstein

Universe that is a static Universe of matter (dusty Universe), with positive

curvature. After the Hubble’s discovery, discussed in Section 1.4, static

models were abandoned. In 1990’s, observations suggested that the Universe

(Perlmutter et al. [1998]) is an accelerated expansion. The cosmological

constant was thus reintroduced to describe the acceleration.

1.7 The de Sitter Universe

In order to understand the role of the cosmological constant, we can consider

a flat (K = 0) empty Universe model (p = 0 and ρ = 0), where the only

contribute to the energy momentum comes from Λ. Imposing p = 0 and

ρ = 0, Eq. (1.6.2) gives:

p̃ = −ρ̃c2 . (1.7.1)

Using Eq.(1.7.1), the solution of Friedman equations (1.6.3) brings to:

a(t) = A exp

[√
Λ

3
ct

]
. (1.7.2)

This means that the cosmological constant could account for accelerated

expansion (ä > 0).

1.8 Friedman Models

We can approximate the content of the Universe as a perfect fluid, then it

is necessary to desccribe its equation of state, which connects p and ρ. In
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general, we can write:

p = wρc2 . (1.8.1)

The value of w can be assessed by considering the speed of sound:

csound =

(
∂p

∂ρ
|S=const

)1/2

,

where S is the entropy. The speed of sound has to be major than zero but

larger than c. This consideration brings to 0 ≤ w < 1 , which is known as

the Zeldovich interval. The values of w depend on the type of fluid we are

considering.

• If we consider a perfect gas, the pressure and density are related by:

p = nkBT ,

but being the pressure almost negligible in this case w = 0.

• If we consider a fluid composed by relativistic particles, for examples

photons, we have:

p =
1

3
ρc2 ,

so in this case w = 1/3.

• If we are in vacuum where only the cosmological constant is important

we have Eq.(1.7.1), which implies w = −1.

It is useful to rewrite the adiabatic equation (1.5.3) using the equation of

state (1.8.1):

ρw = ρ0,w

(
a

a0

)−3(1+w)

. (1.8.2)

This means that:

• for a dusty Universe, that is w = 0, the density is:

ρmatter = ρ0,matter

(
a

a0

)−3

= ρ0,matter(1 + z)3 ,

• for a radiation Universe, that is w = 1/3, the density is:

ρradiation = ρ0,radiation

(
a

a0

)−4

= ρ0,radiation(1 + z)4 ,
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• for a vacuum Universe, with the cosmological constant, that is w = −1,

the density is:

ρΛ = ρ0,Λ(a/a0)0 = ρ0,Λ .

We conclude that the matter and radiation density components changes

during expansion with different rates. So we can divide the history of the

Universe into epochs based on which component was the dominant at that

epoch, as shown in Figure 1.1.

Figure 1.1: Density trends with time. We see that at the beginning the radiation

has the most important role in the evolution of the Universe. While

at the present time the cosmological constant dominates. Image from

Freedman and Kaufmann [2007]

It is useful to introduce three new quantities

• the critical density:

ρcrit(t) ≡
3H(t)3

8πG
, (1.8.3)

• the density parameter:

Ω ≡ ρ

ρcrit
, (1.8.4)
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• the deceleration parameter:

q ≡ − äa
ȧ2

. (1.8.5)

In order to understand the meaning of ρcrit(t), we rewrite the Friedman

Eqs.(1.5.1) (1.5.2) as follows:

− K

a(t)2
=
H(t)2

c2

(
1− ρ(t)

ρ(t)crit

)
.

At the present time we have:

• K=0 → Flat Universe → ρ0 = ρ0,crit → Ω0 = 1.

• K=1 → Closed Universe → ρ0 > ρ0,crit → Ω0 > 1.

• K=-1 → Open Universe → ρ0 < ρ0,crit → Ω0 < 1.

With these definitions and the adiabatic condition given by Eq.(1.5.3), we

can write the second Friedman equation:

H2(t) = H2
0

(a0

a

)2
[

1−
∑
i

Ω0,wi +
∑
i

Ω0,wi

(a0

a

)(1+3wi)
]
, (1.8.6)

where Ω0,wi is the density parameter of a specific component (radiation,

matter, or Λ) at the present time. In Eq.(1.8.6), but for each epoch we can

consider only the dominant component and neglect the others. This is true

if we are sufficiently far from the equivalent points, that are the times at

which two components have similar energy densities. At the present time in

particular we have ΩΛ ≈ ΩM .

Assuming that p > 0 and ρ > 0, from the Friedman Eqs.(1.5.1) and

(1.5.2), neglecting the possibility of cosmological constant we have ä < 0.

From this fact and the observed expansion of the Universe (ȧ0 > 0), we

conclude that a(t) is a monotonic and increasing function so at some point

in the past there was a(t) = 0 . This means that the Universe started its

expansion from a point where density, pressure and temperature diverged.

This is known as Big Bang.

1.9 The Enstein-de Sitter Model

In the Einstein-de Sitter (EdS) model the Universe is assumed to be flat and

with only one dominant component, thus Ωw = 1. From Eq.(1.8.6) we can
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derive the following behaviors:

a(t) = a0

(
t

t0

)2/3(1+w)

, (1.9.1)

t(a) = t0

(
a

a0

)3(1+w)/2

= t0(1 + z)−3(1+w)/2 , (1.9.2)

H(t) =
2

3(1 + w)t
= H0(1 + z)3(1+w)/2 , (1.9.3)

ρ(t) =
1

6πG

1

(1 + w)2t2
. (1.9.4)

In the EdS Universe we can straightforwardly evaluate the age of the Uni-

verse, that is inversely proportional to the Hubble’s parameter at the present

day:

t0 =
2

3(1 + w)

1

H0
,

that results to be about 10 billion years, with the value of H0 commonly

accepted (Planck Collaboration et al. [2018]).

1.10 Curved Universes

Now we consider mono-component curved Universes (indeed Ω0 6= 1 ). The

Friedman equation (1.8.6), to completeness:(
ȧ

a0

)2

= H2
0

[
1− Ω0 + Ω0

(a0

a

)(1+3w)
]
. (1.10.1)

• The first term in the bracket of Eq.(1.10.1) (1−Ω0 ≡ Ωk) is in to the

Universe curvature.

• The second term in the bracket of Eq.(1.10.1) (Ω0

(
a0
a

)(1+3w)
) depends

on the content of the Universe and decreases when a increases. For

this reason the curvature is important only when a ∼ a0 and every

kind of Universe near the Big Bang can be approximated by a flat

Universe.

The two terms became equal at z∗, given by the following equation:

a0

a∗
= (1 + z∗) =

(
1− Ω0

Ω0

)1/1+3w

.



16 CHAPTER 1. COSMOLOGICAL FRAMEWORK

This means that for z > z∗ , that is closer to the Big Bang, the curvature

does not matter and the Universe behaves as a flat Universe, regardless of

the actual Ω value. Indeed the solutions near the Big Bang are the same of

the EdS model but multiplied by a factor Ω
1/2
0 .

Open Universes

The Universes with Ω < 1 are called Open Universes. The a(t) grows with

time and the first term in Eq.(1.10.1) is always positive. For a(t) > a∗ the

second term in Eq.(1.10.1) is negligible, so we can approximate the equations

as follows:

ȧ ∼ a0H0(1− Ω0)1/2 ,

a ∝ t ,

H ∝ 1/t ,

q → 0 .

In Open Universes, a(t) always grows and the space expands towards infin-

ity with constant expansion rate. This brings to the thermal death of the

Universe.

Closed Universes

The Universes with Ω > 1 are called Closed Universes. From Eq.(1.10.1) we

find that there is a time, tm, where ȧ(tm) = 0. At this time the value of a

is maximum while the value of the density ρ is minimum:

amax = a0

(
Ω0

1− Ω0

)1/1+3w

,

ρmin = ρ0

(
Ω0

1− Ω0

)1+3w/3(1+w)

.

After the time tm, Eq.(1.10.1) changes sign and the Universe stops to grow

and starts to contract. At the time 2tm the Universe collapses completely.

These behaviors are shown in Figure 1.2, where a(t) is plotted against t,

showing the evolution in different Universe models.
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Figure 1.2: Solid lines show the evolution of the scale factor a(t), or equiva-

lently the average distance between galaxies, for different values of

Ω0. The dashed lines show a model with ΩΛ 6= 0. Credits to

www.thestargarden.co.uk/Big-bang.html.

The Standard Cosmological Model

The standard cosmological model, called ΛCDM , is set up on the Big Bang

theory. The Big Bang theory is consistent with the Hubble’s law, with the

primordial abundance of light elements, like Helium (Fuller et al. [1988]),

and with the CMB radiation properties. Two observational issues, that are

the horizon problem and the flatness problem, can be solved introducing a

period of time, in the early Universe, of extremely rapid expansion, called

inflation (Guth [1981]).

The Universe in the ΛCDM model is flat, with Ω = ΩM + ΩΛ = 1. The

dominant component at the present time is ΩΛ, that is about 70% of the

energy component of the Universe. The remaining 30% of the energy density

is composed by ΩM with only 5% is ordinary matter, also called baryonic

matter, while the remaining 25% is composed of Dark Matter (DM). In

fact, several observations suggest that there must be large amount of mass

in the Universe that we can not directly observe through light but only

www.thestargarden.co.uk/Big-bang.html.
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via gravitational effects. The first astronomer that supposed the existence

of this kind of matter was Zwicky in 1933 (Zwicky [1933]) measuring the

velocity dispersion of galaxies in clusters. Other dynaminacal proofs for the

existence of DM come from the Rotational Curves in disk galaxies (Rubin

et al. [1978]), or the velocity dispertion of stars in elliptical galaxies.Besides

dynamic measurements, other observables suggest that there is more matter

than the visible one, such as for examples, the X-ray emission from Intra

Cluster Medium (ICM) (Vikhlinin et al. [2006]), or the gravitational lensing

(Massey et al. [2010]). The DM can be classified into two types:

• Hot Dark Matter (HDM) made of low mass relativistic particles. The

best candidates are massive neutrinos.

• Cold Dark Matte (CDM) made of massive non-relativistic particles.

The best candidates are Weakly Interacting Massive Particles (WIMPS).

Several particle candidates have been proposed and tested. As we will see

in the next Chapter 2, the structure formation and evolution models imply

that the dominant DM component must be cold.



Chapter 2

Structure Formation

The standard scenario of structure formation is based on the idea that the

present-time observed structures, such as galaxies and clusters of galaxies, lie

in DM haloes formed via gravitational instabilities which grew in an expand-

ing Universe. As shown by both approximate analytic models and numerical

simulations, this evolution brings to the so-called Large scale Structure of

the Universe, also known as the Cosmic Web (Davis et al. [1985]). Soon

after the Big Bang, the Universe starts cooling due to adiabatic expansion.

The matter becomes the dominant component of the Universe from the

Equivalence time (zeq ∼ 10000). The DM starts its collapse soon after the

Inflationary Epoch because the DM particles interact with each other only

through gravity, and there are no other forces that contrast their collapse.

On the other hands, the electromagnetic interactions prevent the baryonic

matter to collapse at that time. Baryonic matter can collapse only after the

Recombination time (zrec ∼ 1100) because at that time the baryonic mat-

ter becomes neutral and starts falling into the gravitational wells of DM.

We expect that at that time density fluctuations are of the same order of

magnitude as the fluctuations of temperature in CMB, therefore:

δ ≡ δρ

ρ
∼ δT

T
∼ 10−5 .

The aim of this Chapter is to describe how and under which conditions these

perturbations grew in an expanding Universe.

19
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2.1 Jeans Theory

The first discussion on gravitational collapse was made by James Jeans

(Jeans [1902]). The basic idea is that a small overdensity,δ, a perturbation

in the density field, grows attracting material from the surrounding regions

and forming a bound structure. We can define a characteristic length that

tells us if an overdensity can grow or not. This is called the Jeans scale, RJ ,

and its dependencies on the other physical quantities can be found in three

different ways:

• Exploiting the energetic equilibrium. The kinetic energy of the gas,

Ek = 1
2Mv2, contrasts the collapse, while the gravitational potential

energy, Eg = −GMρR2, tends to accumulate mass onto the overden-

sity. Finding the equilibrium between the two, Ek = −Eg, we have:

RJ = v

√
1

2Gρ
.

• Imposing the balancing of the forces involved during the collapse, thus

the gravitational force, Fg = GM/R2, and the pressure force, Fp =

pR2/M = c2
s/R, which contrasts the collapse. Equating these two

terms we obtain:

RJ = cs

√
1

Gρ
,

where cs is the speed of sound, cs ≈ p/ρ.

• Comparing the time scale of the free-fall, τFF ∝ 1/
√
Gρ, with the

typical crossing-time, τcross ∝ 2R/v, we achieve the relation:

RJ ∝
v

2
√
Gρ

.

These approximated methods to evaluate RJ lead to different results, but it

is important to notice is that in all cases the Jeans’s scale results proportional

to the typical particle velocity of the system and inversely proportional to

the square root of the density. Now we can simply associate to the Jeans’s

scale the Jeans’s mass:

MJ ∝ ρR3
J .

The objects with a mass larger than the Jeans’s mass can grow through the

gravitational collapse.
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To investigate the Jeans instability more accurately we need to study

the dynamics of a self-gravitating fluid in a static background. The fluid

has to satisfy the following system of equations:

∂ρ
∂t +∇ · (ρ~v) = 0 (Mass conservation)

∂~v
∂t + (~v · ∇)~v = −1

ρ −∇φ (Momentum conservation)

∇2φ = 4πGρ (Poisson equation)

p = p(ρ, S) = p(ρ) (Equation of state)

dS
dt = f = 0 (Entropy equation)

(2.1.1)

Where ∇ is the nabla operator, ρ, p are the density and pressure of the

fluid respectively, φ is the gravitational potential and S is the entropy of the

fluid. Since we consider only adiabatic perturbations, the Entropy equation

is null and the pressure is a function of density only. To find the solution of

Eqs.(2.1.1) we use the Perturbative Theory, that is we suppose to know the

unperturbed solutions and then we add a small perturbation to study how

the solutions change. This is possible only in linear regime and for small

perturbations (δx� 1). The unperturbed solutions are the following:

ρ = const = ρb

φ = const = φb

~v = ~0

p = const = pb

(2.1.2)

where the subscript b represents background quantities. We note that these

solutions are not strictly valid, indeed φ = const would imply that ∇2φ = 0,

and therefore ρ = 0 6= ρb. Nevertheless we can neglect this issue for the

moment, since it will be properly solved when the expansion of the Universe

will be introduced in the model. To obtain the perturbed hydrodynamic

equations we add small perturbations to the static solutions, and we search

for the solutions again, omitting the second-order terms:
∂δρ
∂t + ρb∇ · (ρ~v) = 0

∂δ~v
∂t = c2s

ρb
−∇δφ

∇2δφ = 4πGδρ

(2.1.3)

Specifically we look for the solutions of Eqs.(2.1.3) as plane waves. We are

interested in the density field, so we write the solutions as a function of the
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overdensity δ ≡ δρ/ρ:

δ(~r, t) = δk exp
[
i~k · ~r + iωt

]
, (2.1.4)

where δk is the amplitude, ~k = 2πk̂/λ is the wave number, and ω is the

angular frequency of the wave. If we use the plane wave of Eq. (2.1.4)

in the perturbated Jeans’s equation, Eq. (2.1.3), we find the dispersion

relation, which relates ω to k, as follows:

ω2 = c2
sk

2 − 4πGρb . (2.1.5)

Eq. (2.1.5) has two solutions, depending on the sign of ω2. One is a Real

solution while the other is an Imaginary one. We set ω2 = 0 and solve Eq.

(2.1.5) for k:

kj =

√
4πGρb
cs

.

Since the unit of ~k is the inverse of a length, we can recover the Jeans’s

scale:

λJ =
2π

kJ
≡ cs

√
π

Gρb
.

which has the same dependency on cs, ρb and G that we found before with

the simple qualitative description. For λ < λJ =⇒ k > kj =⇒ ω2 > 0 we

have:

ω1,2 = ±kcs

[
1−

(
λ

λJ

)2
]1/2

,

and the amplitude of plane wave does not change during propagation. In-

stead for λ > λJ =⇒ k < kj =⇒ ω2 < 0 and

ω1,2 = ±i
√

4πGρb

[
1−

(
λ

λJ

)2
]1/2

.

In this case, due to the fact that δ = δk exp
[
i~k · ~r − iωt

]
, the amplitude

exponentially increase or decrease with time. We will consider the increasing

solution because it leads to the collapsed structures. These results hold for

a static Universe, but since we live in an expanding Universe we have to

include the effects given by the expansion, which contrasts the structure

growing.
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2.2 Jeans Theory in expanding Universe

To describe the evolution of perturbations in an expanding Universe we

define the Cosmological Horizon:

RH ≡ a(t)

∫ t

0

c dt′

a(t′)
. (2.2.1)

The Cosmological Horizon defines the fraction of the Universe in causal

connection with the observer. The horizon is finite, due to limited speed of

light, and grows with time.

2.2.1 Scales larger than the Cosmological Horizon

For scales larger than RH the force of gravity is the most important and the

others can be neglected. To take into account the expansion, we use a closed

Universe, (K = 1), embedded into an EdS Universe (K = 0) to describe the

perturbation. As discussed in Section 1.10, we know that at certain time

a closed Universe starts to collapse. We write the Friedman equations for

both Universes, as follows:H2
p + c2

a2
= 8πG

3 ρb Perturbation

H2
b = 8πG

3 ρb Background
(2.2.2)

imposing Hp = Hb we have:

δ =
3c2

8πG

1

ρba2
.

The perturbation growth depends on the dominant component of the back-

ground Universe. We can define the Equivalence time, teq, that is when the

contribution to the mean density of the Universe due to the Matter and

Radiation are equal (see Figure (1.1)). The time evolution of the density

contrast before and after the equivalence is:

• t < teq; z > zeq; w = 1/3 =⇒ δrad ∝ a2 ∝ t .

• t > teq; z < zeq; w = 0 =⇒ δM ∝ a ∝ t2/3 .

We conclude that outside the cosmological horizon the perturbation always

grow.
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2.2.2 Scales smaller than the Cosmological Horizon

Inside the Cosmological Horizon also the micro-physics is important which

is described by the equations of hydrodynamics. We write them in physical

units, which are connected to comoving coordinates as ~r = a~x. The velocity

is d~r
dt =~̇r = ȧ~x + ȧ~x = H~r + ~v ≡ ~u, where ~v is the peculiar velocity, that

is the object velocity with respect to the Hubble flow. The hydrodynamical

equations become: 
∂ρ
∂t |~r +∇ · (ρ~u) = 0

∂~u
∂t |~r + (~u · ∇)~u = −1

ρ∇p+∇φ

∇2φ = 4πGρ

(2.2.3)

To solve these equation we apply the Perturbation Theory so we suppose that

the background solutions are known and we add them a small perturbation.

The background solution are:

ρ = ρb(1 + δ)

p = pb + δp

~u = H~r + ~v

φ = φb + δφ

(2.2.4)

We place these solutions in Eqs.(2.2.3). Neglecting second order terms, we

obtain: 
∂δρ
∂t + ρb∇ · (~v) + 3Hδρ = 0

∂~v
∂t +H~v +H~r∇ · ~v = − 1

ρb
∇δp+∇δφ

∇2δφ = 4πGδρ

(2.2.5)

or in co-moving coordinates we have:
∂δρ
∂t |~x + ρb

a ∇x · (~v) + 3Hδρ = 0

∂~v
∂t |~x +H~r = − c2s∇xδ

a − 1
a∇xδφ

∇2
xδφ
a2

= 4πGρbδ

(2.2.6)

Where∇x = a∇, is the relation between the differential operator∇ in physi-

cal units and comoving coordinates. Eqs.(2.2.6) describe how perturbations

evolve in an expanding Universe. We are looking for a plane wave solu-

tion. In this case the amplitude of density perturbation has a direct time
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dependence. We put into Eq. (2.2.6) a plane wave solution like:

f(~x, t) = fk(t) exp
[
i~x · ~k

]
.

We find the following system of equations:
δ̇k + i

~k· ~vk
a = 0

~̇vk + ȧ
a ~vk = −i~ka

[
c2
sδk + δφk

]
δφk = −4πGρb

k2
δka

2

(2.2.7)

It can be shown that ~k and ~vk have the same direction, so we can combine

the three equations system to obtain only one differential equation that

describes the δ behavior:

δ̈k + 2Hδ̇k + δk

[
k2c2

s

a2
− 4πGρb

]
, (2.2.8)

in comoving coordinates Eq. (2.2.8) has two solutions, which depend whether

the perturbation is larger or smaller than the Jeans′s length:

• If λ < λJ or k > kJ , the solution propagates as a plane wave, and its

amplitude does not increase or decrease with time.

• If λ > λJ or k < kJ , the solution has a Real time-dependent term thus

the amplitude can change, either increasing or decreasing with time.

We are interested in the increasing solution, δ∗, of the second case because

it leads to the formation of the cosmic structures. For a generic cosmology,

there are no exact analytic solutions of Eq. (2.2.8), we can use the following

approximate solution:

δ+ ∝ −H(z)

∫ z

∞

(1 + z′)

a2
0H

3(z)
. (2.2.9)

Eq. (2.2.9) holds for perturbations inside the cosmological horizon and for

t > teq (z < zeq). From Eq. (2.2.9), we can see that in Closed Universes

grow faster than perturbations in Open Universes. We note that Eq. (2.2.9)

is still a linear solution, valid for δ � 1.

Linear perturbation theory leads to another evidence of DM existence.

The radiation pressure prevents the baryonic matter to collapse. In fact the

baryonic matter can grow only after the Recombination Time, z ∼ 1100.

In order to reach at least δ ∼ 1 before z = 0 the starting overdensity
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field of baryonic matter should have been δ ∼ 10−3. This is in contrast to

observations of CMB radiation which reveal an overdensity field of δ ∼ 10−5.

As shown by Eq. (2.2.9) in a Closed Universe the perturbations grow faster

than in a flat one. In an Universe composed only by baryonic matter the

total density parameter should be Ω ∼ 20 in order to justify the observed

collapsed structures at the present time. This is in contrast with commonly

accepted value Ω = 1 measured from CMB (Sievers et al. [2003] or Planck

Collaboration et al. [2018]).

From the Recombination time the baryonic matter falls into DM haloes,

which are already grew up, thanks to their earlier decoupling. This behavior

is called baryon catch-up, and allows baryonic overdensities to rapidly reach

the values of δDM . The growth of dark matter and baryonic matter are

shown in Figure 2.1. Eq. (2.2.9) can be used to define the so-called growing

Figure 2.1: The evolution of perturbation δx is CDM, δm is baryonic component,

and δr is the radiative component, at mass scale M ∼ 1015M�. The

radiation never grows and prevent the collapse of baryonic matter until

recombination, after that baryonic matter falls into DM haloes. Credits

to Coles and Lucchin [2003]

factor :

f ≡ d ln δ+

d ln a
≈ Ωγ

M +
ΩΛ

70

(
1 +

ΩM

2

)
, (2.2.10)

which has a strong dependence on ΩM , and a very weak dependence on ΩΛ.

In General Relativity γ ≈ 0.55, thus measuring f is used to test the gravity

theory.
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2.3 Spherical collapse

The evolution of cosmic structures can be described analytically in the linear

regime only when δ � 1. The later non-linear evolution can not be described

exactly with analytic models, but in simple, highly symmetric systems, such

as in the case of the spherical collapse. In more general cases the non linear

evolution model numerical simulations are used as we will see in Section 4.1.

The spherical collapse model describes the non-linear evolution of a

spherical overdensity, δ, embedded in a background Universe. We sup-

pose that at the beginning the perturbation follows the evolution of the

background Universe. For simplicity at the initial time we assume an EdS

background Universe. The spherical collapse model treats the overdensity

as a separate Universe with its own density parameter, Ωp. The overdensity

will collaps if Ωp > 1 and the following equations hold:δ(t) = 3
5δ+(ti)

(
t
ti

)2/3

δ+ > 3
5

1−Ωb(ti)
Ωb(ti)(1+zi)

(2.3.1)

where Ωb is the density parameter of the background Universe and δi is the

initial overdensity which depends on redshift. From Eq. (2.3.1) we see that

for closed and flat Universess the any overdensity can collapse, while in open

Universes only the overdensity that exceed a threshold value can collapse.

The expansion of the perturbation is described by the Friedman equation

(Eq. (1.8.6)). The overdensity follows the evolution of background Universe

until gravity stops the perturbation expansion at the turn-around point and

the overdensity starts to collapse. The turn-around time reads:

tturn =

[
3π

32Gρ(tturn)

]1/2

, (2.3.2)

where ρ(tturn) is the perturbation density. The complete collapse is achieved

at tc ≈ 2tturn. Once the overdensity is collapsed, it can reach the virialization

at time tvir ≈ 3tturn. We can define the ratio between the perturbation

density and the background mean density, χ(t). If the background is still

EdS at the collapse time we find:

χ(tc) =
ρ(tc)

ρb(tc)
∼ 180 ,

χ(tvir) =
ρ(tvir)

ρb(tvir)
∼ 400 .
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These values strongly depends on cosmology. Using the linear theory, the

overdensity value of collapsed structures would be:

δ(tc) ∼ 1.68 . (2.3.3)

This value is not cosmology-dependent. This fact will be useful in the next

Section 2.4.

2.4 The halo mass function

Let us now define the halo mass function (MF) as the number of objects

with mass between M and M + dM per unit of comoving volume. The

MF allows us to summarize the main statistical properties of the collapsed

DM haloes, being related to their formation and evolution. To model the

HMF, we have to integrate the probability distribution of perturbations,

P (δ), which tells us the probability of having a perturbation above a given

threshold. We assume this distribution to be Gaussian at the beginning of

the perturbation growing, that is immediately after the inflation. When the

growth is non-linear, the distribution can not be Gaussian anymore, and its

skewness becomes not null. We integrate P (> δc), where δc is the critical

overdensity above which the perturbation will become a collapsed structure.

We can exploit the fact that the P (δ) in the linear regime, still is a Gaussian

distribution. We integrate P (> δc) above the overdensity threshold δc ∼
1.68, as introduced in Section 2.3.1. This value is the critical overdensity

predicted by linear theory in the spherical collapse assumption, and does

not depend strongly on cosmology. As shown by Press and Schechter [1974]

it is possible to find an analytical form of the HMF, as follows:

n(M, z)dM =

√
2

π

ρ̄M (z)

M2

δc
σM

∣∣∣∣d lnσM (z)

d lnM

∣∣∣∣ exp

(
− δ2

c

2σM (z)

)
dM (2.4.1)

where ρ̄M (z) is the mean matter density δc is the threshold of the overdenty

that allows the collapse, and σM is the root mean square of the mass fluc-

tuations.We note that Eq. (2.4.1) holds only for structures formed through

a spherical collapse. It is possible to find an analytical solution of the MF

even considering an ellipsoidal collapse, as showed by Sheth and Tormen

[1999] and Sheth et al. [2001]. Figure 2.2 shows the evolution of the MF

with redshift. The MF can be modelled as a Schechter function, that is a
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Figure 2.2: The evolution of the HMF as a function of the redshift in a ΛCDM cos-

mology. The density of objects decreases with the redshift and increases

with time. The image is realised using the functions implemented in

the public set of libraries CosmoBolognaLib.

power law with an exponential cut off at the characteristic mass, M∗, given

by:

M∗ ≡M0

(
2

δ2
c

)1/2α

, (2.4.2)

where α = (n+ 3)/6 while M0 is the normalization. Due to the Eq. (2.4.2),

the value of M∗ increases with time, because it depends on n through α.

At the present time its value is about M∗ ≈ 1015M� , which is the typical

mass of cluster galaxies.

2.5 Halo properties

Once an halo is collapsed we can argue of their properties as a single object.

We introduce the DM density profile inside a collapsed halo because it will be

useful in Chapter 5. The DM density profile inside an halo can be described

by the Navarro-Frenk-White (NFW) profile (Navarro et al. [1997]):

ρDM (r) =
ρs

r
rs

(
1 + r

rs

)2 , (2.5.1)
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where rs is a scale radius, which depends on the halo mass and on the

dimensions of the halo. The ρs = δcρcrit where ρcrit has been defined by

Eq. (1.8.3) and δc is the critical overdensity, which can be written using the

concentration parameter, c:

δc =
200

3

c3

ln (1 + c)− c
1+c

.

The concentration parameter, c, can be defined as c200 ≡ r200/rs, where r200

is the distance from the halo center which contains DM desinty 200 times

the ρcrit of the Universe. Another possibility is to define the concentration

parameter using the virial radius cvir ≡ rvir/rs. The concentration param-

eter is a decreasing function of the halo mass and of the formation time of

the halo. Indeed small haloes form at higher redshift, when the mean den-

sity of the Universe was higher, are denser. While massive objects form at

relative recent time, when the mean density of the Univere is decrease.The

concentration parameter depends on the halo mass, and this can be written

following Bullock et al. [2001] as:

cvir ≈
9

1 + z

(
Mvir

1.31013h−1M�

)−0.13

. (2.5.2)

The quantity rs in Eq. (2.5.1) can be written as rs = rvir
cvir

, where rvir is the

radius that contains all the virial mass of the DM halo. We note that the

NFW profile for r � rs follows ρDM ∝ r−1, while for the outermost regions

ρDM ∝ r−3.

2.6 Subhalo mass function and infall mass

According to the standard scenario of structures formation, the haloes as-

sembly through hierarchical mergers of smaller systems. We expect that

inside large haloes there are many subhaloes (e.g. Springel et al. [2008]),

which are the remnants of the haloes that survived to accretion into larger

host haloes. This scenario can be represented in Figure 2.3. The theoreti-

cal study of these substructures is allowed by N-body simulation with high

mass resolution,where single subhalo can be detected and its evolution can

be traced.From these simulations it is also possible to study the statisti-

cal properties of subhaloes population, like the Subhaloes Mass Function

(SHMF), which represent the number of substructures per halo mass. The
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Figure 2.3: Schematic view of a merger tree, representing the growth of haloes

and galaxies through mergers. The green lines track the DM haloes

progenitors, while brown and black dots represent progenitor galaxies

and central supermassive black holes, respectively. The dot sizes are

proportional to the mass of galaxies and black holes. The presence of

AGN is indicated with red stars and their sizes are proportional to the

AGN bolometric luminosities. Credits to Marulli et al. [2009]

SHMF has a universal form, as discussed in Giocoli et al. [2010], which is a

power law at small subhaloes masses with a strong exponential cut off. The

SHMF depends on the halo mass, and has an universal form, as:

dN

d log(msub/M)
= A(1 + z)1/2mα

subM ln 10 exp

[
−β
(msub

M

)3
]
, (2.6.1)

where A = 9.3310−4 is the normalization, α = −0.9 is the exponent of

the power law at smallest subhalo masses, and β = 12.2715 determines

the steepness of the exponential cut off. These parameter values, found by

Giocoli et al. [2010], are used in Chapter 5. It is commonly accepted that the

major part of substructures contain galaxies, the so-called satellite galaxies.

Both, the subhaloes and the galaxies inside them are subject to several

environmental effects, as tidal forces from host haloes, dynamical friction,

impulsive encounter. Each effect tends to dissolve the subhaloes. In low
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mass haloes, that on average form early, the substructures have suffered

more mass loss. This bring to a shift in the normalization of the SHMF.

The comparison between the SHMF at the accreation time with the present

time SHMF, allow to evaluate the mass loss rate of the substructures. Figure

2.4 shows the SHMF dependens on redshift and on the host halo mass. For

Figure 2.4: In these plot the coloured dots represent the subhalo mass functions

measured in different host halo mass bin at five different redshifts. The

dashed line is the best fit for evolved SHMF while solid curve represents

the unevolved subhalo mass function. Credits to Giocoli et al. [2010] .

these reasons the mass of each subhalo is a decreasing function of time. We

denote with minfall the subhalo mass at the accreation time, that is when

the subhalo felt into the greater halo. The subhaloes nearest to the host halo

center are the substructures accreated earlier, and so they lost a great part of

their mass. On the other hand the substructures more distant from the host

halo centre had less time to be stripped. Through mergers tree extracted

from high resolution N-body simulations it is possible to parameterise the
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relation between infall mass and the position of the substructures inside the

halo (e.g. Gao et al. [2004], Girelli et al. [2020]):

mobs

minfall
= 0.63

(
r

R200

)2/3

, (2.6.2)

where mobs indicates the subhalo mass at the present time, while R200 is the

radius at which the density of the halo is 200 times the critical density, ρcrit.

It is possible to find also a relation between the substructure mass and the

redshift of accreation, e.g. inverting the relation presented in Giocoli et al.

[2008]:

minfall(t) = mobs exp

[
t− tinfall
τ(z)

]
, (2.6.3)

where tinfall is the infall time of the substructure and τ(z) describes the

dependence of the mass loss rate with redshift. Van Den Bosch et al. [2005]

proposed a functional form for τ(z), as follows:

τ(z) = τ0

[
∆V (z)

∆0

]−1/2[H(z)

H0

]−1

, (2.6.4)

where τ0 = 2 Gyr, H(z) is the Hubble parameter at redshift z and ∆V =

ρ/ρcrit. Let us introduce the subhalo mass fraction which represent the

contribution of the substructure mass to the host halo mass. It is defined

by the integral of the SHMF as:

f =

∫ M

mmin

m
dN

dm
dm , (2.6.5)

where m is the subhalo mass, mmin is the minimum substructure mass and

M is the host halo mass. As shown in Figure 2.5, the subhalo mass fraction

is an increasing function of halo mass, therefore less massive haloes, on

average form earlier and have less surviving substructure at the present.

This because the tidal forces strip substructure mass for a longer time. If

the tidal stripping act for a sufficient time the substructure is completely

dissolved (e.g. Giocoli et al. [2010], Van Den Bosch et al. [2005]).

2.7 Correlation Function and Power Spectrum

As shown in Subsection 2.2.2, in linear regime we can describe the pertur-

bation growth in Fourier space. Now we want to study the evolution of
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Figure 2.5: These curves describe the subhalo mass fraction, f , as function of host

halo mass. The f depends on the minimum subhalo mass that we are

considered. Credits to Giocoli et al. [2010]

perturbations looking at their full spectral composition. The end of the

Inflationary epoch generates some perturbations of the metric of the space-

time, that correspond to fluctuations of the gravitational potential, φ, from

a Newtonian point of view. These fluctuations are connected to the density

field through the Poisson equation Eq. (2.1.1). We suppose that these fluc-

tuations are randomly distributed, thus also δ(~x) is a stochastic field and

then the Imaginary part of the δk in Fourier space is randomly distributed.

This leads to a Gaussian distribution of the perturbations, both in Fourier

space and in real space. The relations between real space and Fourier space,

are the following:

δ(~x) =
1

(2π)3

∫
δ(~k) exp

[
i~k · ~x

]
d~k ,

δ(~k) =

∫
δ(~x) exp

[
−i~k · ~x

]
d~x .

with ~k = 2π
~x .

An interesting quantity is the correlation function:

ξ(~r) = ξ(r) ≡
〈
δ(~x)δ(~x+ ~r)

〉
. (2.7.1)

This quantity measures the probability to have an overdensity δ in ~(x) + ~r,

given the overdensity in ~x, δ(~x). It depends on module of |(~r)| = r due to
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the isotropy of the Universe. We can write the correlation function using

the Fourier transform of δ, as follows:

ξ(r) =
1

(2π)3

∫
P (k) exp

[
i~k · ~r

]
d~k , (2.7.2)

where P (k) ∝
〈
|δk|2

〉
is the so-called Power Spectrum, that is the power

spectrum is the Fourier transform of the correlation function.

Due to the definition of δ, the mean of its distribution is null and the

first quantity of interest is the variance, σ2, which is defined as follows:

σ2 ≡< δ2 >=
1

V

∫ 〈
δ2(~x

〉
d~x ,

where V is the volume of the observed Universe. The variance can be also

written using the power spectrum:

σ2 =
1

V

∫
P (k)d~k =

4π

V

∫
P (k)k2dk . (2.7.3)

The overdensity field δ(~x) is generally assessed through observable tracers

such as galaxies and clusters of galaxies, in a finite volume. Differently to

the continuum matter overdensity field, the distribution of cosmic tracers

is discrete. If we count galaxies in a volume Vi, we can still define an

overdensity field as:

δgal(Vi) =
Ngal(Vi)− N̄gal(Vi)

N̄gal(Vi)
,

where Ngal is the number of galaxies in the volume Vi, and N̄gal is the mean

number of galaxies in that volume. The previous quantity is like a smoothing

of the discrete distribution of galaxies. The same thing can be done with the

mass, describing the mass overdensity field δM . The quantity that connects

δgal and δM is called bias factor b:

δgal = b

(
M(Vi)− M̄(Vi)

M̄(Vi)

)
= bδM , (2.7.4)

The bias b describes the differences between the collapse of baryonic matter

and DM. The matter density contrast, δM , is measured by filtering the

overdensities above a certain mass, or equivalently above a certain dimension

R. This can be written using a window function to convolve the overdensity

field δ(~x):

δM (~x) = δ(~x)⊗W (~x,R) .
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Usually W (~x,R) is taken as a Top Hat function:

W (~x,R) =
3

4πR3
Θ

(
1− |x− x

′|
R

)
,

where Θ is the Heaviside step function. We can thus write the mass variance

using the window function as follows:

σ2 =
1

(2π)3

∫
P (k)Ŵ 2(~k,R)d~k ,

where Ŵ is the Fourier transform of the windows function. So the values

of the mass overdensity and the mass variance depend on the mass filter or,

equivalently, on the dimension of region considered in the windows function:

• If R→ 0 (M → 0) =⇒ δM (~x)→ δ(~x) =⇒ σ2
M → σ2 .

• If R→∞ (M →∞) =⇒ δM (~x)→ 0 =⇒ σ2
M → 0 .

2.8 The time evolution of the Power Spectrum

The primordial matter power spectrum can be described by a power law

P (k) = Akn, with no special scale. The variance can be written as follows:

σ2 =
A

(2π)3

∫ ∞
0

k2+ndk ,

which converges if for k → 0 =⇒ n > −3 and for k → +∞ =⇒ n < −3.

The power spectrum evolves in time as follows:

P (k, t) = Pin(k)δ2
+(t) . (2.8.1)

Combining Eq. (2.7.3) with Eq. (2.8.1), we obtain:

σ2
M ∝ δ2

+(t)kn+3 ,

and since k ∝ R−1 and M ∝ R3 we can write:

σ2
M ∝M−(3+n)/3 .

Standard inflation models predict a white noise in the metric perturbation,

that is no special scales are promoted at the end of inflationary epoch.

From a Newtonian point of view the metric fluctuations are fluctuations of

the gravitational potential, therefore:

δφ ∝ GδM

R
= GδρR2 ∝ σMR2 ∝M

1−n
6 .
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In order to have white noise we request that n = 1. This means that

standard inflationary models predict a primordial spectrum, called Zeldovich

power spectrum like:

Pin(k) = Ak . (2.8.2)

Where A is the normalization of power spectrum which can be constrained

from observations. According to Eq. (2.8.1), the primordial power spectrum

increases of the same magnitude on every scales. Indeed, it translates rigidly

increasing its normalization, as shown in Figure 2.6.

Figure 2.6: Evolution of the primordial power spectrum, consisting in constant in-

creasing at all scales.

As explained in Section 2.2.1, all perturbations that are outside the Cos-

mological Horizon, RH , always grow, while inside the Cosmological Horizon

the growth depends on which is the dominant component at that Epoch.

Because RH increases with time, more perturbation scales enter into the

cosmological horizon during the evolution. A perturbation stops its growing

rate when enters into the Cosmological Horizon leading to a modification

of power spectrum shape. To describe the power spectrum evolution, we

introduce the Transfer Function, T (k):

P (k, teq) = PinT
2(k) = AkT 2(k) ,

with:

T 2(k) ∝

k−4 for k > keq = 2π/RH(teq)

1 for k < keq = 2π/RH(teq)

The peak is at keq, that is the dimension of the Cosmological Horizon in the

Fourier space at the Equivalence time. The position of this peak strongly
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depends on ΩM . Increasing ΩM brings forward the Equivalence time, moving

the peak towards greater values of k. While a smaller value of ΩM delays the

Equivalence time, moving the peak towards smaller values of k.The power

spectrum shape is shown in Figure 2.7.

Another important scale is the free streaming scale, kFS , where P (kFS) =

0. The free streaming scale can be associated to the minimum mass that

can grow, that is the Jeans′s Mass. The kFS can be used to discriminate

which is the kind of DM can bring to the observed collapsed structures. It

comes out that kFSCDM > kFSHDM , as shown in Figure 2.7. This means

Figure 2.7: Differences in power spectrum between CDM and HDM. Note that

kFSCDM
is much bigger than kFSHDM

bringing to a minimum collapsed

mass much smaller for CDM scenario with respect to HDM scenario.

Figure credits to Kolb and Turner [1990].

that:

MJ ∼

1016M� for HDM

105−6M� for CDM

This fact leads to two different models of structure formation. For HDM

the massive objects are formed first and the smaller structures are created

by fragmentation of the bigger structures. This is the so-called monolitic

model (or Top-Down scenario). Instead, in the CDM scenario, the smallest

structures formed first, and the bigger ones are obtained by mergers. This

is the so-called hierarchical model (or Bottom-Up scenario).



2.8. THE TIME EVOLUTION OF THE POWER SPECTRUM 39

The values of MJ for HDM is bigger than the mass of the most mas-

sive observed structures, that is clusters of galaxies. Thus the observations

supports the CDM scenario, rather than the HDM one.
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Chapter 3

Galaxy formation and

evolution

In the previous Chapters (1 and 2) we introduced the cosmological frame-

work in which this Thesis work is developed. In this Chapter we will intro-

duce some general properties of galaxies, such as colours and stellar masses,

and we will discuss the standard galaxy formation and evolution models.

Moreover, we will introduce the Stellar Mass Function (SMF), which is a

useful summary statistics that can be exploited to infer information about

the physical mechanisms that drive the evolution of galaxies. Given the

wide variety of the topic, in the next Sections we will not be able to provide

an exhaustive description of the field. Instead, we will focus on the subjects

that are more related to this Thesis work. For a more detailed review of the

topic, see Somerville and Davé [2015], Naab and Ostriker [2017], Robertson

[2019]

3.1 Galaxy classification

Galaxies are the building blocks of the Universe. They are made of DM, stars

and of the so-called Inter Stellar Medium (ISM), which is in turn composed

of gas and dust. Galaxies are non-homogeneously spatially distributed, ag-

gregating in filaments, groups and clusters, and are biased tracers of the

underlying DM mass distribution of the Universe.

According to the standard structure formation scenario, galaxies can

form only inside DM haloes, as mentioned in Section 2.2.2. DM constitutes

41



42 CHAPTER 3. GALAXY FORMATION AND EVOLUTION

Figure 3.1: Hubble’s fork diagram showing the galaxy morphological classification.

On the left are placed elliptical galaxies, while going to the right spiral

galaxies and barred spirals are represented. Credit: Karen Masters,

Sloan Digital Sky Survey, https://ras.ac.uk/media/37.

the main contribution to the total galaxy mass. Due to the fact that galaxies

reside inside DM haloes, we expect that the properties of galaxies and haloes

are connected. The study of how galaxies are distributed within DM haloes

is one of the main goals of this Thesis work, as will be discussed in Chapter

4.

From the first observations of the Large Scale Structure (LSS) of the

Universe in the early 1920’s, it was evident that galaxies can be divided into

two main families: the so-called Early Type Galaxies (ETGs), i.e. elliptical

galaxies, and the Late Type Galaxies (LTGs), i.e. spiral galaxies. ETGs are

typically found in high density environments, that is groups and clusters

of galaxies, while LTGs are often located inside the filaments of the cosmic

web, or are isolated. The most evident difference between these two galaxy

types is in their morphology. Edwin Hubble was the first to propose a

classification based on galaxy morphology. This classification is known as

the Hubble′s fork (Hubble [1926]), and is illustrated in Figure 3.1. ETGs

and LTGs differ also in their stellar population.

Let us define the colour of galaxies as the difference in the observed

magnitudes referred to two different band filters. Generally, ETGs result to

https://ras.ac.uk/media/37
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be redder than LTGs, the majority of which are blue galaxies. This colour

bimodality is corroborated by several observational studies (e.g. Strateva

et al. [2001] , Bell et al. [2004], Balogh et al. [2004], Weiner et al. [2005],

Dekel and Birnboim [2006], Pozzetti et al. [2010]). Since ETGs show redder

colours, it is commonly accepted that they are composed by quiescent stellar

populations. This means that ETGs are typically not forming new stars,

which implies that some mechanisms are required to inhibit star formation.

On the other hand, LTGs are blue because they are still forming stars. In

fact, they contain significant amount of cold gas and dense molecular clouds,

which can collapse after radiative cooling.

3.2 Galaxy formation and evolution

The galaxy bimodality suggests different channels for formation and evolu-

tion of these two types of galaxies. A complete and exhaustive description of

the theory of galaxy formation and evolution in the standard cosmological

framework is beyond the scope of this Thesis work. In the following we will

just resume the main features of the standard evolutionary scenarios.

As discussed in Section 2.2.2, from the Recombination time the baryonic

matter falls into DM haloes, which are already grew up. The gas, falling

into DM potential wells, converts kinetic energy (given by the infall velocity)

to heat through shock fronts. The gas is heated to the virial temperature

of the DM halo, Tvir.At this point, the baryonic matter can cool down and

collapse due to radiative cooling. In fact, cooling is one of the fundamental

ingredients for galaxy formation. Depending on the gas temperature and

density, several different radiative processes can occur. These processes can

be modelled through the so-called cooling function Λ(T, ρ, x, Z, z), that de-

scribes the amount of energy, per unit of time, that is radiated by the gas.

This function depends on gas temperature, T , gas density, ρ, chemical com-

position, Z, ionization fraction, f , and redshift, z. The leading parameter

is the gas temperature. Indeed different emission processes mainly depend

on gas temperature. For example, for Tvir > 107K, the gas is completely

ionized and the main emission mechanism is breemsstrahlung from free elec-

trons. For temperature 104K < Tvir < 106K, recombinations of electrons

and ions and collisional excitation occur. Because different atoms have dif-

ferent bounding energies in these temperature ranges, the cooling function
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strongly depends on the gas metallicity, Z. At temperature Tvir < 104K,

the gas is completely neutral and cooling can act only through vibrational

and rotational excitations and de-excitations of the molecules. For this rea-

son, the cooling function at low temperature is not very efficient. During

baryonic collapse two competing processes occur. The fist is the gas cooling,

which favours the collapse, while the second is the gas compression during

the inward fall which increases gas density and temperature, preventing fur-

ther collapse. To model these competitive processes, it is convenient to

define the typical time scales. We define the cooling time, tcool, as follows:

tcool =
Egas

Ė
=

3

2

(ne + nH)kBT

ΛnenH
, (3.2.1)

where ne is the electron number density, nH the hydrogen number density,

kB is the Boltzmann constant, T is the gas temperature, and Λ is the cooling

function. This time scale describes how fast the gas with energy Egas can

lose all its energy. The smaller is tcool, the more the gas cooling is efficient.

The dynamic time scale describes the typical time that a gas sphere with

density ρ needs to collapse, due to its own gravity. It can be approximated

as follows:

tdyn ∝
(

1

Gρ

)1/2

, (3.2.2)

where G is the Newtonian universal gravitational constant. Finally, we

consider the Hubble time, tH , which is the inverse of the Hubble constant,

and proportional to the age of the Universe, as mentioned in Chapter 1. The

comparison between these time scales allows us to understand if cooling is

sufficiently effective to permit the gas collapse:

• if tcool < tdyn, the cooling is efficient and the collapse proceed until

tcool = tdyn.

• if tdyn < tcool < tH , the cooling is not much efficient, though it permits

the collapse. The gas can be considered in hydrostatical equilibrium

during the collapse.

• if tcool > tH , the collapse cannot not happen, as the cooling time

exceeds the entire age of the Universe.

These conditions are valid in every formation scenarios.
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The efficiency of gas cooling is only one of the parameters affecting the

formation of galaxies. Other physical quantity that has to be considered is

the gas angular momentum, which derives from possible tidal interaction.

In the following we will describe the standard formation scenarios of disk

galaxies (LTGs) and spheroidal galaxies (ETGs).

3.2.1 Disk galaxies

In 1962, the so-called top-down scenario of galaxy formation and evolu-

tion was proposed by Olin Eggen, Donald Lynden-Bell, and Allan Sandage

(Eggen et al. [1962]). Specifically, they proposed that galaxies come from

the monolitic collapse of a large cloud of gas, that during the contraction

fragments into smaller cores. Then cores continue to collapse because they

are still cooling.Tidal interactions between different cores generate initial

angular momentum. If the gas has a large initial angular momentum during

the collapse, the momentum will increase generating an highly rotating gas

disk. The rotating disk continues to cool from the inner zone outward. The

disk that is cooling is unstable and gas fragmentation occurs leading to the

formation of stars. This scenario is the analogue of the cosmological model

of structure formation with HDM (see Chapter 2).

In the alternative bottom-up scenario, the first formed objects are the

smaller ones, with the typical mass of globular clusters. These structures

are then assembled by gravity forming gradually larger structures, up to the

formation of clusters of galaxies. This scenario is in accordance with the

commonly accepted cosmological theory of hierarchical structure formation

in ΛCDM (see Chapter 2). Again, if the initial angular momentum of the gas

is high, during the collapse the gas will further increase its angular velocity

forming a disk. This scenario predicts a larger number of small galaxies

than the top-down model.

As described in Chapter 2, the hierarchical bottom-up scenario is consis-

tent with the main cosmological observations at large scales (see e.g. Kauff-

mann et al. [1993], Reed et al. [2003]), while the top-down scenario has been

ruled out by observations.

3.2.2 Spheroidal galaxies

In the formation and evolution of spheroidal galaxies, galaxy mergers are

crucial. Mergers can be classified as major mergers or minor mergers, de-
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pending on the mass ratio of the interacting galaxies. What differs between

these two scenarios is the remaining stellar kinematics of the formed galaxy

(Emsellem et al. [2007]).

Numerical simulations showed that major gas-rich mergers of disk galax-

ies (wet mergers) can generate a final system with a spheroidal shape, char-

acterized by a random velocity distribution of the stars [Toomre and Toomre,

1972]. A wet merger is followed by an intense star formation. Indeed, if the

parent merging galaxies contain a significant amount of gas, this will con-

stitute the fuel for star formation. Because of the merging event, the gas

density grows and the radiative cooling becomes more efficient. At this

phase, some feedback processes can arise and slow down the star formation.

These feedback mechanisms are though to be caused by SNe explosions,

which heat gas through the kinetic energy of the expanding shock, prevent-

ing further star formation. Moreover, SNe can eject gas from the smallest

galaxies, removing the star formation fuel. Some of the gas can fall onto the

super massive black hole (SMBH) hosted at the galaxy centre. This gas is

heated by friction and emits energy, forming an hot accretion disk around

the SMBH. Several other emission mechanisms and physical processes are

involved, such as relativistic ject, radio emission through syncrotron pro-

cesses, X-ray emission from the region close to the SMBH, and the set of

all these emissions bring to the formation of the so-called Active Galactic

Nucleus (AGN). The emission from AGN can injects a significant amount

of energy in galaxy, which might heat the gas, possibly quenching the star

formation. This process is the so-called AGN feedback.

Though galaxy mergers play a crucial role in the formation and evolu-

tion of galaxies, observational evidences suggest that alternative formation

scenarios for spheroidal galaxies are still possible. ETGs can born in a

monolithic way, from a gas could with a small initial angular momentum,

which can rapidly cool down leading to the formation of a spheroidal system

[Eggen et al., 1962]. Another possible way to form a spheroidal galaxy is

from violent disk instabilities [Ceverino et al., 2014]. The subsequent galaxy

evolution can also be influenced by mergers, especially the more frequent

gas-poor mergers (dry mergers). In these cases, there is a few gas that can

form stars.

The environment also plays an important rule in galaxy evolution. In-

side groups and clusters of galaxies, we can consider separately the galaxies
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residing at the center of the host halo, the so-called central galaxies, and

the satellite galaxies which are orbiting around a central galaxy. According

to the hierarchical scenario, satellite galaxies were central galaxies inside

their previous hosting halo, which subsequently felt into a larger potential

well and became part of a more massive DM halo. Central and satellite

galaxies are subject to different evolutionary processes. Central galaxies

continue to receive cold gas, which tends to accumulate at the bottom of

the potential well. Satellites galaxies tend to fall towards the halo centre due

to dynamical friction. So we expect that central galaxies continue to grow

due to accretion of cooling gas and mergers of satellite galaxies. Instead,

satellite galaxies undergo through different environmental effects, such as

ram-pressure stripping, tidal stripping, tidal interaction with the host halo

itself and interactions with other satellite galaxies which can cause a mor-

phological transformation, as shown e.g. in Moore et al. [1999].

Several observational evidences suggest the most massive ETGs formed

at higher redshift and more rapidly than the less massive galaxies of the

same type [e.g. Thomas et al., 2005, Bell et al., 2005, Cimatti, A. et al.,

2006, Graves et al., 2007, Fontanot et al., 2009]. This scenario has been

called downsizing and it is illustrated in Figure 3.2. In particular, Fig. 3.2

shows the specific star formation rate (sSFR), which is the star formation

rate (SFR) divided for the galaxy stellar mass, as a function of time. The

peak position provides an indication of the galaxy formation time. The more

massive galaxies formed at higher lookback times (higher redshifts). The

height of the curves measures the strength of the sSFR, while their width

indicates the time that SFR lasts. The downsizing scenario may seem to

be not consistent with the standard cosmological hierarchical model, which

predicts that the objects form from the smallest to the biggest. However,

these two scenarios can in fact co-exist, as they are referred to different

phenomena. The downsizing scenario regards the stellar population, while

the ΛCDM model predicts the formation and mass assembly of DM haloes.

According to the current standard scenario, the formation and evolution

of ETGs can be summarized in two main phases:

• At 2 < z < 6, ETGs formed with a rapid collapse, with a burst of star

formation rapidly quenched.

• At z < 2, the initial star formation is followed by a later evolution of

accretion of stars formed in other galaxies.
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Figure 3.2: Specific star formation rate as a function of lookback time, for ETGs of

different masses. The more massive galaxies formed at higher lookback

time (higher redshift) with an intense SFR. The thickness of the curve

shows the rapidity in the galaxy formation. The plot is divided in two

regions: at z > 0.2 the environment is not important for the formation

of galaxies, instead for lower redshift (z < 0.2) the environment affects

the galaxy formation. Credits to Thomas et al. [2010].

In this Section, we provided a brief overview on the main physical mech-

anisms that drive the formation of galaxies. Figure 3.3 summarises the logic

flow chart of the various possible channels of galaxy formation. Though real

processes do not separate as neatly as this figure suggests, the chart pro-

vides anyway a useful summary of the main mechanisms that are currently

believed to determine the formation of elliptical and disk galaxies. Figure

3.3.

3.3 The galaxy stellar mass function

The galaxy SMF is defined as the comoving number density of galaxies

with stellar mass in the range [M∗; M∗ + dM∗]. This statistical function

provides a description of the stellar mass assembly at a given epoch, and

plays a fundamental role in the study of galaxy evolution. In fact, the SMF

provides information on the link between galaxies and their host DM haloes.
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Figure 3.3: Logic flow chart for galaxy formation from Mo et al. [2010]. The initial

and boundary conditions for galaxy formation are set by the cosmolog-

ical framework. The paths bringing to the formation of different types

of galaxies are shown.

Moreover, it provides indirect evidences on the main feedback processes,

that are key mechanisms in the history of galaxy formation and evolution,

as emphasised in the previous Section. Thus the SMF is a key observable,

representing a benchmark for galaxy formation and evolution models [e.g.

Bolzonella et al., 2010, Guo et al., 2011b, Vulcani et al., 2011, Henriques

et al., 2015, Davidzon et al., 2016].

The galaxy SMF is well described by a Schechter function [Panter et al.,

2004, Panter et al., 2007, Pozzetti et al., 2010, Davidzon et al., 2017, Moutard

et al., 2016], that is a power law with an exponential cut off:

φ(M∗)dM∗ =
φ0

M0

(
M∗
M0

)α
exp

[
−M∗
M0

]
dM∗ . (3.3.1)

The star formation history (SFH) represents a weighted version of the SMF,

as it describes the evolution of the latter as a function of time. The SMF

shape is affected by the feedback processes that act on the baryonic matter,

modifying the stellar mass growth of the galaxy during its evolution. In

particular, the feedback mechanisms lower the star formation efficiency. The

strength of this quenching depends on the galaxy stellar mass.
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Figure 3.4 compares the DM MF to the galaxy SMF, showing the role of

SNe and AGN feedbacks to lower the SMF at both high and low masses. The

different slopes of SMF and HMF, both at low masses and at high masses,

indicate that the star formation efficiency is constant in mass. At low stellar

masses the quenching is thought to be due to SN explosions, which eject gas

outside small galaxies (e.g. Dekel and Silk [1986], Benson et al. [2003],

Lucas et al. [2020]). On the other hand, the energy injection from AGN can

effectively reduce gas cooling in massive galaxies (e.g. Springel et al. [2005],

Schawinski et al. [2009]).

Figure 3.4: A comparison between the observed SMF (blue solid line) (Bell et al.

[2003]) and the HMF of the Millennium Simulation (red dashed line).

Credits to Mutch et al. [2013].

Both the stellar mass and the star formation efficiency depend on the

DM mass. The peak of star formation efficiency corresponds to the value of

the galaxy stellar mass (and the corresponding halo mass) where the SMF

is closest to the HMF. This happens at the value corresponding to the knee

of the Schechter function, which is approximately M0 ∼ 1011 M�, at z ∼ 0.

For these reasons, the redshift evolution of the SMF is fundamental to

understand the connection between galaxies and DM haloes. Moreover, to

probe the whole galaxy evolution history, it is necessary to combine low and

high redshift measurements of the SMF. This task is difficult to access due

to the fact that samples of galaxies at different redshifts are built with differ-



3.3. THE GALAXY STELLAR MASS FUNCTION 51

ent photometric filters, that causes different selection effects. For instance,

the minimum stellar mass measurable increases with redshift, due to flux

limit: at increasingly higher redshifts, we lose increasingly fainter galaxies.

Nevertheless, reliable SMF measurements are now available up to z ≈ 7.5

(e.g. Pozzetti et al. [2010], Grazian et al. [2015]and Leja et al. [2019]).

Figure 3.5 shows an example of SMFs measured at different redshifts,

compared to the best-fit Shechter function models (Davidzon et al. [2016]).

For stellar masses M∗ > 1010 M� to M∗ > 1011.5 M�, we can see an increase

in the comoving number density of galaxies, which makes the knee of the

Schechter function sharper as the redshift lowers. Whereas the number

density of small mass galaxies increase at all redshifts. This feature can be

interpreted by assuming some threshold mass, M∗, that discriminates where

the quenching is efficient. Specifically, when galaxies reach M∗ the star

formation slows down and the galaxies can not easily grow further (Davidzon

et al. [2017]). This causes the build-up of galaxies, and increases the galaxy

number density around the M∗ value. Different theoretical models showed

that the mass-dependent quenching can be explained by various internal

feedback processes, such as AGN feedback or virial shocks (see e.g. Gabor

et al. [2010], Ilbert et al. [2010], Ilbert et al. [2013], Manzoni et al. [2019]).

Several works studied the Stellar to Halo Mass relation (SHMR), which

compares the galaxy stellar mass to the host halo mass. This can be done us-

ing different approaches, for example with the Sub-Halo Abundance Match-

ing (SHAM) technique (see Chapter 4), which assigns a stellar mass to each

halo and subhalo above a certain mass threshold, or using the Conditional

Stellar Mass Function (CMF) technique, which provides the join probability

to have a stellar mass conditioned by the host halo mass (e.g. Behroozi et al.

[2010] Moster et al. [2010], Moster et al. [2013], Wang et al. [2013], Kravtsov

et al. [2018], Behroozi et al. [2019], Girelli et al. [2020]). The SHMR can be

parameterised as follows:

M∗ =
2Mk[(

M
M1

)−β
+
(
M
M1

)γ] , (3.3.2)

where M indicates either the virial mass of the DM haloes, or the infall

mass of the subhaloes (see 2.6), k is the normalisation factor, M1 represents

the characteristic halo mass at which the SHMR changes the slope, and β

and γ are slopes at small halo masses and high halo masses, respectively.



52 CHAPTER 3. GALAXY FORMATION AND EVOLUTION

Figure 3.5: Evolution of the SMF between z = 0.2 and 5.5 of the COSMOS2015

galaxy sample. Filled circles show the observed data, while coloured

areas represent the 1σ uncertainty on the best-fit Schechter function

models. Credits to Davidzon et al. [2017].

Figure 3.6 shows the stellar mass to halo mass ratio, comparing different

approaches. The peak position indicates the host halo mass where the star

formation efficiency is maximum, which comes out to be approximately at

M ≈ 1011M�.

3.3.1 Stellar mass measurements

The most common method used to measure the stellar mass of galaxies

consists of fitting the observed galaxy Spectral Energy Distribution (SED),

which may cover different wavelengths, possibly from the UV to the infrared

band in optical surveys.

The galaxy SEDs describe how the radiation energy span over a given

wavelength range. SED measurements allow to infer information about the

emission processes occurring inside galaxies. The main contribution of light

coming from galaxies is generated by stars, and the galaxy SEDs change

in time according to the stellar evolution. The theory of stellar evolution

is well known, and allows to calculate the light emitted by stars knowing
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Figure 3.6: The stellar-to-halo mass ratio estimated with different approaches: Em-

pirical Modeling (EM), Abundance Matching (AM), Conditional Stellar

Mass Function (CSMF) and from X-ray measurements (CL). Credits

to Behroozi et al. [2019].

their density distribution as a function of mass, chemical composition and

evolutionary stage. The SEDs trace all the history of star formation and

evolution inside galaxies. Hence measuring the light emitted from galaxies

and knowing the stellar evolution theory, we can deduce the total galaxy

stellar mass.

Galaxies are complex systems composed by multiple stellar populations.

Indeed, the stellar population inside a galaxy is not homogeneous and stars

present a wide distribution of ages, metallicities and masses. Moreover, the

stars inside galaxies are usually not spatially resolved. Galaxies can also

contain dust which absorbs light with the shortest wavelengths, reddening

the starlight because the extinction is stronger for blue spectra than for

red ones. All these aspects make the inference of the galaxy stellar mass

a tricky task. The light coming from galaxies is the convolution of the

radiation generated by different single stellar population (SSP) which are

an ensemble of coeval stars. The SSPs can have different ages, metallicities

and masses. In principle, we can generate synthetic spectra changing the

SSP parameters and compare the resulting convolved SED with the observed



54 CHAPTER 3. GALAXY FORMATION AND EVOLUTION

galaxy SED.

An important assumption in this method is the Initial Mass Function

(IMF), which describes the distribution of stellar masses at the formation

time of a SSP. A first widely-used functional form for the IMF has been

proposed by Salpeter [1955], while Kroupa [2001] and Chabrier [2003] IMFs

are also largely used. The IMF has to be inferred from models of star

formation of first generation stars, which are not completely understood. For

this reason, the IMF represents a great uncertainty in the model. Assuming

a specific IMF, we can write the monochromatic integrated spectra of each

SSP as follows:

Fλ(t, Z) =

∫ Mup

Mdown

fλ(M, t, Z)Φ(M)dM , (3.3.3)

where fλ(M, t, Z) is the monochromatic flux of a single star of mass M ,

age t and metallicity Z, Φ(M)dM is the IMF and Mdown and Mup are the

smallest and biggest masses of stars of the SSP. Usually Mdown ≈ 0.1M�

and Mup ≈ 100M�.

Let us define a Composite Stellar Population (CSP) as the sum of several

SSPs, following Tinsley [1980]. The SED can be written as:

Fλ(t) =

∫ t

0
ψ(t− t′)Sλ(t′, ζ(t− t′))dt′ , (3.3.4)

where ψ(t) is the star formation rate, ζ(t) is the function that describes the

stellar metal enrichment, while Sλ(t′, ζ(t − t′)) is the power per unit mass

and wavelength emitted by a SSP with age t′ and metallicity ζ(t− t′).
We can generate a library of synthetic SEDs from CSP assuming a Stellar

Population Synthesis Model (SPSM), which consists of assuming an IMF,

isochrones, stellar spectra and SFH. A largely used SPSM was the one pro-

posed by Bruzual and Charlot [2003]. Varying for example the redshift, age,

metallicity and dust extinction of the CSP, we can obtain a template of sim-

ulated SEDs. These simulated SEDs can be compared to the observed ones

finding the best correspondence, through e.g. a χ2 analysis. This procedure

is the so-called SED fitting. One of the output parameter is the stellar mass

to luminosity ratio, M∗/L, from which the stellar mass of the galaxy can be

inferred from the observed galaxy luminosity.

However, the SED fitting results might be affected by degeneracies, that

is the best-fit model is generally not unique. Other uncertainties on the
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stellar mass measurements arise from the signal-to-noise ratio of the observed

data, from uncertainties on the IMF and also from uncertainties on the

fitting procedure itself. Possible ways to disentangle these degeneracies and

reduce the errors on the stellar mass estimates are discussed in Mobasher

et al. [2015].

3.4 The two-point correlation function

As discussed in section 2.7, the 2PCF describes the probability of having the

overdensity δ(~x+ r), at a distance r from an other overdensity δ(~x) as given

by Eq.(2.7.1). To measure the 2PCF of a given set of observed sources, it is

convinient to write it in a different way with respect to one given in Section

2.7. Let us consider two comoving volumes dV1 and dV2. The probability of

having one object in each volume can be written as follows:

dP12 = n̄2dV1dV2[1 + ξ(r12)] , (3.4.1)

where n̄ is the average density of object and r12 is the comoving distance

between the two volumes. The 2PCF, ξ(r), measures how much the proba-

bility of finding an object in the volume dV2 is influenced by the presence of

an other object in the dV1. In other words, the 2PCF measures the difference

between a random distribution and the actual distribution of the objects.

In particular, for a random distribution of objects we have ξ(r12) = 0. If

ξ(r12) > 0 the probability of finding two objects separated by r12 is higher

than in a random distribution, and viceversa. From Eq.(3.4.1) we see that

ξ ≥ −1, to have positive probabilities. We can use Eq.(3.4.1) to write the

joint probability of having an object in dV2 knowing that there is another

object is dV1

dP (2|1) = n̄dV2[1 + ξ(r12)] . (3.4.2)

Integrating Eq.(3.4.2) over the volume, we can estimate the number of ob-

jects we expect there are around another object:

〈
N(< r)

〉
=

4π

3
r3n̄+ 4π

∫ r

0
r′2ξ(r′)dr′ . (3.4.3)

If the distribution was random, only the first term of Eq.(3.4.3) would be

not null. The second term takes into account the deviation from a random

distribution.
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3.4.1 Two-point correlation function Estimators

A common method to measure the 2PCF of discrete population of objects

consists in comparing the number of object pairs respect to the number

of pars in random distribution of objects with the same boundaries and

selection function of the data. With ND we indicate the number of objects in

the real catalogue, measured from observed data, while with NR we indicate

the number of objects present in the random catalogue. The total number of

pairs, will be NDD = ND(ND−1)/2 and NRR = NR(NR−1)/2 respectively,

while the number of cross-pairs between the two catalogues are: NDR =

NDNR. The so-called natural estimator of the 2PCF is the following:

1 + ξ(r) ≈ DD(r)

RR(r)
, (3.4.4)

where DD(r) is the number of objects pairs in the pair separation range

(r − dr, r + dr), while RR(r) is the number of random pairs at the same

scales. More accurate estimators, in terms of variance and bias, have been

investigated in the literature. The most widely used are the following:

• The Davis and Peebles [1983] estimator:

1 + ξ(r) =
NRR

NDD

DD(r)

RR(r)
. (3.4.5)

• The Landy and Szalay [1993] (LS) estimator:

ξ(r) = 1 +
NRR

NDD

DD(r)

RR(r)
− 2

NRR

NDR

DR(r)

RR(r)
. (3.4.6)

The variance of the LS estimator depends on the number of pairs in the

catalogue, as shown in Landy and Szalay [1993]. As demonstrated in Ker-

scher et al. [2000], the LS estimator is an optimal and unbiased estimator

of 2PCF. For further details see Keihänen et al. [2019].

3.4.2 The two-point correlation function of galaxies

The 2PCF of galaxies is a fundamental tool to investigate on the Large Scale

Structure (LSS) of the Universe and it allows to achieve tight constrains the

cosmological parameters. However, as discussed in Chapter 2, galaxies are

biased tracers of the underlying DM distribution and this has an impact

on the measured 2PCF. The difference between the DM density field and
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the galaxy one is described the bias factor defined by Eq. (2.7.4). Thanks

to the huge amount of data coming from wide galaxy surveys, it has been

largely demonstrated that the galaxy spatial distribution depends on several

galaxy properties such as luminosity, colours, stellar mass, morphology and

environment (Davis and Geller [1976], Giovanelli et al. [1986], Norberg et al.

[2002], Zehavi et al. [2005], Meneux et al. [2008], Ross et al. [2011], Momose

et al. [2020]). In general, the galaxy clustering grows with the increasing

of luminosity and stellar mass. This fact can be explained by assuming

that the most luminous (and massive) galaxies reside into the most massive

DM haloes, which have in turn higher bias values with respect to the less

massive ones (Kaiser [1987], White and Rees [1978]). It has been observed

also that red galaxies are more clustered than blue ones (e.g. Zehavi et al.

[2005], Zehavi et al. [2011]). In particular, these trends with stellar mass

and luminosity are more evident for galaxies that are more massive than the

characteristic mass M0 in the Schechter SMF (see Eq. 3.3.1). Unlike the

2PCF of DM haloes, the galaxy 2PCF shows a steepening at small scales,

r ≤ 1 h−1 Mpc. This is the so-called 1-halo term, which is caused by the

countings of pairs of objects (galaxies) not only on large scales, but also in-

side the DM haloes. The galaxy 2PCF is affected by non-linear phenomena

such as mergers, dynamical friction, cooling and feedback processes concern-

ing the galaxy evolution. To investigate on the impact of these mechanisms

on the galaxy bias we can make use of semi-analytical models and full hydro-

dynamic simulations (which will be described in Chapter 4), or also exploit

observational measurements. After the assumption of a cosmological frame-

work, the comparison between the observed and the predicted bias can be

used to constrain the parameters of galaxy formation models.

The observed galaxy 2PCF is well represented by a power law on a wide

range of scales, from about 10 kpc/h to 100 Mpc/h (Jones et al. [2005]):

ξ(r) =

(
r

r0

)−γ
, (3.4.7)

where r0 is called correlation scale length, while γ is the correlation slope

(γ ∼ 1.80 for low-redshift galaxies, Zehavi et al. [2005]). Figure 3.7 shows

the observed 2PCF of galaxies for the VIMOS Public Extragalactic Redshift

Survey (VIPERS) (see e.g. Marchetti et al. [2013], de la Torre et al. [2013],

Marulli et al. [2013]) for increasing cuts in the galaxy stellar mass and in

different bins of redshifts. This demonstrates how the bias factor grows with
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the stellar mass and with the redshift of the galaxy sample. In Figure 3.8

Figure 3.7: 2PCF of galaxies measured from the survey VIPERS with the different

stellar mass thresholds, as shown in the label. As expected, the most

massive galaxies are also more clustered. This trend holds for different

redshift bins. Credits to: Marulli et al. [2013]).

are shown the correlation length, r0 and γ best fit found in Marulli et al.

[2013], as a function of galaxy stellar mass. They are monotonic increasing

function that reflect the increasing of bias factor with stellar mass.
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Figure 3.8: Left panel : best-fit of the correlation length r0 as a function of stellar

mass. Right panel : best-fit values of the slope γ as a function of stellar

mass. The constraints obtained from VIPERS are represented with

blue squared for 0.5 < z < 0.7, with red diamonds for 0.7 < z < 0.9

and with green circles for 0.9 < z < 1.1. The grey symbols represent

the measurements made using other catalogues. Credits to: Marulli

et al. [2013]).
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Chapter 4

Building simulated galaxy

catalogues

As discussed in Chapter 3, the formation and evolution of galaxies are com-

plex and, nowadays, not fully understood phenomena. They involve a vari-

ety of non-linear physical processes. For instance, the evolution of baryonic

matter depends on complex physical mechanisms such as cooling, shocks,

turbulence, re-heating and thermal conduction. For these reasons, it is hope-

less to derive a detailed description of these phenomena using fully analytic

techniques.

Three main approaches have been proposed to face this problem. The

first makes use of numerical algorithms to solve the fully non-linear equa-

tions involved in the process of galaxy formation and evolution. N-body

and hydrodynamic simulations belong to this class of algorithms. The sec-

ond approach exploits the so-called semi-analytic models, which make use of

both numerical and analytic techniques to approximate the physics involved

in these processes, with a degree of approximation that depends on the

complexity of the physical phenomenon analysed. The third class of algo-

rithms, to which the Halo Occupation Distribution (HOD) and the Sub-Halo

Abundance Matching (SHAM) algorithms belong, aims at reproducing the

observed distribution of galaxies within DM haloes, the latter obtained from

N-body simulations, using a probabilistic description calibrated on real mea-

surements. In particular, most of these algorithms make use of the relation

between the stellar masses of galaxies and the total masses of their hosting

DM haloes.

61
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In this Chapter, we will describe these three classes of algorithms, dis-

cussing the fundamental techniques that can be used to obtain galaxy mock

catalogues. Then, we will introduce the cosmological simulations used as ref-

erence in this Thesis work, providing a brief overview on the main features

of the catalogues employed.

4.1 Numerical Simulations

The evolution of cosmic structures can be described in the linear regime

until δ � 1, while the later non-linear evolution cannot be described exactly

with analytic models. Therefore, numerical simulations are required in order

to investigate the non-linear regime, and model the main properties of the

LSS of the Universe and their cosmological evolution. With the increasing

power of computational facilities, numerical simulations have grown in size

and resolution, allowing to study extensively the formation and evolution of

DM haloes and galaxies.

Two main types of numerical simulations have been used in the last few

decades to predict the investigate the LSS of the Universe:

• N-body simulations: they are used to simulate the DM distribution

through particles from small scales to large scales.

• Hydrodynamic simulations: they involve also hydrodynamics, and so

they can be used to describe the baryonic matter density field.

4.1.1 N-body simulations

Specifically, the DM simulations describe the evolution of the non-collisional

matter component, which depends only on gravity and on the initial condi-

tions. These simulations are based on a solid theoretical background, relying

on the well-known classic gravity theory equations or, alternative, on mod-

ified gravity models of cosmological interest. In N-body simulations, the

following set of equations are solved to make the system evolve:
Fi = GMi

∑
i 6=j

Mj

r2ij
,

dvi
dt = Fi

Mi
,

dxi
dt = vi .
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Generally, all particles in N-body simulations have the same mass. At initial

conditions, the position and velocity of each particle is known. The code

evaluates the gravitational force, Fi, that acts on the ith particle due to

the other particles of the system. Then the force is used to evaluate the

acceleration, and then the velocity of the ith particle is computed. Finally,

from the velocity we can obtain the new position of the ith particle. This

operation is repeated on all the other particles of the system a number of

times, according to the available computational time. The main differences

between these types of algorithms arise in the method used to calculate the

force Fi. We can summarise the main strategies proposed in literature as

follows:

• Particle-Particle (PP) The gravitational force is calculated exactly,

so ~Fi ∝
∑

i 6=j
~xi− ~xj
|~xi− ~xj |3 . This provides an accurate description of the

evolution of the system, but it is very time expensive (tCPU ∝ N2).

Moreover, we have F → ∞ when r → 0. Thus, we have to introduce

a softening length, εsoph, inside which the gravitational force is set to

zero.

• Particle-Mesh (PM) The volume of the simulation is divided into

a regular grid where the field quantities, such as the density or the

gravitational potential, are computed. To calculate the gravitational

force acting on each particle, an interpolation method is requested.

From the density field estimated at each grid cell, the gravitational

potential is computed using the Poisson equation (2.1.1) in Fourier

space, and used to evaluate the force in real space using the Fast

Fourier Transform algorithm. The PM method is less accurate than

the PP method, as the cell size reduces the spatial resolution compared

with the PP method, but it is much faster (tCPU ∝ N logN).

• Particle-Particle-Particle-Mesh (P3M) The aim of these algo-

rithms is to combine the accuracy of the PP method to the rapidity

of the PM one. To do that, these algorithms exploit the PP method

on small scales, while the PM approach is used on large scales where

the required accuracy is less. It is important in this case to adopt

a coherent linking for the two regimes, choosing an arbitrary critical

distance to discriminate where to use the PP method or the PM one.

• Hierarchical Tree (HT) For each ith particle, the force is calculated
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precisely (PP like) for its neighbour, while distant particles are assem-

bled into the so-called nodes. The force on the ith particle produced

by these nodes is calculated using the center of mass of each nodes,

instead of all single particles. The nodes that are more distant, from

the ith particle, than a given scale, will appear bigger, and viceversa.

Also in this case, a definition of an arbitrary distance is needed. These

algorithms are both accurate and fast (tCPU ∝ N logN).

A widely used strategy consists in running large-scale simulations at

low resolution, identifying where there are underdense or overdense regions.

Then zoomed simulations of the interested regions are run over a smaller

volume, but at a higher resolution. Nowadays N-body simulations of a

given cosmological model provide consistent results regardless of the adopted

approach.

4.1.2 Hydrodynamic simulations

To simulate the evolution of the baryonic matter density field, other physical

processes have to be properly modelled, in addition to gravity, like cooling,

shocks, turbulence, re-heating, conduction. These phenomena can be in-

cluded by making use of the exact solution of the set of Eqs. (2.1.1). There

are two main approaches to the problem:

• Eulerian methods: fixed or adaptive grids are used to compute mean

values of the field quantities. These methods work well to describe

strong gradients, and in fact are generally used to describe shocks.

However, they suffer in spatial resolution, because of the grid. The

introduction of adaptive meshes can overcome the issue.

• Lagrangian methods: the fluid is modelled as an ensemble of particles.

The values of the different field quantities, that act on each particle,

are calculated as the weighted average of the properties of the neigh-

borhood particles.

The choice of the most efficient method depends on the type of problem

to solve. The Eulerian approach ensures a larger resolution in mass, but

a lower spatial resolution, with respect to the Lagrangian method. Actu-

ally, the most recent cosmological simulations are able to solve the so-called

magnetohydrodynamic equations (MHD), which take into account the mag-

netic and electric fields of the fluids. Eqs (2.1.1) have to be modified, adding
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Maxwell’s equations which describe the electromagnetic fields, obtaining the

following set of magneto-hydrodynamic equations:



∂ρ
∂t +∇ · (ρ~v) = 0 (continuity equation)

ρ (∂~v
∂t + (~v · ∇))~v = ~Jx ~B −∇p− ρ∇φ (Cauchy momentum equation)

~Jx ~B = ( ~B·∇) ~B
µ0

−∇
(
B2

2µ0

)
(Lorentz force)

µ0
~J = ∇x ~B (Ampere’s law)

∂ ~B
∂t = −∇x ~E (Faraday’s law)

∇ · ~B = 0 (magnetic divergence)

d
dt(

p
ργ ) = 0 (Energy equation)

(4.1.1)

where p is the fluid pressure, ~B and ~E are the magnetic and electric fields, ~v

is the fluid velocity, ~J is the current density, φ is the gravitational potential,

µ0 is the magnetic permeability and γ is the specific heat ratio. Finally, the

equations of state of the fluids have to be considered, in addition to Eqs.

(4.1.1). Usually, cosmic fluids are assumed to be modelled as perfect fluids,

so their equation of state reads p = nkBT . In the set of Eqs. (4.1.1), we

neglected the various dissipative terms, which would have to be considered

for a more realistic modelling. This set of equations is very complex and

a significant amount of computing time is necessary to solve it in realistic

cases. Nevertheless, modern super-computers allow to perform huge and

high resolution hydrodynamic simulations. The state-of-art in this field is

represented by the Magneticum simulations (Dolag et al. in preparation),

and by the TNG-Illustris simulations (Nelson et al. [2019]), which are a set

of simulations whith different physical sizes, mass resolution and different

complexity of the physical processes employed. As an illustrative case, Fig.

4.1 shows the distribution of gas inside the DM haloes of the TNG-Illustris

simulations, which traces the so-called cosmic-web structure. The Figure is

colour coded and the transparency indicates the gas density, while different

colours indicate the gas temperature. However, even the latest hydrody-

namic cosmological simulations do not have sufficient resolution to model,

at the same time, the physical processes inside galaxies, such as the forma-

tion of stars, and the large-scale phenomena, such as the galaxy mergers.

The full description of both large and small scales is nowadays impossible

to achieve with a single simulation.
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Figure 4.1: Slice of the TNG300 simulation of IllustrisTNG. The cosmic large-scale

structure is shown with a projection of the baryonic density field. The

image brightness indicates the projected mass density, while the colours

quantify the mean projected gas temperature. Credits to https://www.

tng-project.org/media/.

4.2 Semi-analytic models

Semi-Analytic Models (SAMs) are used to populate the DM haloes with

galaxies. The DM haloes are obtained from DM merger trees, that can

be constructed with either the extended Press–Schechter formalism (Press

and Schechter [1974], Bond et al. [1991]) or through N-body simulations.

These models describe the formation and evolution of galaxies inside DM

haloes by exploiting some approximated analytic equations used to describe

complex physical phenomena, such as gas-dynamic and radiative processes,

or the formation of stars and black holes, as well as the stellar and AGN

feedback. These analytic recipes are inferred both from theoretical models

and observations. For example, the SFR in the disks of galaxies is observed

to depend on the local surface mass density, Σg, of gas (Kennicutt-Schmidt

law Schmidt [1959]), so that Ṁ∗ = AΣβ
g . The A and β parameters are

adjusted comparing model predictions with observations.

The analytic recipes used by SAMs are often too simplified to trace the

galaxy evolution in details, and can be used to model only the basic proper-

ties of the galaxy population. Nevertheless, comparing the SAM predictions

with observed data, it is possible to calibrate the free parameters of these

https://www.tng-project.org/media/ .
https://www.tng-project.org/media/ .
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models, thus improving their accuracy. Furthermore, with this type of ap-

proach, the influence of different physical mechanisms can be investigated

separately, which can help to isolate the different processes and to improve

the accuracy of each semi-analytic recipe.

SAMs are less time consuming with respect to hydrodynamic simula-

tions, but they are also less accurate in the description of the processes

related to the baryonic matter. Indeed, the dynamics of this component

and its interaction with DM particles are not followed directly. Moreover,

given the large freedom in the parameterisation of the physical processes

in SAMs, the inaccurate modelling of one of the involved phenomena can

lead to compensate a competing process with the risk to obtain the right

observable predictions for the the wrong reason.

Nevertheless, current SAMs can reproduce observed galaxy statistical

properties quite accurately, making use of large cosmological volumes and

spanning over a large range of galaxy masses and redshifts (e.g. Somerville

et al. [2008] and Guo et al. [2011a]). For instance, SAMs have been shown to

be able to well reproduce statistical properties like the luminosity functions,

SMFs and SFRs of massive galaxies (Mstar & 1010M�) at high redshifts

(z . 6) (e.g. Somerville et al. [2012], Fontanot et al. [2009]).

4.3 Halo Occupation Distribution

Among the algorithms of the third class we introduced in this Chapter, the

so-called Halo Occupation Distribution (HOD) represents one of the most

powerful ones to construct mock galaxy catalogues with given large-scale

structure properties. We will provide a more detailed and complete descrip-

tion for this kind of algorithms, since it is the one that will be exploited

in this Thesis work. This class of methods is nowadays widely used in the

scientific community, and represents a simple and effective empirical model

to populate DM haloes with galaxies. This technique is based on the dis-

tribution function P (N |M), that is the conditional probability of having

N galaxies, above some mass or luminosity threshold, hosted by haloes of

mass M . In other words, this function describes how much the galaxies are

biased with respect to the DM. The functional form of these probability

distributions is theoretically justified by the predictions of hydrodynamic

simulations and semi-analytic models (e.g. Zheng et al. [2005]). The func-
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tion P (N |M) can be divided into different components:

• The mean occupation number,
〈
N
〉
(M), as a function of the halo mass

M.

• The distribution of the number of galaxies with respect to a mean

occupation value, P (N |
〈
N
〉
).

• The spatial and velocity distributions of galaxies into each halo.

The galaxy sample is usually divided into central and satellite galaxies. In

the following Sections, we will make use of the subscripts c and s to refer to

central and satellite galaxies, respectively. The functional form of
〈
N
〉
(M)

is different from central and satellite galaxies. The central galaxies reside at

the center of their host DM haloes. Indeed, the number of central galaxies

per each halo can be either 0 or 1. For this reason the functional form of

the mean number of central galaxies is taken as a step function, or as a

smoothed step function, in which a softened cut-off in inserted to take into

account the scatter in the relation between the galaxy luminosity and the

halo mass (e.g. Kravtsov et al. [2004], Zehavi et al. [2005], Zheng et al.

[2005] Mor, Zehavi et al. [2011]). So, for central galaxies we can assume the

following functional form:

〈
Nc(M)

〉
=

0 if M < Mmin

1 if M > Mmin

(4.3.1)

The transition from 0 to 1 is smoothed due to the intrinsic scatter between

the galaxy properties and the host halo mass. As shown in Kravtsov et al.

[2004], a general possible parameterisation is the following:

〈
Nc(M)

〉
= erf

[
5

(
1− M

Mmin

)]
(4.3.2)

where erf(x) = 2
π

∫ x
0 e
−t2dt is the error function and Mmin is the minimum

mass for an halo to host a central galaxy with a luminosity or mass above a

certain threshold.

The satellite galaxies are spatially distributed following the spatial dis-

tribution of DM inside the haloes. The mean number of satellite galaxies can

be approximated by a power-law of the halo mass, as theoretically demon-

strated in Kravtsov et al. [2004]. We can write the mean occupation number
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for satellites as a power-law:

〈
Ns(M)

〉
=

(
M

M1

)β
, (4.3.3)

where usually β ≈ 1, and M1 is the mass of an halo which can host at

least two galaxies, a central and a satellite. We can define a parameter, α,

which tells us if the probability distribution is well described by a Poissonian

distribution or not:

α2 ≡
〈
N(N − 1)

〉〈
N
〉2 = 1− 1〈

N
〉2 . (4.3.4)

Eq.(4.3.10) shows that the occupation number of galaxy has a Poisson dis-

tribution (α2=1) at high host halo masses, and drop to zero in the low host

mass regime.

Figure 4.2 shows the different contributions to the total mean occupation

number of galaxies given by satellite and central galaxies, separately. The

mean total number of galaxies as a function of the halo mass is represented

with a blue solid line and appears as a complex form, composed by a step

function, a shoulder, and an high-mass power-law tail. The mean number of

satellite galaxies is shown in pink and follows a simple power-law function.

The dotted line shows the mean occupation number of central galaxies and

it is basically a smoothed step function, that becomes equal to 1 after a

certain value of halo mass, Mmin (in this case for Mh ≈ 1011M�), which

represents the minimum value of the host halo mass which can contain a

central galaxy. Mmin depends on the galaxy luminosity threshold, which is

reflected in the galaxy bias dependence on the galaxy stellar mass. Indeed,

the most massive galaxies reside in the most massive haloes, and the halo

bias factor increases with the mass, as also shown in Chapter 2. Therefore

we expect that also the galaxy bias increases with the minimum halo mass.

Typically Mmin, α and M1 are treated as free parameters that are con-

strained by observations. Since DM haloes contain either zero or one central

galaxies, the functional form of P (Nc|
〈
Nc

〉
) is a nearest-integer distribution,

with P (1) = 1 − P (0) =
〈
Nc

〉
. The functional form of P (Ns|

〈
Ns

〉
) of the

satellite galaxies is often assumed to follow a Poisson distribution with mean

equal to
〈
Ns

〉
.

The strongest assumption in the HOD treatment is that all the properties

of the observed galaxy population depend only by the mass of the host halo.



70 CHAPTER 4. BUILDING SIMULATED GALAXY CATALOGUES

Figure 4.2: Lower panel : mean occupation number of galaxies as a function of halo

mass. The blue solid line shows the mean total number of galaxis per

halo of mass M . The pink long-dashed line represents the mean number

of satellites only, while the red dotted line shows the mean number of

central galaxies per host halo mass, that is a step function. The error

bars show the uncertainty on the mean values. Upper panel : the α pa-

rameter (see Eq. 4.3.10) for satellite (pink points) and total number of

structures (blue points) as a function of the halo mass. For large halo

masses, α ∼ 1 indicates that the distribution of probability is Poisso-

nian, while at small halo masses it is sub-Poissonian. Nevertheless, αs

remains close to one also at relative small masses. Credits to Kravtsov

et al. [2004]

.
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This rough approximation is one of the main issues related to this method.

Simulations showed indeed that also other halo properties, such as halo

spin, environment, and previous halo assembly history, could affect the halo

clustering. This dependence of the halo clustering on other properties than

the halo mass is the so-called halo assembly bias(Sheth and Tormen [2004],

Gao et al. [2005], Angulo et al. [2008], Lazeyras et al. [2017]). However,

it is still not clear if the galaxies properties are strongly influenced by the

historical assembly of their host haloes or not. Moreover galaxy properties

could depend on the LSS of the Universe, and they can be affected by the

so-called galaxy assembly bias (Reed et al. [2007], Zu et al. [2008], Zentner

et al. [2014], Chaves-Montero et al. [2016], Zehavi et al. [2018]). According

to this assumption, the galaxy assembly bias can influence the HOD, since

these models are parameterised using clustering measurements. It seems also

that environment influences the HOD parameters: central galaxies tend to

be hosted in smaller haloes when they are located in dense regions, while

satellite galaxies show an higher mean occupation number. Zehavi et al.

[2018] found also that Mmin is smaller for haloes with higher formation

redshift (older haloes). On the contrary, the satellites tend to be less in

early-formed haloes (Artale et al. [2018], Bose et al. [2019]).

4.3.1 Conditional luminosity and mass functions

Closely related to the HOD, the Conditional Luminosity Functions (CLF)

,Φ(L|M), and Conditional Mass Functions (CMF), Φ(m∗|M), models pro-

vide a fast and powerful tool to populate DM haloes with galaxies. These

statistical functions describe the mean number of galaxies with luminosity

within L± dL/2, or stellar mass within M∗ ± dM∗/2, respectively, that be-

longs to a DM halo of mass M . Also in this, case it is possible to separate the

contribution of CLF and CMF into central and satellite galaxies as follows:

Φ(L|M) = Φc(L|M) + Φs(L|M) . (4.3.5)

For central galaxies the functional form of the conditional function is

usually assumed as a log-normal distribution. From Yang et al. [2008] we

have for central galaxies:

Φc(L|M) =
1√

2πσc
exp

[
−
(
logL− log L̄c

)2
2σ2

c

]
,
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where L̄c is the mean luminosity of the central galaxies hosted by an halo

with mass M and σc is the scatter in luminosity with respect to the mean

value. While for CMF we can follow Moster et al. [2010], using for central

galaxies the following equation:

Φc(M∗|M) =
1√

2π ln 10M∗σc
exp

[
−

log2
(
M∗/M̄∗,c

)
2σ2

c

]
, (4.3.6)

where M̄∗,c is the mean stellar mass of central galaxies hosted in an halo of

mass M , and σc is the scatter of stellar masses with respect to the mean

stellar mass. Usually, the σc value is assumed to be constant. Alternatively,

it can be parameterised as a function of halo mass as follow (e.g. Moster

et al. [2010]):

σc = σ∞ + σ1

[
1− 2

π
arctan (ξ log(M/M2))

]
, (4.3.7)

where σ∞, σ1, ξ, M2 depend on the host halo mass.

The functional form of CLF and CMF for satellite galaxies is usually

modelled as a Schechter function, or as a modified Schechter function. Fol-

lowing Yang et al. [2008], we can write Φs(L|M) as follows:

Φsat(L|M) = φ∗s

(
L

L∗s

)αs+1

exp

[
−
(
L

L∗s

)2
]
,

and following Moster et al. [2010], we can write the CMF as:

Φs(M∗|M) =
φ∗s
M̄∗,s

(
m∗
m∗,s

)αs
exp

[
−
(
M∗
M̄∗,s

)2
]
, (4.3.8)

Following Moster et al. [2010] we can make further parameterisations

φ∗s = Φ0

(
M

M�

)λ
, (4.3.9)

αs = α∞ + α1

[
1− 2

π
arctan

(
ζ log

(
M

M3

))]
, (4.3.10)

where φ∗s, L
∗
s, αs, L

∗
s, m∗,s are free parameters which depend on the halo

mass, and can be fitted in order to obtain the observed luminosity function

or stellar mass function. Indeed, following Moster et al. [2010] or Wang et al.
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[2013], we can parameterise the relation between the mean stellar mass and

the halo mass with a double power law:

M̄∗ = 2M
(m∗
M

)
0

[(
M

M1

)−β
+

(
M

M1

)γ]−1

, (4.3.11)

From the CLF and CMF, we can recover the HOD function. Indeed we can

integrate the CLF and CMF, in luminosity and in stellar mass, respectively,

as follows:

〈
N(> L,M)

〉
=

∫ ∞
L

Φ(L|M)dL ,

which provides the average number of galaxies above the luminosity L, as

function of halo mass. Integrating Eqs. (4.3.6) and (4.3.8), we obtain:〈
Nc(> M∗,min,M)

〉
=

1

2

[
1− erf

(
logM∗,min/M̄∗,c√

2σc

)]
, (4.3.12)

〈
Ns(> M∗,min,M)

〉
=
φ∗s
2

Γ

[
αs
2

+
1

2
,

(
M∗,min
M̄∗,s

)2
]
, (4.3.13)

where Γ(a, x) ≡
∫∞
x e−tta−1dt is the incomplete gamma function. The CLF

and CMF connect the LF, φ(L), and the SMF, φ(M∗) to the HMF, dN
dM . For

instance, integrating in halo mass the product of conditional function times

the host HMF, we cab obtain the SMF:

φ(M∗) =

∫ ∞
0

Φ(M∗|M)
dN

dM
dM . (4.3.14)

4.3.2 Subhalo Abundance Matching

In this Section we give a brief overview on a useful method that will be

also exploited in this Thesis work, the so-called Subhalo Abundance Match-

ing (SHAM). The SHAM is another simple technique to populate DM , or

subhaloes, with galaxies. The starting DM halo catalogues are typically ob-

tained with N-body simulations with sufficient mass and spatial resolution

to identified also the substructures inside DM haloes. The SHAM method

is based on the assumption that there is a monotonic relation between the

properties of galaxies and their hosting DM structures, which are haloes or

subhaloes. The galaxy is placed at the center-of-mass of the host subhalo,

while the galaxy velocity is imposed to be the same of the hosting subhalo

velocity.
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The simplest application of this method consists in assuming a monotonic

relation between the stellar mass (or luminosity) of galaxies and the subhalo

mass. In this case, to associate galaxies to DM haloes, we have to require

that the cumulative number density of haloes is equal to the cumulative

number density of galaxies:

ngal(> M∗) = nh(> M) . (4.3.15)

This simple prescription is good enough to construct mock galaxy catalogues

with clustering properties consistent with observations in a wide range of

redshifts (0 < z < 5) (Conroy et al. [2006]), though it is harder to re-

produce other galaxy properties, such as star formation rate or metallicity.

The SHAM approach can be improved by introducing a scattered relation,

instead of using a one-to-one matching in the relation between stellar and

subhalo mass (Behroozi et al. [2010], Trujillo-Gomez et al. [2011], Reddick

et al. [2013], Zentner et al. [2014]).

Reddick et al. [2013] applied this approach to the SDSS, fitting simulta-

neously both the measured clustering and the CMF. Moreover, Simha and

Cole [2013] exploited this technique to achieve constrains on cosmological

parameters, which are in agreement with the ones found from other estab-

lished methods.

In Chapter 5, we will apply the SHAM approach in combination with

the HOD method to match subhaloes and satellite galaxies. Indeed, while

the HOD has the advantage of accurately reproducing the spatial distribu-

tion properties of a galaxy population, the SHAM can provide the relation

between DM haloes and subhaloes with observational properties that would

otherwise require a full-hydrodynamical treatment.

4.4 Euclid Flagship mock galaxy catalogue

In this Section, we will describe the mock catalogues exploited in this The-

sis work. Since we want to deal with the state-of-art of the HOD mock

galaxy catalogues, we make use of one of the most recent Euclid Flagship

catalogues (Castander et al. [2020, in preparation]). The Euclid Flagship

mock galaxy catalogue is based on a very large simulation of two trillion

DM particles, in a periodic box of L = 3780 Mpch−1 on a side, in a ΛCDM

cosmological framework. The simulation contains more than two billion
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galaxies distributed over the 3D space that the European Space Agency

(ESA) space mission Euclid will survey in the next future. This mock cata-

logue has been specifically created to simulate the future observations of the

Euclid space telescope, and to test the algorithms that will be used for data

analysis. The DM particle simulation was developed on the Piz Daint super-

computer, hosted by the Swiss National Supercomputing Centre, by a team

of scientists at the University of Zurich led by Joachim Stadel, using the

Rockstar halo finder (Behroozi et al. [2012]). The cosmological parameters

assumed by Flagship simulation are ΩM = 0.319, Ωb = 0.049, ΩΛ = 0.681,

σ8 = 0.83, ns = 0.96 and h = 0.67.

The halo catalogue is build starting from the DM particle distribution

and using a “Friends-Of-Friends” algorithm. This type of halo finder defines

as haloes the groups that contain all DM particles separated by distances

lower than a given linking length, bl, where l is the mean interparticle sep-

aration of the DM catalogue, and b is a free parameter of the code. The

obtained halo catalogue has been populated with galaxies using an HOD

method, similarly to what we have done in this Thesis work, with the goal

to reproduce, as much as possible, all the observables relevant for Euclid’s

main cosmological probes. Specifically, the HOD algorithm has been cali-

brated exploiting several local observational constraints, using for example

the local luminosity function for the faintest galaxies (Blanton et al. [2003]

and Blanton et al. [2005]) and the galaxy clustering as a function of lumi-

nosity and colour (Zehavi et al. [2011]).

Figure 4.3 shows slices of light cone of the Flagship simulations. The

first slice represents the total distribution of mock galaxies inside the light

cone, while the second and the third row show the light-cone observable by

Euclid with the instruments, VIS, which operate in the optical band and

NISP, which detects Near-Infrared light. The expected number of galaxies

observable with both instruments decreases with redshift, because of the

flux limit. Moreover, observing the Hα line with NISP, only the sources

above a certain redshift are visible. This happens because Hα is an optical

rest frame line emission, and only objects that are sufficiently far from us

to be redshifted in the Near-Infrared band are observable.

In this Thesis work we have used in particular the light-cone of the

Flagship catalogue version 1.8.4, which contains 2.6 billions of galaxies, and

spans over 5000 deg2, up to z = 2.3. The mock galaxy catalog has been
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Figure 4.3: The image shows a slice, perpendicular to the observer view, of the

simulated light cone of the Flagship mock galaxies. In the top slice,

the complete sample of mock galaxies is shown, while the second

and the third slices represent the mock galaxy that are expected to

be observed by the two instruments VIS (optical) and NISP-Halpha

(Near-Infrared), respectively. Credits to: https://www.euclid-ec.

org/?page_id=4133.

generated at PIC using the SciPIC pipeline on top of a Big Data platform

based on Apache Hadoop (Carretero et al. [2017]). Since we are interested

in the local SMF, we selected from the Flagship light-cone all the galaxies

and haloes up to redshift z ∼ 0.1. The selected Flagship galaxy catalogue

that will be used to verify our results contains more than 3.7 millions galax-

ies, while the correspondent Flagship halo catalogue counts about 1 million

objects. Figure 4.4 shows the selected galaxy mock light-cone catalogue and

its projections onto the three axes, with a colour-code related to the galaxy

redshifts.

Figure 4.5 shows the Flagship halo MF compared to the theoretical Tin-

ker et al. [2008] HMF, computed with the CosmoBolognaLib functions (see

next Chapter).

https://www.euclid-ec.org/?page_id=4133.
https://www.euclid-ec.org/?page_id=4133.
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Figure 4.4: 3D representation of the galaxy mock catalogue selected from the Flag-

ship simulations. The observed coordinates have been converted into

the correspondent comoving ones, in units of Mpc/h. On the left the 2D

projections on the three axes are reported. The colour map indicates

the variation of the galaxy redshifts in the range 0 < z < 0.1.
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Figure 4.5: Upper panel : the MF of the Flagship mock halo catalogue (black points)

compared to the theoretical Tinker et al. [2008] HMF. Lower panel :

residuals computed as the difference between the Flagship and theoret-

ical HMFs, divided by the Poissonian errors associated to the measured

MF.



Chapter 5

A new Halo Occupation

Distribution code

In the previous Chapters, we have introduced the general context in which

this Thesis work is placed. In this Chapter, we will describe the implemen-

tation of a new HOD code into CosmoBolognaLib (hereafter CBL) (Marulli

et al. [2016]), which is a large set of free software C++/Python libraries,

that allow to carry out statistical cosmological analyses on catalogues of

extra-galactic objects, such as DM haloes, galaxies, galaxy clusters and cos-

mic voids. The code that we developed for this Thesis work provides an

empirical model of galaxy occupation, which is able to reproduce the main

observable properties of galaxy catalogues, such as the galaxy stellar mass

function and the two-point correlation function. This algorithm has been op-

timised using OpenMP Application Program Interface (OpenMP API) and

offers high performances in terms of running time and memory usage. It

will be publicly available in the next future1, along with a full Doxygen

documentation and example codes to show how to use it.

5.1 Overview of the code

As described in Chapter 4, there are different ways to construct simulated

galaxy catalogues. One of them is to use hydrodynamic simulations, which

1The code developed in this Thesis work is currently available in the branch HOD

of the DIFA git repository called ClusteringGroup/CosmoBolognaLib/, and will be

publicly released in the next version of the CBL at

gitlab.com/federicomarulli/CosmoBolognaLib.
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https://gitlab.com/federicomarulli/CosmoBolognaLib
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start from high redshift initial conditions, and make them evolve using

a full hydrodynamical treatment, including all the relevant astrophysical

processes. These simulations provide the most complete description of the

galaxy properties, but are complex to implement and time consuming. More-

over, they relay on the mostly uncertain assumptions made to model subgrid

physical effects.

Another method consists in using SAMs to populate DM haloes, gener-

ally identified in large N-body simulations, with galaxies at high redshifts,

and then evolve the baryonic component according to analytic prescriptions

for all dominant physical phenomena, such as gas cooling, galaxy mergers

and feedback effects, following the merging history trees back in time (e.g.

Croton et al. [2006], Marulli et al. [2008] and Bonoli et al. [2009]). The

main advantage of the semi-analytic approach is that it is computationally

cheaper compared to the hydrodynamic simulations, while the primary dis-

advantage is that it involves a larger degree of approximation, since it makes

use of simplified physical recipes.

The third approach described in the previous Chapter is the HOD for-

malism, which connects galaxies to their hosting DM haloes through the

probability distribution, P (N |M), that an halo of mass M contains N galax-

ies of a particular type (e.g. Berlind and Weinberg [2002], Kravtsov et al.

[2004], Zehavi et al. [2005], Zheng et al. [2005] Zehavi et al. [2011] and

Zehavi et al. [2018]). Given the complexity of the galaxy formation and evo-

lution phenomena, it is often advantageous to rely on the HOD empirical

approach. The HOD method can indeed be useful to relate observations

to the assumed underlying physical structure of the Universe, and also to

make predictions based on extrapolations from real data catalogues. For

all of these reasons, we chose to follow this approach in this Thesis work,

implementing new HOD algorithms for painting galaxies into DM haloes.

The rationale behind this choice is also that HOD codes are relatively easy

to implement and validate, but still provide flexible and powerful tools to

construct mock galaxy catalogues with desired large-scale structure proper-

ties. Moreover, highly efficient numerical codes can be implemented within

the HOD framework (Ronconi et al. [2020]).

The primary aim of this work is to implement a new HOD code within

the environment of the CBL2, to provide an easy and fast tool to construct

2The code implemented in this Thesis work is implemented as a new constructor of
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mock catalogues of galaxies, given an input catalogue of DM haloes. In

particular, we make use of the parameterisations suggested by Zehavi et al.

[2005] (hereafter Zehavi05 ) and Zehavi et al. [2011] (hereafter Zehavi11 ),

which gives the mean number of galaxies above different luminosity thresh-

olds inside an halo of virial mass M . The main equations of standard HOD

models have been discussed in Chapter 4. The specific equations of the Ze-

havi HOD framework for central and satellite galaxies that we implemented

in this work are the following:

〈
Nc(M)

〉
=

0 if M < Mmin

1 if M > Mmin

(5.1.1)

〈
Nc(M)

〉
=

1

2

[
1 + erf

(
logM − logMmin

σlogM

)]
(5.1.2)

〈
Ns(M)

〉
=

0 if M < Mmin(
M−Mmin

M1

)α
if M > Mmin

(5.1.3)

〈
Ns(M)

〉
=

1

2

[
1 +

(
M −M0

M ′1

)α]
. (5.1.4)

where
〈
N(Mmin)

〉
= 0.5 in Zehavi et al. [2011]. Another important pa-

rameter to consider in HOD models is M1, which is the mass of the host

haloes that contain at least one satellite galaxy. This definition implies that〈
N(M1)

〉
sat

= 1. In Eq. (5.1.4) the parameter M ′1 is defined differently than

M1, but is related to M1, and also to M0. The parameter M0, in satellite

galaxies, plays the role of Mmin for central galaxies. Indeed M0 indicates

the cut-off for the mean number of satellites (Zheng et al. [2005]). For a

complete theoretical discussion see Zheng et al. [2005].

We also implemented the HOD model proposed by Moster et al. [2010]

(hereafter Moster10 ). The functional form of this HOD model is the follow-

ing:

〈
Nc(> M∗,min,M)

〉
=

1

2

[
1− erf

(
logM∗,min/M̄∗,c√

2σc

)]
, (5.1.5)

where erf(x) = 2
π

∫ x
0 e
−t2dt is the error function, M̄∗,c is defined by Eq.

(3.3.2), and represents the mean stellar mass function of the central galaxies

hosted by haloes with mass M , while σc parameterises the scatter in the

the C++ class cbl::catalogue::Catalogue.
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SHMF relation, Eq. (3.3.2). Often, σc ∼ 0.15, but it can alternatively be

expressed as a function of the host halo mass by Eq. (4.3.7). The value

M∗,min is the stellar mass threshold and represents the minimum stellar

mass of the galaxy sample that we are analysing:

〈
Ns(> M∗,min,M)

〉
=
φ∗s
2

Γ

[
αs
2

+
1

2
,

(
M∗,min
M̄∗,s

)2
]
, (5.1.6)

where Γ(a, x) ≡
∫∞
x e−tta−1dt is again the incomplete gamma function, φ∗

and αs are the normalisation and the exponent of the modified Schechter

function, defined in Eq. (4.3.8), for the satellite galaxies. The M̄∗,s is the

mean stellar mass for the satellite galaxy sample as a function of the hosting

halo mass. As shown in Chapter 4, from the CMF it is possible to obtain

the HOD equations by integrating the CMF in stellar mass (Eq. (5.1.5)

and (5.1.6)). Thus we implemented Eqs. from (5.1.1) to (5.1.6) in order to

obtain the information on the number of galaxies to assign in each halo. The

most powerful model considered in this Thesis work is the one implemented

by Moster et al. [2010] because it gives the mean number of galaxies with

stellar mass within M∗±dM∗/2 inside an halo of virial mass M , and we can

choose any stellar mass threshold. On the other hand, the other two models

are parameterised with specific luminosity thresholds. In this work we take

into account the problems related to the different parameterisations of the

models, trying to provide a self-consistent comparison between all of them.

We report in Figure 5.1 an example of the mean occupation number per halo

for different minimum stellar masses. To obtained these data, we applied

the method labelled as Moster10 in our HOD code. The curves represent

the mean number (considering both central and satellite galaxies) of objects

inside a DM halo of a specific mass Mh.

Once that the number of galaxies per halo is known, we have to assign

the galaxies coordinates. Following the standard approach, we assign to

central galaxies the same comoving coordinates of the host halo, while the

satellite galaxies are distributed with a numerical density profile which has

the same radial behaviour as the NFW profile (Eq. 2.5.1), assuming a

spherical symmetry. These are relative simplified assumptions that can be

improved in the future, adding for example a small scatter in the central

galaxy positions with respect to the location of their host, or assuming a

non-spherical symmetry in the distribution of satellites, or adding also a

radial distribution of satellites conditioned by the satellite mass. As an
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Figure 5.1: The theoretical mean occupation numbers predicted by the HOD model

described by Moster et al. [2010]. These curves represent the mean

number of galaxies per halo. The four colours refer to different minima

in the stellar mass of galaxies. In particular, greater is the stellar mass

threshold, greater is the halo mass required to host these galaxies.

illustrative example, Figure 5.2 shows the spatial distribution of galaxies

inside haloes with mass M = 1014M� populated using our code.

The stellar masses are extracted from the conditional probability distri-

bution calibrated by Moster et al. [2010] and reported in Eqs. (4.3.6) and

(4.3.8), for central and satellite galaxies, respectively. These distributions

are used to extract stellar masses for each of the presented models (Zehavi05,

Zehavi11 and Moster10 ) exploiting the implemented CBL functions to de-

fine the distribution probability used to extract random numbers. Figure

5.3 shows the 3D view of an halo of mass M = 1015M� populated with

galaxies of stellar mass greater than 109M�.

With these HOD prescriptions, we associated a population of galaxies

to the DM haloes, according to their mass, and we assigned to each galaxy

three comoving coordinates and a stellar mass. As described in Section 2.5,

satellite galaxies usually reside in substructures, to which we can associate

specific masses. To do this, we use the SHMF described in Eq. (2.6.1) from

which we extract substructure masses with the same method adopted for

stellar masses. Using the SHAM technique, we assign the most massive sub-

structures to the most massive satellites. The substructures are generated
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Figure 5.2: Measured number density profile of satellite galaxies generated by our

code (black dots), compared to the theoretical NFW profile (red solid

line). As expected, the mean density distribution of galaxies follows the

NFW profile.

imposing three conditions:

• The masses are extracted from the SHMF.

• The subhalo mass fraction does not exceed the theoretical subhalo

mass fraction, f , given by the integral of the SHMF (see Eq. 2.6.5).

• The number of substructures is at least equal to the number of the

satellite galaxies predicted by the HOD model.

Once obtained the substructure masses, we apply the Eq. (2.6.2) to

connect the subhalo infall mass to its correspondent mass at the present

time, as a function of the substructure distance from the centre of its host

halo. In Figure 5.4 the solid red line shows the theoretical subhalo mass

fraction as a function of the halo mass (obtained from Eq. 5.4), while the

blue dots are the subhalo mass fraction computed by applying our HOD

code to the halo mock catalogue extracted from the Flagship simulation.

The observed subhalo mass fraction is measured as the sum of each subhalo

mass inside an halo of mass M , divided by the halo mass.

At the end of the procedure, we obtain a catalogue of galaxies and sub-

structures from any input halo catalogue. The proposed HOD implementa-
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Figure 5.3: 3D representation of galaxies inside a cluster with mass M = 1014M�.

The colormap represents the logarithmic values for the galaxy stellar

masses. As expected, the low mass galaxies dominate the sample, and

are more numerous near the centre of the host halo.

tion allows the users to set the parameters of the models, or to simply use

the default ones that have been calibrated in literature works. The HOD

parameters that can be provided in input are the followings:

• catalogue is the input DM halo catalogue that will be populated with

galaxies3.

• cosmology represents the cosmological model, which is used here to

predict the sub-halo mass function4.

• HODType is a string which selects the OD model that will be used to

populate the haloes with galaxies. The HOD models currently imple-

mented are: Zehavi05, Zehavi11 and Moster10.

• threshold is a double which fixes the minimum selection threshold in

magnitude or stellar mass. Specifically, it is expressed in magnitude, if

3This is an object of class cdl::Catalogue.
4This is an object of the class cbl::Cosmology.
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Figure 5.4: The measured subhalo mass fraction (blue dots) obtained from the DM

halo catalogue populated by our code, compared to the theoretical sub-

halo mass fraction (red solid line). The errorbar represent the Poisso-

nian errors associated to our data.
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the selected author is Zehavi05 or Zehavi11, or in solar masses, if the

selected author is Moster10. The possible values of this threshold with

Zehavi05 or Zehavi11 are: -18, -18.5, -19, -19.5, -20, -20.5, -21., -21.5

or -22 . These values corresponds to magnitude in r-band. Otherwise,

any value for the minimum stellar mass of galaxies is allowed with

Moster10. If the authors is Zehavi05 or Zehavi11, the minimum

stellar mass is automatically set by the code depending on the chosen

magnitude limit.

• substructures is a boolean value. If it is true the code will populate

the halo catalogue with galaxies and substructure, while if it is set false

the code returns a catalogue of galaxies only.

• parameters is a vector of double values which contains all the pa-

rameters needed by the HOD model. The default parameter values

are the ones reported in Zheng et al. [2005], Zehavi et al. [2011] and

Moster et al. [2010] forHODType Zehavi05, Zehavi11 andMoster10,

respectively.

For Zehavi05 and Zehavi11 the parameters values are divided in two cate-

gories: the first set of values is relative to the HOD functions and modifies

the mean number of galaxies per halo, while the second one is related to the

CMF and changes the stellar mass that is assigned to each galaxy.

Moster et al. [2010] proposed two different HOD parameterisations: the

first neglects the intrinsic scatter between halo mass and stellar mass, while

the second one takes into account the scatter in SHMR (Eq. 4.3.11). We

tested both of them, and eventually we chose to rely on the latter, since it

reproduces the SMF more accurately.

Each parameter of the implemented HOD algorithm can be set indepen-

dently. This feature allows to include easily our HOD algorithm in a Markov

Chain Monte Carlo (MCMC) analysis, to fit one or more free parameters by

comparing the predicted galaxy properties with observations.

Tables 5.1 and 5.2 report the Zehavi05 and Zehavi11 default HOD

parameter values for each luminosity threshold that refer to Eqs. (5.1.1),

(5.1.2), (5.1.4), (5.1.3). Table 5.3 reports the Moster10 default parameters

used for both the HOD and the CMF. They are relative to Eqs. (4.3.6),

(4.3.8), (5.1.5) and (5.1.6).
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Mr logMmin logM1 α

−22.0 13.91 14.92 1.43

−21.5 13.27 14.60 1.94

−21.0 12.72 14.09 1.39

−20.5 12.30 13.67 1.29

−20.0 12.01 13.42 1.16

−19.5 11.76 13.15 1.13

−19.0 11.59 12.94 1.08

−18.5 11.44 12.77 1.01

−18.0 11.27 12.57 0.92

Table 5.1: List of default parameters of the Zehavi05 HOD model, for different

thresholds in r-band magnitude, Mr: logMmin represents the minimum

mass for haloes to host a central galaxy, logM1 is the value of the mini-

mum halo mass for hosting at least one satellite galaxy, and α is the slope

of power-law used to extract the mean occupation function of satellite

galaxies (Eq. 5.1.3).

The HOD code implemented in this Thesis work provides high compu-

tational performances in constructing large mock galaxy catalogues, with a

running time linearly dependent on the number of CPUs employed. The

computational time increases drastically when the code is used also to pop-

ulate the haloes with DM sub-structures. Indeed, this task implies a high

number of random extractions to satisfy the three conditions described

above, which are necessary to accurately reproduce the SHMF.

5.2 Results

This Thesis work has been focused on the implementation and application

of a new HOD code, with the aim of constructing samples of simulated

galaxies starting from whatever DM halo catalogues. The primary require-

ment is that the SMF of the mock galaxies has to be in agreement with

observations. On the other hand, within the HOD framework considered

in this work, the clustering of galaxies is a prediction of the model, that

should be compared with observations to assess the reliability of the con-

structed mock catalogues. To validate the HOD algorithm implemented in
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Mr logMmin σlogM logM0 logM
′
1 α

−22.0 14.06± 0.06 0.71± 0.07 13.72± 0.53 14.80± 0.08 1.35± 0.49

−21.5 13.38± 0.07 0.69± 0.08 13.35± 0.21 14.20± 0, 07 1.09± 0.17

−21.0 12.78± 0.1 0.68± 0.15 12.71± 0.26 13.76± 0.05 1.15± 0.06

−20.5 12.14± 0.03 0.17± 0.15 11.62± 0.72 13.43± 0, 04 1.15± 0.03

−20.0 11.83± 0.03 0.25± 0.11 12.35± 0.24 12.98± 0.07 1.00± 0.05

−19.5 11.57± 0.04 0.17± 0.13 12.33± 0.17 12.75± 0.07 0.99± 0.04

−19.0 11.45± 0.04 0.19± 0.13 9.77± 1.41 12.63± 0.04 1.02± 0.02

−18.5 11.33± 0.07 0.26± 0.21 8.99± 1.33 12.50± 0.04 1.02± 0.03

−18.0 11.18± 0.04 0.19± 0.17 9.81± 0.62 12.42± 0.05 1.04± 0.04

Table 5.2: List of default parameters of the Zehavi11 model, for different thresholds

in r-band magnitude, Mr. logMmin is the minimum mass for haloes to

host a central galaxy, while σlog M corresponds to the scatter applied

to the smoothed step-function used for the mean occupation number of

central galaxies (see Eq. 5.1.2). logM0 and logM
′

1 are the logarithmic

values of the parameters relative to satellite galaxies, and α is the slope

of the power-law used to obtain the mean occupation number of satellite

galaxies.
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Parameter value

logM1c 11.9008± 0.0119

(mc/M)0 0.0297± 0.00004

βc 1.07557± 0.0097

γc 0.6310± 0.0121

logM2 11.8045± 0.0458

σ∞ 0.1592± 0.0030

σ1 0.0460± 0.0029

ξ 4.2503± 0.9945

logM1s 12.0640± 0.0931

(ms/M)0 0.0198± 0.0015

βs 0.8097± 0.971

γs 0.6910± 0.0390

− log Φ0 10.8924± 0.4615

λ 0.8032± 0.0367

logM3 12.3646± 0.0260

−α∞ 1.3676± 0.0043

−α1 0.0524± 0.0051

ζ 9.5727± 6.8240

Table 5.3: List of default parameters of the Moster10 model, relative to to Eqs.

(4.3.6) and (4.3.8). (mc/M)0 and (ms/M)0 are the normalisation of

SHMR (see Eq. (4.3.11)) for central and satellite galaxies, respectively.

βc, βs, γc and γs are the slopes in SHMR (see Eq. 4.3.11) for central

and satellite galaxies. β controls the slope at small stellar masses, while

γ is the SHMR slope at large stellar masses. The logM1c and logM1s

parameters are the logarithmic values of the characteristic mass at which

the SHMR changes slopes (see Figure 3.6). The values σ∞, σ1, M2 and

ξ are referred to the parameterisation made by Moster et al. [2010] that

describes the scatter, σc, of the log-normal function, Eq. (4.3.6). The

remaining parameters are referred to the further parameterisation made

by Moster et al. [2010], for φ∗ and αs (see Eqs. (4.3.9) and (4.3.10))
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this work, we used it to populate the Flagship DM halo catalogue described

in Chapter 4. To facilitate the comprehension of the reader we will make

use, in the following Sections, of some acronyms to identify the catalogues

and the models to which we want to refer. The first that we introduce is

“HOD-Euclid”, to indicate the galaxy catalogue extracted from the Euclid

Flagship simulations.

As a first test, we compare the mean occupation number per halo of our

mock catalogues to the Moster et al. [2010] results. Figure 5.5 shows how

the number of simulated galaxies is distributed as a function of the host

halo and for different selections in the minimum stellar mass. The measured

counts are in agreement with the theoretical curves predicted by the model.

Figure 5.5: Comparison between the measured mean number of galaxies per halo

and the theoretical trends by Moster et al. [2010]. The errorbars repre-

sent the Poissonian uncertainties related to the counts. The agreement

between the data and the model holds for the four different stellar mass

selections applied. threshold

The next and most important test is to check if the SMF of our mock

galaxies is compatible to the observed one. Specifically, we assess the reli-

ability of our HOD algorithm comparing the predicted SMF to the SDSS

and the HOD-Euclid SMFs. Panter et al. [2007] measured the SMF from
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the Sloan Digital Sky Survey (SDSS) DR3 (see e.g. Gil-Maŕın et al. [2015b],

Alam et al. [2015] and Gil-Maŕın et al. [2015a]) and performed a fit to these

data modelling the SMF as a Schechter function:

φ(M∗)dM∗ =
φ0

M0

(
M∗
M0

)α
exp

[
−M∗
M0

]
dM∗ , (5.2.1)

where φ0 = (2.2 ± 0.5) × 10−3 Mpc−3, M0 = 1.005 ± 0.004 × 1011M�,

α = −1.222± 0.002.

From now on we will use the abbreviation “SDSS” to refer to the best-

fit to the measured SMF performed by Panter et al. [2007]. Fig. 5.6 shows

the comparison between the SMF measured from the Flagship galaxy mock

catalogue and the best-fit SMF model performed by Panter et al. [2007] on

the SDSS data, which is assumed as the reference fiducial model. In the

bottom panel we report the residuals, computed as the difference between

the two SMFs, divided by the Poissonian errors associated to the Flagship

measurements. The agreement between the two SMFs is good, except for

the overabundance of galaxies at stellar masses in the range 1010M� .M∗ .

2 · 1011M�.

Now we apply the three HOD models implemented in this work (Ze-

havi05, Zehavi11 and Moster10 ) to the HOD-Euclid catalogue and we com-

pare the predicted SMF to the SDSS one. We will use the acronyms “HOD-

Z05”, “HOD-Z11” and “HOD-M10” to denote the mock galaxy catalogues

generated by applying our HOD code, using respectively the HOD models

given the three by the three authors. The result is shown in Figure 5.7. All

models can accurately reproduce the observed SMF, except in the range of

stellar masses between 2 · 1010M� and 2 · 1011, as can be clearly seen in the

residuals shown in the lower panel. Nevertheless, this mismatch is similar to

the one shown in Fig. 5.6, thus it is related to the DM halo catalogue of the

Flagship simulation, rather than on our HOD implementation. We can also

note an overestimation at high stellar masses, M∗ > 1012M�, that however

appears to be not significant, considering the large Poissonian errors in this

mass range. As expected, the HOD-Z05 and HOD-Z11 SMFs are almost in-

distinguishable, since the two models differs only by the function employed

to extract the central galaxies (see Section 4.3).

For the SMF obtained using the Moster10 model, we fixed the stellar

mass threshold to M∗ = 109, while for both the Zehavi05 and Zhevi11

models the minimum stellar mass is 1.9 ·109M�. This is due to the fact that
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Figure 5.6: Upper panel : comparison between the best-fit model performed by Pan-

ter et al. [2007] on the SDSS data (black line) and the SMF of the Flag-

ship mock galaxy catalogue (green triangles). Lower panel : residuals

computed as the difference between the Panter et al. [2007] SMF and

the Flagship SMF, divided by the Poissonian errors of the latter.

our code automatically calculates the minimum stellar mass of galaxies on

the basis of the luminosity threshold, in order to make all the three models

compatible. In fact, while the parameters related to the Moster10 model

are relative to stellar mass thresholds, the parameters of the Zehavi05 and

Zehavi11 models are related to thresholds expressed in absolute magnitude.

Therefore we need to define a conversion function to convert the minimum

galaxy luminosity to the minimum stellar mass. To do this, we first convert

the absolute magnitude, which is an input values for our constructor, into

a luminosity. Then we fix a specific stellar mass to light ratio, M∗/L, to

obtain the correspondent stellar mass. The conversion function adopted

is probably a too simplified model and leads to an overestimation of the

minimum stellar mass. A more accurate conversion between the luminosity
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and stellar mass threshold is required and will be implemented in the future.

Although all the models are able to reproduce quite well the observed

SMF, we decided to rely on the Moster10 model, since it allows to reach

lower stellar mass values. Moreover, with the Moster10 model we avoid

to use the conversion between the absolute magnitudes and stellar masses

(required for Zehavi05 and Zehavi11 ), that can constitute a source of uncer-

tainty. Finally, Moster et al. [2010] calibrated the HOD parameters exactly

on the Panter et al. [2007] measured SMF, thus this HOD parameterisa-

tion allows us to make a fairer comparison with the SMF that we assume

as reference. Adopting the Moster10 HOD model, we construct a galaxy

catalogue that contains a number of object close to the one of the Flagship

galaxy catalogue. The computational time needed to populate the Flagship

halo catalogue with galaxies with a stellar mass M∗ > 108M� is less than

10 minutes. This time further decreases if the stellar mass threshold is set

to higher values.

Figure 5.8 reports the final comparison between the SMF computed from

HOD-M10 and the two models that we took as reference: the fit performed

by Panter et al. [2007] and the measured SMF from HOD-Euclid. As we can

see from the residuals reported in the lower panel, the SMF of HOD-M10

is in good agreement with both the reference SMF. Moreover, the SMF of

our galaxies is in better agreement with the SDSS SMF than the one of

the galaxies constructed with the Flagship HOD, especially in the range of

stellar masses between 2 · 1010M� and 2 · 1011.

To perform a further independent test on the goodness of our code, we

investigate the 2PCF computed for HOD-M10. As explained in Section

3.4.1, to measure the 2PCF a random catalogue with the same geometry of

the data catalogue is required. In particular, we exploited the CBL func-

tions to build a random catalogue shuffling the observed coordinates of the

Flagship lightcone, and obtaining a catalogue with a number of random

objects equal to twice the number of objects of the original one. We mea-

sure the 2PCF from 0.1 h−1 Mpc to 20 h−1 Mpc using the LS estimator

described in Eq. (3.4.6). In Figure 5.9 we compare the galaxy clustering

for different stellar mass selections, obtained using the Flagship simulations,

with 2PCF of the DM field estimated using the Code for Anisotropies in the

Microwave Background (CAMB, http://camb.info). As discussed in Section
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3.4.2, we expect an increasing in the bias factor (therefore also in the am-

plitude of the 2PCF), with the growing of the minimum of the stellar mass.

We note that the galaxies of HOD-Euclid have small bias factors, which is

greater than unity only at large radii for galaxies with stellar mass major

than 1010M�. Then we compute the 2PCF using the mock galaxy cata-

logue generated by populating the Flagship DM haloes. Figure 5.10 shows

our results. The bias factor is greater than one at radii r > 2 h−1 Mpc

for each mass threshold, while for smaller radii the bias factor becomes less

than unity. Also our galaxy 2PCF shows an increasing trend as a function

of the stellar mass threshold. However, the variation with the stellar mass

selections in the bias factor is clearly less important than in Flagship HOD

galaxies.

Finally, we compare directly the 2PCF predicted by our HOD imple-

mentation and the one of the original Flagship galaxy catalogue (HOD-

Euclid). The result is shown in Figure 5.11: the solid lines represent the

2PCF of HOD-Euclid, while the dots are our measurements. The four differ-

ent colours indicate the different stellar mass selections applied. The mock

galaxies generated with our code are more clustered at all scales. Moreover,

the slope of the 2PCF at small scales, 1 h−1 Mpc, is significantly different

with respect to the one of the Flagship galaxy catalogue.
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Figure 5.7: Comparison between the measured SMF obtained by applying our code

to the haloes of Flagship simulations and the fit to the SMF performed

by Panter et al. [2007], that we assume as the reference model (black

line). Upper panel : the results obtained with the three HOD models

implemented in our code: Zehavi05, Zehavi11 and Moster10. The first

is represented with red dots (HOD-Z05), the second with grey triangles

(HOD-Z11) and the last with blue squared markers (HOD-M10). The

errorbars represent the Poisson errors. The black line shows the Panter

et al. [2007] result (SDSS). Lower panel : residuals computed as the

difference between our SMFs and the Panter et al. [2007] SMF, divided

by the Poisson uncertainties.
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Figure 5.8: Comparison between the fit to the SDSS SMF, the SMF measured

from HOD-Euclid and the SMF measured for HOD-M10. Upper panel :

the black solid line represents the fit computed by Panter et al. [2007]

(SDSS), the green triangles are the SMF measured using HOD-Euclid

and the blue squared markers show the HOD-M10 one. The errorbars

represent the Poissonian errors associated to the data. Lower panel :

residuals computed as the difference between the SDSS SMF and the

mock SMF data, divided by the uncertainties associated to the data.
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Figure 5.9: Comparison between the 2PCF measured from HOD-Euclid and the

DM 2PCF calculated theoretically using CAMB. The latter is repre-

sented by a black dashed line, while the measured 2PCF is shown with

coloured solid lines. The four colours indicate the different stellar mass

thresholds applied. As expected, the 2PCF increases with the minimum

stellar mass.
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Figure 5.10: Comparison between the DM 2PCF (black line) computed with

CAMB, and the 2PCF measured from HOD-M10 (colored points) at

different stellar mass thresholds. It is evident an increasing in the

amplitude of 2PCF with stellar mass, especially for M∗ > 1011M�.
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Figure 5.11: Comparison between the 2PCF obtained from HOD-Euclid and our

populated galaxy catalogue (HOD-M10). We plot the HOD-Euclid

2PCF with solid coloured lines and with coloured dots the HOD-M10

2PCF, for different stellar mass thresholds. Our galaxies appear more

clustered, especially at scales r < 1/h−1 Mpc.



Chapter 6

Conclusions and future

prospectives

In this work we presented a new HOD code, implemented in the environ-

ment given by the CBL, a large set of public C++/Python libraries. This

HOD code allows to construct a mock galaxy catalogue starting from what-

ever DM halo catalogue the user chooses as input. In particular, it makes

use of the HOD approach to populate DM haloes with galaxies, that aim

at reproducing some observed galaxy properties, such as the spatial dis-

tribution inside DM haloes, the observed SMF and the galaxy clustering.

Thanks to the exploitation of the openMP parallelisation, the code offers

high performances and low running times. The major strengths of our code

are the flexibility and the simplicity of his usage. Indeed, it is equipped

with a detailed documentation and an explanatory example, and the full

set of parameters related to the available HOD models can be set by the

user. For instance, our code can be easily used to construct different mock

galaxy catalogues, changing the constructor parameters and selecting the

best combination that reproduces whatever observed SMF. More specifi-

cally, the code allows to select between three different HOD models, based

on the parameterisations proposed by Zehavi et al. [2005], Zehavi et al.

[2011] and Moster et al. [2010], and adopts the following prescriptions:

• The galaxy spatial distribution at large scales has to follow the spatial

distribution of DM haloes, while inside each halo the spatial distribu-

tion follows the NFW profile.

• The number of galaxies inside each DM halo and their stellar masses

101
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are assigned in such a way to reproduce the observed SMF.

• The substructures associated to the satellite galaxies have masses ex-

tracted from the theoretical SHMF and they reproduce the subhalo

mass fraction found by Giocoli et al. [2010]

• To each substructure is also associated an infall mass, that is the mass

of the substructure at the infall time, following the results of Gao et al.

[2004].

In this work we applied our HOD code to the DM haloes of the Euclid

Flagship simulations, selected at z < 0.1. To verify the reliability of our

code, we compared the SMF measured from our populated galaxy catalogue

(HOD-Z05, HOD-Z11 and HOD-M10) with both an observed and a simu-

lated one. In particular, we took as reference the best-fit model provided

by Panter et al. [2007] (SDSS), which measured the SMF from the SDSS,

and the SMF computed using the mock galaxies extracted from the Euclid

Flagship (HOD-Euclid). The SMF obtained for HOD-Z05, HOD-Z11 and

HOD-M10 showed a good agreement both with the SDSS and HOD-Euclid

ones. Nevertheless, we chose eventually to rely on the model provided by

Moster et al. [2010], since it offers a better stellar mass resolution.

Finally, we measured the galaxy 2PCF from the HOD-M10 catalogue,

and compared it to the one of the HOD-Euclid galaxies, applying different

stellar mass selections. We verified that the bias of mock galaxies increases

with stellar mass, as expected. Though the clustering of our mock galaxies

follows the expected trend, it is not consistent with the one measured from

HOD-Euclid galaxy catalogues. This issue deserves further investigations,

that we postpone for a future dedicated analysis.

6.1 Future prospective

We envisage some possible short-term projects achievable for the extension

of this Thesis work. Firstly, we plan to perform a deeper investigations on

the discrepancies found during the comparison between both the SMF and

2PCF measured of our simulated galaxy catalogues (HOD-Z05, HOD-Z11

and HOD-M10) and our reference models (SDSS and HOD-Euclid). In par-

ticular, the results relative to the galaxy clustering are still preliminary and

require further tests. Another possible task that we did not fulfill in this
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Thesis is the employment of a Bayesian statistical MCMC analysis, to obtain

the best-fit values of the HOD parameters needed to reproduce a specific

observable. Furthermore, this work represents a first step towards a more

complete implementation of an HOD code and is therefore prone to a large

series of upgrades. First of all, our code is now designed to work only in the

local Universe (z ∼ 0). A new parameterisation applicable also at higher

redshifts will make our code a more powerful cosmological tool. This redshift

dependence can be achieved considering the redshift evolution of the CMF,

following Moster et al. [2010] or Wang et al. [2013] and implementing the

evolution of the parameter that governs the SHMR (Eq. 4.3.11). Another

improvement that can be made to our code is to add more prescriptions and

models to reproduce different galaxy properties, such as luminosity, colour

and spectral type. The correct representation of the galaxy luminosity, for

instance, is a goal that can be reached using the CLF reported in Eq. (4.3.5),

that have been largely calibrated with different observations and measure-

ments in the literature. Also the performances of the code can be improved

in terms of computational time. For example, the Message Passing Inter-

face (MPI) can be exploited to further optimise it. Then, as we described

in Chapter 5, our code is very fast in populating DM haloes with galax-

ies, but the computational time increases if the substructures are generated

with the task that allows to obtain the correct subhalo mass fraction. A

faster procedure to compute the specific mass for each substructure, taking

into account the predicted correct subhalo mass fraction, is thus required.

In the end, our code can be also run to populate DM haloes generated in

simulations with non-standard cosmologies, to verify if the variation of the

HOD parameters allows to mimic the predictions of different cosmological

models. Indeed, by comparing the HOD parameters obtained to reproduce

a certain galaxy catalogue, we can identify possible degeneracies between

the HOD and the cosmological parameters.
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reau, R. L. Davies, P. De Zeeuw, J. Falcón-Barroso, H. Kuntschner, et al.

Fast and slow rotators: the build-up of the red sequence. Proceedings of

the International Astronomical Union, 3(S245):11–14, 2007.

I. M. H. Etherington. On the Definition of Distance in General Relativity.

Philosophical Magazine, 15(18):761, Jan 1933.

F. Fontanot, R. S. Somerville, L. Silva, P. Monaco, and R. Skibba. Evalu-

ating and improving semi-analytic modelling of dust in galaxies based

on radiative transfer calculations. , 392(2):553–569, Jan 2009. doi:

10.1111/j.1365-2966.2008.14126.x.

R. Freedman and W. Kaufmann. Universe. W. H. Freeman, 2007.

ISBN 9781429281300. URL https://books.google.it/books?id=

hfXHTJ6OK9oC.

G. M. Fuller, G. J. Mathews, and C. R. Alcock. Quark-hadron phase

transition in the early universe: Isothermal baryon-number fluctuations

and primordial nucleosynthesis. Phys. Rev. D, 37:1380–1400, Mar 1988.

doi: 10.1103/PhysRevD.37.1380. URL https://link.aps.org/doi/10.

1103/PhysRevD.37.1380.
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Macciò, T. Naab, and L. Oser. Constraints on the Relationship between

Stellar Mass and Halo Mass at Low and High Redshift. , 710(2):903–923,

Feb 2010. doi: 10.1088/0004-637X/710/2/903.

B. P. Moster, T. Naab, and S. D. M. White. Galactic star formation and

accretion histories from matching galaxies to dark matter haloes. , 428(4):

3121–3138, Feb 2013. doi: 10.1093/mnras/sts261.

T. Moutard, S. Arnouts, O. Ilbert, J. Coupon, I. Davidzon, L. Guzzo, P. Hude-

lot, H. McCracken, L. Van Werbaeke, G. Morrison, et al. The vipers multi-

lambda survey-ii. diving with massive galaxies in 22 square degrees since z=

1.5. Astronomy & Astrophysics, 590:A103, 2016.

https://doi.org/10.1088%2F0034-4885%2F73%2F8%2F086901
https://doi.org/10.1088%2F0034-4885%2F73%2F8%2F086901


BIBLIOGRAPHY 119

S. J. Mutch, D. J. Croton, and G. B. Poole. The simplest model of galaxy

formation I: A formation history model of galaxy stellar mass growth. Mon.

Not. Roy. Astron. Soc., 435:2445, 2013. doi: 10.1093/mnras/stt1453.

T. Naab and J. P. Ostriker. Theoretical challenges in galaxy formation.

Annual Review of Astronomy and Astrophysics, 55(1):59–109, 2017. doi:

10.1146/annurev-astro-081913-040019. URL https://doi.org/10.1146/

annurev-astro-081913-040019.

J. F. Navarro, C. S. Frenk, and S. D. M. White. A universal density profile

from hierarchical clustering. The Astrophysical Journal, 490(2):493–508, dec

1997. doi: 10.1086/304888.

D. Nelson, V. Springel, A. Pillepich, V. Rodriguez-Gomez, P. Torrey, S. Genel,

M. Vogelsberger, R. Pakmor, F. Marinacci, R. Weinberger, L. Kelley,

M. Lovell, B. Diemer, and L. Hernquist. The IllustrisTNG simulations:

public data release. Computational Astrophysics and Cosmology, 6(1):2,

May 2019. doi: 10.1186/s40668-019-0028-x.

P. Norberg, C. M. Baugh, E. Hawkins, S. Maddox, D. Madgwick, O. Lahav,

S. Cole, C. S. Frenk, I. Baldry, J. Bland-Hawthorn, et al. The 2df galaxy red-

shift survey: the dependence of galaxy clustering on luminosity and spectral

type. Monthly Notices of the Royal Astronomical Society, 332(4):827–838,

2002.

B. Panter, A. F. Heavens, and R. Jimenez. The mass function of the stellar

component of galaxies in the Sloan Digital Sky Survey. Monthly Notices of

the Royal Astronomical Society, 355(3):764–768, 12 2004. ISSN 0035-8711.

doi: 10.1111/j.1365-2966.2004.08355.x. URL https://doi.org/10.1111/

j.1365-2966.2004.08355.x.

B. Panter, R. Jimenez, A. F. Heavens, and S. Charlot. The star formation

histories of galaxies in the Sloan Digital Sky Survey. , 378(4):1550–1564,

Jul 2007. doi: 10.1111/j.1365-2966.2007.11909.x.

S. Perlmutter, G. Aldering, S. Deustua, S. Fabbro, G. Goldhaber, D. E. Groom,

A. G. Kim, M. Y. Kim, R. A. Knop, P. Nugent, C. R. Pennypacker, A. Goo-

bar, R. Pain, I. M. Hook, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon,

P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko,

https://doi.org/10.1146/annurev-astro-081913-040019
https://doi.org/10.1146/annurev-astro-081913-040019
https://doi.org/10.1111/j.1365-2966.2004.08355.x
https://doi.org/10.1111/j.1365-2966.2004.08355.x


120 BIBLIOGRAPHY

T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg, and W. J.

Couch. Cosmology from type ia supernovae, 1998.

Planck Collaboration, N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont,

C. Baccigalupi, M. Ballardini, A. J. Banday, R. B. Barreiro, N. Bartolo,

S. Basak, R. Battye, K. Benabed, J. P. Bernard, M. Bersanelli, P. Bielewicz,

J. J. Bock, J. R. Bond, J. Borrill, F. R. Bouchet, F. Boulanger, M. Bucher,

C. Burigana, R. C. Butler, E. Calabrese, J. F. Cardoso, J. Carron, A. Challi-

nor, H. C. Chiang, J. Chluba, L. P. L. Colombo, C. Combet, D. Contreras,

B. P. Crill, F. Cuttaia, P. de Bernardis, G. de Zotti, J. Delabrouille, J. M.

Delouis, E. Di Valentino, J. M. Diego, O. Doré, M. Douspis, A. Ducout,
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ley, A. Cooray, M. Halpern, S. Heinis, E. Ibar, O. Ilbert, R. J. Ivison,

G. Marsden, I. G. Roseboom, M. Rowan-Robinson, B. Schulz, A. J. Smith,

M. Viero, and M. Zemcov. Connecting stellar mass and star-formation

rate to dark matter halo mass out to z 2. Monthly Notices of the Royal

Astronomical Society, 431(1):648–661, 03 2013. ISSN 0035-8711. doi:

10.1093/mnras/stt190. URL https://doi.org/10.1093/mnras/stt190.

B. J. Weiner, A. C. Phillips, S. Faber, C. N. Willmer, N. P. Vogt, L. Simard,

K. Gebhardt, M. Im, D. Koo, V. L. Sarajedini, et al. The deep groth strip

galaxy redshift survey. iii. redshift catalog and properties of galaxies. The

Astrophysical Journal, 620(2):595, 2005.

S. D. M. White and M. J. Rees. Core condensation in heavy halos: a two-

stage theory for galaxy formation and clustering. Monthly Notices of the

Royal Astronomical Society, 183(3):341–358, 07 1978. ISSN 0035-8711. doi:

https://doi.org/10.1086%2F500288
https://doi.org/10.1093/mnras/stt190


126 BIBLIOGRAPHY

10.1093/mnras/183.3.341. URL https://doi.org/10.1093/mnras/183.3.

341.

X. Yang, H. J. Mo, and F. C. van den Bosch. Galaxy Groups in the SDSS

DR4. II. Halo Occupation Statistics. , 676(1):248–261, Mar 2008. doi:

10.1086/528954.

I. Zehavi, Z. Zheng, D. H. Weinberg, J. A. Frieman, A. A. Berlind, M. R.

Blanton, R. Scoccimarro, R. K. Sheth, M. A. Strauss, I. Kayo, Y. Suto,

M. Fukugita, O. Nakamura, N. A. Bahcall, J. Brinkmann, J. E. Gunn, G. S.
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