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Chapter 1

Introduction

Quantum mechanics for computation and information purposes has seen a

burst of interest in the scientific community and companies, due to the poten-

tial unique computational power offered by quantum computers, not achiev-

able through classical computers. In particular two technologies are used in

most quantum computers, which are the trapped ions and artificial atoms,

but many different technologies are currently being studied for the physical

implementation of quantum information systems [1]. Quantum computers

are challenging to build, because the element which represents information,

the qubit, requires strict conditions such as isolation from the environment

and a very refined control. Moreover, qubits cannot intrinsically reject noise

as classical bits do.

In 2019 Google’s Quantum AI Lab confirmed the Quantum Supremacy over

classical computation, using the 53 qubit Sycamore quantum chip [2] and in

the beginning of 2020 IBM announced a Quantum Volume (the metric IBM

defined to measure the performance of a quantum computer) of 32, leading

the way to Quantum Advantage [3].

The aim of this thesis is to investigate the basic components and protocols to

build a Quantum Network by using fundamental elements of quantum me-

chanics, such as quantum teleportation and entanglement swapping. Also,

we perform an experimental validation of the quantum circuits, which will be
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CHAPTER 1. INTRODUCTION

at the basis of the Quantum Internet, through the platform IBM Quantum

Experience [4].

This thesis is organized as follows.

In Chapter 2 the essential concepts for Quantum Computation and Infor-

mation are introduced; in Chapter 3 an overview of the main applications is

displayed; in Chapter 4 the current results in entanglement and teleporta-

tion in Quantum Network protocols are shown. The experimental outcomes

obtained in IBM Q are discussed in Chapter 5. Finally, Chapter 6 contains

the conclusions.
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Chapter 2

Quantum Computation and

Information

With the purpose of studying quantum networks, the fundamental notions

of quantum mechanics and the basic elements needed to perform quantum

computation are discussed in this chapter, which is largely based on [5].

2.1 Quantum bits

At the basis of quantum applications there is the concept of qubit as an

equivalent of the bit in the classic case. It is a mathematical object that

finds physical realization in particular two-level systems (two-level quantum

systems). As we know, while the status of a bit may assume the value 0

or 1, two possibilities provided for the qubit can be |0〉 and |1〉, with the

fundamental difference that in general a qubit can be in a linear combination

of these states, called superposition (continuum between 0 and 1 state). The

generic quantum state, with computational basis |0〉 and |1〉, can therefore

be written in the following form:

|ψ〉 = α |0〉+ β |1〉 (2.1)

with α and β complex numbers and |0〉 and |1〉 the basis vectors for the vector

space. The orthonormality of the vectors makes it possible to physically
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CHAPTER 2. QUANTUM COMPUTATION AND INFORMATION

distinguish the observables after the measurement procedure, the result of

which will be the eigenvalue 1 corresponding to the eigenvector |0〉 with

probability |α|2 or −1 corresponding to the eigenvector |1〉 with probability

|β|2. The sum of the probabilities associated with the possible outputs of the

experiment will be equal to 1, by definition of probability itself:

|α|2 + |β|2 = 1 (2.2)

The choice of the system corresponding to the qubit must take into account

its usability over time, i.e., the system has to maintain its quantum prop-

erties unaltered for as long as possible, so that the state can be processed

before it is corrupt. In fact, we speak of decoherence time as the time that

elapses before interactions with the environment damage the desired state of

the qubit. These interactions are modeled as a noisy process, the quantum

noise. In particular, systems whose states have a symmetrical description,

for example a spin 1/2 particle, which lives in the space of states |up〉 and

|down〉 will be preferred for the purpose of computation, and in this case

they have characteristics of ideality if the system is isolated, in addition to

the fact that the space of states is clearly finite (Hilbert space with finite

size 2). A bad example of a system for realizing a qubit is instead offered by

the position x of a particle along one direction, as it is unrealistic for com-

putational purposes to think of associating information with a continuous

set of states, in addition to the fact that the presence of noise will make the

number of states infinite. Good examples of physical systems that realize a

qubit may be the two different polarizations of a photon, the alignment of

a spin in a uniform magnetic field, the two states of an electron orbiting an

atom.

For a closed quantum system, evolution over time is known to be determined

by its Hamiltonian. Thus, for computational purposes it will be necessary to

control the Hamiltonian in a way to evolve over time in the desired manner,

according to a unitary transformation.

Returning to the mathematical description of the qubit, it is effectively repre-
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CHAPTER 2. QUANTUM COMPUTATION AND INFORMATION

sented in a geometric way through the so-called Bloch’s sphere. By exploiting

Equation 2.2 of normalization, we can rewrite the state expressed in Equation

2.1 as

|ψ〉 = eiγ
(

cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉
)

(2.3)

with θ, ϕ and γ real numbers. Furthermore, the same equation can be simply

rewritten as it follows:

|ψ〉 = cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉 (2.4)

so it is possible to ignore the global phase factor eiγ which, since probabili-

ties are related to modulus square, does not affect the measurement of the

observable as |eiγ|=1. Ultimately the real numbers θ and ϕ define a point in

the so called Bloch’s sphere:

Figure 2.1: Bloch sphere representation of a quantum bit [6]

The possible states of a qubit are therefore all the possible infinite points

of this sphere of unit radius. However, once the measurement is complete,

only the value −1 or 1 can be obtained, therefore the continuum of states

will be lost following the collapse of the state. The potential of quantum

information is therefore all enclosed in the hidden information that occurs if

the measurement is not performed on the qubit.
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CHAPTER 2. QUANTUM COMPUTATION AND INFORMATION

2.2 Single and multiple qubit gates

Quantum computation is based on quantum circuits. They are made up of

wires, able to convey information, and quantum gates to manipulate infor-

mation (quantum states).

2.2.1 Single qubit gates

Let |ψ〉 be a single qubit, described by two complex numbers α and β, hence

represented as |ψ〉 = α|0〉 + β|1〉, where the vectors of the computational

basis are chosen as follows:

|0〉 =

[
1

0

]
|1〉 =

[
0

1

]
The operations on the single qubit are represented by 2×2 matrices, with

the only constraint of unitarity, which means that given an operation U that

describes the gate behavior, then the relation U†U = I must hold.

The simplest operation that can be defined is the bit-flip, that is the quantum

analogue of the classic NOT. This is represented by the matrix X:

X ≡

[
0 1

1 0

]

The quantum NOT, applied to one qubit α|0〉 + β|1〉, turns it into α|1〉 +

β|0〉, so it acts linearly on the state with a rotation of π around the X axis

in the Bloch sphere.

Another important operation is represented by the gate Z. It keeps the state

|0〉 unchanged and instead it changes the sign of the state |1〉. It is therefore

also called phase-flip operator, in which the phase undergoes a rotation of π.

The matrix that describes it is the following one:

Z ≡

[
1 0

0 −1

]

12



CHAPTER 2. QUANTUM COMPUTATION AND INFORMATION

Given the qubit α|0〉 + β|1〉, the Z will change it into the state α|0〉−β|1〉.

Furthermore, a qubit can experiment both a bit-flip and a phase-flip, accord-

ing to the transformation given by the gate Y, represented by the following

matrix:

Y ≡

[
0 −i
i 0

]
In this case, the states |0〉 and |1〉 are mapped into |1〉 and −i|0〉 respectively,

with an operation that is equivalent to a rotation of π around the Y axis of

the Bloch sphere.

More generally, a qubit can undergo a phase variation dictated by the fol-

lowing matrix:

S ≡

[
1 0

0 i

]
The operator S is called phase gate.

X, Y and Z are called Pauli matrices and their combination gives rise to

three new matrices, called “rotation operators” with respect to the X, Y

and Z axis, defined as it follows:

Rx(θ) ≡ e−iθX/2 (2.5)

Ry(θ) ≡ e−iθY/2 (2.6)

Rz(θ) ≡ e−iθZ/2 (2.7)

Among the gates that act on a single qubit there is also the Hadamard gate,

described by the following matrix:

H ≡ 1√
2

[
1 1

1 −1

]

The operator H turns the state |0〉 into an intermediate state |+〉 = |0〉+|1〉√
2

and the state |1〉 into |−〉 = |0〉−|1〉√
2

.
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CHAPTER 2. QUANTUM COMPUTATION AND INFORMATION

2.2.2 Multiple qubit gates

Let’s consider a system made of two qubits. The computational basis is

therefore formed by the four vector basis |00〉, |01〉, |10〉 and |11〉. The

quantum state describing the two qubits is:

|ψ〉 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉 (2.8)

with α00, α01, α10 and α11 complex numbers.

The vector basis formerly considered are obtained through the Kronecker

product of the respective vector basis in two-dimensions |0〉 and |1〉, as it

follows:

|00〉 = |0〉 ⊗ |0〉 =


1

0

0

0

 ; |01〉 = |0〉 ⊗ |1〉 =


0

1

0

0



|10〉 = |1〉 ⊗ |0〉 =


0

0

1

0

 ; |11〉 = |1〉 ⊗ |1〉 =


0

0

0

1


One important example of gates with two input bits is the controlled-NOT,

or more simply CNOT , which takes as input a qubit called “control qubit”

and a second input called “target qubit”. It acts in the following way: if the

first qubit (control) is equal to |0〉, then the second qubit (target) remains

unchanged, otherwise if the first qubit is |1〉, the second qubit is flipped

(negation), hence the meaning of the gate’s name. The transformations are
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CHAPTER 2. QUANTUM COMPUTATION AND INFORMATION

shown below:

|00〉 → |00〉

|01〉 → |01〉

|10〉 → |11〉

|11〉 → |10〉 .

The CNOT matrix representation is:

UCN =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (2.9)

where the first column represents the transformation undergone by the vector

|00〉, the second column the one undergone by |01〉 and similarly for the

remaining respective columns and basis vectors.

2.3 Bell states

Supposing we want to describe the states of a composite system, consisting

of two or more physical systems (qubits). The space-state of the composite

system is built up from the state-space of the component systems, which

means that if we have n+ 1 systems and the system number i is prepared in

the state |ψi〉, than the joint state of the total system is the tensor product

|ψ1〉 ⊗ |ψ2〉 ⊗ ...⊗ |ψn〉.

However, there are states that describe composite systems that cannot be

traced back to the tensor product of individual states: in this case it is said

to be dealing with an entangled state. If we consider a two qubit system, it

is equivalent to say that a state |ψ〉 is entangled if there are no single qubit

states |a〉 and |b〉 such that |ψ〉 = |a〉|b〉.

15



CHAPTER 2. QUANTUM COMPUTATION AND INFORMATION

Among all possible two-level states we find the Bell states, fundamental for

quantum information, also called EPR pairs (Einstein-Podolsky-Rosen)[7].

Bell states are listed below:

|Φ+〉 =
|00〉+ |11〉√

2
(2.10)

|Φ−〉 =
|00〉 − |11〉√

2
(2.11)

|Ψ+〉 =
|01〉+ |10〉√

2
(2.12)

|Ψ−〉 =
|01〉 − |10〉√

2
(2.13)

Bell states are four two-qubit states with the characteristic that the two qubit

measurements are closely related in a quantum way and in particular they

are maximally entangled quantum states. This means that by independently

measuring the two qubits of the pair, a distribution of 0 and 1 is obtained

with equal probability, but it is found that the two outputs of the experiment

are linked together, based on the type of EPR state. For example for the

state |Φ+〉, if the measurement of the first of the two qubits is equal to 0,

then the same result will be obtained with certainty by measuring the second

qubit. The measurement on the first qubit then determines one of the two

possible values for the measurement of the second qubit, 0 or 1, depending

on the type of Bell state considered.

To generate the state |Φ+〉 the Hadamard gate and the controlled-NOT gate

con be used, by placing the computational basis |0〉 in both input lines. After

the H operator, the state |+〉= |0〉+|1〉√
2

is produced on the first line, which will

act as control qubit for the state |0〉 on the second line.

16



CHAPTER 2. QUANTUM COMPUTATION AND INFORMATION

Figure 2.2: Circuit for the Bell state |Φ+〉 generation

To get the state |Φ−〉, we use as inputs |1〉 and |0〉, to obtain |−〉= |0〉−|1〉√
2

after

the H gate on the first line of the circuit, which will act on the second qubit

to give |00〉−|11〉√
2

.

Figure 2.3: Circuit for the Bell state |Φ−〉 generation

The state |Ψ+〉 is obtained by placing the qubits |0〉 and |1〉 in input, to

obtain through the H gate the state |0〉+|1〉√
2

, which will act as the control

qubit, to finally give the state |01〉−|10〉√
2

.

Figure 2.4: Circuit for the Bell state |Ψ+〉 generation

Lastly, the |Ψ−〉 state is found by imposing the qubits |1〉 and |1〉 in input,

to obtain |0〉−|1〉√
2

on the first line through the Hadamard gate, hence |01〉−|10〉√
2

is the final state.

17
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Figure 2.5: Circuit for the Bell state |Ψ−〉 generation

2.4 Quantum Teleportation

Quantum Teleportation is a technique for transferring a quantum state, with-

out an effective transmission of the particle with which the state is associated.

Let Alice and Bob be the sender and receiver of a |ψ〉 state and imagine that

they somehow generated an entangled pair they share. Alice wants to trans-

fer the qubit to Bob not knowing the state and can send information to Bob

only through a classic channel, moreover Alice cannot describe to Bob the

state to be send because knowing it would mean having multiple copies of the

state itself, forbidden by the no-cloning theorem, for which it turns out to be

impossible to make a copy of an unknown quantum state, and in any case an

infinite amount of classical information would be needed, as its description

concerns a continuous space of values. So to send the qubit to Bob, Alice

needs to make the state to be teleported interact with her half of the EPR

pair.

Figure 2.6: Quantum Teleportation circuit

18
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As shown in Figure 2.6 Alice has the qubit |ψ〉 = α|0〉+β|1〉 to transmit

and also has half of the EPR pair (the status |Φ+〉 is here considered), while

the second half of the entangled pair belongs to Bob. In this way the initial

state is described as

|ψ0〉 =
1√
2

[
α |0〉

(
|00〉+ |11〉

)
+ β |1〉

(
|00〉+ |11〉

)]
(2.14)

considering the first two qubits as the Alice’s ones, and the third qubit that

of Bob’s. Therefore Alice performs a CNOT operation on her two qubits, so

the state changes into

|ψ1〉 =
1√
2

[
α |0〉

(
|00〉+ |11〉

)
+ β |1〉

(
|10〉+ |01〉

)]
. (2.15)

Subsequently Alice applies the Hadamard gate on the first qubit, obtaining

the quantum state below:

|ψ2〉 =
1√
2

[
α

(
|0〉+ |1〉√

2

)
(|00〉+ |11〉) + β

(
|0〉 − |1〉√

2

)
(|10〉+ |01〉)

]
.

(2.16)

Rearranging the terms and regrouping them to put in evidence Alice’s qubits,

we obtain:

|ψ2〉 =
1

2

[
|00〉

(
α |0〉+ β |1〉

)
+ |01〉

(
α |1〉+ β |0〉

)
+ |10〉

(
α |0〉 − β |1〉

)
+ |11〉

(
α |1〉 − β |0〉

)]
. (2.17)

Alice then measures her two qubits and sends the classical result (one of the

four possibilities) to Bob, who will be able to recover the teleported state. In

fact, if the outcome is 00, Bob’s system will be in the state |ψ〉 = α|0〉+β|1〉
and in this case he will not intervene with any correction. If instead the

measurements turns out to be 01, Bob will be in the state α|1〉+β|0〉, so

the CNOT will be activated to correct the error bit-flip, to get |ψ〉. With

outcome equal to 10 Bob will apply the phase-flip via controlled-Z because

in this case his state is equal to α|0〉−β|1〉. Finally, if Alice measures 11,
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CHAPTER 2. QUANTUM COMPUTATION AND INFORMATION

then Bob is in the state α|1〉−β|0〉: the CNOT and controlled-Z operation

will then restore the correct state by fixing the bit-flip and phase-flip error.

The teleportation of a qubit doesn’t imply that the information is transmitted

instantly at a speed higher than the light’s one, since in order to work it

requires a classical communication channel which puts constraint in speed.

It also does not violate the no-cloning theorem of qubits, because only the

final state is maintained in the state |ψ〉, while the initial state is “lost”:

after reading Alice’s qubits this state is inevitably collapsed in the basis |0〉
or |1〉, thus losing its original description.

20



Chapter 3

Applications

The main quantum network applications are discussed in this chapter, largely

based on [5][8]. Quantum Information is currently a hot topic as it promises

to solve classically unsolved problems, such as the factorization of non-trivial

integers, through the use of Quantum Computers. The interest generated

around these technologies, however, endangers the current cryptography sys-

tems, in particular the threat to the Rivest-Shamir-Adleman (RSA) algo-

rithm becomes concrete. Moreover, nowadays the eavesdroppers may inter-

cept cryptograms that they may be able to decrypt in the future, which

means that the confidentiality of the message may have a very limited lifes-

pan.

The tools offered by quantum mechanics, based on the unbreakable prin-

ciples of nature, such as the uncertainty principle or entanglement, are well

suited for tasks that require coordination, synchronization and privacy. In

particular the applications made possible by a Quantum Network - a set of

connected quantum nodes - are, among many, the efficient implementation

of the Quantum Key Distribution (QKD) with long-distance high key rate,

synchronization, protocols for distributed systems, position verification and

secure identification.
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3.1 Quantum Key Distribution

Quantum computers can be used to break some of the best public key cryp-

tosystems such as the RSA. This is achievable due to the possibility to solve

the order-finding problem and the factoring problem in an efficient way, that

are the two methods by which one might hope to break the RSA with a quan-

tum computer, while no efficient methods are currently known for classical

computers.

On the other hand, a procedure called quantum key distribution exploits the

fundamental principles of quantum mechanics to enable provably secure dis-

tribution of private information, conditioned only by fundamental laws of

physics. Quantum key distribution (QKD) is a provably secure protocol, by

which private key bits can be generated between two parties over a public

channel. These key bits can be used in a classical private key cryptosystem to

enable the two parties to communicate securely. The only constraint for the

QKD protocol is that the error rate with which qubits can be communicated

over the public channel must be lower than a certain threshold. The basic

idea behind the protocol is that Eve cannot gain any information from the

qubits transmitted from Alice to Bob without disturbing their state. First,

Eve cannot clone Alice’s qubit, thanks to the no-cloning theorem. Second,

information gain implies disturbance: in any attempt to distinguish between

two non-orthogonal quantum states adopted in the protocol, information gain

is only possible at the expense of introducing disturbance to the signal. Using

the idea of transmitting non-orthogonal qubit states between Alice and Bob,

by checking for disturbance in their transmitted qubit, they establish an up-

per bound to any eavesdropping occurring in their communication channel.

So these “check” qubits are interspersed randomly among data qubits, from

which the key bits are later extracted. Subsequently Alice and Bob perform

information reconciliation and privacy amplification to distill a secret key.
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CHAPTER 3. APPLICATIONS

3.1.1 BB84 Protocol

One of the QKD protocols is the BB84 protocol. The purpose of the BB84

is to send the private key from Alice to Bob using a “prepare-and-measure”

protocol, where Alice prepares the optical signals by encoding on them a dis-

crete random variable, such as a bit. The optical signals are then sent to the

receiving user Bob, who measures them in order to retrieve the information

sent by Alice. At the beginning Alice generates a random string b of vector

basis not mutually orthogonal and a random sequence of data bits a of the

same length n.

Alice encodes the data bits as {|0〉,|1〉} (Z basis) if the corresponding bit

b is 0, or {|+〉,|−〉} (X basis) if b is 1, obtaining the following product vector

state:

|ψ〉 =
n⊗
i=1

|ψaibi〉 (3.1)

where each qubit is one of the four non-orthogonal states

|ψ00〉 = |0〉 ,

|ψ10〉 = |1〉 ,

|ψ01〉 = |+〉 =
|0〉+ |1〉√

2
,

|ψ11〉 = |−〉 =
|0〉 − |1〉√

2
. (3.2)

Then Alice sends the two encoded strings as the |ψ〉 state to Bob over a

public quantum channel, and Bob chooses a random string b′ of vector bases.

Then he performs a measurement of each qubit in these bases. Since only

Alice knows b, it is impossible for either Bob or the eavesdropping Eve to

distinguish the states of the qubits. This means that if Alice and Bob vector

basis are not the same for the measurement of a qubit, then the outcome of

the experiment for Bob will be 0 or 1 with probability one half. The state

received by Bob contains noise in the channel and the possible presence of

Eve and, after Bob has received the state |ψ〉, Eve cannot be in possession of
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a copy of the states, by the no-cloning theorem. Moreover if Eve measures

the received qubits, the risk of disturbing a qubit is concrete, with probabil-

ity one half, if she guesses the wrong basis.

More precisely, Bob chooses his basis string b′ of the same length of b and

then measures the qubits received by Alice, a′. Bob announces publicly that

he has received the qubits from Alice. Alice then tells which measurements

to keep, by publicly announcing b. Through a public channel Alice and Bob

keep only the bits where they both had the same basis, then Alice selects

randomly one half of these qubits and announce it through the public chan-

nel. Both Alice and Bob announce and compare the values of the check-bits.

If more than an acceptable number disagree, then the operation is canceled

due to a possible attack by an eavesdropper and started again. Otherwise

Alice and Bob proceed to use the information reconciliation and privacy am-

plification on the remaining qubits to obtain the secret key.

An example could be the following. Given the two non-orthogonal basis

“+” and “×”, Alice chooses the basis string b and the bit string a as

b: + + × + × × +

a: 1 0 1 1 0 0 1

Bob generates his basis string b′ randomly, then performs the measurement

on the received qubits. If the bases agree the result is correct, otherwise it

is 0 or 1 with probability 1/2.

b′: × + × × + × +

a′: 1/0 0 1 1/0 1/0 0 1

After the comparison between Alice and Bob basis, only the bits with the

same Alice and Bob basis are kept (in blue). Then, half of them are chosen

by Alice to be verified as a valid subset of the entire key to detect the possible

interference by an attacker.
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3.2 Satellite Quantum Communications

Proposals of the extension to space of quantum communications (QC) were

supported by the long distance free-space QC experiments on the ground.

In this way it was proved that significant portions of the atmosphere were

suited not only for classical communications but also for the quantum ones.

However the single photon discrimination at the correct wavelength, arrival

time and the detection cutting out the background noise is much more de-

manding than the classical counterpart. The exchange of a single photon

between a Low-Earth-orbit (LEO, 160-2000 km in altitude) satellite and the

ground has been demonstrated exploiting satellites without active photon

source in orbit, using optical retroflectors, starting in 2003 with an exper-

imental campaign at the Matera Laser Ranging Observatory (Italy)[9]. In

this case, even without an active photon source in orbit, the demonstration

was obtained by directing to the satellites a train of pulses with energy such

that the retroflected portion collected on the Earth is a coherent state asso-

ciated to a single photon or less. This space QC is a candidate for a global

Quantum Key Distribution and was considered since the beginning as an

effective solution to join separated networks of fiber ground links, and also

allows the key exchange between satellite and two ground terminals to gener-

ate a secure key via one-time pad between the two terminals. The interest in

the realization of a satellite for QKD purpose flared up in Asia, in particular

the Japanese SOTA satellite was launched in 2014 and the Chinese Micius

in 2015. Moreover, the interest in using very compact payloads as nanosat

or cubesat has recently grown in Europe [10].

The QKD rate, considering space links, is based on the analysis of the losses

and fluctuations of the corresponding optical channel, where orbit altitude

has relevant implications in the losses of the optical link and the impact of

the atmosphere is asymmetric (the downlink is different from the uplink).

The Low-Earth-orbit was the first choice to demonstrate the quantum com-

munication protocols from space, and it was the first considered for the QKD.

The BB84 protocol on a space link feasibility has been proved experimen-
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tally after the first source of single photons has been implemented in Ajisai,

a LEO sat for geodynamic studies, using its corner-cube retroreflectors with

the illuminating train of pulses from the Matera Laser Ranging Observatory,

Italy, in a way that a single photon was reflected on average by the satellite.

With the aim of experimentally verifying QC protocols in space, the Chi-

nese satellite Micius was announced as a major step in the Chinese Academy

of Science space program and was launched in 2016. The spacecraft was

equipped as a quantum optic lab capable not only to generate-transmit co-

herent and entangled states, but also to measure qubit sent by the ground

device. Entangled-based QKD was also demonstrated by Micius, using a

high visibility source onboard. Micius was also used for demonstrating an

intercontinental quantum network, distributing the keys for a text and video

exchange between the ground stations of Xinglong (China), Nanshan (China)

and Graz (Austria) [11]. Beyond satellite-QKD [12], about test of quantum

mechanics in space, the Chinese satellite allowed the demonstration of the

persistence of entanglement at the record distance of 1200 km between the

two ground stations of Delingha and Lijiang in China [13]. An intense activ-

ity is currently pursued to apply QKD via satellite, with several experiments

and studies [14][15].
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Quantum Networks

A quantum network is made up of remote nodes that aim to communicate

through the main tools offered by quantum mechanics, whose properties al-

low us to overcome the limits of communication in the classical sense. Al-

though it is currently difficult to predict all future uses of a Quantum Internet

[16][17], many applications of interest have already been identified, ranging

from cryptography to sensing and metrology, to distributed systems [18]. In

particular, the Quantum Internet allows to “transmit” qubits from one re-

mote node to another or to extend an entangled state to multiple nodes of

the network, with no classical equivalent. As previously seen, the qubits are

deeply different from the classic bits, since a qubit can be in a superposition

of states, so if n classic bits can be only in one of the possible combinations

of them, a system of n qubits can be in a superposition of all 2n possible

states [19].

4.1 Quantum Teleportation for Quantum Net-

works

The simplest way to communicate a qubit to a remote node may seem at first

to transmit it directly through an optical connection, after having mapped,

for example, the qubit itself to a degree of freedom of a photon. Unfortu-

nately, this solution is not realizable if network reliability is needed because,
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if the photon is corrupted, all the information is completely lost, and it is

not possible to keep a copy of an unknown qubit. Therefore the direct route

is not preferable unless the type of application can tolerate a low success

rate, as happens in networks for the distribution of keys (QKD). The mode

of transmission of qubits then uses the quantum teleportation technique [19],

through which there is no real transfer of the particle involving the qubit.

As explained in Chapter 2, this tool enables to transfer a quantum state

without the presence of a quantum communication channel between source

and destination, while needing two resources such as an entangled pair to

share between source and destination and a classical channel between them

for the exchange of two bits. Clearly one EPR pair is consumed following the

measurement on the qubits of the source and, for this reason, for a new qubit

to be sent, a new entangled pair must be made available. The generation of

the entanglement between pairs of nodes is therefore the first problem to be

addressed.

Figure 4.1: Teleportation of a qubit from node A to B, consuming the en-
tangled pair [18]

4.2 Entanglement generation

To generate entanglement between two or more particles it is necessary that

they are at first located close to each other in space. Three different ways

to generate and distribute entanglement between source and destination can

be described, which differ from each other depending on where the entangle-
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ment is generated. Referring to [19], we speak of entanglement generation

“at mid-point”, “at the source” and “at both end-points”.

4.2.1 Schemes for entanglement generation and

distribution

The first solution is shown in Figure 4.2.

Figure 4.2: Spontaneous Parametric Down-Conversion [19]

This first method, called Spontaneous Parametric Down-Conversion [20], uses

photons for both the generation of the entanglement and for its distribution

and maps the entanglement using the polarization of photons. In fact, even if

in principle any degree of freedom can be exploited for entanglement, polar-

ization is usually simpler to use in practice, since very efficient polarization-

control elements are available.

As it can be seen in Figure 4.3, pointing a laser beam directed towards

a non-linear crystal (BBO, beta-barium borate), without the use of extra

beam splitters or mirrors, the two down-converted photons are emitted in

two cones, one “ordinary polarized”, the other “extraordinary polarized”.
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Figure 4.3: Spontaneous down-conversion cones (type-II phase matching)
[20]

If the optical axis of the crystal and the pump beam axis are collinear, the

two cones are tangent to each other. If this angle decreases, then the two

cones gradually move away from each other. Finally, if the angle increases,

the two cones will intersect in two points. In the directions that intercept

these points, where the two cones overlap, the light can be described with an

entangled state, that depends on the horizontal (extraordinary) and vertical

(ordinary) polarizations:

|ψ〉 =
1√
2

(
|H1, V2〉+ eiα |V1, H2〉

)
(4.1)

By exploiting optical phenomena it is possible to generate EPR-pairs based

on this polarization-entanglement:

|ψ±〉 =
1√
2

(
|H1, V2〉 ± |V1, H2〉

)

|φ±〉 =
1√
2

(
|H1, H2〉 ± |V1, V2〉

)
(4.2)

Looking at Figure 4.2, the two entangled photons travel through a quantum

channel to finally reach Alice and Bob, in which there is a transducer that

maps the entanglement associated with the photons (also called flying qubit)

to the matter qubit, which will act as a memory or will be immediately pro-

cessed. Note that choosing to use photons as flying qubits is due to their

advantages as entanglement carriers, presenting a moderate decoherence in-

teracting with the environment and being easily controlled by optical com-

ponents as previously mentioned.
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A second way of generating and distributing entanglement is “at the source”.

As it can be seen in Figure 4.4 this scheme uses atoms in optical cavities con-

nected together by optical fiber. At first, through a laser pulse, the atom

coupled with the cavity is excited, producing the emission of a photon. The

polarization of this photon is entangled with the atom of the cavity itself and,

traveling through the fiber, reaches the second optical cavity, where it is ab-

sorbed. The atom-photon entanglement is then converted into atom-atom

entanglement. According to this scheme, the cavity behaves like a transducer

from flying qubit to matter qubit as seen previously.

Figure 4.4: Entanglement generation “at the source” [19]

Lastly the third scheme, shown below in Figure 4.5, presents the entan-

glement generation in both cavities, hence this method is called “at both

end-points”.

Figure 4.5: Entanglement generation “at both end-points” [19]

31



CHAPTER 4. QUANTUM NETWORKS

In this case both atoms are simultaneously excited by a laser pulse, there-

fore a photon is emitted in both cavities. The two photons arrive by fiber

to a unit that measures according to the Bell basis, thus projecting the

atom-photon entanglement on both atoms of the cavity (atom-atom entan-

glement). In particular referring to [18], this scheme was used in the context

of the Nitrogen-Vacancy (NV) centers in diamond quantum processor: the

key capabilities of this platform are those of having a lifetime qubit of 1.46

s, an entanglement produced faster than it is lost, and finally the possibility

to use entanglement for teleporting qubits between separate NV centers.

4.2.2 Heralded Entanglement

At present, short-lived entanglement has been produced probabilistically over

short distances (≈ 100 km) on the ground by sending photons over standard

telecom fiber, as well as from space over 1203 km from a satellite [13]. How-

ever, these systems do not allow the concatenation of themselves with the aim

of transmitting the qubits over long distances. With reference to the latest

generation and distribution scheme of entanglement, if long-distance quan-

tum communication is to be established, a long-lived entanglement must be

produced between two nodes that are capable of storing and manipulating

qubits. To do this efficiently, heralded entanglement generation is imple-

mented, using a heralding signal that announces the success of the attempt

to generate the entanglement itself. This heralded entanglement allows long-

distance quantum communication without additional resources to use.

Figure 4.6 shows how NV centers are point defects in diamond with an elec-

tronic spin as a communication qubit (purple) and carbon-13 nuclear spins as

memory qubits (yellow). The attempt to generate the entanglement occurs

following a trigger event that produces the entanglement between the com-

munication qubit of A (diamonds) and the qubit (photon) emitted thanks

to the trigger. This entanglement is generated in the same way in the two

nodes A and B. The photon is then transferred to the heralding station

by optical fiber. Subsequently, the heralding station interferes with both
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incoming photons on a beam splitter, performing a probabilistic so-called

entanglement swap, that is a measurement of the incoming qubits in the

Bell basis, where we can only obtain outcomes |Ψ+〉, |Ψ−〉 or “other” (which

means failure). The heralding station measures the incoming photons by

observing clicks in the left or right detector giving the heralding signal s,

with unsuccessful result (none of both click), success with |Ψ+〉 (left click)

or success with |ψ−〉 (right click):

|Ψ+〉 =
1√
2

(
|0A〉 |1B〉+ |1A〉 |0B〉

)
|Ψ−〉 =

1√
2

(
|0A〉 |1B〉 − |1A〉 |0B〉

)
(4.3)

Figure 4.6: Heralded entanglement generation on the NV platform [18]

4.3 Long-distance communications through En-

tanglement Swap: repeater nodes

Once the entanglement is generated and distributed between pairs of nodes,

long-distance entanglement from shorter segments can be created. The sim-
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plest case consists of three nodes, as shown in Figure 4.7, in which there is

an entanglement between the nodes A and B, similarly for the pair B and C.

The central node B realizes the task of extending the entanglement, to make

node A and node C share the entangled pair. Node B, also called repeater

[21], performing the entanglement swapping operation acts on its two qubits,

respectively entangled with A and C, consuming them.

Figure 4.7: Entanglement swapping between nodes A and C [18]

This operation can be repeated in sequence on several nodes arranged lin-

early in a chain, so as to obtain the desired long-distance entanglement.

Clearly for issues related to the life time of the entanglement, threatened by

the decoherence due to the inevitable interactions with the environment, the

preferable solutions are the ones in which multiple swaps are carried out in

parallel in order to minimize the time required to achieve the goal, as shown

in Figure 4.8: in this example of nodes chain the entanglement propagation

is performed from A to E not sequentially, but in a parallel fashion, so that

the time required to entangle A and E is shorter.

Figure 4.8: Example of parallel entanglement swapping to increase efficiency
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In this way entanglement distribution over elementary links can be attempted

in parallel in a nested way, where the key advantage is its efficiency. Dis-

tributing entanglement over a L0-long link often requires the transmission

and detection of a single photon, which is successful with a probability of

order e−αL0 , where α is proportional to the channel attenuation. Using this

technique over a total distance L worsens the success rate, that scales with

e−αL, while with the nested swapping the entanglement distribution over dis-

tance L would scale with e−αL0 [8].

It is clear that from a resource point of view, the repeater is a node that

must be able to store the entanglement and to perform the Bell state mea-

surement (BSM), and for an entangled pair in general both nodes need to

store one qubit per entangled links. Alternatively, qubits can be commu-

nicated without using quantum memories, therefore avoiding entanglement

swapping, using the quantum error correction [22]. However, due to the cur-

rent technological limits, this is a solution not yet implementable, requiring

the creation of entangled states consisting of a large number of photons (only

10 realized today) and densely placed repeater stations performing near per-

fect operations, while the use of the heralded entanglement doesn’t require

as many qubits.

Going into the detail of entanglement swapping, it is an operation artic-

ulated according to the blocks in Figure 4.9: starting from two entangled

pairs - in the example we are dealing with states |Φ+〉 - a Bell state measure-

ment is performed with the CNOT gate followed by the Hadamard gate, to

then perform computational measurements and provide the results, that are

two classical bits, respectively to the source and destination node of the en-

tanglement. Finally, there are two correction gates such as the controlled-Z

and CNOT so that the nodes involved can recover the correct state.
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Figure 4.9: Entanglement Swapping circuit

In particular a fundamental role is played by the BSM (Bell state measure-

ment), consisting in the CNOT followed by the Hadamard gate and the

measurement blocks. To understand this operation let’s consider the state

|Φ+〉 in input to this configuration, so the action of the BSM is discussed

below in formulas:

|Φ+〉 =
1√
2

(|00〉+ |11〉) CNOT−−−−→ 1√
2

(|00〉+ |10〉)

H−→ 1√
2

(
|0〉+ |1〉√

2

)
|0〉+

1√
2

(
|0〉 − |1〉√

2

)
|0〉 = |00〉 (4.4)

If the BSM input is the |Φ−〉 state, than is will be changed as below:

|Φ−〉 =
1√
2

(|00〉 − |11〉) CNOT−−−−→ 1√
2

(|00〉 − |10〉)

H−→ 1√
2

(
|0〉+ |1〉√

2

)
|0〉 − 1√

2

(
|0〉 − |1〉√

2

)
|0〉 = |10〉 (4.5)

With |Ψ+〉 state as input, the state |01〉 is then obtained:

|Ψ+〉 =
1√
2

(|01〉+ |10〉) CNOT−−−−→ 1√
2

(|01〉+ |11〉)

H−→ 1√
2

(
|0〉+ |1〉√

2

)
|1〉+

1√
2

(
|0〉 − |1〉√

2

)
|1〉 = |01〉 (4.6)
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Finally the state |Ψ−〉 will change into |11〉:

|Ψ−〉 =
1√
2

(|01〉 − |10〉) CNOT−−−−→ 1√
2

(|01〉 − |11〉)

H−→ 1√
2

(
|0〉+ |1〉√

2

)
|1〉 − 1√

2

(
|0〉 − |1〉√

2

)
|1〉 = |11〉 (4.7)

The last part of the scheme concerns the corrections that may be applied to

the obtained state. In fact, it should be noted that following the Bell state

measurement, the status shared between Alice and Bob can be one of the

following: |00〉 + |11〉, |01〉 + |10〉, |00〉 − |11〉 or |01〉 − |10〉, leaving out
√

2

at the denominator. A check on X-parity and Z-parity is therefore applied,

providing the results of the measurement to Alice and Bob. The first measure

concerns the possible phase-flip suffered by the state, which is repaired by

the controlled-Z, the second measure concerns the possible bit-flip suffered

by the state, which is instead corrected by the CNOT . For example, if the

outcome turns out to be 10, it means that there has been a phase-flip but

not a bit-flip, that is, that the two qubits are equal but opposite in phase,

so the state |00〉 − |11〉 is corrected into |00〉+ |11〉 by controlled-Z and it is

then left unchanged by the CNOT . Similarly, if the measurement in Bell’s

state turns out to be 11, it means that there has been both a phase-flip and

a bit-flip, therefore a state |10〉− |01〉, which is corrected by the CNOT into

the state |00〉− |11〉 and then from the controlled-Z into |00〉+ |11〉, allowing

the recovery of the correct initial state between Alice and Bob.

4.4 Quantum Repeater Nodes

Quantum repeaters were first introduced in 1998 and three classes, or gener-

ations of them, have followed one another over time [23]. Furthermore, the

introduction of quantum repeaters in a communication line makes it possible

to beat the maximum rate (which is a capacity bound known as the PLOB

bound [24]) at which two remote parties can distribute qubits, entangled
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pairs or secret bits over a lossy channel [25].

Referring to [8], to the first generation it belongs the Probabilistic Quantum

Repeater, whose operation is based on probabilistic techniques such as en-

tanglement distribution and entanglement swapping, which means that it is

required to repeat a certain operation until it succeeds, due to the fragility

of photon-based systems against loss. As seen in Section 4.2.1 there are dif-

ferent ways of generating the entanglement and distributing it, in particular

by making use of a BSM. Bell State Measurement in probabilistic quantum

repeaters is typically done by first converting the state of quantum memories

back into photonic states and then use linear optics modules to perform the

BSM, which can be inefficient. An implication of the probabilistic BSM is

that we cannot perform BSMs in a certain nesting level until we have learned

about the results of the BSM in the previous level, which requires the ex-

changing of data between intermediate nodes, introducing delay. This would

result in a strict requirement in decoherence time and a low entanglement

generation rate. Probabilistic Quantum Repeaters are the simplest repeater

technology to be implemented in practice, and even in the simplest setup

(where there is only one repeater node in the middle) they offer an advan-

tage for memory-assisted QKD. Anyway, as mentioned before, this solution

offers a low key rate generation over long distances [8].

The next generation is represented by the Deterministic Quantum Repeaters

class, that relies on deterministic but possibly erroneous gates or operations

for BSM, assuming that the initial entanglement distribution and storage

have taken place ending with a high quality entangled stated between nodes

and assuming that the initial entangled pair over the elementary links was

a maximally entangled state. Using this Deterministic Repeater we obtain

modestly high key rate, with some limitations. The main one is that the

initial links are still probabilistic. Moreover a trade-off between the number

of nesting levels and the accumulated error must be taken into account [23].

The last generation of quantum repeaters is based on quantum error correc-

tion techniques to overcome loss and operation errors through memory-less
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quantum repeaters. The common way to distribute quantum information is

to establish entanglement between nodes and then use quantum teleportation

to transfer information from one node to another, then apply entanglement

swapping to extend the entanglement range using repeater nodes. This ap-

proach is limited by the time required for the establishment of intermediary

entangled links. In other words it necessitates quantum memories capable of

storing a qubit for milliseconds or longer. Another way to transfer quantum

information does not involve teleportation and does not require long-lived

quantum memory, but it is based on directly transmitting quantum infor-

mation in an encoded form in the quantum network. This solution relies on

using quantum error correction codes [22] to overcome loss and operation er-

rors. In this case the matter qubit of the cavity is not thought of as quantum

memory, but instead as a processing qubit.

For example, a single photonic quantum state α|0〉 + β|1〉 can be encoded

as [22]

|Ψ〉(m,n) = α |+〉(m)
1 · · · |+〉(m)

n + β |−〉(m)
1 · · · |−〉(m)

n (4.8)

where n is the number of logical qubits and m is the number of physical

qubits in each logical qubit. The logical qubit basis states are given by |±〉(m)

≡ |0〉⊗m ± |1〉⊗m. This encoded state has the property that the original

quantum state can be recovered as long as at least one photon survives in each

logical qubit, and one logical qubit with all its m photons is fully received.

This redundant quantum parity code can be used in a repeater scheme to

transfer quantum information between remote nodes, with a transmitter unit

that moves information from the matter qubits to photons, while the receiver

operates in reverse to transfer information from the photonic form back to

matter qubits. The direct transmission scheme also can be used in a butterfly

arrangement to distribute entanglement between a source and a destination,

without the need for long-lived quantum memories. Even if these memory-

less repeaters offer a great improvement in the key rate generation (on the

order of tens of MHz), they require a demanding set of properties, such as

operation error as low as 10−4-10−3, a large number of intermediate nodes and

multiple photons per state, whose generation needs advanced technologies.
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Hence, the restrictiveness of the requirements puts the memory-less class in

a more distant future.

4.5 Routing Entanglement in the Quantum

Internet

Since the fundamental role of a Quantum Network is to distribute entangle-

ment to remote nodes, routing protocols have been developed to generate

entanglement simultaneously between multiple pair of nodes in a quantum

network. The routing entanglement strategies shown in this section are those

described in [26]. Considering the repeaters as those nodes that are equipped

with quantum memories for storing the entanglement, with classical resources

and interfaces and the ability to perform the Bell state measurement between

any pair of locally-held qubits, these protocols instruct the nodes, for each

time slot, on how to dynamically choose which pair of nodes to perform the

BSM, then the way to perform the entanglement swapping in order to gen-

erate a long-distance quantum entanglement.

The goal is to obtain a protocol that maximizes the entanglement gener-

ation rate for a collection of entanglement flows. As we can see in Figure

4.10, an example of quantum network consists in generic nodes that can be

the source or destination of the information to be transferred (green nodes)

and repeater nodes (in blue). They are equipped with quantum memories

at least for how many entangled pairs are associated, and can perform the

BSMs on pairs of qubits. Through chains of entanglement swapping they

propagate the entanglement in the network, while the dotted lines that con-

nect them are lossy optical channels.

With reference to Figure 4.10, let’s consider a graph G(V,E) describing the

topology of the repeater network. Each node v ∈V is a repeater, and each

edge e is a physical link connecting two repeater nodes.
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Figure 4.10: Example of Quantum Network [26]

Imagine that the time is slotted and that each memory can maintain a qubit

for T > 1 time slots, beyond which the decoherence leads to the loss of infor-

mation. Each time slot consists in two phases: the “external” and the “inter-

nal” phase. In the first phase, each repeater tries to establish an entanglement

between its memories and the qubits of the adjacent nodes, whose success

has probability p0(e) ∼ η(e) where η(e) ∼ e−αL(e) is the transmissivity of a

lossy optical channel. Through a two-way classical link the generic repeater

knows which attempt of entanglement has been successful, in respect of the

possible parallel links (dashed lines).

By simplifying to a square-grid topology, in the first phase of each time

slot an attempt is made to establish entanglement with neighboring repeater

nodes, whose success has probability p (Figure 4.11a). In the internal phase,

in the same time slot, entanglement swapping (BSM) is attempted on pairs

of qubits that participate in the entanglement with the adjacent nodes in

whose previous phase the entanglement was established. This second phase

is successful with probability q (Figure 4.11b). So after a time slot, along a

path that includes k edges, one e-bit (entangled pair) is successfully shared

between the end points of the path with probability pkqk−1.
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Figure 4.11: Square-grid topology [26]. a) In the external phase entangle-
ment is attempted between neighboring repeaters b) In the internal phase
entanglement swapping is attempted on a qubit pair within each repeater,
based on the success of the entanglement generation in the previous phase

Multipath routing of a single entanglement flow

A first way for repeaters to decide on which internal qubits to perform BSM

is based on a simple greedy algorithm, for which it is assumed that a global

link-state knowledge is available to each repeater node, i.e., the status of each

external link after the first phase of the time slot ended is known to each

repeater. To choose internal links, let’s consider the subgraph consisting of

successful external links and repeater nodes at the end of the external phase,

then choose the shortest path that connects Alice to Bob. If a shortest path

of length k1 is found, all the internal links between the interested nodes are

attempted, so the probability that all k-1 internal links are successful is qk1−1.

At the next step of the greedy algorithm, all external and internal links of

the next step are removed from the subgraph, and the shortest path in the

remaining subgraph of length k2 is searched.

The entanglement generation rate is the sum of expected rates (e-bits per

time slot) from these paths, considering that for a square grid topology there

can be a maximum of four disjoint paths between Alice and Bob. Considering

Figure 4.11 we can see that, given the set of the created external links,

the shortest path has length k1 = 4 and the next path has length k2 = 6.

42



CHAPTER 4. QUANTUM NETWORKS

These two are the only available paths between Alice and Bob, so using

this greedy algorithm the expected number of shared e-bits generated in this

time slot is qk1−1 + qk2−1. The intuition behind this algorithm is that the

entanglement generation rate along a path of length k decays exponentially

as qk−1, suggesting that attempting internal links to facilitate connections

along the shortest path first would optimize the expected rate.

Entanglement routing with local link-state information

Unfortunately knowing the global link-state is unrealistic for a large network,

as it requires memories whose coherence time increases with the network size,

due to the time required for the traversal of link-state information across the

entire network. A more realistic protocol therefore considers that the nodes

have the link-state available only at the local level, that is the information

related to the two adjacent nodes in the repeater chain.

Let’s consider Alice and Bob as source and destination nodes and be u the

intermediate repeater node that must attempt entanglement swapping. The

repeater will attempt the internal link based on which external links have

been created, further assuming that each node knows the entire network

topology and location of Alice and Bob. The rules followed by the u repeater

to attempt the internal link depends on the number of external links suc-

ceeded. If less than one external link with neighbor nodes has succeeded,

then it doesn’t attempt internal links, as the repeater u cannot be part of

the path that connects Alice to Bob. If two or more external links have been

successful, then among all the nodes close to u (which have established an

external connection in that time slot) the node v is labeled as that node with

less distance from A (minimum dA) and with w the node closest to B (min-

imum dB). If two neighbors have the same value of dA and dB, then a coin

is tossed to determine the choice of v and w. If v and w are the same node,

then v (or w) is replaced by node u’s nearest-neighbor node with the smallest

value of dA (or dB). The choice on the node to replace v or w is made in such

a way as to minimize the sum dA+dB. An internal link is then attempted

between the memories connected to v and w respectively (as shown in Figure
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4.12a).

If all four external links have been successful, then in addition to the pre-

vious internal link, the links between the remaining two memories are also

tried, since it can only be an advantage for the entanglement generation rate

(Figure 4.12b).

Figure 4.12: Entanglement swapping rules in the case of local link-state
knowledge [26]

The local protocol has a scaling advantage over the global one, because the

local rule allows the flow of entanglement-generation between Alice and Bob

to find multiple paths simultaneously, in different time slots, and does not

have to rely on all links along a linear chain to be successful, that is analogous

to multi-path routing in classical computer networks.
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Simultaneous entanglement flows

Referring to local link state knowledge in repeater nodes, let’s consider simul-

taneous entanglement generation flows between Alice and Bob pairs. Imagine

that we have a node distribution as in Figure 4.13 and denote with R1 and

R2 the entanglement generation rate obtained by the respective entangled

Alice-Bob pairs.

Figure 4.13: Multi-flow routing for two Alice-Bob pairs [26]

A simple strategy is the single-flow time-share, which uses the local rule

previously described to follow the Alice1-Bob1 flow for a time λ, and in

the fraction of time 1 − λ it follows the second flow Alice2-Bob2. If this

strategy is followed by all repeaters except Alice and Bob, even when all

repeaters support stream 1, there is still some leftover R2 that is attained

(multi-flow time-share). However, we note that only the repeaters that are

part of the direct path between Alice and Bob are significant when applying

the local rule, so another strategy is the so called multi-flow spatial-division,

in which we divide the network between two spatial regions corresponding

to the two flows (Figure 4.13a), so any repeater belonging to the red region

applies the local rule tied to the Alice1-Bob1 flow and at the same time the

repeaters in the green region operate with the local rules for the Alice2-Bob2

flow. This means that two flows can coexist and operate with a very small

reduction from their individual best rates, because they benefit from almost

disjoint paths. In the other extreme (Figure 4.13b) the rate region attained

by multi-flow time sharing still provides an improvement over single-flow time
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sharing.

4.6 Quantum Network Stack

After showing the fundamental mechanisms for transporting quantum infor-

mation and propagating entanglement in a network, we are going to define

the network stack [18].

Figure 4.14: Quantum Network stack [18]

As in a classical network, we refer to the lowest element of the stack as the

physical layer, that is realized by the quantum hardware devices and physical

connections such as optical fibers. The physical layer contains no decision

making elements and doesn’t keep the state of the entanglement in a memory.

This hardware generates time synchronization and laser pulse stabilization,

required for attempting heralded entanglement, so the typical realizations

involve two controllable quantum nodes connected by a chain of automated

nodes, each one attempting the entanglement in well defined time slots. Over

the physical layer, the link layer makes the entanglement attempts robust

through the heralding station. On top of the link layer, the network layer

is responsible for producing long-distance entanglement between nodes that

are not directly connected by automated nodes, achievable by entanglement

swapping, and also contains an entanglement manager that keeps track of the

entanglement in the network. Finally, the transport layer makes it possible

to transmit qubits in a deterministic way, using teleportation.

In particular the link layer allows higher layers to operate independently
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of the underlying hardware platform. The source and destination nodes can

request entanglement through a CREATE packet request from the higher

layer with parameters specifying the remote node with whom the entangle-

ment generation is desired to establish, the type of request, the number of

entangled pairs to be created, and other fields depending on the specific pur-

pose, and moreover the request contains a purely quantum parameter that

is the desired minimum fidelity, describing the quality of the entanglement

that is needed, where the ideal target state has fidelity equal to 1 (i.e. the

desired state is exactly the state that has been produced through entangle-

ment generation). To confirm the entanglement production, an OK message

should be returned [18].

The standard metrics from networking also apply here, such as throughput

which in this case is the entangled pairs/s rate, and the latency of the re-

quest. Fairness is also demanded, because requests may originate at both

source and destination, so the metrics should be independent of the origin of

the request. We as well consider quantum quality metrics [27], such as the

fidelity, that is important in applications such as QKD. The Physical and

Link Layer protocols proposed in [18] are described in the next section.

4.7 Physical and Link Layer Protocols

The Midpoint Heralding Protocol (MHP) is meant to be implemented at the

lowest layer subject to tight timing constraint (entanglement can only be

produced if both photons arrive at the heralding station at the same time),

that is the Physical Layer. This protocol polls the Link Layer at each time-

step to determine whether entanglement generation is required, and keep

no state. After the poll request, the higher layer may give back a negative

response and in this case no attempt will be made, or a positive response,

additionally providing parameters to use in the attempt of the entanglement.

The parameters given to the MHP with a positive response contain the ID

for the attempt, that is forwarded to the heralding station, generation pa-

rameters, the device qubits for storing the entanglement and the sequence

47



CHAPTER 4. QUANTUM NETWORKS

of operations to perform on the device memory. Entanglement generation is

then triggered at the start of the next time interval and a GEN message is

sent to the heralding station which includes a time-stamp and the given ID.

The heralding station uses the timestamp to link the message to a detection

window in which the accompanying photons arrived. If messages from both

points arrive, the midpoint verifies the matching between the IDs sent with

the GEN message, and checks the detection counts from the corresponding

detection window. The midpoint will then send a REPLY message contain-

ing the state of the operation (success or failure), and in case of success which

of the two states |Ψ+〉 and |Ψ−〉 was produced.

Figure 4.15: Scheme of the MHP checking for requests of entanglement gen-
eration from the higher layers [18]

Considering the two nodes A and B asking for the entanglement attempt,

in the successful scenario the sequence diagram is depicted in Figure 4.16,

where p is the photon associated with the request.

Figure 4.16: MPH sequence diagram in the successful case [18]
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The Link-layer EGP (Entanglement Generation Protocol) begins when a

higher layer at a controllable node issues a CREATE operation to the EGP

specifying the desired number of entangled pair, along with the minimum

fidelity and maximum latency time. Both nodes that wish to establish en-

tangled links must trigger their MHP device in a coordinate fashion, so the

EGP employs a distributed queue comprised of synchronized local queues at

the controllable nodes. Upon receipt of a request the EGP will query the

Fidelity Estimation Unit (FEU) to obtain hardware parameters. Then the

scheduler generates a positive response to the MHP containing the parame-

ters from the FEU, along with the ID containing the unique queue ID. The

flow diagram of the MHP and EGP operations is shown in Figure 4.17 [18].

Figure 4.17: Flow diagram of the MHP and EGP operations [18]

It’s worth noting that the control classical network where these protocol mes-

sages are employed can be replaced using a piggybacking technique, through

which the classical information is encapsuled on quantum streams protected

by quantum error correcting codes [28].
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Chapter 5

Experimental results on IBM Q

A quantum circuit is made up of qubit operations - quantum gates - and,

almost implicitly, of measurement elements. In this chapter the results of

fundamental operations such as teleportation and entanglement swapping

are shown, and then composed to display a simple quantum network. To

write these circuits, the IBM Quantum Experience Circuit Composer [4] has

been used. At first the proper operation of the circuits has been tested

through the available circuit simulator, then the circuits have been tested

through the real IBM quantum computers. IBM indeed provides a series of

quantum computers online, with different interconnection architectures and

noise levels, up to 15 qubits (IBM Q Melbourne).

Figure 5.1: Interconnections and error rates of CNOT gate and U2 gate (U2
performs a control over two different rotations within the gate) of the IBM
Q Melbourne [4]
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It is clear that while the simulator will give the ideal outcomes for a quantum

circuit, testing the same circuit on the real quantum computer we’ll obtain a

result which takes into account the noisy nature of the circuit and the error

rate of quantum gates. In Figure 5.1 it is shown the qubit connectivity, and

the gate error rate, for the 15 qubit IBM Q Melbourne.

At the heart of IBM quantum system is the transmon qubit, developed in

2007 at the Yale University. Working as an artificial atom, it is a type of

superconductive charge qubit designed to have reduced sensitivity to charge

noise. Its name is an abbreviation of the term “transmission line shunted

plasma oscillator qubits”. To create an artificial atom a toolkit made of

superconductive elements is used so there’s no energy heated, hence no dis-

sipation, which is a desired feature for quantum. Furthermore a Josephson

junction, which is a non linear inductor element, kept at 0.015 Kelvin, is used

to obtain unequally spaced energy levels, representing the quantum states of

the qubit. The transmon achieves its reduced sensitivity to charge noise

by significantly increasing the ratio of the Josephson energy to the charging

energy, accomplish through the use of a large shunting capacitor [29].

5.1 Experimental Teleportation

As it has been described in Chapter 2, quantum teleportation is a technique

that allows the transfer of a quantum state from one node to another, with-

out a quantum communication channel between source and destination. It

requires the transmission of two classical bits between the two parties and

an entangled pair shared between them. For our experiments we fixed the

state to be teleported, first at |1〉, then at |0〉−ejπ/4|1〉. The quantum circuit

of teleportation of the quantum state |1〉 realized with the IBM Q Circuit

Composer is shown in Figure 5.2.
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5.1.1 Teleporting the state |1〉

The target here is to transfer the |1〉 quantum state from Alice (line q[0]) to

Bob (line q[2]), consuming the entangled pair shared between them.

Figure 5.2: Quantum Circuit for the Teleportation of the |1〉 state

Since all the lines of the circuit are initialized at the state |0〉, we proceed to

create the state |1〉 of Alice by adding the X gate in the Circuit Composer,

which realizes the bit-flip. Alice also has a second qubit, in line q[1], entangled

with Bob’s qubit, together belonging to the EPR pair |Φ+〉. Subsequently

we have the Bell state measurement, with the collapse of the superposition

of the possible entangled states, producing two classical bits that are then

communicated to Bob via a classical channel. Thanks to this classical in-

formation, Bob will rebuild the original quantum state, after the correction

via the controlled-NOT and controlled-Z gates. It’s clear that after the mea-

surement in the computational basis the original data is lost from the Alice

perspective, so teleportation doesn’t violate the no-cloning theorem at all.

Looking at the formulas in Equation 5.1, with the state |ψ〉=|1〉 to be trans-

mitted, Alice firstly applies the CNOT gate to her half of the EPR pair,

then the Hadamard gate on her first qubit, obtaining:

|1〉
(
|00〉+ |11〉√

2

)
CNOT−−−−→ |1〉

(
|10〉+ |01〉√

2

)
H−→ (|0〉 − |1〉) (|10〉+ |01〉)

2
(5.1)
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If we put in evidence Alice’s two qubits, we can rewrite Equation 5.1 as

follows:

|01〉 |0〉+ |00〉 |1〉 − |11〉 |0〉 − |10〉 |1〉 (5.2)

The first term means that if the wave-function collapses to the |01〉 state,

which means that Alice measured 01, then Bob will correct the state using

a bit-flip gate X with the CNOT gate. If the outcomes are 00, then Bob

does nothing, because the state is already correct. If the outcomes are 11,

then Bob will perform a bit-flip X and phase-flip Z to recover the correct

state, with both the controlled-X and the controlled-Z gates. Finally, if Alice

measured 10 then Bob applies a phase-flip correction Z with the controlled-Z

gate.

The outcomes are part of a classical line of 5 bits c4c3c2c1c0. Through the

circuit simulator we obtain the ideal behavior of the quantum circuit, which

means that we’ll read the outcome “1” corresponding to the eigenvector |1〉
in all of the 1024 runs (bit c2 is always equal to 1, Figure 5.3). The same

circuit was ran in the IBM Q Melbourne (15 qubits), where the measurement

blocks in the circuit were all moved to the end of the lines because it is not

currently hardware-level possible to renew a quantum state after the mea-

surement itself. The results for the real quantum computer, in Figure 5.4,

are probabilistic since they take into account the real quantum gate errors

and noise. From the figure we see that in 86.6% of cases over 1024 shots Bob

received the correct state |1〉.
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Figure 5.3: Histogram showing the results of teleporting state |1〉, simulation
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Figure 5.4: Histogram showing the results of teleporting state |1〉 on a real
quantum computer, IBM Q Melbourne

5.1.2 Teleporting the state |0〉−ejπ/4|1〉

We experiment now the teleportation of a phase rotated quantum state.

After Alice’s processing of the state (lines q[0] and q[1]) it is necessary to

correct this rotation if we want to verify the correct operation of the circuit

in transferring the |1〉 state. In the quantum circuit shown in Figure 5.5, a

Hadamard gate and π/4 Z-rotation was chosen. After the rotation, the state

is |0〉−ejπ/4|1〉.
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Figure 5.5: Quantum Circuit for the Teleportation of the state |0〉−ejπ/4|1〉
obtained with a Hadamard gate and a π/4 rotation gate

The operations carried out by Alice are the same, but the quantum state to

transfer, before the measurement operation, will be

|Ψ0〉 =
1√
2

[
1 0

0 eiπ/4

]
·

[
1 1

1 −1

]
·

[
0 1

1 0

]
·

[
1

0

]

As shown in Figure 5.6 with the circuit simulator Bob receives the correct

state with probability 1, while in Figure 5.7 with IBM Q Melbourne Bob

obtains the desired state in 74,7% of cases (c2=1) over 1024 runs, which

means that the quality of the teleportation degraded, due to the quantum

gate errors introduced by the Hadamard ad Z-rotation operations.
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Figure 5.6: Histogram showing the results of state |0〉−ejπ/4|1〉 teleportation,
simulation
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Figure 5.7: Histogram showing the results of state |0〉−ejπ/4|1〉 teleportation
on a real quantum computer, IBM Q Melbourne

5.2 Experimental Entanglement Swapping

The Entanglement Swapping is a technique used to propagate the entan-

glement between remote nodes, which will end up with the same statistical

description of the possible outcomes of the experiment. In other words, after

this operation the nodes will behave in the same way from a quantum point

of view. We consider the simple set of three nodes A, B and C, arranged

linearly in space. The target is to propagate the entanglement from A to C,
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passing through B, which is called the repeater node.

Figure 5.8: Quantum Circuit for the Entanglement Swapping

In the quantum circuit in Figure 5.8 node A corresponds to the q[0] line,

while the intermediate repeater node B is represented by the lines q[1] and

q[2], and node C corresponds to the q[3] line. These circuit lines are the

quantum bits of the nodes, so to perform the entanglement swapping one

qubit is needed for A and C, and two qubits are needed for C. The first step

is to generate the two EPR pairs between A-B and B-C, that in this case are

built from |0〉 states applying the Hadamard gate and CNOT gate. After

these operations the |Ψ+〉 state is obtained in both links:

|0〉 H−→ |0〉+ |1〉√
2

CNOT−−−−→ |00〉+ |11〉√
2

= |Ψ+〉 (5.3)

Subsequently the node B performs the Bell basis measurement on his two

qubits, consisting in the CNOT and Hadamard gates and the measurement

in the computational basis, collapsing the superposition of the quantum Bell

states for the two qubits:(
|00〉+ |11〉√

2

)(
|00〉+ |11〉√

2

)
=

1

2

(
|00〉 |00〉+|00〉 |11〉+|11〉 |00〉+|11〉 |11〉

)
CNOT−−−−→ 1

2

(
|00〉 |00〉+ |00〉 |11〉+ |11〉 |10〉+ |11〉 |01〉

)
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H−→ 1

2
√

2

[
|0〉
(
|0〉+ |1〉

)
|00〉+ |0〉

(
|0〉+ |1〉

)
|11〉+

+ |1〉
(
|0〉 − |1〉

)
|10〉+ |1〉

(
|0〉 − |1〉

)
|01〉

]
=

=
1

2
√

2

[
|00〉

(
|00〉+ |11〉

)
+ |11〉

(
|01〉 − |10〉

)
+

+ |01〉
(
|01〉+ |10〉

)
+ |10〉

(
|00〉 − |11〉

)]
The outcomes of the measurement are then sent to A and C to choose how

to correct the entangled state: if node B reads 00, then the state is correct

(|00〉+|11〉) and no operation is required. If the outcome is 11, then bit-flip

and phase-flip corrections are applied with a CNOT and controlled-Z gates,

to restore the |Ψ+〉 to replace the incorrect state |01〉-|10〉. If node B reads

01, then the state |01〉+|10〉 is corrected by performing a bit-flip through a

CNOT gate. Finally if the outcome is 10, the |00〉-|11〉 state is corrected by

using the phase-flip controlled-Z gate.

As shown in Figure 5.9, the quantum circuit simulation gives the expected

value with probability 1, with c0=c3 for each run of the circuit. In Figure

5.10 the probability of success of the entanglement swapping is around 81%,

running the circuit on a real quantum computer, the IBM Q Melbourne.
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Figure 5.9: Histogram of the Entanglement Swapping results, simulation

58



CHAPTER 5. EXPERIMENTAL RESULTS ON IBM Q

00000 00001 00010 00011 00100 00101 00110 00111 01000 01001 01010 01011 01100 01101 01110 01111

0

10

20

13.48%

2.83%

16.41%

2.54%

8.4%

1.86%

10.55%

2.83%1.95%

7.91%

1.95%

7.72%

1.86%

8.89%

3.03%

7.81%

States

P
ro
b
ab

il
it
ie
s

Figure 5.10: Histogram of the Entanglement Swapping results on a real quan-
tum computer, IBM Q Melbourne

5.3 A simple quantum network

Let’s consider a quantum network consisting of six nodes, linked as shown

in Figure 5.11. Through this network we want to transfer qubits via telepor-

tation and, to achieve this task, entanglement must be established between

the source and destination remote quantum nodes.

A

B

C

D

E

F

Figure 5.11: Quantum network
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To propagate the entanglement it is necessary that the intermediate nodes

act as quantum repeaters, so that they apply the entanglement swapping

scheme. Each node must have a sufficient number of memory qubits to

perform the entanglement swapping: this operation is done between pairs

of qubit which are related to the respective entanglement links shared with

the adjoining nodes. From this it follows that each node has a number of

nodes equal to the links in which it participates. Moreover, for the no-

cloning theorem it must be taken into account that node A and F must have

two qubits, one for each path. In the proposed network the two paths are

independent, hence the two paths can be studied separately.

5.3.1 Experimental implementation of the short link

The short path circuit includes nodes A, B, E and F. The first step is the

generation of entangled links between pair of adjacent nodes (A-B, B-E, E-

F). Then the entanglement swapping is performed sequentially: node B acts

on the qubits linked to A and E by performing the Bell state measurement to

extend to entanglement from A to E; hence, the same procedure is done by

node E, to distribute the entanglement from A to F. The short path circuit

is shown in Figure 5.12, where the qubit q[0] belongs to the source node A,

q[1] and q[2] to the repeater B, q[3] and q[4] to the repeater E, finally q[5] to

the destination node F.

As it can be seen in Figure 5.13, the histogram shows that in the simula-

tion qubit q[0] and qubit q[5] behave in the same way after the entanglement

swapping operation, so c0 = c1 with probability 1.
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Figure 5.12: Quantum Circuit of the Entanglement Swapping for the short
link
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Figure 5.13: Histogram of the Entanglement Swapping results in the short
link, simulation

In Figure 5.14 the histogram describes the outcomes for the entanglement

swapping operation over a real quantum computer, the IBM Q Melbourne,

for the short link, succeeding in 65% of the 1024 shots.
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The short link is now ready to teleport a quantum state from A to F. In

Figure 5.15 the quantum circuit for the teleportation of the state |1〉 is dis-

played.

Figure 5.15: Quantum Circuit of the teleportation of state |1〉 through the
short link

The results obtained in the circuit simulation are shown in Figure 5.16, show-

ing that the state |1〉 teleportation from A (q[0]) to node F (q[6]), which is

the c1 bit, succeeded (c1=1) with probability 1.
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Figure 5.16: Histogram of the teleportation of state |1〉 through the short
link, simulation
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5.3.2 Experimental implementation of the long link

The long path circuit includes nodes A, B, C, D, E and F. To create a route

from A to F, the generation of entangled links between pair of adjacent nodes

(A-B, B-C, C-D, D-E, E-F) is required, then the entanglement swapping is

performed sequentially with B, C, D, E working as repeater nodes to prop-

agate the entanglement in the path.

The long path quantum circuit is shown in Figure 5.17.

Figure 5.17: Quantum Circuit for the Entanglement Swapping through the
long link
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In Figure 5.18 it is displayed the histogram of the results obtained for the

long path entanglement swapping for the circuit simulator, where c3 has

always the same value of c4, confirming the entanglement propagation from

the source to destination. For 4096 shots in the IBM Q Melbourne, the

success in the creation of an entanglement between source and destination is

around 54%, as shown in Figure 5.19.

00000 00001 00010 00011 11000 11001 11010 11011

0

10

20

12.77%
11.67%12.45%

11.4%
13.16%12.45%12.94%13.18%

States

P
ro
b
ab

il
it
ie
s

Figure 5.18: Histogram of the results of Entanglement Swapping through the
long link, simulation
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Figure 5.19: Histogram of the Entanglement Swapping through the long link
on a real quantum computer, IBM Q Melbourne
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5.3.3 Experimental implementation of the full network

The correct ideal functioning of the entire network is confirmed by the re-

sults of the circuit simulation in Figure 5.20. Here we observe that c0=c1

and c3=c4 with probability 1, hence the entanglement has been propagated

from A to F along the two independent paths. This set of nodes, forming the

quantum network, is now ready to perform operations such as the transfer

of quantum information through the teleportation technique, since the quan-

tum routes were built via entanglement swapping along the two paths. The

full network circuit has not been run in the real quantum computer because

the maximum number of qubits of the quantum computers made available

by IBM Q Experience is not sufficient to do it. However, the performance

would have been the same of the short and long link, since the two paths are

disjoint. In Figure 5.21 the full quantum network circuit consisting in the

two paths is shown.
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Figure 5.20: Histogram of the full quantum network, simulation
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Chapter 6

Conclusion

Through this thesis work the functioning of the fundamental circuits to cre-

ate a quantum network, based on the principles of quantum mechanics, were

verified. Thanks to the repeater’s role, it was possible to propagate the en-

tanglement so that remote nodes could be interconnected, with each route

composed of a router chain. The actual transfer of a quantum state from

source to destination was then verified on a real quantum computer. How-

ever, the modest size of the network was bounded to the maximum number

of qubits of the computers made available by IBM Q Experience. In order to

be able to make real experiments over more complex networks, for example

a mesh network topology, many more qubits would be needed. Furthermore,

having seen the results, we can say that the quantum computers are heavily

affected by quantum noise and gate’s errors, which increase with the size

of the network, leading to low fidelity, far from ideal. Therefore, it would

be necessary to adopt an error correction and fault tolerant techniques to

protect quantum information from noise [5][30]. Looking at the evolution

of quantum computing in time, since the fundamental theoretical concepts

were shown only in the 1990’s, it is imaginable that the 2020’s will be the

decade of quantum systems research, that will hopefully improve coherence,

gates quality, stability, cryogenics components, integration and packaging of

quantum circuits [3].
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