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Abstract

We employ the formalism of the Horizon Quantum Mechanics to describe the gravitational
radius of compact sources by means of an operator and derive a Horizon Wave Function
which will allow us to estimate the probability of formation of black holes in scattering
processes. If the Planck scale is kept at its standard value, however, it will be impossible
to test that regime with any foreseeable technology. We then review how the introduction
of extra dimensions can potentially lower the Planck scale down to the TeV range in an
attempt to solve the hierarchy problem. In this context, we proceed by studying black holes
described by a generalisation of the Kerr metric for higher dimensional spacetime known
as the Myers-Perry metric. Our computation of the probability that a rotating source in
higher dimensions is a black hole suggests that, even if the fundamental Planck scale is as
low as a few TeV’s, we should not be able to detect any black hole in colliders as is indeed
the case.
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Chapter 1

Introduction

The hierarchy problem is one of the major problems of the recent years and stimulates the
research for physics beyond the Standard Model. It concerns the ratio of the weak scale
mass and the Planck scale mass, questioning why it is so small. The weak scale mass is
set by a cut-off Λ ∼ 1 TeV necessary to make the quantum corrections to the Higgs’ mass
sufficiently small and maintain naturalness. The Planck scale, on the other hand, is the
coupling of gravity and the theory becomes non-unitary when this value is crossed.

The answer to why gravity is weaker than gauge interactions by so many orders of mag-
nitude might lie in extra dimensional models, which in recent years have become more and
more popular, especially because string theory also requires additional dimensions. The
Planck scale is then derived from the electroweak one, which is taken to be fundamental.
Two main models concern extra dimensions: the ADD (Arkani-Hamed-Dimopoulos-Dvali)
LXD (large extra dimensions) and the RS (Randall-Sundrum) models.

In the ADD model the Universe is described by a higher dimensional manifold, while the
Standard Model is confined on a brane. Then, only gravity can propagate on the whole
manifold and its strength is diluted over all d-dimensional spacetime. The experimental
results for the Planck mass on the lower dimensional brane that contains the SM is given
by

m2
p =M

(n+2)
d Vn, (1.1)

with n indicating the number of extra dimensions, explaining why it is perceived as weaker
if the volume Vn of compactification is big enough. Then, the fundamental d-dimensional
Planck scale Md is set to be ∼ 1 TeV of the same order of magnitude as the electroweak scale
and thus solve the hierarchy problem. This model requires more than one extra compactified
dimension in order to avoid modifications at solar-system distances in Newton’s potential.
New dimensions could be potentially discovered already at the scale of a millimetre (if n = 2).

Meanwhile, the RS model is effectively 5-dimensional and thus only requires one warped
extra dimension. The observable universe is confined on a 4-dimensional brane, embedded
in a AdS5 bulk. On another brane, gravity and all relevant scales are set to be ∼ 1 TeV,
reproducing the hierarchy on the observable brane thanks to the exponential warp factor
that reduces only gravity to the measured value.
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6 CHAPTER 1. INTRODUCTION

Successfully pushing mp to values Md ∼ 1 TeV makes ultra-Planckian energies possible to
investigate in the near future at the LHC, perhaps allowing us to probe quantum gravity.
What we could investigate is the production of mini-Black Holes in scattering experiments.
Indeed, when particles in the collider get closer to each other, the gravitational force is
increased as distance is reduced and if the impact parameter is smaller than the horizon
radius, a Black Hole is formed. The horizon radius is much smaller than the compacti-
fication scale, then these objects are effectively d-dimensional and it must also be greater
than the Compton wavelength of the source (representing quantum uncertainty), making
the mini-BH treatable in a semi-classical regime. In this case, we aim to study a rotating
Black Hole, therefore a generalized version of the Kerr metric, the Myers-Perry metric, is
needed.

Even though we would expect to be able to observe quantum gravity once we cross the Md

threshold, following [6], we argue that gravity is self-complete and quantum gravitational
effects are strongly suppressed. Indeed, any attempt to probe it would end up forming a
classical Black Hole instead, whose horizon would prevent examining the region inside. A
mapping

L↔ L2
d

L
(1.2)

can be established between sub-Planckian distances and macroscopic distances. Then, any
new degree of freedom in the Trans-Planckian regime does not modify physics as it can be
written in terms of already existing classical degrees of freedom.

Following the idea hereby presented, this work is organized as follows:
the first chapter consists in this introduction; later, in Chapter 2, we study the hierarchy
problem, self-UV completion and models with extra dimensions (Kaluza and Klein’s original
model, the ADD and RS models) more in detail. In Chapter 3 we study the Myers-Perry
metric, focusing on the derivation of an expression for the horizon radius and area, which is
then approximated in two main regimes (static and ultra-spinning). In Chapter 4, finally,
employing a Gaußian source, we calculate the probability of formation of a Black Hole and
Generalized Uncertainty Principle (GUP) in the two regimes.

Throughout the paper we will use the mostly-plus convention for the Minkowski metric
ηµν = diag(−1, 1, 1, 1) and we will denote vectors ~a as made up of purely spatial compon-
ents, regardless of how many these may be. Moreover, we indicate the whole spacetime
dimensionality with d, covered by indices like µ, ν, . . .. We choose to keep c = 1 always and
~ = 1 only when it is not necessary (it will be specified in the text).



Chapter 2

Extra dimensions

The vast gap between electroweak and Planck scale is also known as hierarchy problem and
it is the one that most directly motivates the study of theories beyond the Standard Model,
as it might be the hint that there is new physics beyond the probed energies. Indeed, it is
solved by introducing extra dimensions that would possibly lower the Planck scale to the
electroweak scale, effectively nullifying the problem.

2.1 Hierarchy Problem
The ratio of the couplings of the two above-mentioned theories gives a very small value,
indicating gravity is much weaker than electroweak gauge interactions:

GN

GF
∼ 10−34. (2.1)

The same problem can be formulated in terms of characteristic masses: the Planck mass
mp ∼ 1019 GeV and the electroweak characteristic mass Mew ∼ 1√

GF
∼ 250 GeV. Of the

two, Mew is taken to be the fundamental one, since, contrary to the Planck mass, it has
been probed and the Standard Model is confirmed with outstanding precision. On the other
hand, the Planck mass is still far from being reached by our experimental capacity.

The mass scale Mew comes from the mechanism of EWSB (Electro-Weak Symmetry Break-
ing), that occurs when the gauge group of the SM spontaneously breaks to electromagnetism:
SU(3)c×SU(2)L×U(1)y → U(1)em. The value of the Higgs mass is not protected by sym-
metries and, as such, quantum corrections are very large and diverge quadratically. Requir-
ing the smallness of these corrections with respect to the Higgs mass, implies introducing a
cut-off Λ ∼ 1 TeV, which is the Mew. After this value is crossed, the theory loses naturalness.

On the other hand, the Planck scale mp is the limit after which the theory of gravity loses
unitarity and a new theory, like quantum gravity, is necessary. Indeed, the fact that mp is
much bigger than the electroweak cut-off means that the SM would lose naturalness much
before this value is reached and the only two conclusions we can make out of this are: either
there is a new theory after Mew that keeps the SM natural or there is no other fundamental
scale except for 1 TeV. This second solution is explored in the extra dimensional models we

7



8 CHAPTER 2. EXTRA DIMENSIONS

are going to present.

In this section we are going to formulate the hierarchy problem more in detail, following
mainly [8].

2.1.1 Planck scale
The first thing we define is the Planck scale, which represents the natural cut-off for any
quantum theory.
It is defined as a combination of the fundamental constants GN , c, ~ so that the final quantity
has the units of a mass:

mp = Gα
N~βcγ . (2.2)

The powers α, β, γ are easily determined by dimensional analysis.
In generic d dimensions this gives:

[M ] =

(
[L]d−1

[M ][T ]2

)α(
[M ][L]2

[T ]

)β (
[L]

[T ]

)γ

, (2.3)

where for the constant GN we used the intuitive relation FN = ma = GN
m2

rd−2 that comes
from the requirement that the gravitational field should have zero divergence.
The following system is obtained:

β − α = 1;

γ + β + 2α = 0;

γ + 2β + α(d− 1) = 0.

(2.4)

The solution of the system is:

mp =

(
~d−3

GNcd−5

) 1
d−2

. (2.5)

In four dimensions it gives the usual Planck mass:

mp =

√
c~
GN

. (2.6)

If we set c = ~ = 1, we obtain the proportionality:

GN =
1

m2
p

. (2.7)

In a totally analogous way, we can obtain the Planck length, by requiring that a combination
of the fundamental constants gives a length:

lp = Gα
N~βcγ , (2.8)

which in dimensional analysis becomes:

[L] =

(
[L]d−1

[M ][T ]2

)α(
[M ][L]2

[T ]

)β (
[L]

[T ]

)γ

. (2.9)
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This equation generates the following system:
β − α = 0;

γ + β + 2α = 0;

γ + 2β + α(d− 1) = 1.

(2.10)

The solution is:

lp =

(
GN~
c3

) 1
d−2

, (2.11)

which in 4 dimensions recovers the usual value for the Planck length:

lp =

√
GN~
c3

. (2.12)

By setting again c = ~ = 1, we check its proportionality with the constant GN :

GN = l2p. (2.13)

Moreover, we notice that the relation ~ = lpmp is valid for any dimensionality. Another
remark we can make is that the Planck scale is fundamentally quantum, as it goes to 0 in
the classical limit ~ → 0.

2.1.2 Naturalness and the fundamental scale
We employ the principle of naturalness as guiding line in our description. It originated from
the reasoning that if a parameter is small, it must not be due to fine tuning but it should
rather come as a consequence of an underlying symmetry.
The principle, as formulated by ’t Hooft ([9]), states:
At any energy scale µ, a set of parameters, αi(µ) describing a system can be small, if and
only if, in the limit αi(µ) → 0 for each of these parameters, the system exhibits an enhanced
symmetry.
For instance, we apply it to Quantum Electrodynamics:
We take the theory of electromagnetic interaction of a fermion:

L = −1

4
FµνF

µν +
∑

f=e,µ,...

ψ̄f [i(∂µ − ieqfAµ)γ
µ −mf ]ψf . (2.14)

In this case, a null mass (like me → 0 for the electron) makes the theory invariant under
chiral symmetry (that transforms left- and right-handed electron-like leptons separately).
This symmetry protects the mass from getting diverging quantum corrections and allows it
to keep its small value. Indeed, from the self-energy diagram we conclude the divergence is
only logarithmic instead of power-law and the correction to the (electron) mass is propor-
tional to the mass itself and thus can not be much larger. Moreover, we see that each mass
can be taken to be 0 separately.
If we take the same limit for the coupling e → 0, we get a theory of free particles, whose
number is thus conserved. Also, the coupling e can be small independently to the masses.
The divergence of one-loop diagrams is logarithmically divergent and proportional to e2,
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thus protecting its smallness.

Now, if we take the theory of a scalar field:

L =
1

2
∂µφ∂

µφ− m2

2
φ2 − λ

4!
φ4, (2.15)

we notice that the limit λ→ 0, as before, makes the theory non-interacting and consequently
the total number of particles is conserved. Taking m → 0, though, does not enhance any
symmetry, as it only leads to scale invariance which is broken at the quantum level. Indeed,
it can be seen that the corrections to the mass diverge quadratically.
For instance, at one-loop level the correction term is given by a scalar loop with incoming
and outgoing scalars:

φ

φ

φλ

The correction to the mass is calculated from this diagram and corresponds to:

δm2 =
i

2

∫
dk4

(2π)4
(−iλ) i

k2 −m2
=
λ

2

∫
dk4E
(2π)4

1

k2E +m2
, (2.16)

where we used a Wick rotation k0 = ik0E that implies k2E = −k2.
Now we use spherical coordinates and denote with k the modulus of kE , then we change
variables to r = k

m :

δm2 =
2π2λ

2

∫ Λ

0

dk

(2π)4
k3

k2 +m2
=

λ

16π2

∫ Λ
m

0

drm
(mr)3

m2(1 + r2)
, (2.17)

where Λ � m is the cut-off of the theory.
Now we perform another change of variable: t = r2:

δm2 =
λm2

16π2

∫ Λ2

m2

0

dt

2
√
t

t
3
2

1 + t
=
λm2

32π2

∫ Λ2

m2

0

dt
t

1 + t
. (2.18)

Next, we change variables to u = 1
1+t , assuming = m2

m2+Λ2 ' m2

Λ2 :

δm2 = − λm2

32π2

∫ m2

Λ2

1

du

u

(
1

u
− 1

)
= − λm2

32π2

∫ m2

Λ2

1

du

u2
(1− u). (2.19)

The result is straightforward:

δm2 =
λm2

32π2

[
−1 +

Λ2

m2
− ln

(
Λ2

m2

)]
∼ λΛ2. (2.20)

We confirm that the quantum corrections are quadratically divergent and thus the the small-
ness of masses is not protected against quantum effects.
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We now move on to consider a theory of a complex scalar field, a left-handed fermion and a
right-handed one. The first two interact with an electromagnetic field, while the other does
not. We also add Yukawa couplings of the fermions with the scalar:

L = −1

4
FµνF

µν + ψ̄Li��DψL + ψ̄Ri∂µγ
µψR

+ |Dµφ|2 + µ2|φ|2 − λ|φ|4 − Y φψ̄LψR + h.c. , (2.21)

where Dµ = ∂µ − ieAµ is the covariant derivative and ��Dµ = Dµγ
µ is the slash notation.

The Lagrangian (2.21) has gauge invariance under:

A′
µ = Aµ +

1

e
∂µθ, φ′ = eiθφ, ψ′

L = eiθψL, ψ′
R = ψR. (2.22)

The limits for the couplings e → 0 and Y → 0 respectively give no gauge interaction and
no Yukawa coupling, enhancing the symmetry. These two parameters are natural and their
corrections are proportional to themselves. Conversely, the parameter λ behaves differently.
Even by taking the limit λ→ 0, Yukawa and gauge interactions give fermionic and photonic
one-loop corrections to the |φ|4 vertex in the form e4M+Y 4N , whereM andN are constants.
This means that the coupling λ can not be much smaller than e and Y .
Now we look at the mass term: its sign indicates that symmetry can be spontaneously
broken.
The minima are:

φ†φ =
µ2

2λ
≡ v2

2
. (2.23)

We choose one as:
φ =

1√
2
eiσ(v + h), (2.24)

where the phase can be rotated away by gauge transformations.
Expanding about this vacuum gives:

L = −1

4
FµνF

µν + ψ̄Li��DψL + ψ̄Ri�∂ψR +
1

2
∂µh∂

µh

+
e2v2

2
AµA

µ − Y v√
2
(ψ̄LψRψ̄RψL) +

µ2

2
h2 + interaction terms, (2.25)

that is a theory of a massive vector field Aµ, a massive scalar h and a massive fermion ψ.
Their masses are given in the second line of (2.25), by:

mA = ev, mh =
√
2λv, mφ =

1√
2
Y v. (2.26)

The symmetries of (2.25) are not exact symmetries, as they are broken at the quantum level.
Therefore, the masses are not natural parameters and their corrections should diverge. In
particular, we are interested in the Higgs mass, so, first, we look at the possible vertices in
the interaction part of (2.25) that include the Higgs scalar:

Lint = e2vA2h+
e2

2
A2h2 +

(
µ2

2
− 3λ

2
v2
)
h2 − λ

4
h4 − 3λ

4
vh3 − Y√

2
hψ̄LψR + h.c. . (2.27)

Now we can draw all the possible one-loop diagrams that give quantum corrections to the
Higgs mass:
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H

H

H H

Aµ

H

H

ψf

ψf

H

H

H

H

H

H

H

H

Aµ

H

H

H

ψf

The first diagram was already calculated in (2.20) and, from it, we can also derive the
expression for the forth diagram, the one that contains a scalar tadpole.
Denoting it with t1, we can write:

t1 =

[(
−i3λ

4
v

)2(
− i

m2
h

)]∫
d4k

(2π)4
i

k2 −m2
h

, (2.28)

in which the propagator that connects the loop to the incoming and outgoing scalars is − i
m2

as the momentum is 0 to satisfy the conservation of momenta at the vertex.
Since we already calculated the integral in (2.20), we can straightforwardly write:

t1 ∝ λ2v2Λ2

m2
h

=
λΛ2

2
, (2.29)

using the expression (2.26) for mh.
Then, the third diagram, the one with the fermionic loop, is processed analogously to QED’s
vacuum polarization.
It can be seen that all the diagrams above diverge quadratically in the cut-off and we can
thus parametrize the whole correction as:

δm2 ∝ 1

16π2
(Aλ+Be2 − CY 2)Λ2 ≡ αΛ2, (2.30)

where A, B and C are constants that respectively correspond to Higgs, gauge and fermion
loops.
The same discussion can be applied to the Standard Model, where SU(2)L×U(1)Y is spon-
taneously broken to U(1)em. We end up obtaining the same result of quadratic divergence
for the corrections to the Higgs mass.
Since mh ∼ 100 GeV and the coupling α ∼ 1

100 GeV, in order to require that the corrections
to the mass are small δm2

h ∼ m2
h, we get:

Λ2 =
δm2

h

α
∼ m2

h

α
∼ (100 GeV)2

(100 GeV)−1
∼ 106 GeV2. (2.31)

Therefore the cut-off of the theory must be Λ ∼ 1 TeV, after which naturalness is lost. In
fact, the observed small value would result in a fine tuning of the quantum corrections. The
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Planck mass is 1019 GeV, which is much higher than Λ and this poses a problem in the
connection of gravity with the Standard Model.
The idea to solve this problem is to hypothesize the Planck mass is not a fundamental scale,
but rather a derived quantity, that can be obtained from the only characteristic scale Λ ∼ 1
TeV.
In the following, we shall present two possible solutions to this problem: the ADD model of
large extra dimensions and the Randall-Sundrum model of warped metric.

2.2 UV self-completeness
In this section we present a theory, formulated by Dvali and Gomez in [6], which proposes
that a UV completion of gravity is unnecessary. In the trans-Planckian regime, where a
quantum theory would be needed, we would expect new degrees of freedom need to be
integrated in, but actually we can show that these are classical already existing degrees of
freedom. In fact, in the process of probing energies beyond the Planck scale, a classical
larger Black Hole is forming, making it impossible to investigate inside its horizon.
We are now going to see this, starting from the Einstein-Hilbert action associated to the
four-dimensional theory of gravity:

SEH = m2
p

∫
d4x

√
−gR. (2.32)

At linearised level the metric is written in the canonically normalised form as:

gµν = ηµν + δgµν , δgµν =
hµν
mp

. (2.33)

Therefore the graviton couples to generic matter sources as:

1

mp
hµνT

µν . (2.34)

It appears clear that the coupling constant is then given by the Planck mass. This property
remains valid at all orders in the non-linear interactions of the graviton. It results that
the theory violates unitarity above mp, so we could argue that it needs UV-completion.
However, we claim that gravity could be self-complete, i.e. its properties at high energy are
equivalent to the low energy ones, while energies M � mp cannot be probed.

We consider a scattering process in which we localize an energy E in a limited space L.
The Schwarzschild radius of this portion of space is:

Rs = 2GM =
2l2p
L
. (2.35)

Then, if L � lp, the Schwarzschild radius becomes much bigger than L and lp. Therefore,
any attempt to probe a distance smaller than the Planck length will result in the formation
of a black hole with horizon Rs � L. This corresponds to a macroscopic black hole that is
completely classical and its horizon forbids to access small distances.
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2.2.1 Trans-Planckian degrees of freedom cannot be probed
We argue that any new degree of freedom localized at Sub-Planckian length is not accessible.
We start by assuming new degrees of freedom appear at distance L � lp and with masses
m ∼ L−1 � mp. We consider the interaction term between two sources Tµν and tµν :

1

m2
p

Tµν〈hµνhρσ〉tρσ. (2.36)

To compute the propagator, we proceed in analogy to electromagnetism and write it in the
form:

fµναβ
k2 +m2 − iε

, (2.37)

where we considered a massive gravitational field.
Gravity, like electromagnetism, is characterized by polarization vectors ελµν , where λ =
1, . . . , 5. In fact, as gravity is coupled to the energy-momentum tensor, which, due to
diffeomorphism and scale invariance, must be symmetric and traceless. Then, the tensor
coupled to it must carry the same properties. Moreover, from the Ward identity, we know
that kµελµν , where kµ is the momentum transfer. Indeed, we can always choose kµ =

(m, 0, 0, 0) in the rest frame and since the polarizations ελµν are all spatial, the result of
kµελµν is 0 in this frame and in all frames, for Lorentz invariance.
In total we have: 

ελµν = ελνµ
gµνελµν = 0

kµελµν = 0.

(2.38)

From this we conclude that it contains: d(d+1)
2 −1−4 degrees of freedom. In d = 4 a rank-2

tensor has 5 possible values of λ, as we anticipated.
When computing the scattering amplitude, we realise that fµναβ =

∑
λ ε

λ
µνε

λ
αβ . Then, we

wish to express this quantity as Lorentz invariant, and when doing so we realise we can only
use combinations of gµν and kµ. Furthermore, the last condition in (2.38) restricts these
possible combinations to those of a quantity that we choose to express as:

G̃µν = gµν − kµkν
k2

. (2.39)

Writing the possible symmetric combinations gives:∑
λ

ελµνε
λ
αβ = A [GµνGαβ ] +B [GµαGνβ +GναGµβ ] . (2.40)

When applying the tracelessness condition in (2.38), we get:

gµν
∑
λ

ελµνε
λ
αβ = 0 = Gαβ [3A+ 2B] , (2.41)

where, as can be easily verified:

Gµ
nuGµβ = Gνβ and Gα

α = 3. (2.42)

Then we are left with only one constant:

A = −2B

3
. (2.43)
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Now, we impose the orthonormality condition:

ελµνε
µν
ρ = δλρ (2.44)

which gives: ∑
λ

ελµνε
λ
µν

!
= 5. (2.45)

This condition furthermore allows us to fix the constant:∑
λ

ελµνε
λ
µν =

∑
λ

gµαgνβελµνε
λ
αβ = 10B

!
= 5. (2.46)

Then: ∑
λ

ελµνε
λ
αβ = −1

3
[GµνGαβ ] +

1

2
[GµαGνβ +GναGµβ ] . (2.47)

We notice that it is valid only in 4 dimensions and in asymptotically flat spacetime. The
massless propagator is obtained from the massive one. By inverting the propagator we
construct the Lagrangian and then add a gauge breaking term.
Therefore, the propagator for a massless graviton field is:

< hαβhµν >=
1

2

gαµgβν + gβµgαν − gµνgαβ
k2

(2.48)

and it gives in (2.36):

1

m2
p

Tµν < hµνhρσ > tρσ =
1

m2
p

Tµνtµν − 1
2T

µ
µ t

ν
ν

k2
. (2.49)

Now we try to modify it by adding a new particle with mass ∼ L−1. Then:

1

m2
p

Tµν < hµνhρσ > tρσ =
1

m2
p

[
Tµνtµν − 1

2T
µ
µ t

ν
ν

k2
+
aTµνtµν − b

3T
µ
µ t

ν
ν

k2 − (L)−2

]
, (2.50)

where a = 0, b < 0 if the new particle has spin 0 and a = b if it has spin 2.
The second term shows a pole at k2 = L−2, but we remember that, according to our
hypothesis L � lp, therefore k � mp. Indeed, if we scatter gravitons with centre of mass
energy ∼ L−1, we must localize them within a distance ∼ L� lp, according to Heisenberg’s
indetermination principle, where L is the impact parameter of the process.
On the other hand, the Schwarzschild radius is much bigger than the impact parameter:

Rs = 2GM = 2
l2p
L

� L. (2.51)

This indicates that a classical black hole would form before being able to access this distance,
as the region inside the event horizon is impossible to probe.
We can thus conclude that an additional pole in gravity would not add any new information,
as it is completely inaccessible or at least as much as a classical black hole.
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2.2.2 Trans-Planckian degrees of freedom do not hold new inform-
ation

We argue that these Trans-Planckian degrees of freedom are equivalent to classical ones
located further away than the Planck length.
The contribution from the newly introduced Trans-Planckian poles in (2.50) is inconsistent.
In fact, we tried to add new propagating degrees of freedom but we obtained a classical
black hole. Then, this means the new particles’ propagation must hold an exponential
suppression. We express it as e−(lp/L)2 . Indeed, being a thermodynamic object it carries an
entropy suppression factor, which can be seen as either Bekenstein-Hawking entropy or as
the Boltzmann suppression of a classical BH.
The Bekenstein-Hawking entropy is, in fact:

S =
kBA

4l2p
∼

l4p
l2pL

2
=

l2p
L2
, (2.52)

where A ∝ R2 is the area of the horizon and the radius is given by (2.51).
The other interpretation is explained as follows.
We call the newly introduced degrees of freedom φµν , without specifying its spin (0 or 2) and
we consider a particle q whose energy momentum tensor is Tµν . The interaction between
the two describes the formation of a pair of particle-antiparticle:

φ→ q + q̄.

If L−1 � mp it is a normal decay of a heavy particle into lighter ones. If, however, L−1 �
mp, what is described is the evaporation of a classical BH, which is suppressed as e 1

LT ,
where T = 1

8πGM = L
l2p

is the Hawking temperature.

2.2.3 Trans-Planckian degrees of freedom do not contribute
Now, we want to see that any hypothetical trans-Planckian degrees of freedom does not give
any contribution to external physics.
We consider an usual massless graviton to which we add a scalar massive degree of freedom
φ. That means the metric is:

gµν = ηµν +
hµν
mp

+ ηµν
φ

mp
(2.53)

and at the start we consider the mass of φ as m ≤ mp.
At large distances the equation of motion is given by the Einstein equation:

Gµν = 8πGTµν . (2.54)

To linear order and in the harmonic gauge 2∂µhµν = ∂νh.
We obtain, as calculated in the appendix (A.24):

2hµν = −16πG

(
Tµν − 1

2
ηµνT

)
. (2.55)

Then we consider a static point-like source Tµν = δ0µδ
0
νMδ(r) and substitute it:

2
hµν
mp

= −8πGMδ(r)δµν . (2.56)
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The solution is easily found to be:

hµν
mp

=
2GM

r
δµν =

RS

r
δµν , (2.57)

where RS = 2GM is the Schwarzschild radius. So, when we get close to the horizon,
hµν becomes of order 1. At the same time, higher order corrections in G become equally
important as the linear one. The series then has to be resummed, signalling the proximity
of the horizon.
These non-linear corrections are found by considering a second order expansion in hµν of
(2.54), taking into account also the interaction of gravity with its own energy-momentum
tensor. Moreover, the source energy-momentum tensor must be further corrected, as rather
than a point static mass, it is better modelled as a fluid ball with radius equal to the
Compton length.
Doing all this, at second order the result that can be found is:

h
(1)
00

mp
=
RS

r

(
1 + a

M2

m2
p

)
and h

(2)
00

mp
= −1

2

R2
S

r2
, (2.58)

where a is a factor of order one and M � mp is the source mass. We see that taking into
account these effects gives a different effective gravitational mass, but as it is much smaller
than mp, this additional contribution can be neglected. From (2.58) we see what we had
anticipated, that at r = RS the series expansion is made up of terms of order one and must
be resummed.
Now, when introducing a massive scalar degree of freedom, this gives origin to a energy-
momentum tensor:

Tµν = ∂µφ∂νφ− 1

2
ηµν

(
∂λφ∂

λφ−m2φ2
)
. (2.59)

To first order, taking a point-like static mass as source, the equations of motions of a scalar
are given by the Klein-Gordon equation with delta-like source. The first order solution of
which is φ(1) = RS

r e
−mr. Using this into (2.59) and substituting in (2.54) one can see that

the corrections to h(2)µν that are obtained are proportional to e−mr and thus exponentially
suppressed.
The correction that gives the highest contribution is the one from the non-minimal coupling:

φ∂nhk

mn+k−3
p

. (2.60)

From the equations of motion, an effective source appears in the form:(
2+m2

)
φ =

∂nhk

mn+k−3
p

+ . . . (2.61)

If we evaluate this expression with (2.57) and considering m � r−1 so that the left-hand
side

(
2+m2

)
φ ' m2φ, we obtain:

m2φ(k) ∝ Rk
S

rk+nmn−3
p

→ φ(k)

mp
∝ Rk

S

rk
1

(rmp)
n−2

(rm)2
. (2.62)

In this correction we do not observe an exponential suppression, as it is rather of power-law
type. These are due to the fact that we did not require the degree of freedom φ to propagate
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further than its Compton length, therefore the exponential suppression does not appear.
Indeed, the massive mode can be integrated out and its effects are understood as modifica-
tions of the massless metric:

gµν = ηµν +
hµν
mp

+ ηµν
∂nhk

mn+k−3
p m2

+ . . . (2.63)

In short, we have seen that the contribution from massive modes is suppressed either ex-
ponentially or by inverse power of m and therefore it cannot influence Einstein gravitation
at distances r � m−1. Nevertheless, these modes give small corrections to long-distance
physics that can, in principle, be measured.
These considerations were made at perturbative level and are therefore not applicable to
Trans-Planckian scales, where m � mp. Indeed, the Compton wavelength m−1 is smaller
than the radius of the event horizon of φ: Rφ = 2Gm.
As we have also seen before in (2.51), the black hole that is formed when trying to probe sub-
Planckian distances is a fully classical one. Therefore, we do not need the non-perturbative
approach to treat it. Indeed, φ is non-propagating and the description of the trans-Planckian
region can be made completely in terms of light already-existing degrees of freedom.
φ only covers the role, through the vertex (2.60), of controlling the decay of a classical Black
Hole by Hawking evaporation into k-massless gravitons.
Being a decay of a thermal object, it is suppressed by a Boltzmann factor e−m

T , where
T =

m2
p

m is the Hawking temperature.
Then, whenever φ is a virtual state, its contribution is exponentially suppressed.

2.3 Kaluza-Klein Theory

The extra dimensions were first introduced in 1919 by Kaluza in an attempt to unify the
gravitational and electromagnetic theories. He introduced a fifth dimension, amounting to a
total of 15 degrees of freedom: 10 for the space-time metric, 4 for the electromagnetic vector
potential and one more for a new scalar field called radion. However, he imposed a priori
that the fifth coordinate should not appear in the laws of physics, using the cylinder condi-
tion of vanishing derivatives in the fifth component. Only later, in 1926, Klein quantized this
theory and added the compactification condition, arguing that the extra dimensions should
be curled into a circle and microscopic enough to justify why it has never been observed.
This relieved the cylinder condition, making it more naturally justified and, furthermore,
it allowed a Fourier expansion, explaining the quantization of charges. The usual fields are
recovered identifying them with the ground state Fourier modes. Then, from the equations
of motion of the full d-dimensional theory, they successfully recovered the four-dimensional
Einstein’s equations, electromagnetism and a scalar field. The latter is taken to be too large
to be observed and it is thus explained.

Following the realization that string theory requires extra dimensions, Kaluza-Klein’s extra
dimensions were revived in the 80s and brought forward new interest in extra dimensional
models, which originated the ADD and RS models, both based on compactification. This
section mostly follows [10].
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2.3.1 The model
The initial setup of the Kaluza-Klein theory involves the construction of a 5-dimensional
metric.
A 5d interval can be written in the general form:

ds2 = gµνdx
µdxν + g44(dy +Aµdx

µ)2, (2.64)

where M,N = 0 . . . 4 and x4 ≡ y. The parameter Aµ indicates: Aµ =
gµ4

2g44
. Moreover, we

denote by φ2 ≡ g44.
The metric is thus:

gMN =

(
gµν + φ2AµAν φ2Aµ

φ2Aν φ2

)
.

The inverse is found thanks to the property gABg
BC = δCA :

gMN =

(
gµν −Aµ

−Aν 1
φ +A2

)
.

By making the assumption that the metric does not depend on the extra coordinate y (so-
called cylinder condition, assumed by Kaluza) gMN,4 = 0, we can calculate the corresponding
Einstein equations.
The Christoffel symbols are thus given by:

Γ4
44 = 0; (2.65)

Γ4
µ4 = φ,µ +AρAµφφ,ρ −

1

2
φ2AρFµρ; (2.66)

Γν
µ4 =

1

2
φ2F ν

µ − φAµφ
,ν ; (2.67)

Γν
µν =

1

2
gνµν, −Aνφ2Fνµ + 2φφ,µA

2 − φ,νAµAνφ+
1

2
φ2Aν (Aµ,ν +Aν,µ) , (2.68)

where Fµν = Aν,µ −Aµ,ν is the field strength tensor.
We apply the empty space condition RAB = 0 for the Riemann tensor:

RAB = ΓC
AB,C − ΓC

AC,B + ΓC
ABΓ

D
CD − ΓC

ADΓD
BC (2.69)

and we get:

Rµν = 0 → G̃µν =
φ2

2
T̃µν − 1

φ
[∇µ (φν)− gµν2φ] ; (2.70)

Rµ4 = 0 → ∇µFµν = −3
φ,µ

φ
Fµν ; (2.71)

R44 = 0 → 2φ =
φ3

4
FµνF

µν , (2.72)

where
G̃µν = Rµν − 1

2
Rgµν (2.73)

is the usual Einstein tensor, and

T̃µν =
1

4
gµνF

ρσFρσ − F ρ
µFνρ (2.74)
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is the electromagnetic stress-energy tensor.
If the scalar field φ is constant, we recover Einstein and Maxwell equations from (2.70) and
(2.71):

G̃µν =
φ2

2
T̃µν , ∇µFµν = 0. (2.75)

We can rescale Aµ → kAµ so as to get the correct coefficient in the Einstein equations:
k = 4

√
πG and φ = 1.

This is exactly what Kaluza did, but, as was later pointed out by Thiry and Jordan, this is
inconsistent with the third field equation (2.72) unless FµνFµν = 0. In that case, we would
simply obtain th Klein-Gordon equation for a massless scalar.
We saw how the source-less 5-dimensional equations RAB = 0 give rise to the field equa-
tions (2.70),(2.71),(2.72) which are instead sourced. Therefore, we can conclude that it was
proven how 4-dimensional radiation can be originated simply by empty 5d space geometrical
properties.
If we do not set φ =constant and do not consider the cylinder condition, we can instead
choose the coordinates so that Aµ = 0. This is only valid in homogeneous and isotropic
situations, as the off-diagonal components of the metric vanish:

gMN =

(
gµν 0
0 φ2

)
.

In these cases only scalar fields dominate and we are in the so-called ”graviton-scalar sector”
of the theory.
This model corresponds to a Brans-Dicke theory with a parameter ω & 500 which is ruled
out by experiments, at least in the present era.

2.3.2 Compactification
The assumption that physics is not influenced by the fifth coordinate which is encoded in
Kaluza’s cylinder condition was justified by Klein in 1926. He explained the fact that we do
not see the effects of the extra dimension by making it very small, so that its contribution
would be negligible.
The fifth dimension is taken to be of circular topology (S1) and small scale. Therefore, if y
is the extra coordinate and R is the radius of the circle:

y=̂y + 2πR. (2.76)

From this property of periodicity, we can Fourier expand in the y coordinate all the fields
that are involved:

φ(x, y) =

n=+∞∑
n=−∞

φ(n)(x)e
iny
R ; (2.77)

gµν(x, y) =

n=+∞∑
n=−∞

g(n)µν (x)e
iny
R ; (2.78)

Aµ(x, y) =

n=+∞∑
n=−∞

A(n)
µ (x)e

iny
R , (2.79)
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with the superscript (n) to indicate the nth Fourier mode.
Therefore, these modes carry a momentum n/R and if R is small, as assumed by Klein,
then even for n = 1 they would be undetectable and only the 0th mode (independent of y)
would remain, as it was in Kaluza’s theory. Then, if the scale R is small enough, there is an
invariance for translations along the extra dimension, which corresponds to moving around
the circle:

y → y′ = y + f(x). (2.80)
So, by applying the tensor transformation law:

gAB → g′AB =
∂xC

∂x′A
∂xD

∂x′B
gCD (2.81)

and using the metric (2.64), we see that the only component that is transformed under the
translation (2.80) is:

g′µ4 =
∂xν

∂x′µ
∂y

∂y′
gν4 +

∂xν

∂x′µ
∂xρ

∂y′
g44 = δνµgν4 + δνµ∂

ρf(x)gρν = gµ4 + ∂µf(x). (2.82)

This implies then:
Aµ → Aµ + ∂µf(x), (2.83)

which is a U(1) gauge transformation. So, as expected, Aµ really corresponds to the elec-
tromagnetic field, inserted in a 5-dimensional theory.

2.3.3 Masses and charge
We can see an application of the above described mechanism on the free real scalar field:

S5 =M5

∫
d5x

√
−g∂MΦ∂MΦ∗, (2.84)

where M5 is a parameter with dimensions of a mass, as we conclude from the requirement
that the action must be dimensionless. In fact, from the definition S =

∫
ddxL , we know

that every term in the Lagrangian must have mass-dimensions d.
The kinetic term for a scalar field:

d = [∂µΦ∂
µΦ∗] = 2 + 2 [Φ] → [Φ] =

d

2
− 1 = 1 if d=4 . (2.85)

In order to keep the same mass dimensions for Φ even in 5 dimensions, we introduce the
scale M5 so that:

d = [M5∂µφ∂
µφ∗] = 4 + [M5] → [M5] = d− 4 = 1 if d=5 . (2.86)

By plugging in the Fourier expanded field, normalized by the volume of the extra dimension,
and using the inverse metric of (2.64), we get:

S5 =
M5

2πR

∑
n

∫
d4xdy

√
−g
[
∂µΦ

(n)∂µΦ(n) − in

R
AµΦ(n)∂µΦ

(n)

+
in

R
Aµ∂µΦ

(n)Φ(n) −
(
1

φ
+A2

)
n2

R2
Φ(n)2

]
=
M5∑

n

∫
d4x

[[(
∂µ +

in

R
Aµ

)
Φ(n)

]2
− n2

φR2
Φ(n)2

]
. (2.87)
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We notice that we can define a covariant derivative as
(
∂µ + in

RAµ

)
, in an analogous way

to QED, where ∂µ → ∂µ + iqAµ. The role of the charge q is taken up by n
R and thus, by a

convenient normalization, we can identify the electronic charge with the first Kaluza-Klein
mode q1.
We can use it to predict the coupling constant for QED:

α ≡ q21
4π

' 4, (2.88)

if we consider R
√
φ ∼ lp =

√
G and qn = n

R
√
φ
4
√
πG.

Taking a better approximation for R
√
φ would probably get closer to the actual value, but

the masses pose the real problem. Indeed, as the action is now made up of a kinetic and a
mass term, we can read off the mass from the quadratic term:

mn =
|n|
R
√
φ
. (2.89)

Then the mass of the electron m1 would be, assuming R
√
φ ∼ lp as before, m1 ∼ l−1

p = 1019

GeV 6= 0.5 MeV by several orders of magnitude.
As a consequence to this result the theory was first abandoned and later fixed by assuming
the observed parameters are instead the n = 0 ones. Even though it would imply the mass
of the particles is null, the experimental value for the masses can be recovered by considering
a SSB mechanism. The problem of giving a non-zero charge to SM particles can be shown
to be instead solved by considering higher-dimensional theories.
Now we can consider another example with a complex scalar field, described by the action:

S5 =M5

∫
d4xdy

√
−g
[
|∂µΦ|2 + |∂yΦ|2 + λ5|Φ|4

]
. (2.90)

Next, we require the compactification of the extra dimension y and Fourier expand Φ:

Φ(x, y) =
1√

2πRM5

n=+∞∑
n=−∞

Φ(n)(x)e
iny
R Φ(n)†(x) = Φ(−n)(x). (2.91)

By inserting it in (2.90) with the simple metric ds2 = gµνdx
µdxν + dy2 we get:

S5 =

∫
d4xdy

√
−g 1

2πR

∑
n

[∣∣∣∂µΦ(n)
∣∣∣2 − n2

R2

∣∣∣Φ(n)
∣∣∣2 + λ5

2πR

∣∣∣Φ(n)
∣∣∣4] . (2.92)

We redefine λ4 ≡ λ5

2πR and after integrating over y (there is no y dependence in the Lag-
rangian now so it only gives a factor 2πR) we see that it is possible to decompose (2.90) in
2 parts:

S5 = S
(0)
4 + S

(n)
4 (2.93)

defined as:
S
(0)
4 =

∫
d4x

√
−g
[∣∣∣∂µΦ(0)

∣∣∣2 + λ4

∣∣∣Φ(0)
∣∣∣4] ; (2.94)

S
(n)
4 =

∫
d4x

√
−g
∑
n 6=0

[∣∣∣∂µΦ(n)
∣∣∣2 − n2

R2

∣∣∣Φ(n)
∣∣∣2 + λ4

∣∣∣Φ(n)
∣∣∣4] . (2.95)
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It is evident that (2.94) corresponds to the 4d scalar theory for a massless field, while the
term (2.95) refers to an infinite Kaluza-Klein tower of massive modes φ(n)(x).
The equation of motion for (2.84) is:

∂M∂
MΦ = 0, (2.96)

which corresponds to a 5-dimensional Klein-Gordon equation.
By substituting the Kaluza-Klein expansion (2.91), this becomes:∑

n

(
∂µ∂µ − n2

R2

)
Φ(n)(x)e

iny
R = 0 (2.97)

and it corresponds to:

2Φ(n)(x) =
n2

R2
Φ(n)(x), (2.98)

where m2
n ≡ n2

R2 is the mass of the Kaluza-Klein modes. Therefore, it is possible to treat a
theory with d > 4 as if it were 4 dimensional but with an infinite amount of fields. Even
though the theory is non-renormalizable due to the presence of infinite modes, we can achieve
renormalizability by truncating the series and using only the lowest Kaluza-Klein excitations.
In fact, the heavy modes would only be significant at high energies E � R−1. In particular,
if R is very small, the Kaluza-Klein modes are heavy (since m2

n = n2

R2 ) and basically only
the 0 mode contributes to the action, i.e. the model is effectively 4 dimensional. Conversely,
if R is big enough, the extra dimensions can be regarded as flat (the radius R → ∞) and
the spacetime is seen as d-dimensional. Also, in this limit λ4 → 0 and thus the scalar field
is weakly coupled.
Another thing we notice is that if we had taken the extra dimension y to be temporal instead
of spatial, in addition to having an unclear interpretation, it would be problematic in the
fact that it would generate tachyonic modes in the Klein-Gordon equation. Indeed, the sign
of g44 would be opposite, giving a negative mass. It would, in fact, appear in the metric
with an opposite sign and the KG equation derived from (2.96) would give negative mass
modes.

2.4 ADD Model
The idea to solve the hierarchy problem came in 1998 by Nima Arkani-Hamed, Savas Dimo-
poulos and Georgi Dvali and formulated in [12]-[13]. To introduce extra dimensions while
at the same time explaining why they remain undetected, they are taken to be finite and
compactified, analogously to Kaluza-Klein’s. To keep these dimensions hidden, the simplest
idea is to take them small so that in order to probe them one would need a very large
energy. Nevertheless, this model concerns large extra dimensions in order to recover the ex-
perimental value of the Planck mass, as the observed physics should be a four-dimensional
effective theory of a more fundamental general model.

We start by introducing n extra dimensions, so that spacetime is effectively d-dimensional
with d = 4 + n. Then, the reduced Planck mass Mpl = 2 · 1018 GeV is found to be given
in terms of the d-dimensional Planck mass Md by the relation M2

pl = Mn+2
d Vn, where Vn

is the volume of the compact extra dimensions. Therefore, the large value of Mpl can be
explained without affecting Md, which can be taken to be ∼ 1 TeV in a natural way, by
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assuming the extra dimensions are very large, increasing the volume Vn.

Since the Standard Model works well in the usual four dimensions, only gravity is taken to be
able to propagate on the whole d-dimensional spacetime, called bulk, while the SM is confined
on a 3-brane, that is a four-dimensional subspace. Indeed the mass scale of compactification
µc ∼ R−1

n ∝ V
− 1

n
n is much smaller than Mew and should be able to change the electroweak

theory we measure. Since we do not detect any changes, it is reasonable to assume the
SM is not affected by a d-dimensional space, but rather lives only on a four-dimensional
subspace. Then, only gravity, as it is defined as a distortion of spacetime itself, is able to
enter the extra dimensions and new physics that is given by these additional dimensions
would only affect the gravitational sector. This is why we were not able to detect anything
despite having large extra dimensions. The true bond on the size of these is given by ex-
perimental tests on deviations from Newton’s law that have been measured so far ([17]-[18]).

To avoid confusion, in this section we use a different notation for the Planck mass. To
clarify it once more: Mpl indicates the four-dimensional reduced Planck mass; Mp is the
four-dimensional Planck mass: Mp =

Mpl√
8π

and finally Md indicates the d-dimensional Planck
scale.

2.4.1 The model
We start by constructing the higher dimensional action by generalizing the Einstein-Hilbert
one. The general metric is given by ds2 = gMNdx

MdxN where the indices areM,N = 0 . . . 4.
Moreover, if we take gMN to be dimensionless, then the Christoffel symbols’ mass units are[

ΓP
MN

]
=
[
gPRgMN,R

]
= [∂R] = 1. (2.99)

The Riemann tensor, therefore, has units:

[RMN ] =
[
ΓP
MN,P

]
= 2. (2.100)

To make the action dimensionless and in the same form as the four-dimensional Einstein-
Hilbert action, we need to add a parameter with dimensions d− 2 (since [R] = [RMN ] = 2

and
[
ddx
]
= −d). This parameter represents a new mass scale and we denote it as M̄2+n

d

2
for later convenience.
Furthermore, as the Standard Model has been accurately tested at distances ∼Mew, we can
assume the extra dimensions have a negligible effect on it, as we said in the introduction.
Therefore, the SM particles are confined to a 3-brane, with induced metric g4.
Taking all this into consideration, we obtain:

SEH =
M̄2+n

d

2

∫
d4xdny

√
−gR+

∫
d4x

√
−g4LSM , (2.101)

where x has been used for the four-dimensional spacetime coordinates and y for the n extra
ones.
We consider the n extra dimensions to be compactified on a torus of radius R, so that the
volume takes the simple form Vn = (2πR)n.
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Next, we proceed to Kaluza-Klein-expanding the graviton field:

gµν(x, y) = g(0)µν (x) +
1√
Vn

∑
~n6=0

g(n)µν (x)e
i~n~y
R . (2.102)

By performing a Kaluza-Klein reduction as was done in the dedicated section, at low energies
we have that only the 0-th mode is relevant:

S
(0)
EH4 =

M̄2+n
d

2
Vn

∫
d4x
√
−g(0)R(0) +

∫
d4x

√
−g(0)4 LSM (2.103)

and it must match the four-dimensional theory:

SEH4 =
1

16πG4

∫
d4x

√
−g4R4 +

∫
d4x

√
−g4LSM , (2.104)

where the subscript 4 indicates the four-dimensional spacetime.
The low energy correspondence with the four-dimensional theory implies a relation between
the usual Planck mass Mpl and the mass scale M̄d. Indeed, remembering the relation found
in the specific section: M−2

p = G4, we can write a correspondence in terms of the Planck
mass

1

16πG4
=
M2

pl

2

!
=
M̄2+n

d

2
Vn. (2.105)

Therefore
M2

pl = M̄2+n
d Vn ≡M2+n

d Rn, (2.106)

where we redefined Md ≡ M̄d(2π)
n.

To solve the hierarchy problem, we assumed there is only one relevant mass scale, that is
Mew ∼ 1 TeV, therefore we impose Md ∼ 1 TeV. To recover the experimental value for the
four-dimensional reduced Planck mass Mpl, which is:

M̃pl = 2.435 · 1018GeV/c2, (2.107)

we impose a constraint on R. Expressing it from the above condition (2.106), we can predict
possible values for the compactification radius:

1

R
=Md

(
Md

Mpl

) 2
n

= (1TeV)10−
30
n . (2.108)

By using the conversion factor 1 GeV−1 = 2 · 10−14 cm, we get the following results:

For n = 1, R ∼ 1013 cm, which would imply deviations from Newtonian gravity on the
scales of the Solar systems (one astronomic unit is 1.5 · 1013 cm), but since no such thing
has been observed, it is ruled out.

For n = 2, R ∼ 0.1 mm and this case is particularly interesting since it would be possible
to probe these distances in the near future. So far, gravity has only been tested at scales of
1 mm.
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For n ≥ 2 the scale R of the extra dimensions gets smaller and smaller R ≤ 10−6 cm in the
range not yet investigated by experiments and very unlikely to be probed soon.

The effective value of the coupling constant, which contains the Planck mass, gets lowered
from proportional to Mpl to a value proportional to Md, as a result of the dependence on the
radius of compactification. This solves the hierarchy problem, as Md is set to be equal to
the Electroweak scale and it also contributes to build expectations for the future of colliders,
as they would be able to probe energies close to the new threshold for quantum gravity.

Next, we can apply the same reasoning to the electromagnetic field, while removing the
assumption that the Standard Model is localized on the 3-brane:

S =

∫
d4xdny

√
−g(4+n)

1

4g∗2d
FMNF

MN , (2.109)

where g∗2d is the d-dimensional coupling constant and the theory is take to be non-canonically
normalized.
Now we perform a Kaluza-Klein reduction, keep the 0-th mode and integrate over the extra
dimensions, like we did before:

S =
Vn
4g∗2d

∫
d4x
√

−g(4)FµνF
µν , (2.110)

where Fµν is the usual four-dimensional electromagnetic field strength.
The matching with the corresponding four-dimensional action is thus:

Vn
g∗2d

=
1

g∗2
. (2.111)

It is now evident that the d-dimensional coupling constant is not dimensionless any more:
[g∗d] = [Vn]

1/2
= −n

2 . Consequently, the theory is non-renormalizable and can thus be
thought of as an effective theory for a higher dimensional more fundamental one.
To solve this, we apply the same reasoning we used for the gravitational scale to the gauge
field and we assume:

g∗d ∼ 1

M̄
n/2
d

, (2.112)

using Md ∼ 1 TeV as the only mass scale.
Then the above relation (2.111) becomes:

1

g∗2
∼ VnM̄

n
d = RnMn

d . (2.113)

From this, we can obtain Md and substitute it in (2.106), getting:

R ∼ g
n−2
n

4

Mpl
. (2.114)

This would imply R ∼ 1
Mpl

but, as such, it would rule out the possibility of finding extra
dimensions in the future. This was the main obstacle to the development of theories with
extra dimensions until the ’90s.
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2.4.2 Observational evidence
Experiments on gravity are difficult to perform, because at small scales intermolecular and
electromagnetic interactions are prevalent and gravity is negligible. This is the reason why
Newton’s law has only been tested up to the scale ∼ 0.1 mm by essentially Cavendish-type
experiments. The method to investigate the presence of extra dimensions is by studying the
deviation from the Newtonian potential Φ(r) ∼ 1

r .

To see this, we first derive the expression for the gravitational potential in d dimensions.
To start with, we define the gravitational force per unit test mass:

~g = −∇Φ, (2.115)

where Φ is the potential.
We can infer g(r) ∝ 1

rd−2 from the request that the gravitational field is a coulombian field,
i.e. its divergence is null if r 6= 0. We use the fact that we can write ~g(r) = g(r)r̂ as it is
a radial field and write r̂ = ~r

r . Then, in the second line, we make use of ∇ · r = d− 1 and
~∇r = ~r

r

0 = ~∇ · ~g = ~∇ · [g(r)r̂] = ~∇ ·
[
g(r)

r
~r

]
=
g(r)

r
~∇ · ~r + ~∇

[
g(r)

r

]
· ~r

=
g(r)

r
(d− 1) +

(
dg

dr

1

r
− g(r)

r2

)
~r

r
~r =

g(r)

r
(d− 2) +

dg

dr

=
1

rd−2

d

dr
(rd−2g(r)). (2.116)

Therefore the potential is:
Φ(r) = −GM

rd−3
. (2.117)

So, roughly, the potential should behave this way, with G representing a d-dimensional grav-
itational constant. We can see it more precisely in another way.

In the usual four-dimensional spacetime, the potential Φ is determined by the Poisson equa-
tion:

∇2
(3)Φ

(4) = 4πG(4)ρ(4), (2.118)
where the number in brackets indicates the dimensionality of the space considered. By
inverting the Laplacian we find the solution:

Φ =
M

r
G(4) =

M

M2
p

1

r
(2.119)

for a mass M and G(4) =M−2
p .

The equation (2.118) is derived from the weak field limit of the Einstein equation:

gµν = ηµν + hµν , |hµν | � 1 everywhere (2.120)

with conditions |T00| � |T0i| � |Tij |. We can generalize the construction to d arbitrary
dimensions, as follows.
By using the harmonic gauge:

hµν,ν =
1

2
ηµνhλλ,ν , (2.121)
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where the index µ = 0, . . . , d covers all dimensions, the Ricci tensor and scalar take the
form:

Rµν = −1

2
2hµν , R = −1

2
2h. (2.122)

The Einstein’s equation is thus:

− 1

2

[
2hµν − 1

2
ηµν2h

]
≡ −1

2
2h̄µν = 8πGTµν . (2.123)

Taking only the dominant component h00 and neglecting the temporal derivatives 2 ' ∇2:

∇2h̄00 = −16πGρ. (2.124)

We argue that this must be the d-dimensional Poisson equation:

∇2
(d−1)Φ

(d) = 4πG(d)ρ(d). (2.125)

Therefore we establish the correspondence h̄00 = −4Φ(d).
Since

h = hλλ ' h00 ' η00h00 = −h00, (2.126)

we get

h̄00 = h00

(
1− 1

2

)
→ h00 = −2Φ(d). (2.127)

By inverting the Laplacian we find:

Φ(d) = − 8πG

(d− 2)Ωd−2

M

rd−3
, (2.128)

which is exactly the behaviour we already mentioned and which we aimed to find. The
constant differs from the one in (2.119) due to a redefinition of G.

Now, we inspect the behaviour of the potential under toroidal compactification of the extra
dimensions, also re-deriving equation (2.106) through the use of Gauß law. We introduce
d− 4 compact spacial extra dimensions with period 2πR ≡ L:

yi=̂yi + L, i = 1 . . . n. (2.129)

We place a mass m in the origin and unfold the compactified extra dimensions, so that it
corresponds to repeating the mass every distance L from the previous one. A test mass
placed at r � L will feel the d dimensional force law, since the mirror masses give a negli-
gible contribution. On the other hand, if r � L, the mirror masses will be too close to each
other to be distinguished and together they will form a d− 4 dimensional line of homogen-
eous distribution.

The gravitational field, in the first case, is:

g(r) = −
Gm

rd−2
, (2.130)

where G is understood as d-dimensional.
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Next, we study the second case as an application of Gauß’ law to a line homogeneous
distribution.
We choose a hyper-cylinder C of length l as a Gaußian surface placed around the multi-line.
Gauß’ law in d dimensions is:∫

∂C

dd−2x ~g · n̂ =

∫
C

dd−1x ~∇ · ~g. (2.131)

We start by calculating the flux of ~g in d− 1 dimensions:
We consider a mass M placed in the origin and a (d-1)-sphere of radius R as Gaußian
surface: ∫

Sd−1

dd−2x ~g · n̂ =

∫
dΩd−2R

d−2g(R) = −Ωd−2R
d−2 GM

Rd−2

= −Ωd−2GM. (2.132)

Now we surround the mass by an arbitrary surface Σ and a sphere S. Then, we link them
together by two paths (P1 and P2) distant ε from each other.
Calling the total volume V :∫

V

dd−1x ~∇ · ~g = 0 =

∫
S

dd−2x ~g · n̂+

∫
Σ

dd−2x ~g · n̂

+

(∫
P1

−
∫
P2

)
dd−2x ~g · n̂, (2.133)

where the contribution of the two paths cancels because ~g is the same, since their distance
is infinitesimal, but the normal unit vector n̂ is opposite.
We conclude:

−
∫
S

dd−2x ~g · n̂ =

∫
Σ

dd−2x ~g · n̂, (2.134)

where the minus sign is due to the orientation of the surfaces.
Then we just proved that the result (2.132) is independent of the shape of the Gaußian
surface. Then we consider that since the divergence of ~g is null except on r = 0, if the mass
is placed outside of the Gaußian surface, the flux is 0.
Next, we can express the total mass M as:

M = m

(
l

L

)d−4

, (2.135)

which means the total mass is given by the number of mirror masses m contained in the
cylinder in every extra dimension.
Then the r.h.s of (2.131) is:

− Ωd−2Gm

(
l

L

)d−4

. (2.136)

To calculate the l.h.s of (2.131):∫
∂C

dd−2x ~g · n̂ = g(r) · Area of C, (2.137)
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we need the area of the cylinder.
The hyper-cylinder can be written as the Cartesian product B3×Ld−4. Ld−4 is the multiline,
while B3 is the 3-ball of volume:

V =
π

3
2 r3

Γ
(
5
2

) (2.138)

and area
A =

∂

∂r
V. (2.139)

The area of the hyper-cylinder is thus given by:

4πr2ld−4 (2.140)

and therefore equation (2.131) is:

g(r)4πr2ld−4 = −Ωd−2Gm

(
l

L

)d−4

. (2.141)

This allows us to conclude:
g(r) = −

Ωd−2G

4πLd−4

m

r2
, (2.142)

which is the typical behaviour of a four-dimensional gravitational field g(r) ∼ 1
r2 .

We can identify:

G4 =
Ωd−1G

4πV(d−4)
, (2.143)

where V(d−4) is the volume of the compactified extra dimensions.
We can conclude the following:

g(r) = −
Gm

rd−2
if r � L;

g(r) = −
G4m

r2
if r � L.

(2.144)

Now, in order to write the same relation in terms of the Planck masses, we need to use the
d-dimensional Planck mass.
In the dedicated section we already found:

G =
1

Md−2
d

, (2.145)

so that:
1

M2
p

= G4 =
Ωd−2G

4πV(d−4)
=

Ωd−2

4π

1

Md−2
d V(d−4)

. (2.146)

From this we get again
M2

p ∝Md−2
d V(d−4) (2.147)

and: 
g(r) = −

m

Md−2
d

1

rd−2
if r � L;

g(r) = −
Ωd−2

4π

m

Md−2
d V(d−4)

1

r2
if r � L.

(2.148)
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We can now study the deviation from Newton’s law on toroidal compactification and analyse
the corrections to the four-dimensional potential.
They can be parametrized as:

Φ(r) = −G
(4)M

r

(
1 + αe−

r
λ

)
. (2.149)

We infer that the potential grows stronger as the distance r between the masses decreases.
The parameter α determines the strength of the deviation, while λ signals the scale at
which this becomes relevant. The value of λ is found to be at most 1 mm, leaving open the
possibility of discovering submillimeter new forces.
The potential for the gravitational force calculated before is:

Φ(r) = −
GM

rn+1
, (2.150)

where n represents the number of extra dimensions.
On toroidal compactification, we perform the same trick of unfolding the extra dimensions
and replicating the masses every L. The square distance between the test mass and the
mass M becomes

∑
b∈Z
(
r2 +

∑n
i=1(Lb)

2
)

where b is an integer and r is the distance of the
test mass from the centre.
In general, we can consider a different radius of compactification for every extra dimensions
and thus:

Φ(r) = −
∑

~b,bi∈Z

GM

[r2 +
∑n

i=1(Libi)2]
n+1
2

. (2.151)

In the limit r � L we can approximate the sum over b with an integral:

Φ(r) = −
∫ ∞

−∞
dnb

GM

[r2 +
∑n

i=1(Libi)2]
n+1
2

. (2.152)

Now we make the substitution xi =
Lib

i

r and obtain:

Φ(r) = −
∫ ∞

−∞
dnx

rn

Vn

GM

[1 +
∑

i=1 x
2
i ]

n+1
2

1

rn+1
, (2.153)

where Vn = (2π)n
∏

iRi.
Now we change to polar coordinates:

Φ(r) = −GM
rVn

∫ ∞

0

dρΩn−1
ρn−1

(1 + ρ2)
n+1
2

. (2.154)

Subsequently, we perform a new change of variables u = ρ2:

Φ(r) = − GM

2rVn
Ωn−1

∫ ∞

0

du
u

n−1
2

(1 + u)
n+1
2

. (2.155)
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In this expression, we recognize the Beta function, defined as:

B(p− 1, q + 1) =

∫ ∞

0

du
up

(1 + u)p+q+2
=

Γ(p+ 1)Γ(q + 1)

Γ(p+ q + 2)
, (2.156)

so that we get:

Φ(r) = − GM

2rVn
Ωn−1

Γ(n2 )Γ(
1
2 )

Γ(n+1
2 )

= − GM

2rVn
Ωn. (2.157)

This is the Newtonian behaviour we would expect, with the identification:

G(4) =
G

2Vn
Ωn. (2.158)

Now, to see the corrections to the potential, we must also take the limit r � L and in-
vestigate the short distance regime of (2.151). To do so, we employ the Poisson summation
formula: for a periodic function f(nR) with n ∈ Z it allows us to write it in another way
by using its Fourier transform f̃ :

∞∑
n=−∞

f(nR) =

∞∑
n=−∞

f̃
(
n
R

)
2πR

. (2.159)

We can generalize it to the case of periodicity in n directions.
First, we define the quantities: ~m =

(
b1

R1
, . . . , bn

Rn

)
and ~y =

(
L1b

1, . . . , Lnb
n
)

and then
obtain:

Φ(r) = −GM
Vn

∫
dny

∑
~b,bi∈Z

e−i~m·~y[
r2 +

∑n
i=1 (x

2
i − 2πRibi)

2
]n+1

2

. (2.160)

Now we perform a change of variables by shifting the y coordinate y → y+x, and we notice
the measure is invariant:

Φ(r) = −GM
Vn

∫
dny

∑
~b,bi∈Z

e−i~m·~x e−i~m·~y

[r2 +
∑n

i=1(yi)
2]

n+1
2

. (2.161)

Then we change to spherical coordinates, but making sure to keep out the θ dependence, as
in: ∫

dny =

∫
dρdθΩn−2ρ

n−1 sinn−2 θ. (2.162)

The result is, denoting m = |~m|:

Φ(r) = −GM
Vn

Ωn−2

∑
~b,bi∈Z

e−i~m·~x
∫ ∞

0

dρρn−1 1

[r2 + ρ2]
n+1
2

∫ π

0

dθe−imρ cos θ sinn−2 θ.

(2.163)
We change the integration variable in the second integral to u ≡ cos θ:

Φ(r) = −GM
Vn

Ωn−2

∑
~b,bi∈Z

e−i~m·~x
∫ ∞

0

dρρn−1 1

[r2 + ρ2]
n+1
2

∫ 1

−1

dueimρu(1− u2)
n−3
2 . (2.164)
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Then we notice that e−imρu = cos(mρu) + i sin(mρu), of which, on the interval [−1, 1], the
sine part does not contribute.
We thus write the angular integral as:

I ≡
∫ 1

−1

du cos(mρu)(1− u2)
n−3
2 . (2.165)

By renaming the quantities z ≡ mρ and ν ≡ n
2 − 1, we recognize the Bessel function:

I = Jn
2 −1(mρ)

Γ( 12 )Γ
(
n−1
2

)(
mρ
2

)n
2 −1

. (2.166)

Then, renaming again b ≡ m and r2 ≡ a2, we take the first integral and obtain:∫ ∞

0

dρρn−1 1

[r2 + ρ2]
n+1
2

Jn
2 −1(mρ)

Γ( 12 )Γ
(
n−1
2

)(
mρ
2

)n
2 −1

=
Γ( 12 )Γ

(
n−1
2

)(
m
2

)n
2 −1

∫ ∞

0

dρ
ρ

n
2

[r2 + ρ2]
n+1
2

Jn
2 −1(mρ)

=
Γ( 12 )Γ

(
n−1
2

)(
m
2

)n
2 −1

m
n
2 −1

√
π

2
n
2 rermΓ

(
n+1
2

) . (2.167)

Putting it all together:

Φ(r) = −GM
Vn

Ωn−2

∑
~b∈Z

e−i~m·~xΓ(
1
2 )Γ

(
n−1
2

)(
m
2

)n
2 −1

m
n
2 −1

√
π

2
n
2 rermΓ

(
n+1
2

)
= −GM

2Vn
Ωn

∑
~b∈Z

e−i~m·~x 1

rerm

= −G
(4)M

r

∑
~b∈Z

e−i~m·~xe−rm. (2.168)

We can take the points in the distribution to be in the origin ~x = 0 and get:

Φ(r) = −G
(4)M

r

∑
~b,bi∈Z

e−rm. (2.169)

The term with ~b = 0 corresponds to the Newtonian potential and the others are the Kaluza-
Klein modes, so we find the first correction by analysing the lightest mode

∣∣∣~b∣∣∣ = 1:

Φ(r) = −G
(4)M

r

(
1 + 2n0e

− r
R0

)
, (2.170)

where n0 is the number of dimensions with the same radius R0. So that r
R0

is the mass of the
2n0 states (2 for every extra dimension, since two states bi = ±1 have the same modulus).



34 CHAPTER 2. EXTRA DIMENSIONS

2.5 Randall-Sundrum Model
This model was developed in 1999 as an alternative to the ADD scenario, criticized because
instead of solving the hierarchy, it rather pushes the problem to a new hierarchy between
the compactification scale and the Planck mass. Indeed, the size of extra dimensions would
be around µc ∼ 8 · 103 eV, without a justification to explain why it is so different from the
value of the d-dimensional Planck scale Md. Moreover, in that model, it was required the
four-dimensional metric was independent of the extra dimensions, which is not a general as-
sumption. Indeed, we are going to take a non-factorizable metric, with the four-dimensional
components multiplied by an exponential factor that carries the extra dimensional depend-
ence, called warp factor. Another difference with the ADD model is that this time we are
going to use two 3-branes instead of one, which are located at the boundaries of an orbifold
S1/Z compactification on the extra dimension.

The Standard Model is, again, taken to be confined only to a 3-brane, while gravitons are
able to propagate on the bulk. While the four-dimensional Planck mass takes the same
value on both branes, to reach one of the two branes mass scales undergo a rescaling by
the warp factor, thus generating the hierarchy on the brane we live on. Therefore, it was
not necessary to assume extra dimensions are very large. The only unnatural parameter is
the warp factor’s exponential, which is set to ∼ 30 while its natural value would be of the
order of unity. This problem is fixed by setting this parameter dynamically through radius
stabilization. In this discussion we follow [19]-[23].

2.5.1 The model
We consider a 5-dimensional model, i.e. with only one extra dimension that we call y. It
is compactified on an orbifold, that is a circle in which we identify the upper and lower
halves: S1

Z2
, where S1 is the circle and Z2 = {1,−1}. There are two fixed points: 0 and

πR ≡ L. This means f(y) ∈ [0, πR], with periodicity f(y) = f(y+2πR) and even condition
f(y) = f(−y). Alternatively, we can consider even functions on the interval [−L,L] on the
circle.
The generalized Einstein-Hilbert action is therefore:

S =

∫
d4x

∫ L

−L

dy
√
−g
(
M3R− Λ

)
, (2.171)

where M3 = 1
16πG is proportional to the reduced d-dimensional Planck mass, R is the d-

dimensional Ricci scalar and Λ is a cosmological constant.
For the metric, we use the Ansatz:

gµν = e−2A(y)ηµνdx
µdxν + dy2, (2.172)

where we take the 4-dimensional space to be Minkowski for simplicity.
Now, we use the Einstein equations:

GMN = 8πGTMN , (2.173)

where the capital indices run from 0 to 4 and the index 4 corresponds to y.
The Christoffel symbols are given by:

ΓP
MN =

1

2
gPQ (gMQ,N + gQN,M − gMN,Q) . (2.174)
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The only non-vanishing ones are:

Γ4
µν =

1

2
g44(−gµν,4)

= A′e−2Aηµν ;

Γν
µ4 =

1

2
gρν(gµρ,4)

=
1

2
ηρνe2A(ηµρ(−2A′e−2A))

= −A′δνµ, (2.175)

where the prime indicates the derivative with respect to y.
The Ricci tensor is:

RMN = ΓP
MN,P − ΓP

MP,N + ΓP
PQΓ

Q
MN − ΓP

NQΓ
Q
MP . (2.176)

Therefore its components are:

Rµν = Γ4
µν,4 + Γρ

ρ4Γ
4
µν − Γρ

ν4Γ
4
µρ − Γ4

νρΓ
ρ
µ4

= (−2A′2 +A′′)e−2Aηµν −A′2δρρe
−2Aηµν +A′2δρνe

−2Aηµρ +A′2δρµe
−2Aηνρ

= (−4A′2 +A′′)e−2Aηµν

= (−4A′2 +A′′)gµν ;

R44 = −Γρ
ρ4,4 − Γν

µ4Γ
µ
ν4 =

= A′′δρρ −A′2δνµδ
µ
ν = 4A′′ − 4A′2. (2.177)

From these we also construct the Ricci scalar as:

R = gMNRMN

= R44 + gµνRµν

= 4A′′ − 4A′2 + 4(−4A′2 +A′′)

= 8A′′ − 20A′2. (2.178)

The Einstein tensor is:
GMN = RMN − 1

2
RgMN (2.179)

and now we can calculate it:

Gµν = Rµν − 1

2
Rgµν

=
[
−4A′2 +A′′ − (4A′′ − 10A′2)

]
gµν

= 3
[
2A′2 −A′′] gµν

G44 = R44 −
1

2
R

= 4A′′ − 4A′2 − (4A′′ − 10A′2)

= 6A′2. (2.180)
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By a variation of the action (2.171) with respect to the metric, we obtain the Einstein
equation as equation of motion:

GMN =
1

2M3
TMN , (2.181)

where TMN is the energy-momentum tensor given by:

TMN = −2
δ(
√
−gL )√

−gδgMN
. (2.182)

In this action (2.171), the only contribution to TMN comes from the cosmological constant
Λ.
Therefore, the Einstein equation can be written as:

GMN = − 1

2M3
ΛgMN (2.183)

and this gives the equations:

Gµν = 3
[
2A′2 −A′′] gµν = − 1

2M3
Λgµν ;

G44 = 6A′2 = − 1

2M3
Λ. (2.184)

From the 44 component we get:

A′2 = − 1

12M3
Λ ≡ k2. (2.185)

In this equation we defined k and we notice that if it is real then Λ must be negative
( =⇒ the spacetime is AdS). In this model we are precisely interested in k real so that the
exponential is decaying and not oscillating.
Integrating the equation (2.185) over y gives:

A(y) = ±ky. (2.186)

Since we need to maintain the orbifold Z2 symmetry y → −y, we express it like this:

A(y) = k|y|. (2.187)

The metric can then be written as:

gMN = e−2k|y|ηµν + δ4Mδ
4
n (2.188)

and its inverse is taken to be:

gMN = e2k|y|ηµν + δM4 δn4 . (2.189)

From the expression for A we can calculate its derivatives as:

A′ = sgn(y)k = [θ(y)− θ(−y)] k;
A′′ = 2kδ(y). (2.190)
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This second derivative comes only from the delta in y = 0 but there is actually another one
in y = L, so by putting them together:

A′′ = 2k(δ(y)− δ(y − L)). (2.191)

Next, we plug this into the four dimensional component of the Einstein equations and get:

Gµν = 6k(k − δ(y) + δ(y − L))gµν . (2.192)

The term 6k2 cancels with what we had previously calculated in the l.h.s., but the deltas do
not seem to be matched to anything. The reason for this is that our setup was not completely
correct: we had to include the contribution from the branes, which are in fact dynamical
objects and must contribute to the action. There are two branes: one in y = 0 and one
in y = L, i.e. at the boundaries of our theory. We can consider other two cosmological
constant terms that live on these branes and insert them in the action (2.171):

Sj = −
∫
d4x
√
−g(j)λj = −

∫
d4x

∫ L

−L

dy
√
−gλjδ(y − j), (2.193)

where j = 0, L, because
√
−g(j) =

√
−g since g44 = 1.

So the action becomes:

S =

∫
d4x

∫ L

−L

dy
√
−g
[
M3R− Λ− λ0δ(y)− λLδ(y − L)

]
. (2.194)

These two new terms modify the Einstein equations:

GMN = − 1

2M3
[Λ + λ0δ(y) + λLδ(y − L)] gMN . (2.195)

By taking (2.188) as the metric, the same definition (2.185) for k and the expressions we
have calculated for A′ and A′′ we can write:

Gµν =
1

2M3
[Λ + λ0δ(y) + λLδ(y − L)] gµν

3(2A′2 −A′′)gµν =
1

2M3
[Λ + λ0δ(y) + λLδ(y − L)] gµν

6k2gµν − 6 [δ(y)− δ(y − L)] gµν = 6k2gµν − 1

2M3

[
λ0δ(y) + λLe

−2kLδ(y − L)
]
ηµν

12kM3
[
δ(y)− δ(y − L)e−2kL

]
ηµν =

[
λ0δ(y) + λLe

−2kLδ(y − L)
]

12kM3 = λ0 = −λL. (2.196)

This satisfies the condition of flat and static four-dimensional spacetime, as the two cosmolo-
gical constant ”cancel” each other resulting in a null effective four-dimensional cosmological
constant. This requires a fine-tuning of the bulk cosmological constant, which, from the
aforementioned definition of k (2.185), is given by:

Λ = − λ20
12M3

. (2.197)

We are going to see later how this fine-tuning can be solved dynamically.
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2.5.2 Mass scale
Now that we have successively fixed the metric, we investigate what mass scales are generated
by this model. To do so, we assume the SM is confined in the y = L brane, the one with
negative tension, and take the Higgs field on this subspace:

SH =

∫
d4x

√
−gL

[
gµνL (DµH)†DνH − λ(H†H − v2)2

]
, (2.198)

where the induced metric on the brane is gL = ηµνe
−2kL + 1.

We plug it into the action to get:

SH =

∫
d4xe−4kL

[
e2kLηµν(DµH)†DνH − λ(H†H − v2)2

]
. (2.199)

Now we rescale the Higgs field as: H̃ = e−kLH.

SH =

∫
d4x

[
ηµν(DµH̃)†DνH̃ − λe−4kL(e2kLH̃†H̃ − v2)2

]
=

∫
d4x

[
ηµν(DµH̃)†DνH̃ − λ(H̃†H̃ − e−2kLv2)2

]
. (2.200)

This gives exactly the Higgs theory in flat space, but with a different VEV:

veff = e−kLv. (2.201)

This indicates that the y = L brane will observe a lower value veff for the VEV, while on
the y = 0 brane it will remain identified as v. Since the Higgs VEV is what sets the mass
of the particles in the Standard Model, the exponential suppression on v is applied to all
the masses on the y = L brane. Then, the y = 0 brane is called the Planck brane as the
fundamental mass scale is taken to be of the order of the Planck scale, while the negative
tension brane is called the TeV brane, since the relevant mass scale is on the TeV scale.
Indeed, we set the bare Higgs mass to be ∼ mp on the y = 0 brane, while the physical mass
to be generated by the exponential suppression, reaching the expected value of ∼ TeV. Then,
we must fix k in order to reproduce this situation where there are 16 orders of magnitude
of discrepancy between the two masses on the branes. This gives:

kL ∼ ln(1016) ' 37. (2.202)

Even though this looks like a fine-tuning, we shall see later how this value is recovered.

Next, we should make sure this exponential suppression really solves the hierarchy. To do
so, we also investigate the dependence of the effective scale of gravity on the parameter L.
We perturb the metric (2.188) so that the 4-dimensional graviton is given by hµν . The
interval is then:

ds2 = e−2k|y| (ηµν + hµν) dx
µdxν + dy2. (2.203)

To calculate the four-dimensional action we only consider the parts coming from hµν , so
that: √

−g(5) →
√
−g(4)e−4k|y| (2.204)
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and since we know that the Riemann tensor is invariant under rescaling of the metric, the
Ricci scalar is:

R(5) → hµνe2k|y|Rµν = e2k|y|R(4). (2.205)

So, the four-dimensional action is only a part of the 5-dimensional one, such as:

S(5) =

∫
d4xdyM3√−gR(5) ⊃ S(4) =

∫
d4xdyM3e−4k|y|

√
−g(4)e2k|y|R(4). (2.206)

Now we integrate out the extra coordinate:

S(4) =M3

∫
d4x

∫ L

−L

dye−2k|y|
√
−g(4)R(4)

= 2M3

∫
d4x

∫ L

0

dye−2k|y|
√
−g(4)R(4)

=M3 1− e−2kL

k

∫
d4x
√
−g(4)R(4). (2.207)

From this we can find an explicit expression for the Planck mass by matching with the
Einstein-Hilbert 4-action:

S(4) =M3 1− e−2kL

k

∫
d4x
√
−g(4)R(4) !

= S
(4)
EH =

1

16πG

∫
d4x
√
−g(4)R(4). (2.208)

Therefore, since (8πG)−2 =Mpl where Mpl is the reduced Planck mass:

Mpl = 2M3 1− e−2kL

k
. (2.209)

From this expression, it is apparent that the parameter L is not so relevant here, as it is
only present in the exponential, contrary to what happened in the ADD scenario (2.106).
It is apparent here how a moderately large value of L can introduce the hierarchy between
masses. Indeed, assuming M3 of the order of the Planck mass, we see it remains essentially
unchanged, while the VEV in (2.201) is exponentially rescaled, thus developing a hierarchy
on the Planck brane we live on.

2.5.3 Radion stabilization
We have seen that L must be fixed to a value of L ∼ 37/k, but that is not a condition
required by any dynamical process, it is just a quantity we need to match the experimental
result. Indeed, as a natural choice we would expect the typical size of the extra dimension
to be L ∼ 1/k. So it appears we are introducing a new hierarchy when trying to solve the
Standard Model one.
The presence of a new degree of freedom corresponds to the introduction of a new scalar
field called radion, which represents the fluctuations of the radius L on the extra dimension.
The fact that it is an arbitrary parameter, it means it is a flat direction and thus has no
potential, therefore we assume it is massless. This is not acceptable, as it would generate a
fifth force that is not observed, then the radius must be stabilized to an unnatural value that
would reproduce L ∼ 37/k as we argued before. The problem is solved by the Goldberger-
Wise mechanism, which provides radius stabilization. Its idea is as follows:
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The radius is stabilized if there is a balance between the kinetic and potential terms: the
former tends to make the radius bigger (to have smaller values for the derivatives), while the
latter prefer smaller ones in order to minimize the action. In order to achieve a non-trivial
minimum, we introduce a massive radion (so that it has a potential) and admit the existence
of brane potentials at the fixed points, with different minima each to guarantee a non-trivial
minimum.
Now we implement what we have discussed so far:

Sφ =

∫
d4x

∫ L

−L

dy
√
−g

(
M3R+

1

2
∂Mφ∂

Mφ−
m2

φ

2
φ2

)

−
∫
d4xdy

√
−gλ0

(
φ2 − v20

)2
δ(y)−

∫
d4xdy

√
−gλL

(
φ2 − v2L

)2
δ(y − L). (2.210)

For simplicity we denote:

Vφ(φ) ≡
m2

φ

2
φ2

V0(φ) ≡ λ0
(
φ2 − v20

)2
VL(φ) ≡ λL

(
φ2 − v2L

)2
V (φ) ≡ −Vφ − V0(φ)δ(y)− VL(φ)δ(y − L) (2.211)

so that the action takes the simpler form:

Sφ =

∫
d4x

∫ L

−L

dy
√
−g
(
M3R+

1

2
∂Mφ∂

Mφ+ V (φ)

)
. (2.212)

The fact that the radion field is not visible in the four-dimensional theory implies φ(x, y) =
φ(y).
By taking the Ansatz that the metric is the same as before (2.188), we can write the
Einstein’s equations. They are very similar to those we have already calculated, except that
this time the energy-momentum tensor of the matter Lagrangian is not null. TMN can be
calculated from its definition (2.182):

δS =

∫
d4xdy

√
−g
[
1

2
gABδgAB

(
1

2
gCD∂Cφ∂Dφ+ V (φ)

)
+ δgAB 1

2
∂Aφ∂Bφ

]
= −

∫
d4xdy

1

2

√
−g
[
gAB

(
1

2
gCD∂Cφ∂Dφ+ V (φ)

)
− ∂Aφ∂Bφ

]
δgAB

!
=

∫
d4xdy

1

2

√
−gTABδg

AB , (2.213)

where we used the relations:

δ
√
−g =

1

2

√
−ggABδgAB , gABδgAB = −gABδg

AB . (2.214)

Therefore, keeping in mind that φ only depends on y:

Tµν = gµν

(
φ2′

2
+ V (φ)

)
;

T44 = φ′2 −
(
1

2
φ′2 − Vφ(φ)

)
, (2.215)
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where we obviously did not variate the extra dimension on the brane part of the action.
Finally, the Einstein’s equations are:

GMN =
1

2M3
TMN ;

Gµν = 3(2A′2 −A′′)gµν =
1

2M3

[
1

2
φ′2 + V (φ)

]
gµν ;

G44 = 6A′2 =
1

2M3

[
φ′2

2
− Vφ(φ)

]
. (2.216)

To obtain A′′ we use the expression for A′ from the second equation, and get:

A′′ =
1

6M3
[V0δ(y) + VLδ(y − L)] . (2.217)

We also need to consider the equations of motion for the scalar field:

∇M
δLφ

δ∇Mφ
=
δLφ

δφ
. (2.218)

Then, by using the fact that the covariant derivative is the partial derivative for a scalar
field ∇Mφ = ∂Mφ, φ = φ(y) and the expression for the covariant divergence, the l.h.s is:

∇M
δLφ

δ∂Mφ
= ∂M

(√
−ggMN∂Nφ

)
=

√
−g
(
gAB

2
gAB,M∂

Mφ+ ∂M∂
Mφ

)
=

√
−g
(
gµν

2
g′µνφ

′ + φ”
)

=
√
−g
(
φ” − 4A′φ′

)
,

since φ = φ(y).
Putting it together with the r.h.s. and eliminating the common

√
−g factor, gives the EOMs:

− 4φ′A′ + φ′′ = −∂V (φ)

∂φ
. (2.219)

Now we integrate (2.217) and (2.219) over a small interval [j − ε, j − ε] where j = 0, L and
ε→ 0, to get the boundary conditions.
The equation for φ′ is obtained from (2.219) by integrating by parts the following term:

− 4A′φ′ = −4 [Aφ′]j±ε + 4

∫
dyAφ′′. (2.220)

Since A′′ is proportional to a delta function, A is proportional to the ramp function, which
is continuous and therefore A(j + ε) = A(j − ε).

− 4A(j + ε) [φ′(j + ε)− φ′(j − ε)] + 4A(j + ε)

∫
dyφ′′ = 0. (2.221)

Then we can straightforwardly obtain the boundary conditions:

A′|j±ε =
1

6M3
Vj ;

φ′|j±ε = V ′
j . (2.222)
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In general, these equations are hard to solve so we only consider one particular case:

Vφ(φ) =
1

8

(
∂W

∂φ

)2

− 1

12M3
W 2(φ), (2.223)

where the function W is called super potential.
Thus, we can rewrite the 44 component of the Einstein equations as:

Vφ(φ) = −12M3A′2 +
1

2
φ′2 (2.224)

and match it with the potential (2.223), to get:

A′ =
1

12M3
W, φ′ =

1

2

∂W

∂φ
. (2.225)

Now, we remember that Vφ(φ) is supposed to be a mass term for the scalar φ and that, in
addition, we need to recover a bulk cosmological constant term Λ to give null contribution
to the effective four-dimensional cosmological constant.
To obtain this, we choose the super potential in the form:

W = 12M3k −mφφ
2, (2.226)

so that:
φ′ =

1

2

∂W

∂φ
= −mφφ. (2.227)

The solution is:
φ = e−mφyφ0, (2.228)

which, on the Planck brane, becomes:

φL = e−mφLφ0. (2.229)

So, we can write the following relation:

L =
1

mφ
ln

(
φ0
φL

)
, (2.230)

where the value of φ0 is given by the boundary conditions (2.222).
Then it is only the parameter mφ that has to be tuned to give the experimental result
of kL ' 37. This tuning, though, is very modest compared to the original one from the
hierarchy problem and can be thus considered as a solution, successfully setting the radius
dynamically.



Chapter 3

The Myers-Perry metric

We propose to study rotating Black Holes in arbitrary dimensions and the metric that de-
scribes them is the Myers-perry metric. Then, we are going to derive it as a generalization
of the four-dimensional Kerr metric and study some of the parameters. The most important
of these are the horizon radius, the mass and the angular momentum. First, we derive an
equation to define the horizon through its radius, which is a very important quantity as it
will give origin to the Horizon Wave Function through its quantization. Since the equation
for the horizon can not be solved analytically, we will need to make some approximations
and distinguish two main regimes, which will be treated separately. Next, we shall address
the problem of instabilities and examine more closely which values of the angular momentum
are allowed before the Black Hole has a high chance of splitting itself. These are important
data we shall use in our chapter on the probabilities.

In this discussion, we shall follow mainly [27]-[28],[31]-[32].
We consider asymptotically flat metrics and a non-relativistic (v � c), weakly gravitating
field gµν = ηµν + hµν . The energy-momentum tensor is taken to be such as |T00| � |T0i| �
|Tij |. Although the condition |T0i| � |Tij | might not be true in general, it is usually verified
in rotating systems, so we take it to be true.

3.1 The metric at linear order
Preliminarily, we derive an expression for the first correction to the Minkowski metric as it
will be used later in expressing the mass and angular momentum. We refer to the appendices
on Einstein equation and Green’s function for more details on how to get the following result
for hµν :

hµν(x
i) =

16πG

(d− 3)Ωd−2

∫
dd−1y

T̃µν(y
i)

|~x− ~y|d−3
, (3.1)

where G indicates the d-dimensional gravitational constant.
Now we take the asymptotic limit r ≡ |~x| � |~y| and perform a Taylor expansion on the
denominator:

1

|~x− ~y|d−3
=

1

|~x|d−3

1∣∣∣1− yk

xk

∣∣∣d−3
' 1

rd−3

(
1 + (d− 3)

yk

xk

)
. (3.2)

43
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Then we obtain:

hµν(x
i) =

16πG

(d− 3)Ωd−2

[∫
dd−1y

T̃µν(y
i)

rd−3
+ (d− 3)

xky
k

rd−1
T̃µν(y

i)

]
. (3.3)

Then we proceed to calculate each component separately:

h00 =
16πG

(d− 3)Ωd−2

1

rd−3

∫
dd−1y

(
T00 +

g00
2− d

T

)
+

16πG

Ωd−2

xk
rd−1

∫
dd−1y

(
T00 +

g00
2− d

T

)
yk. (3.4)

Next we consider the definitions:{∫
dd−1yT 00 ≡M ;∫
dd−1ykT 00 = 0 by choosing the center of mass to be in the origin.

(3.5)

By neglecting the Tij components of the energy-momentum tensor when calculating its trace
T , we obtain the first result:

h00 =
16πG

(d− 2)Ωd−2

M

rd−3
. (3.6)

Now we move on to the hoi component:

h0i =
16πG

(d− 3)Ωd−2

1

rd−3

∫
dd−1yT0i +

16πG

Ωd−2

xk
rd−1

∫
dd−1yT0iy

k. (3.7)

To express it in a more convenient form, we use these other definitions:{∫
dd−1yT 0i ≡ P i = 0 working in the rest frame;∫
dd−1

(
yµT ν0 − yνTµ0

)
≡ Jµν that in this frame satisfies J00 = J0i = 0.

(3.8)

At the end we obtain:
h0i = − 8πG

Ωd−2

xk
rd−1

Jki, (3.9)

where the minus sign is obtained by raising the temporal index in the stress energy tensor.
Finally, the spatial-only component:

hij =
16πG

(d− 3)Ωd−2

1

rd−3

∫
dd−1y

(
Tij +

δij
2− d

T

)
+

16πG

Ωd−2

xk
rd−1

∫
dd−1yyk

(
Tij +

δij
2− d

T

)
. (3.10)

This time, it is sufficient to neglect the purely spatial components of the energy-momentum
tensor:

hij =
16πG

(d− 2)(d− 3)Ωd−2

Mδij
rd−3

. (3.11)

So, to summarize, the components of hµν in these approximations are:

h00 =
16πG

(d− 2)Ωd−2

M

rd−3
;

h0i = −
8πG

Ωd−2

xk

rd−1
Jki;

hij =
16πG

(d− 2)(d− 3)Ωd−2

Mδij

rd−3
.

(3.12)
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3.2 The metric
The Myers-Perry metric is the solution of the Einstein vacuum equations for a rotating, d
dimensional black hole.
Since it is too complicated to solve the Einstein equations directly, the metric is obtained
by generalization of the d = 4 Kerr solution.
Therefore we first write the Kerr metric in Boyer-Lindquist coordinates is:

ds2 = −

(
1−

2GMr

ρ2

)
dt2 −

2GMar sin2 θ

ρ2
(dtdφ+ dφdt) +

ρ2

∆
dr2 (3.13)

+ ρ2dθ2 +
sin2 θ

ρ2
[
(r2 + a2)2 − a2 sin2 θ∆

]
, (3.14)

where we defined:

ρ2 ≡ r2 + a cos2 θ, ∆ ≡ r2 + a2 −
µ

rd−5
. (3.15)

Its generalization for arbitrary dimension, the Myers-Perry metric, is as follows:

ds2 = −dt2 +
µ

rd−5ρ2
(
dt− a sin2 θdφ

)2
+
ρ2

∆
dr2 + ρ2dθ2

+ (r2 + a2) sin2 θdφ2 + r2 cos2 θdΩ2
d−4. (3.16)

We immediately notice that in the 4-dimensional case the last term in (3.16) vanishes and
µ = 2GM as we will see.
Next, we want to compare the temporal component of the Myers-Perry metric (3.16) with
g00 calculated in the weak field approximation using (3.6):

−

(
1−

µ

rd−5ρ2

)
= g00 ' η00 + h00 = −1 +

16πGM

(d− 2)Ωd−2rd−3
. (3.17)

In the asymptotic limit r → ∞ we have that ρ ' r and we obtain the value of the Black
Hole physical mass:

M =
(d− 2)Ωd−2

16πGµ
. (3.18)

From the inverse of this expression we can verify the correspondence to the Kerr metric we
anticipated:

µ =
16πGM

(d− 2)Ωd−2
= 2GM if d = 4. (3.19)

Now, in order to derive an expression for the angular momentum, we start by changing to

Cartesian coordinates, as they provide a more convenient parametrization:x =
√
r2 + a2 sin θ cos

[
φ− tan−1

(
a
r

)]
;

y =
√
r2 + a2 sin θ sin

[
φ− tan−1

(
a
r

)]
.

(3.20)
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We are interested in computing the particular combination xdy − ydx, as it will be useful:

xdy − ydx = (r2 + a2) sin2 θ

(
dφ+

dr a
r2

sin2
(
a
r

)) ' r2 sin2 θdφ, (3.21)

where in the last passage we used the asymptotic limit r → ∞.
Now we examine more closely the off-diagonal part of the metric and we substitute dφ from
(3.21):

−
2µa sin2(θ)

rd−5ρ2
dtdφ ' −

2µa

rd−1
dt(xdy − ydx). (3.22)

We are now ready to compare it to the weak field metric, with h0i given by (3.9):

µa

rd−1
y = g0x ' η0x + h0x =

8πG

Ωd−2rd−1
yJyx. (3.23)

Then from this result we read off the angular momentum:

Jyx =
Ωd−2µa

8πG
. (3.24)

An alternative expression can be obtained by using (3.19) to express it as a function of the
mass M :

Jyx =
2Ma

d− 2
. (3.25)

Then, the parameter a can be thought of as an angular momentum per unit mass, similarly
to the d = 4 case where it is exactly a = J

M .

3.3 The horizon
We start this section by defining what exactly an horizon is:

An event horizon is the boundary of a region from which null rays cannot escape to future
null infinity (therefore, it needs the concept of asymptotic flatness to define ”future null
infinity”).

This corresponds to the boundary of a BH in the future, while an apparent horizon describes
it in a certain instant of time (they coincide if the horizon is not perturbed).

The apparent horizon was defined by Penrose through the concept of closed trapped surfaces:
closed space-like surfaces such that their area decreases along any possible future direction,
i.e. the null future-pointing geodesics orthogonal to the surfaces are everywhere converging.
This means that every time we try to send a light signal either towards the outside or the
inside of the surface, it eventually ends up going to the inside.

Therefore, consider Σ a closed (compact with no boundary) space-like submanifold of co-
dimension 2, i.e. d − 2 dimensional, with coordinates λA, where A = 2, . . . , d − 1. The
embedding in the spacetime is achieved by the parametric equations xµ = Φµ(λA), where
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as usual µ = 0, . . . , d− 1.
The tangent unit vectors to Σ are:

~eA = eµA
∂

∂xµ
=
∂Φµ

∂λA
∂

∂xµ
. (3.26)

The induced metric on the surface Σ is:

γAB = gµν
∂Φµ

∂λA
∂Φν

∂λB
, (3.27)

which has to be positive definite for Σ to be spacelike.
The normal space (TpΣ)

⊥ is timelike (gab < 0) and 2-dimensional (a, b = 0, 1), hence
it admits two future-directed null directions orthogonal to Σ: k+, considered ”outward
pointing” and k−, ”inward pointing”.
We can choose them to satisfy the normalization condition:

k±µ k
µ± = 0, k+µ k

µ− = −1 (3.28)

and the condition of orthogonality: k±µ e
µ
A = 0.

There still remains the freedom to rescale these vectors by a function f so that:

k± → f±2k±. (3.29)

Next, we define the null second fundamental forms as:

K±
AB = −k±µ eνA∇νe

µ
B , (3.30)

where the symbol ∇ν indicates a covariant derivative along the direction xν . This tensor
measures the change of the normal vector along the surface and is thus related to the
Riemann tensor.
The trace of the second fundamental form is denoted as:

K± = γABK±
AB . (3.31)

Then, we are able to define the mean curvature of the surface:

Hµ = −K−k+µ −K+k−µ , (3.32)

that is, as an expansion on the space (TpΣ)
⊥ spanned by the two vectors k±µ .

Its norm is the curvature scalar:

κ = gµνHµHν = 2K+K−. (3.33)

Σ, by definition, is a trapped surface if κ > 0, while the condition κ = 0 determines the
existence of an apparent horizon, as the boundary of a trapped surface. It comes from the
fact that when κ > 0 the null orthogonal vectors have the same direction. Clearly, both κ
and Hµ are invariant under (3.29). Indeed, as long as we rescale by a positive quantity, the
sign of K± does not change, thus leaving κ invariant.
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3.3.1 A useful formula
We now want to apply the concepts of the last section to derive a useful practical formula.
First, we choose the embedding space to be characterized by xa = Xa =constant, a = 0, 1
and the surface by xA = λA.
The metric can then be represented in this form:

ds2 = gabdx
adxb + gaAdx

adxA + gABdx
AdxB . (3.34)

The null vectors k±µ only have the components k±a because they are orthogonal to Σ.
By using the definition of the Christoffel symbols:

Γρ
µνeρ = ∇µeν , (3.35)

the second fundamental form is straightforwardly:

K±
AB = −k±c Γc

AB . (3.36)

Then, we write another definition for the second fundamental form that is equivalent to
(3.30). Indeed, the change in curvature can also be expressed as the variation of the surface
metric when the area is allowed to evolved for a short time.
Defining: √

det gAB ≡ G ≡ eU , (3.37)

we can thus state:
K± = k±a

(
G,a

G
− 1

G
(GγABgaA),B

)
. (3.38)

Hence:
Hµ = δaµ(U,a −∇ · ~ga), (3.39)

where ~ga ≡ gaA.
To prove this last formula, we make first a general discussion. Let gij be the metric with
determinant g and V i an arbitrary vector.
Then, we start the proof from the end result:

(
√
gV i),i√
g

= ∇ · V i. (3.40)

The divergence of the vector is defined as:

∇ · V = ∇iV
i = V i

,i + Γi
ikV

k, (3.41)

where the Γi
ik are the Christoffel symbols:

Γi
ik =

1

2
gij(gij,k + gjk,i − gik,j). (3.42)

Using the Leibniz rule on (3.40) we get:

(
√
gV i),i√
g

=
1
√
g

[
(
√
g),i V

i +
(
V i
)
,i

√
g
]
= V i

,i +

(√
g
)
,i√

g
V i. (3.43)
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Next, we make use of the relation (A.10) for the determinant, to calculate the second term:(√
g
)
,i√

g
V i =

1

2

g,i
g
V i =

1

2
tr
(
g−1g,i

)
V i =

1

2
tr
(
gjkgkl,i

)
V i =

1

2
(gjkgkj,i)V

i. (3.44)

Now we use the Christoffel symbols to express gkj,i:

gkj,i = Γl
ikglj + Γl

ijglk. (3.45)

We then get the final result:

V i
,i +

1

2

[
Γk
ik + Γj

ij

]
V i = V i

,i + Γi
ikV

k = ∇ · V, (3.46)

that is what we wished to show. Indeed, we only need to substitute V i = γABgaA to get
the result (3.39).

3.3.2 Application to the Myers-Perry metric
Now we want to apply (3.39) to calculate the curvature of the surface Σ with constant t and
r in order to find an expression that characterizes the horizon.
Since Σ has t and r constant, it follows that:

xa = {t, r}, xA = {φ, θ, θ1, . . . , θd−4}; (3.47)

~gr = 0, ~gt = −
aµ sin2 θ

rd−5ρ2
dφ. (3.48)

So that ∇ · ~ga = ∇φgtφ = 0 and (3.39) reduces to a simple form:

Ha = U,a. (3.49)

Next, we calculate the square of the determinant of the metric on the surface, according to
the definition (3.37):

e2U = r2ρ2

[
(r2 + a2) +

µa2 sin2 θ

rd−5ρ2

]
sin2 θ cos2 θ

(
sind−3 θ1 . . . sin θd−3

)2
, (3.50)

where we used the fact that the round metric for a d− 4 dimensional surface is:

dΩd−4 = sind−3(θ1) . . . sin(θd−3)dθd−4dθd−3 . . . dθ1. (3.51)

Then, the mean curvature is:

Ha = Hr = U,r =
(e2U ),r

2e2U
. (3.52)

Since the last part of equation (3.50) is constant in r, we can rename it for convenience:

sin2 θ cos2 θ
(
sind−3 θ1 . . . sin θd−3

)2 ≡ C. (3.53)
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We perform the derivation on r of equation (3.50):

(e2U ),r = 2rC

[
(r2 + a2)(ρ2 + r2) + ρ2r2 +

µa2 sin2 θ

rd−5

(
1− d− 5

2
r2
)]

(3.54)

and the quantity that we actually needed can be easily recovered:

(e2U ),r = 2U,re
2U → U,r =

(e2U ),r
2e2U

. (3.55)

Then what we obtain is:

Hr =
1

r

[
(r2 + a2)(ρ2 + r2) + ρ2r2 +

µa2 sin2 θ

rd−5

(
1− d− 5

2
r2
)]

×
1[

(r2 + a2)ρ2 +
µa2 sin2 θ

rd−5

]. (3.56)

Now we are ready to calculate the curvature:

κ = grrHrHr = grr
1

r2

[
(r2 + a2)(ρ2 + r2) + ρ2r2 +

µa2 sin2 θ

rd−5

(
1− d− 5

2
r2
)]2

×
1[

(r2 + a2)ρ2 +
µa2 sin2 θ

rd−5

]2. (3.57)

The condition κ = 0 to have a horizon can only be fulfilled if grr = 0 since Hr cannot be
null.
Therefore, we conclude that the horizon is set at:

grr =
∆

ρ2
= 0 → ∆ = r2 + a2 −

µ

rd−5
= 0. (3.58)

Finally, we have an equation for the horizon, which is:

r20 + a2 −
µ

rd−5
0

= 0. (3.59)

Moreover, we can calculate its area:

AH =

∫
dθdφAd−4

√
detgAB

= Ωd−4r
d−4
0

∫
dθdφ

√
(r20 + a2)ρ2 +

µa2 sin2 θ

rd−5
0

sin θ. (3.60)

By making use of equation (3.59) and the definition ρ2 = a2 cos2 θ + r2, we obtain:

AH = Ωd−4r
d−4
0

∫
dθdφ

√
(r20 + a2)ρ2 + (r2 + a2)a2 sin2 θ sin θ

= Ωd−4r
d−4
0

∫
dθdφ(r20 + a2) sin θ = Ωd−4r

d−4
0 (r20 + a2)Ω2. (3.61)
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The final result that is obtained is:

AH = Ωd−2r
d−4
0 (r20 + a2). (3.62)

3.4 Spinning regimes
The equation (3.59) cannot be solved explicitly for r0 as a function of M and a, unless we
make some approximations.
Therefore, we separate the problem in different cases that may occur:

• static: characterized by a = 0, it effectively corresponds to the Schwarzschild solution;

• weakly spinning: characterized by a� r0;

• ultra-spinning: characterized by a� r0.

As the weakly-spinning solution of the equation (3.59) is the one that requires more work,
we explicit it. We make use of the parameter a

r ≡ ε� 1 and write r0 ≡ r to avoid confusion:

rd−3(1 + ε2) = µ. (3.63)

Next, we expand r in powers of ε, up to second order:

r = r0 + εr1 + ε2r2. (3.64)

Then we use a Taylor expansion to express the term rd−3:

rd−3 = rd−3
0

(
1 + ε

r1
r0

+ ε2
r2
r0

)d−3

' rd−3
0

[
1 + (d− 3)

(
ε
r1
r0

+ ε2
r2
r0

)]
. (3.65)

Now we substitute this result into the expression for the horizon (3.59), obtaining:

rd−3
0

[
1 + (d− 3)

(
ε
r1
r0

+ ε2
r2
r0

)]
+ ε2rd−3

s ' µ, (3.66)

where third order terms have been neglected.
The next step is to equate the terms which are the same order in ε:

rd−3
0 = µ;

(d− 3)rd−4
0 r1 = 0;

(d− 3)rd−4
0 r2 + rd−3

0 = 0.

(3.67)

We immediately notice r0 is the Schwarzschild radius, as we expected, as it is the solution
for a = 0.
By solving for r1 and r2 we get:

r = µ
1

d−3

(
1− ε2

d− 3

)
. (3.68)

This weakly spinning limit reduces to the static case quite easily, since the correction to the
Schwarzschild radius is of order 2 in ε and it goes to 0 even faster as the dimension increases.
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The next observation we want to make is that when taking a high-dimensional limit d� 5
we get:

d− 3 ' d− 5 → r0 =

(
µ

1 + a2

) 1
d−5

, (3.69)

which for a � r0 or a ' 0 gives the same result as the ultra-spinning or static limits. This
allows us to conclude there are fundamentally two main regimes, which are the static and
the ultra-spinning one.

To summarize, then, when solving equation (3.59) in the two approximations we have:

• static: r0 = µ

1

d− 3;

• ultra-spinning: r0 =

(
µ

a2

) 1

d− 5
,

making the expression for the horizon radius invertible in terms of the mass.
Indeed, using (3.19) we can express the radius as a function of the mass M . For simplicity
of notation, we denote the constant multiplying M as C, so that: µ = CM .
Then we can write:

r0 = (CM)

1

d− 3 for the static case; (3.70)

r0 =

(
CM

a2

) 1

d− 5 for the ultra-spinning case, (3.71)

where
C =

16πG

(d− 2)Ωd−2
. (3.72)

3.4.1 Ultra-spinning regime
We want to see which constraints the angular momentum is subject to and to do so, we first
analyse what shape the horizon takes.

While taking the static limit in the Myers-Perry metric gives exactly the Schwarzschild one
in general d dimensions. We can see now what happens when substituting the ultra-spinning
limit in (3.16).
As we want to keep the area and horizon finite, together with a → ∞, we have to take the

limit µ→ ∞, with rd−5
0 '

µ

a2
fixed. Also, we consider the metric near θ = 0, otherwise the

rotation would grow without restraints. We introduce a new coordinate σ ≡ a sin θ, that is
kept finite in the limit.
First, we have the quantities:

ρ2 ' a2(1 +
r2

a2
) ' a2, ∆ ' a2

(
1− µ

1

a2rd−5

)
(3.73)
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and the mixed terms gtφ = gφt:

µ

rd−5ρ2
a sin2 θ '

µ

rd−5a2
σ2

a
→ 0. (3.74)

Moreover:
ρ2dθ2 =

(
r2

a2 cos2 θ
+ 1

)
a2 cos2 θdθ2 ' a2 cos2 θdθ2 = dσ2 (3.75)

and (
µa2 sin4 θ

rd−5ρ2
+ (r2 + a2) sin2 θ

)
dφ2 '

(
µ

a2
sin2 θ

rd−5
+
r2

a2
+ 1

)
a2 sin2 θdφ2

' a2 sin2 θdφ2 = σ2dφ2. (3.76)

So, at the end the metric (3.16) in the ultra-spinning limit is:

ds2 = −

(
1−

µ

rd−5a2

)
dt2 +

(
1−

µ

rd−5a2

)−1

dr2 + r2dΩ2
d−4 + dσ2 + σ2dφ2. (3.77)

We notice that this version of the metric is not dependent of a but rather of the quantity
µ/a2. It describes a black membrane on the plane (σ, φ) with topology R2 × Sd−4.
Indeed, we can confirm the occurrence of this type of symmetry by analysing the area of
the horizon.
We consider the ”parallel” component of the area, at a fixed position on the d−4 dimensional
sphere:

A‖ = 4π(r2 + a2) ' 4πa2, (3.78)

obtained from (3.16) in an analogous way to what we previously did when calculating the
horizon area in (3.60).
Now, examining the ”transverse” component at fixed θ and φ, we get:

A⊥ = Ωd−4(r cos θ)
d−4. (3.79)

The components have a characteristic size:

A‖ ∼ l2‖ → l‖ = a;

A⊥ ∼ ld−4
⊥ → l⊥ = r. (3.80)

In the ultra-spinning limit, since a � r, the component of the area in the (θ, φ) plane is
much larger than along the directions transverse to the plane of rotation and grows as a
increases, making the Black Hole progressively flatter and in the shape of a black mem-
brane. Conversely, as a → 0 the geometry resembles more that of a sphere, recovering the
Schwarzschild geometry.

Next, we look at equation (3.59) and see which values for the angular momentum are allowed.
Starting with 4 dimensions, we have:

r20 − r0µ+ a2 = 0. (3.81)
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The horizon is identified with the largest real solution of the following resulting equation:

r0 =
µ±

√
µ2 − 4a2

2
, (3.82)

which is real for µ ≥ 2a.
The extremal value µ = 2a gives one degenerate horizon such that:

r0 = a =
µ

2
(3.83)

and its area is:
AH = Ω2(r

2
0 + a2) = 4π(2a2), (3.84)

which corresponds to the area of a sphere of radius
√
2a.

The values for which µ > 2a give ∆ > 0 so that the metric is regular except in ρ = 0, which
represents a singularity. Since there is no horizon in this case, the singularity is called naked
and the solution is discarded by Penrose’s cosmic censorship hypothesis.
The area for µ > 2a in four dimensions is given as:

AH = 2π(µ2 + µ
√
µ2 − 4a2). (3.85)

Now, we can try to apply this reasoning and calculate the conditions for the existence of
the horizon in the d = 5 case.
The equation (3.59) becomes:

r20 + a2 − µ = 0, (3.86)

so that it gives
r0 =

√
µ− a2, (3.87)

which is real iff µ ≥ a2.
The extremal solution, µ = a2, in this case has zero area:

r0 = 0 → AH = Ω3r0(r
2
0 + a2) = 0 (3.88)

and it consists in a naked ring singularity. Since it has zero area but non zero angular
momentum, it cannot be a point singularity.
For µ > a2 then the area is:

AH = 2π2µ
√
µ− a2. (3.89)

Now, we we examine what happens if d ≥ 6, ∆. From Descartes’ rule of signs:

The number of positive real zeroes in a polynomial function f(x) is the same as the number
of changes in the sign of the coefficients or less than it by an even number.

Then, we can conclude that (3.59) has exactly one positive real root, so there is always a
horizon, independently of the value of a.
Thus, the conclusion would be that a can be made arbitrarily large if d ≥ 6.
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3.4.2 Instabilities
Even though the value of a should be unbounded, after the Black Hole starts to resemble
a black membrane, gravitational perturbations might kick in, developing instabilities and
fragmenting the membrane into smaller Black Holes with a bigger area.
Indeed, as we have seen in (3.80), increasing a would increase only the ”parallel” size of
the horizon, while the other would be comparatively small. Having one direction much
bigger than the others gives rise to gravitational perturbations, as better explained in [33].
Thermodynamical considerations lead us to think that these perturbations would act by
breaking the Black Hole into two or more non-spinning fragments.
Indeed, we can show that breaking the initial Black Hole into non-rotating fragments will
increase the area, thus maximizing the entropy according to the second law of thermody-
namics.

First, we see that when a� r0 the horizon (3.59) is approximated as:

µ

a2rd−5
0

=
r20
a2

+ 1 ' 1 → rd−5
0 ' µ

a2
. (3.90)

Therefore the area (3.62) becomes:

AH = Ωd−2a
2rd−4

0 (1 +
r20
a2
) ' Ωd−2a

2rd−4
0 ' Ωd−2

(
µd−4

a2

) 1
d−5

. (3.91)

Provided we keep the mass fixed at a constant value, the area decreases as the angular
momentum parameter a increases, until it goes to 0 as a→ ∞.
The area shows there is a change in behaviour from static and compact to ultra-spinning
and flat. Since the area is a thermodynamic quantity, we can use the entropy to see this
transition.
First, then, we look at the entropy of the system, which is calculated using (3.62):

S =
kBAH

4G
=
kB
4G

Ωd−2r0µ, (3.92)

where kB is the Boltzmann constant.
Then, we use temperature to analyse the transition from Kerr-like to membrane regime. It
is defined in thermodynamics as:

T =
∂M

∂S
=
∂M

∂r0

∂r0
∂S

. (3.93)

Then, first we express the mass using (3.19) and (3.59):

µ =
16πGM

(d− 2)Ωd−2
= rd−5

0

(
r20 + a2

)
;

=⇒ M =
(d− 2)Ωd−2

16πG
rd−5
0

(
r20 + a2

)
. (3.94)

The result we get is:

T =
d− 2

4πkb

[
2rd−4

0

µ
+
d− 5

r0

]
. (3.95)
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Keeping the mass and consequently µ fixed and increasing the angular momentum parameter
a progressively decreases r. Then, starting from a = 0 and moving to a→ ∞, the first term
goes from dominant to negligible and the behaviour of the Black Hole goes from Kerr-like
to that typical of a membrane (T ∼ 1

r ).
The change, for d ≥ 6, is given evidently at the point in which the temperature has a
minimum given by the equation:

∂T

∂ (a/r0)
=

d− 5 + 2

1+
(

a
r0

)2

r20

r20
a

!
= 0 (3.96)

and it corresponds to:
a

r0
=

√
d− 3

d− 5
. (3.97)

The membrane regime can thus be expressed by the following dimensionless quantity, cal-
culated at the minimum for the temperature:

ad−3

µ
=

1

2(d− 4)

√
(d− 3)d−3

(d− 5)d−5
. (3.98)

For d = 6 it takes the not so large value ad−3

µ = 1.30 and then it slightly increases with the
dimensions.
Then, the instabilities occur at quite low values of the angular momentum and not far into
the ultra-spinning regime.

To correct this value, we can actually analyse the fragmentation process, by taking an initial
Myers-Perry Black Hole which divides into two fragments of equal mass for simplicity. The
system is taken to be in the centre of momentum frame and the final products are taken to
be non-rotating (as it would increase their area).
The total mass M is obtained from the mass-shell relation:

M = 2
√
p2 +m2 = 2

√
m2 +

(
J

2R

)2

, (3.99)

where m is the mass of the fragments and R is the impact parameter.
Then, we define the parameter µ1 for one of the fragments:

µ1 =
16πG

(d− 2)Ωd−2
m (3.100)

and substitute m found in (3.99), the definition of the angular momentum (3.25) and of the
mass M in (3.94):

µ1 =
rd−5
0

(
r20 + a2

)
2

√
1− 4a2

(d− 2)2R2
. (3.101)

Then, the area of a static Black Hole is:

A1 = Ωd−2r
d−2
0 = Ωd−2µ

d−2
d−3

1 = Ωd−2

[
rd−5
0

(
r20 + a2

)
2

√
1− 4a2

(d− 2)2R2

] d−2
d−3

. (3.102)
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Then, the condition to be satisfied for the second law of thermodynamics is that the area
must increase, then 2A1/AH > 1:1 + a2

r20

2

[
1− 4a2

(d− 2)2R2

] d−2
2

 1
d−3

> 1. (3.103)

The maximum value of the l.h.s. is obtained for large R, that is when the fragments carry the
least kinetic energy and therefore the maximum rest mass, also contributing to get a larger
area. However, a priori we do not know the process under which the Black Hole divides
itself, so it is not safe to assume a large value for R. However, we can still assume R is inside
the horizon of the initial Black Hole, for it to be a fragmentation, and, furthermore, since
the dominant direction in the ultra-spinning regime is l‖ ∼ a, R would scale approximately
like a. In this case, the inequality is satisfied, provided a is large enough. Actually, we could
just assume R grows faster than 2a

d−2 to satisfy the inequality.
Imposing the condition that the impact parameter should not be bigger than the horizon
radius of the initial Black Hole allows us to impose:

R ≤
√
r20 + a2. (3.104)

Then, substituting this value into the inequality (3.103) gets:

1 + a2

r20

2

[
1− 4

(d− 2)2
a2

r20

1

1 + a2

r20

] d−2
2

> 1, (3.105)

which can be solved for various dimensions, getting an estimate of the parameter a
r0

. This
results to be not much larger than unity and in particular for d = 6 a

r0
& 1.36. The

correspondent ad−3

µ is then set to be:

ad−3

µ
=

ad−3

rd−5
0 (r20 + a2)

=
ad−3

rd−3
0 (1 + a2

r20
)
. (3.106)

These values should not be taken as more than rough estimates as they are obtained from
inaccurate models with approximations.
However, from this discussion we can conclude that in the ultra-spinning limit the Black
Hole becomes similar to a membrane and already when the angular momentum gets slightly
larger than the horizon radius, the systems starts developing instabilities that further lead
it to fragmentation. Then, even though in principle the angular momentum could grow
unbounded, in practice it must be kept to be not so large when compared to the horizon
radius in order to avoid unstable configurations. Indeed, the instabilities seem to appear at
a relatively early stage in the ultra-spinning regime, signalled by a change in the behaviour
of the temperature.





Chapter 4

Horizon Wave Function

Higher dimensions lower the Planck scale from mp ' 1016 TeV to values that could, in
principle, be tested in accelerators and might be around the TeV scale. Indeed, a lower
Planck scale signifies we might be able to produce mini-Black Holes, which could be useful
in the study of quantum gravity, as well as in confirming the existence of extra dimensions.
In this chapter we are going to analyse the production of these Black Holes through their
probability of formation.

To see better how these are formed, we take a scattering experiment and consider the “hoop
conjecture” [37] (numerically verified for d > 4 in [35]), according to which a Black Hole
will form if the colliding particles have impact parameter smaller than the horizon radius.
The horizon radius is considered to be much less than the radius of the compact extra di-
mensions, which is generally true. We notice that in case this condition was not complied,
we would simply end up with an effectively 4-dimensional Black Hole.

Another inequality we must take into account is related to the quantum nature of the formed
particle. We take the uncertainty in the position of the source to be approximately in the
form of the Compton wavelength λ:

λ =
h

mc
. (4.1)

This quantity is, indeed, intrinsically quantum given the dependence on ~, which would
make it vanish in the classical formal limit ~ → 0. It indicates the scale at which quantum
fluctuations become of the order of the mass of the source. Therefore, the horizon radius is
defined only if it is larger than this uncertainty:

R0 ≥ λ. (4.2)

It implies that, classically, Black Holes arbitrarily small are allowed and this limit is achieved
for R0 � λ. From the condition (4.2), using (4.1) and the expression for the static horizon
R0 = µ

1
d−3 , with µ = Cm given by (4.65), it implies

[
2

d− 3

(
m

mp

)d−2
] 1

d−3

≥ 1, (4.3)
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so that we expect approximately m & mp. For instance, in d = 6 it gives m & 1.10mp.
Moreover, since in this case λ < lp, we have R0 & λ > lp, strong gravity effects appear before
the Planck length is probed. On the other hand, if m < mp, λ > lp and R0 .< lp < λ and
quantum effects affect the measurement, making it impossible to determine whether it is a
Black Hole.
Then, we can conclude that a static Black Hole is formed if its mass is above the Planck
scale, but we can only take it as an estimate value, as we are not sure about the modifica-
tions to gravity that might occur at this scale.

However, if we take into account the self-UV completeness of gravity, when considering
masses above the Planck scale we might not need a theory for quantum gravity since trans-
Planckian physics corresponds to classical theories. Then, a semi-classical description is still
possible, as after the Planck threshold is crossed, a large, classical Black Hole is formed.

The scattering cross section of two particles with centre of mass energy
√
s = m, then, is

given semi-classically by:
σ ∼ PBH4πm2 (4.4)

and it depends strongly on the probability we are going to calculate.

To treat classical horizons and Quantum Mechanical objects such as the colliding particles,
we need a new formalism, which has been implemented in [38]-[41] and it is called Horizon
Quantum Mechanics. It allows us to introduce operators whose expectation value give the
classical quantity and, by defining a Horizon Wave Function corresponding to the horizon,
we can calculate the probability of obtaining a Black Hole instead of a regular particle
from the above-mentioned scattering experiment. We are also going to see how this form-
alism naturally leads to a Generalized Uncertainty Principle (GUP) for the particle position.

In this chapter, we shall employ the notation mp to indicate the generally d-dimensional
Planck mass. As the RS model is five-dimensional and the ADD model accounts for more
extra dimensions, we implicitly assume mp refers to one of these two, according to the
dimensionality considered.

4.1 Horizon Quantum Mechanics
In this section we develop the formalism of Horizon Quantum Mechanics, which will allow
us to study the horizon of a Black Hole as a quantum mechanical object, near the Planck
scale, where gravity starts being affected by quantum effects. We are going to construct an
operator for the horizon radius and an horizon wave function to describe it.

4.1.1 The Formalism of Horizon Quantum Mechanics
Our goal is to construct a Horizon Wave Function that would represent the Myers-Perry
Black Hole, in order to calculate the probability that it is formed in a scattering experiment.
As the type of Black Hole we are considering is axisymmetric and stationary, we consider
sources localised in space and subject to pure rotation in a specific frame.
The Hilbert space of the source is described by a set of commuting operators {Ĥ, Ĵ2, Ĵz}.
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We consider only the discrete energy spectrum with quantum numbers {a, j,m} and we
write the spectral decomposition of the source function as:

ψS ∈ L2(RD), |ψS〉 =
∑
a,j,m

C(Eaj , λj , ξm) |a j m〉 . (4.5)

The coefficient in the expansion above depends on the eigenvalues of the following operators:

Ĥ =
∑
a,j,m

Eaj |a j m〉 〈a j m| ; (4.6)

Ĵ2 =
∑
a,j,m

λj |a j m〉 〈a j m| ≡
∑
a,j,m

j(j + 1) |a j m〉 〈a j m| ; (4.7)

Ĵz =
∑
a,j,m

ξm |a j m〉 〈a j m| ≡
∑
a,j,m

m |a j m〉 〈a j m| . (4.8)

For an asymptotically flat metric, we can define the mass m of the source. Then, its quantum
mechanical counterpart is given by the expectation value of the Hamiltonian:

〈ψS | Ĥ |ψS〉 =
∑
a,j,m

∑
b,k,n

C∗(Eaj , λj , ξm)C(Ebj , λk, ξn) 〈a j m| Ĥ |b k n〉

=
∑
a,j,m

|C(Eaj , λj , ξm)|2Eaj . (4.9)

Similarly, we calculate the expectation values for the angular momentum operators:

〈ψS | Ĵ2 |ψS〉 =
∑
a,j,m

|C(Eaj , λj , ξm)|2λj ; (4.10)

〈ψS | Ĵz |ψS〉 =
∑
a,j,m

|C(Eaj , λj , ξm)|2ξm. (4.11)

The other important classical quantity is the horizon, to which, following an analogous
reasoning, we can associate an operator:

R̂0 |α〉 = R0α |α〉 . (4.12)

Then, the system in a generic state can be described as an entangled state, depending on
the energy, angular momentum and horizon radius:

|ψ〉 =
∑
a,j,m

∑
α

C(Eaj , λj , ξm, R0α) |a j m〉 |α〉 . (4.13)

4.1.2 Application to the Myers-Perry Black Hole
Now we want to apply the operatorial formalism above to the Myers-Perry radius.
According to the expression (3.59) we found in the first chapter, it is given by the following
equation:

R2
0 + a2 −

µ

Rd−5
0

= 0. (4.14)
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Since we need to define it in quantum mechanical terms, we must substitute the mass with
the Hamiltonian operator.
As the mass appears raised to a fractional power, we have to make sure that it is allowed
to do so with the corresponding operator.
First, we assume Ĥ is invertible, so that the inverse of its counterpart m is well-defined.
Then a theorem states that as Ĥ is self-adjoint and positive semi-definite, its root is well-
defined as well.
We can, therefore, conclude that any fractional power of Ĥ is allowed.
Next, in order to find an explicit expression for R0, we need to proceed separately in the
two approximations: static and ultra-spinning.

Static case

Using (3.70), we can define a corresponding operator Ô by substituting Ĥ to the classical
mass:

R0 = (Cm)
1

d−3 → Ô =
(
kĤ
) 1

d−3

. (4.15)

The physical states, then, must satisfy the following Gupta-Bleuler condition:(
R̂0 − Ô

)
|ψphys〉 = 0. (4.16)

Expressing the state as in (4.13), we get:∑
a,j,m

∑
α

[
R0α − (CEaj)

1
d−3

]
C(Eaj , λj , ξm, R0α) |a j m〉 |α〉 = 0, (4.17)

which implies
R0α = (CEaj)

1
d−3 . (4.18)

Ultra-spinning case

We proceed analogously to the static case, but this time, in addition to (3.71), we also have
to consider the angular momentum parameter:

a =
d− 2

2

J

m
. (4.19)

We assume that also Ĵ2 is invertible, self-adjoint and positive semi-definite, so that we can
raise it to any power.
We are ready to define the corresponding operator:

R0 =

(
4C

(d− 2)2
m2

J2

) 1
d−5

→ Ô′ =

[
4k

(d− 2)2
Ĥ2
(
Ĵ2
)−1

] 1
d−5

. (4.20)

Again we impose the Gupta-Bleuler condition on the physical states:(
R̂0 − Ô′

)
|ψphys〉 = 0. (4.21)
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When substituting (4.13), we get:

∑
a,j,m

∑
α

(
R0α − 4C

(d− 2)2
E2

aj

λ2j

) 1
d−5

C(Eaj , λj , ξm, R0α) |a j m〉 |α〉 = 0, (4.22)

which implies

R0α =

[
4C

(d− 2)2
E2

aj

λ2j

] 1
d−5

. (4.23)

For both cases we can conclude a generic state, in the form (4.13), is:

|ψ〉 =
∑
a,j,m

∑
α

C(Eaj , λj , ξm, R0α(Eaj)) |a j m〉 |α〉 , (4.24)

where R0α(Eaj) is given by the appropriate relation, depending on the regime we are con-
sidering.
Then, by tracing out the gravitational radius part, we recover ψS :

|ψS〉 =
∑
β

〈β|ψ〉 =
∑
a,j,m

∑
βα

C(Eaj , λj , ξm, R0α(Eaj)) |a j m〉 δαβ

=
∑

a,j,m,α

C(Eaj , λj , ξm, R0α(Eaj)) |a j m〉 !
= CS(Eaj , λj , ξm) |a j m〉 . (4.25)

This allows us to conclude that:

CS(Eaj , λj , ξm) = C(Eaj , λj , ξm, R0α(Eaj)). (4.26)

Similarly, ψH , the horizon state, is obtained by integrating out the energy eigenstates,
leaving only the expansion on the radial quantum states:

|ψH〉 =
∑
bkn

〈b k n|ψ〉 =
∑
a,j,m

∑
bkn

∑
α

C(Eaj , λj , ξm, R0α(Eaj))δajm,bkn |α〉

=
∑

a,j,m,α

C(Eaj , λj , ξm, R0α(Eaj)) |α〉 . (4.27)

The normalization is fixed by the internal product:

〈ψH |φH〉 =
∫ ∞

0

ψ∗
H(r0)φH(r0)AHdr0, (4.28)

where AH is the area of the event horizon.
Finally, the horizon wave function is defined as:

ψH(R0) = 〈β|ψH〉 =
∑

a,j,m,α

C(Eaj , λj , ξm, R0α(Eaj))

= CS(Eaj(R0α), λj , ξm). (4.29)
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4.2 Static case
We make a brief recap of the results we found for the static case, characterized by a ' 0:

µ ≡ Cm = rd−3
0 , AH = Ωd−2r

d−2
0 . (4.30)

We shall use these later to actually calculate the probability of obtaining a Black Hole in a
scattering experiment.

4.2.1 Wave functions
We decide to model to source using a Gaußian distribution, with extra dimensions localized
on the origin:

ψS(r, y) = N e−
r2

2l2 δ(y1) . . . δ(yd−2). (4.31)

The width l in the particle position must be greater than the Compton length of the particle
for it to make sense:

l ≥ λ =
~
m
, (4.32)

where l = Λ signals the maximum localization of the particle.
The probability of finding the particle source inside the horizon is given by:

PS =

∫
ddx|ψS(r, y)|2 =

∫
dAH

∫ r0

0

dr|ψS(r)|2. (4.33)

The normalization constant N in (4.31) is fixed by requiring that PS = 1 if r0 = ∞:

1 =

∫
dΩd−2

∫ ∞

0

drrd−2|ψS(r, y)|2. (4.34)

To get the square of (4.31) we need to give meaning to the Dirac delta squared:

[δ(y1) . . . δ(yd−2)]
2 = δ(y1) . . . δ(yd−2)δ(0)

d−2 = δ(y1) . . . δ(yd−2)
V(d−2)

(2π)d−2
. (4.35)

So that

1 =
V(d−2)

(2π)d−2

∫
dΩd−2

∫ ∞

0

drN 2e−
r2

l2 rd−2δ(y1) . . . δ(yd−2)

=
V(d−2)

(2π)d−2

∫
dθ1 . . . dθd−2|J |

δ(θ1) . . . δ(θd−2)

|J |

∫ ∞

0

drN 2e−
r2

l2 rd−2

=
V(d−2)

(2π)d−2

∫ ∞

0

drN 2e−
r2

l2 rd−2, (4.36)

where in the second line we used the change of variable for the Dirac delta function:

δ(y1) . . . δ(yd−2) =
δ(θ1) . . . δ(θd−2)

|J |
(4.37)

and the definition:
dΩd−2 = dθ1 . . . dθd−2|J |. (4.38)
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Now, we change the integration variable to s as:
s =

r2

l2
→ r =

√
sl;

ds =
2r

l2
dr → dr =

l2

2r
ds

(4.39)

and we obtain:

1 =
V(d−2)

(2π)d−2
N 2

∫ ∞

0

ds
l2

2r
rd−2e−s

=
V(d−2)

(2π)d−2
N 2 l

2

2

∫ ∞

0

dse−s(
√
sl)d−3

=
V(d−2)

(2π)d−2
N 2 l

d−1

2
Γ

(
d− 1

2

)
, (4.40)

using the definition of the Gamma functions:

Γ(z) =

∫ ∞

0

dxxz−1e−x. (4.41)

In conclusion, the normalization function is:

N 2 =
(2π)d−2

V(d−2)

2

Γ
(
d−1
2

)
ld−1

(4.42)

and the wave function of the source is:

ψS =

[
(2π)d−2

V(d−2)

2

Γ
(
d−1
2

)
ld−1

] 1
2

e−
r2

2l2 δ(y1) . . . δ(yd−2). (4.43)

Now, we want to express (4.31) in momentum space, so we Fourier transform it:

ψS(p, pj) = N
∫
drdy1 . . . dyd−2δ(y1) . . . δ(yd−2)e

− r2

2l2 e−
i
~pre−

i
~pjyj

= N
∫ ∞

0

dre
−
(

r2

2l2
+ i

~pr
)
. (4.44)

By completing the square:

−
(
r2

2l2
+
i

~
pr

)
= −1

2

[(
r

l
+
i

~
pl

)2

+
p2l2

~2

]
(4.45)

and changing the variable to k: {
k = r

l +
i
~pl

dr = ldk
(4.46)

we get a Gaußian integral:

ψS(p) = N e−
p2l2

2~2 l

∫
dke−

k2

2 = N l

√
π

2
e−

p2l2

2~2 ≡ N ′e−
p2

2∆2 . (4.47)
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Here, we introduced the width ∆ = ~
l .

Now we can assume the mass shell relation for flat space E2 = p2 +m2, since corrections to
it would be negligible, and construct the Horizon Wave Function.
In (4.47) we substitute p2 = E2 − m2 where m = µ

C =
Rd−3

0

C as stated above. Moreover,
we insert a Heaviside step function θ(r0 −R0) that is necessary to implement the condition
E ≥ m and we use another generic normalization constant N0.

ψH(r0) = N0θ(r0 −R0)e
− 1

2(C∆)2

(
r2(d−3)−R2(d−3)

)
. (4.48)

The constant N0 is fixed similarly to what was done for the source function (4.31).
We take the probability of finding the horizon at r0:

PH =

∫
dΩd−2

∫ r0

0

dr|ψH(r)|2rd−2 (4.49)

and we require that at r0 = ∞ it is PH = 1. Therefore:

1 = Ωd−2

∫ ∞

R0

dr0N 2
0 e

− r
2(d−3)
0
(C∆)2 e

R
2(d−3)
0
(C∆)2 rd−2

0

= N 2
0Ωd−2e

m2

∆2

∫ ∞

R0

dr0e
− r

2(d−3)
0
(C∆)2 rd−2

0 . (4.50)

Where, again, we used m = µ
C =

Rd−3
0

C , and also we made use of the fact that r0 > R0 given
by the Heaviside function to change the lower extreme of integration.
Now, we perform a convenient change of variable:

s =
r
2(d−3)
0

(C∆)2
→ r0 =

(
C2∆2s

) 1
2(d−3) ;

ds = 2(d− 3)
r
2(d−3)−1
0

(C∆)2
dr0.

(4.51)

So that by substituting we obtain:

N−2
0 e−

m2

∆2

Ωd−2
=

∫ ∞

m2

∆2

ds
(C∆)2

2(d− 3)r
2(d−3)−1
0

rd−2
0 e−s

=
(C∆)2

2(d− 3)

∫ ∞

m2

∆2

ds
(
C2∆2s

) −d+5
2(d−3) e−s

= (C∆)
d−1
d−3

1

2(d− 3)
Γ

[
d− 1

2(d− 3)
,
m2

∆2

]
. (4.52)

where we used the function called upper incomplete gamma function:

Γ(s, x) =

∫ ∞

x

dxxs−1e−x. (4.53)

So then
N 2

0 e
m2

∆2 =
2(d− 3)

Ωd−2(C∆)
d−1
d−3

1

Γ
[

d−1
2(d−3) ,

m2

∆2

] (4.54)
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and we can insert it in (4.48) to finally obtain:

ψH(r0) =

{
2(d− 3)

Ωd−2

(C∆)−
d−1
d−3

Γ
[

d−1
2(d−3) ,

m2

∆2

]} 1
2

θ(r0 −R0)e
− r2(d−3)

2(C∆)2 . (4.55)

4

4.2.2 Probabilities

The probabilities involved are the same that were mentioned in the previous section.
First, we calculate PS , the probability that the source is inside r0, that was defined in (4.33).
We employ the function for the source (4.43) and omit some of the passages we used when
calculating the normalization constant, as they are exactly the same.

PS =

∫
dΩd−2

∫ ∞

0

drrd−2|ψS(r, y)|2

=
(2π)d−2

V(d−2)

2

Γ
(
d−1
2

)
ld−1

∫
dΩd−2

∫ r0

0

dre−
r2

l2
V(d−2)

(2π)d−2
δ(y1) . . . δ(yd−2)r

d−2

=
2

Γ
(
d−1
2

)
ld−1

∫ r0

0

dre−
r2

l2 rd−2

=
γ
(

d−1
2 ,

r20
l2

)
Γ
(
d−1
2

) . (4.56)

In the last passage we used the lower incomplete gamma function, defined as:

γ(s, x) =

∫ x

0

dxxs−1e−x. (4.57)

This can be expressed as γ(s, x) = Γ(s)−Γ(s, x). By using this, we write the probability in
a more convenient form:

PS = 1−
Γ
(

d−1
2 ,

r20
l2

)
Γ
(
d−1
2

) . (4.58)

With this, we can calculate the probability that a black hole is formed, PBH , by combining
the probability that the horizon is located at r0 (PH , defined in (4.49)) and the probability
that the source particle is inside the horizon (PS , defined in (4.33)).
Therefore, we define it:

PBH =

∫ ∞

0

dr0PSPH , (4.59)
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where PH is the probability density corresponding to PH .
Then, we can write:

PBH =

∫ ∞

0

dr0

1− Γ
(

d−1
2 ,

r20
l2

)
Γ
(
d−1
2

)
∫ dΩd−2r

d−2
0 |ψH |2

= 1− Ωd−2

Γ
(
d−1
2

){2(d− 3)

Ωd−2

(C∆)−
d−1
d−3

Γ
[

d−1
2(d−3) ,

m2

∆2

]}∫ ∞

R0

dr0Γ

[
d− 1

2
,
r20
l2

]
rd−2
0 e

− r
2(d−3)
0
(C∆)2

= 1− 1

Γ
(
d−1
2

)
Γ
[

d−1
2(d−3) ,

m2

∆2

] 2(d− 3)

(C∆)
d−1
d−3

∫ ∞

R0

dr0Γ

(
d− 1

2
,
r20
l2

)
rd−2
0 e

− r
2(d−3)
0
(C∆)2 . (4.60)

Then we change variable exactly as was done in (4.51)
s =

r
2(d−3)
0

(C∆)2
→ r0 =

(
C2∆2s

) 1
2(d−3) ;

ds = 2(d− 3)
r
2(d−3)−1
0

(C∆)2
dr0

(4.61)

and by substituting it we obtain:

PBH = 1− 1

Γ
(
d−1
2

)
Γ
[

d−1
2(d−3) ,

m2

∆2

] ∫ ∞

m2

∆2

dsΓ

d− 1

2
,

(
C2∆2s

) 1
d−3

l2

 e−ss
d−1

2(d−3)
−1. (4.62)

Now, we are interested in expressing this probability as a function of l
lp

. To this end, we
employ a more convenient expression for the constant C = 16πG

(d−2)Ωd−2
.

Indeed, as we have seen in the previous chapters, the gravitational force per unit mass is
obtained by ~F = −∇φ and φ = − 1

2h00.
Therefore,

~F =
(d− 3)8πG

(d− 2)Ωd−2

m

rd−2
r̂. (4.63)

We can, alternatively, redefine the gravitational constant G so that the force law is similar
to what we normally use in d = 5:

~F = G′ m

rd−2
r̂. (4.64)

With this new definition we get:

C =
16π

(d− 2)Ωd−2

(d− 2)Ωd−2

(d− 3)8π
G′ =

2G′

(d− 3)
=

2ld−3
p

(d− 3)mp
. (4.65)

By substituting it in (4.62), together with the definition of ∆ =
mplp

l , we have:

PBH = 1− 1

Γ
(
d−1
2

)
Γ

[
d−1

2(d−3) ,
(

m
mp

l
lp

)2]

×
∫ ∞(

m
mp

l
lp

)2
dse−ss

d−1
2(d−3)

−1Γ

{
d− 1

2
,

[
2

d− 3

(
lp
l

)d−2
] 2

d−3

s
1

d−3

}
. (4.66)
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Now, we wish to plot this quantity and we show how it changes when fixing one parameter
and varying another. Below, the probability of Black Hole formation from equation (4.66)
is displayed as a function l

lp
. The plots are realised using a numerical computation of the

function, as an analytic approach is not viable.
The first plot shows the probability for fixed m = mp and varying dimensionality:

d = 5

d = 6

d = 7

d = 9

d = 10

0.5 1.0 1.5 2.0 2.5 3.0 3.5
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lp

0.2

0.4

0.6

0.8

1.0

PBH
m = mp

Figure 4.1: PBH for m = mp

It shows the probability decreases for increasing dimensionality. Indeed, in smaller dimen-
sions it has a maximum at around l = 1

2 lp, and it is pretty small at the Planck length
already at d = 6. For higher dimensions it is very suppressed even at the Planck length and
it requires to reach much smaller scales to experience a relevant probability of measuring
a Black Hole. It could be thought that the diminution in the probability is linked to the
decrease in the horizon radius for high dimensionality. We argue this is not the case, as
taking a very small gravitational radius R0 → 0 does not affect much the probability when
d = 6, as it shown in the following numerical plot:
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R0 = 0
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1.0

PBH
m = Δ, d=6

Figure 4.2: PBH for d = 6 and m = ∆ in the case when R0 → 0 compared to the probability
with no such approximation

Next, we show the dependence of the Probability on the mass, by plotting for fixed
dimensionality and varying m

mp
:
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2
mp
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4
mp

m = 1 mp

m = 2 mp
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0.8

1.0

PBH
d = 6

Figure 4.3: PBH for d = 6

The behaviour portrayed in this figure shows that the smaller the ratio m
mp

the lower the
probability is. The maximum probability is obtained at around l = 1

2 lp for all the values
considered here. Among the different curves, the one for m = 2mp gives the highest prob-
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ability and corresponds to trans-Planckian masses.
The next plot we shall present refers to the case when m = ∆, meaning l = λ, which is the
extremal condition when the Gaußian width is exactly the Compton length. In this case,
m
mp

=
lp
l and then the probability is only a function of m

mp
and dimensionality d.
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d = 9
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m = Δ

Figure 4.4: PBH with m = ∆

The result is in accordance to what we expected at the beginning of this section, the max-
imum probability is reached only after the Planck mass threshold is crossed and for d = 6 it
indeed starts growing after m ∼ 1.10mp. With increasing dimensionality of spacetime the
probability is lowered. At d = 10 the maximum probability is reached only at m ∼ 3mp.

4.2.3 Generalized Uncertainty Principle

We can find the uncertainty in the size of the horizon:

∆r0 =
√
〈r20〉 − 〈r0〉2. (4.67)

The average is calculated as:

〈Ô〉 = Ωd−2

∫ ∞

0

drrd−2ψ∗
HÔψH . (4.68)
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By using the horizon wave function (4.48), with normalization constant (4.54) and proceed-
ing with the change of variable (4.51) we obtain:

〈r0〉 = Ωd−2N 2 (C∆)
d

d−3

2(d− 3)

∫ ∞

m2

∆2

dse−ss
d

2(d−3)

=
Ωd−2

2(d− 3)
(C∆)

d
d−3

{2(d− 3)

Ωd−2

(C∆)−
d−1
d−3

Γ
[

d−1
2(d−3) ,

m2

∆2

]}Γ [ d

2(d− 3)
,
m2

∆2

]

=
Γ
[

d
2(d−3) ,

m2

∆2

]
Γ
[

d−1
2(d−3) ,

m2

∆2

](C∆)
1

d−3 =
Γ
(

d
2(d−3) ,

m2

∆2

)
Γ
(

d−1
2(d−3) ,

m2

∆2

)[∆
m

] 1
d−3

R0, (4.69)

where in the last passage we used the fact that Cm = Rd−3
0 .

Similarly,

〈r20〉 =
Γ
[

d+1
2(d−3) ,

m2

∆2

]
Γ
[

d−1
2(d−3) ,

m2

∆2

](∆

m

) 2
d−3

R2
0. (4.70)

Now we use the expression:

Γ (s, x) = xsE1−s(x), En(x) =

∫ ∞

1

dt
e−xt

tn
, (4.71)

where En(x) is the generalised exponential integral.
The result (4.67) is thus:

∆r0 =

√√√√√√√
(

m2

∆2

) d+1
2(d−3)

E d−7
2(d−3)

(
m2

∆2

)
(
m2

∆2

) d−1
2(d−3) E d−5

2(d−3)

(
m2

∆2

) −

(
m2

∆2

) d
d−3

E2
d−6

2(d−3)

(
m2

∆2

)
(
m2

∆2

) d−1
d−3 E2

d−5
2(d−3)

(
m2

∆2

) (∆

m

) 1
d−3

R0

= R0

√√√√√√E d−7
2(d−3)

(
m2

∆2

)
E d−5

2(d−3)

(
m2

∆2

) − E2
d−6

2(d−3)

(
m2

∆2

)
E2

d−5
2(d−3)

(
m2

∆2

) . (4.72)

Expressing the radius as R0 = (Cm)
1

d−3 and using (4.65) it can be rewritten as:

∆r0
lp

=

(
2

d− 3

m

mp

) 1
d−3

K(d), (4.73)

where the square root was indicated with K(d) for simplicity of notation.
Now we can plot this quantity as a function of l

lp
(contained in K(d), in the dependence of

the exponential integrals):
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Figure 4.5: ∆r0
lp

with m = mp

The plot shows the uncertainty on the horizon radius as a function of the width of the source
when m is kept fixed at mp and d takes different values. This figure makes it clear that if
l � lp the classical limit is reproduced:

〈r0〉 ' R0 and ∆r0 ' 0. (4.74)

Also, for higher dimensions the uncertainty is reduced, in line with the low probability of
forming a Black Hole. This could hint to the formation of classical particles before the
Planck scale is reached.
The next plot shows the dependence on the mass when d is kept fixed:
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m= 2 mp

m= 1 mp
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mp
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Figure 4.6: ∆r0
lp

with d = 6

In this figure we notice that increasing the mass the uncertainty is reduced, making the
horizon more sharply defined. This could hint to the fact that trans-Planckian do indeed
generate classical Black Holes, as masses greater than the Planck scale give more classical
results.
Next, we plot (4.73) when l = λ and we end up with an equation that only depends on m

mp

and on the dimensions of spacetime.
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Figure 4.7: ∆r0
lp

with m = ∆
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Here, we notice the behaviour of the uncertainty gets more and more constant as the dimen-
sionality increases and as m is increased. Classicality is no longer retrieved for l � lp which
corresponds to m < mp. Moreover, if m > mp the curves are either constant or diverge, not
resulting in the semi-classical behaviour we would have expected. This could be due to the
fact that this time K(d) is a constant and therefore ∆r0 ∝ R0. Having an uncertainty on
the horizon proportional to it is not what we want for a classical Black Hole. This can be
solved changing model and considering the Black Hole as a condensate of gravitons, each
of which is described by a Gaußian source. Then it can be shown (refer to [36]) that the
uncertainty becomes ∆r0 ∝ R0

N , where N is the number of gravitons and since it is very
large, the uncertainty goes to 0, giving the expected classical result.

Subsequently, we obtain the total GUP by adding to the uncertainty ∆r0 the Heisenberg
one on the source ∆rS :

∆r = ∆rs + α∆r0. (4.75)

The coefficient α should be measured experimentally, but for simplicity we can set it to 1.
The term ∆rs can be found analogously to (4.67) but using ψS from (4.43) instead of ψH :

〈r〉 = Ωd−2

∫ ∞

0

drrd−2ψ∗
SrψS . (4.76)

By using the same substitution as in (4.39):

〈r〉 =
V(d−2)

(2π)d−2

l2

2

∫ ∞

0

dsN 2e−s(l
√
s)d−2

=
Γ
(
d
2

)
Γ
(
d−1
2

)l (4.77)

and

〈r2〉 =
Γ
(
d+1
2

)
Γ
(
d−1
2

)l2. (4.78)

The property of gamma function Γ(z + 1) = zΓ(z) can be applied to get:

〈r2〉 = d− 1

2

Γ
(
d−1
2

)
Γ
(
d−1
2

)l2 =
d− 1

2
l2. (4.79)

For the other average we use the properties:

Γ(z)Γ

(
z +

1

2

)
= 21−2z

√
πΓ(2z), Γ(n) = (n− 1)! (4.80)

and obtain:

〈r〉 =
Γ
(
d−1
2 + 1

2

)
Γ
(
d−1
2

) l =
22−d

√
πΓ (d− 1)

Γ2
(
d−1
2

) l =
22−d

√
π (d− 2)!

Γ2
(
d−1
2

) l. (4.81)

So that:

∆rS =
√
〈r2〉 − 〈r〉2 =

√
d− 1

2
− 22(2−d)π [(d− 2)!]

2

Γ4
(
d−1
2

) l ≡ A(d)l. (4.82)
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In total, (4.75) gives:

∆r =

√
d− 1

2
− 22(2−d)π [(d− 2)!]

2

Γ4
(
d−1
2

) l + α [R0K(d)] . (4.83)

By working in momentum space with the Fourier transform (4.47) and proceeding analog-
ously to what we did in (4.82), we obtain:

∆p = A(d)∆ = A(d)
lpmp

l
. (4.84)

So we can write equation (4.83) in a more homogeneous form as a sole function of ∆p, by
making use of (4.73):

∆r = A(d)2
lpmp

∆p
+ αK(d)

(
2

d− 3

m

mp

) 1
d−3

. (4.85)

We can further simplify this by taking m = ∆ = ∆p
A(d) , so that we obtain:

∆r = A(d)2
lpmp

∆p
+ αK(d)

(
2

d− 3

1

A(d)

∆p

mp

) 1
d−3

, (4.86)

carrying the dependence on ∆p as:

∆r

lp
= Cs

1

∆p
+ CH(∆p)

1
d−3 , (4.87)

where Cs, CH are constants independent of ∆p.
We can plot (4.86) as a function of ∆p

mp
and get:
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Figure 4.8: ∆r
lp

with α = 1 and m = ∆
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This plot shows the total uncertainty in length as a function of the uncertainty in momentum
for different dimensions. When the dimension is increased the uncertainty is reduced, ana-
logously to what we already saw in figure 4.5 for the uncertainty on the horizon.
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Figure 4.9: ∆r
lp

with d = 6

This time the parameter α is varied, keeping the dimensions fixed at six. We notice that
lower values of the parameter give lower uncertainties. This implies that when the quantum
fluctuations of the source are more important with respect to the fluctuations of the horizon,
the total uncertainty is lower. Moreover, the curves tend to be almost constant if ∆p is large
enough.
It can be noticed in the last two figures that there is a minimum in the resolution length,
which we shall proceed to calculate. We denote:
y ≡ ∆r

lp
, x ≡ ∆p

mp
, C = 2

d−3

ld−3
p

mp
and the square root in (4.83) as K(d).

dy

dx
= 0 → A(d)2

x2
=
αK(d)

d− 3

(
2

d− 3

x

A(d)

) 4−d
d−3 2

(d− 3)A(d)
. (4.88)

The solution is:

x =
(d− 3)A(d)

2d−5
d−2

2
1

d−2 (αK(d))
d−3
d−2

. (4.89)

Then we substitute this value to find the minimum of y:

y =

{
2A(d)[αK(d)]d−3

} 1
d−2

d− 3
+
{
2A(d) [αK(d)]

d−3 } 1
d−2

=
{
2A(d)[αK(d)]d−3

} 1
d−2

d− 2

d− 3
. (4.90)
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Therefore, there is a minimum uncertainty for the length, given by:

L = lp
d− 2

d− 3

{
[2

√
d− 1

2
− 22(2−d)π [(d− 2)!]

2

Γ4
(
d−1
2

) } 1
d−2

×


α
√√√√√E d−7

2(d−3)
(1)

E d−5
2(d−3)

(1)
−
E2

d−6
2(d−3)

(1)

E2
d−5

2(d−3)

(1)


d−3


1
d−2

. (4.91)

We can thus plot the minimum resolvable length in units of Planck length L
lp

as a function
of the parameter α:
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Figure 4.10: L
lp

as a function of α

From this figure we deduce the minimum length resolution increases for increasing α, in an
almost linear behaviour. Taking L at the Planck length clearly favours small values of the
parameter α, while the opposite would have happened had we taken m ' mp. Moreover,
higher dimensions favour larger values for the parameter, for fixed L. This means that the
larger the number of dimensions the more the horizon influences the uncertainty, rather
than the source. Furthermore, the more the dimensionality increases, for lower values of α,
the more classical the Black Hole becomes, especially at sub-Planckian lengths.

4.3 Ultra-spinning case
The ultra-spinning regime is characterized by a� r, which implies, as we saw in the other
chapter:

µ ≡ Cm = a2rd−5
0 , AH = Ωd−2a

2rd−4
0 . (4.92)
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4.3.1 Wave functions
Again, we consider a Gaußian source, as in (4.31), but this time the normalization is fixed
differently, because in this approximation the area is different:

1 =
V(d−2)

(2π)d−2
a2
∫
dΩd−2

∫ ∞

0

drN 2e−
r2

l2 rd−4δ(y1) . . . δ(yd−2)

=
V(d−2)

(2π)d−2
a2
∫ ∞

0

drN 2e−
r2

l2 rd−4. (4.93)

We change the integration variable:
s =

r2

l2
→ r =

√
sl;

ds =
2r

l2
dr → dr =

l2

2r
ds

(4.94)

and obtain:

1 =
V(d−2)

(2π)d−2
a2N 2

∫ ∞

0

ds
l2

2r
rd−4e−s

=
V(d−2)

(2π)d−2
a2N 2 l

2

2

∫ ∞

0

dse−s(
√
sl)d−5

=
V(d−2)

(2π)d−2
a2N 2 l

d−3

2
Γ

(
d− 3

2

)
. (4.95)

Then the normalisation constant is fixed to:

N 2 =
(2π)d−2

V(d−2)

2

Γ
(
d−3
2

)
a2ld−3

(4.96)

and the function for the source is:

ψS =

[
(2π)d−2

V(d−2)

2

Γ
(
d−3
2

)
a2ld−3

] 1
2

e−
r2

2l2 δ(y1) . . . δ(yd−2). (4.97)

Proceeding analogously to the static case, we move on to momentum space by Fourier
transforming:

ψS(p, pj) = N
∫
drdy1 . . . dyd−2δ(y1) . . . δ(yd−2)e

− r2

2l2 e−
i
~pre−

i
~pjyj

= N
∫ ∞

0

dre
−
(

r2

2l2
+ i

~pr
)
. (4.98)

We perform exactly the same passages as the previous section and obtain:

ψS(p) = N e−
p2l2

2~2 l

∫
dke−

k2

2 = N l

√
π

2
e−

p2

2∆2 . (4.99)

So that now we are able to construct the horizon wave function, assuming again the flat-
space mass-shell relation E2 = p2 +m2.

ψH(r0) = N0θ(r0 −R0)e
− 1

2(C∆)2
a4

(
r2(d−5)−R2(d−5)

)
. (4.100)
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But in which this time we used Cm = µ = a2Rd−5
0 that was mentioned in the introduction.

The next step involves fixing the normalisation constant N0 and we do it by, again, imposing
the condition PH = 1 for r0 = ∞.

1 = Ωd−2a
2

∫ ∞

R0

dr0N 2
0 e

−a4 r
2(d−5)
0
(C∆)2 e

a4 R
2(d−5)
0
(C∆)2 rd−4

0

= N 2
0Ωd−2a

2e
m2

∆2

∫ ∞

R0

dr0e
−a4 r

2(d−5)
0
(C∆)2 rd−4

0 (4.101)

and we perform a change of variable:
y =

a4r
2(d−5)
0

(C∆)2
→ r0 =

(
C∆

a2
y

1
2

) 1
d−5

;

dy = 2(d− 5)
a4r

2(d−5)−1
0

(C∆)2
dr0.

(4.102)

This gets:

N−2
0 e−

m2

∆2

Ωd−2a2
=

∫ ∞

m2

∆2

dy
(C∆)2

2(d− 5)a4r
2(d−5)−1
0

rd−4
0 e−y

=

(
C∆

a2

)2
1

2(d− 5)

∫ ∞

m2

∆2
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(
C∆

a2

)−d+7
d−5

y
−d+7
2(d−5) e−y

=

(
C∆

a2

) d−3
d−5 1

2(d− 5)
Γ

[
d− 3

2(d− 5)
,
m2

∆2

]
. (4.103)

Then, finally, the constant is fixed to:

N 2
0 e

m2

∆2 =

(
C∆

a2

)− d−3
d−5 2(d− 5)

a2Ωd−2

1

Γ
[

d−3
2(d−5) ,

m2

∆2

] (4.104)

and the horizon wave function is:

ψH(r0) =

{(
C∆

a2

)− d−3
d−5 2(d− 5)

a2Ωd−2

1

Γ
[

d−3
2(d−5) ,

m2

∆2

]} 1
2

θ(r0 −R0)e
− a4r2(d−5)

2(C∆)2 . (4.105)

4.3.2 Probabilities
First we calculate PS , defined as in (4.33):

PS =

[
(2π)d−2

V(d−2)

2

Γ
(
d−3
2

)
a2ld−3

]
a2
∫
dΩd−2

∫ r0

0

drδ(y1) . . . δ(yd−2)e
− r2

l2 rd−4

=

[
2

Γ
(
d−3
2

)
ld−3

]∫
dΩd−2

∫ r0

0

dre−
r2

l2 rd−4

=
γ
(

d−3
2 ,

r20
l2

)
Γ
(
d−3
2

) = 1−
Γ
(

d−3
2 ,

r20
l2

)
Γ
(
d−3
2

) , (4.106)
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where we used again the representation of the lower incomplete gamma function: γ(s, x) =
Γ(s)− Γ(s, x).
Then we calculate PBH , that was defined in (4.59):

PBH =

∫ ∞

0

dr0

1− Γ
(

d−3
2 ,

r20
l2

)
Γ
(
d−3
2

)
 a2 ∫ dΩd−2r

d−4
0 |ψH |2

= 1− a2Ωd−2

Γ
(
d−3
2

){(C∆
a2

)− d−3
d−5 2(d− 5)

a2Ωd−2

1

Γ
[

d−3
2(d−5) ,

m2

∆2

]}

×
∫ ∞

R0

dr0Γ

(
d− 3

2
,
r20
l2

)
rd−4
0 e

−a4 r
2(d−5)
0
(C∆)2

= 1− 2(d− 5)

Γ
(
d−3
2

)
Γ
[

d−3
2(d−5) ,

m2

∆2

] (C∆
a2

)− d−3
d−5

∫ ∞

R0

dr0Γ

(
d− 3

2
,
r20
l2

)
rd−4
0 e

−a4 r
2(d−5)
0
(C∆)2 .

(4.107)

Now we change the variable to y, exactly as in (4.102):
y =

a4r
2(d−5)
0

(C∆)2
→ r0 =

(
C∆

a2
y

1
2

) 1
d−5

;

dy = 2(d− 5)
a4r

2(d−5)−1
0

(C∆)2
dr0

(4.108)

and perform the substitution:

PBH = 1− 2(d− 5)

Γ
(
d−3
2

)
Γ
[

d−3
2(d−5) ,

m2

∆2

] (C∆
a2

)− d−3
d−5

×
∫ ∞

m2

∆2

dy
1

2(d− 5)

(
C∆

a2

)2

e−yΓ

(
d− 3

2
,
r20
l2

)
rd−4+11−2d
0

= 1− 1

Γ
(
d−3
2

)
Γ
[

d−3
2(d−5) ,

m2

∆2

] (C∆
a2

)2− d−3
d−5

×
∫ ∞

m2

∆2

dye−yΓ

[
d− 3

2
,
1

l2

(
y

1
2
C∆

a2

) 2
d−5

](
y

1
2
C∆

a2

) 7−d
d−5

= 1− 1

Γ
(
d−3
2

)
Γ
[

d−3
2(d−5) ,

m2

∆2

] ∫ ∞

m2

∆2

dye−yΓ

[
d− 3

2
,
1

l2

(
y

1
2
C∆

a2

) 2
d−5

]
y

d−3
2(d−5)

−1. (4.109)

At this point, we explicit the quantity 1
l2

(
C∆
a2

) 2
d−5 using (4.65):

1

l2

(
C∆

a2

) 2
d−5

=

(
2

d− 3

ld−3
p

mp

mplp
l

1

ld−5a2

) 2
d−5

=

(
2

d− 3

ld−4
p

ld−4

l2p
a2

) 2
d−5

. (4.110)
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Now, it is necessary to know the limit for which the ratio a
lp

generates instabilities. We
make use of (3.106), from which we calculate, for example, that ad−3

µ should be smaller than
0.88 for d = 6, 0.97 for d = 7 and 1.02 for d = 8 and so on. We want to use this quantity
to express the ratio a

lp
and we use (4.65) to do so:

ad−3

µ
=
ad−3

Cm
=

(
a

lp

)d−3(
d− 3

2

mp

m

)
. (4.111)

From this:

a

lp
=

(
ad−3

µ

2

d− 3

m

mp

) 1
d−3

. (4.112)

Thanks to this expression, we can rewrite the probability:

PBH = 1− 1

Γ
(
d−3
2

)
Γ

[
d−3

2(d−5) ,
(

m
mp

l
lp

)2]

×
∫ ∞(

m
mp

l
lp

)2
dye−yy

d−3
2(d−5)

−1Γ

{
d− 3

2
,

(
2

d− 3

) 2
d−3

[
y

(
lp
l

)2(d−4) ( µ

ad−3

mp

m

) 4
d−3

] 1
d−5

}
(4.113)

This expression can be simplified taking m = ∆, which is implied if the width of the source
is exactly equals to the Compton length l = λ. In that case we have:

PBH = 1− 1

Γ
(
d−3
2

)
Γ

[
d−3

2(d−5) ,
(

m
mp

l
lp

)2]

×
∫ ∞(

m
mp

l
lp

)2
dye−yy

d−3
2(d−5)

−1Γ

{
d− 3

2
,

[(
2

d− 3

)2(
m

mp

)d−2 ( µ

ad−3

) 4
d−5

] 1
d−3

y
1

d−5

}
(4.114)

The probability (4.114), taken at the Planck scale, is shown in numerical plots below, as a
function of the ratio l

lp
. It depends on three parameters: mass ratio, angular momentum

and dimensionality. These are varied separately.
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d = 6

d = 7

d = 9

d = 10

0.5 1.0 1.5 2.0 2.5 3.0
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0.6

0.8

1.0

PBH
m = mp, a

d-3=0.8 μ

Figure 4.11: PBH with m = mp and ad−3

µ = 0.8

Here we vary the dimensionality and we notice that increasing the number of dimensions
drastically decreases the probability of forming Black Holes. While the maximum probability
for d = 6 is found at the Planck length, for d = 7, 9, 10 it is around l = 1

2 lp, while at lp the
probability is very low, especially in d = 9, 10. Similarly to the static case, we could infer
that the diminution of the horizon radius afflicts the probability, so we plot numerically the
case when R0 → 0 in d = 6 and m = mp:

R0=0

0.5 1.0 1.5 2.0 2.5 3.0

l

lp

0.2

0.4

0.6

0.8

1.0

PBH
m = mp, a

d-3=0.8 μ, d=6

Figure 4.12: PBH with m = mp and d = 6, compared to the case when R0 → 0

We notice the probability is not lowered so drastically and we conclude the effect of
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dimensionality is the principal factor of the decrease in the probability.
Next, we vary the angular momentum:

ad-3 = 0.5 μ

ad-3 = 0.8 μ

ad-3 = 1 μ

0.5 1.0 1.5 2.0 2.5 3.0

l

lp

0.2

0.4

0.6

0.8

1.0

PBH
m = mp, d=6

Figure 4.13: PBH with m = mp and d = 6

From this plot, it is apparent that higher momenta give smaller probabilities, with the
possibly unstable value a = lp giving the smallest values, among those considered here.
While ad−3

µ results in the probability reaching its maximum when the width l is around the
Planck scale, higher momenta reduce it to around l ' 1

2 lp.
Next, when varying the mass we obtain:
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PBH
d = 6, ad-3=0.8 μ

Figure 4.14: PBH with m = ∆ and ad−3

µ = 0.4

We can see that, contrary to the previous cases analysed, when it is the mass ratio that is
varied, the change of the probability in d = 6 is negligible, giving an overall higher prob-
ability for m = 2mp, except in the range around the Planck scale where m = 1

2mp gives
slightly higher values. The maximum probability is reached when l ' 0.7lp.

Next, we can simplify (4.114) by considering the extremal casem = ∆, obtaining numerically
the following plots. The parameters on which we can act now are only the dimensionality
and angular momentum, while plotting PBH as a function of m

mp
.
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d = 6

d = 7

d = 9

d = 10
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Figure 4.15: PBH with m = ∆ and ad−3

µ = 0.4

This first plot represents the probability PBH from equation (4.114), obtained considering
m = ∆ and for fixed momentum over mass ad−3

µ = 0.4, well below the instability threshold
(the lowest one is for d = 6 and it corresponds to ad−3

µ = 0.88). Using (4.114) instead of
(4.113) makes it so that the probability only depends on dimensionality and the mass ratio
m
mp

. Then, in this plot we expressed PBH as a function of m
mp

at different values of d. We see
the maximum probability is obtained for smaller masses and with less dimensions, reaching
PBH = 1 slightly before the Planck scale in the d = 6 case and at around three times the
Planck scale for d = 7. The higher the dimensionality, the further the highest probability
lies, in terms of energy. If d = 7 at the Planck scale the probability of having a Black Hole
is around 50% and it gets significantly lower for higher dimensions.
Now, we plot the probability as a function of the ratio a

lp
, with fixed dimensionality d = 6

and for different fixed values of m
mp

.
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Figure 4.16: PBH with m = ∆ and d = 6

The vertical dashed line roughly represents the maximum value for the angular momentum
allowed by instabilities, calculated for each curve. We notice that for smaller masses the
instability limit is reached when the probability is already small, while for masses twice
the Planck mass the system becomes unstable not much further than the maximum. The
general behaviour of the curves indicates that higher angular momenta give smaller values
for the probability, signalling the ultra-spinning Black Hole is an unstable configuration and
will not be a favoured state for the system. Moreover, higher spins mean smaller radius (for
fixed mass), lowering the cross section and probability.
We also drew a plot of the case when the dimensionality is varied and the angular momentum
is set at the maximum value corresponding to each curve.
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d = 6
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d = 9
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Figure 4.17: PBH with m = ∆ and ad−3

µ max for every value of d

Here we see the case when the angular momentum is maximum (before reaching possible
instabilities) and thus the probability is the lowest in each dimensionality. The behaviour is
similar to the case analysed in figure 4.15, with the curves reaching the maximum probability
a little later in energy.

4.3.3 Generalized Uncertainty Principle

We calculate the uncertainty in the size of the horizon:

∆r0 =
√

〈r20〉 − 〈r0〉2 (4.115)

(as stated in equation (4.67)). We use the horizon wave function (4.105), with the same
change of variables as in equation (4.102).

〈rb0〉 =
Ωd−2a

2N 2

2(d− 5)

(
C∆

a2

)2 ∫ ∞

m2

∆2

dse−srd−4+b−2(d−5)+1

=
Ωd−2a

2

2(d− 5)

(
C∆

a2

)2
{(

C∆

a2

)− d−3
d−5 2(d− 5)

a2Ωd−2

1

Γ
[

d−3
2(d−5) ,

m2

∆2

]}

×
∫ ∞

m2

∆2

dse−s

(√
s
C∆

a2

)−d+7+b
d−5

=
Γ
[
d−3+b
2(d−5) ,

m2

∆2

]
Γ
[

d−3
2(d−5) ,

m2

∆2

] (C∆
a2

) b
d−5

=
Γ
[
d−3+b
2(d−5) ,

m2

∆2

]
Γ
[

d−3
2(d−5) ,

m2

∆2

] (∆

m

) b
d−5

Rb
0, (4.116)
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where in the last passage we used the fact that Cm = a2Rd−5
0 . Therefore,

〈r20〉 =
Γ
[

d−1
2(d−5) ,

m2

∆2

]
Γ
[

d−3
2(d−5) ,

m2

∆2

] (∆

m

) 2
d−5

R2
0 (4.117)

and

〈r0〉 =
Γ
[

d−2
2(d−5) ,

m2

∆2

]
Γ
[

d−3
2(d−5) ,

m2

∆2

] (∆

m

) 1
d−5

R0. (4.118)

We can express these quantities using the exponential integral:

Γ (s, x) = xsE1−s(x), En(x) =

∫ ∞

1

dt
e−xt

tn
. (4.119)

Then, (4.67) gives:

∆r0 = R0

√√√√√√
(
m2

∆2

) d−1
2(d−5) E d−9

2(d−5)

(
m2

∆2

)
(
m2

∆2

) d−3
2(d−5) E d−7

2(d−5)

(
m2

∆2

) −

(
m2

∆2

) d−2
2(d−5) E d−8

2(d−5)

(
m2

∆2

)
(
m2

∆2

) d−3
2(d−5) E d−7

2(d−5)

(
m2

∆2

)

2(

∆

m

) 1
d−5

= R0

√√√√√E d−9
2(d−5)

E d−7
2(d−5)

−
E2

d−8
2(d−5)

E2
d−7

2(d−5)

. (4.120)

The horizon radius R0 can be expressed as a function of the angular momentum parameter
ad−3

µ in the following way. First, we use (3.106) and obtain µ:

µ = ad−3 2

d− 3

m

mp

(
lp
a

)d−3

(4.121)

and we substitute it into the expression for the horizon radius:

R0 =
( µ
a2

) 1
d−5

= a

[
2

d− 3

m

mp

(
lp
a

)d−3
] 1

d−5

. (4.122)

Next, we use (4.112) to express (4.120) as a function of ad−3

µ and indicate the square root
as K(d):

∆r0
lp

= K(d)

[
2

d− 3

m

mp

ad−3

µ

] 1
d−3

(
ad−3

µ

)− 1
d−5

= K(d)

[
2

d− 3

m

mp

(
ad−3

µ

)− 2
d−5

] 1
d−3

.

(4.123)
We can plot this quantity as a function of l

lp
, where the dependence on this ratio is contained

in the exponential integral (that depends on m
∆ ). Now we plot the same equation (4.120) as

a function of l
lp

, for a general l > λ:
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Figure 4.18: ∆r0
lp

with m = mp and ad−3

µ = 0.8

The plot shows the uncertainty on the horizon radius as a function of the source’s width,
both in units of the Planck length. As the width l is increased, the uncertainty approaches
0, thus reproducing a classical behaviour:

〈r0〉 ' R0 and ∆r0 ' 0. (4.124)

Moreover, higher dimensionality seems to hint to negligible uncertainties and thus to a
classical behaviour. This could be due to the fact that also the probability of forming a
Black Hole is very small, making it more likely to be a classical particle.



4.3. ULTRA-SPINNING CASE 91
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Figure 4.19: ∆r0
lp

with d = 6 and ad−3

µ = 0.8

In this plot, m
mp

takes different values while d is kept fixed. We can see that the higher the
mass is, the more classical the behaviour of the Black Hole. This could be related to self-
completeness, as, supposedly, at trans-Planckian scales a classical Black Hole is produced.
We can now plot the uncertainty as a function of m

mp
in the extremal case m = ∆:
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d= 9
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m = Δ, ad-3=0.8 μ

Figure 4.20: ∆r0
lp

with m = ∆ and ad−3

µ = 0.8

The behaviour is very similar to the static case, indeed, we notice the uncertainty gets more
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and more constant as the dimensionality increases and as m is increased, not reaching 0
unless m = 0. Then, classicality is not retrieved for m < mp as we would expect. Moreover,
if m > mp the curves are either constant or diverge, not resulting in the semi-classical
behaviour we would have expected. We can take the same conclusion as the static case,
that is, if m = ∆, then K(d) is a constant and therefore ∆r0 ∝ R0. Having an uncertainty
on the horizon proportional to it is not what we want for a classical Black Hole and we
should be studying another model to describe it more effectively. The corpuscular model
could help in this direction, as it would also allow to have an axisymmetric function for the
source instead of a symmetric Gaußian like the one we used.
In the following plot we express the uncertainty on the horizon as a function of a

lp
, using

a dashed line to indicate roughly the maximum value of this ratio before the configuration
becomes unstable. The number of dimensions is kept fixed at d = 6 and m

mp
takes different

fixed values.

Figure 4.21: ∆r0
lp

with m = ∆ and d = 6

First, we can see that higher momenta give lower uncertainties and instabilities are reached
at higher values of the uncertainty for higher masses. The smallness of the uncertainty for
high momenta possibly refers to the lack of Black Holes in favour of normal particles, as its
behavior corresponds to the probability of forming a Black Hole in figure 4.13.

The total GUP is obtained by:
∆r = ∆rs + α∆r0 (4.125)

as in (4.75). The term ∆rs can be found analogously to (4.67), using ψS from (4.97) instead
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of ψH :

〈ra〉 = Ωd−2a
2

∫ ∞

0

drrd−4ψ∗
Sr

aψS . (4.126)

By using the same substitution as in (4.39):

〈ra〉 =
V(d−2)

(2π)d−2
a2
l2

2

∫ ∞

0

dsN 2e−s(l
√
s)d−5+a

=
V(d−2)

(2π)d−2
a2

[
2

a2ld−3

(2π)d−2

V(d−2)

1

Γ
(
d−3
2

)] ld−3+a

2
Γ

(
d− 3 + a

2

)

=
Γ
(
d−3+a

2

)
Γ
(
d−3
2

) la. (4.127)

So that

〈r〉 =
Γ
(
d−2
2

)
Γ
(
d−3
2

)l, (4.128)

by using the properties of gamma function:

Γ

(
d− 2

2

)
= Γ

(
d− 3

2
+

1

2

)
=

1

Γ
(
d−3
2

)24−d
√
πΓ(d− 3)

=
1

Γ
(
d−3
2

)24−d
√
π(d− 4)!, (4.129)

becomes:

〈r〉 = 24−d
√
π(d− 4)!

Γ2
(
d−3
2

) l. (4.130)

On the other hand we have:

〈r2〉 =
Γ
(
d−1
2

)
Γ
(
d−3
2

)l2. (4.131)

We now use the property Γ(z + 1) = zΓ(z):

〈r2〉 =
d−3
2 Γ

(
d−3
2

)
Γ
(
d−3
2

) l2 =
d− 3

2
l2. (4.132)

Therefore, the end result is:

∆rS =
√
〈r2〉 − 〈r〉2 =

√
d− 3

2
− 22(4−d)π [(d− 4)!]

2

Γ4
(
d−3
2

) l ≡ B(d)l. (4.133)

In total, (4.75) gives:

∆r =

√
d− 3

2
− 22(4−d)π [(d− 4)!]

2

Γ4
(
d−3
2

) l + α

R0

√√√√√E d−9
2(d−5)

E d−7
2(d−5)

−
E2

d−8
2(d−5)

E2
d−7

2(d−5)

 . (4.134)
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Repeating the steps we used in calculating the uncertainty on the horizon gives:

∆r

lp
= B(d)

l

lp
+ αK(d)

[
2

d− 3

m

mp

(
ad−3

µ

)− 2
d−5

] 1
d−3

. (4.135)

Moreover, in momentum space we obtain, analogously to (4.133):

∆p = B(d)∆ = B(d)
lpmp

l
. (4.136)

Then, (4.135) can be written in a more homogeneous form as a sole function of ∆p, by
substituting l from (4.136) and taking m = ∆ = ∆p

B(d) :

∆r

lp
= B(d)2

mp

∆p
+ αK(d)

[
2

d− 3

∆p

mp

1

B(d)

(
ad−3

µ

)− 2
d−5

] 1
d−3

, (4.137)

which carries the dependence on ∆p in the following way:

∆r

lp
= Cs

1

∆p
+ CH(∆p)

1
d−5 , (4.138)

where Cs, CH are constants independent of ∆p.
We can plot this uncertainty as a function of ∆p

mp
:

d= 6

d= 7

d= 9

d= 10

0.5 1.0 1.5 2.0 2.5 3.0 3.5

Δp

mp

0.2

0.4

0.6

0.8

Δr

lp

m = Δ, ad-3=0.8 μ, α=1

Figure 4.22: ∆r0
lp

with m = ∆ and d = 6

This plot shows the total uncertainty in length as a function of the uncertainty in momentum
for different dimensions. When the dimension is increased the uncertainty is reduced, analog-
ously to the static case portrayed in figure 4.8. Then, higher uncertainties on the momentum
and higher dimensions give smaller values for the uncertainty on lengths. While the former
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is due to Heisenberg’s uncertainty principle, the latter may be due to the fact that higher
dimensions are more likely to produce regular particles instead of Black Holes.
Next, what we vary is the angular momentum:

a
d-3= 0.5 μ

a
d-3= 0.8 μ

a
d-3= 1 μ

0.5 1.0 1.5 2.0 2.5 3.0 3.5

Δp

mp

0.2

0.4

0.6

0.8

1.0

1.2

Δr

lp

m = Δ, d=6, α=1

Figure 4.23: ∆r
lp

with m = ∆, α = 1 and d = 6

It is apparent that the possibly unstable configuration ad−3 = µ gives the least uncertainty,
while ad−3 = 1

2µ gives the highest value. As Black Holes are more favoured in stable
configurations, in the other cases more regular particles are produced, thus lowering the
total uncertainty.
Lastly, we examine the uncertainty for different values of the parameter α:



96 CHAPTER 4. HORIZON WAVE FUNCTION
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Δr
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Figure 4.24: ∆r
lp

with m = ∆,d = 6 and ad−3

µ = 0.8

We notice that lower values of the parameter give lower uncertainties. This implies that
when the quantum fluctuations of the source are more important than the fluctuations of
the horizon, the total uncertainty on lengths is lower. Moreover, the curves tend to be
almost constant if ∆p is large enough.

Similarly to the static case, we proceed to calculate the minimum of equation (4.137). We
denote: y ≡ ∆r

lp
and x ≡ ∆pr

mp
. Then:

dy

dx
= 0 → B(d)2

x2
=
αK(d)

d− 3

[
2

d− 3

1

B(d)

(
ad−3

µ

)− 2
d−5

] 1
d−3

x
1

d−3−1. (4.139)

The solution is:

x = (d− 3)

{
B(d)2d−5

2
[αK(d)]

−(d−3)

(
ad−3

µ

) 2
d−5

} 1
d−2

. (4.140)
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Then we substitute this value to find the minimum of y:

y =
B(d)2

x
+ αK(d)

(
2

d− 3

x

B(d)

) 1
d−3

(
ad−3

µ

)− 2
(d−3)(d−5)

= B(d)2−
2d−5
d−2 [αK(d)]

d−3
d−2 2

1
d−2 (d− 3)

(
ad−3

µ

)− 2
(d−2)(d−5)

+ [αK(d)]
1− 1

d−2 2
1

d−3−
1

(d−2)(d−3)B(d)
2d−5

(d−2)(d−3)
− 1

d−3

(
ad−3

µ

) 2
(d−3)(d−5)(d−2)

− 2
(d−3)(d−5)

=

(
d− 2

d− 3

){
2B(d) [αK(d)]

d−3

(
ad−3

µ

)− 2
d−5

} 1
d−2

. (4.141)

This represents the minimum uncertainty in length, given by:

L = lp

[
2l2p

(d− 3)a2(d− 5)d−6

] 1
d−4

×

{α
√√√√√E d−9

2(d−5)

E d−7
2(d−5)

−
E2

d−8
2(d−5)

E2
d−7

2(d−5)


d−5√

d− 3

2
− 22(4−d)π [(d− 4)!]

2

Γ4
(
d−3
2

) } 1
d−4

. (4.142)

We can thus plot this minimum length as a function of α:
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α
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lp

m = Δ, ad-3=0.8 μ

Figure 4.25: L
lp

with m = ∆ and ad−3

µ = 0.8

From this figure we see the minimum length has an almost linear behaviour, which becomes
constant and smaller as the dimension increases. This, again, reflects the fact that higher
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dimensions give more classical results. Similarly to the static analogous plot, taking L at
the Planck length clearly favours small values of the parameter α, while the opposite would
have happened had we taken m ' mp.



Chapter 5

Conclusions

In this work we extended the results of Ref. [41] by generalizing the discussion to rotating
d-dimensional Myers-Perry Black Holes. We explored two different regimes: the static and
ultra-spinning one. Since the static case is basically a d-dimensional Schwarzschild, the real
extension to [41] comes from the ultra-spinning regime.
The main result of this discussion is that despite the Planck scale is lowered when considering
extra dimensions, if we want a significant probability of forming a Black Hole it could not be
sufficient to just reach the Planck scale but we might need to exceed it, especially for higher
dimensional models. This could explain why we still have not detected Black Holes at LHC,
despite reaching energies of order ∼ 10 TeV. Therefore, increasing the energy at which the
investigation takes place might prove the existence of higher dimensions, determining more
precisely their number by fitting the data of Black Hole production with the probabilities
here calculated. Through the investigation of trans-Planckian energies we might also be able
to ascertain whether there is a theory of quantum gravity and research it or, alternatively,
it may be true that gravity is self-complete and in that case we would observe only classical
large Black Holes.
The results found in this work show the probability of getting a Black Hole resulting from a
scattering experiment. It confirms that relevant probabilities are reached for trans-Planckian
masses and lower angular momenta, indeed making the static case more favourable for the
system. From the analysis of the GUP it emerged that the use we made of a Gauian
distribution might be inaccurate, while a statistical treatment of a Black Hole as an ensemble
of gravitons would probably give more truthful results. Moreover, it emerges that trans-
Planckian masses give lower uncertainties on the horizon, possibly hinting to the formation
of a classical Black Hole beyond the Planck scale and thus reinforcing the self-completeness
theory.
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Appendix A

The Einstein equation

In this section we are going to present how to obtain the Einstein equation. We are going
to employ asymptotically flat metrics and a non-relativistic, weakly gravitating field:

gµν = ηµν + hµν , |hµν | � 1 everywhere. (A.1)

Also, the condition of non-relativistic system implies v � c and that temporal derivatives
can be considered much smaller than the spatial ones. Moreover, in this approximation, the
components of the energy-momentum tensor are typically ranked as |T00| � |T0i| � |Tij |.
Although the condition |T0i| � |Tij | might not be true in general, it is usually verified in
rotating systems, so we take it to be true.
Gravity is contained in the Einstein-Hilbert action, which is:

SEH =
1

16πG

∫
ddx

√
−gR+

∫
ddx

√
−gLmatter. (A.2)

The symbols used in (A.2) correspond to: G is the d-dimensional gravitational constant, g
is the determinant of the metric, Lmatter is the Lagrangian of other fields of the theory and
R is the Ricci scalar.
The Ricci scalar is defined as:

R = gµνRµν , (A.3)

where Rµν is called Ricci tensor and is a contraction of the Riemann tensor: Rµν = Rρ
µρν .

The expression of the latter in terms of Christoffel symbols is as follows:

Rρ
µλν = Γρ

νµ,λ − Γρ
λµ,ν + Γρ

λσΓ
σ
νµ − Γρ

νσΓ
σ
λµ. (A.4)

We want to minimize the action (A.2) and obtain the equations of motion. We shall see
that we end up getting the Einstein equation. We start by calculating the variation of each
term that appears in (A.2). First, we variate R:

δR = δRµνg
µν +Rµνδg

µν . (A.5)

To calculate δRµν we first notice that δΓρ
µν is a tensor, because it is obtained as the difference

of the varied Γ′ and the original Γ. As such, the covariant derivative acts as expected for a
tensor: (

δΓρ
µν

)
;λ

=
(
δΓρ

µν

)
,λ
+ Γρ

λσδΓ
σ
µν − Γσ

λµδΓ
ρ
σν − Γσ

λνδΓ
ρ
µσ. (A.6)
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From this expression, we obtain
(
δΓρ

µν

)
,λ

to substitute in the variation of (A.4):

δRρ
µλν =

[(
δΓρ

νµ

)
;λ
− Γρ

λσδΓ
σ
νµ + Γσ

λνδΓ
ρ
σµ + Γσ

λµδΓ
ρ
νσ

]
−
[(
δΓρ

λµ

)
;ν
− Γρ

νσδΓ
σ
λµ + Γσ

νλδΓ
ρ
σµ + Γσ

νµδΓ
ρ
λσ

]
+
[
δΓρ

λσΓ
σ
νµ + Γρ

λσδΓ
σ
νµ

]
−
[
δΓρ

νσΓ
σ
λµ + Γρ

νσδΓ
σ
λµ

]
=
(
δΓρ

νµ

)
;λ
−
(
δΓρ

λµ

)
;ν
. (A.7)

Then, we notice that it is a total derivative and therefore it does not contribute to the
action:

δS =

∫
ddx

√
−ggµν

[(
δΓρ

νµ

)
;ρ
−
(
δΓρ

ρµ

)
;ν

]
=

∫
ddx

√
−g
[
gµνδΓρ

νµ − gµρδΓρ
ρµ

]
;ρ
= 0. (A.8)

So, next, we calculate the variation of the measure
√
−g. First, we consider a generic matrix

M and notice that:
ln(detM) = Tr(lnM) (A.9)

and we differentiate it
δ(detM)

detM
= Tr

(
M−1δM

)
. (A.10)

Now we apply it to the metric, by taking M = gµν :

δg

g
= (gµνδgµν) (A.11)

and since these are also valid:

δ(gµνgµν) = 0 → δgµν = −gµρδgρσgσν , (A.12)

all together we obtain:

δg = g(gµνδgµν) = −g(gµνgµρδgρσgσν)
= −g(gµνδgµν). (A.13)

Then, finally, the variation of the measure is given by:

δ
√
−g = − δg

2
√
−g

= −1

2

√
−g(gµνδgµν), (A.14)

which we have all the elements to calculate.
Now, we use (A.14), (A.8) and (A.5) to obtain the variation of the action:

δSEH =
1

16πG

∫
ddx

[√
−g
(
Rµν − 1

2
Rgµν − 8πGTµν

)
δgµν

]
!
= 0. (A.15)

In this result, we used the definition of the energy-momentum tensor as obtained from the
Euler-Lagrange equation applied only to the non-gravitational part of the action:

Tµν = − 2√
−g

δ (
√
−gLmatter)

δgµν
. (A.16)
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Therefore, at the end we see that by extremizing the action (A.2) we obtain the Einstein
equation:

Rµν − 1

2
gµνR = 8πGTµν . (A.17)

A.1 The first order correction
To first order in the metric perturbation, we can explicitly write an expression for hµν .
Indeed, in this approximation, (A.4) can be written more simply as:

Rρ
µλν = Γρ

νµ,λ − Γρ
λµ,ν . (A.18)

Next, we use the definition of the Christoffel symbol and the weak field approximation (A.1),
we can write:

Γρ
νµ =

1

2
gρα (gνα,µ + gαµ,ν − gνµ,α) '

1

2
ηρα (hνα,µ + hαµ,ν − hνµ,α) . (A.19)

Now we employ the so-called harmonic gauge, which consists in a particular gauge choice:

hµν,ν =
1

2
ηµνhλλ,ν . (A.20)

Then, to first order, the Riemann tensor is calculated to be:

Rµν = Γρ
νµ,ρ − Γρ

ρµ,ν = −1

2
2hµν (A.21)

and the corresponding Ricci scalar is:

R = −1

2
2h where h is hµµ. (A.22)

Moreover, by contracting (A.17) with gµν we obtain an expression for the Ricci scalar:

R− d

2
R = 8πGT → R =

8πGT

1− d
2

. (A.23)

This allows us to rewrite (A.17) as:

2hµν = −16πG

(
Tµν +

gµν
2− d

T

)
≡ −16πGT̃µν . (A.24)

According to the approximations we decided to make, the temporal derivatives are negligible
with respect to the spatial ones, therefore, the D’Alembert operator can be approximated
to a Laplacian.





Appendix B

Green’s function in arbitrary
dimensions

The Green’s function for the Laplacian is defined as follows:

∇2G(~x− ~x′) = δ(~x− ~x′). (B.1)

To simply it, we take ~x′ = 0 and the dependence of the Green’s function only on |~x| = r:

∇2G(r) = δ(r). (B.2)

Next we integrate on a sphere in d− 1 dimensions of radius R, to get:∫
r<R

dd−1x∇2G(r) =

∫
r<R

dd−1xδ(r) = 1. (B.3)

Then we can apply the divergence theorem to the left-hand side:∫
r<R

dd−1x∇2G(r) =

∫
r=R

dd−2x~∇G · r̂. (B.4)

Now we use the definition of ∇ and write:
∂G

∂~x
=
∂G

∂r

∂r

∂~x
=
∂G

∂r

r

~x
, (B.5)

where r̂ = ~x
r . So then: ∫

r=R

dd−2x
∂G

∂r

r̂

r̂
= Ωd−2R

d−2 ∂G

∂r
(R), (B.6)

where Ωd−2R
d−2 is the area of the d− 2 dimensional sphere:

Ωd−1 =
2π

d
2

Γ
(
d
2

) . (B.7)

Now we can integrate on r the end result of equation (B.6) and obtain:

G(R) =

∫ R

0

dr

Ωd−2rd−2
= −

1

Rd−3Ωd−2(d− 3)
. (B.8)
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So that in general it gives:

G(~x− ~y) =
1

(d− 3)Ωd−2|~x− ~y|d−3
. (B.9)
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