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Abstract

The aim of this thesis is to address the design of a torque vectoring system for
an electric All-Wheel-Drive car. The torque vectoring objective is to substitute the
need of a mechanical differential in case of an electric car with four individual hub
motors. It can be exploited also to perform various forms of electronic stability, such
as traction and launch control, improving safety, sports performance and off-road
capabilities of vehicles. These technologies involve individual control of each wheel’s
drive torque or braking force in response to the dynamics of the driving conditions
and the driver’s intentions. This work present a non-linear model derived from a
Lagrangian approach to the solution of the control problem, that is then studied at
the equilibrium point along a curvilinear trajectory.
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List of Symbols

4WD Four-Wheel drive
6DOF Six degree of freedom
UV Under-vehicle
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p̈ [m

s2
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Chapter 1

Introduction

With the increasing problem of air pollution and global warming, most of the
car manufacturers are starting to develop and sell cars with different topologies of
electric powertrains. In this context of changes also in the racing world it is possible
to see an increasing effort to make likable also the electric races, as it is possible
to see with FIA Formula E. In this category, the chassy is the same for all cars
while the team has to push above all on the powertrain configuration and the energy
management.

The energy management in the case of electric vehicles is really important since
now the benchmark for this new technology is to have the same performances and
ranges with the internal combustion engine cars, considering a trade off with the
costs. What is important to highlight is that considering the introduction of a new
technology in the market, there will always be some advantages and disadvantages,
but it is really important to let people be aware of the capabilities of the electric

Figure 1.1: Formula E MercedesEQ car for the season 2019/20
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vehicles.

1.1 Traction architecture

Figure 1.2: Electric All-Wheel drive architecture versus an mechanical all wheel drive

It is possible to make a comparison between the traction architecture of a four
wheel drive internal combustion engine vehicle and a four wheel drive full electric
vehicle. In case of a full electric vehicle it is possible to exploit the fact that the
power-train can be designed with four independent electric motors, each one with its
own inverter.

At this point the vehicle control unit can distribute four different torque demands
to the wheels independently, allowing an improvement in performance and stability
of the vehicle. This chance of having four independently controlled wheels leads
to avoid the need of a mechanical differential, that is normally used with internal
combustion engines vehicle.

A huge advantage of this architecture is the simplification in the transmission
chain, thus leading to the reduction of the total weight of the vehicle and to less
moving mechanical parts.

Reducing the weight of a mechanical part, it is really important for the vehicle
performance, because instead of having the addition of weight in a fixed point, it can
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be distribute, through a proper design, to have a better vehicle dynamics.

1.2 Torque vectoring

The torque vectoring, in case of a four wheel drive full electric vehicle, is the
torque distribution on each wheel that can be exploited to have optimal vehicle
dynamics. The way of how the control is designed depends on the type of vehicle
needs. For instance, for a road car it can be exploited to have a better stability,
while in case of a race car, the performance can be stressed as the main goal.

The torque vectoring control can be also designed to allow traction and launch
control of the vehicle, acting again on the wheel torque. It depends on how it is
decided to design the control law.

When the vehicle goes around the corner, the weight distribution is not equal
on both sides. During the corner the weight get transferred from the inside to the
outside, thus leading to more load on the outside tyres. This is way it is important
to have a different torque on each wheel.

Furthermore, while the vehicle is performing a straight, then during the
acceleration, there is a longitudinal weight transfer. The result is that the rear
tyres experience more load than the rear one, while they are all running at the same
speed. The same happens during the deceleration of breaking, but in the opposite
way.

According to the previous considerations, it is necessary to have on the vehicle
a central control unit that calculate, in each instant of time, which is the better
torque distribution on each wheel according to different measurable parameters. It
is possible to exploit both the power of a feed-forward and feed-back control law.
The first one is used to calculate the differentiation of wheel torque during a normal
trajectory, while the second one can be exploited to keep the vehicle on the trajectory
in case of disturbances.
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Chapter 2

Mathematical Introspection

In this chapter, it will be described the mathematical tools used in the following
model solution.

2.1 Euler-Lagrange Equations

Definition: The Euler-Lagrange equations

They are second-order partial differential equation that gives functional
stationary solutions. Where a functional, in mathematical analysis, refers to a
mapping from a space X into real or complex numbers, with a purpose of having more
computation like structures. While, a stationary point of a differentiable function on
a variable, is a point in which the derivative of the function is zero.

Given the functional:

S(q) =

∫ b

a
L(t.q(t), q̇(t) dt (2.1)

where q is a function of real argument t, then the Euler-Lagrange equation is
the one that has a stationary point given by it.

The Euler-Lagrange equation, then, is given by:

Lx(t.q(t), q̇(t)− d

dt
Lv(t.q(t), q̇(t) = 0 (2.2)

where Lx and Lv denote the partial derivative of L with respect to the second
and third arguments, respectively.

If the dimension of the space X is greater than one, it becomes a system of
differential equations, one for each components:
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∂L

∂qi
(t.q(t), q̇(t)− d

dt

∂L

∂q̇i
(t.q(t), q̇(t) = 0 for i = 1, ..., n (2.3)

In this specific case, it has been exploited the formulation for several functions
of single variable with single derivative.

In general, if the problem involves finding several functions of a single
independent variable. Which in the specific case, the function are the motion
equation of the vehicle and the single variable is the time t. Then, the formulation
of the Euler-Lagrange equations is:

∂L

∂fi
− d

dx
(
∂L

∂f ′i
= 0i (2.4)

2.2 Lagrangian Mechanics

The Lagrangian approach, in classical mechanic, can be used to describe the
evolution in time of a physical system, since it is equivalent to the solution of Newton
law of motion. A huge advantage of this approach is that these equations take the
same form in any system of generalized coordinate systems, thus leading for it to be
better suited for generalization.

Indeed, in Newton’s laws when it is necessary to include the non-conservative
forces, it is better to express it in Cartesian coordinates. Lagrangian mechanics at
this poi becomes very useful because it allows to bypass any specific coordinates
system. At this point it is possible to express dissipative and driven forces with the
sum of potential and non-potential forces, leading to a set of modified equations. The
main convenience of this approach cam from the fact that the generalized coordiantes
can be chosen to suite any requirement, like simplification due to symmetry which
may help in solve a motion problem.

In general, in order to use this approach, it is necessary to define the Lagrangian
as the combination of kinetic and potential energy of the considered system. This
can be done in the following way:

L = K − T (2.5)

where K is the potential energy of the system and
Now exploiting the definition given in the equation 2.4, it can be found the

equation of motion, which is actually a second-order differential equation, not the
actual variable as function of t that can be derived by integrating twice the equation.

This instrument is really powerful since, if the problem involves more than one
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coordinate, than it would just be necessary to apply the equation 2.4 to each of it.
This solution of the problem comes from the principle of stationary action

described in the previous paragraph.

2.3 Moore-Penrose pseudo-inverse

In linear algebra, the pseudo-inverse is a generalization of the inverse of a matrix.
It is widely used to find the solution of a system of linear equations which do not

have a unique solution, indeed it peaks the one with the smallest norm. is is unique
and defined if the entries of the matrix are real or complex and it can be computed
using the singular value decomposition.

2.3.1 Notation

Conventions adopted in the following discussion:

• K denotes one of the fiels of real or complex numbers, R o C. The vector space
of m× n matrices over K is denoted by Km × n.

• For A ∈ Km×n, A> and A∗ denote the transpose and the conjugate transpose.

• For A ∈ Km × n, im(A) denotes the image of A, the space spanned by the
column vectors of A.

• For A ∈ Km × n, ker(A) denotes the kernel of A.

• For any positive integer n, In ∈ Kn × n denotes the Kn × n identity matrix.

Definition: Moore-Penrose pseudo-inverse
For A ∈ Km × n, a pseudo-inverse of A is defined as a matrix A+ ∈ Km × n

that satisfies all the following criteria:

1. AA+A = A

2. A+AA+ = A+

3. (AA+)∗ = AA+

4. (A+A)∗ = A+A

A+ always exist for any matrix A, but when it has full rank (that is defined as
the min{m,n}), it can be expressed with a simple algebraic formula.

At this point it is necessary to distinguish two cases:
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• n<m The A matrix in this case has linearly independent column, thus leading
to an injective function. This means, it is dealing with an under-sized system:

A+ = (A ∗A)−1A∗ (2.6)

This is called left pseud-inverse.

• n>m The A matrix in this case has linearly independent row, thus leading to
a surjective function. This means, it is dealing with an over-sized system:

A+ = A ∗ (A ∗A)−1 (2.7)

This is called right pseud-inverse.

For this specific case, it will be used the right pseudo-inverse.

2.4 Equilibrium condition study

Given a dynamic system, with a finite dimension, continuous in time, non-linear
and stationary, that can be described by the state differential equation:

ẋ(t) = f(x(t), u(t) (2.8)

It is possible to consider two different temporal evolution:

1. nominal movement of equilibrium x̃(t) = x̄. This can be obtained applying the
nominal entry of equilibrium ũ(t) = ū to the system, that is in the nominal
inital state x̃(t = 0) = x̄⇒ x̃(t) has to satisfy the following system of equations:

˙̃x(t) = ˙̄x = 0 = f(x̄, ū) (2.9)

2. disrupted movement x(t) obtained applying the nominal entry ũ(t) = ū to the
system in a initial state that is different form the nominal one x0 6≡ x̄ ⇒ x(t)

has to satisfy the following system of equations:{
ẋ(t) = f(x(t), ū)

x(t0 = 0) = x0
(2.10)

The difference between the two movements is the perturbation on the system
state:
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δx(t) = x(t)− x̄ ∈ Rn ⇒ x(t) = x̄+ δx(t) (2.11)

The time evolution of the perturbation is on the state δx(t) is the solution of
the following differential equation:

δẋ(t) =
d(δx(t))

dt
=

=
d(x(t)− x̄

dt
=

= ẋ(t)− ˙̄x =

= f(x(t), ū) =

= f(x̄+ δx(t), ū)

(2.12)

that is a non-linear equation in the variable δx(t) and it has the following initial
condition:

δx(t0 = 0) = x(t0 = 0)− x̄ = x0 − x̄ = δx0 6≡ 0 (2.13)

In general the solution of a non linear differential equation δẋ(t) = f(x̄ +

δx(t), ū), δx(t0 = 0) = x0 − x̄ = δx0 is really difficult to find. Furthermore it
depends from both the initial nominal equilibrium state x̄ and from the nominal
equilibrium entry ū. This means, it depends on the considered equilibrium point.

In case of non-linear and stationary dynamic system, the property of stability
can be studied only on a small neighbourhood of a chosen equilibrium state (local
stability).

In many cases, with the indirect method of Lyapunov, known also as
linearization method, it is possible to study the local stability at the equilibrium
point without having to solve the non-linear differential equation.

δẋ(t) = f(x̄+ δx(t), ū), δx(t0 = 0) = x0 − x̄ = δx0 (2.14)

The function f(x̄ + δx(t), ū) can be developed in Taylor series around the
equilibrium point.

According to the linearization method, if it is possible to discard all the terms
that contain power of grade greater than one, than the analysis of the stability of
the equilibrium can be done through the study of the internal stability of an LTI
dynamic system.
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Chapter 3

Model

3.0 Reference Frames

Definition: Rigid body
It is a solid body with no deformation and if it as a deformation, it is so small

that it can be neglected. In a rigid body the distance among each point remains
constant regardless any external force.
Definition: Reference frame

In physics, it consist of an abstract coordinate frame and reference points that
define uniquely, in term of position and orientation, the behaviour of an object in
the space. Sometimes the reference frame is attached to the modifier.

First of all, it is necessary to define two parts of the car:

1. Body : representation of a rigid body with 6 degree of freedoms (three
traslations and three rotatios), which is attached to the road by means of an

Figure 3.1: Definition of the Body and Under-Vehicle systems
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equivalent system of suspension and tyres. On this part act the aerodynamic
forces iFa and the gravity g.

2. Under-Vehicle: ideal part of the vehicle modeled as a rigid body with 6 degree
of freedoms (three traslations and three rotatios) which is attached to the road,
which is plane if the suspention are in rest position and it coincides with the
body. On this part act the wheel forces

∑
iFw and momenta

∑
uτw).

These two parts are connected each other by means of both kinematic and
dynamic constraints, which will be described in the section 3.2.3. It it possible to
see a graphical representation of the definition of these system in figure 3.1.

This is the list of reference frame that has been exploited to describe the
behaviour of the car in this case:

• Inertial: FI(OI , xI , yI , zI) where the origin OI is centered in a plane tangential
to the Earth surface, while the axis xI and yI lay on it with the following
directions:

– xI : oriented toward North

– yI : oriented toward West

While the zI axis is perpendicular to this plane and points upward.

It is possible to see a graphical representation of this reference frame in fig.
3.2.

Figure 3.2: Definition of the Inertial reference frame

• Body: FB(OB, xB, yB, zB) where the origin OB is centered in centre of gravity
of the car and the axis are defined in the following way:
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– xB: oriented along the longitudinal symmetry axis

– zB: points upward and lays on the longitudinal symmetry plane

– yB: complete the reference frame according to the right-hand rule

It is possible to see a graphical representation of this reference frame in fig.
3.3.

Figure 3.3: Definition of the Body reference frame

• Under-vehicle: FU (OU , xU , yU , zU ) where the centre coincides with the one of
the body reference frame, OU ≡ OB. The axis are defined by means of a
rotation of the body reference frame considering the definition of road-relative
angles that will be given at page 24. If the suspensions are in rest position the
two reference frames are totally coincident.

It is possible to see a graphical representation of this reference frame in fig.
3.4.

• Navigation: FN (ON , xN , yN , zN ) where the centre coincides with the one of
the body reference frame, ON ≡ OB. The important characteristic of this
reference frame is that the axes xN is aligned with the inertial speed of the
vehicle. The yN lies on the under-vehicle and it is perpendicular to xN and
the axis zN completes the reference frame according to the right-hand rule.

It is possible to see a graphical representation of this reference frame in fig.
3.5.

• i-th Wheel: FWi(OWi , xWi , yWi , zWi) is a fixed reference frame attached to the
wheel. Where the origin OWi is centered in the i-th wheel centre of gravity
and the axis are defined in the following way:
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Figure 3.4: Definition of the Under-vehicle reference frame

Figure 3.5: Definition of the Navigation reference frame

– yWi : aligned with the revolution axis of the wheel towards the left side of
the vehicle

– zWi : points upward and it is aligned with the axis zU

– xWi : complete the reference frame according to the right-hand rule

It is possible to see a graphical representation of this reference frame in fig.
3.14.

3.1 Rotation matrices

When it is necessary to consider two different reference frame, it is also necessary
to define the relationship between them. Given two reference frames F1 and F2 and
a vector v1 with the coordinate defined in F1, if it is necessary to represent it in
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Figure 3.6: Definition of the i-th wheel reference frame

the second reference frame, this can be done by means of a linear transformation
obtained through the rotational matrix used to define the projection of v1 on the
axis of F2.

One of the most common way of performing rotation in different reference frame
is done using the Euler angles that are defined to describe the orientation of a rigid
body in a fixed or moving coordinate reference frame.

The rotation is the combination of three different rotation performed along the
axis, so it necessary also to define three angles of rotation with the corresponding
rotational matrices:

• yaw angle (ψ): represents a rotation around the axes z

v′ = R3(ψ)v1 =

 cosψ sinψ 0

− sinψ cosψ 0

0 0 1

 v1 (3.1)

• pitch angle (ψ): represents a rotation around the axes y

v′′ = R2(θ)v
′ =

 cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

 v′ (3.2)

• roll angle (ψ): represents a rotation around the axes x

v2 = R1(φb)v
′′ =

 1 0 0

0 cosφ sinφ

0 − sinφ cosφ

 v′′ (3.3)
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Figure 3.7: Sequence of rotations used to pass from F1 to F2

The composition of these three rotations results in:

v2 = R1(φ)R2(θ)R3(ψ)v1 = 2R1(φ, θ, ψ)v2 (3.4)

Where 2R1(φ, θ, ψ)v2 represent the total rotation matrix between, as it is
possible to see in fig. 3.11. After these consideration it is possible to define all
the rotational angles and matrices among the different reference frame defined in the
paragraph 3.0:

• From Inertial to Body :

BRI(φ, θ, ψ) = R1(φ)R2(θ)R3(ψ) (3.5)

where φ, θ and ψ correspond to the Euler angles of pitch, yaw and roll,
respectively;

• From Body to Under-vehicle:

URB(φr, θr, ψr) = R1(φr)R2(θr)R3(ψr) (3.6)

where φr, θr and ψr correspond to the relative Euler angles of pitch, yaw and
roll, respectively. Indeed they describe the relative position of the under-vehicle
system with respect to the body part, as it is defined in the paragraph 3.0. The
complete expression of this matrix can be found in the appendix A.8.

• From Inertial to Under-vehicle:

URI(φu, θu, ψu) = R1(φu)R2(θu)R3(ψu) (3.7)

where φu, θu and ψu correspond to the Euler angles of pitch, yaw and roll,
respectively. For this description it will be necessary actually to use the
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opposite transformation, so from the Under-vehicle to Inertial reference frame.
In order to obtain the proper rotational matrix, it is necessary to perform the
transpose of the matrix previously defined:

IRU (φu, θu, ψu) = URI(φu, θu, ψu)> = R>3 (ψu)R>2 (θu)R>1 (φu) (3.8)

This come from the fact that it can be demonstrated that the rotational matrix
are orthonormal, which means R> = R−1. The complete expression of this
matrix can be found in the appendix A.2.

• From the Navigation to the Under-vehicle:

URN (0, γU , βU ) = R2(γU )R3(βU ) (3.9)

where βU indicates the side-slip angle. The parameter is really important
for this discussion and the definition of it will be explained in the chapter 4.1.
While γU is the under-vehicle climb angle. The complete expression of this
matrix can be found in the appendix A.3.

• From i-th wheel to Under-vehicle:

URWi(φWi , 0, δWi) = R1(φWi)R3(δWi) (3.10)

where δWi indicates the angle of the wheel with respect to the rest position,
during a straight trajectory, needed to perform a curvilinear trajectory. While
φWi indicates the i-th wheel roll angle, that is its camber angle. The complete
expression of this matrix can be found in the appendix A.4.

FROM TO SYMBOLS ROTATIONS
Inertial Body BRI φ, θ, ψ

Body Under-vehicle URB φr, θr, ψr
Inertial Under-vehicle URI φu, θu, ψu

Navigation Under-vehicle URN γU , βU
i-th wheel Under-vehicle URWi φWi , δWi

Table 3.1: Summary of all the required coordinate transformation, rotation matrices
and angles
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3.2 Kinematics

3.2.1 Justification to the model

Considering the definition of the vehicle as the assembly of two parts, given
at page 3.0, it is necessary at this point to highlight the main idea that is behind
the description of this model. Starting from a general idea, it will be given the
description of all the assumption made for this specific case.
Definition: Inverted pendulum

An inverted pendulum is a particular type of pendulum which has its centre of
mass above its pivot point, that is the point that should allow the body to keep a
null displacement when a rotation is applied on it.

Figure 3.8: Schematic of a cart inverted pendulum

In this case the system considers more degree of freedom with respect to the
normal inverted pendulum that usually as only one. Indeed there are two masses,
one of the body and the other one of the under-vehicle system, that are connected
by the means of a torsional spring. This way of outline the vehicle allows the body
to have both relative roll and pitch with respect to the under-vehicle.

Together with the rotational degrees of freedom, it is necessary also to describe
the relative translations that can occur between the body and the under-vehicle
idealization. This is done assuming that the only possible translation can be
performed by means of the suspensions is along the z axis.

The following list is the description of all the considered distances within the
model:

• Lx > 0 is the arm linking the centre of mass of the body to the rotation joint
in the lateral direction;

• Lz > 0 is the arm linking the centre of mass of the body to the rotation joint
in the vertical direction;
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Figure 3.9: Schematic of the proposed system

• dz(t) represents the relative vertical movement between the two parts (in the
under-vehicle coordinates).

3.2.2 Position Description

The following equation describes the position of the vehicle in the inertial
reference frame. From this equation it is possible to understand also how it is defined
the geometry that centre of gravity of the two parts.

ipb = ipu + iRu(Θu)

u

 0

0

dz

+ uRb(φr, θr)
b

 Lx

0

Lz


 (3.11)

Where:

• ipu represents the centre of gravity of the under-vehicle (in the inertial
coordinates)

• ipb represents the centre of gravity of the body (in the inertial coordinates)

• Θu = [φu, θu, ψu] are the roll, pitch and yaw angles of the under-vehicle

• φr, θr are the relative roll and pitch angles

The distances, along the different axis, between the centre of gravity are given
according to the definition highlighted in the previous paragraph. At this point it is
possible to see that the relative yaw angle between the body and the under-vehicle
systems has been considered always zero. This means that the two parts can’t rotate
one on the other along the z axis.
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Considering this equation, it is necessary to substitute the rotational matrices
according to the definition given at paragraph 3.1. The complete expression of this
system is to complicated to be handle manually, so it can be found, just for the
reader to know, in appendix A.5.

Small angle approximation

Let us now consider the angles φr and θr sufficiently small:

• φr ≈ 0

such that

– sinφr ≈ φr

– cosφr ≈ 1

• θr ≈ 0

such that

– sin θr ≈ θr

– cos θr ≈ 1

This approximation comes from the fact that it is possible to assume that all
the relative rotations generated by the suspension systems can be neglected.

It is possible to find the complete result of this approximation in the appendix
A.6. Since also this expression is not as easy to be handle, it has been tried to shrink
the system using the following definitions:

A =

 (sinφu sinψu + cosφu cosψu sin θu)

− (cosψu sinφu − cosφu sinψu sin θu)

cosφu cos θu

 (3.12)

B =

 cosψu cos θu

cos θu sinψu

− sin θu

 (3.13)

C =

 (cosφu sinψu − cosψu sinφu sin θu)

− (cosφu cosψu + sinφu sinψu sin θu)

− cos θu sinφu

 (3.14)

This come from the equation that can be found in the appendix A.7.
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Thus leading to the far more compact equation:

ipb ≈ ipu +A (dz − Lx θr + Lz) +B (Lx + Lz θr) + C (Lz φr) (3.15)

At this point it is necessary to compute the first derivative of ipb to express the
vehicle speed in the inertial reference frame, that is given by:

iṗb = iṗu + Ȧ (dz − Lx θr + Lz) +A
(
ḋz − Lx θ̇r

)
+

+Ḃ (Lx + Lz θr) +Bθ̇r + ĊL (Lz φr) + Cφ̇r
(3.16)

where the following substitutions holds:

•
Ȧ =

∂A

∂φu
φ̇u +

∂A

∂θu
θ̇u +

∂A

∂ψu
ψ̇u (3.17)

•
Ḃ =

∂B

∂φu
φ̇u +

∂B

∂θu
θ̇u +

∂B

∂ψu
ψ̇u (3.18)

•
Ċ =

∂C

∂φu
φ̇u +

∂C

∂θu
θ̇u +

∂C

∂ψu
ψ̇u (3.19)

The complete expression of these derivatives can be found in the appendix A.8.
This equation for the small angles approximation previously described, i.e.

φr, θr ≈ 0, is simplified as follows:

iṗb = iṗu + Ȧ (dz − Lx θr + Lz) +A
(
ḋz − Lx θ̇r

)
+

+Ḃ (Lx + Lz θr) +Bθ̇r + ĊL (Lz φr) + Cφ̇r
(3.20)

3.2.3 Kinematic Constrains

In this paragraph it will be described which are the kinematic constrains that
link all the systems used to describe the vehicle behaviour. The links are above all
between the body and the under-vehicle systems. It is important to highlight that
it has been assumed that a movement of the body, as a consequence in the motion
of the under-vehicle and vice-versa. As a consequence, this leads to necessity of
describing how the single kinematic of the two system influence actually the overall
behaviour of the vehicle.

This comes from the fact that many reference system are exploited for the
description of the vehicle behaviour and the complete model need to be coherent
with all the assumption that links all the definitions.
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1. Under-vehicle reference frame with respect to Inertial reference frame
The under-vehicle plane, (OU , xU , yU ), is coincident with the corresponding
inertial, OI , xI , yI). It means that the vehicle is leveled with the North-West
plane and the under-vehicle reference frame is aligned with the inertial one,
with except for a rotation around the third axis z of the angle ψu. This
assumption will be exploited after the computation of the Eulero-Lagrange
equations, since to calculate it it is necessary to consider all the possible degree
of freedom.

• φU = 0

• θU = 0

From the physical point of view, it means that the wheels are always attached
to the ground and the vehicle is not jumping or flying.

2. Body reference frame with respect to Under-vehicle reference frame:
The body frame is obtained by rotating the under-vehicle frame by means of
the relative roll and pitch angles φr and θr (respectively on the first and second
axis), that has been defined at page 24. While the relative yaw angle is null
and the z axis are coincident.

• ψr = 0

From the physical point of view, it means that according suspensions design,
they don’t allow the relative rotations of the two system along the z axis.

Figure 3.10: Not allowed relative rotation
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3.2.4 Car Trim

In this paragraph, it will be described which are the further assumption on the
vehicle attitude.

• Null camber angle φWi = 0:
The camber angle of a wheel is the inclination that is can have along x, so with
respect to the frontal section. In this case, it is considered that the suspension
kinematic chain doesn’t allow the following behaviour, but onth the first case.

Figure 3.11: Camber angle examples

• Null climb angle γU :
The climb angle describe the road inclination according the speed of the vehicle.
It come as a consequence of the considered type of road, as for example the
vehicle climbing a mountain or coming down from a descent. Assuming a null
climb angle means that in this case the vehicle is moving on a flat road.

3.3 Dynamics

3.3.1 Masses Definition

As the vehicle as been arranged as the sum of two subsystem, the body and the
under-vehicle, it is also important to define which are the masses that belongs two
the two sub-system and where the centre of gravity are located.

The masses of the two sub-systems includes the following vehicle parts:

• Sprung mass (mb): body and chassy
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• Unsprung mass (mu): wheels, brakes, hubs, axles, A-frames, springs and shock
absorbers

The position of the centre of gravity of the two subsystem considering the
position of the total centre of gravity is important also for the definition used at
page 27.

Figure 3.12: Weight distribution of the vehicle

Through this image, it is possible to understand also where the dynamic
constrains have been applied, from the schematic point of view.

3.3.2 Dynamic Constrains

As it has been highlighted at page 20, some of the external forces are ideally
applied on the body and others are applied to the under-vehicle. As a consequence,
it is really important to describe how the forces applied to one system influence the
other. For instance, if the vehicle is accelerating the under-vehicle is going to move
faster, while the body is initially dragged by it.

The dynamical link between the two subsystem is defined by a system of both
translational and rotational assembly of springs and dumpers that follows the same
relative degree of freedom left from the kinematic constrains.

The forces and momenta provided by the dumper-spring system are the
following:
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(a) Horizontal system of spring and dumper (b) Vertical system of spring and dumper

• Force along the zU axis:
Fz = −kzdz − βzḋz (3.21)

• Momentum along the xU axis:

Mx = −kφrφr − βφr φ̇r (3.22)

• Momentum along the yU axis:

My = −kθrθr − βθr θ̇r (3.23)

3.3.3 Kinetic Energy

The kinetic energy associated to the system is:

T =
1

2
mu

iṗ>u
iṗu +

1

2
mb

iṗ>b
iṗb +

1

2

[
φ̇u θ̇u ψ̇u

] Jxu Jxyu Jxzu

Jxyu Jyu Jyzu

Jxzu Jyzu Jzu


 φ̇u

θ̇u

ψ̇u

+

+
1

2

[
φ̇r θ̇r ψ̇u

] Jxb Jxyb Jxzb
Jxyb Jyb Jyzb
Jxzb Jyzb Jzb


 φ̇r

θ̇r

ψ̇u


(3.24)

In this formula, it is necessary to substitute the expression of the body speed
iṗu, with the one found at paragraph 3.2.2 as function of the under-vehicle, in order
to consider the geometry of the system.

The contribution to the kinetic energies come from all the masses and inertias
of the system according to the previous definition of the two sub-system.
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3.3.4 Potential Energy

From the assumption given at paragraph 3.2.3, it is possible to deduce that the
under-vehicle is always at ground level (zero level). Thus leading to the fact that
there is not potential energy associated with the mass mu, i.e. ipu(3) ≡ 0). As a
consequence the potential energy depends only on mb and the energy associated to
the spring-dumper systems, according to the following formula:

K =
1

2
kzd

2
z +

1

2
kφrφ

2
r +

1

2
kθrθ

2
r +mbg(Lz + dz) (3.25)

3.3.5 Work of Non-Conservative Forces

In this paragraph, it is going to be described the non-conservative forces that
acts on the the vehicle. This is necessary in order to find the work of these forces,
that will be used for the equalities in the Eulero-Lagrange equations, at paragraph
3.3.6.

Wheel Forces

Figure 3.14: Free body diagram of a driven wheel represented in two dimension

In order to have the generation of forces between the pneumatic and the road,
it is necessary to have a relevant slip in the zone where the contact happens. In this
case it is necessary to have a null relative speed between the two parts. The slip
takes into account the scenario where the deformation of the pneumatic compensate
the difference of speed between the wheel and the road.

For this model the forces between the tyres and the ground on the three axis
can be expressed all as function of FWWiz

. This is possible because the vertical force
is the one that determines the load on the road depending on different coefficients.

The force produced by tires in contact with the ground can be expressed as
follows:
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FWWi
= FWWiz


λLi
λTi

µ (λTi) + CR
(
Vi
Wi
x

)
λSi
λTi

µ (λTi)

1

 (3.26)

where the total, longitudinal and side slip ratio are defined by means of the
following equations:

• λLi longitudinal slip ratio

λLi =
ωir − ViWx
vmax

(3.27)

• λSi side slip ratio

λSi =
−ViWy
vmax

(3.28)

• λTi total slip ratio
λTi = λ2Li + λ2Si (3.29)

Where the definition of vmax is given by:

vmax =

√(
ViWy

)2
+ (max {|ViWx − ωir|, |ViWx |, |ωir|}) (3.30)

while the wheel speed expressed in the wheel reference frame, V W
i , depends on

the vehicle speed according to the following rotation:

V Wi
i =U RWi(0, 0, δWi)V

U
i (3.31)

while the definition of V U
i is:

V U
i = ωUU × rUi + URN (0, 0, βU )V N

OB
(3.32)

It is also necessary to show the behavior of the following coefficients through
some graphs that are obtained with successive experiments, this is due to the fact
that is not possible to describe it through a model because they depends on too
many variable:

• µ (λTi) friction coefficient

This graph is actually strictly dependent on the road conditions, as it is possible
to see in figure 3.16. From this graph it is possible to see how for certain
condition the friction coefficient decreases a lot, hence leading to high difficulty
in controlling the vehicle.
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Figure 3.15: Longitudinal friction coefficient at various longitudinal slip

Figure 3.16: Longitudinal friction coefficient for various road conditions

• CR
(
Vi
Wi
x

)
rolling coefficient

Figure 3.17: Rolling resistance as function of the vehicle speed
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This parameter takes into account the penetration of the tyre and the road.

In figure 3.18, it is possible to see a schematic of the forces acting on the wheels.

Figure 3.18: Wheel forces

Aerodynamic Forces

The aerodynamic forces in this cases is described in the body reference frame
FB, while the speed from which it depends at the beginning is defined in the inertial
reference frame FB.

Now the most important parameter to be defined is the air relative speed, that
describes the speed of the vehicle taking into account the wind speed, as it show in
the following formula:

V I
a = V I

OB
−W I (3.33)

where:

• V I
OB

is the inertial vehicle speed, considered as the speed of the centre of gravity;

• W I is the wind speed measured in the inertial reference frame

It is necessary, at this point, to apply a reference transformation since the force
needs to be described in the body reference frame. This is done in the following way:

V B
a = BRI(φ, θ, ψ)V I

a = BRI(φ, θ, ψ)
(
V I
OB
−W I

)
(3.34)
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It is necessary now to define two angles, starting from this velocity, in order to
explain the dependence of the force on it.

The two angles are defined according to the following formulas:

• α is the aerodynamic angle of attack :

α = tan−1

 V B
ax√(

V B
ax

)2
+
(
V B
ay

)2
 (3.35)

It describes the angle that the air relative speed has with the xb − yb plane of
the body reference frame

• β is the aerodynamic side slip angle:

β = sin−1

 V B
ay√(

V B
ax

)2
+
(
V B
ay

)2
 (3.36)

If the air relative speed is projected on the xb − yb plane of the body reference
frame, this is the angle that is present between the projection and the xB axis.

where V B
a is the following column vector:

V B
a =

 V B
ax

V B
ay

V B
ay

 (3.37)

At this point it is possible to describe the relationship that link the aerodynamic
forces, FBa expressed in the body reference frame FB.

The forces are function of the impact pressure, that is computed in the following
way:

P =
1

2
ρV 2

a (3.38)

This parameter has to be multiplied by the reference surface of the vehicle S
and the non-dimensional coefficients CX , CY and CZ .

The formula describing this behaviour is:

FBa =
1

2
ρV 2

a

 CX

CY

CZ

 (3.39)
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where:

• Va = ||V B
a || = ||V I

a || is the modulus of the air relative speed;

• ρ is the density of the air;

• S is the cross section of the vehicle on the plane defined in the body reference
frame by OB, yB and zB.

Figure 3.19: Drag force on a vehicle

Furthermore it is necessary to describe with parameters influences the
aerodynamic coefficients, CX , CY and CZ . These are highly non-linear coefficient
that depends on the following parameters:

• α: aerodynamic attack angle

• β: aerodynamic side-slip angle

• d: distance from the centre of gravity OB to its projection to re road

• µR: road inclination along the x axis with respect to the direction of motion

• γR: road inclination along the y axis with respect to the direction of motion

• χ: road parameter of the z inclination

Given these parameters the coefficients are: CX

CY

CZ

 =

 CX(α, β, d, µR, γR, χ)

CY (α, β, d, µR, γR, χ)

CZ(α, β, d, µR, γR, χ)

 (3.40)
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Figure 3.20: Graphical representation of the angles and speeds previously described

3.3.6 Eulero-Lagrange Equation

First of all, it is necessary to define the Lagrangian function L, as function
of the kinetic and potential energy of the system. This is done according to the
definition of the solution of the problem that can be found in the mathematical
introduction at page 14.

L = K − T (3.41)

L =
1

2
kzd

2
z +

1

2
kφrφ

2
r +

1

2
kθrθ

2
r +mbg(Lz + dz)−

−

1

2
mu

iṗ>u
iṗu +

1

2
mb

iṗ>b
iṗb +

1

2

[
φ̇u θ̇u ψ̇u

] Jxu Jxyu Jxzu

Jxyu Jyu Jyzu

Jxzu Jyzu Jzu


 φ̇u

θ̇u

ψ̇u

+

+
1

2

[
φ̇r θ̇r ψ̇u

] Jxb Jxyb Jxzb
Jxyb Jyb Jyzb
Jxzb Jyzb Jzb


 φ̇r

θ̇r

ψ̇u


(3.42)

With the substitution of and all the specific terms that can be found at paragraph
3.2.2 and in appendix A.8:
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iṗb = iṗu + Ȧ (dz − Lx θr + Lz) +A
(
ḋz − Lx θ̇r

)
+

+Ḃ (Lx + Lz θr) +Bθ̇r + ĊL (Lz φr) + Cφ̇r
(3.43)

Below, it is possible to find all the Eulero-Lagrange equations one for each
variable the appears in the lagrangian function L. The external forces related to each
variable can be found considering zero all the other variables, with except of the
considered one, and taking into account all the forces and torques that influence
that variable.

• ipu:

∂L

∂ ipu
− ∂

∂t

∂L

∂ iṗu
= (mu +mb)

ip̈u+

+mb

[
ALzφ̈r +BLz θ̈r + C

(
d̈z − Lxθ̈r

)
+DLxψ̈u

]
=
∑

iFw + iFa

( ip̈u(3) ≡ 0)

(3.44)

• dz:
∂L

∂dz
− ∂

∂t

∂L

∂ḋz
= kzdz +mbg +mb

ip̈>uC +mbd̈z =

= e>z R2(−θr)R1(−φr) bFa − βzḋz

( ip̈>uC ≡ 0)

(3.45)

• φr:

∂L

∂φr
− ∂

∂t

∂L

∂φ̇r
= kφrφr +mb

ip̈>uLzA+
[
φ̈r θ̈r ψ̈u

] mbL
2
zb

+ Jxb
Jxyb
Jxzb

 =

= −βφr φ̇r + e>x ( bFa × bL)

(3.46)
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• θr:

∂L

∂θr
− ∂

∂t

∂L

∂θ̇r
= kθrθr +mb

ip̈>uLzB −mb
ip̈>uLxC +

1

2
mbA

>DLxbLzbψ̈u+

+
[
φ̈r θ̈r ψ̈u

] Jxyb
mb(L

2
zb

+ L2
xb

) + Jyb
Jyzb

 = −βθr θ̇r + e>y R1(−φr)( bFa × bL)

( ip̈>uC ≡ 0A>D ≡ −1)

(3.47)

• ψu:
∂L

∂ψu
− ∂

∂t

∂L

∂ψ̇u
= mb

ip̈>uLxD +
1

2
mbA

>DLxbLzb θ̈r+

+
[
φ̈r θ̈r ψ̈u

] Jxzb
Jyzb

Jzb + Jzu +mbL
2
xb

 =

e>z

[∑
uτw +R2(−θr)R1(−φr)( bFa × bL)

]
(A>D ≡ −1)

(3.48)

• φu:

∂L

∂φu
− ∂

∂t

∂L

∂φ̇u
= Jxzb ψ̈u + Lz

2mb φ̈r −mb cosψu dz p̈uy + Lzmb dz φ̈r−

+Lxmb dz ψ̈u + +mb sinψu dz p̈ux − Lzmb cosψu p̈uy − Lx Lzmb ψ̈u+

+Lzmb sinψu p̈ux − 2Lz
2mb θ̇r ψ̇u − 2Lzmb dz θ̇r ψ̇u = 0

(3.49)
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• θu:

∂L

∂θu
− ∂

∂t

∂L

∂θ̇u
= Jyzb ψ̈u − Lxmb d̈z + Lx

2mb θ̈r + Lz
2mb θ̈r − Lxmb dz ψ̇

2
u

+mb cosψu dz p̈ux + Lzmb dz θ̈r +mb sinψu dz p̈uy+

−Lx Lzmb ψ̇
2
u + Lzmb cosψu p̈ux + Lzmb sinψu p̈uy + 2Lz

2mb φ̇r ψ̇u+

+2Lzmb dz φ̇r ψ̇u + Lx Lzmb sinψu φ̈r + 2Lx Lzmb cosψu ψ̇u φ̇r = 0

(3.50)

It is necessary to specify that for the aerodynamic forces, some de-rotations are
applied to be coherent with the main reference system. As it is possible to see from
the equation 3.39, the aerodynamic forces, as a consequence also the torques, are
expressed in the body reference frame, while all the Euler-Lagrange equations have
been calculated in the under-vehicle reference frame. It is also necessary to perform
a selection of the forces on a specific axis, because the specific Lagrangian variables
are not influenced by the forces along the three axis.

It is possible to find the the definition of these de-rotation and selections in the
appendix A.9.

In order to solve this complex system of second order differential equations, it
is useful to write it in the matrix form. At this point, all the symbolic matrix that
have been substituted, to have easier computation, are going to be written in the
original form.



mb +mu 0 Lzmb sinψu Lzmb cosψu −Lxmb sinψu 0

0 mb +mu −Lzmb cosψu Lzmb sinψu Lxmb cosψu 0

0 0 0 0 0 mb
Lzmb sinψu −Lzmb cosψu mbL

2
z + Jxb Jxyb Jxzb 0

Lzmb cosψu Lzmb sinψu Jxyb mb(L
2
zb

+ L2
xb

) + Jyb Jyzb −
1

2
mbLxbLzb 0

−Lxmb sinψu Lxmb cosψu Jxzb Jyzb −
1

2
mbLxbLzb Jzb + Jzu +mbL

2
xb

0

dzmb sinψu + Lzmb sinψu −dzmb cosψu − Lzmb cosψu mbL
2
z +mbLzdz 0 Jxzb − LxLzdz 0

dzmb cosψu + Lzmb cosψu dzmb sinψu + Lzmb sinψu LxLzmb sinψu mb(L
2
zb

+ L2
xb

) + Lzmbdz Jyzb −Lxmb





ip̈u(1)
ip̈u(2)

φ̈r
θ̈r
ψ̈u
d̈z


=



∑ iFwx + iFax∑ iFwy + iFay
uFaz − βz ḋz − kz dz −mb g

e>x ( bFa × bL) − βφr φ̇r − kφrφr

e>y R1(−φr)( bFa × bL) − βθr θ̇r − kθr θr

e>z

[
R2(−θr)R1(−φr)( bFa × bL) +

∑u τw

]
2Lz

2mb θ̇r ψ̇u + 2Lzmb dz θ̇r ψ̇u
Lxmb dz ψ̇

2
u + Lx Lzmb ψ̇

2
u − 2Lz

2mb φ̇r ψ̇u − 2Lzmb dz φ̇r ψ̇u − 2Lx Lzmb cosψu ψ̇u φ̇r


(3.51)

Considering that the equation in d̈z is independent from the others, it is possible
to take it out from the system and it solution is:
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d̈z =
uFaz − βz ḋz − kz dz − gmb

mb
(3.52)

This equation gives the translational vertical dynamics of the vehicle.
In this phase, it is possible to assume that the vehicle that under study is

symmetrical along the x axes, so the left and the right side are going to be considered
identical. So the terms Jxyb and Jxyu are null.

• Jxyb = 0

• Jxyu = 0



mb +mu 0 Lzmb sinψu Lzmb cosψu −Lxmb sinψu 0

0 mb +mu −Lzmb cosψu Lzmb sinψu Lxmb cosψu 0

0 0 0 0 0 mb
Lzmb sinψu −Lzmb cosψu mbL

2
z + Jxb 0 Jxzb 0

Lzmb cosψu Lzmb sinψu 0 mb(L
2
zb

+ L2
xb

) + Jyb Jyzb −
1

2
mbLxbLzb 0

−Lxmb sinψu Lxmb cosψu Jxzb Jyzb −
1

2
mbLxbLzb Jzb + Jzu +mbL

2
xb

0

dzmb sinψu + Lzmb sinψu −dzmb cosψu − Lzmb cosψu mbL
2
z +mbLzdz 0 Jxzb − LxLzdz 0

dzmb cosψu + Lzmb cosψu dzmb sinψu + Lzmb sinψu LxLzmb sinψu mb(L
2
zb

+ L2
xb

) + Lzmbdz Jyzb −Lxmb





ip̈u(1)
ip̈u(2)

φ̈r
θ̈r
ψ̈u
d̈z


=



∑ iFwx + iFax∑ iFwy + iFay
uFaz − βz ḋz − kz dz −mb g

e>x ( bFa × bL) − βφr φ̇r − kφrφr

e>y R1(−φr)( bFa × bL) − βθr θ̇r − kθr θr

e>z

[
R2(−θr)R1(−φr)( bFa × bL) +

∑u τw

]
2Lz

2mb θ̇r ψ̇u + 2Lzmb dz θ̇r ψ̇u
Lxmb dz ψ̇

2
u + Lx Lzmb ψ̇

2
u − 2Lz

2mb φ̇r ψ̇u − 2Lzmb dz φ̇r ψ̇u − 2Lx Lzmb cosψu ψ̇u φ̇r


(3.53)

This is the complete model that will be studied the next chapter for the
equilibrium conditions. All these symbolic expressions, for each terms, are going
to be substituted with the numerical values considering the real characteristics of
the vehicle on which it will be necessary to perform some dynamics simulations.
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Chapter 4

Equilibrium Analysis

In this chapter, it will be analyzed the behaviour of the proposed non-linear
system under the equilibrium conditions. In order to do so, it is necessary to consider
some simplifying assumption to describe in which kind of situation the system is going
to be analyzed.

4.1 Definition of the equilibrium condition

First of all, it is necessary to describe the trajectory along which the analysis
will be performed. It has been assumed that the car is on a point of equilibrium
while performing an ideal turn, this means that the trajectory is perfectly round and
the speed of the vehicle is constant during the entire route.

• R = const

• VOB = const

There is also an additional kinematic condition deriving from this ideal situation
that is preferable to achieve. he βU angle is constant, this is the angle between the
bow of the vehicle and the tangent to the curve, as it has been defined at paragraph
3.1. As a consequence, of this kinematic condition, the first order dynamic of ψu is
constant and it depends only from the tangential speed Vtg and the radius of the
turn R.

Considering the fact that the analysis is done in static conditions, this means,
together with the previous consideration, that the relative angles [φr θr β], belonging
to the system, are constant. Furthermore, in this situation it is considered that the
suspension are in rest position, thus lead actually to null relative angles, [φr θr].

Taking into account all these considerations, it is possible to gather that:
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1. ψ̇u:
ψ̇u = const(K)⇒ ψ̈u = 0 (4.1)

2. φr:
φr ⇒ φ̇r = 0⇒ φ̈r = 0 (4.2)

3. θr:
θr = 0⇒ θ̇r = 0⇒ θ̈r = 0 (4.3)

Meanwhile, the formal definition of the side-slip angle as function of the vehicle
speed is:

β =
uVox
uVoy

(4.4)

Figure 4.1: Graphical representation of the side-slip angles

It is also necessary to consider the degree of freedom along the vertical axis.
Indeed, in static condition, since it has been assumed that the wheels don’t leave the
ground floor, it means that the dynamic along this axis is null.

Which means:

dz = const(D)⇒ ḋz = 0⇒ d̈z = 0 (4.5)

At this point it is necessary to describe the acceleration in inertial axis,ip̈u, such
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that the vehicle keeps the trajectory and it remains on the circle. It is important to
know the modulus of the acceleration because actually the direction is known and it
is along the radius that sweeps the turn.

In this conditions, also the modulus of the acceleration depends only on the
tangential speed Vtg and the radius of the turn R, according to the following formula:

|ip̈u| =
V 2
t

R
(4.6)

This is valid only in case of constant speed and radius.
In inertial axis, the two components are:

ip̈ux = −V
2
t

R
cosα (4.7)

ip̈uy = −V
2
t

R
sinα (4.8)

Where α is a generic angle that indicates at which point of the curvilinear
trajectory the vehicle is arrived. It is a generic angle considered during the rotation
taking into account the position of the vehicle with respect to the centre of the
circle, so it is function of time. While considering this representation β is the angle
of projection of the acceleration.

While in tangential and radial axes, they are:

p̈ut = 0 (4.9)

p̈ur =
V 2
t

R
(4.10)

While considering this representation, in the tangential-radial plane, the side-slip
angle β is the angle of projection of the acceleration in the inertial reference frame.

It is necessary now to express the relationship between the acceleration
decomposed along the inertial axis and it expression along the tangential and radial
axes. To do so, it is necessary first to pass through the representation in the
under-vehicle reference frame. It is possible to perform two consecutive rotations
first of angle β and than of angle ψu, according to the following matrices:

uRt (β) =

 cosβ − sinβ 0

sinβ cosβ 0

0 0 1

 (4.11)
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iRu (ψu) =

 cosψu − sinψu 0

sinψu cosψu 0

0 0 1

 (4.12)

In conclusion, the relationship between the acceleration expressed in the inertial
reference frame and the one expressed in the radial-tangential plane is:

ip̈uxy = iRu (ψu) uRt (β) p̈utr (4.13)

A graphical representation of all these consideration can be found in figure 5.1.

Figure 4.2: Graphical representation of the vehicle accelerations according to two
different reference frame

4.2 Complete model at the equilibrium conditions

Now it is necessary to go back and consider again the complete model, that can
be found in the equation 3.3.6 and gather together all the equilibrium assumptions:

• ψ̇u = const(K)⇒ ψ̈u = 0

• φr = θr = 0⇒ φ̇r = θ̇r = 0⇒ φ̈r = θ̈r = 0

• dz = const(D)⇒ ḋz = 0⇒ d̈z = 0

Thus leading to the following simplified set of equations:
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mb +mu 0 Lzmb sinψu Lzmb cosψu −Lxmb sinψu 0

0 mb +mu −Lzmb cosψu Lzmb sinψu Lxmb cosψu 0

0 0 0 0 0 mb
Lzmb sinψu −Lzmb cosψu mbL

2
z + Jxb 0 Jxzb 0

Lzmb cosψu Lzmb sinψu 0 mb(L
2
zb

+ L2
xb

) + Jyb Jyzb −
1

2
mbLxbLzb 0

−Lxmb sinψu Lxmb cosψu Jxzb Jyzb −
1

2
mbLxbLzb Jzb + Jzu +mbL

2
xb

0

dzmb sinψu + Lzmb sinψu −dzmb cosψu − Lzmb cosψu mbL
2
z +mbLzdz 0 Jxzb − LxLzdz 0

dzmb cosψu + Lzmb cosψu dzmb sinψu + Lzmb sinψu LxLzmb sinψu mb(L
2
zb

+ L2
xb

) + Lzmbdz Jyzb −Lxmb





ip̈u(1)
ip̈u(2)

0

0

0

0


=



∑ iFwx + iFax∑ iFwy + iFay
uFaz − kz dz −mb g

e>x ( bFa × bL)

e>y R1(−φr)( bFa × bL)

e>z

[
R2(−θr)R1(−φr)( bFa × bL) +

∑u τw

]
0

Lxmb dz ψ̇
2
u + Lx Lzmb ψ̇

2
u


(4.14)

Furthermore, eliminating from the first matrix all the terms which are multiplied
by zero, it is possible to obtain the following simplified system:



mb +mu 0

0 mb +mu
0 0

Lzmb sinψu −Lzmb cosψu
Lzmb cosψu Lzmb sinψu
−Lxmb sinψu Lxmb cosψu

dzmb sinψu + Lzmb sinψu −dzmb cosψu − Lzmb cosψu
dzmb cosψu + Lzmb cosψu dzmb sinψu + Lzmb sinψu



[
ip̈u(1)
ip̈u(2)

]
=



∑ iFwx + iFax∑ iFwy + iFay
uFaz − kz dz −mb g

e>x ( bFa × bL)

e>y R1(−φr)( bFa × bL)

e>z

[
R2(−θr)R1(−φr)( bFa × bL) +

∑u τw

]
0

Lxmb dz ψ̇
2
u + Lx Lzmb ψ̇

2
u


(4.15)

Considering this simplified version of the set of equation necessary to describe
the behaviour of the system, it is possible to divide it, in order to easily study the
single contributions to the overall vehicle dynamics.

The set of the divided equations are:[
ip̈u(1)
ip̈u(2)

]
=

1

mb +mu

([ ∑
iFwx + iFax∑
iFwy + iFay

])
(4.16)

iFaz − kz dz − gmb = 0 (4.17)

 Lzmb sinψu −Lzmb cosψu

Lzmb cosψu Lzmb sinψu

−Lxmb sinψu Lxmb cosψu

[ ip̈u(1)
ip̈u(2)

]
=

 e>x ( bFa × bL)

e>y R1(−φr)( bFa × bL)

e>z R2(−θr)R1(−φr)( bFa × bL) +
∑

uτw


(4.18)
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[
dzmb sinψu + Lzmb sinψu −dzmb cosψu − Lzmb cosψu

dzmb cosψu + Lzmb cosψu dzmb sinψu + Lzmb sinψu

][
ip̈u(1)
ip̈u(2)

]
=

[
0

Lxmb dz ψ̇
2
u + Lx Lzmb ψ̇

2
u

]
(4.19)

Now it is possible to study individually the behaviour of the different equation,
taking into account all the necessary substitutions and simplifications.

Starting from the equations 4.16:[
ip̈u(1)
ip̈u(2)

]
=

1

mb +mu

([ ∑
iFwx + iFax∑
iFwy + iFay

])
(4.20)

Where the forces of the wheels and the aerodynamic forces needs to be expressed
in the inertial reference frame, while they have been defined in the paragraph
3.3.5 in a different one, in the wheel reference frame and the body reference frame
respectively. So they need to be rotated according to the following formulas:

iFa = iRu
uRb

bFa (4.21)

iFw = iRu
uRwi

wiFwi (4.22)

It is also necessary to substitute in the previous equation, 4.16, the relationship
coming from the formula 4.13.

iRu (ψu) uRt (β) p̈utr =
1

mb +mu

([ ∑
iFwx + iFax∑
iFwy + iFay

])
(4.23)

It is possible to see that there is the same rotation matrix on both side, between
the inertial reference frame and the under-vehicle, that it means that it is possible
to simplify it. As a consequence it remains only the the one in β that is the one of
interest.

uRt (β) p̈utr =
1

mb +mu

([ ∑
uFwx + uFax∑
uFwy + uFay

])
(4.24)

where all the terms are expressed in the under-vehicle reference frame.
At this point it is necessary to isolate the variable of interest, that are the wheel

forces, arriving to the following formula:
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∑
uFwi = (mb +mu) uRt (β) p̈utr − uFa (4.25)

This equation tells how the forces on the wheel varies as function of the side slip
angle. These are centripetal forces that have the same direction of the acceleration
of the vehicle projected with β.

Afterwards, it is necessary to analyze the third set of equations, 4.26:

 Lzmb sinψu −Lzmb cosψu

Lzmb cosψu Lzmb sinψu

−Lxmb sinψu Lxmb cosψu

[ ip̈u(1)
ip̈u(2)

]
=

 e>x ( bFa × bL)

e>y R1(−φr)( bFa × bL)

e>z R2(−θr)R1(−φr)( bFa × bL) +
∑

uτw


(4.26)

In this case, it is necessary to substitute the accelerations with the same
relationship used before, the one coming from the equation 4.13. Considering the
matrix that pre-multiplies the acceleration now is multiplied by the rotational matrix
iRu (ψu), a lot of simplifications come as a consequence.

It is also necessary to take into account, on the right side of the equation, which
are the cross product between the aerodynamic forces and there own arms, together
with all the de-rotation matrices and the selection vectors, that have been defined in
the appendix A.9. All these consideration together leads to the following simplified
relationship:

 0 −Lzmb 0

Lzmb 0 0

0 Lxmb 0

 uRt (β) p̈utr =


bFay

bLz
bFaz

bLx − bFax
bLz

− bFaz
bLx +

∑
uτw

 (4.27)

The last equation gives the yaw dynamics of the system.

Where the definition of the torques forces is the following one:

uτw = ( uRw(δw)wFw)× uLw = uFw × uLw = −S( uLw) uFw (4.28)
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S( uLw) =

 0 − bLz 0
bLz 0 − bLx

0 bLx 0

 (4.29)

uτw = −S( uLw) uFw = −

 0 − bLz 0
bLz 0 − bLx

0 bLx 0



uFwx
uFwy
uFwz

 =

= −

 − bLz
uFwy

bLz
uFwx − bLx

uFwz
bLx

uFwz

 =


bLz

uFwy
bLx

uFwz − bLz
uFwx

− bLx
uFwz


(4.30)

All the calculation done to consider the de-rotation matrices and selection of the
specific torques con be found in the appendix A.10.

The last set of equation is given by the equation, 4.19:

[
dzmb sinψu + Lzmb sinψu −dzmb cosψu − Lzmb cosψu

dzmb cosψu + Lzmb cosψu dzmb sinψu + Lzmb sinψu

][
ip̈u(1)
ip̈u(2)

]
=

[
0

Lxmb dz ψ̇
2
u + Lx Lzmb ψ̇

2
u

]
(4.31)

As in the previous cases, the substitution of the acceleration expressed in
the tangential reference frame, according to the relationship 4.13, leads to some
simplification:

 0 −1 0

1 0 0

0 0 0

 uRt (β) p̈utr =

[
0

Lx ψ̇
2
u

]
(4.32)

The calculation on how the terms have been simplified can be found in the
appendix A.11.

The complete set of equation in which it has been explicit the terms uRt (β) and
p̈utr , according to the definitions given at page 49, are the following:
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[ ∑
uFwxi∑
uFwyi

]
= (mb +mu)

[
cosβ − sinβ

sinβ cosβ

] 0

V 2
t

R

− [ uFax
uFay

]
(4.33)

iFaz − kz dz − gmb = 0 (4.34)

 0 −Lzmb 0

Lzmb 0 0

0 Lxmb 0


 cosβ − sinβ 0

sinβ cosβ 0

0 0 1


 0

V 2
t
R

0

 =


bFay

bLz
bFaz

bLx − bFax
bLz

− bFaz
bLx −

∑
bLx

uFwz


(4.35)

 0 −1 0

1 0 0

0 0 0


 cosβ − sinβ 0

sinβ cosβ 0

0 0 1


 0

V 2
t
R

0

 =

 0

Lx ψ̇
2
u

0

 (4.36)

The equation 4.46 gives the vertical equilibrium of the system. An additional
constrain needs to be taken into account, i.e. the equilibrium of the torques of the
system. Since the system is in static conditions, the equilibrium is give for fixed roll
and pitch angle. This is given according to the following definitions:

∑
uτ =

∑
uτwi + uτa + uτg = 0 (4.37)

∑
uτwi =

∑
( uRwi(δwi)

wFwi)× uLwi (4.38)

uτa = ( uRb
bFa)× uLa (4.39)

uτg = ( uRi
igmb)× uLm (4.40)

With the arm uLm obtained from the difference of the position of the
under-vehicle and the body parts:

uLm = upb − upu =u

 0

0

dz

+ uRb(φr, θr)
b

 Lx

0

Lz

 (4.41)

It is necessary to take into account only the equations that gives the roll and
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pitch dynamics, taking into account the cross-product:

∑
bLz

uFwy + uLaz
uFay + uLmz

igmb = 0 (4.42)

∑
( bLx

uFwz − bLz
uFwx) + bLax

uFaz − bLaz
uFax + bLmx

igmb − bLmz
igmb = 0

(4.43)
The final list of equations is:

uFwx1 + uFwx2 + uFwx3 + uFwx4 = −(mb +mu) sinβ
V 2
t

R
− uFax (4.44)

uFwy1 + uFwy2 + uFwy3 + uFwy4 = (mb +mu) cosβ
V 2
t

R
− uFay (4.45)

iFaz − kz dz − gmb = 0 (4.46)

− Lzmb cosβ
V 2
t

R
= bFay

bLz (4.47)

− Lzmb sinβ
V 2
t

R
= bFaz

bLx − bFax
bLz (4.48)

∑
bLx

uFwz = − bFaz
bLx − Lxmb cosβ

V 2
t

R
(4.49)

− cosβ
V 2
t

R
= 0 (4.50)

− sinβ
V 2
t

R
= Lx ψ̇

2
u (4.51)

∑
bLz

uFwy = − uLaz
uFay − uLmz

igmb (4.52)

∑
( bLx

uFwz − bLz
uFwx) = − bLax

uFaz + bLaz
uFax − bLmx

igmb + bLmz
igmb

(4.53)
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Chapter 5

Conclusion

At this point, with all the gathered equations, it is possible to describe the
feed-forward law, that given the forces and torques on the vehicle, that gives the
wheel force that are applied to the ground.

The unknown of the problem, since the beginning, are forces acting on the
wheels. From the complete system, given at the equation 3.3.6, it is possible to see
that there are 8 equations with 12 unknown. This means that the problem has an
infinite number of solution. Indeed this is an hyperstatic problem because it comes
from an undersized system.

In order to solve the problem, it is necessary to select one of the infinite solutions
and in this case it has been decided to exploit the one that minimize the norm. To
do so, it is necessary to calculate the Moore-Penrose pseudo inverse, that in
case of a matrix that has linearly independent rows, is defined in the following way:

A+ = A∗(A ·A∗)−1 (5.1)

This is a right pseudoinverse, as A · A+ = 1 for a non injective problem. This
is a non injective matrix because the A matrix belongs to the space Km×n where
n > m.

For this specific problem, the A is the following one:



cos δwx1
− sin δwx1

0 cos δwx2
− sin δwx2

0 cos δwx3
− sin δwx3

0 cos δwx4
− sin δwx3

0

sin δwx1
cos δwx1

0 sin δwx2
cos δwx2

0 sin δwx3
cos δwx3

0 sin δwx4
cos δwx4

0

0 0 uLx1 0 0 uLx2 0 0 uLx3 0 0 uLx4
uLz1 sin δwx1

uLz1 cos δwx1
0 uLz2 sin δwx2

uLz2 cos δwx2
0 uLz3 sin δwx3

uLz3 cos δwx3
0 uLz4 sin δwx4

uLz4 cos δwx4
0

−uLz1 cos δwx1
uLz1 sin δwx1

uLx1 −uLz2 cos δwx2
uLz2 sin δwx2

uLx2 −uLz3 cos δwx3
uLz3 sin δwx3

uLx3 −uLz4 cos δwx4
uLz4 sin δwx4

uLx4


(5.2)

This is obtained from the final system of chapter 4, substituting all the specific
rotation matrix of each wheel to have all the terms in the under-vehicle reference
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frame. While the vector bL is coincident with uL if the relative angles φr and θr are
null.

Figure 5.1: Definition of the wheel numeration

The previous matrix can be simplified considering the fact that only the front
wheel are steering wheels. This consideration gives:

• δwx3 = 0

• δwx4 = 0

The simplified matrix is:



cos δwx1
− sin δwx1

0 cos δwx2
− sin δwx2

0 1 0 0 1 0 0

sin δwx1
cos δwx1

0 sin δwx2
cos δwx2

0 0 1 0 0 1 0

0 0 uLx1 0 0 uLx2 0 0 uLx3 0 0 uLx4
uLz1 sin δwx1

uLz1 cos δwx1
0 uLz2 sin δwx2

uLz2 cos δwx2
0 0 1 0 0 1 0

−uLz1 cos δwx1
uLz1 sin δwx1

uLx1 −uLz2 cos δwx2
uLz2 sin δwx2

uLx2 −1 0 uLx3 −1 0 uLx4


(5.3)
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Appendix A

Calculations

A.1 Complete relative rotational matrix

uRb(Θr) = R1(φr)R2(θr)R3(ψr) =

=

 cosψr cos θr cos θr sinψr − sin θr

cosψr sinφr sin θr − cosφr sinψr cosφr cosψr + sinφr sinψr sin θr cos θr sinφr

sinφr sinψr + cosφr cosψr sin θr cosφr sinψr sin θr − cosψr sinφr cosφr cos θr


(A.1)

A.2 Complete under-vehicle rotational matrix

iRu(Θu) = R>3 (ψu)R>2 (θu)R>1 (φu) =

=

 cosψu cos θu cosψu sinφu sin θu − cosφu sinψu sinφu sinψu + cosφu cosψu sin θu

cos θu sinψu cosφu cosψu + sinφu sinψu sin θu cosφu sinψu sin θu − cosψu sinφu

− sin θu cos θu sinφu cosφu cos θu


(A.2)
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A.3 Complete navigation rotational matrix

URN (γU , βU ) =

 cosβU cos γU − cos γU sinβU sin γU

sinβU cosβU 0

− cosβU sin γU sinβU sin γU cos γU

 (A.3)

A.4 Complete i-th wheel reference frame

URWi (φWi , δWi) =

 cos δWi − sin δWi 0

cosφWi sin δWi cos δWi cosφWi − sinφWi

sin δWi sinφWi cos δWi sinφWi cosφWi

 (A.4)

A.5 Vehicle position

ipb = ipu+



(sinφu sinψu + cosφu cosψu sin θu) (dz − Lx sin θr + Lz cosφr cos θr) +

+ cosψu cos θu (Lx cos θr + Lz cosφr sin θr) + Lz sinφr (cosφu sinψu − cosψu sinφu sin θu)

− (cosψu sinφu − cosφu sinψu sin θu) (dz − Lx sin θr + Lz cosφr cos θr) +

+ cos θu sinψu (Lx cos θr + Lz cosφr sin θr)− Lz sinφr (cosφu cosψu + sinϕu sinψu sin θu)

cosφu cos θu (dz − Lx sin θr + Lz cosφr cos θr)−
+ sin θu (Lx cos θr + Lz cosφr sin θr)− Lz cos θu sinφr sinφu


(A.5)
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A.6 Small angle approximation

ipb ≈i pu+



(sinφu sinψu + cosφu cosψu sin θu) (dz − Lx θr + Lz) +

+ cosψu cos θu (Lx + Lz θr) + Lz φr (cosφu sinψu − cosψu sinφu sin θu)

− (cosψu sinφu − cosφu sinψu sin θu) (dz − Lx θr + Lz) +

+ cos θu sinψu (Lx + Lz θr)− Lz φr (cosφu cosψu + sinφu sinψu sin θu)

cosφu cos θu (dz − Lx θr + Lz)−
+ sin θu (Lx + Lz θr)− Lz φr cos θu sinφu


(A.6)

A.7 Simplified position equation

ipb ≈ ipu +

 (sinφu sinψu + cosφu cosψu sin θu)

− (cosψu sinφu − cosφu sinψu sin θu)

cosφu cos θu

 (dz − Lx θr + Lz) +

+

 cosψu cos θu

cos θu sinψu

− sin θu

 (Lx + Lz θr) +

 (cosφu sinψu − cosψu sinφu sin θu)

− (cosφu cosψu + sinφu sinψu sin θu)

− cos θu sinφu

 (Lz φr)

(A.7)

A.8 Partial derivatives used in the position computation

∂A

∂φu
=

 sinψu cosφu − cosψut sin θu sinφu

− cosψu cosφu − sinψu sin θu sinφu

− cos θu sinφu

 (A.8)

∂A

∂θu
=

 cosφu cosψu cos θu

cosφu sinψu cos θu

− cosφu sin θu

 (A.9)



68 APPENDIX A. CALCULATIONS

∂A

∂ψu
=

 sinφu cosψu − cosφu sin θu sinψu

sinφu sinψu + cosφu sin θu cosψu

0

 (A.10)

∂B

∂φu
=

 0

0

0

 (A.11)

∂B

∂θu
=

 − cosψu sin θu

− sinψu sin θu

− cos θu

 (A.12)

∂B

∂ψu
=

 − cos θu sinψu

cos θu cosψu

0

 (A.13)

∂C

∂φu
=

 − sinψu sinφu − cosψu sin θu cosφu

cosψu sinφu + sinψu sin θu cosφu

0

 (A.14)

∂C

∂θu
=

 − cosψu sinφu cos θu

sinφu sinψu cos θu

sinψu sin θu

 (A.15)

∂C

∂ψu
=

 sinφu cosψu − cosφu sin θu sinψu

sinφu sinψu + cosϕu sin θu cosψu

0

 (A.16)

A.9 Derotation and selection

1. Selections:
ex = (1; 0; 0) ey = (0; 1; 0) ez = (0; 0; 1) (A.17)

2. De-rotation only along the first axis xB:

R1(−φr) = R>1 (φr) =

 1 0 0

0 cosφr − sinφr

0 sinφr cosφr

 (A.18)
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3. De-rotation only along the second axis yU :

R2(−θr) = R>2 (θr) =

 cos θr 0 sin θr

0 1 0

− sin θr 0 cos θr

 (A.19)

A.10 Derotation and selection computation

e>x ( bFa × bL)− kφrφr =
[

1 0 0
]


bFax
bFay
bFaz

×


bLx

0
bLz


− kφrφr (A.20)

e>x ( bFa × bL)− kφrφr =
[

1 0 0
] i j k

bFax
bFay

bFaz
bLx 0 bLz

− kφrφr (A.21)

e>x ( bFa × bL)− kφrφr = bFay
bLz − kφrφr (A.22)

e>y R1(−φr)( bFa × bL)− kθr θr =

[
0 1 0

] 1 0 0

0 cosφr − sinφr

0 sinφr cosφr





bFax
bFay
bFaz

×


bLx

0
bLz


− kφrφr (A.23)

e>y R1(−φr)( bFa × bL)− kθr θr =

[
0 1 0

] 1 0 0

0 cosφr − sinφr

0 sinφr cosφr


 i j k

bFax
bFay

bFaz
bLx 0 bLz

− kφrφr (A.24)



70 APPENDIX A. CALCULATIONS

e>y R1(−φr)( bFa × bL)− kθr θr =

[
0 1 0

] 1 0 0

0 1 −φr
0 φr 1




bLz
uFay

bLx
uFaz − bLz

uFax

− bLx
uFaz

− kφrφr (A.25)

e>y R1(−φr)( bFa× bL)− kθr θr = bFaz
bLx− bLz

uFax + bLx
uFazφr− kφrφr (A.26)

e>z R2(−θr)R1(−φr)( bFa × bL) =

[
0 0 1

] cos θr 0 sin θr

0 1 0

− sin θr 0 cos θr


 1 0 0

0 cosφr − sinφr

0 sinφr cosφr





bFax
bFay
bFaz

×


bLx

0
bLz




(A.27)

e>z R2(−θr)R1(−φr)( bFa × bL) =

[
0 0 1

] cos θr 0 sin θr

0 1 0

− sin θr 0 cos θr


 1 0 0

0 cosφr − sinφr

0 sinφr cosφr


 i j k

bFax
bFay

bFaz
bLx 0 bLz


(A.28)

e>z R2(−θr)R1(−φr)( bFa × bL) =

[
0 0 1

] 1 0 θr

0 1 0

−θr 0 1


 1 0 0

0 1 −φr
0 φr 1




bLz
uFay

bLx
uFaz − bLz

uFax

− bLx
uFaz

 (A.29)
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e>z R2(−θr)R1(−φr)( bFa × bL) =

[
0 0 1

] 1 0 θr

0 1 0

−θr 0 1




bFay
bLz

bLx
uFaz − bLz

uFax + bLx
uFazφr(

bLx
uFaz − bLz

uFax
)
φr − bLx

uFaz

 (A.30)

e>z R2(−θr)R1(−φr)( bFa× bL) = − bFay
bLz θr+

(
bLx

uFaz − bLz
uFax

)
φr− bLx

uFaz

(A.31)

A.11 Simplifications

[
dzmb sinψu + Lzmb sinψu −dzmb cosψu − Lzmb cosψu

dzmb cosψu + Lzmb cosψu dzmb sinψu + Lzmb sinψu

][
ip̈u(1)
ip̈u(2)

]
=

=

[
0

Lxmb dz ψ̇
2
u + Lx Lzmb ψ̇

2
u

]
(A.32)

[
(dz + Lz)mb sinψu −(dz + Lz)mb cosψu

(dz + Lz)mb cosψu (dz + Lx)mb sinψu

][
ip̈u(1)
ip̈u(2)

]
=

[
0

Lxmb dz ψ̇
2
u + Lx Lzmb ψ̇

2
u

]
(A.33)

(dz + Lz)mb

[
sinψu − cosψu

cosψu sinψu

][
ip̈u(1)
ip̈u(2)

]
=

[
0

Lx ψ̇
2
umb(dz + Lz)

]
(A.34)

[
sinψu − cosψu

cosψu sinψu

][
ip̈u(1)
ip̈u(2)

]
=

[
0

Lx ψ̇
2
u

]
(A.35)

[
sinψu − cosψu

cosψu sinψu

][
ip̈u(1)
ip̈u(2)

]
=

[
0

Lx ψ̇
2
u

]
(A.36)
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 sinψu − cosψu 0

cosψu sinψu 0

0 0 0


 cosψu − sinψu 0

sinψu cosψu 0

0 0 1

 uRt (β) p̈utr =

[
0

Lx ψ̇
2
u

]
(A.37) 0 −1 0

1 0 0

0 0 0

 uRt (β) p̈utr =

[
0

Lx ψ̇
2
u

]
(A.38)
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Matlab™Code

B.1 Variables definition

clear all
close all
clc

syms t real %time
syms x y z real %generic variables
syms m_u m_b %masses
syms L_x L_z %arm
syms J_xu J_yu J_zu J_xyu J_xzu J_yzu %under−vehicle inertia
syms J_xb J_yb J_zb J_xyb J_xzb J_yzb %body inertias
syms F_ax F_ay F_az %aerodynamic forces
syms F_wx F_wy F_wz %wheel forces
syms tau_wx tau_wy tau_wz %wheel momenta
syms k_z k_pr k_tr k_x k_y %elastic constants
syms B_pr B_tr B_z %damping constants
syms d_z(t) %vertical movement
syms d %vertical movement derivative
syms g %gravitational constant
syms tau_w %wheel momenta
syms de %a determinant

syms phi_r(t) theta_r(t) real %relative angles
syms dphi_r(t) dtheta_r(t) real %rotational speed of the body
syms phi_u(t) theta_u(t) psi_u(t) real %undervehicle angle
syms dphi_u(t) dtheta_u(t) dpsi_u(t) real %rotational speed of the undervehicle
syms p_x(t) p_y(t) real %undervehicle positions
syms dp_x(t) dp_y(t) real %undervehicle speeds
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syms R_1(x) R_2(x) R_3(x) real
syms R_bu real
syms gamma(t) beta(t) %navigations angles
syms phi_W(t) delta_W(t) %wheel angles

B.2 Matrix definition for position, angles and intertias

p_u = [p_x(t); p_y(t); 0];

d = [0; 0; d_z(t)];

L = [L_x; 0; L_z];

R_1(x) = [1 0 0; 0 cos(x) sin(x); 0 −sin(x) cos(x) ]; %to undervehicle/body

R_2(x) = [cos(x) 0 −sin(x); 0 1 0; sin(x) 0 cos(x) ]; %to undervehicle/body

R_3(x) = [cos(x) sin(x) 0; −sin(x) cos(x) 0; 0 0 1]; %to undervehicle/body

R_ui = R_3(psi_u).'∗R_2(theta_u).'∗R_1(phi_u).'; %to interial

R_bu = R_1(phi_r)∗R_2(theta_r); %to body from undervehicle

p_b = p_u + R_ui∗(d+R_bu.'∗L);

B.3 Position first time derivative

A(x,y,z) = [(sin(x)∗sin(z)+cos(x)∗sin(y)∗cos(z)); −(cos(z)∗sin(x)−cos(x)∗sin(z)∗sin(y)) ; (cos(x)∗cos(y)) ];

B(x,y,z) = [(cos(z)∗cos(y)) ; (cos(y)∗sin(z)) ; −sin(y) ];

C(x,y,z) = [(cos(x)∗sin(z)−cos(z)∗sin(x)∗sin(y)) ; −(cos(x)∗cos(z)−sin(x)∗sin(z)∗sin(y)) ; −cos(y)∗sin(z) ];

p_b = p_u + A(phi_u,theta_u,psi_u)∗(d_z+L_z−(L_x∗theta_r)) + B(phi_u,theta_u,psi_u)∗
((L_z∗theta_r)+L_x) + C(phi_u,theta_u,psi_u)∗L_z∗phi_r

A_x = subs(A(phi_u,theta_u,psi_u), phi_u, x);

dA_phi = diff(A_x, x);
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A_y = subs(A(phi_u,theta_u,psi_u), theta_u, x);

dA_theta = diff(A_y, x);

A_z = subs(A(phi_u,theta_u,psi_u), psi_u, x);

dA_psi = diff(A_z, x);

B_x = subs(B(phi_u,theta_u,psi_u), phi_u, x);

dB_phi = diff(B_x, x);

B_y = subs(B(phi_u,theta_u,psi_u), theta_u, x);

dB_theta = diff(B_y, x);

B_z = subs(B(phi_u,theta_u,psi_u), psi_u, x);

dB_psi = diff(B_z, x);

C_x = subs(C(phi_u,theta_u,psi_u), phi_u, x);

dC_phi = diff(C_x, x);

C_y = subs(C(phi_u,theta_u,psi_u), theta_u, x);

dC_theta = diff(C_y, x);

C_z = subs(A(phi_u,theta_u,psi_u), psi_u, x);

dC_psi = diff(C_z, x);

dp_b = diff(p_b);

dp_u = diff(p_u);

dd_z = diff(d);

B.4 Angular speed definition

a_b = [phi_r(t); theta_r(t); psi_u(t)];
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a_u = [phi_u(t); theta_u(t); psi_u(t)];

w_b = diff(a_b);

w_u = diff(a_u);

B.5 Kinetic and potential energy

J_b = [J_xb J_xyb J_xzb; J_xyb J_yb J_yzb; J_xzb J_yzb J_zb];

J_u = [J_xu J_xyu J_xzu; J_xyu J_yu J_yzu; J_xzu J_yzu J_zu];

T = ((1/2)∗m_u∗(dp_u.'∗dp_u)) + ((1/2)∗m_b∗(dp_b.'∗dp_b)) +
((1/2)∗w_b.'∗J_b∗w_b) + ((1/2)∗w_u.'∗J_b∗w_u);

K = ((1/2)∗k_z∗d_z^2) + ((1/2)∗k_pr∗phi_r^2) + ((1/2)∗k_tr∗theta_r^2) + m_b∗g∗(L_z+d_z);

L = K − T;

B.6 Euler-Lagrange equations

L_pux = subs(L, p_u(1), x);
dL_pux = diff(L_pux,x);
dL_pux = subs(dL_pux, x, p_u(1));

L_puy = subs(L, p_u(2), x);
dL_puy = diff(L_puy,x);
dL_puy = subs(dL_puy, x, p_u(2));

L_dpux = subs(L, dp_u(1), x);
dL_dpux = diff(L_dpux, x);
dL_dpux = subs(dL_dpux, x, dp_u(1));
ddL_dpux = diff(dL_dpux);

L_dpuy = subs(L, dp_u(2), x);
dL_dpuy = diff(L_dpuy, x);
dL_dpuy = subs(dL_dpuy, x, dp_u(2));
ddL_dpuy = diff(dL_dpuy);
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L_dz = subs(L, d_z, x);
dL_dz = diff(L_dz, x);
dL_dz = subs(dL_dz, x, d_z);

L_ddz = subs(L, dd_z(3), x);
dL_ddz = diff(L_ddz, x);
dL_ddz = subs(dL_ddz, x, dd_z(3));
ddL_ddz = diff(dL_dz);

L_phr = subs(L, phi_r, x);
dL_phr = diff(L_phr, x);
dL_phr = subs(dL_phr, x, phi_r);

L_dphr = subs(L, w_b(1), x);
dL_dphr = diff(L_dphr, x);
dL_dphr = subs(dL_dphr, x, w_b(1));
ddL_dphr = diff(dL_dphr);

L_thr = subs(L, theta_r, x);
dL_thr = diff(L_thr, x);
dL_thr = subs(dL_thr, x, theta_r);

L_dthr = subs(L, w_b(2), x);
dL_dthr = diff(L_dthr, x);
dL_dthr = subs(dL_dthr, x, w_b(2));
ddL_dthr = diff(dL_dthr);

L_phu = subs(L, phi_u, x);
dL_phu = diff(L_phu, x);
dL_phu = subs(dL_phu, x, phi_u);

L_dphu = subs(L, w_u(1), x);
dL_dphu = diff(L_dphu, x);
dL_dphu = subs(dL_dphu, x, w_u(1));
ddL_dphu = diff(dL_dphu);

L_thu = subs(L, theta_u, x);
dL_thu = diff(L_thu, x);
dL_thu = subs(dL_thu, x, theta_u);

L_dthu = subs(L, w_u(2), x);
dL_dthu = diff(L_dthu, x);
dL_dthu = subs(dL_dthu, x, w_u(2));
ddL_dthu = diff(dL_dthu);
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L_psu = subs(L, psi_u, x);
dL_psu = diff(L_psu, x);
dL_psu = subs(dL_psu, x, psi_u);

L_dpsu = subs(L, w_u(3), x);
dL_dpsu = diff(L_dpsu, x);
dL_dpsu = subs(dL_dpsu, x, w_u(3));
ddL_dpsu = diff(dL_dpsu);

B.7 Symplified Euler-Lagrange equations

phi_u = 0;
theta_u = 0;

NdL_pux = subs(dL_pux);

NdL_puy = subs(dL_puy);

NddL_dpux = subs(ddL_dpux);

NddL_dpuy = subs(ddL_dpuy);

NdL_dz = subs(dL_dz);

NddL_ddz = subs(ddL_ddz);

NdL_phr = subs(dL_phr);

NddL_dphr = subs(ddL_dphr);

NdL_thr = subs(dL_thr);

NddL_dthr = subs(ddL_dthr);

NdL_phu = subs(dL_phu);

NddL_dphu = subs(ddL_dphu);

NdL_thu = subs(dL_thu);

NddL_dthu = subs(ddL_dthu);
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%NdL_psu = subs(dL_psu);

%NddL_dpsu = subs(ddL_dpsu);

B.8 Additional complete rotational matrices

R_ti = R_3(psi_u).'∗R_3(beta).';

R_nu = R_2(gamma).'∗R_3(beta).';

R_Wu = R_1(phi_W).'∗R_3(delta_W).';
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