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Abstract

In this thesis, we discuss the Kitaev model, a one-dimensional topological superconductor. In
the non-trivial phase, it shows two Majorana edge states that can be combined, in the ther-
modynamic limit, into a non-local zero-energy Dirac fermion which can be populated without
a�ecting the energy of the states. In this work, we �nd the analytical expressions of the Ma-
jorana edge states for �nite chain length and some extension of the model. In particular, we
consider generic boundary conditions and complex-valued parameters. In order to do this, we
extend the Lieb-Schultz-Mattis method to the fully complex case. Then we discuss the splitting
of the degeneracy of the ground state for �nite systems and the emergence of the massive edge
states. Finally, we calculate the entanglement entropy of the complex Kitaev model from the
correlation functions by proposing an extension of the standard real method to the complex
case.
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Sommario

In questa tesi viene discusso il modello di Kitaev, un superconduttore topologico unidimension-
ale. Nella fase non triviale presenta due Majorana edge states che possono essere combinati,
nel limite termodinamico, in un unico fermione di Dirac a energia nulla che può essere popo-
lato senza in�uenzare l'energia degli stati. In questo lavoro, vengono trovate le espressioni
analitiche degli edge states per lunghezza �nita della catena e per alcuni estensioni del modello.
In particolare vengono considerati i parametri del modello complessi e le condizioni al contorno
generiche. Per fare questo, il metodo di Lieb-Schultz-Mattis viene esteso al caso complesso.
Inoltre, vengono discussi lo splitting della degenerazione del ground state per sistemi �niti e la
presenza di edge states massivi. In�ne, viene calcolata l'entropia di entanglement del modello
di Kitaev complesso dalle funzioni di correlazione proponendo una estensione del metodo reale
standard al caso complesso.
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Introduction

The �eld of Topological Matter has grown in the last decades into what is arguably one of
the most interesting and stimulating developments in Condensed Matter Physics. New kinds
of quantum states which present "interesting" properties like non-dissipative charge transport,
fractional excitations, non-abelian statistics of quasi-particles, etc. [6, 18] have been discovered.
For a long time, physicists believed that Landau's symmetry breaking theory described all possi-
ble phases in materials, and all possible phase transitions [40]. However, in the 1980s, it became
clear that Landau symmetry breaking theory did not describe all possible orders. Actually it is
back in the 70's that D.Koesterlitz and M.Thouless put on a �rm theoretical background the
characterization of what now goes under the name of BKT transition. In the following decade,
M.Thouless introduced the notion of the topological order also in the context of the theory of
conductors [23] and D.Haldane in the context of magnetic materials [17] (for their achievements,
Koesterlitz, Thouless and Haldane won the Nobel Prize in 2016). Since then, both theoretical
and experimental progress has been made in this �eld starting from the Fractional Quantum
Hall (FQH) e�ect up to the most recent topological insulators and topological superconductors.
The topological order cannot be probed by any linear responses as for the symmetry breaking
order; it can be completely characterized by using only topological -hence global- properties,
such as non-dissipative edge states, geometric phases, topological invariants and non-local order
parameters [38].
Two states are in the same topological phase if they can be adiabatically connected through a
path in the parameter space that doesn't cross a gapless phase. In addition, this transformation
must be slow (compared to the energy scales of the system) and must preserve the symmetries
of the system [4]. This idea of smooth deformations was brought in the context of condensed
matter physics from mathematics where topology is the study of the properties of a geometric
object which are preserved under continuous deformations, such as stretching and twisting but
not tearing.
One of the most important practical applications of topological phases is quantum computa-
tion. Implementing a quantum computer is arguably one of the most interesting and stimulating
challenges for physics and engineers of our century. One of the main problems in implementing
quantum computers is the decoherence of the quantum systems. Topological quantum com-
putation provides an elegant way to construct decoherence-protected states, as one encodes
quantum information in a non-local fashion that the environment �nds di�cult to corrupt [2].

This thesis focuses on the Kitaev model [21], a one-dimensional topological superconductor
which should act, at least theoretically, as a reliable quantum memory being intrinsically im-
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mune to decoherence. It's the simplest topological superconductor that presents both a trivial
and symmetry protected topological phase. The topological phase is characterized by the pres-
ence of the Majorana edge states, that is quasi-particle excitations localized at the beginning
and at the end of the chain. This model is important because it can be easily solved analytically
in the thermodynamic limit [21].
In this work, we will try to extend these results by �nding the �nite-size corrections. More-
over, we will consider some extension of the model; we will take into account generic boundary
conditions and we will discuss the more general case where both the hopping amplitude and
superconductive gap are complex parameters.
In fact, in general in quantum many-body systems the superconductive gap arises when the
electron-electron interaction is treated in the mean-�eld approximation. It is related to the
expectation value of a pair of creation or annihilation operators (the so-called "anomalous
correlators") and it's generally complex. This phase produces observable e�ects when two su-
perconductors with di�erent phases are placed close to each other as in the Josephson junction
which is made of two superconducting electrodes separated by a barrier [39].
Furthermore, the complex-valued hopping takes into account interaction with an external �eld.
Indeed, the action of a magnetic �eld on the fermions can be treated by considering that they
acquire a phase each time they jump from one site to the neighboring one. This is the Ahronov-
Bohm e�ect on a discrete lattice.
The diagonalization of the Hamiltonian requires a general method to include generic boundary
conditions. In fact, the Fourier transform is a useful tool only with periodic boundary con-
ditions. We will discuss two di�erent equivalent methods to diagonalize a complex quadratic
Hamiltonian with generic boundary conditions. In particular, we will generalize the method
introduced by Lieb, Schultz and Mattis [26] to the fully complex case.
Once we diagonalize the model, we will �nd the analytical expressions of the Majorana edge
states and we will discuss their behavior for di�erent values of the model parameters and for
generic boundary conditions.
Moreover, we will analyze the correlation functions to detect the critical point and the topologi-
cal phase in the fully complex case. In fact, we expect, in the topological region, the correlations
between the �rst and the last sites of the chain to be substantially di�erent from zero because
of the non-local fermion that couples the edges of the chain.
Furthermore, at the critical point, the correlation function should show a power-law decay in-
stead of an exponential one.
Finally, we will calculate the entanglement entropy. Indeed, the quantum phase transitions are
governed by quantum �uctuations at zero temperature [11], and therefore we expect to observe
signatures of criticality on the level of entanglement.
In the real case, the entanglement entropy can be computed from the correlation functions by
exploiting the standard method discussed in [31]. Here we will try to generalize this method to
the full complex case.

The chapters of the thesis are structured as follows:

• In Chapter 1 we review the most important concepts in the �eld of Topological Matter.
In the �rst part of the chapter, we discuss the notions of Berry phase and Chern Number.
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Then we introduce the concepts of single-particle Hamiltonian, boundary states, topo-
logical invariants, and bulk-edge correspondence via a concrete system: the SSH model.
Moreover, we will provide an overview of the classi�cation problem of topological phases
of matter focusing on the systems of non-interacting fermions. Finally, we discuss the
Kitaev model emphasizing the equivalence with the XY model.

• In Chapter 2 we present two methods to diagonalize a complex quadratic fermionic model
with generic boundary conditions that allow us to solve for the energy spectrum and the
eigenstates of the Hamiltonian.

• In Chapter 3 we will solve analytically the LSM equations using the perturbation theory.
We will �nd that the eigenvalue problem admits two possible kinds of solutions: scattering
states, which are plane waves in the bulk, and edge states, whose eigenfunctions are located
at the edges of the chain. Moreover, we will see that, for generic boundary conditions,
the model has a new kind of quasi-particle excitations: the so-called massive edge states.

• In Chapter 4 we will take as ansatz for the solutions of the LSM equations a linear
combination of plane waves. Then we will �nd the Majorana edge states for di�erent values
of the parameters and generic boundary conditions for both the real and the complex cases.
Finally, a numerical analysis of the complex Kitaev model will be performed.

• In Chapter 5 we will evaluate the correlation functions of the Kitaev model for �nite chain
length and we will study the asymptotic behavior in the thermodynamic limit. Then we
will develop a new approach to calculate the reduced density matrix from the correlation
function in the fully complex case. Finally, we will discuss the structure of the eigenvalues
of the reduced density matrix and the scaling properties of the entanglement entropy.
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Chapter 1

Topological phases of matter

Condensed matter physics deals with how the particles, at �nite density and low temperatures,
can reorganize in the di�erent phases of matter. The main paradigm being used in this �eld
is the Ginzburg-Landau theory, based on the mechanism of Spontaneous Simmetry Breaking.
It describes physical systems where the dynamic, speci�cally the Hamiltonian or the equations
of motions, has some symmetries but, for particular values of the parameters, the equilibrium
state of the model experiences a phase transition to a symmetry-broken ground state. Lan-
dau's theory of phase transitions relies on a local order parameter that acquires a di�erent
expectation value depending on the particular phase of matter. For a long time, physicists
believed that the Landau Theory described all possible orders and all possible phase transitions
in materials. However, in the past decades, it has become gradually apparent that Landau
symmetry-breaking theory may not describe all possible orders. In fact, new kinds of states
with the same symmetry but di�erent topological order have been found.
Moreover, Topological insulators, i.e. materials with non-trivial symmetry-protected topolog-
ical order that behaves as an insulator in its interior but whose surface contains conducting
states, have been discovered.
In mathematics, topology is concerned with the properties of a geometric object that are pre-
served under continuous deformations. For example, 2D surfaces can be classi�ed by the genus,
i.e. the number of holes it has. This number remains invariant under continuous deformations.
Similarly, in the context of Topological phases of matter, two insulating Hamiltonians are said
to be adiabatically equivalent if there is an adiabatic deformation connecting them with no clo-
sure of the gap that respects the important symmetries of the system (see Section 1.1).
In this chapter we will give an overview of the main concepts of Topological insulators like edge
states, bulk topological invariants and bulk-edge correspondence via two concrete Topological
systems: the Su-Schie�er-Heeger (SSH) model and the Kitaev model. In the �rst section we
brie�y introduce two basic concepts: the Berry phase the Chern number. Then these concepts
will be applied to the simple case of a two-level system. In the second section we review the main
properties of the SSH model and then, after brie�y recalling the quantum entanglement-based
view of Topological Phases of Matter, in the third section we mention the classi�cation problem
of Topological Insulators of non-interacting fermions. Finally, the main topic of this thesis, the
Kitaev model, will be introduced and its equivalence with the XY model will be discussed.
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1.1 Berry phase and Chern number

Let's consider a system with Hamiltonian H(R) where R is a vector in the space of parameters
(they can be, for example, the chemical potential, the magnetic �eld etc...). We are interested
in the adiabatic evolution of the system as the parameters R(t) are varied along a path C in
the parameter space. In general, an Hamiltonian is said to be adiabatically deformed if [4]

1. its parameters are changed slowly (compared to the energy scales of the system) and
continuously;

2. the symmetries of the system are maintained;

3. the gap between the ground state and all the other excited states remains open.

At each point of the path R(t) it is possible to introduce an orthonormal basis |n(R)〉 of H(R)
(the snapshot basis) which satis�es [6]

H(R)|n(R)〉 = En(R)|n(R)〉 (1.1)

The previous equation determines the eigenkets up to a phase that can be �xed by making
a gauge choice to remove the arbitrariness (the phase can be R-dependent). If the system is
initially prepared in the eigenstate |ψ(0))〉 = |n(R(0))〉 and the gap around the state remain
�nite during throughout the evolution, for the adiabatic theorem [5], it will stay in an instan-
taneous eigenstate |n(R(t))〉 of the instantaneous Hamiltonian. The system during this process
will acquire a phase |ψ(t)〉 = e−iθ(t)|n(R(t))〉 which, as shown below, contains the dynamical
factor related to the energy of the instantaneous eigenstates and the so-called Berry phase. The
time-dependent Scröedinger equation of the system

H(R(t))|ψ(t)〉 = i~
d

dt
|ψ(t)〉 (1.2)

implies that [6]

θ(t) =
1

~

∫ t

0
En(R(t′))dt′ − i

∫ t

0
〈n(R(t′))| d

dt′
|n(R(t′))〉dt′ (1.3)

The �rst term is the standard dynamical phase. The second one comes from the fact that the
eigenkets change with time and is proportional to the Berry phase which is de�ned as

γn ≡ i
∫ t

0
〈n(R(t′))| d

dt′
|n(R(t′))〉dt′ = i

∫
C
〈n(R)|∇R|n(R)〉dR (1.4)

=

∫
C
dR ·An(R) (1.5)

where
An(R) ≡ i〈n(R)|∇R|n(R)〉 (1.6)

is the Berry connection (or Berry potential). Hence, the time evolution of the state is

|ψ(t)〉 = e−
i
~
∫ t
0 En(R(t′))dt′eiγn(t)|n(R(t)〉 (1.7)
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Under a gauge transformation |n(R)〉 → eiχ(R)|n(R)〉 the Berry connection transforms as

An(R)→ An(R)−∇Rχ(R) (1.8)

In general, the Berry phase cannot be canceled by a smart choice of the phase χ(R). Let's
consider for example a closed path C for which R(0) = R(T ) where T is the time after which
the path has been completed. For such a path |n(R(T ))〉 = |n(R(0))〉 and so if a gauge
transformation is performed eiχ(R(0))|n(R(0))〉 = eiχ(R(T ))|n(R(T ))〉 = eiχ(R(T ))|n(R(0))〉 and
then χ(R(0)) − χ(R(T )) = 2πm with m an integer. Therefore, in this situation, the Berry
phase cannot be canceled unless it's an integer number. The Berry phase can be expressed as
a surface integral thanks to the Stokes theorem

γn =

∫
C
dR ·An(R) =

∫
F
dS · Fn(R) (1.9)

where F is a surface whose boundary is C and if we consider a 3D parameter space

Fn(R) = ∇R ×An(R) = i〈∇Rn(R)| × |∇Rn(R)〉 (1.10)

is the Berry curvature. In the three dimensional space the Berry connection and the Berry
curvature can be thought of as the vector potential and the magnetic �eld of the electromagnetic
theory, respectively. As Berry himself showed [7], it's possible to obtain a manifestly gauge
independent expression for the Berry phase that shifts the derivative from the states (which
gives problems when the numerical diagonalization of the Hamiltonian is performed) to the
Hamiltonian. Starting from the completeness relation

∑
n |n(R)〉〈n(R)| = 1 which holds at

every point of the path R and taking into account that

〈m(R)|∇RH(R)|n(R)〉 =
〈m(R)|∇RH(R)|n(R)〉

En(R)− Em(R)
m 6= n (1.11)

we obtain that [6]

Fn(R) = −Im
∑
n6=m

〈n(R)|∇RH(R)|m(R)〉 × 〈m(R)|∇RH(R)|n(R)〉
(Em(R)− En(R))2

(1.12)

Remembering the de�nition of the Berry curvature (1.10), the previous formula shows that the
Berry curvature can be thought as the result of the interaction of the level |n(R)〉 with the other
levels |m(R)〉 6= |n(R)〉 which have been projected out by the adiabatic transformation. The
limitation of the formula (1.10) is that it only works if the parameter space is three-dimensional.
Nevertheless, no condition has been imposed on the dimensionality of the parameter space when
the Berry connection has been de�ned. A more dimension-agnostic de�nition is possible by
means of di�erential forms, as discussed in [5]. However this description is out if the scope of
this thesis.
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Two level systems

In the following we obtain an expression for the Berry phase and the Berry curvature of a two-
level system. This system represent, for example, a toy model of an insulator or the dynamic
of a spin-1

2 system. The generic form of the Hamiltonian is

H = ε(R)12×2 + d(R) · σ (1.13)

where σ = (σx, σy, σz) is Pauli vector and d(R) is a three dimensional vector that depends on
the parameters R. The system has two eigenstates |+R〉 and |−R〉 with energies E+ and E−,
respectively. The energies of the two levels of the system are E± = ε(R)± |d|. Then the Berry
curvature for the upper level reads

F+(R) = −Im〈+R|∇RH(R)| −R〉 × 〈−R|∇RH(R)|+ R〉
4|R|2

(1.14)

The term proportional to the identity matrix can be neglected because it only de�nes the zero
of the energy and doesn't a�ect the dynamics of the system.
Without loss of generality let's assume that the degeneracy point R∗ (for which E+(R∗) =
E−(R∗)) is inR∗ = 0 and that close to this point (the region that will be considered) d(R) = R.
Then the Hamiltonian becomes H = R · σ and E+ = |R| and E− = −|R|. Moreover, in this
particular case ∇RH = σ. In order to simplify the calculations, let's align the z-axis along R.
Then, if we set |+ R〉 ≡ |+〉 and | −R〉 ≡ |−〉

σz|±〉 = ±|±〉 σx|±〉 = |∓〉 σy|±〉 = ±i|∓〉 (1.15)

Then F+x(R) = F+y(R) = 0 because 〈±|σz|∓〉 = 0. The only non-vanishing component is

F+z(R) = −Im〈+|σx|−〉〈−|σy|+〉 − 〈+|σy|−〉〈−|σ+|+〉
4R2

= − 1

2R2
(1.16)

where R ≡ |R|. If the z-axis is not aligned with R, the rotational invariance implies that

F+(R) = − R

2R3
(1.17)

This is the �eld generated by a monopole (in R parameter space) of strength −1/2 which is
located at R = 0. The Berry phase is

γ+(C) = −
∫
F
dS · R

2R3
= −1

2
Ω(C) (1.18)

Here Ω(C) is the solid angle that C subtends at the degeneracy point. Therefore, the degeneracy
points act as sources of the Berry curvature. Then the integral of the Berry curvature over a
closed manifold is equal to 2π times the number of the degeneracy points contained inside. In
general, the Berry curvature integrated over a 2-D surface, usually the Brillouin zone (BZ), is
an integer

n =
1

2π

∫
BZ

dS · F (k) (1.19)

This integer is called the Chern number. The previous formula relates local properties (Berry
curvature) to local properties (Chern number).
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Figure 1.1: Picture of the SSH model. Every elementary cell consists of two sites A (red circles) and B(blue
circles). The hopping amplitudes are staggered. There is no hopping between sites of the same sublattice.

1.2 Su-Schrie�er-Heeger Model

In this chapter, we introduce the basic concepts of topological insulators. In particular, the
chiral symmetry, the topological invariants, and the bulk-edge correspondence will be discussed
through the analysis of the SSH model �rst developed by Su, Schrie�er and Heeger [34].
The SSH model is an example of a Topological band insulator that belongs to the symmetry
class BDI [5](see also Section 1.3). It was �rst introduced as a model of the trans-polyacetylene.
Polyacetylene is the simplest linear conjugated polymer. It consists of weakly coupled chains
of CH units forming a quasi-one-dimensional lattice. Three of the four valence electrons for a
particular carbon atom in the chain are used in bonding with the nearest carbon atoms and
the hydrogen atom. The fourth electron creates a double bond between a pair of carbon atoms.
The alternating single and double bonds (these are σ and σ plus Π bonds, respectively) will be
considered for simplicity in one dimension. The extra electron, that is responsible for forming
the Π bond, will be treated in a tight-binding approximation. The Hamiltonian with OBCs
reads (see Fig. 1.1) [20, 4]

H = −(t+ δt)

N∑
i=1

[c†A,icB,i + h.c.]− (t− δt)
N−1∑
m=1

[c†A,i+1cB,i + h.c] (1.20)

For simplicity, let's take t > 0 and |δt| ≤ t. The staggered hopping amplitudes (t + δt) and
(t−δt) refer to the single bonds and the double bonds. Here a unit cell with two atoms, labeled
A and B has been de�ned.
Moreover spinless electrons (even though the real SSH model includes spin) have been consid-
ered. The SSH model has a bulk and a boundary. The bulk is the long central part of the chain;
the boundaries are the two ends, or edges, of the chain. The bulk properties can be studied by
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assuming periodic boundary conditions. In this case

H = −
N∑
i=1

[(t+ δt)c†A,icB,i + (t− δt)c†A,i+1cB,i] + h.c (1.21)

with ci+N = ci. Let's de�ne

ca,j =
1√
N

∑
k

eikjca,k (1.22)

where a = {A,B} and k = 2πq/N, q = 0, ..., N − 1. The Hamiltonian in Fourier space becomes

H =
∑
k

c†a,kHab(k)cb,k =
∑
k

(c†A,k, c
†
B,k)H(k)

(
cA,k
cB,k

)
(1.23)

where the Block Hamiltonian H(k) can be written as

H(k) = d(k) · σ, d(k) =

−(t+ δt)− (t− δt) cos k
−(t− δt) sin k

0

 (1.24)

The Hamiltonian H(k) is a two-band Hamiltonian (see equation (1.13)). Then the eigenvalues
are

E±(k) = ±|d(k)| = ±
√

2(t2 + δt2) + 2(t2 − δt2) cos k (1.25)

In the half-�lling situation, where all negative energy eigenstates of the Hamiltonian are occu-
pied, the energy gap ∆ separating the lower �lled band from the upper empty band is ∆ = 4|δt|
(δ > 0). Therefore without the staggering, i.e. δ = 0, the gap closes and the model behaves
like a conductor (see Fig. 1.2). The polymer polyacetylene, at half-�lling, undergoes a Peierls
instability to a dimerized state. The Peierls' theorem states that if the energy-savings due to
the new band gaps outweighs the elastic energy cost of rearranging the ions, the lattice distor-
tion becomes energetically favorable. A detailed analysis of this process necessitates a model
where the positions of the atoms are also dynamical. Nevertheless, the energy-saving due to
the new band gaps can be understood by analyzing the e�ects of a slight staggering on the dis-
persion relation. As the gap due to the staggering of the hopping amplitudes opens, the energy
the of occupied states is lowered, while unoccupied states move to higher energies. Thus, the
staggering, if the elastic force between the ions is weak, is energetically favored.

1.2.1 Fully dimerized limit

The SSH model becomes particularly simple in the fully dimerized cases δt = t and δt = −t
(with open boundary conditions). In these two limits the eigenstates are even and odd linear
combinations of the two sites forming a dimer.

1. δt = t. The Hamiltonian becomes

H = −2t

N∑
i=1

[c†A,icB,i + h.c] (1.26)
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Figure 1.2: Dispersion relations of the SSH model (1.25) for di�erent values of the hopping amplitudes: (a)
(t+δt) = 1, (t−δt) = 0; (b) (t+δt) = 1, (t−δt) = 0.6; (c) (t+δt) = 1, (t−δt) = 1; (d) (t+δt) = 0.6, (t−δt) = 1;
(e) (t+ δt) = 0, (t− δt) = 1. In both cases (a) and (e), the energy eigenvalues don't depend on the wavenumber
k. The energies are E±(k) = ±1; this is the so-called �atband limit (see Section 1.3.3). In this special cases the
nonuniversal information about the energy band is removed and only the topological information which classi�es
the di�erent phases is present.
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Figure 1.3: Fully dimerized limits for the SSH model. The trivial case δt = t has no intracell hopping and
there is no unpaired mode. The topological case δt = −t has only intercell hopping and as a consequence there
is one isolated site per edge (empty circles) that can host a zero energy excitation.

There is only intra-cell hopping. The eigensates are |i, A〉 ± |i, B〉 with i ∈ 1, ..., N . Here
|i, A〉 and |i, B〉 denote the states of the chain where the electron is on the sublattice site
A and B of the unit cell i, respectively. They satisfy

H(|i, A〉 ± |i, B〉) = ±(−2t)(|i, A〉 ± |i, B〉) (1.27)

for i = 1, ..., N . The system is in the trivial phase with constant energies E± = ±2|t|.

2. δt = −t. The Hamiltonian is

H = −2t
N−1∑
i=1

[c†A,i+1cB,i + h.c] (1.28)

In this case each dimer is shared between two neighboring unit cells

H(|i, B〉 ± |i+ 1, A〉) = ±(−2t)(|i, B〉 ± |i+ 1, A〉) (1.29)

for i = 1, ...., N − 1. There are two other eigenstates. Indeed, the previous Hamiltonian
doesn't contain the modes cA,1 and cB,N and therefore they can be excited with no cost
of energy. Then there are two more zero energy eigenstates

|A, 1〉 = c†A,1|0〉 |B,N〉 = c†B,N |0〉 (1.30)
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which satisfy
H|A, 1〉 = 0 H|B,N〉 = 0 (1.31)

These states are called edge states because they are localized at the beginning or at the
end of the chain.

From equation (1.25) we see that the gap closes for δt = 0 at k = π. Thus, the topological phase
occurs at δt < 0 while the trivial phase occupies the region δt > 0. The edge states survive
in the whole topological phase although they acquire an exponential tail protruding inside the
bulk. These two edge states have non vanishing components only on the sublattice A or B
because of the chiral symmetry (see the following discussion).

1.2.2 Chiral simmetry

A system has the chiral symmetry represented by the unitary and Hemitian operator Γ if (see
Section 1.3.2 for a more detailed description)

ΓΓ† = Γ†Γ = 1 {Γ, H} = 0 (1.32)

The operator Γ is required to be local. In the SSH chain this means that for i 6= i′ the chiral op-
erator Γ must satisfy 〈i, a|Γ|i, b〉 = 0 for any a, b ∈ {A,B}. Starting from the anticommutation
relation (1.32) one obtains that the spectrum of a chiral symmetric Hamiltonian is symmetric
i.e. for any state |uE〉 with energy E there is a chiral symmetric partner Γ|uE〉 = |u−E〉 with
energy −E. This property implies that nonzero energy eigenstates have equal support on both
lattices A and B [4]. The only relevant symmetry (which does not alter the topological prop-
erties) of the SSH model is the chiral symmetry [5]. The bulk momentum-space Hamiltonain
H(k) satisfy

σzH(k) = −H(k)σz (1.33)

This is a direct consequence of that dz(k) = 0 for every value of k. Therefore the path of the
endpoint of d(k), as the wavenumber goes through the Brillouin zone, k ∈ [0, 2π] , is a closed
path (a circle of radius (t− δt) centered at (−(t+ δt), 0)) on the (dx, dy)-plane. The topology
of this loop can be characterized by an integer: the bulk winding number v. This counts the
number of times the loop winds around the origin of the (dx, dy)-plane. Fig. 1.4 shows the path
of the endpoint of d(k) for di�erent values of (t+ δt) and (t− δt). For example, panels (a) and
(b) in Fig. 1.4 show a curve with v = 0; in Fig. 1.4 panels (d) and (e) have v = 1. In Fig.
1.4(c) instead the winding number v is unde�ned. Therefore in the trivial phase δt > 0, v = 0;
in the topological region δt < 0, v = 1. Let's de�ne the unite vector

d̃(k) =
d(k)

|d(k)|
(1.34)

which, substantially, projects the curve of d(k) to the unit circle of the (dx, dy)-plane. Then
the winding number is given by

v =
1

2π

∫ π

−π

(
d̃(k)× d

dk
d̃(k)

)
z

dk (1.35)
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Figure 1.4: Paths of the endpoints of d(k) (1.24) in the (dx, dy)-plane as a function of k ∈ [0, 2π] for di�erent
values of the hopping amplitudes: (a) (t+ δt) = 1, (t− δt) = 0; (b) (t+ δt) = 1, (t− δt) = 0.6; (c) (t+ δt) = 1,
(t− δt) = 1; (d) (t+ δt) = 0.6, (t− δt) = 1; (e) (t+ δt) = 0, (t− δt) = 1.
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Figure 1.5: Three fully dimerized domains. The domain walls host zero energy eigenstates (empty circles) that
can be localized on a single site (as for i = 3) or on a superposition of sites (as the odd superposition of the ends
of the trimer shared between the n = 5 and n = 6 unit cells).

In the SSH model the points for which δt > 0 or δt < 0 are adiabatically connected because
one can draw a path between them that doesn't cross the gapless phase δt = 0. To change
the winding number one needs to pull the path of d(k) through the origin of the (dx, dy)-plane.
This transformation is not adiabatic because it requires the closure of the gap. Therefore the
points connected by an adiabatic transformation have the same winding number. The winding
number v is an example of topological invariant i.e. an integer number that doesn't change
under adiabatic transformations. Let's de�ne NA and NB as the number of the edge modes at
the left end of the chain in the sublattice A and B, respectively. Then, in the trivial region
NA −NB and v are 0; in the topological region NA −NB and v are 1. Therefore, remembering
that the bulk winding number was obtained from the bulk Hamiltonian only, the bulk properties
of the model are related to the edge ones. This is an example of the bulk-edge correspondence,
a recurring theme in the theory of topological insulators.

1.2.3 Bound states and domain walls

Edge states can occur also at domain walls between di�erent insulating domains of the same
chain. The domain walls are the boundaries between di�erent insulating regions. Let's consider
the three fully dimerized domains each characterized by a di�erent value of δt (see Fig. 1.5).
There are two types of domain walls which host zero energy excitations: one containing a single
site and one containing a trimer. In fact, in the trimer case, the odd superposition of the two
end sites satisfy

H(|5, B〉 − |6, B〉) = 0 (1.36)

Out of the fully dimerized limits the edge states penetrate the bulk with an exponentially
decaying tails [4].

1.3 Classi�cation of topological phases of matter

There are several ways to classify the topological phases of matter. In the �rst part of this
section we discuss the general quantum entanglement-based viewpoint of Topological Phases of
Matter. Then we give an overview of the classi�cation problem of the Topological Insulators and
Superconductors of non-interacting fermions which understanding is now very well established
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and complete. In particular, we review in some detail the "Ten-Fold Way" in the bulk approach
in the translationally invariant case which is the cornerstone of the classi�cation of the non-
interacting fermion systems. However, it must be said that the general classi�cation problem of
the topological phases of matter is still evolving and is currently a very active �eld of research.
There is an interesting perspective on the classi�cation problem which exploits the existence
of the Quantum Anomalies (well known in the context of Elementary particle physics). In this
approach, the boundary cannot be thought of as a consistent quantum theory in isolation from
the topological quantum state in the bulk. It turns out that the Quantum anomalies persist
even in the interacting regime and therefore they can be used to classify these systems. In many
cases there are signi�cant di�erences between the interacting and the non-interacting topological
insulators. Nevertheless, it has been found that the fully interacting classi�cation follows closely
the non-interacting template. Recently, progress has been made also in the topological phases
of systems of Bosons [10] where Group Cohomology appears to play an important role in the
classi�cation. Following the same line, for the fully interacting fermion phases, the Group Super
Cohomology [16] has been proposed. However, a full description of the Quantum Anomalies,
the Group Cohomology and the systems of Bosons is out of the scope of this thesis.
As a �nal remark, it must be stressed that the problem of classi�cation of the topological
phases of matter is not just strictly theoretical. In fact, in the last decades, new distinct types
of Topological Insulators have been discovered thanks to the theoretical predictions made on
the classi�cation scheme of all possible Hamiltonians.

1.3.1 Quantum entanglement-based viewpoint of Topological phases of mat-

ter

Quantum entanglement turns out to provide an important perspective on Topological phases
of matter. There are two types of quantum states: the Short Range Entangled (SRE) states
and the Long Range Entangled (LRE) states. A SRE state is a quantum state |s〉 that can be
continuously transformed into a �nal direct product state |s〉f [27]

|s〉f = Tg[e−i
∫ gf
gi

dgĤ(g)]|s〉, |s〉f = |s1〉1 ⊗ |s2〉2 ⊗ |s3〉3 ⊗ ... (1.37)

where Ĥ(g) is a local Hamiltonian on which no symmetry condition are imposed and Tg is
the time ordering acting on the parameter g. A quantum state is a Long Range Entangled
(LRE) state if it's not a Short Range Entangled (SRE) state. LRE states have an intrinsic bulk
topological order that is they usually show "interesting" properties like ground state degenera-
cies, anyonic excitations which can carry fractional excitations, etc.. Quantum systems can be
grouped in the following two general categories:

1. No symmetry constraints. In this case the system under consideration is not subject
to any symmetry constraint. There is only a single SRE phase because every state can be
continuously transformed into each other.

2. Symmetry Constraints. Now the system is invariant under some symmetry group G.
SRE states are called "standard" SRE states if they arise from spontaneously breaking
of the symmetry of the system. Instead, if the symmetry is not broken, the SRE states
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are called Symmetry Protected Topological (SPT) states. In the latter case, there can
be several distinct phases with the same symmetry. The Topological Insulators of non-
interacting fermions belong to this category. Finally, LRE with symmetry constraints are
called Symmetry Enhanced Topological phases (SET).

In the following, we are interested in the systems of non-interacting fermions which, as explained
above, provide the simplest examples of the SPT phases. SPT phases have a bulk gap and don't
exhibit any "interesting" bulk properties. Nevertheless, the boundary is non-trivial i.e. it could
spontaneously break the symmetry, have an intrinsic (boundary) topological order or be gapless.
In particular, the boundary of a non-interacting fermion system is always gapless.
It turns out that all possible Hamiltonians can be classi�ed according to the behavior under
certain "special" symmetries. They are are the time-reversal, the charge-conjugation (particle-
hole) and the chiral symmetry. The time-reversal and the charge-conjugation symmetries are
not ordinary symmetries because they are realized (on the Hilbert space of the �rst quantized
Hamiltonian) by antiunitary operators instead of unitary operators. There is a maximum of
10 types of Hamiltonians that respond di�erently to these three symmetries [27]. All these
Hamiltonians can be classi�ed within the "Ten fold way" framework which will be introduced
below.

1.3.2 Role of symmetries

Let's consider a non-superconducting system. In second quantization it's described by the
second quantization Hamiltonian [27]

Ĥ =
∑
A,B

ψ̂†AHABψ̂B = ψ̂†Hψ̂ (1.38)

where ψ̂† and ψ̂ are fermionic creation and destruction operators satisfying the usual anticom-
mutation relations. The indexes A and B denote the lattice site (or a combined index, such as
the lattice site and the spin). The Hamiltonian H = HAB is a matrix of numbers and is called
�rst quantized Hamiltonian. The previous analysis can be extended also to superconductors.
All that is necessary is to replace the column vector ψ̂ by the Nambu spinor χ̂ = (ψ̂, (ψ̂†)t). In
this situation, the following discussion goes through analogously.
A Hamiltonian is invariant under a group G0 of unitary realized symmetries if there exists a
set of matrix U (one for each element of the group) that commute with the �rst quantized
Hamiltonian

UHU † = H (1.39)

In the second quantized language this corresponds to the following action of the operator Û on
fermion creation and annihilation operators

Û ψ̂AÛ−1 =
∑
B

U †ABψ̂B Û ψ̂†AÛ
−1 =

∑
B

ψ̂†BUBA (1.40)

The second quantized Hamiltonian commutes with Û

ÛĤÛ−1 = Ĥ (1.41)
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If H has a unitary (on the Hilbert space of the �rst quantized Hamiltonian) symmetry, we can
block-diagonalize it and then consider the topological properties of each "symmetry-less" block
individually.
In this situation, the vector space spanned by the single-particle eigenstates decomposes into a
direct sum of vector spaces associated with certain irreducible representations λ of the group G0.
Each irreducible representation de�nes a Bloch Hamiltonian H(λ). If we consider all possible
Hamiltonian, the set of all bloch Hamiltonians that can be obtained doesn't depend on the
symmetry group G0 [27]. In particular, there can be only ten possible set of these matrices.
In quantum mechanics, any symmetry must be realized by a unitary or an antiunitary operator
acting on the Hilbert space. Since the block Hamiltonians H(λ) are completely independent of
any unitary realized symmetries, they can only be classi�ed according to the behavior under
the antiunitary (on the Hilbert space of the �rst quantized Hamiltonian) symmetries. In order
to classify all possible Hamiltonians, we need to consider only one time-reversal and only one
charge conjugation operation as well as the unitary chiral symmetry [27].

Time-reversal symmetry The action of operator T̂ that implements the time-reversal sym-
metry on the fermion Fock space is

T̂ ψ̂AT̂ −1 =
∑
B

(U †T )ABψ̂B T̂ ψ̂†AT̂
−1 =

∑
B

ψ̂†B(UT )BA T̂ iT̂ −1 = −i (1.42)

where UT is the associated unitary operator. The second quantized Hamiltonian is time-reversal
invariant if

T̂ ĤT̂ −1 = Ĥ (1.43)

The time evolution operator Û(t) = e−itĤ is mapped into

T̂ Û(t)T̂ −1 = e−T̂ iT̂
−1tĤ = e−i(−t)Ĥ = Û(−t) (1.44)

as desired for time-reversal. The condition (1.43) implies for the �rst quantized Hamiltonian

THT−1 = H T = UTK (1.45)

where K is the antiunitary operator that implements complex conjugation, KHK−1 = H∗.
In fact, being the time-reversal symmetry an antiunitary symmetry, the previous relation must
involve the complex conjugation operation. It is easy to show that the square of the time-reversal
operator T̂ 2 is a unitary operator with associated matrix T 2 = U∗TUT . Applying time-reversal
twice, any state must return to the same state up to an overall phase factor eiφ. The last
condition implies that T 2 = ±1. Therefore, if the Hamiltonian is time-reversal invariant, there
are two ways in which it can respond.

Charge conjugation The second fundamental antiunitary symmetry is the charge conjuga-
tion (particle-hole) symmetry Ĉ. The action of the second quantized operator Ĉ on the fermion
Fock space is

Ĉψ̂AĈ−1 =
∑
B

(U∗†C )AB
ˆ
ψ†B Ĉψ̂†AĈ

−1 =
∑
B

ψ̂B(U∗C)BA ĈiĈ−1 = i (1.46)
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where UC is the associated unitary matrix. The second quantized Hamiltonian Ĥ is charge-
conjugation invariant if and only if

ĈĤ Ĉ−1 = Ĥ (1.47)

Then the �rst quantized Hamiltonian satis�es

CHC−1 = −H C = UCK (1.48)

Repeating the same steps done for the time-reversal symmetry it follows that C2 = ±1. Thus,
also in this case, there are two ways in which a charge conjugation invariant Hamiltonian can
respond to the symmetry.

Chiral symmetry The last symmetry that must be considered to fully characterize all the
possible Hamiltonians is the chiral symmetry. The second quantized operator Ŝ which imple-
ments chiral symmetry reads

Ŝ ≡ T̂ Ĉ (1.49)

The relations (1.42) and (1.46) imply that action on the fermion Fock space is [27]

Ŝψ̂AŜ−1 =
∑
B

(U∗†S )AB
ˆ
ψ†B Ŝψ̂†AŜ

−1 =
∑
B

ψ̂B(U∗S)BA ŜiŜ−1 = −i (1.50)

Here US = UTU
∗
C . The second quantized Hamiltonian Ĥ is chiral invariant if

ŜĤŜ−1 = Ĥ (1.51)

The �rst quantized Hamiltonian satis�es

SHS−1 = −H S = UTU
∗
C (1.52)

Moreover, S2 = 1. Thus, a chiral invariant Hamiltonian can respond only in one way to the
chiral symmetry. The chiral symmetry, unlike the previous symmetries, is a unitary operator
acting on the Hilbert space of the �rst quantized Hamiltonian. From now on, for simplicity,
we will denote the Bloch Hamiltonians H(λ) by H. It turns out that there are 10 di�erent
ways in which the �rst quantized Hamiltonian H can respond to the time-reversal, the charge-
conjugation and the chiral symmetry (see Tab.1.1). In fact, one obtains that the chiral symmetry
is �xed by the behavior of the other two symmetries but for the case where the Hamiltonian
is not invariant under time-reversal nor under particle-hole operations [27]. Each of these 10
possibilities is called symmetry class.

1.3.3 Classi�cation by topology of the bulk in the translationally invariant

case

Let's consider now a translational invariant system with, as usual, a gap in the excitation
spectrum. In this situation, we can consider the single-particle Hamiltonian H in momentum
space H(~k) where ~k is a d-dimensional vector in the Brillouin zone (a d-dimensional torus).
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In the simplest case of a model with no symmetry conditions (class A) with n �lled and m
empty bands, the Bloch Hamiltonian H(k) can be adiabatically deformed into the �atband
Hamiltonian (see Section 1.2)

Q(~k) = U(~k)ΛU †(~k) Λ =

(
1m 0
0 −1n

)
U(~k) ∈ U(n+m) (1.53)

which assigns +1 to the energy levels above the gap and −1 to those below the gap. By
de�nition, any topological properties will remain unchanged by such continuous deformations.
Due to the degeneration of the levels, if U(~k) is of the form

U(~k) =

(
U1(~k) 0

0 U2(~k)

)
U1(~k) ∈ U(m), U2(~k) ∈ U(n) (1.54)

then Q(~k) = Λ as in the case where U(~k) = 1n+m. Hence U(~k) is an element of the coset space
Gm,m+n(C) = U(n+m)/[U(m)×U(n)]. Therefore we have established that every ground state

of the simpli�ed Hamiltonian Q(~k) is described by a map from the Brillouin zone into space
Gm,m+n(C),

Q : BZ → Gm,m+n(C) (1.55)

~k → Q(~k) (1.56)

Each map describes a ground state. In a similar way we can consider the cases of the other
symmetry classes, which yield a di�erent space for Q(~k) [27]. Let's assume, for simplicity, that
the Brillouin zone is a d-dimensional sphere. The number of topologically di�erent maps Q,
or, equivalently, the number of topologically distinct ground states, is given by the Homotopy
group (for the class A)

πd(Gm,m+n(C)) (1.57)

Here d is the dimension of the Brillouin zone.
For example πd=2(Gm,m+n(C)) = Z and therefore for every integer there is a di�erent ground
state. The ten classes are divided into complex and real ones.
The charge conjugation and the time-reversal symmetries impose a sort of reality condition on
the Hamiltonian (see equations (1.45) and (1.48) that involve complex conjugation). Therefore
the �rst two classes, which don't possess any invariance under either of the two antiunitary
symmetries T or C, are called complex. Instead, the remaining eight classes are called real. The
resulting classi�cation is summarized in Tab. 1.1 which is taken from [5]. The symmetry classes
are labeled with the Cartan's name.
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T 2 C2 S2 d 1 2 3 4 5 6 7 8

A ∅ ∅ ∅ ∅ Z ∅ Z ∅ Z ∅ Z
AIII ∅ ∅ + Z ∅ Z ∅ Z ∅ Z ∅

AII − ∅ ∅ ∅ Z2 Z2 Z ∅ ∅ ∅ Z
DIII − + + Z2 Z2 Z ∅ ∅ ∅ Z ∅
D ∅ + ∅ Z2 Z ∅ ∅ ∅ Z ∅ Z2

BDI + + + Z ∅ ∅ ∅ Z ∅ Z2 Z2

AI + ∅ ∅ ∅ ∅ ∅ Z ∅ Z2 Z2 Z
CI + − + ∅ ∅ Z ∅ Z2 Z2 Z ∅
C ∅ − ∅ ∅ Z ∅ Z2 Z2 Z ∅ ∅
CII − − + Z ∅ Z2 Z2 Z ∅ ∅ ∅

Table 1.1: The "Ten fold way". Symmetry classes of non-interacting fermionic �rst quantized Hamiltonians
based on the works of Schnyder et al. [32] and Kitaev [22]. The symmetry classes are labeled with the Cartan's
name (�rst column). The di�erent symmetry classes can be characterized by their di�erent behaviors of the
�rst quantized Hamiltonian under time-reversal (T ), charge-conjugation (C), and chiral symmetry (S = TC). If
there is no symmetry the entry ∅ is found. If the symmetry is present, the sign of the square of the symmetry
is listed. The remaining columns report the Homotopy groups for the dimensions d = 1, ..., 8 of space.

They di�er by the sign of the squares of T̂ , Ĉ and Ŝ. The symbols Z and Z2 indicate whether
the space of quantum ground states is partitioned into topological sectors labeled by an integer
or a Z2 quantity. The previous analysis focused on the topology of the bulk states in the
presence of translational invariance. The Table of Topological Insulators and Superconductors
can also be obtained by analyzing the boundaries of the system which exhibit "anomalous"
properties. For example, the boundaries of the non-interacting fermionic Topological insulators
always conduct electrical current or heat. Following this approach, the classi�cation problem of
Topological Insulator in d spatial dimensions can be solved by studying the lack of the Anderson
Localization in d̄ = d − 1 spatial dimensions. However, this description is out of the scope of
this thesis.

1.4 The XY chain

Spin models are important because they are the simplest systems in which quantum phase
transitions occur. In this chapter we present the XY chain in a transverse magnetic �eld
which is the simplest non-trivial model showing a genuinely quantum mechanical behavior.
Moreover, we introduce the Jordan Wigner transformation: a powerful tool, in 1 dimension,
that allows us to map a system of interacting spins onto an equivalent system of interacting
fermions. The idea behind this description is that often, in many-body systems, the best way of
understanding a physical system is to map it onto a mathematically equivalent but physically
di�erent system whose properties are already understood. Furthermore, the model with PBCS
will be diagonalized with the help of a Fourier transform followed by the Bogoliubov rotation
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obtaining a simple system of non-interacting fermions (the quasi-particle description). This
allows us to solve for the energy spectrum and the eigenstates of the original Hamiltonian.

1.4.1 The model

The XY model in a magnetic �eld consists of N spin 1/2 arranged in a row and having only
nearest neighbor interactions involving only the x and the y components of the spin operators.
The Hamiltonian is [12]

H = J
∑
i

[(1 + γ)Sxi S
x
i+1 + (1− γ)Syi S

y
i+1] + Jh

∑
i

Szi (1.58)

where γ is the parameter characterizing the degree of anisotropy in the xy-plane.
In the following we will consider only the ferromagnetic case J = −1. The operators Sxi , S

y
i ,

Szi may be represented by the usual Pauli spin matrices (~ = 1) setting Sx,y,z = 1
2σ

x,y,z where

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
(1.59)

The commutation relations between the Pauli matrices are

(σi)† = σi {σi, σj} = 2δij [σi, σj ] = 2iεijkσk (1.60)

where εijk is the Levi-Cita symbol. For γ 6= 1 the XY model shows his genuinely quantum
mechanical behavior because the di�erent components of Si appearing in H do not commute
with each other. The e�ect of the term multiplied by (1 − γ) is to oppose the ordering of the
x-components but to favor the ordering of the y-components.
Let's de�ne

ai = Sxi − iS
y
i a†i = Sxi + iSyi (1.61)

where ai and a
†
i are respectively the lowering and the raising operators. These operators partly

resembles fermionic operators in that

{ai, a†i} = 1 a2
i = (a†i )

2 = 0

and they partly resemble Bose operators in that

[a†i , aj ] = [a†i , a
†
j ] = [ai, aj ] = 0 i 6= j

In one dimension the model can be solved by mapping the spins into fermionic operators by
introducing the so-called Jordan-Wigner transformation

ci = exp[iπ

i−1∑
j=1

a†jaj ]ai =

i−1∏
j=1

(1− 2a†jaj)ai (1.62)

c†i = a†iexp[−iπ
i−1∑
j=1

a†jaj ] =
i−1∏
j=1

(1− 2a†jaj)a
†
i (1.63)
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The Jordan-Wigner transformation is a highly non-local map which, substantially, associates
a spin up to an empty site and a spin down to an occupied one. The non-local part of this
mapping is called the Jordan-Wigner string and �xes the anticommutation relation between
sites by counting the parity of the overturned spins to the left of the sites on which is applied.
The equations (1.62), (1.62) imply the following fermionic anticommutation relations [26]

{ci, c†j} = δij {ci, cj} = 0 {c†i , c
†
j} = 0 (1.64)

From the de�nitions (1.62) and (1.63) it follows that c†ci = a†iai so the inverse transformation
is simply

ai = exp[−iπ
i−1∑
j=1

c†jcj ]ci =

i−1∏
j=1

(1− 2c†jcj)ci (1.65)

a†i = c†iexp[iπ
i−1∑
j=1

c†jcj ] =
i−1∏
j=1

(1− 2c†jcj)c
†
i (1.66)

In the case of open boundary condition the range of the summation index in the Hamiltonian
(1.58) is 1 ≤ i ≤ N−1 (except for the magnetic term for which 1 ≤ i ≤ N). On the other hand,
if we consider the periodic boundary conditions then 1 ≤ i ≤ N and SxN+1 = Sx1 , S

y
N+1 = Sy1 .

For i = 1, ...., N − 1 a
†
iai+1 = c†ici+1

a†ia
†
i+1 = c†ic

†
i+1

(1.67a)

(1.67b)

so that for the open chain

H = −1

2

N−1∑
i=1

[c†ici+1 + c†i+1ci + γc†ic
†
i+1 + c†i+1ci + γci+1ci] + h

N∑
i=1

c†icj −
hN

2
(1.68)

For the cyclic chain there are two more terms{
a†Na1 = −eiπNc†Nc1

a†Na
†
1 = −eiπNc†Nc

†
1

(1.69a)

(1.69b)

where N ≡
∑N

j=1 c
†
jcj . The Hamiltonian is

H = −1

2

N−1∑
i=1

[c†ici+1 + c†i+1ci + γc†ic
†
i+1 + γci+1ci] + h

N∑
i=1

c†ici −
hN

2

+ eiπN(c†Nc1 + c†1cN + γc†Nc
†
1 + γc1cN ) (1.70)

where eiπN =
∏N
j=1(1 − 2c†jcj) is the parity operator. The Hamiltonian describes spinless

fermions hopping on a lattice, with superconducting-like interaction which creates/destroys
them in pairs. Although the Hamiltonian doesn't conserve the number of fermions, since they
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are created/destroyed in pairs, the parity is conserved. This observation allows to separate the
theory in two disconnected sectors with parity ±1, where the plus sign characterizes con�gu-
rations with an even number of particles and the minus the one with an odd number. From
the boundary terms in (1.70) it follows that for an even number of particles the anti-periodic
boundary conditions must be imposed; for an odd number of particles instead the periodic
boundary conditions are required. Namely{

cj+N = −cj for eiπN = 1 (even particle number)

cj+N = cj for eiπN = −1 (odd particle number)

(1.71a)

(1.71b)

With those de�nitions, the Hamiltonian (1.70) can be written as

H = −1

2

N∑
i=1

[c†ici+1 + c†i+1ci + γc†ic
†
i+1 + γci+1ci] + h

N∑
i=1

c†icj −
hN

2
(1.72)

where the appropriate boundary conditions must be taken into account.
The next step is to move into Fourier space. Let's de�ne 1

cj =
ei
π
4

√
N

∑
k

eikjck ck =
e−i

π
4

√
N

N∑
j=1

e−ikjcj (1.73)

where k = 2πq/N and, taking into account the conditions (1.71),q =
1

2
,
3

2
, ....., N − 1

2
for eiπN = 1 (even particle number)

q = 0, 1, ....., N − 1 for eiπN = −1 (odd particle number)

(1.74a)

(1.74b)

The Hamiltonian in Fourier space becomes 2

H =
∑
k

[(h− cos k)c†kck +
γ

2
sin k(ckc−k + c†−kc

†
k)]−

hN

2
(1.76)

In matrix form, we can write

H =
1

2

∑
k

(
c†k c−k

)(h− cos k −γ sin k
−γ sin k cos k − h

)(
ck
c†−k

)
(1.77)

The Hamiltonian can be diagonalized through the Bogoliubov transformation(
ck
c†−k

)
=

(
cos θk sin θk
− sin θk cos θk

)(
ηk
η†−k

)
(1.78)

1The anticommutation relations in real space {cj , c†l } = δj,l imply that in momentum space {cq, c†k} = δq,k
[12].

2The following relation has been used

1

N

∑
i

ei(k−k
′)i = δkk′ (1.75)
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Then
ηk = cos θkck − sin θkc

†
−k η†−k = sin θkck + cos θkc

†
−k (1.79)

The Bogoliubov angle θk is de�ned by

θk =
1

2
arctan

(
γ sin k

h− cos k

)
(1.80)

In terms of the Bogoliubov quasi-particles the Hamiltonian describes free fermions

H =
∑
k

[Λk(η
†
kηk −

1

2
)] (1.81)

where

Λk =

√
(h− cos k)2 + γ2 sin2 k (1.82)

Since the spectrum is always positive one obtains that the previous rotation is correct only if
h− cos k > 0; if h− cos k < 0 then ηk and η

†
k must be exchanged.

Even particle number

The ground state of the model in this sector is de�ned by

ηk|GS〉+ = 0 k =
2πq

N
, q =

1

2
, ..., N − 1

2
(1.83)

and is empty of quasi-particles. Instead the vacuum state is de�ned by

ck|0〉 = 0 ∀k (1.84)

Imposing (1.83) one obtains [12] the ground state in terms of physical fermions

|GS〉+ =

[(N−1)/2]∏
q=0

(cos θk
q+1

2

+ sin θk
q+1

2

c†k
q+1

2

c†k−q− 1
2

)|0〉 (1.85)

where [x] is the integer part of x. The ground state energy is [12]

E+
0 = −1

2

N−1∑
q=0

Λk
q+1

2

(1.86)

In this sector the Hilbert space is generated by applying the creations operators η†q in pairs to
the ground state (in this sector the states have an even excitations number).
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Odd particle number

The state of no quasi-particle excitations is de�ned as

ηk|GS〉− = 0 k =
2πq

N
, q = 0, ..., N − 1 (1.87)

and its energy is

E−0 = −1

2

N−1∑
q=0

Λkq (1.88)

This state is not allowed by the conditions of odd excitations. The lowest energy state in this
sector is

|GS′〉− = c†0

[N/2]∏
q=1

(cos θkq + sin θkqc
†
kq
c†k−q)|0〉 (1.89)

where [x] is the integer part of x.

Partition function

The partition function is

Z = 2N−1
N−1∏
q=0

cosh

[
β

2
Λk

q+1
2

]{
1 +

N−1∏
q=0

tanh

[
β

2
Λk

q+1
2

]}

+ 2N−1
N−1∏
q=0

cosh

[
β

2
Λkq

]{
1−

N−1∏
q=0

tanh

[
β

2
Λkq

]}
(1.90)

In the thermodynamic limit, the free energy per site is

F ≡ − 1

β
lim
N→∞

1

N
lnZ = − 1

β
ln 2− 1

2πβ

∫ 2π

0
ln cosh

[
β

2
ε(ω)

]
dω (1.91)

where the terms containing the hyperbolic tangent, being bounded, have been neglected in the
thermodynamic limit.

1.5 The Kitaev model

One of the main problems in implementing quantum computers is the decoherence of the quan-
tum systems. Kitaev in his paper [21] proposed a relatively simple theoretical one-dimensional
quantum system ("quantum wire") which should avoid this problem or, at least, act as a reliable
quantum memory. In general, quantum states are sensitive to two kinds of errors. The �rst
one is the classical error represented by an operator σxj which �ips the j-th qubit changing |0〉
to |1〉 and viceversa. The second one is the phase error σzj which changes the sign of all states
with the j-th qubit equal to 1 relative to the states with the j-th qubit equal to 0. Classical
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errors can be avoided by taking as qubit a site that can be either empty or occupied by an
electron (the spin degree of freedom is neglected). In this way, single classical errors become
impossible because the electric charge must be conserved. Even in superconducting systems,
single classical errors can never occur because the fermionic parity (i.e. the electric charge
modulo 2) must be conserved. It's important to notice that two classical errors can still happen
at two sites simultaneously. This situation can be avoided by providing a medium between dif-
ferent fermionic sites with an energy gap in the excitation spectrum in order to avoid a strong
interaction between them. However, this method does not protect from phase errors which are
described within the context of fermionic chains by the number operator c†jcj . The situation can
be improved by employing Majorana fermions which are de�ned as the real and the imaginary
part of the fermionic operators ci

3

m2j−1 = ei
φ
2 cj + e−i

φ
2 c†j m2j = ie−i

φ
2 c†j − ie

iφ
2 cj (1.92)

The 2N operators m2j ,m2j−1 are called Majorana fermions because they satisfy the relations

m2j = m†2j m2j−1 = m†2j−1 (1.93)

and so they are their own antiparticles. They satisfy

{mi,mj} = 2δij (1.94)

The last anticommutation relation is substantially di�erent from the standard fermionic ones.
Indeed equation (1.94) implies that m2

i = m†2i = 1.This means that there is no Pauli exclusion
principle for Majorana fermions. Indeed, acting twice with mj gives us back the same state. In
fact, it is not even possible to speak about the occupancy number of a Majorana mode because
the standard construction m†imi = 1 is trivial and then counting doesn't make any sense [25].

Inverting (1.92) one obtains that the number operator becomes c†jcj = 1
2(1 + 2m2j−1m2j) and

so the phase error would require interaction between two di�erent Majorana sites which could
be avoided. Therefore, in theory, a Majorana site is immune to any kind of error.
Unfortunately, Majorana fermions are not readily available in solid-state systems. Kitaev [21]
proposed a toy model model which gives rise to Majorana fermions as e�ective low-energy
degrees of freedom. This phenomenon can occur only if superconductive systems are considered
[21].
The Kitaev model is a topological superconductor that belongs to the symmetry class BDI (see
Section 1.3). However, for the topological properties that we explore below, only the charge
conjugation symmetry is crucial [5].
The Hamiltonian is

H =
∑
j

[−t(c†jcj+1 + c†j+1cj)− µ(c†jcj −
1

2
) + ∆cjcj+1 + ∆∗c†j+1c

†
j ] (1.95)

where t is the real hopping amplitude, µ is the chemical potential and ∆ = |∆|eiφ is the complex
induced superconductive gap. The previous Hamiltonian (for ∆ real) coincides with that of the
XY model after the Jordan-Wigner transformation if t = 1/2, ∆ = γ/2 and µ = −h.

3the phase φ is not strictly necessary in the present discussion but has been inserted for compatibility with
the following treatment.
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Figure 1.6: A picture of the two special cases. In the case 1 the model is in the trivial phase. In the case 2
the system is in the topological region and there are two unpaired Majorana fermions at the boundary.

1.5.1 Phases of the Kitaev chain

Inverting (1.92) one �nds

cj =
e−i

φ
2

2
(m2j−1 + im2j) c†j =

ei
φ
2

2
(m2j−1 − im2j) (1.96)

Then, the Hamiltonian (1.95) in terms of Majorana fermions reads

H =
i

2

∑
j

[−µm2j−1m2j + (|∆|+ t)m2jm2j+1 + (|∆| − t)m2j−1m2j+2] (1.97)

where only the imaginary terms appear because the Hamiltonian must be Hermitian. In order
to fully characterize the phases of the model let's consider the two special cases by imposing
also OBCs:

1. |∆| = t = 0, µ < 0. Then H = −µ
∑N

j=1(c†jcj−
1
2) = − iµ

2

∑N
j=1m2j−1m2j . The Majorana

operators m2j−1,m2j from the same site j are paired together to form a ground state with
zero occupation number, as shown in Fig. 1.6, Case 1. Therefore in this case the system
is in the trivial phase.

2. |∆| = t > 0 and µ = 0. The Hamiltonian becomes

H = it

N−1∑
j=1

m2jm2j+1 (1.98)
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The Majorana operators m2jm2j+1 from di�erent sites are paired together, as shown in
Fig. 1.6, Case 2. The operators m1,mN don't appear in the Hamiltonian so they can
be collected in a non-local Dirac fermion c̃0 = 1

2(m1 + im2N ) which can be populated
without a�ecting the energy of the state. These Majorana fermions are called edge states
because they're localized at the beginning or at the end of the chain. Thus, in this case,
the edge state is also a zero mode. If one de�nes the operators c̃j = 1

2(m2j + im2j+1) and

c̃†j = 1
2(m2j − im2j+1), the Hamiltonian becomes H = 2t

∑N−1
j=1 (c̃†j c̃j −

1
2). There are two

ground states |ψi〉 de�ned by the condition c̃j |ψi〉 = 0 for j = 1, ...N − 1 with opposite
parity (see the following discussion).

Parity operator In general, the parity operator measures if the number of occupied
states, in this case the number of spinless fermions, is even or odd. It is usually de�ned
as

P =
∏
j

(1− 2c†jcj) =
∏
j

(−im2j−1m2j) (1.99)

where the multiplication is over all the sites of the chain. Given the fact that the only
eigenvalues of c†jcj are 0 (empty j-th state) and 1 (occupied j-th state) then the parity
operator can only take the following values:

P =

{
1 even number of fermions

0 odd number of fermions
(1.100)

In the previous case the parity operator can be written as

P =
N−1∏
j=0

(1− 2c̃†j c̃j) =

N−1∏
j=1

(−im2j−1m2j)

 (−im1m2N ) (1.101)

The �rst ground state |ψ0〉 can be de�ned as the one with no c̃j particles where j = 0, ..., N ;

the second one host instead a zero-energy fermion |ψ1〉 = c̃†0|ψ0〉. From (1.101){
P |ψ0〉 = |ψ0〉
P |ψ1〉 = (1− 2c̃†0c̃0)|ψ1〉 = −|ψ1〉

(1.102)

Then |ψ0〉 has even fermionic parity while |ψ1〉 has an odd parity. The degeneracy of the
ground state is a sign of the presence of edge modes and of a topological phase. Therefore,
for this particular values of the parameters, the system is in the topological region.

The bulk spectrum can be obtained by imposing PBCs and performing a Fourier transform
followed by a Bogoliubov transformation in a similar way of what done in the previous section.
The energy eigenvalues are:

Λk = ±
√

(2t cos k + µ)2 + 4|∆|2 sin2 k − π ≤ k ≤ π (1.103)
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Then, the gap closes for 2|t| = |µ| at k = ±π. Thus, we expect that the topological phase occurs
at 2|t| < |µ| while the trivial phase occupies the domain 2|t| > |µ| (|∆| 6= 0). To verify the
conjecture one has to �nd the boundary modes. The edge states survive in the whole ordered
phase, although the other terms of the Hamiltonian hybridize them so that they acquire a tail
protruding inside the chain [21](see the following discussion and chapters 3 and 4). In the
thermodynamic limit the zero-modes read [21]{

b′ =
∑

j(α
′
+x

j
+ + α′−x

j
−)m2j−1

b′′ =
∑

j(α
′′
+x
−j
+ + α′′−x

−j
− )m2j

x± =
−µ±

√
µ2 − 4t2 + 4|∆|2

2(t+ |∆|)
(1.104)

The coe�cients α′±, α
′′
± take di�erent values for the two phases:

1. If |µ| > 2|t|, only one of the coe�cients α′+, α
′
− (or α′′+, α

′′
−) is non vanishing. This makes

it impossible to satisfy some boundary conditions and then the zero-modes cannot exist
[21].

2. If |µ| < 2|t| instead the boundary conditions are satis�ed and thus the Majorana fermions
exist in the whole topological region. In particular if |µ| < 2t (|x+|, |x−| < 1) the Majorana
fermions b′ and b′′ are localized at the beginning and at the end of the chain, respectively.
On the other hand, if |µ| < −2t (|x+|, |x−| > 1) the positions of b′ and b′′ are exchanged.

In the following the Majorana modes localized at the beginning and at the end of the chain will
be called ψL and ψR, respectively. The previous linear combinations of Majorana fermions can
be collected in a zero energy non-local Dirac fermion Ψ by taking Ψ = ψL+ψR

2 . However, the
formulas (1.104) are valid only in the thermodynamic limit and in order to �nd the analytical
solutions for �nite chain length N a di�erent approach must be adopted. For �nite systems,
the boundary state energy is not exactly zero and so, in this situation, the degeneracy of the
system is split. In chapter 3 and 4 we will provide explicit solutions also for �nite N .
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Chapter 2

Diagonalization of a complex fermionic

quadratic Hamiltonian

In the previous chapter the Kiteav model which, as already discussed, is equivalent to the
XY model after the Jordan-Wigner transformation has been diagonalized only in the case of
real coe�cients and periodic boundary conditions. The goal of the next chapters will be to
diagonalize it for complex parameters and a more general class of boundary conditions by
analyzing the behavior of the energy spectrum and of the eigenstates of the Hamiltonian. In
particular, the structure of the boundary states for di�erent values of the model parameters
and for generic boundary conditions will be discussed.
We will consider the following Hamiltonian:

H =
N−1∑
j=1

[
−tc†jcj+1 − t∗c†j+1cj − µc

†
jcj + ∆c†jc

†
j+1 + ∆∗cj+1cj

+ x(−tc†Nc1 − t∗c†1cN + ∆c†Nc
†
1 + ∆∗c1cN )

]
(2.1)

where t = |t|eiθ is the complex hopping parameter, ∆ = |∆|eiφ is the complex superconductive
gap.
The second line of eq.(2.1) represents the hopping and the interaction between the �rst and last
site of the chain, thus incorporating the boundary conditions: we choose the parameter x to
vary in the interval [0, 1] so to interpolate between OBCs for x = 0 and PBCs for x = 1.
The �rst line of eq.(2.1) is the most general (translational invariant) quadratic BCS-like Hamil-
tonian that we can write by assuming that the fermions may also interact with an external
magnetic potential. In this case, the superconducting gap is complex, while, the action of the
magnetic �eld on the fermions, can be treated by considering that they acquire a phase each
time they jump from one site to the neighboring one. This is just the Ahranov-Bohm e�ect in
a discrete lattice.
The superconductive gap ∆ breaks the U(1) global symmetry of the model into the Z2 sym-
metry. Thus, the phase in ∆ doesn't a�ect the spectrum as we see by performing the global
gauge U(1) transformation cj → eiφ/2cj on the Hamiltonian. However, as we will see in the
next chapters, the wavefunctions, and in particular the ground state, depend on the phase of
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the superconductive gap.
The goal of this chapter is to extend what was done in the previous chapters for fermions that
interact through a quadratic potential to the complex case and generic boundary conditions. As
seen in the previous chapter, Fourier transform is a useful tool to diagonalize the Hamiltonian
with PBCs: this is so because in this case, plane waves are in the domain of the Hamiltonian
and indeed allow to write down the set of all eigenstates, which yields an orthonormal basis for
the Hilbert space, after a Bogoliubov transformation. For more general BCs, it may happen
that plane waves do not provide the complete set of eigenstates, as it may occur, for example,
when there are bound states or edge states [21].
Starting from the Hamiltonian it is possible to diagonalize a complex quadratic fermionic model
without using the Fourier and the Bogoliubov transformations in at least two di�erent ways
which will be described along with this chapter.
In the �rst section we will present an algebraic diagonalization method [28] while in the second
one we discuss the complex extension of the Lieb, Schultz and Mattis procedure [26]. These
two methods will allow us to calculate the energy eigenvalues of the system and the pro�le of
the eigenstate wavefunctions in the real space. They don't show a manifest dependency on the
chosen BCs of the system and thus they can capture the energy levels that live outside the bulk
band and can be used to investigate possible edge modes.

2.1 Algebraic diagonalization

In this section we discuss an algebraic method for diagonalizing a fermionic quadratic Hamil-
tonian [28] using, for compatibility with the next section of the chapter, the notation adopted
by Lieb, Schultz and Mattis [26]. A generic complex quadratic Hamiltonian can be written as

H =
N∑

i,j=1

[c†iAijcj +
1

2
(c†iBijc

†
j − ciB

∗
ijcj)] (2.2)

The Hermicity of the Hamiltonian requires that A is a Hermitian matrix, while the anticom-
mutation rules among the ci's require that B is an antisymmetric matrix. Namely

Aij = A∗ji Bij = −Bji (2.3)

Let's introduce the Nambu spinor

(
c

(c†)T

)
≡



c1
...
cN
c†1
...

c†N


(2.4)
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where T denotes the transpose.
The Hamiltonian can be written in matrix from as

H =
1

2

(
c† cT

)
T

(
c

(c†)T

)
+

1

2

∑
i

Aii (2.5)

where we have introduced the Hermitian matrix

T ≡
(

A B
−B∗ −A∗

)
(2.6)

The last additive constant in (2.5) is due to the fermionic commutation relation {c†i , cj} = δij .
The matrix T , being Hermitian, has real eigenvalues and can be diagonalized by a unitary
matrix U such that U † = U−1.
The spectrum of T is symmetric, i.e. for any eigenstate with eigenvalue λ there is another
eigenstate with eigenvalue −λ.
Therefore the diagonalized Hamiltonian has the following structure

H =
1

2

(
η† ηT

)
D

(
η

(η†)T

)
+

1

2

∑
i

Aii =

=
∑
k

Λkη
†
kηk +

1

2
(
∑
i

Aii −
∑
k

Λk) Λk > 0 k = 1, ...., N (2.7)

where

D ≡ U−1TU =


Λ1

. . .
ΛN
−Λ1

. . .
−ΛN

 , U−1 =



~g T1
~hT1

...
...

~g TN
~hTN

~h∗T1 ~g ∗T1
...

...
~h∗TN ~g ∗TN


(2.8)

and (
η

(η†)T

)
= U−1

(
c

(c†)T

)
(2.9)

The N -dimensional vectors ~gk,~hk have in general complex coe�cients and are de�ned up to a
phase that doesn't change the product η†kηk.
We recall that the matrix U is built by putting the eigenvectors of T in column. Thus, the
eigenvalue equation gives {

A~g ∗k +B~h ∗k = Λk~g
∗
k

−B∗~g ∗k −A∗~h∗k = Λk~h
∗
k

(2.10)

or {
A∗~gk +B∗~hk = Λk~gk

−A~hk −B~gk = Λk~hk
(2.11)
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These equations represent the generalization of the so-called Lieb-Schultz-Mattis conditions [26]
to the complex case, as we will see in the next section. From the relation U−1U = U †U = 1

the following relations can be derived∑
i

[g∗kigk′i + h∗kihk′i] = δkk′ (2.12)∑
i

[gkihk′i + hkigk′i] = 0 (2.13)

Here gki and hki denote the i-component of the vectors ~gk and ~hk, respectively. Likewise, from
UU−1 = 1, we get ∑

k

[gkig
∗
kj + h∗kihkj ] = δij (2.14)∑

k

[h∗kigkj + gkih
∗
kj ] = 0 (2.15)

If the Hamiltonian is real the matrix T is symmetric and then it can be diagonalized through an
orthogonal matrix U such that UT = U−1. Moreover the coe�cients ~gk and ~hk can be chosen
real because T is real. From the relation U−1U = UTU = 1 we obtain∑

i

[gkigk′i + hkihk′i] = δkk′ (2.16)∑
i

[gkihk′i + hkigk′i] = 0 (2.17)

and from UUT = 1, we get ∑
k

[gkigkj + hkihkj ] = δij (2.18)∑
k

[hkigkj + gkihkj ] = 0 (2.19)

Therefore the coe�cients ~gk and ~hk, which can be read out from the matrix U , and the energy
eigenvalues can be found numerically by diagonalizing the matrix T .

2.2 Lieb-Schultz-Mattis method

Lieb, Schultz and Mattis proposed in their paper [26] another method to obtain the equations
(2.11) in the real case. They presented also a procedure for decoupling them by obtaining an
eigenvalue equation from which the eigenvalues can be found. The goal of the next section will
be extending it to complex coe�cients.
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2.2.1 Lieb-Schultz-Mattis method in the complex case

Let's start again from the Hamitonian (2.5). We search for a linear transformation of the form
(2.20)

ηk =
N∑
i=1

[gkici + hkic
†
i ] η†k =

N∑
i=1

[g∗kic
†
i + h∗kici] (2.20)

which is canonical and which gives for H the form

H =
N∑
k=1

Λkη
†
kηk + constant (2.21)

The transformation (2.20) must be canonical to preserve the fermionic commutation relations

{ηk, η†k′} = δk,k′ , {ηk, ηk′} = 0. This allows us to obtain some constraints on the coe�cients gki
and hki

{ηk, η†k′} =
∑
i

[gkig
∗
k′i + hkih

∗
k′i] = δk,k′ (2.22)

and

{ηk, ηk′} =
∑
i

[gkihk′i + hkigk′i] = 0 (2.23)

These relations coincide with (2.12) and (2.13). The constant in H can be determined from the
invariance of TrH under the canonical transformation. From (2.5) one has

Tr[H] = 2N−1
∑
i

Aii (2.24)

while, from (2.21), one obtains

Tr[H] = 2N−1
∑
k

Λk + 2N · constant (2.25)

The constant is thus

constant =
1

2
(
∑
i

Aii −
∑
k

Λk) (2.26)

A less trivial task is to determine the coe�cients gki and hki. Let's start from (2.21) and
consider the following commutator 1

[ηk, H] = [ηk,
∑
k′

Λk′η
†
k′ηk′ + constant] = Λkηk (2.28)

1If A,B,C are three operators the following relation holds

[AB,C] = {A,B}C −B{A,C} (2.27)
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Using the de�nitions (2.20), we �nd

[ηk, H] =
∑
il

[(gkiAil − hkiB∗il) cl + (−hkiAli + gkiBil) c
†
l ]

=Λk
∑
l

[gklcl + hklc
†
l ] (2.29)

Therefore the coe�cients gkl and hkl must satisfy{
Λkgkl =

∑
i(gkiAil − hkiB∗il)

Λkhkl =
∑

i(−hkiAli + gkiBil)
(2.30)

In vector notation, the previous relation can be written as{
A∗~gk +B∗~hk = Λk~gk

−A~hk −B~gk = Λk~hk
(2.31)

Here ~gk and ~hk denote the N -dimensional vectors with components gkl and hkl, respectively.
In matrix form, if k is �xed, equations (2.31) become(

A∗ B∗

−B −A

)(
g
h

)
= Λ

(
g
h

)
(2.32)

where we have used the shorthands ~gk ≡ g and ~hk ≡ h.
In particular we have {

A∗g +B∗h = Λg

B∗g∗ +A∗h∗ = −Λh∗
(2.33)

The last two equations can be decoupled to obtain an eigenvalue equation from which the
spectrum of the Hamiltonian can be found. Taking the sum and the di�erence of the two
previous equations {

A∗(g + h∗) +B∗(h+ g∗) = Λ(g − h∗)
A∗(g − h∗) +B∗(h− g∗) = Λ(g + h∗)

(2.34)

and de�ning the new variables

z = g + h∗ w = g − h∗ (2.35)

the following equations hold {
A∗z +B∗z∗ = Λw

A∗w −B∗w∗ = Λz
(2.36)

Splitting the real and the imaginary part

A = AR + iAI B = BR + iBI z = zR + izI w = wR + iwI (2.37)
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where
ATR = AR ATI = −AI BT

R = −BR BT
I = −BI (2.38)

the equations (2.36) can be written as{
(AR − iAI)(zR + izI) + (BR − iBI)(zR − izI) = Λ(wR + iwI)

(AR − iAI)(wR + iwI)− (BR − iBI)(wR − iwI) = Λ(zR + izI)
(2.39)

Separating the real and the imaginary part, we obtain(
AR +BR AI −BI
−AI −BI AR −BR

)(
zR
zI

)
= Λ

(
wR
wI

)
(2.40)

(
AR −BR AI +BI
−AI +BI AR +BR

)(
wR
wI

)
= Λ

(
zR
zI

)
(2.41)

De�ning

M ≡
(
AR +BR AI −BI
−AI −BI AR −BR

)
(2.42)

(2.40) and (2.41) become

M
(
zR
zI

)
= Λ

(
wR
wI

)
MT

(
wR
wI

)
= Λ

(
zR
zI

)
(2.43)

These relations can be decoupled into the following eigenvalue equations

W
(
zR
zI

)
= Λ2

(
zR
zI

)
V
(
wR
wI

)
= Λ2

(
wR
wI

)
(2.44)

where

W ≡MTM =

(
AR −BR AI +BI
−AI +BI AR +BR

)(
AR +BR AI −BI
−AI −BI AR −BR

)
=

(
M11 M12

M21 M22

)
(2.45)

with

M11 = (AR −BR)(AR +BR) + (AI +BI)(−AI −BI)
M12 = (AR −BR)(AI −BI) + (AI +BI)(AR −BR)

M21 = (−AI +BI)(AR +BR) + (AR +BR)(−AI −BI)
M22 = (−AI +BI)(AI −BI) + (AR +BR)(AR −BR) (2.46)

and V ≡MMT . Since the matrix W is symmetric, the block componentsMij satisfy

MT
11 =M11 MT

22 =M22 MT
12 =M21 (2.47)
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The real case can be obtained by simply putting AI = BI = 0. In this case the coe�cients g
and h are real and, using that zI = wI = 0, equations (2.44) in vector notation are reduced to

W~φk = Λ2
k
~φk (2.48)

V ~ψk = Λ2
k
~ψk (2.49)

whereW ≡ (A−B)(A+B), V ≡ (A+B)(A−B), ~φk ≡ ~gk+~hk and ~ψk ≡ ~gk−~hk. These are the
LSM equations �rst obtained by Lieb, Schultz and Mattis in their article [26]. The eigenvalues
can be found by diagonalizing the matrix W and W in the complex and in the real case,
respectively. In the complex case, the relations between g and h and the LSM eigenfunctions z
and w are (for k �xed)

g =
1

2
(z + w) h =

1

2
(z − w)∗ (2.50)

In the real case they read (restoring the vector notation)

~gk =
1

2
(~φk + ~ψk) ~hk =

1

2
(~φk − ~ψk) (2.51)

The coe�cients gki and hki give the pro�le of the wavefunction in the real space (see equation
(2.20)).
Therefore, once the analytical expressions of the normalized LSM eigenfunctions z and w (or,
in the real case, ~φk and ~ψk) are known, the coe�cients ~gk and ~hk can be easily obtained by
simply adding or subtracting them. The next chapters will aim to �nd the LSM eigenfunctions
z and w (or ~φk and ~ψk).
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Chapter 3

Perturbation theory for the analytical

solutions of the LSM equations for the

�nite Kitaev chain

In principle, the LSM equations (2.44) can be solved analytically to �nd the energy spectrum
and the eigenstates of the original Hamiltonian. In this chapter, we discuss the solution of the
real Kitaev model where the matrix to be diagonalized can be decomposed in an unperturbed
symmetric Toeplitz one, whose eigensystem is known, plus a perturbation for which the e�ects
are evaluated.
Firstly Golub [14] provided a general method to �nd the eigenvalues and the eigenfunctions of a
perturbed symmetric matrix starting from the knowledge of the eigensystem of the unperturbed
matrix. Subsequently Bunch et al. [8] improved this treatment including the explicit computa-
tion of the updated eigenvectors. In the �rst part of this chapter we present a slightly di�erent
version compared to the one developed in [8] which can be applied to every symmetric matrix.
In the second part of the chapter, we will apply the general method to the Kitaev chain.

3.1 A general perturbation method

We suppose that V is a N × N real symmetric matrix for which the eigensystem problem is
known. We assume that

V = QDQT (3.1)

where D ∈ RN×N is diagonal and QT = Q−1. In the following discussion we will consider only
the rank-one perturbation case for which the perturbed matrix is de�ned as

Ṽ = V + σuvT (3.2)

where u and v are two vectors that, unlike what was done in [8], may be di�erent. Here σ ∈ R
is the coe�cient of the perturbation.
The matrix Ṽ can be rewritten as

Ṽ = Q(D + σzwT )QT Qz = u Qw = v (3.3)
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and therefore the problem is reduced to �nding the eigenvalues of

C = D + σzwT (3.4)

Using that det(1 + xyT ) = 1 + yTx, the secular equation can be written as

det(D + σzwT − d̃k1) =

det((D − d̃k1)(1 + (D − d̃k1)−1σzwT ) =

(
N∏
i=1

(di − d̃k))

(
1 + σ

N∑
i=1

wizi

di − d̃k

)
= 0 (3.5)

where d̃k with k = 1, ..., N are the eigenvalues of the matrix C and zi and wi are respectively
the components of the vector z and w.
Thus, the perturbed eigenvalues d̃k solve the transcendental equation

1 + σ

N∑
i=1

wizi

di − d̃k
= 0 (3.6)

The previous equation is valid for every value of the coe�cient σ. The perturbed eigenvectors
q̃k are, by de�nition, the solution of

Ṽ q̃k − d̃kq̃k = 0 (3.7)

where d̃k are the perturbed eigenvalues. The previous equation can be rewritten as

(QDQT + σuvT )q̃k − d̃kq̃k = 0 (3.8)

Then
(Dk + σzwT )xk = 0 (3.9)

where xk = QT q̃k and Dk = D − d̃k1. The solution of (3.9) is [8]

xk = θD−1
k z (3.10)

where θ is an arbitrary normalization constant. Therefore the normalized eigenvectors q̃k read

q̃k =
QD−1

k z

‖D−1
k z‖

(3.11)

If the rank of the perturbation is greater than one, the more complicated multiple rank pertur-
bation theory must be implemented. Nevertheless, it is still possible to obtain an approximate
formula in order to �nd the perturbed eigenvalues by decomposing the multiple rank perturba-
tion into a sum of rank-one ones. Let's de�ne

Ṽ = V +

l∑
j=1

σjujv
T
j (3.12)
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where l is the number of rank-one perturbation terms. Repeating the same steps and taking
into account that det(1 + X) ≈ 1 + tr(X) for X � 1, the following approximate formula can
be obtained

1 +
l∑

j=1

N∑
i=1

σj
zijwij

di − d̃k
= 0 (3.13)

where zij and wij denote the i-component of the vectors zj = QTuj and wj = QT vj , respectively.
This expression is valid as long as σj � 1 for j = 1, ..., l.

3.2 Application to the Kitaev model

In this section we will apply the previous method to the real case t = ∆ with generic BCs (see
eq.(2.1)). The explicit form of the LSM matrices A and B of the Kitaev model is

A =



−µ −t −xt

−t −µ . . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . −µ −t

−xt −t −µ


B =



0 ∆ −x∆

−∆ 0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . 0 ∆
x∆ −∆ 0


(3.14)

where t and ∆ are real parameters.
They are Toeplitz matrices, i.e. matrices in which each descending diagonal from left to right
is constant [15]. From the explicit forms of the matrices W and V in (2.48) and (2.49) it can
be shown that φkj and ψkj di�er only by the vector index exchange j → N − j + 1. Therefore
in the following only the matrix W will be considered. Set Ṽ ≡W where if t = ∆

W =



a b d

b a
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . a b
d b a+ c


(3.15)

having set 
a = 4t2 + µ2

b = 2tµ

c = 4t2(x2 − 1)

d = 2xtµ

(3.16)
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In general, the previous matrix is not even Toeplitz and therefore di�cult to diagonalize. Nev-
ertheless, W can be seen as an unperturbed matrix

Wu =



a b

b a
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . a b
b a


(3.17)

plus three rank-one perturbation terms.
The unperturbed matrix Wu ≡ 4t2 + µ2 + 2tµW̃u is a standard tridiagonal Toeplitz matrix for
which the eigensystem is known [29]. The solution can be found through an ansatz of the form
φqj = αeiqj + βe−iqj .
The term proportional to the identity matrix gives only an additive contribution to the eigen-
values Λ2

q of Wu.
Then, let's consider �rst the Toeplitz matrix

W̃u =



0 1

1 0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . 0 1
1 0


(3.18)

From the eigenvalue equation W̃uφqj = λ2
qφqj we obtain the following system

φq(j−1) + φq(j+1) = λ2
qφqj j = 2, · · · , N − 1

φq2 = λ2
qφq1

φq(N−1) = λ2
qφqN

(3.19)

The �rst equation is the bulk condition and the last two are the boundary conditions from
which the relation between the coe�cients α and β of the eigenvector φqj and the allowed q can
be found.
From the bulk relation we obtain that λ2

q = 2 cos q.
Using the second equation of (3.19), some long but straightforward algebra shows that α = −β.
The last boundary condition in (3.19) �xes the allowed values of q. Namely:

q =
π

N + 1
i i = 1, ...., N (3.20)

Thus, the real unperturbed normalized eigenfunctions are

φqj =

√
2

N + 1
sin qj q =

π

N + 1
i i = 1, ...., N (3.21)
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The diagonal contribution gives only an additive constant to the eigenvalues Λ2
q of Wu and so

Λ2
q = 4t2 + µ2 + 4tµ cos q q =

π

N + 1
i i = 1, ...., N (3.22)

We will now consider two di�erent cases.

1. Let's take into account the case with x = 0 and µ 6= 0 so the only perturbation term is
4t2(x2 − 1) and the perturbation vectors u and v are u = v = (0, 0, ··, 1). The matrix QT

can be built by putting the eigenvectors (3.21) of the unperturbed matrix in the rows.
Namely

QT =

√
2

N + 1


sin π

N+1 sin 2π
N+1 · · · sin Nπ

N+1

sin 2π
N+1 sin 4π

N+1 · · · sin 2Nπ
N+1

...
...

. . .
...

sin Nπ
N+1 sin 2Nπ

N+1 · · · sin N2π
N+1

 (3.23)

Using that

z = QTu =


sin Nπ

N+1

sin 2Nπ
N+1
...

sin N2π
N+1

 (3.24)

and applying (3.6), the following transcendental equation for the perturbed eigenvalues
Λ̃2
k can be derived

F (Λ̃2
k) = 1− 8t2

N + 1

N∑
i=1

sin2 Nπi
N+1

Λ2
qi − Λ̃2

k

= 0 (3.25)

Fig. 3.1-3.4 show the case x = 0 and µ 6= 0. The unperturbed eigenvalues Λ2
qi (3.22),

which are located inside the bulk spectrum (1.103), are represented in the graphs by the
vertical asymptotes (they are the poles of eq.(3.25)). The perturbation drags the �rst
energy level out of the bulk spectrum. Thus, the lowest energy state becomes a zero-
mode.
However, outside the topological phase, the zero-mode, as expected, enters the bulk band
becoming a bulk state.
Using (3.11), if x = 0, µ 6= 0 we obtain the perturbed eigenvectors which can be written
as (up to a normalization constant)

φ̃k =



∑N
i=1

[(
sin πi

N+1

)(
sin Nπi

N+1

)(
1

Λ2
qi
−Λ̃2

k

)]
∑N

i=1

[(
sin 2πi

N+1

)(
sin Nπi

N+1

)(
1

Λ2
qi
−Λ̃2

k

)]
...∑N

i=1

[(
sin Nπi

N+1

)2
(

1
Λ2
qi
−Λ̃2

k

)]


(3.26)
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Figure 3.1: Graph of the secular equation for N = 10, x = 0 and µ = 0.5. The second panel is a zoom of the
lowest eigenvalue.
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Figure 3.2: Graph of the secular equation for N = 10, x = 0 and µ = 1. The second panel is a zoom of the
lowest eigenvalue.
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Figure 3.3: Graph of the secular equation for N = 10, x = 0 and µ = 2. The second panel is a zoom of the
lowest eigenvalue.
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Figure 3.4: Graph of the secular equation for N = 10, x = 0 and µ = 2.5. The second panel is a zoom of the
lowest eigenvalue.
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Figure 3.5: The blue line and the red line represent the unperturbed (3.21) and perturbed eigenfunction (3.27)
of the �rst energy level for x = 0, µ = 0.1 and N = 30, respectively. Adding the perturbation, the eigenfunction
becomes peaked at the end of the chain.

where the Λ2
qi 's (3.22) are known exactly being the solution of the unperturbed problem.

In general, the zero-mode energy Λ̃2
k0

is exactly zero only in the thermodynamic limit.

However, for �nite chain length N and OBCs Λ̃2
k0
∼ 0 and equation (3.26) reduces to

φ̃k0 '



∑N
i=1

[(
sin πi

N+1

)(
sin Nπi

N+1

)
1

Λ2
qi

]
∑N

i=1

[(
sin 2πi

N+1

)(
sin Nπi

N+1

)
1

Λ2
qi

]
...∑N

i=1

[(
sin Nπi

N+1

)2
1

Λ2
qi

]


(3.27)

Given that the �rst components of the vectors are almost zero due to the destructive
interference in the summation, the zero-mode eigenvector φ̃k0 is peaked at the end of the
chain. The pro�le of the wavefunction is shown in Fig.(3.5)

2. Let's consider now the case with x 6= 0, µ 6= 0 where all the three perturbations must be
considered. Using (3.13) the transcendental equation reads

F (Λ̃2
k) = 1 +

8t2(x2 − 1)

N + 1

N∑
i=1

sin2 Nπi
N+1

Λ2
qi − Λ̃2

k

+
8txµ

N + 1

N∑
i=1

sin Nπi
N+1 sin πi

N+1

Λ2
qi − Λ̃2

k

= 0 (3.28)

The case x = 0.3, N = 10 is plotted in Fig. 3.6-3.9 for di�erent values of µ. We see
that if x 6= 0, the zero-mode acquires a mass becoming a Dirac mode. A Dirac mode is a
non-local and non-zero energy state located inside the gap whose eigenfunction is localized
at the edges [37]. In the region |µ| < 2, the energy of the massive mode increases as µ
increase. At the point µ = 2 the energy is almost zero. In the region |µ| > 2 the Dirac
mode enters the bulk band becoming a bulk state.

However the formula (3.28), unlike the exact formula (3.25), is valid as long as x and µ are
not so large that they cannot be treated as a perturbation. In order to �nd the exact explicit
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Figure 3.6: Graph of the transcendental equation for N = 10, x = 0.3 and µ = 0.5. The second panel is a
zoom of the lowest eigenvalue.
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Figure 3.7: Graph of the transcendental equation for N = 10, x = 0.3 and µ = 1. The second panel is a zoom
of the lowest eigenvalue.
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Figure 3.8: Graph of the transcendental equation for N = 10, x = 0.3 and µ = 2. The second panel is a zoom
of the lowest eigenvalue.
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Figure 3.9: Graph of the transcendental equation for N = 10, x = 0.3 and µ = 2.5. The second panel is a
zoom of the lowest eigenvalue.

56



expressions of the perturbed eigenvalues and eigenvectors, the more complicated multiple-rank
perturbation theory must be implemented [30]. Nevertheless, simpler solutions can be found
by directly diagonalizing the matrix W without using the perturbative approach. This analysis
will be carried out in the following chapter.
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Chapter 4

Ansatz approach to the analytical

solutions of the LSM equations for the

�nite Kitaev chain

In the previous chapter, we found the solutions of the LSM equation (2.48) for the �nite Kitaev
chain in the simplest cases by implementing the perturbation theory. However, to proceed
further and analyze the other cases, the more complicated multiple-rank perturbation theory
must be implemented [30]. This chapter aims to develop an equivalent approach which consists
in directly diagonalizing the matrix W (real case) or W (complex case) introduced in section
2.2 to �nd simpler expressions for the eigenvectors and the eigenvalues for all the values of the
model parameters.

4.1 Real case

According to the Lieb-Shultz-Mattis method the real case solutions ~φk satisfy the equation (2.48)
where A and B are given by eq.(3.14). Thanks to the translational invariance of the bulk, we
can suggest as ansatz for the solutions the superposition of the plane waves φkj = αeikj+βe−ikj .
Here the coe�cients α and β generally depend in the wavevector k. The bulk structure, i.e.
the central part, of the matrix W is Toeplitz and �xes the functional form of the eigenvalues.
The �rst and the last rows �x the coe�cients α and β and the allowed values of k.
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Let's de�ne the bulk matrix WB as the following pentadiagonal symmetric Toeplitz matrix:

WB =



. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

c b a b c
c b a b c

c b a b c
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .


(4.1)

Here 
a = 2(t2 + ∆2) + µ2

b = 2µt

c = t2 −∆2

(4.2)

This is exactly the bulk structure (for which 3 < j < N − 3 where j is the row index) of the
matrix W for every value of the parameters.
The eigenvalue equation yields

Λ2
k(αe

ikj + βe−ikj) =[(t2 −∆2)(ei2k + e−i2k) + 2tµ(eik + e−ik)

+ µ2 + 2(t2 + ∆2)](αeikj + βe−ikj) (4.3)

which correspond to the eigenvalues

Λ2
k = (2t cos k + µ)2 + 4∆2 sin2 k (4.4)

According to the Hermicity of the Hamiltonian the quadratic energy eigenvalues Λ2
k must be

real. We split the real and imaginary part of the momentum k = κ+ iη, so that

eik = λeiκ (4.5)

where λ = e−η ≥ 0. As a consequence we �nd

Λ2
k =t2((λ+ λ−1)2 cos2 κ− (λ− λ−1)2 sin2 κ) + 2tµ(λ+ λ−1) cosκ

+ µ2 −∆2((λ− λ−1)2 cos2 κ− (λ+ λ−1)2 sin2 κ)

+ 2i(λ− λ−1) sinκ((t2 −∆2)(λ+ λ−1) cosκ+ µt) (4.6)

Then, the Λ2
k vanish if at least one of the following three conditions hold:

1. (λ− λ−1) = 0

2. sinκ = 0
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3. (t2 −∆2)(λ+ λ−1) cosκ+ µt = 0

The �rst condition corresponds to scattering states and the last two conditions to the edge
states which, if they have zero energy, are also zero-modes. Let's examine each of them.

1. The �rst condition gives
λ = λ−1 → λ = 1→ eik = eiκ (4.7)

Using (4.7), (4.4) becomes

Λ2
k = (2t cosκ+ µ)2 + 4∆2 sin2 κ (4.8)

Maxima and minima of Λ2
k are the solutions of

∂Λ2
k

∂κ
= −4 sinκ[2 cosκ(t2 −∆2) + µt] = 0 (4.9)

In the interval [0, 2π], we have:

• sinκ = 0→ κ = 0, π In these points the energy is equal to

Λ2
k = (±2t+ µ)2 (4.10)

where the upper sign is valid if κ = 0 and the lower sign if κ = π.

• cosκ = − µt
2(t2−∆2)

. The energy is

Λ2
k = 4∆2 − µ2∆2

(t2 −∆2)
(4.11)

Then, because of | cosκ| ≤ 1 there are also two other stationary points in the interval
[0, 2π] if |µt| < |2(t2 −∆2)|

2. The second condition of reality gives

κ = 0, π → eik = ±e−η = ±λ (4.12)

Here the upper sign is valid if κ = 0 and the lower sign if κ = π.
The corresponding eigenvalues are:

Λ2
k = (2t cosh η ± µ)2 − 4∆2 sinh2 η (4.13)

3. On the other hand, if the third condition is valid

Λ2
k = (2t cos (κ+ iη) + µ)2 + 4∆2 sin2 (κ+ iη) (4.14)

In this situation κ and η are not independent. Explicitly, we �nd (if (t2 −∆2) cosκ 6= 0)

cosh η = − µt

2(t2 −∆2) cosκ
(4.15)

In the following subsections, we will examine the solutions in some typical cases.
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4.1.1 Case 1: t = ∆, x 6= 0, µ 6= 0

Let's consider the case t = ∆. The solutions ~φk must be the eigenfunctions of the matrix (3.15).
The eigenvalue equation gives

bφk(j−1) + aφkj + bφk(j+1) = Λ2
kφkj j = 2, · · · , N − 1

aφk1 + bφk2 + dφkN = Λ2
kφk1

dφk1 + bφN−1 + (a+ c)φkN = Λ2
kφkN

(4.16a)

(4.16b)

(4.16c)

The �rst equation is the bulk equation and the last two are the boundary equations. We can
now use eq.(4.16b) to �x, up to a normalization factor, the coe�cients α and β.
Some long but straightforward algebra shows that :

φkj = sin kj + ξ(k) cos kj (4.17)

where

ξ(k) ≡ d sin kN

b− d cos kN
(4.18)

The boundary equation (4.16c) gives

d(sin k + ξ(k) cos k) + b(sin k(N − 1) + ξ(k) cos k(N − 1))

+ c(sin kN + ξ(k) cos kN)

= 2b cos k(sin kN + ξ(k) cos kN) (4.19)

Solving numerically equation (4.19) it can be shown that there are N − 1 real independent
solutions (the two trivial solutions k = 0, k = π for which the eigenvector is null must be
discarded). The last boundary solution can be determined assuming that k is a complex number.
The eigenvalues (4.4) read

Λ2
k = 4t2 + µ2 + 4tµ cos k (4.20)

The boundary state exists only in the region |µ| < |2t|. From the explicit form of the eigenvalues
(4.20) it can be demonstrated that the edge states drop out form the scattering spectrum only
if κ = π for µt > 0 or κ = 0 for µt < 0, where, as usual, κ is the real part of the wavenumber
k. In these two cases the boundary states satisfy the condition 2 we have seen in the previous
subsection.
The analytical expression for the edge states can be written in terms of hyperbolic functions.
In particular, they can be obtained by substituting k = π + iη if µt > 0 or k = iη if µt < 0 in
(4.17).
In the trivial case µ = 0 the matrix (3.15) is diagonal with N − 1 eigenvalues equal to 4t2 and
one eigenvalue equal to 4t2 + 4t2(x2 − 1). For x = 0 the energy of the edge state is zero; for
x 6= 0 the mode acquires a mass until it reaches the rest of the bulk band for x = 1.
Solving numerically equation (4.19) it can be shown that the module of the imaginary part of
the complex solution increases when x decreases. Therefore, being the hyperbolic cosine the
derivative of the hyperbolic sine and vice versa, as x → 0 the function φk0j becomes more
peaked at the end of the chain.
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Figure 4.1: Energy levels for N = 50, t = ∆ = 1 as a function of µ for di�erent values of x. To obtain the
spectrum, we have numerically calculated the eigenvalues of the matrix W in (2.48). The red line shows that
for OBCs, in the topological region, at least in the thermodynamic, the ground state of the model is doubly
degenerate. If x 6= 0, the degeneracy is lifted.

The spectrum (4.4) can be easily calculated numerically by �nding the eigenvalues of the matrix
W .1

Fig. 4.1 shows the energy levels Λk as a function of µ for di�erent values of x in the case
t = ∆ = 1.
The red line shows the lowest one-particle excitation energy. For OBCs, in the region |µ| < 2|t|,
at least in thermodynamic limit, there is a zero one-particle excitation energy. Therefore the
ground state of the model is doubly degenerate. In fact, there are two distinct ground states
with opposite fermionic parity (see the discussion in Section 1.5). Nevertheless, for a �nite
chain length and out of the fully dimerized limit, this energy turns out to be slightly di�erent
from zero and therefore the ground state degeneracy is removed.
However, if x 6= 0 the degeneracy is lifted in the whole topological region for every value of N .
Indeed, in this situation, the massless edge state, which is present only if x = 0, acquires a mass
becoming a Dirac mode until it disappears in the bulk band for x = 1.

1The numerical analysis has been implemented via the software Wolfram Mathematica.
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4.1.2 Case 2: t = ∆, x = 0, µ 6= 0

In this situation the previous equations take a simpler form. From (4.17), setting d = 0, the
eigenvectors become, up to a normalization constant

φkj = sin kj (4.21)

and (4.19) can be written as

sin kN = − µ
2t

sin k(N + 1) (4.22)

For OBCs the analytical expression of the boundary states are relatively simple.
If µt > 0, setting k = π + iη, the zero-mode reads

φk0j = (−1)j sinh ηj (4.23)

where η is the solution of

sinh ηN =
µ

2t
sinh η(N + 1) (4.24)

Instead, if µt < 0, then k = iη, and the zero-mode can be written as

φk0j = sinh ηj (4.25)

where η solves

sinh ηN = − µ
2t

sinh η(N + 1) (4.26)

The two hyperbolic sines in (4.24) and (4.26) intersect in only two equivalent and opposite
points (the trivial point k = 0 must be discarded). Inverting (4.20)

k = arccos

(
Λ2
k − 4t2 − µ2

4tµ

)
(4.27)

The wavenumber of the zero-mode (Λ2
k0
∼ 0) is

k0 ∼ arccos

(
−4t2 + µ2

4tµ

)
(4.28)

We see that as µ→ 0 the module of argument of the arccosine increases and the eigenfunction
φk0j becomes more peaked at the end the chain.
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4.1.3 Case 3: t 6= ∆, x 6= 0, µ = 0

If t 6= ∆, x 6= 0, µ = 0 the explicit form of the matrix W is

W =



a+ d 0 e f 0

0 a 0
. . . f

e 0 a
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . a 0 e

f
. . . 0 a 0

0 f e 0 a+ c


(4.29)

having set 

a = 2t2 + 2∆2

c = (x2 − 1)(t+ ∆)2

d = (x2 − 1)(t−∆)2

e = t2 −∆2

f = t2x− x∆2

(4.30)

The eigenvalue equation gives

eφk(j−2) + aφkj + eφk(j+2) = Λ2
kφkj j = 3, · · · , N − 3

(a+ d)φk1 + eφk3 + fφk(N−1) = Λ2
kφk1

aφk2 + eφk4 + fφkN = Λ2
kφk2

fφk1 + eφk(N−3) + aφk(N−1) = Λ2
kφk(N−1)

fφk2 + eφk(N−2) + (a+ c)φkN = Λ2
kφkN

(4.31a)

(4.31b)

(4.31c)

(4.31d)

(4.31e)

In this case, we consider the following ansatz for the wavefunctions:

φkj = αeikj + βe−ikj + ρei(k+π)j + σe−i(k+π)j (4.32)

The form of the ansatz is slightly di�erent from the previous one, but it's still compatible with
the analysis done at the beginning of the chapter.
If N is even, the �rst set of solutions read

φkj = cos kj − (−1)j cos kj + ξ(k)(sin kj − (−1)j sin kj) (4.33)

where, using (4.31b),

ξ(k) ≡ −d cos k − e cos 3k − f cos k(N − 1) + 2e cos 2k cos k

d sin k + e sin 3k + f sin k(N − 1)− 2e cos 2k sin k
(4.34)
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The values of k can be found by replacing the previous ansatz in (4.31d). The second set of
solutions is

φkj = cos kj + (−1)j cos kj + ξ(k)(sin kj + (−1)j sin kj) (4.35)

where, using (4.31c),

ξ(k) ≡ −e cos 4k − f cos kN + 2e cos2 2k

e sin 4k + f sin kN − 2e cos 2k sin 2k
(4.36)

Then, solving numerically (4.31e) the second set of solutions is completely determined.
If N is odd the general ansatz is more complicated. Namely

φkj =(cos kj + (−1)j cos kj) + δ(sin kj + (−1)j sin kj)

+ τ(cos kj − (−1)j cos kj) + ω(sin kj − (−1)j sin kj) (4.37)

The coe�cients δ, τ, ω and the allowed values of k can be determined by solving numerically
(4.31b), (4.31c), (4.31d) and (4.31e) .
The eigenvalues (4.4) are

Λ2
k = 2t2 + 2∆2 + 2(t2 −∆2) cos 2k (4.38)

Thus, now the edge states drop out form the scattering spectrum only if κ = π/2 for |t| > |∆|
or κ = 0 for |t| < |∆|.
Both values of κ of the edge states are compatible with the analysis done at the beginning of
the chapter (see the conditions 2 and 3).
Also in this case an analytical expression for the edge states can be written in terms of hyperbolic
functions.
In particular, they can be obtained by substituting k = iη if |t| < |∆| or k = π/2+iη if |t| > |∆|
in (4.35) for N even and in (4.37) for N odd.
Fig. 4.2 and Fig. 4.3 show the energy levels Λk as a function of µ for di�erent values of x in the
cases t = 1,∆ = 2 and t = 2,∆ = 1. In the topological region, for OBCs, as in the case t = ∆,
at least in the thermodynamic, the ground state of the model is doubly degenerate. However,
if x 6= 0 the degeneracy is lifted.
Now if µ = 0 the levels are no longer degenerate at the point 2|∆| as in the case t = ∆.
Nonetheless, the topological transition is still at the point |µ| = 2|t| and the underlying physics
of the model is the same as the case t = ∆.

4.1.4 Case 4: t 6= ∆, x = 0, µ = 0

For OBCs the expressions of the previous subsection take a simpler form. The �rst set of
solution is

φkj = cos kj − (−1)j cos kj + ξ(k)(sin kj − (−1)j sin kj) (4.39)

where, using (4.31b),

ξ(k) ≡=
−d cos k − e cos 3k + 2e cos 2k cos k

d sin k + e sin 3k − 2e cos 2k sin k
(4.40)
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Figure 4.2: Energy levels for N = 50, t = 1,∆ = 2 as a function of µ for di�erent values of x. To obtain the
spectrum, we have numerically calculated the eigenvalues of the matrix W in (2.48). The red line shows that
for OBCs, in the topological region, at least in the thermodynamic, the ground state of the model is doubly
degenerate. The degeracy is lifted for x 6= 0.
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Figure 4.3: Energy levels for N = 50, t = 2,∆ = 1 as a function of µ for di�erent values of x. To obtain the
spectrum, we have numerically calculated the eigenvalues of the matrix W in (2.48). The red line shows that
for OBCs, in the topological region, at least in the thermodynamic, the ground state of the model is doubly
degenerate. The degeracy is lifted for x 6= 0.
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If N is even the values of k can be found by solving eq.(4.31d) which in this case reads

e[cos k(N − 3) + ξ(k) sin k(N − 3)]

= (2e cos 2k)[cos k(N − 1) + ξ(k) sin k(N − 1)] (4.41)

If N is odd eq.(4.31e) becomes

e[cos k(N − 2) + ξ(k) sin k(N − 2)] + c[cos kN + ξ(k) sin kN ]

= (2e cos 2k)[cos kN + ξ(k) sin kN ] (4.42)

The two previous equations give only N/2 independent solutions.
The second set of solutions is

φkj = sin kj + (−1)j sin kj (4.43)

The allowed values of k can be found by solving the following two equations. For N even,
eq.(4.31e) becomes

e sin k(N − 2) + c sin kN = 2e cos 2k sin kN (4.44)

Instead, if N is odd, eq.(4.31d) reads

e sin k(N − 3) = 2e cos 2k sin k(N − 1) (4.45)

The last two equations give the remaining N/2 solutions.
For OBCs the analytical expression of the boundary states are relatively simple.
Let's consider N even.
If |t| < |∆|, setting as usual k = iη, the functional form of the zero-mode reads

φk0j = sinh ηj + (−1)j sinh ηj (4.46)

where η is the solution of

e sinh η(N − 2) + c sinh ηN = 2e cosh 2η sinh ηN (4.47)

The solution φk0j in this case never changes the sign.
If |t| > |∆|

φk0j = (−1)
j
2 sinh ηj + (−1)

3j
2 sinh ηj (4.48)

where η solves
e sinh η(N − 2)− c sinh ηN = 2e cosh 2η sinh ηN (4.49)

Thus, when |t| > |∆| the solution φk0j take both positive and negative values.
Let's consider now N odd.
If |t| < |∆|

φk0j = cosh ηj − (−1)j cosh ηj + ζ(η)(sinh ηj − (−1)j sinh ηj) (4.50)

where

ζ(η) ≡ −d cosh η − e cosh 3η + 2e cosh 2η cosh η

d sinh η + e sinh 3η − 2e cosh 2η sinh η
(4.51)
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Here η is the solution of (4.42) with k = iη.
If |t| > |∆|

φk0j =(−1)
j−1
2 sinh ηj − (−1)

3j−1
2 sinh ηj

+ ζ(η)((−1)
j−1
2 cosh ηj − (−1)

3j−1
2 cosh ηj) (4.52)

where

ζ(η) ≡ −d sinh η + e sinh 3η − 2e cosh 2η sinh η

d cosh η − e cosh 3η + 2e cosh 2η cosh η
(4.53)

and η solves (4.42) with k = π/2 + iη.
Inverting (4.38)

k =
1

2
arccos

(
Λ2
k − 2(t2 + ∆2)

2(t2 −∆2)

)
(4.54)

The momentum of the zero-mode (Λ2
k0
∼ 0) is

k0 ∼
1

2
arccos

(
− t

2 + ∆2

t2 −∆2

)
(4.55)

If |t| → |∆| the module of argument increases and the eigenfunction φk0j becomes more peaked
at the end of the chain.

4.2 Majorana edge states in the Kitaev model for �nite chain

length

For OBCs, in the topological phase, as discussed in section 1.5 for the fully dimerized limit,
there are two Majorana edge states which are localized at the beginning and at the end of the
chain. It is thus possible to de�ne a complex fermion out of them which is an eigenstate of
the Hamiltonian and, at least in the thermodynamic limit, can be populated without a�ecting
the energy of the state. However, for �nite chain length, in general, this non-local fermion has
quasi-zero energy and thus the degeneracy in the spectrum (see Section 1.5) is split. Moreover,
as previously explained, if x 6= 0, the degeneracy is removed in the whole topological region. In
this section, we will extend the analytical expressions of the Majorana tails for OBCs (1.104),
which hold in the thermodynamic limit, for �nite chain length N . Furthermore, we will �nd
the analytical expression of the Majorana edge states for generic boundary conditions.

4.2.1 Analytical expressions

Now we want to express the mode ηk in terms of the Majorana modes m2j−1 and m2j . Let's
start from the following transformation

cj =
ei
φ
2

2
(m2j−1 + im2j) c†j =

−ei
φ
2

2
(m2j−1 − im2j) (4.56)
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Figure 4.4: Pro�les of the wavefunction of the two Majorana zero-modes for N = 10, x = 0 and µ = 0.

Taking into account that if ∆ → |∆|eiφ with ∆ = |∆| then, up to an overall constant, g′kj =

e−i
φ
2 gkj and h

′
kj = ei

φ
2 hkj where gkj and hkj are the LSM coe�cients of the real problem one

�nds that

ηk =
∑
j

[g′kjcj + h′kjc
†
j ] =

=
∑
j

[
1

2
(gkj + hkj)m2j−1 +

i

2
(gkj − hkj)m2j

]
=

=
1

2

∑
j

[φkjm2j−1 + iψkjm2j ] (4.57)

Thus, the boundary state becomes

ηk0 ≡
1

2
(ψα + iψβ) (4.58)

where ψα ≡
∑

j φk0jm2j−1, ψβ ≡
∑

j ψk0jm2j and α, β = {L,R}.
The Majorana modes localized at the beginning and at the end of the chain will be called ψL
and ψR, respectively.
Therefore the normalized exact boundary solutions φk0j and ψk0j of the real problem found in
the Sections 3.2 and 4.1 for almost all the values of the model parameters are the analytical
expressions of the exponentially decaying Majorana tails for �nite chain length N .
We can now obtain the results of the articles [21, 37] for which ∆ → |∆|eiφ and therefore the
functions φkj and ψkj are exchanged.
In particular, we consider �rst the case ∆ = t > 0 and µ = 0 for which the matrixW is diagonal
and the zero-mode is given by ~φk0 = (1, 0, ...., 0) and ~ψk0 = (0, 0, ...., 1).

Fig. 4.4 shows the coe�cients φk0j and ψk0j . Therefore using (4.57)

ηk0 =
1

2
(m1 + im2N ) (4.59)

which is the same result obtained in chapter 1.5.
If t = ∆ = 1, then x+ = 0 and x− = −µ

2 and the expressions (1.104), which hold in the
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thermodynamic limit, become

ψL =
∑
j

(α′−x
j
−)m2j−1 ψR =

∑
j

(α′′−x
−j
− )m2j (4.60)

The previous formulas coincide with those obtained in [37]

ψL =
∑
j

(
−µ

2

)j−1
m2j−1 ψR =

∑
i

(
−µ

2

)N−j
m2j (4.61)

if α′− =
(
−µ

2

)−1
, α′′− =

(
−µ

2

)N
.

Thus, up to a normalization constant, we obtain

φ′k0j =
(
−µ

2

)j−1
ψ′k0j =

(
−µ

2

)N−j
(4.62)

where the prime symbol indicates that the expressions refer to the thermodynamic limit. Using
the results of section 4.1, if x = 0 and µ > 0

φk0j = (−1)N−j+1 sinh η(N − j + 1) ψk0j = (−1)j sinh ηj (4.63)

The previous two equation are equivalent if(
−µ

2

)N−j
∼ (−1)j sinh ηj (4.64)

Fig. 4.5 shows an example of the normalized eigenfunctions ψk0j and ψ
′
k0j

for N = 6 for
which the �nite size e�ects are evident. For N �nite they are both localized at the right edge
of the chain where they are quite coincident but they di�er slightly in the tail that penetrate
inside the bulk. Writing the hyperbolic sine in exponential form and neglecting the exponential
decaying factor from (4.64) we obtain that

η ' ln
2

µ
(4.65)

Indeed, doing the same approximations made before, eq.(4.65) is the solution of (4.24). The
last relation is also valid for �nite N in the limit η � 1 and so µ� 1. If µ < 0(

−µ
2

)N−j
∼ sinh ηj (4.66)

and in this case

η ' ln
2

|µ|
(4.67)

In the sections 3.2 and 4.1 the analytical expressions of the coe�cients φkj and ψkj have been
derived from an eigenvalue equation so, if φkj and ψkj are chosen real and normalized, they are
de�ned up to a sign. The exact sign can be determined by �nding the coe�cients gkj and hkj
numerically and then taking the linear combinations φkj = gkj + hkj and ψkj = gkj − hkj (see
Chapter 2).
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Figure 4.5: Majorana tails ψ′k0j =
(
−µ

2

)N−j
(blue) and ψk0j = (−1)j sinh ηj (red) for t = ∆ = 1, x = 0, µ = 1.5

and N = 6.

We now examine how the edge states change while we change either the chemical potential µ
or the boundary parameter x.

Fig. 4.6 represents the coe�cients φk0j and ψk0j for x = 0 and di�erent values of µ. As
expected, the Majorana tails, which are localized at the ends of the chains, become less peaked
as |µ| → 2|t|. Out of the topological phase instead, there are no more hyperbolic solutions and
so the lowest energy level is no longer a boundary state.
The graph 4.7 represents instead the tail for di�erent values of x. As x→ 1 the Majorana tails
become less peaked. If x = 1 the matrix W becomes circulant. A circulant matrix is a special
kind of Toeplitz matrix where each row vector is rotated one element to the right relative to
the preceding row vector [15].
In this situation the solutions for the eigenvalues and the eigenvectors are well known [15]. If
x = 1 and N is even (see Fig. 4.7) the previous eigenfunctions tend to the expressions

φkj =
(−1)j+1

√
N

(4.68)

ψkj =
(−1)j+1

√
N

(4.69)

Their energy is
Λ2
k = (4t2 + µ2 − 4tµ) (4.70)

Finally, Fig. 4.8 shows the situation for some examples with t 6= ∆. As expected, the behavior
of the edge states and so the physics underlying the model is the same as the case t = ∆.

4.3 Complex case

To �nd analytically the eigenvectors and the eigenvalues of the systems (2.44) for arbitrary
values of the parameters is a quite di�cult and involved problem. In the following, only the
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Figure 4.6: Majorana tails φk0j (blue) and ψk0j (red) for N = 10, x = 0, t = ∆ = 1 and di�erent values of µ.
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Figure 4.7: Majorana tails φk0j (blue) and ψk0j (red) for N = 10, t = ∆ = 1, µ = 0.5 and di�erent values of x.
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Figure 4.8: Majorana tails for N = 10, t = 1,∆ = 2 and di�erent values of x and µ.

periodic boundary conditions case and the simplest non-trivial one will be analyzed analytically.
At the end of the chapter instead, a numerical analysis will be performed for a large number of
situations.
Let us recall that, in the complex case, we have to consider the Toeplitz matrices

A =



−µ −t −xt∗

−t∗ −µ . . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . −µ −t

−xt −t∗ −µ


B =



0 ∆ −x∆

−∆ 0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . 0 ∆
x∆ −∆ 0


(4.71)

where t = |t|eiθ,∆ = |∆|eiφ.

4.3.1 Bogoliubov transformation with complex operators

In the case of periodic boundary conditions (x = 1), the Hamiltonian can be diagonalized
through the Fourier transform and the Bogoliubov rotation extending the standard procedure
carried out for the XY model (see Section 1.4). In this case, there are no edge states but
the following analysis is very useful because, from the explicit form of the eigenvalues, we can
understand how the complex parameters of the Hamiltonian can a�ect the phase transition.
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For PBCs, the complex Kitaev Hamiltonian (2.1) becomes

H =
N∑
j=1

[−tc†jcj+1 − t∗c†j+1cj − µc
†
jcj + ∆c†jc

†
j+1 + ∆∗cj+1cj ] (4.72)

where
cj+N ≡ cj (4.73)

Given that Fourier transforms are de�ned as

cj =
ei
π
4

√
N

∑
k

eikjck ck =
e−i

π
4

√
N

∑
j

e−ikjcj (4.74)

with

k =
2πq

N
q = 0, ..., N − 1 (4.75)

the Hamiltonian can be rewritten as

H =
1

2

∑
k

[(−2|t| cos (k + θ)− µ)c†kck + (−2|t| cos (k − θ)− µ)c†−kc−k

+ 2|∆|eiφ(sin k)c†kc
†
−k + 2|∆|e−iφ(sin k)c−kck] (4.76)

which can be expressed in matrix form

H =
1

2

∑
k

(
c†k c−k

)(−2|t| cos (k + θ)− µ 2|∆|eiφ sin k
2|∆|e−iφ sin k 2|t| cos (k − θ) + µ

)(
ck
c†−k

)
(4.77)

The eigenvalues are

Λk = 2|t| sin k sin θ ±
√

(2|t| cos k cos θ + µ)2 + 4|∆|2 sin2 k (4.78)

where k = 2πq/N, q = 0, ..., N − 1. For N → ∞ the values of k �ll continuously the interval
[0, 2π]. Instead if the previous function is considered in the interval [−π, π] then the values of
k must be taken as

k =
2πq

N

{
q = −N

2 , ....,
N
2 − 1 N even

q = −N−1
2 , ...., N−1

2 N odd
(4.79)

As expected, the spectrum doesn't depend on the phase φ.
However from equations (2.11), which hold for generic boundary conditions, we can show that
although the eigenvalues don't depend on the phase φ the coe�cients gki and hki do. If ∆ →
|∆|eiφ with ∆ = |∆| the LSM equations for the new coe�cients g′ki, h

′
ki become{

A∗ ~g′k +B∗e−iφ ~h′k = Λk ~g
′
k

−A ~h′k −Be
iφ ~g′k = Λk ~h

′
k

(4.80)
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and so, up to an overall constant, g′ = e−iφg and h′ = h.
The Hamiltonian (4.77) can be diagonalized through the Bogoliubov transformation(

ck
c†−k

)
=

(
cos θk eiφ sin θk

−e−iφ sin θk cos θk

)(
ηk
η†−k

)
(4.81)

whose inverse is ηk = cos θkck − eiφ sin θkc
†
−k

η†−k = e−iφ sin θkck + cos θkc
†
−k

(4.82a)

(4.82b)

with

θk =
1

2
arctan

(
2|∆| sin k

µ+ 2|t| cos θ cos k

)
(4.83)

In this case, unlike the real case, the eigenvaules Λk and −Λ−k have di�erent values as well
as di�erent signs. In terms of the Bogoliubov quasi-particles the Hamiltonian describes free
fermions

H =
1

2

∑
k

[Λkη
†
kηk − Λ−kη−kη

†
−k] =

∑
k

[Λk(η
†
kηk −

1

2
)] (4.84)

Using the relations (4.82a), (4.74) the LSM coe�cients gkj and hkj for periodic boundary
conditions can be written as 

gkj =
e−

iπ
4

√
N
e−ikj cos θk

hkj = −eiφ e
iπ
4

√
N
e−ikj sin θk

(4.85a)

(4.85b)

Since the spectrum is always positive one obtains that the previous rotation is correct only if
µ+ 2|t| cos θ cos k < 0.

If µ+ 2|t| cos θ cos k > 0 then ηk and η
†
k are exchanged and so the replacement g → h∗, h→ g∗

must be performed.
The ground state of the model is de�ned by

ηk|GS〉 = 0 k =
2πq

N
, q = 0, ..., N − 1 (4.86)

Instead the vacuum state is de�ned by the relations

ck|0〉 = 0 k =
2πq

N
, q = 0, ..., N − 1 (4.87)

Imposing (4.86) one obtains that the ground state in terms of physical fermions can be written
as

|GS〉 =

[N/2]∏
q=1

(cos θkq + eiφ sin θkqc
†
kq
c†−kq)|0〉 (4.88)
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where [x] is the integer part of x.
If we perform the global gauge U(1) transformation cj → e−iφcj on the Hamiltonian, the BCS

term ∆c†jc
†
j+1 acquires an additional phase equal to 2φ.

Thus, as expected, we see that in the ground state to global gauge U(1) symmetry is broken
into the Z2 symmetry.
The same analysis can be done using antiperiodic boundary conditions. The results are similar.

4.3.2 Case 1: |t| = |∆| = 1, x = 0, µ = 0, θ 6= 0, φ = 0

Let's consider the simplest non-trivial case |t| = |∆| = 1, x = 0, µ = 0, θ 6= 0, φ = 0 where the
explicit form of the matrices (2.46) is

M11 =



a+ c 0 b

0 a 0
. . .

b 0 a
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . a 0 b

. . . 0 a 0
b 0 a+ d


(4.89)

having set 
a = 4

b = −2 sin2 θ

c = −2 + 2 cos θ

d = −(2 + 2 cos θ)

(4.90)

and

M12 =



e+ f 0 g

0 e 0
. . .

h 0 e
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . e 0 g

. . . 0 e 0
h 0 e+ f


(4.91)
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where 
e = −4 sin θ

f = 2 sin θ

g = 2 sin θ(1 + cos θ)

h = 2 sin θ(1− cos θ)

(4.92)

The ansatz for the eigenvalue equations (2.44) is the 2N dimensional vector(
zR
zI

)
=

(
αeikj + βe−ikj

ρeikj + σe−ikj

)
(4.93)

where j = 1, ..., N .
Owing to the block structure of the matrix W, the �rst eigenvalue problem in (2.44) splits into
two sets of bulk equations related to the rows j and N + j, for j = 3, · · · , N − 3, and in four
boundary equations for the rows j = 1, 2, N + 1, N + 2.
The �rst set of bulk equations gives

Λ2
k(αe

ikj + βe−ikj) =(−4 sin2 θ cos 2k + 4)(αeikj + βe−ikj)

+ (4 sin θ cos 2k − 4 sin θ)(ρeikj + σe−ikj)

+ (4i cos θ sin θ sin 2k)(ρeikj − σe−ikj) (4.94)

It is then possible to separate the real and the imaginary part of eikj , namely

eikj = cos kj + i sin kj (4.95)

so, remembering that cos kj and sin kj are two linearly independent functions, we can easily
derive two equations from (4.94):

Λ2
k(α+ β) = (−4 sin2 θ cos 2k + 4)(α+ β) + (4 sin θ cos 2k − 4 sin θ)(ρ+ σ)

+(4i cos θ sin θ sin 2k)(ρ− σ) (4.96)

Λ2
k(α− β) = (−4 sin2 θ cos 2k + 4)(α− β) + (4 sin θ cos 2k − 4 sin θ)(ρ− σ)

+(4i cos θ sin θ sin 2k)(ρ+ σ) (4.97)

The second set of bulk equations gives

Λ2
k(ρe

ikj + σe−ikj) =(4 sin θ cos 2k − 4 sin θ)(αeikj + βe−ikj)

+ (−4i cos θ sin θ sin 2k)(αeikj − βe−ikj)
+ (−4 sin2 θ cos 2k + 4)(ρeikj + σe−ikj) (4.98)

which, repeating the same steps, are equivalent to:

Λ2
k(ρ+ σ) =(4 sin θ cos 2k − 4 sin θ)(α+ β) + (−4i cos θ sin θ sin 2k)(α− β)

+ (−4 sin2 θ cos 2k + 4)(ρ+ σ) (4.99)

Λ2
k(ρ− σ) =(4 sin θ cos 2k − 4 sin θ)(α− β) + (−4i cos θ sin θ sin 2k)(α+ β)

+ (−4 sin2 θ cos 2k + 4)(ρ− σ) (4.100)
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Adding (4.96) to (4.97) and (4.99) to (4.100), we get the following equivalent equations, written
in matrix notation:(

−4 sin2 θ cos 2k+4 4 sin θ cos 2k−4 sin θ+4i cos θ sin θ sin 2k
4 sin θ cos 2k−4 sin θ−4i cos θ sin θ sin 2k −4 sin2 θ cos 2k+4

)(α
ρ

)
= Λ2

k

(
α
ρ

)
(4.101)

The solutions of the secular equation are

Λ2
k = (2 sin k sin θ ±

√
4 cos2 k cos2 θ + 4 sin2 k)2 (4.102)

The previous equation, as expected, coincides with the result (4.78) if |t| = |∆| = 1, µ = 0.
Ideed, it can be demonstrated, starting from the eigenvalue equations (2.44) and taking as
ansatz for the eigenvectors a linear combination of plane waves, that the functional form of the
eigenvalues, for generic boundary conditions and values of the model parameters, is exactly the
one in (4.78). However, in general, the values of k can be determined by solving non-simple
transcendental equations.
Since the physics of the model is the same for odd and even N and the eigenvector solution is in
general very complicated, in the following we consider the case N odd for which the eigenvectors
can be written in a simpler form.
There are 5 possible di�erent set of solutions (if θ 6= π/2)

1. For the �rst case, we can write(
zR
zI

)
=
(

γ(sin kj+sin (k+π)j)+δ(cos kj+cos (k+π)j)
γ(sin k(N+1−j)+sin (k+π)(N+1−j))+δ(cos k(N+1−j)+cos (k+π)(N+1−j))

)
(4.103)

where the ratio of the two coe�cients ξ ≡ δ/γ is

ξ = (−1)
(a− Λ2

k) sin 2k + b sin 4k + e sin k(N − 1) + g sin k(N − 3)

(a− Λ2
k) cos 2k + b cos 4k + e cos k(N − 1) + g cos k(N − 3)

(4.104)

The solutions for k can be found by solving the boundary condition:

Λ2
k(sin k(N − 1) + ξ cos k(N − 1)) = e(sin 2k + ξ cos 2k)

+ h(sin 4k + ξ cos 4k)

+ a(sin k(N − 1) + ξ cos k(N − 1))

+ b(sin k(N − 3) + ξ cos k(N − 3)) (4.105)

2. The second set of solutions is obtained by taking(
zR
zI

)
=
(

γ(sin kj+sin (k+π)j)+δ(cos kj+cos (k+π)j)
−γ(sin k(N+1−j)+sin (k+π)(N+1−j))−δ(cos k(N+1−j)+cos (k+π)(N+1−j))

)
(4.106)

We get (ξ ≡ δ/γ)

ξ = (−1)
(a− Λ2

k) sin 2k + b sin 4k − e sin k(N − 1)− g sin k(N − 3)

(a− Λ2
k) cos 2k + b cos 4k − e cos k(N − 1)− g cos k(N − 3)

(4.107)
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The k are �xed now by the equation:

−Λ2
k(sin k(N − 1) + ξ cos k(N − 1)) = e(sin 2k + ξ cos 2k)

+ h(sin 4k + ξ cos 4k)

− a(sin k(N − 1) + ξ cos k(N − 1))

− b(sin k(N − 3) + ξ cos k(N − 3)) (4.108)

3. The third set of solutions is of the form(
zR
zI

)
=
(

γ(sin kj−sin (k+π)j)+δ(cos kj−cos (k+π)j)
γ(sin k(N+1−j)−sin (k+π)(N+1−j))+δ(cos k(L+1−j)−cos (k+π)(N+1−j))

)
(4.109)

Then we obtain (ξ ≡ δ/γ)

ξ = (−1)
(a+ c− Λ2

k) sin k + b sin 3k + (e+ f) sin kN + g sin k(N − 2)

(a+ c− Λ2
k) cos k + b cos 3k + (e+ f) cos kN + g cos k(N − 2)

(4.110)

The equation for k is

Λ2
k(sin kN + ξ cos kN) = (e+ f)(sin k + ξ cos k)

+ h(sin 3k + ξ cos 3k)

+ (a+ d)(sin kN + ξ cos kN)

+ b(sin k(N − 2) + ξ cos k(N − 2)) (4.111)

4. The fourth set of solution is(
zR
zI

)
=
(

γ(sin kj−sin (k+π)j)+δ(cos kj−cos (k+π)j)
−γ(sin k(N+1−j)−sin (k+π)(N+1−j))−δ(cos k(N+1−j)−cos (k+π)(N+1−j))

)
(4.112)

with (ξ ≡ δ/γ)

ξ = (−1)
(a+ c− Λ2

k) sin k + b sin 3k − (e+ f) sin kN − g sin k(N − 2)

(a+ c− Λ2
k) cos k + b cos 3k − (e+ f) cos kN − g cos k(N − 2)

(4.113)

The equation for k is

−Λ2
k(sin kN + ξ cos kN) = (e+ f)(sin k + ξ cos k)

+ h(sin 3k + ξ cos 3k)

− (a+ d)(sin kN + ξ cos kN)

− b(sin k(N − 2) + ξ cos k(N − 2)) (4.114)

5. There are also two boundary states (in the complex case the spectrum is doubly degener-
ate) of the form

(
zR
zI

)
=



0
...
1
0
...
−b/g


(
zR
zI

)
=



−b/g
...
0
1
...
0


(4.115)
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with zero energy.

The vectors wR and wI di�er from zR and zI only by the vector index exchange j → N − j+ 1.
Then we can �nd the coe�cients g and h through the relations (2.50). However, since the
spectrum is doubly degenerate, the coe�cients of the linear combination of the eigenvectors
belonging to the same eigenspace must be determined numerically.

4.3.3 Numerical analysis of the complex Kitaev model

As previously discussed, the analytical solution of the complex case for arbitrary values of the
parameters is very di�cult. Nevertheless, the Hamiltonian can be easily diagonalized numeri-
cally with the methods developed in chapter 2. Let's consider the Hamiltonian of the complex
Kitaev model for generic boundary conditions (2.1).
The functional form of the eigenvalues is (see the previous section)

Λk = 2|t| sin k sin θ +

√
(2|t| cos k cos θ + µ)2 + 4|∆|2 sin2 k (4.116)

where, in general, the values of k are determined by solving transcendental equations.
Several comments are now in order.
The energy levels don't depend on the phase φ because it can be removed by the global gauge

transformation cj → cje
iφ
2 . Moreover if ∆ = 0, x = 0 the energy levels don't depend also on θ

as can be seen by performing the U(1) local gauge transformation cj → cje
−iθj .

If x 6= 0 or ∆ 6= 0 the phase θ can no longer be removed by a U(1) local gauge transformation.
From (4.116) it is easy to see that the gap closes at the point |µ| = |2t cos θ| for k = π or k = −π
signaling a phase transition. Indeed for |µ| < |2t cos θ| the model is in the topological phase;
for |µ| > |2t cos θ| it is in the trivial phase.

Fig. 4.9 shows the energy levels for open boundary conditions as a function of µ for di�erent
values of θ. The numerical data con�rm that the gap closes at |µ| = |2t cos θ| and that in the
region |µ| < |2t cos θ| a zero-mode is present.

Fig. 4.10 shows instead the energy levels for x = 0.3. As expected, the point of the phase
transition does not change, but the zero-mode acquires a mass becoming a Dirac mode.

Fig. 4.11 represents the case |t| = |∆| = 1 for θ ∈ [0, 2π]. The transition point is |µ| =
|2t cos θ| and then when arccos (|µ|/2|t|) < θ < π − arccos (|µ|/2|t|) the edge state goes inside
the bulk band.
Let's consider the real limits θ = 0 and θ = π where t = |t| and t = −|t| respectively. In this
situation, the eigenvalues are have the form (4.4). If x = 0 the equation that �x k is (4.22) and
if t → −t then k → k + π and therefore the eigenvalues don't change. Instead, if x 6= 0 the
equation that must be considered is (4.19). If N is even the same reasoning done above holds.
For N odd instead the levels are slightly shifted but the general structure doesn't change.
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Figure 4.9: The graphs represent the energy levels as a function of µ for N = 50, |t| = |∆| = 1, φ = 0, x = 0
and di�erent values of θ.
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Figure 4.10: The graphs represent the energy levels as a function of µ for N = 50, |t| = |∆| = 1, φ = 0, x = 0.3
and di�erent values of θ.
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Figure 4.11: Energy levels as a function of θ for N = 50, |t| = |∆| = 1, φ = 0 and di�erent values of µ and x.
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Chapter 5

Quantum correlations in complex

fermionic systems

5.1 Correlation functions for the complex Kitaev model

Correlation functions are powerful tools useful to understand di�erent thermodynamic aspects
of quantum many-body systems. They measure the order of a system and describe how micro-
scopic variables, such as spin and density, at di�erent positions are related. The Kitaev model
is a short-range model and therefore from the general theory, the two-point correlators in the
gapped phase should have an exponential decay with the distance. Instead, at the critical point,
the model becomes scale-invariant and the correlation functions should have a power-law decay.
In the �rst part of this section we will analyze the behaviors of the correlators for �nite chain,
generic boundary conditions and for di�erent values of the Hamiltonian parameters. In the
second part we will obtain some integral expressions for the correlation functions in the ther-
modynamic limit and we will evaluate their behavior both outside and inside the critical point.

5.1.1 Finite chain behavior of the correlation functions

The two-point standard and anomalous correlation functions are de�ned as

Cij ≡ 〈GS|c†icj |GS〉 (5.1)

Fij ≡ 〈GS|c†ic
†
j |GS〉 (5.2)

A simple explicit expression of the correlators Cij and Fij in terms of the LSM coe�cients gki
and hki can be obtained. Inverting equation (2.9) one �nds(

c
c†

)
= U

(
η
η†

)
U =

(
~g ∗1 · · · ~g ∗N

~h1 · · · ~hN
~h∗1 · · · ~h∗N ~g1 · · · ~gN

)
(5.3)
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and thus the following relations hold

ci =
∑
k

[g∗kiηk + hkiη
†
k] (5.4)

c†i =
∑
k

[gkiη
†
k + h∗kiηk] (5.5)

Thus, the two-point fermionic correlators can be written as

Cij =
∑
k

h∗kihkj (5.6)

Fij =
∑
k

h∗kigkj (5.7)

The previous equations are valid for a generic quadratic fermionic Hamiltonian and not only
for the Kitaev model.
Owing to the fermionic anticommutation rules, the matrix Cij is Hermitian and Fij is antisym-
metric.
Then, using the results of the chapters 3 and 4, we can write the analytical expressions of the
correlation functions of the Kitaev model for �nite chain, generic boundary conditions and for
almost all the values of t,∆ and µ (at least in the real case).
Fig. 5.1 shows the correlations |Cij | between the sites i = 1 and j = 2, .., N in the real case for
di�erent values of x and µ.
In the topological phase, the correlations between the �rst and the last sites are di�erent from
zero because there is a non-local fermion i.e. an eigenstate of the Hamiltonian, that couples the
edges of the chain.
Indeed in this phase the coe�cients hk0i are peaked at the end of the chain (they can be written
in terms of hyperbolic functions) and they give a high contribution to the summation if i ∼ 1
and j ∼ N .
In the limit x = 1 the correlations are symmetric around the center of the chain.
Using the explicit expression of the coe�cients gki and hki it can be demonstrated that also the
anomalous correlation function |Fij | follows the same behavior of Cij with the distance.
If t and ∆ are complex parameters Cij and Fij are generally complex and so in order to observe
the behavior of the correlations between the lattice sites the complex modulus of Cij and Fij
must be taken.
In this case the point of transition between the topological phase and the trivial phase is shifted
to the value |µ| = |2t cos θ| (see Fig. 5.2).
We can obtain some simple analytical expressions for PBCs (x = 1) of Cij and Fij . Using
(4.85) we obtain

Cij =
1

N

∑
k

1∓ cos (2θk)

2
e±ik(i−j) (5.8)

Fij =
ie−iφ

N

∑
k

sin (2θk)

2
e±ik(i−j) (5.9)

where, due to the fact that, as previously explained, the spectrum is always de�ned positive , the
upper sign is valid when µ+ 2|t| cos θ cos k < 0 and the lower sign when µ+ 2|t| cos θ cos k > 0.
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Figure 5.1: Behavior of Cij in the real case for N = 40, |t| = |∆| = 1, θ = φ = 0 and di�erent values of x and
µ.
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Figure 5.2: The graphs represent the behavior of |Cij | for |t| = |∆| = 1 , x = 0, θ = π
3
and di�erent values of

µ.
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5.1.2 Asympotic behaviour of the correlation functions

The asymptotic behavior of the correlation functions can be analyzed analytically by taking the
thermodynamic limit of the periodic boundary expressions (5.8),(5.9) and solving the resulting
integrals for j � i. In the thermodynamic limit where N →∞ equations (5.8), (5.9) become

Cij =

∫ 2π

0

dk

2π

1∓ cos (2θk)

2
e±ik(i−j) =

δij
2

+

∫ 2π

0

dk

2π

∓ cos (2θk)

2
e±ik(i−j) (5.10)

Fij =ie−iφ
∫ 2π

0

dk

2π

sin (2θk)

2
e±ik(i−j) (5.11)

In this limit, obviously, the edge e�ects are no longer visible. If φ = 0 both Cij and Fij are real.
Moreover considering that θk ∈ [−π

4 ,
π
4 ] , cos (2θk) = 1√

1+tan2 (2θk)
and sin (2θk) = tan (2θk)√

1+tan2 (2θk)

we obtain that

cos 2θk = sgn (µ+ 2|t| cos θ cos k)
µ+ 2|t| cos θ cos k√

(µ+ 2|t| cos θ cos k)2 + 4|∆|2 sin2 k
(5.12)

sin 2θk = sgn (µ+ 2|t| cos θ cos k)
2|∆| sin k√

(µ+ 2|t| cos θ cos k)2 + 4|∆|2 sin2 k
(5.13)

Therefore the correlation functions can be written as

Cij =
δij
2

+ g(i− j) (5.14)

Fij = ie−iφ
∫ 2π

0

dk

2π

2|∆| sin k
2λ(k)

e−ik(i−j) (5.15)

where

g(i− j) ≡
∫ 2π

0

dk

2π

µ+ 2|t| cos θ cos k

2λ(k)
e−ik(i−j)

and λ(k) ≡
√

(µ+ 2|t| cos θ cos k)2 + 4|∆|2 sin2 k. If θ 6= 0 then, unlike the real case, λ(k) 6= Λk
where Λk are the eigenvalues (4.116) of the complex Kitaev Hamiltonian. The asymptotic
behavior of the previous integrals can be evaluated by considering an integration contour in the
complex plane. Let's consider the case i < j.
In this situation we follow the path in the upper half-plane shown in Fig. 5.3 in the limit
M →∞ for which the contributions of the segments C⊥ and C ′⊥ vanish.
The Cauchy Theorem implies that

g(i− j) = − 1

2π
lim
M→∞

(∫
C0

+

∫
L−

+

∫
L+

+

∫
C2π

)
dze−iz(i−j)G(z) (5.16)

where

G(z) =
µ+ 2|t| cos θ cos z

2λ(z)
(5.17)
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Figure 5.3: Integration contour in the complex plane used to evaluate the integrals (5.14) and (5.15). The red
dashed line indicates the branch cut of the function λ(z).

and z = k + iy.
If |t| cos θ, µ > 0, the function G(z) has one pole at the point z = π+ iξ where ξ is the solution
of

(2|t| cos θ cosh ξ − µ)2 − 4|∆|2 sinh2 ξ = 0 (5.18)

The presence of this pole leads to a branch cut on the line π + iy being the square root a
two-valued function in the complex plane. The cut can be chosen in the following way

λ(z) =

i
√
−(2|t| cos θ cosh y − µ)2 + 4|∆|2 sinh2 y z = π+ + iy, y > ξ

−i
√
−(2|t| cos θ cosh y − µ)2 + 4|∆|2 sinh2 y z = π− + iy, y > ξ

(5.19)

The integrals along the paths C0 and C2π are zero because the integrating functions are periodic
with period 2π. Thus the function g(i− j) ≡ g(R) where R ≡ i− j can be written as

g(R) = −2IL+

= −eiπR
∫ ∞
ξ

dy

2π

(2|t| cos θ cosh y − µ)e−Ry√
−(2|t| cos θ cosh y − µ)2 + 4|∆|2 sinh2 y

(5.20)

If j � i and so |R| � 1 the integration function becomes exponentially small and is signi�cantly
di�erent from zero only in the region near the point y ∼ ξ.
To solve the integral, let's de�ne the variable k = y−ξ. The condition y ∼ ξ implies that k ∼ 0.
In this limit, we can perform the following expansions:

− (2|t| cos θ cosh (ξ + k)− µ)2 + 4|∆|2 sinh2 (ξ + k) ' ak + bk2 (5.21)
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where

a = sinh 2ξ(4|∆|2 − 4|t|2 cos2 θ) + 4|t|µ cos θ sinh ξ (5.22)

b = cosh 2ξ(4|∆|2 − 4|t|2 cos2 θ) + 2|t|µ cos θ cosh ξ (5.23)

so that

(2|t| cos θ cosh (ξ + k)− µ)√
−(2|t| cos θ cosh (ξ + k)− µ)2 + 4|∆|2 sinh2 (ξ + k)

' 2|t| cos θ cosh ξ − µ√
ak

+
√
k

(
2|t| cos θ sinh ξ√

a
− b(2|t| cos θ cosh ξ − µ)

2a
3
2

)
(5.24)

Inserting this expansion in (5.20), using that [1]∫ ∞
0

e−yRyα =
Γ(α+ 1)

Rα+1
(5.25)

the leading contribution for large distances of C(R) is

C(R) =
δR,0

2
− 1

2
√
πR

eiπRe−Rξ
(

2|t| cos θ cosh ξ − µ√
a

)
− 1

4
√
πR

3
2

eiπRe−Rξ
(

2|t| cos θ sinh ξ√
a

− b(2|t| cos θ cosh ξ − µ)

2a
3
2

)
'
δR,0

2
− 1

2
√
πR

eiπRe−Rξ
(

2|t| cos θ cosh ξ − µ√
a

)
(5.26)

Therefore, since eiπR = (−1)R, the correlation function C(R) is real.
The correlation length ξ′ = 1

ξ can be found by inverting equation (5.18).
If |t| cos θ = |∆| we obtain

ξ′ =
1

ξ
=

[
arcosh

(
4|t|2 cos2 θ + µ2

4|t|µ cos θ

)]−1

(5.27)

Fig. 5.4 shows the correlator Cij for di�erent values of µ. From the previous formula we see
that ξ′ → 0 if µ = 0 or µ→∞.
Indeed, if µ → ∞ only the term H ∼ −µ

∑
i c
†
ici is signi�cant and then the Hamiltonian

becomes local and has zero correlation length.
At the critical point µ = 2|t| cos θ, from (5.27), we see that the correlation length ξ′ diverges.
In this case the function g(R) reads

g(R) = −eiπR
∫ ∞

0

dk

2π

(2|t| cos θ cosh k − µ)e−Rk√
−(2|t| cos θ cosh k − µ)2 + 4|∆|2 sinh2 k

(5.28)

In the limit k � 1, using the following expansion

− (2|t| cos θ cosh k − µ)2 + 4|∆|2 sinh2 k ' 4|∆|2k2 + ck4 (5.29)
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Figure 5.4: Plot of the correlation functions |Cij | for |t| = |∆| = 1 , θ = φ = 0 , N = 40, i = 1 and j = 5, ..., N
for di�erent values of µ.
The blue dots represent the values computed numerically form (5.14); the red line is the function (5.26).

where

c =
4

3
|∆|2 − |t|2 cos2 θ (5.30)

we �nd that

(2|t| cos θ cosh k − µ)√
−(2|t| cos θ cosh k − µ)2 + 4|∆|2 sinh2 k

' k |t| cos θ

2|∆|
+ k3

(
|t| cos θ

24|∆|
− c|t| cos θ

16|∆|3

)
(5.31)

Substituting the previous expansion in (5.28) it follows that the correlation function has the
algebraic decay

Cc(R) =
δR,0

2
− |t| cos θ

4π|∆|
eiπR

1

R2
− 3eiπR

πR4

(
|t| cos θ

24|∆|
− c|t| cos θ

16|∆|3

)
'
δR,0

2
− |t| cos θ

4π|∆|
eiπR

1

R2
(5.32)

where the subscript c points out that the previous expression holds at the critical point.
The same analysis can be done for the anomalous correlator F(R).
Repeating the same steps, one �nds

F(R) = −e−iφ
∫ ∞
ξ

dy

2π

2|∆| sinh y√
−(2|t| cos θ cos k − µ)2 + 4|∆|2 sinh2 y

eiπRe−Ry (5.33)
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Figure 5.5: Plot (a) shows the numerical results of the critical correlation function |Cij | (blue dots) and the
plot of (5.32) (red line) for |t| = |∆| = 1, θ = φ = 0, N = 40, µ = 2, i = 1 and j = 5, ..., N ; (b) numerical results
of the critical correlation function |Fij | (blue dots) and the plot of (5.37) (red line) for |t| = |∆| = 1, θ = φ = 0,
N = 40, µ = 2, i = 1 and j = 5, ..., N .

If k � 1, we have

2|∆| sinh (ξ + k)√
−(2|t| cos θ cos (ξ + k)− µ)2 + 4|∆|2 sinh2 (ξ + k)

' 2|∆| sinh ξ√
ak

+
√
k

(
2|∆| cosh ξ√

a
− 2b|∆| sinh ξ

2a
3
2

)
(5.34)

where a and b are given by the expressions (5.22) and (5.23). Then the anomalous correlation
function takes the form

F(R) ' −e−iφ e
iπRe−Rξ|∆| sinh ξ√

aπR
− e−iφ e

iπRe−Rξ

4
√
πR

3
2

(
2|∆| cosh ξ√

a
− 2b|∆| sinh ξ

2a
3
2

)
' −e−iφ e

iπRe−Rξ|∆| sinh ξ√
aπR

(5.35)

At the critical point, we can use the expansion

2|∆| sinh k√
−(2|t| cos θ cosh k − µ)2 + 4|∆|2 sinh2 k

' 1 + k2

(
1

6
− c

8|∆|2

)
(5.36)

to �nd

Fc(R) ' −e−iφ e
iπR

2πR
− e−iφ e

iπR

πR3

(
1

6
− c

8|∆|2

)
' −e−iφ e

iπR

2πR
(5.37)

Here the subscript c denote that the previous expression holds at the critical point.
Therefore point the algebraic decay with the distance of the critical anomalous correlation
function Fc(R) is slower than that of the critical correlation function Cc(R) (see Fig. 5.5).
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5.2 Entanglement entropy

The word entanglement was �rst introduced by Scröedinger [33] to describe some global states
of compound systems that cannot be written as the product of states of the subsystems. Basi-
cally, the concept of separability �xes the criteria to establish whether a state is entangled or
not [19].
In recent years, entanglement measures have been used to characterize the properties of a
quantum many-body system [24, 3]. The thermodynamic entropy, being an extensive e quan-
tity, obeys a volume law, and one could think that also the entanglement entropy of a local
quantum-many body system has an extensive character. However, for ground states of systems
with short-range interactions one typically �nds an area law in gapped regions [11]. This means
that if one selects a region, the scaling of the entropy is linear in the boundary area of the
region.
The emergence of an area law for the entanglement entropy provides support for the intuition
that short ranged interactions require that quantum correlations between a distinguished region
and its exterior are established via its boundary surface.
In this chapter we will analyze the behavior of the critical point with respect to the complex
parameters of the complex Kitaev Hamiltonian trough the study of the entanglement entropy.
Indeed, the quantum phase transitions are governed by quantum �uctuations at zero tempera-
ture [11], and therefore we expect to observe signatures of criticality on the level of entanglement.
In addition, it turns out that the entanglement spectrum is also an indicator of topological order
[35].
In general, the reduced density matrix of a fermionic quadratic model can be obtained in dif-
ferent ways; one of them is via correlation functions as discussed by Peschel and Eisler in [31].
This section aims to extend this method to the complex case where the correlation functions are
not generally real and the standard formulas cannot be applied. At the end of the section, this
general method is applied to the complex Kitaev model. Moreover, we discuss the dependence
of the critical point with respect to the complex Hamiltonian parameters by analyzing the de-
generacy structure of the eigenvalues of the reduced density matrix and the scaling properties
of the entanglement entropy with the subsystem size.

5.2.1 Entanglement entropy for complex operators from correlation func-

tions

Suppose to divide a one-dimensional chain of length N in two subsystems A and B containing
l and N − l sites respectively. The density matrix of the total system is de�ned as

ρ = |GS〉〈GS| (5.38)

The reduced density matrix ρA of the subsystem A can be obtained by tracing out the degrees
of freedom of B from the total ρ

ρA(l) = TrBρ (5.39)

The subsystem A is in general in a mixed state de�ned by ρA.
From the Wick theorem, it can be demonstrated that, for a system of non-interacting electrons,
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the reduced density matrix ρA can be written as an exponential of a free fermionic operator [13]

ρA =
e−HE

Z
(5.40)

where

HE =

l∑
i,j=1

[c†iDijcj +
1

2
(c†iEijc

†
j + h.c.)] (5.41)

Here HE is the entanglement Hamiltonian whose eigenvalues can be determined from the cor-
relation function Cij and Fij of the subsystem A (for which 1 ≤ i, j ≤ l).
Indeed, it is possible to derive some equations of these correlation functions in terms of the eigen-
values of the entanglement Hamiltonian which can be therefore calculated explicitly thanks to
the already known values of the correlators (see Chapter 2 and equations (5.6) and (5.7)).
In general, the entanglement Hamiltonian HE is di�erent form the original Hamiltonian H of
the system. Nevertheless, it's still quadratic in the fermionic operators and therefore it can be
diagonalized through the method introduced in Section 2.1. Namely(

χ
(χ†)T

)
= U−1

(
c

(c†)T

)
(5.42)

U−1 =



~g T1
~hT1

...
...

~g TN
~hTN

~h∗T1 ~g ∗T1
...

...
~h∗TN ~g ∗TN


(5.43)

where now U−1 is a 2l × 2l unitary matrix. In this basis HE takes the diagonal form

HE =

l∑
k=1

εkχ
†
kχk (5.44)

Then we have ρA = ⊗
k
ρk where

ρk =
e−εkχ

†
kχk

1 + e−εk
(5.45)

In matrix form we can write

ρk =

(
(1 + eεk)−1 0

0 (1 + e−εk)−1

)
(5.46)

Noting that (1 + eεk)−1 + (1 + e−εk)−1 = 1 one has

Tr
[
ρχ†kχk′

]
= (1 + eεk)−1δk,k′ (5.47)

Tr
[
ρχkχ

†
k′

]
= (1 + e−εk)−1δk,k′ (5.48)

94



Thus, inverting (5.42) the correlation functions can be written as

Cij = Tr[ρc†icj ] =
∑
k

(1 + eεk)−1gkig
∗
kj +

∑
k

(1 + e−εk)−1h∗kihkj (5.49)

Fij = Tr[ρc†ic
†
j ] =

∑
k

(1 + eεk)−1gkih
∗
kj +

∑
k

(1 + e−εk)−1h∗kigkj (5.50)

Using the relation (1 + eεk)−1 − (1 + e−εk)−1 = − tanh
(
εk
2

)
we obtain

Cij =
δij
2

+
1

2

∑
k

[
− tanh

(εk
2

)]
(gkig

∗
kj − h∗kihkj) (5.51)

Fij =
1

2

∑
k

[
− tanh

(εk
2

)]
(gkih

∗
kj − h∗kigkj) (5.52)

where we used the relations (2.14) and (2.15).
Using (2.12) and (2.13), in matrix notation we have{(

C− 1

2

)
~gk + F~hk = −1

2 tanh
(
εk
2

)
~gk

−
(
C− 1

2

)∗~hk − F∗~gk = −1
2 tanh

(
εk
2

)
~hk

(5.53)

The last system coincides with the LSM complex equations (2.31) if A∗ = C− 1

2 , B∗ = F and
Λk = −1

2 tanh
(
εk
2

)
. Then, repeating the same steps of section 2.2, the equations in (5.53) can

be decoupled. Using (2.44) we obtain(
CR − 1

2 − FR −CI − FI
CI − FI CR − 1

2 + FR

)(
CR − 1

2 + FR −CI + FI
CI + FI CR − 1

2 − FR

)(
zR
zI

)
= T

(
zR
zI

)
=

1

4
tanh2

(εk
2

)(zR
zI

)
(5.54)

where

T =

(
CR − 1

2 − FR −CI − FI
CI − FI CR − 1

2 + FR

)(
CR − 1

2 + FR −CI + FI
CI + FI CR − 1

2 − FR

)
(5.55)

and, as usual, z = g + h∗ = zR + izI .
If C and F are real matrices, taking into account that CI = FI = zI = 0, equation (5.54)
becomes

T ~φk =
1

4
tanh2

(εk
2

)
~φk (5.56)

where T ≡ (C− 1

2 − F)(C− 1

2 + F) and ~φk = ~gk +~hk. This is exactly the formula obtained by
Peschel and Eisler in [31]. If ξk are the eigenvalues of T, the eigenvalues of HE are

εk = 2arctanh(2
√
ξk) (5.57)

Therefore from the already known correlation functions, the eigenvalues of the entanglement
Hamiltonian can be easily calculated using (5.57). The von Neumann entropy SvN is de�ned as

SvN (l) = −TrAρA log2 ρA (5.58)
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Using the additivity of the von Neumann entropy, which holds in the case of a independent
states, we obtain

SvN (l) = −
l∑

k=1

Trρk log2 ρk (5.59)

In matrix form we can write

ρk log2 ρk =

(
(1 + eεk)−1 log2 (1 + eεk)−1 0

0 (1 + e−εk)−1 log2 (1 + e−εk)−1

)
(5.60)

Therefore the von Neumann entropy takes the form

SvN(l) =
l∑

k=1

[
(1 + eεk)−1 log2 (1 + eεk) + (1 + e−εk)−1 log2 (1 + e−εk)

]
(5.61)

As previously explained, the entanglement entropy generally SvN (l) obeys an area law, meaning
that, for one-dimensional systems, the entropy saturates to a constant [11].
At the critical point instead, for one-dimensional systems with local Hamiltonian and periodic
boundary conditions, the entropy no longer obeys an area law. One �nds [9]

SvN (l) =
c

3
log2

[
N

2
sin

(
πl

N

)]
+ a (5.62)

where c is the central charge of the underlying conformal �eld theory and a is a nonuniversal
constant.

5.2.2 Entanglement entropy for the complex Kitaev

model

In the following, the previous analysis is applied to the complex Kitaev model. Fig. 5.6 shows
the entanglement entropy as a function of the size l of the subsystem A for the real case and
di�erent values of µ. At the critical point, as expected, the entropy scale as (5.62); out of the
critical point instead, it saturates to a constant.
The eigenvalues of the reduced density matrix ρA and the entanglement entropy don't depend
on φ.
In fact, if ∆ → |∆|eiφ both F and B acquire a phase eiφ and so, since the eigenvalues Λk
of the standard LSM procedure don't depend on φ, neither do the entanglement Hamiltonian
eigenvalues.
On the other hand, if θ is di�erent from zero and x = ±1 the entanglement Hamiltonian
eigenvalues are equal to those of the real case with t → |t| cos θ as can be easily seen from
the explicit structure of the ground state (see Chapter 4.3.1 and Fig. 5.7). The graph 5.8
represents the largest four eigenvalues λi of the reduced density matrix ρA as a function of µ for
di�erent values of θ as performed in [36]. The entanglement spectrum is clearly distinguishable
in the two phases, especially since the non-trivial phase has a degeneracy structure as do all
symmetry protected topological phases [35]. In particular, the degeneracy of the eigenvalues in
the topological phase is even. Indeed, in this case, it can be seen that one eigenvalue of the
entanglement Hamiltonian is zero.
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Figure 5.6: Entanglement entropy SvN (l) for N = 80, x = 1, |t| = |∆| = 1, θ = 0, φ = 0 and di�erent values of
µ. At the critical point the central charge is c = 1

2
as expected from the general theory of the XY-Ising model

[12].
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Figure 5.7: Entanglement entropy SvN (l) for N = 80, x = 1, |t| = |∆| = 1, θ = π
3
, φ = 0 and di�erent values of

µ.
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Figure 5.8: Plot of the largest four eigenvalues λi of the reduced density matrix ρA as a function of µ for
N = 20, l = 10, x = 1, |t| = |∆| = 1 and di�erent values of θ. Each line has a di�erent color (red, yellow, black,
bold black) and represents one of the four eigenvalues. Wee see that the transition is at the point µ = 2|t| cos θ.
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Conclusion and outlooks

In this thesis we obtained the wavefunctions and the spectrum of the complex Kitaev model
both analytically and numerically. In an attempt to do this, we have discussed two methods to
diagonalize a complex quadratic Hamiltonian for generic boundary conditions. In particular,
we extended the LSM method to the fully complex case to diagonalize the complex Kitaev
model where both the hopping parameter and the superconductive gap are complex. We solved
analytically the LSM equations by exploiting two methods: the perturbative and the ansatz
approach. Within the perturbative approach, we derived some analytical solutions for the real
case where t = ∆ and for both x = 0 and x 6= 0. However, for x 6= 0 we obtained only an
approximate formula for the eigenvalues which is valid in the limit where µ and x are small
parameters. Within the ansatz approach we found simpler expressions and we solved also the
case t 6= ∆, µ = 0 and the simpler non-trivial complex one. In this way, we showed that the un-
derlying physics of the model for t 6= ∆ is the same as the case t = ∆. In the topological region,
for OBCs, we found that, in the thermodynamic limit, the ground state is doubly degenerate.
As expected, in general, this degeneracy is removed for a �nite chain length. However, if x 6= 0
this degeneracy is lifted in the whole topological region for each value of N . In the fully complex
case we derived that the transition point is shifted from |µ| = 2|t| to |µ| = |2t cos θ|. Moreover,
the complex phase φ of the superconductive gap doesn't a�ect the spectrum. However, the
wavefunctions and in particular the ground state depend on φ.
Then, we have obtained some relative simple analytical hyperbolic expressions of the Majorana
edge states for the real hopping case and we showed that they survive even when x 6= 0 (x 6= 1).
These eigenstates become more peaked at the edges of the chain as µ, x→ 0 and t→ ∆.
In the last part of this work, we calculated the correlation functions both analytically and
numerically for a �nite chain and in the thermodynamic limit. As expected, the correlations
between the �rst and the last sites are substantially di�erent from zero in the topological phase.
Furthermore, the correlation length diverges at the critical point where the correlation functions
have a power-law decay.
The entanglement spectrum con�rms our previous results. In particular, we recovered that the
critical point depends on the complex hopping phase and that at the critical point the entropy
no longer obeys an area law. Besides, the topological phase has the expected degenerate struc-
ture.

A possible further study can investigate the role of the complex hopping phase on the Ma-
jorana edge states. In fact, in this case, the LSM coe�cients are both complex and the phase
cannot be eliminated by a simple rede�nition of the Majorana operators. Thus, the Majorana
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operators, being simply the real and the imaginary part of the Dirac operators, may mix in a
non-trivial way.
Furthermore, it could be interesting to test if, for di�erent domains, as for the SSH model, the
number of the edge states increases with the number of the domain walls where these states
should be localized.
Finally, we could try to understand how our results obtained for a 1-D chain could be extended
to a two-dimensional lattice.
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