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1.5 The Hubble-Lemâıtre law . . . . . . . . . . . . . . . . . . . . . . 11
1.6 Cosmological redshift . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.7 Cosmological distances . . . . . . . . . . . . . . . . . . . . . . . . 13
1.8 Friedmann models . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.8.1 Friedmann equations . . . . . . . . . . . . . . . . . . . . . 14
1.8.2 The cosmological constant . . . . . . . . . . . . . . . . . . 15
1.8.3 The general Friedmann model . . . . . . . . . . . . . . . . 16
1.8.4 Flat models . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.8.5 Curved models . . . . . . . . . . . . . . . . . . . . . . . . 19
1.8.6 Evolution of the density parameter . . . . . . . . . . . . . 22
1.8.7 Cosmological horizons . . . . . . . . . . . . . . . . . . . . 22

1.9 The Standard Cosmological Model . . . . . . . . . . . . . . . . . 24
1.10 Linear perturbations . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.10.1 The Jeans theory . . . . . . . . . . . . . . . . . . . . . . . 27
1.10.2 Jeans instability in a static universe . . . . . . . . . . . . . 28
1.10.3 Instabilities in an expanding universe . . . . . . . . . . . . 30

1.11 Statistical properties of the Universe . . . . . . . . . . . . . . . . 33
1.11.1 The evolution of the power spectrum . . . . . . . . . . . . 36

1.12 Non-linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.12.1 The Zel’dovich approximation . . . . . . . . . . . . . . . . 38
1.12.2 N -Body simulations . . . . . . . . . . . . . . . . . . . . . 39

2 Galaxy clusters 42
2.1 Clusters as cosmological probes . . . . . . . . . . . . . . . . . . . 42
2.2 Bulk properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.3 Detection and mass measurements . . . . . . . . . . . . . . . . . . 45

ii



2.3.1 Gravitational lensing . . . . . . . . . . . . . . . . . . . . . 45
2.3.2 X-ray observations . . . . . . . . . . . . . . . . . . . . . . 45
2.3.3 Optical and NIR observations . . . . . . . . . . . . . . . . 46
2.3.4 Sunyaev Zel’dovich effect . . . . . . . . . . . . . . . . . . . 47

3 Galaxy cluster mass function 49
3.1 Spherical collapse . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 Press-Schechter formalism . . . . . . . . . . . . . . . . . . . . . . 52
3.3 Mass function in literature . . . . . . . . . . . . . . . . . . . . . . 54
3.4 Dependency on cosmological parameters . . . . . . . . . . . . . . 55

4 The cluster sample 60
4.1 AMICO: the detection algorithm . . . . . . . . . . . . . . . . . . 60

4.1.1 Description of the algorithm . . . . . . . . . . . . . . . . . 60
4.1.2 The cluster model . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 The AMICO KiDS-DR3 catalogue . . . . . . . . . . . . . . . . . . 63
4.2.1 Mass proxies . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2.2 Weak-lensing mass calibration . . . . . . . . . . . . . . . . 67

4.3 The mock catalogue . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Cosmological constraints from the number counts of the AMICO
KiDS-DR3 catalogue 72
5.1 General approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2 Models and computational tools . . . . . . . . . . . . . . . . . . . 74

5.2.1 The model for cluster number counts . . . . . . . . . . . . 74
5.2.2 The likelihood function . . . . . . . . . . . . . . . . . . . . 75
5.2.3 Markov chain Monte Carlo . . . . . . . . . . . . . . . . . . 76

5.3 Completeness and purity . . . . . . . . . . . . . . . . . . . . . . . 78
5.4 Redshift selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.5 Cosmological pipelines . . . . . . . . . . . . . . . . . . . . . . . . 83
5.6 Treatment of uncertainties in Pipeline I . . . . . . . . . . . . . . 83
5.7 Pipeline I for a flat ΛCDM Universe . . . . . . . . . . . . . . . . 87

5.7.1 Modelling N(M) in different bins of redshift . . . . . . . . 88
5.7.2 Considerations on N(M) . . . . . . . . . . . . . . . . . . . 98
5.7.3 Modelling the whole dataset . . . . . . . . . . . . . . . . . 98

5.8 Improving the analysis: Pipeline II . . . . . . . . . . . . . . . . . 104
5.9 Modelling N(λ∗obs) in a ΛCDM Universe . . . . . . . . . . . . . . 106

5.9.1 Modelling the whole dataset in a ΛCDM Universe . . . . . 111
5.10 Super sample covariance . . . . . . . . . . . . . . . . . . . . . . . 113

5.10.1 Including the SSC in Pipeline II . . . . . . . . . . . . . . . 115

6 Discussion and conclusion 118





iv



Abstract

The large-scale matter distribution of the Universe plays a key role in shading
lights on the physical properties of dark matter, dark energy, and gravity at cos-
mological scales. During the last decades, several multi-band surveys have been
undertaken to collect representative samples of cosmic tracers. Aiming at reach-
ing an accurate and precise characterization of the Universe on the largest scales,
the combination of independent methods and observations is employed. Among
the main probes that will provide the answers to the most challenging questions in
cosmology and fundamental physics, galaxy clusters play a crucial role. Reaching
masses larger than 1015 M�, galaxy clusters are the biggest virialized structures
in the Universe, tracing the highest peaks of the dark matter density field. In par-
ticular, the mass function of galaxy clusters has a fundamental role in cosmology,
given its dependency on fundamental cosmological parameters.

In this Thesis work, we consider the specific mass regime of galaxy clusters,
since these objects mark the transition between the linear and the non-linear re-
gime of the gravitational perturbations, so that their formation and evolution can
be theoretically described with excellent accuracy. The dark matter component
is dominant in galaxy clusters. Therefore it is accurate enough, given current
observational uncertainties, to model the cluster mass function through N -body
dark matter simulations, thus neglecting the astrophysical effects due to the ba-
ryonic matter component. In fact, the cluster statistical properties can be linked
directly to the physical quantities of their host dark matter haloes, which depend
on the cosmological model parameters. During the last few years, galaxy cluster
observations have begun to provide strong constraints on cosmological paramet-
ers, making these objects fundamental tools to test the standard cosmological
model, the so-called Λ-cold dark matter (ΛCDM) model.

In this Thesis, we present a new cosmological analysis of cluster counts,
exploiting the AMICO KiDS-DR3 catalogue (Maturi et al. 2019), which is a
sample of photometrically-selected galaxy clusters, built up through the use of
the cluster detection algorithm called Adaptive Matched Identifier of Clustered Ob-

jects (AMICO) (Bellagamba et al. 2018), on the third data release of the Kilo
Degree Survey (KiDS; de Jong et al. 2017). The catalogue contains 7988 can-
didate galaxy clusters, in the redshift range z ∈ [0.1, 0.8], on an effective area
of 377 deg2. We develop a method to assign a statistical weight to each object
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in the catalogue, by deriving the selection function of the sample from a mock
catalogue. Exploiting the results of the weak-lensing analysis provided by Bel-
lagamba et al. (2019), we derive the masses of the objects. Then we develop two
cosmological pipelines in order to retrieve in a ΛCDM Universe the constraints
on the matter density parameter, Ωm, the normalization of the power spectrum,
σ8, and the cluster normalization condition parameter, S8 = σ8(Ωm/0.3)0.5, fixing
the other parameters at the values obtained by Planck Collab. (2018). In order
to accomplish this task, we introduce a new model for the cluster counts. Sub-
sequently, we implement in the analysis a peculiar source of uncertainty, namely
the super sample covariance, aiming at accounting for systematics that intrins-
ically affects our data. We derive the following constraints: Ωm = 0.28+0.01

−0.01,
σ8 = 0.85+0.02

−0.01, S8 = 0.82+0.01
−0.01, which are consistent with ΛCDM predictions,

and competitive, in terms of uncertainties, with results of state-of-the-art cluster
number count analyses.

The whole cosmological analysis of this Thesis work has been performed
with the CosmoBolognaLib (CBL; Marulli et al. 2016), a large set of free soft-
ware C++/Python libraries, that provide an efficient numerical environment for
cosmological investigations of the large-scale structure of the Universe. The new
likelihood model for the cluster number counts, as well as the whole formalism
for the super sample covariance, which have been originally developed for this
Thesis work, will be released in the forthcoming public version of the CBL.
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Sommario

La distribuzione della materia a grande scala nell’Universo ricopre un ruolo cru-
ciale nel fare luce sulle proprietà fisiche della materia oscura, cos̀ı come su quelle
dell’energia oscura e della gravità su scale cosmologiche. Nell’ultimo decennio
sono state eseguite diverse survey in multi-banda, al fine di ottenere campioni sig-
nificativi di traccianti cosmici. Con lo scopo di raggiungere una precisa e accurata
caratterizzazione dell’Universo a grande scala, viene sfruttata la combinazione di
metodi e osservazioni indipendenti. Tra gli oggetti cosmici più importanti, il cui
studio permetterà di dare risposta alle più stimolanti domande nei campi della
cosmologia e della fisica fondamentale, troviamo gli ammassi di galassie. Raggi-
ungendo masse maggiori di 1015 M�, questi oggetti sono le strutture virializzate
più grandi nell’Universo, e tracciano i picchi più alti del campo di densità della
materia oscura. In particolare, la funzione di massa degli ammassi di galassie ha
un ruolo essenziale in cosmologia, data la sua dipendenza da parametri cosmolo-
gici fondamentali.

In questo lavoro di Tesi, consideriamo lo specifico regime di massa degli am-
massi di galassie, poiché tali oggetti segnano il confine tra il regime lineare e
il regime non lineare delle perturbazioni gravitazionali, cosicché la loro form-
azione ed evoluzione può essere descritta teoricamente con eccellente precisione.
La componente di materia oscura è dominante negli ammassi di galassie. Di
conseguenza, date le attuali incertezze osservative, è sufficientemente accurato
modellare la funzione di massa degli ammassi di galassie tramite l’utilizzo di sim-
ulazioni a N corpi di materia oscura, trascurando dunque gli effetti astrofisici
dovuti alla componente di materia barionica.

Di fatto, le proprietà statistiche degli ammassi possono essere legate direttamente
alle quantità fisiche dei loro aloni di materia oscura, le quali dipendono dai para-
metri del modello cosmologico. Negli ultimi anni, le osservazioni di ammassi di
galassie hanno iniziato a fornire forti vincoli sui parametri cosmologici, rendendo
questi oggetti degli strumenti fondamentali per testare il modello cosmologico
standard, il cosiddetto modello Λ-cold dark matter (ΛCDM).

In questa Tesi, presentiamo una nuova analisi cosmologica di conteggi di am-
massi, sfruttando il catalogo AMICO KiDS-DR3 (Maturi et al. 2019), il quale è
un campione di ammassi di galassie selezionati fotometricamente, costruito tram-
ite l’utilizzo dell’algoritmo di detezione di ammassi denominato Adaptive Matched
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Identifier of Clustered Objects (AMICO) (Bellagamba et al. 2018), sulla terza data
release della Kilo Degree Survey (KiDS; de Jong et al. 2017). Il catalogo contiene
7988 candidati di ammassi di galassie, nell’intervallo di redshift z ∈ [0.1, 0.8],
su un’area effettiva di 377 deg2. Sviluppiamo quindi un metodo che assegna un
peso statistico a ogni oggetto nel catalogo, derivando la funzione di selezione
del campione da un catalogo mock. Sfruttando i risultati ottenuti dall’analisi di
weak-lensing forniti da Bellagamba et al. (2019), deriviamo le masse degli oggetti.
Dunque sviluppiamo due pipeline cosmologiche al fine di ottenere, in un Universo
ΛCDM, vincoli sul parametro di densità della materia, Ωm, sulla normalizzazione
dello spettro di potenza, σ8, e sul parametro di condizione di normalizzazione
dei cluster, S8 ≡ σ8(Ωm/0.3)0.5, fissando gli altri parametri ai valori ottenuti
da Planck Collab. (2018). Al fine di raggiungere questo obiettivo, introduciamo
un nuovo modello per i conteggi di ammassi. Successivamente, implementiamo
nell’analisi una peculiare fonte di incertezza, ovvero la super sample covariance,
mirando a tenere conto di sistematiche che affliggono intrinsicamente i nostri
dati. Deriviamo i seguenti vincoli: Ωm = 0.28+0.01

−0.01, σ8 = 0.85+0.02
−0.01, S8 = 0.82+0.01

−0.01,
i quali sono consistenti con le predizioni del ΛCDM, e competitivi, in termini di
incertezze, con i risultati di analisi di conteggi di ammassi allo stato dell’arte.

L’intera analisi cosmologica in questo lavoro di Tesi è stata eseguita con le
CosmoBolognaLib (CBL; Marulli et al. 2016), un grande insieme di librerie free
software in C++/Python, che forniscono un efficiente ambiente numerico per
investigazioni cosmologiche della struttura dell’Universo a larga scala. Il nuovo
modello di likelihood per i conteggi di ammassi, come anche il formalismo per la
super sample covariance, che sono stati in origine sviluppati in questo lavoro di
Tesi, saranno rilasciati nella prossima versione pubblica delle CBL.

4





Introduction

In accordance with the predictions of the standard cosmological framework, the
so-called ΛCDM, we live in an expanding Universe whose main components are
the dark energy, parameterized in terms of the cosmological constant, Λ, and the
cold dark matter (CDM), that constitutes∼ 68% and∼ 27% of the energy/matter
content of the Universe, respectively. In turn, only ∼ 5% of the Universe is
in the form of ordinary matter, which nevertheless provides the most relevant
contribution in astronomical and cosmological investigations, as it composes the
luminous side of the Universe.

In this context, we describe the large-scale structure of the Universe as the
result of the gravitational growth of local density perturbations, within an ex-
panding background. Among the gravitationally bound structures in the cosmos,
galaxy clusters play a crucial role in cosmology, tracing the highest peaks of the
density perturbations. The development of increasingly advanced instruments to
allowed the detection of large galaxy cluster samples in different wavelengths have
dramatically enhanced our knowledge of the Universe on large scales. Observa-
tions in X-rays, optical and NIR, as well as gravitational lensing studies allow to
investigate in depth the statistical properties of objects. In this framework, it is
necessary to construct pure and complete galaxy cluster catalogues up to high
redshifts, in order to derive cosmological constraints from the physical properties
of these structures.

Galaxy clusters are the biggest virialized structures in the Universe, reaching
masses higher than 1015 M�. Gravity is the dominant interaction on such large
scales, where the information of the initial cosmological conditions is preserved.
Conversely, the interactions involving the ordinary matter erase the cosmolo-
gical information. Nevertheless, for cosmological purposes, the gas physics in
galaxy clusters is negligible, given the current uncertainties on cluster statistics
measurements. Consequently, it is accurate enough to describe the formation
and evolution of galaxy clusters only in terms of the dark matter potential wells.
This simplification allows also to exploit N -body dark matter simulations of large
volumes of the Universe. Since theoretical models for cluster evolution can be
accurately developed, these objects provide remarkable cosmological probes with
a wide spectrum of applications.

The two-point correlation function of galaxy clusters can be used in com-
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bination to cluster mass measurements to assess the auto-correlation function
of the density contrast field (Marulli et al. 2018), and test the gravity theory
through redshift-space distortions in the clustering pattern. Another important
cosmological probe is provided by the mass function of galaxy clusters, which is
highly sensitive to the values of the main cosmological model parameters. Due
to the high complexity of the structure formation and evolution, the calibration
of the mass function models requires N -body simulations. Several mass function
models have been developed in the past decade (e.g. Tinker et al. 2008, Watson
et al. 2013; Despali et al. 2016), and a plenty of observational studies of cluster
counts have been employed. Recent investigations on cluster counts have derived
remarkable constraints on the matter density parameter, Ωm, the power spectrum
normalization, σ8, and the derived parameter S8 ≡ σ8(Ωm/0.3)0.5. Among these
studies, Costanzi et al. (2018) obtained the following constraints: Ωm = 0.22+0.05

−0.04,
σ8 = 0.91+0.11

−0.10, S8 = 0.79+0.05
−0.04 from a dataset of photometrically-selected clusters

detected in the SDSS catalogue. Furthermore, Pacaud et al. (2018) derived
Ωm = 0.316+0.060

−0.060, σ8 = 0.814+0.054
−0.054 from a catalogue of X-ray selected galaxy

clusters.
In this Thesis work we extract constraints on Ωm, σ8 and S8 from the AMICO

KiDS-DR3 galaxy cluster catalogue (see Maturi et al. 2019). To do this, we de-
velop two alternative pipelines. In the second of them, we improve the formalism
of the mass function and we introduce an additional source of uncertainty at the
likelihood level, namely the super sample covariance.

This Thesis is organized as follows:

• in Chapter 1, we introduce the modern cosmological scenario, describing
the main properties of the Universe in a theoretical context;

• in Chapter 2 we present an overview on the physical properties of galaxy
clusters, and the methods employed for their detection;

• in Chapter 3 we outline the importance of the mass function in cosmo-
logy, describing the basic theoretical background and the properties of this
extraordinary tool;

• in Chapter 4 we describe the dataset this Thesis work is based on, that is
the AMICO KiDS-DR3 catalogue;

• in Chapter 5 we present the methods developed for the analysis of the data,
along with our results;

• finally, in Chapter 6 we summarize the main results of this Thesis work and
discuss the future perspectives.
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Chapter 1

Fundamentals of Cosmology

Our aim in this chapter is to describe the main theoretical and observational
achievements of modern cosmology. In the first part we will provide an overview
of the current mathematical formalism in cosmology, based on the General Re-
lativity and the Friedmann equations. Then the main features of the standard
cosmological model, the so called ΛCDM, will be presented, followed by a dis-
cussion on the formation and evolution of the gravitational perturbations in the
universe.

1.1 Two principles

The scientific study of the universe as a whole, or cosmology, is based on two
fundamental principles: the Fair Sample Principle, better discussed in Section
1.11, and the Cosmological Principle.

The former becomes necessary when we face the problem that the universe is
a unique object, not reproducible, and this would imply the impossibility of a
statistical approach for cosmological studies. However, the Fair Sample Principle
states that considering distinct volumes of universe, sufficiently large in order to
be considered independent, is equivalent to consider many realizations of uni-
verse.1

On the other hand, the Cosmological Principle allows the mathematical descrip-
tion of the universe. It states, indeed, that the universe is homogeneous and
isotropic, the two properties at the foundations of the Friedmann-Robertson-
Walker metric. Nowadays isotropy is observed in the cosmic microwave back-
ground (CMB) and on scales greater than 100 Mpc, i.e. on scales larger than the
ones of superclusters and voids. Therefore the only principle is that of homogen-
eity, or Copernican Principle.

1The sizes of the volumes required to satisfy this principle are dependent on the cosmological
epoch.
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1.2 The central role of General Relativity

The description of the universe relies on a theory of gravitation, the General
Relativity (GR, Einstein, 1915). Gravitation is indeed the dominant field on
large scales and GR is the best candidate we have to describe it.
In this theory, the content of energy and matter acts on the geometry of the
space-time, which is described by the metric tensor gij. The minimum interval
between two events in the space-time is expressed as

ds2 = gαβ dxαdxβ α, β = 0, 1, 2, 3, (1.1)

where repeated indexes imply summation. In particular, the three space co-
ordinates x1, x2, x3 are generally labeled with the indexes i, j, while the time
coordinate is x0 = ct where t is the proper time. Timelike and spacelike intervals
are respectively related to ds2 > 0 and ds2 < 0, while for ds2 = 0 the interval is
called lightlike and holds for photons.
Due to the curvature of the space-time geometry, outlined by gαβ, free particles
move along non-straight geodesics. In particular the integral along the path of a
particle is such that

δ

∫
path

ds = 0, (1.2)

and from this equation derives the geodesic equation

d2xα

ds2
+ Γαµν

dxµ

ds

dxν

ds
= 0. (1.3)

The metric tensor is related to the content of energy and matter, defined by the
energy-momentum tensor Tij, through the fundamental Einstein’s field equations

Rαβ −
1

2
gαβR =

8πG

c4
Tαβ. (1.4)

Rαβ and R are, respectively, the Ricci tensor the Ricci scalar, G is the Newton’s
gravitational constant and c the speed of light. The universe can be described
as a perfect fluid with pressure p and energy density ρc2, so that the energy-
momentum tensor has the form

Tαβ = (p+ ρc2)uαuβ − pgαβ, (1.5)

where uα is the four-velocity of the fluid.

1.3 The Friedmann-Robertson-Walker metric

As discussed in the previous sections, a mathematical representation of the uni-
verse is needed in order to attempt to describe it. General Relativity is the core of
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the description of the universe, and being this a geometrical theory it is necessary
to introduce the functional form of the space-time metric. This is the Friedmann-
Robertson-Walker (FRW) metric, based on the Cosmological Principle.
For a homogeneous and isotropic universe, the equation (1.1) can be written more
explicitly as

ds2 = g00dt2 − dl2 = c2dt2 − dl2, (1.6)

where the first and the second terms are, respectively, time and space terms. At
any instant defined by the proper time t, or cosmic time, the spatial metric dl2 is
identical in all the places and directions. The cosmic time varies monotonically
and is zero in correspondence of the intersections of all the geodesics of the space-
time.
In order to find the suitable form of the three-dimensional spatial metric, the
two-dimensional case is considered first. The possible spaces that satisfy the
Cosmological Principle are the flat Euclidean space, the sphere and the hyper-
boloid. In the case of the flat space,

dl2 = dx2 + dy2, (1.7)

that in polar coordinates 0 ≤ ρ <∞, 0 ≤ φ < 2π, is expressed as

dl2 = dρ2 + ρ2dφ2. (1.8)

We can define ρ ≡ ar, where a has the dimension of a length while r has no
dimension, and 0 ≤ r <∞. Then the final relation is

dl2 = a2(dr2 + r2dφ2). (1.9)

In the case of a spherical surface, we have

dl2 = R2(sin2 θ dφ2 + dθ2), (1.10)

where R is the radius, 0 ≤ θ ≤ π and 0 ≤ φ < 2π. Imposing R ≡ a and sin θ = r,
the previous equation has the form

dl2 = a2

[
r2dφ2 +

dr2

1− r2

]
. (1.11)

For an hyperbolic surface, similarly to the spherical case, the equation

dl2 = R2(sinh2 θ dφ2 + dθ2) (1.12)

becomes

dl2 = a2

[
r2dφ2 +

dr2

1 + r2

]
. (1.13)
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The general expression for dl2 in two dimensions is then

dl2 = a2

[
dr2

1− kr2
+ r2dφ2

]
, (1.14)

where k is the curvature parameter, and k = 0 for the flat space, k = 1 for the
sphere and k = −1 for the hyperboloid. The curvature parameter k is related to
the amount of energy and matter densities and defines the sign of the Gaussian
curvature CG:

CG =
k

a2
. (1.15)

In three dimensions, the solid angle

dΩ = dθ2 + sin2 θ dφ2 (1.16)

has to be taken into account and the previous expressions become

dl2 = a2
[
dr2 + r2dΩ2

]
(flat space), (1.17)

dl2 = a2

[
r2dΩ2 +

dr2

1− r2

]
(hypersphere), (1.18)

dl2 = a2

[
r2dΩ2 +

dr2

1 + r2

]
(constant negative curvature). (1.19)

By generalizing these equations with the introduction of the k parameter, and
considering the Equations (1.16) and (1.6), we find the functional form of the
Friedmann-Robertson-Walker metric:

ds2 = c2dt2 − a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θ dφ2)

]
. (1.20)

In this framework a(t) is the cosmic scale factor, t is the aforementioned proper
time and r, θ, φ are the comoving coordinates, with r dimensionless. As mentioned
above, k can be either 0, 1 or -1, and in particular the space is flat (k = 0), closed
(k = 1) or open (k = −1) if the density parameter Ω(t), defined as

Ω(t) =
ρ

ρc
, (1.21)

is, respectively, equal to, greater or less than unity. The term ρc is the critical
density of the universe, defined as the density for which the universe is flat:

ρc =
3

8πG

(
ȧ

a

)2

. (1.22)

Nowadays, at the cosmic time t0, the value of the critical density ρ0,c is

ρ0,c = 1.9 10−29 h2 g cm−3, (1.23)
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where

h =
ȧ(t0)

100 a(t0)
. (1.24)

Another important quantity in cosmology is the deceleration parameter q, defined
as

q = − äa
ȧ2

. (1.25)

This parameter will be useful for the understanding of the nature of the expansion
in different universes.

1.4 Proper and comoving distances

From the FRW metric derive two fundamental quantities: the proper distance
and the comoving distance. The proper distance dP of a point P from the origin
of a set of polar coordinates (r, θ, φ), is defined by imposing dt = dθ = dφ = 0
in Eq. (1.20). Therefore it is the geodesic passing through the point P and the
origin, and has the form

dP =

∫ r

0

a(t) dr′

(1− kr′2)1/2
= a(t)f(r), (1.26)

where f(r) has a different form for each value of the curvature parameter, namely

f(r) = sin−1 r (k = 1), (1.27)

f(r) = r (k = 0), (1.28)

f(r) = sinh−1 r (k = −1). (1.29)

From the definition of dP , given for dt = 0, it is clear that this quantity can not
be measured, given that it does not account for the limits on the propagation
speed of information. However it has a crucial role for the comprehension of the
expansion of the universe, as we will see in the next section.
Moreover, at the present time t0 the proper distance is called comoving distance,
dc:

dc = a0f(r), (1.30)

where a0 = a(t0). The proper and comoving distances are therefore related by
the equation

dc =
a0

a
dP . (1.31)

1.5 The Hubble-Lemâıtre law

The Hubble-Lemâıtre Law (Lemâıtre, 1927; Hubble, 1929) describes the expan-
sion of our universe and descends from the Cosmological Principle, therefore from
the FRW metric.
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In fact, by considering the definition of proper distance, Eq. (1.26), we obtain
the radial velocity of a source at a point P with respect to the origin of a set of
polar coordinates (r, θ, φ):

vr =
ddP
dt

= ȧf(r) =
ȧ

a
dP . (1.32)

This relation is the Hubble-Lemâıtre Law and the quantity

H(t) =
ȧ

a
, (1.33)

is often called the Hubble parameter, which is constant at a given proper time.
For the present cosmic time we refer to H(t0) = H0 as the Hubble constant, which
has the value

H0 = 67.4± 0.5 km s−1 Mpc−1. (1.34)

In particular, this is the value obtained by the ESA Planck mission (Planck
Collaboration 2018, Paper VI) from the power spectrum of the cosmic microwave
radiation (CMB), assuming a ΛCDM model for the universe.2 There is however
a discrepancy between this value of the Hubble constant and those obtained
with other independent methods, such as observations of type Ia supernovae (S.
Dhawan et al. 2018) or Cepheids in nearby galaxies (Riess et al. 2019). These
differences are subject of debate and raised doubts about the ΛCDM model for
the universe.

1.6 Cosmological redshift

Due to the expansion of the universe, the light from distant sources shows a
shift towards longer wavelengths, namely a redshift. The redshift z is a physical
observable and is defined as

z =
λ0 − λe
λe

. (1.35)

The quantity λe is the wavelength of radiation in the rest frame of the source,
which is at a comoving coordinate r and emits the signal at time te. On the other
hand, λ0 is the wavelength observed at time t0 at a point O (which we consider as
the origin of our coordinate system). Light travels along a null geodesic, therefore
ds2 = 0 and for dθ = dφ = 0 the Eq. (1.20) becomes∫ t0

te

c dt

a(t)
=

∫ r

0

dr√
1− kr2

= f(r). (1.36)

The important property of f(r) is that it does not vary with time, because both
the source and the observer are moving with the cosmological expansion and

2See Section 1.9 for a description of the ΛCDM model.
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therefore r is a constant. Consequently, if we consider the light emitted from the
source at t′ = te + δte and received by the observer at t′0 = t0 + δt0, we can write∫ t′0

t′

c dt

a(t)
= f(r). (1.37)

If δte and δt0 are small, from Equations (1.36) and (1.37) we derive that

δt0
a0

=
δte
a

, (1.38)

where a = a(te). By expressing the frequencies of emitted and observed light as
νe = 1/δte and ν0 = 1/δt0, we obtain

νea = ν0a0, (1.39)

from which
1 + z =

a0

a
. (1.40)

In an expanding universe the value of a(t) increases with time, resulting in a
redshift of the light emitted by the galaxies in the Hubble flow, i.e. the galaxies
that are receding from us due to the expansion of the universe.

1.7 Cosmological distances

The proper distance dP is defined from the FRW metric imposing dt = 0, which
implies that this quantity should be measured in a null time interval. Being this
physically impossible, it is necessary to define new measurable distances.
One such distance is the luminosity distance dL, defined as

dL =

(
L

4πl

)1/2

, (1.41)

where L is the luminosity emitted by the source, which is at a comoving distance
r, at time t. The quantity l is the flux measured by the observer at time t0,
expressed as

l =
L

4πa2
0r

2

(
a

a0

)2

, (1.42)

where 4πa2
0r

2 is the area of a spherical surface centered on the source and passing
through the position of the observer. The factor (a/a0)2 contains two effects
caused by the expansion of the universe: redshift and dilatation of time intervals.
Firstly, from Eq. (1.40) we know that the photons have been redshifted by a
factor a/a0. Then, from Eq. (1.38) it turns out that there is a time-dilatation
due to the expansion of the universe, which implies that the photons emitted by
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the source in a time interval δt arrive to the observer in an interval δt0 = (a0/a)δt.
From Eq. (1.42), the Eq. (1.41) can be expressed as

dL = a2
0

r

a
= a0r(1 + z). (1.43)

An additional measurable cosmological distance is the angular-diameter distance
dA:

dA =
DP

∆θ
. (1.44)

Here DP is the proper diameter of a source with comoving coordinate r at time
t, while ∆θ is the angle subtended by DP . In particular DP = ar∆θ, therefore

dA = ar =
a0r

1 + z
. (1.45)

The luminosity distance dL and the angular-diameter distance dA can be exploited
in presence of standard candles and standard rulers, respectively. A standard
candle is a source with known luminosity, while a standard ruler has a known
spatial dimension.
Moreover, dL and dA are defined in order to preserve Euclidean properties, re-
spectively the inverse-square law and the variation of angular size with the dis-
tance. Additionally, from these quantities we can define the so called duality
relation, derived from Equations (1.43) and (1.45):

dL
dA

= (1 + z)2. (1.46)

Deviations from the factor (1 + z)2 quantify the deviations from the FRW metric
and in turn from homogeneity and isotropy, however it is quite difficult to find
objects that are both standard candles and standard rulers.

1.8 Friedmann models

The Friedmann models are fundamental in the description of the universe as a
whole. They are based on the FRW metric and describe the content of matter
and energy of the universe as a perfect fluid with, in general, pressure p and
density ρ.

1.8.1 Friedmann equations

In a universe described by General Relativity, the geometry of space-time is re-
lated to the matter content through the Einstein Equations, Eq. (1.4). From
these equations derive the Friedmann equations, which are based on two fun-
damental assumptions: the FRW metric, and the description of the content of
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matter in the universe as a perfect fluid, so that the energy-momentum tensor
has the form expressed in Eq. (1.5).
With these assumptions, the Einstein equations yield

ä = −4π

3
G
(
ρ+ 3

p

c2

)
a (1.47)

for the time-time component, and

aä+ 2ȧ2 + 2kc2 = 4πG
(
ρ− p

c2

)
a2 (1.48)

for the space-space components (i, j = 1, i, j = 2, i, j = 3). The space-time
components, given the assumption of the Cosmological Principle, give 0 = 0.
From the combination these two equations we obtain

ȧ2 + kc2 =
8

3
πGρa2. (1.49)

Equations (1.47) and (1.49) - the Friedmann equations (Friedmann, 1922) - are
not independent under the assumption of an adiabatic expansion of the universe.
The second, indeed, can be derived from the first through the adiabaticity relation

d(ρ c2a3) = −p da3. (1.50)

1.8.2 The cosmological constant

Friedmann obtained his equations in 1922 and at that time was generally accepted
the idea of a static, not evolving universe. However from Eq. (1.47) it turns out
that the universe can not be static, unless either the pressure p or the energy
density ρc2 are negative. This is not possible, merely for the physical definition
of p and ρc2.
In order to describe a static universe, Einstein yet in 1917 introduced a cosmolo-
gical constant Λ that modified the gravitation itself:

Rαβ −
1

2
gαβR− Λgαβ =

8πG

c4
Tαβ. (1.51)

With an appropriate choice of Λ, which must be sufficiently small to not change
the laws of planetary motions, one can obtain a static cosmological model.
Nowadays we know that the universe is an expanding object, therefore the cos-
mological constant should not be necessary. However, from observations of the
flux of distant type Ia supernovae, we know that the universe is expanding in
an accelerated way (Riess et al. 1998), while Eq. (1.47) predicts a decelerated
expansion. Therefore Λ is still considered in the generally accepted cosmological
model, but its place in the Einstein filed equations is different. It indeed is set
in the energy-momentum tensor, modifying the content of energy and matter of
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the universe, intended as the energy density of an unknown dark energy. We can
then define the modified energy-momentum tensor T̃αβ as

T̃αβ = Tαβ +
Λc4

8πG
gαβ = −p̃gαβ + (p̃+ ρ̃c2)uαuβ, (1.52)

where p̃ and ρ̃ are the effective pressure and the effective density, respectively,
and they are related to the corresponding quantities for a perfect fluid by

p̃ = p− Λc4

8πG
, ρ̃ = ρ+

Λc2

8πG
. (1.53)

The Einstein field equations can be therefore expressed as

Rαβ −
1

2
gαβR =

8πG

c4
T̃αβ, (1.54)

and the Friedmann equations become

ä = −4π

3
G

(
ρ̃+ 3

p̃

c2

)
a, (1.55)

ȧ2 + kc2 =
8

3
πGρ̃a2. (1.56)

1.8.3 The general Friedmann model

The Friedmann equations, along with the adiabaticity relation expressed in Eq.
(1.50), describe a perfect fluid and allow to calculate the time evolution of a(t),
as well as ρ(t) and p(t), if the equation of state is known.
The general Friedmann model accounts for the Cosmological Principle, therefore
the pressure can only be isotropic. Moreover, the isotropic pressure is a necessary
condition for a perfect fluid. In particular perfect fluids, at rest, are completely
described in terms of their energy density ρc2 and pressure p, from which we can
define the equation of state of the fluid in the form

p = wρc2, (1.57)

where the parameter w is assumed to be constant with time, and is defined in
the range

0 ≤ w < 1, (1.58)

called Zel’dovich interval. This range descends from the definition of the sound
speed vs in a medium,

v2
s =

∂p

∂ρ

∣∣∣
S=const

(1.59)
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where S is the entropy. From the given definition of the equation of state, it
turns out that for w > 1 the sound speed would exceed the speed of light. On
the other hand, for w < 0 the sound speed would not be a real variable.

In particular w can assume the value w = 0 for pressureless matter, or dust. A
fluid of dust is described by p = 0 because it represents a good approximation
to the behavior of a non-relativistic gas. Indeed the energy at rest of a particle,
mpc

2, is typically larger than its kinetic energy, therefore the exerted pressure is
negligible. On the other hand, we have w = 1/3 for a non-degenerate radiative
fluid, which can be composed of photons or ultrarelativistic particles in thermal
equilibrium.

From the adiabaticity relation, Eq. (1.50), and the general equation of state, Eq.
(1.57), it is straightforward to obtain

ρw = ρ0,w

(
a

a0

)−3(1+w)

, (1.60)

which for the case of a matter (or dust) universe, w = 0, becomes

ρm = ρ0,m

(
a

a0

)−3

= ρ0,m (1 + z)3, (1.61)

while for a radiative universe we have

ρr = ρ0,r

(
a

a0

)−4

= ρ0,r (1 + z)4. (1.62)

The densities of matter and radiation change in different ways with time, or with
redshift, and the reason is simple. Let us consider a comoving box that expands
with the universe and contains particles which can not be created nor destroyed.
If these are particles of dust, their density decreases as the cube of the scale
factor, as expressed in Eq. (1.61). However, if the particles are relativistic they
behave like photons, therefore additionally to the decrease in density caused by
the expansion of the box they undergo an increase in wavelength by a factor a,
as described in Eq. (1.62).

In addition to the cases of matter and radiation universes, we can deal with a
peculiar case given by w = −1. This derives from the Equations (1.53), in which
are defined the pressure and the density associated to the cosmological constant:

pΛ = − Λc4

8πG
, ρΛ =

Λc2

8πG
. (1.63)

A peculiarity manifest itself by considering the Eq. (1.60) for w = −1, indeed it
turns out that the dark energy density does not vary as the universe expands.
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Let us focus now on the evolution of the scale parameter a(t). We can consider
the Eq. (1.49) at the present time t0, and dividing by a2

0 we obtain

H0(1− Ω0,w) = −kc
2

a2
0

, (1.64)

where Ω0,w is the density parameter at the present time for a fluid component:

Ω0,w =
ρ0,w

ρ0,cr

. (1.65)

Combining this result with the Eq. (1.49) considered at a generic time t and
divided by a2

0, we have

ȧ2

a2
0

= H2
0

[
1− Ω0,w + Ω0,w

(a0

a

)1+3w
]
. (1.66)

This is the most frequent form of the Friedmann equation. We can also express
it in terms of the evolution of the Hubble parameter,

H2(t) = H2
0

(a0

a

)2
[
1− Ω0,w + Ω0,w

(a0

a

)1+3w
]
, (1.67)

and for a universe with more than one fluid component this expression becomes

H2(t) = H2
0

(a0

a

)2
[

1−
∑
i

Ω0,wi
+
∑
i

Ω0,wi

(a0

a

)1+3wi

]
. (1.68)

1.8.4 Flat models

Let us consider a universe with a single component and with a flat geometry, i.e.
Ωw = 1. This kind of models are called Einstein-de Sitter (EdS) universes. Then
the Eq. (1.66) becomes

ȧ2

a2
0

= H2
0

(a0

a

)1+3w

, (1.69)

which can be integrated, obtaining

a(t) = a0

(
t

t0

)2/3 (1+w)

. (1.70)

Therefore the expansion in these universes, for w = 0 or w = 1/3, is eternal.
Moreover from the last equation we can obtain the relation between time and
redshift:

t = t0(1 + z)−3(1+w)/2. (1.71)

18



From Equations (1.70), (1.71) and (1.60), derive the following relations:

H ≡ ȧ

a
=

2

3(1 + w)t
= H0

t0
t

= H0(1 + z)3(1+w)/2, (1.72)

q ≡ −aä
ȧ2

=
1 + 3w

2
= const = q0, (1.73)

t0,w ≡ t0 =
2

3(1 + w)H0

, (1.74)

ρ = ρ0,w

(
t

t0

)−2

=
1

6(1 + w)2πGt2
. (1.75)

Then in these models the age of the universe t0 is closely related to the Hubble
constant H0. Moreover the deceleration parameter q is constant, therefore the
expansion is steadily braked with time for positive values of w. It turns out
that for high values of w and, therefore, for higher values of pressure, also the
deceleration parameter increases. On the other hand, negative values of w cause
a steadily accelerated expansion. In Table 1.1 are shown the cases for a matter-
dominated universe (w = 0) and a radiation-dominated universe (w = 1/3).

Matter (w = 0) Radiation (w = 1/3)

a(t) = a0

(
t
t0

)2/3

a(t) = a0

(
t
t0

)1/2

t = t0(1 + z)−3/2 t = t0(1 + z)−2

H = 2
3t

= H0(1 + z)3/2 H = 2
3t

= H0(1 + z)2

q0 = 1
2

q0 = 1

t0 = 2
3H0

t0 = 1
2H0

ρm = 1
6πGt2

ρm = 3
32πGt2

Table 1.1: Expressions of the fundamental parameters in matter-dominated and radiation-
dominated flat universes.

1.8.5 Curved models

In case of the density parameter with values Ωw 6= 1, we are in the case of curved
universes. At early times, that now we consider by setting ȧ = 0 in Eq. (1.66),
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we can neglect the term (1− Ω0,w) because

a0

a
= 1 + z � |Ω−1

0,w − 1|1/(1+3w) ≡ a0

a(t∗)
= 1 + z∗. (1.76)

Consequently, for 0 < a ≤ a(t∗) = a∗ the Eq. (1.66) has the form

ȧ2

a2
0

' H2
0 Ω0,w

(a0

a

)1+3w

, (1.77)

which, for Ω0,w = 1, is the same expression derived for the flat models. This
result is extremely relevant, because allows us to generalize the behavior of any
sort of universe at times close to the Big Bang as equivalent to the flat case.

More in detail, for open universes (Ωw < 1) in Eq. (1.66) is evident that ȧ can
not be zero, it is always positive and therefore a grows indefinitely, as in the case
of the flat universes.
For a� a∗ from Eq. (1.66) we obtain

ȧ = a0H0(1− Ω0,w)1/2, (1.78)

therefore ȧ tends to a constant for t � t∗, then a ∝ t asymptotically. Con-
sequently can be derived the following relations:

H ' t−1, (1.79)

q ' 0. (1.80)

On the other hand, for closed universes (Ωw > 1) the first derivative of a can be
zero in Eq. (1.66), at a time tmax. In this case a(tmax) = amax is equal to

amax = a0

(
Ω0,w

Ω0,w − 1

)1/(1+3w)

. (1.81)

For t > tmax the deceleration parameter decreases at the same rate of its incre-
ment, therefore at a time tf = 2tmax the universe collapses in another singularity,
the Big Crunch.
In Fig. 1.1 is shown the time evolution of a(t) for each model of universe.
Having the general behaviors of the curved models, we can consider the effects of
the different fluids that can compose them.

Let us consider first the dust models, i.e. with w = 0, for which the Eq. (1.66)
becomes

ȧ2

a2
= H2

0

(
1− Ω0,m + Ω0,m

a0

a

)
. (1.82)

For open models this equation has a solution in the parametric form:

a(ψ) = a0
Ω0,m

2(1− Ω0,m)
(coshψ − 1), (1.83)
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Figure 1.1: Time evolution of the expansion parameter a(t) in a closed model (Ω0 > 1), flat
model (Ω0 = 1) and closed model (Ω0 < 1). Image from P. Coles, F. Lucchin, [1] p. 40.

t(ψ) =
1

2H0

Ω0,m

(1− Ω0,m)3/2
(sinhψ − ψ). (1.84)

From these last relations it is possible to derive that

t0 >
2

3H0

, (1.85)

where 2/(3H0) is the age of the universe predicted in a flat model with w = 0.
For closed models, instead, the parametric solutions for Eq. (1.66) are

a(θ) = a0
Ω0,m

2(1− Ω0,m)
(1− cos θ), (1.86)

t(θ) =
1

2H0

Ω0,m

(1− Ω0,m)3/2
(θ − sin θ), (1.87)

and from these relations is derived t0:

t0 <
2

3H0

. (1.88)

Turning to the radiative models, for which w = 1/3, Eq. (1.66) has the form

ȧ2

a2
= H2

0

[
1− Ω0,r + Ω0,r

(a0

a

)2
]
, (1.89)

and the solution is

a(t) = a0(2H0Ω
1/2
0,r t)

1/2

(
1 +

1− Ω0,r

2Ω
1/2
0,r

H0t

)1/2

. (1.90)
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In open models, for t� t∗ this last equation becomes

a(t) ' a0(1− Ω0,r)
1/2H0t, (1.91)

and it is possible to show that for the present cosmic time t0 holds the relation

t0 >
1

2H0

, (1.92)

where 1/(2H0) is the value of t0 in a flat universe.
For closed models, instead,

t0 <
1

2H0

. (1.93)

1.8.6 Evolution of the density parameter

The density parameter depends on time, or redshift, and in the case of a single
dominant fluid component it can be written as

Ωw(z) =
ρw(z)

3H2(z)/(8πG)
. (1.94)

Considering the Eq. (1.60) for ρw(z) and Eq. (1.67) for H(z), we obtain the
expression

Ωw(z) =
Ω0,w(1 + z)1+3w

(1− Ω0,w) + Ω0,w(1 + z)1+3w
, (1.95)

which can be written in a more intuitive form:

Ω−1
w (z)− 1 =

Ω−1
0,w − 1

(1 + z)1+3w
. (1.96)

This is a fundamental relation, indeed from this it turns out that all universes
remain always with the same geometry, i.e. the density parameter can not change
its sign and the flat universes preserve their flatness. The comprehension of this
result is straightforward: the expansion can not change the sign of the curvature
parameter k. Moreover, this relation shows a result previously obtained, for which
at early times in the history of the universe all the kinds of universe behave like
the Einstein-de Sitter (EdS) model.

1.8.7 Cosmological horizons

Given the time evolution of the expansion parameter a(t), it is possible to know
the extension of the proper distance RH(t), defined as

RH(t) = a(t)

∫ t

0

c dt′

a(t′)
. (1.97)
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This quantity defines a sphere centered on a particle, or an observer, containing
all the points in causal connection with that particle. Moreover, the definition of
R(t) accounts for the expansion of the universe, indeed the generic distance c dt′

covered by a photon in the interval [t′, t′ + dt′] has to be multiplied by a factor
a(t)/a(t′), in order to obtain a proper distance.3 In Eq. (1.97) the integral could
diverge for times close to the Big Bang, for which a(t) tends to zero. In this case
every particle can, potentially, have received a signal from the whole universe.
However if the integral is not divergent for this lower limit, then RH(t) defines
the so called particle horizon.
In general for a Friedmann universe a(t) ∝ tβ, with β > 0, therefore

RH(t) ∝ tβ
∫ t

0

t−βdt. (1.98)

Then RH exists only if β < 1. Moreover, considering the Eq. (1.47) we have

ä = −4π

3
Ga

(
ρ+

3p

c2

)
∝ β(β − 1)tβ−2, (1.99)

from which

β(β − 1) ∝ −4π

3
Gt2

(
ρ+

3p

c2

)
. (1.100)

Therefore, given that the existence condition of the Big Bang is ä < 0, it is
necessary that β(β − 1) < 0, i.e. 0 < β < 1. This means that the Big Bang
implies the finiteness of RH(t).
Lastly, for a flat Friedmann model it can be shown that

RH(t) ' 3
1 + w

1 + 3w
ct, (1.101)

and for the cases of dust and radiation flat universes we have RH = 3ct and
RH = 2ct, respectively.

Another typology of horizon is the Hubble sphere, defined by the radius Rc,

Rc =
c

H
, (1.102)

that represents the proper distance travelled by light in the characteristic expan-
sion time τH = 1/H. In an Einstein-de Sitter model we have Rc = 3(1 + w)ct/2,
therefore it is of the same order of magnitude of the particle horizon:

Rc =
1 + 3w

2
RH . (1.103)

3In Eq. (1.37) is expressed the value of the function f(r) for a photon, that combined with
the definition of proper distance gives the relation for RH(t).
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However, the Hubble sphere and the particle horizon are two completely different
entities: the former is defined instantaneously at a time t, while the latter accounts
for the past history of the considered particle up to time t. It is possible that
objects inside the particle horizon are outside the Hubble sphere. Being outside
the Hubble sphere means that the recession velocity is greater than the speed of
light, indeed Eq. (1.102) is an expression of the Hubble-Lemâıtre Law. Objects
can be outside Rc at a given time, within it at a later time, and outside again.
On the other hand, an object can not go outside the particle horizon once it is
inside it.

1.9 The Standard Cosmological Model

The basic idea for the description of the observed universe lies in the hot Big
Bang model, based on the Cosmological Principle and the Friedmann equations.
In this framework the evolution is described as a thermal history, and this is the
reason of the term ”hot”: going back to times close to the Big Bang, the universe
becomes increasingly hotter. In particular the temperature of the universe at
the present time is T = 2.726 ± 0.005 K. This is the temperature of the cosmic
microwave background (CMB), the black-body radiation that started to freely
propagate when the first recombination of the free electrons occurred. Moreover,
CMB is one of the strongest evidences of the Big Bang.
Based on the hot Big Bang, the standard cosmological model is the ΛCDM, where
Λ represents the dark energy contribution in terms of the cosmological constant
while CDM stands for cold dark matter, a dust component of dark matter. Other
than CDM, there is a smaller contribution to the matter content given by baryonic
matter, estimated for example through the mass-luminosty ratio of the observable
structures in the universe or from primordial nucleosynthesis studies (see the
review by Thuan & Izotov, 2000). The mass-luminosity ratio can be obtained
through dynamical studies of galaxies, galaxy groups and clusters, and it is also
a fundamental evidence of dark matter.

The reason for which cold dark matter is considered in the modern standard
model is that it becomes non-relativistic earlier, with respect to hot dark matter.
Given that the universe is described in terms of a thermal history, cosmic time
is always related to a temperature. Therefore the time for which a fluid becomes
non-relativistic can be estimated from the relation kBT ' mxc

2, where kB is the
Boltzmann constant and mx is the characteristic mass of the fluid. Cold dark
matter is more massive than hot dark matter, then it becomes non-relativistic
first. Moreover CDM has another particular advantage with respect to the hot
counterpart, indeed it is non-relativistic at the moment of the decoupling from
the radiation component.4 This allows an immediate formation of CDM grav-

4The decoupling of the dark matter takes place before the decoupling of baryons, and it
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itational perturbations, which is a phenomenon at the basis of the concordance
hierarchical model for the formation of the cosmic structure. The latter consists
in the formation of small structures first in the universe, that undergo mergers
that lead to larger gravitationally-bound objects.

The other fundamental aspect of our cosmological model is the presence of Λ
as a dark energy. This is necessary because CMB observations showed that
the universe has a flat geometry, that is Ωtot = 1. However dynamical studies
of galaxies and galaxy aggregations provide density parameters for the matter
Ωm ' 0.30, therefore the dark energy must fill, in terms of ΩΛ, the gap 1−Ωm '
70.5

Another evidence of dark energy is the accelerated expansion of the universe
(Riess et al. 1998), indeed from the first Friedmann equation, Eq. (1.47), we
should expect a decelerated expansion in a universe without any sort of dark en-
ergy. Focusing on the first Friedmann equation and recalling the general equation
of state of the perfect fluid, Eq. (1.57), we see that

ä = −4π

3
Ga(ρ+

3p

c2
) = −4π

3
Gaρ(1 + 3w). (1.104)

Density ρ and pressure p are classically positive, therefore all the homogeneous
and isotropic universes with −1/3 < w < 1 present the Big Bang singularity,6

because the scale parameter a(t) has negative concavity and therefore it intersects
the time axis. The Big Bang could be avoided in universes that do not follow
the Cosmological Principle, or that are not described by means of a perfect fluid.
Another possibility is w < −1/3, and the cosmological constant Λ is an ideal
candidate for this case, having w = −1. However the energy density associated
to Λ is too low,

ρ0,Λ = ρΛ = const = 10−29 g cm−3, (1.105)

and is dominant only since z ' 0.67, therefore it is not sufficient to elude the Big
Bang. Nowadays we associate the cosmological constant to the energy density of
vacuum, and in this idea it is responsible of the inflationary era, i.e. an epoch
where the scale factor a(t) grew exponentially with time. In this period of the
history of the universe arose the gravitational perturbations, which led to the
formation of the structures in the cosmos.

After the introduction of a theoretical background, it is necessary to parametrize
the ΛCDM model. It is indeed described by six fundamental parameters:

• Ωm: total matter density parameter;

is the latter that leads to the free propagation of the cosmic microwave background in the
universe.

5The density parameter of radiation, at z ' 0, is completely negligible.
6The upper limit for w is set by the Zel’dovich interval, Eq. (1.58).
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• Ωb: baryonic matter density parameter;

• A: normalization of the power spectrum;

• H0: Hubble constant;

• n: spectral index of the primordial power spectrum;

• τ : reionization optical depth.

The power spectrum and its features will be described in Section 1.11. The
parameter τ can be relevant only in CMB observations. Lastly, we stress that in
the ΛCDM model the dark energy equation of state parameter is w = −1.

1.10 Linear perturbations

In the standard model of the large scale structure formation, the existence of
the observed gravitationally bound systems is ascribed to the growth of small
perturbations. The origin of such perturbations is attributed to the presence
of quantum fluctuations in the early universe, whose growth has been possible
thanks to the extremely accelerated expansion of the universe during the infla-
tionary era. The observable smaller form of these resulting perturbations can be
seen in the temperature fluctuations of the CMB.7

The study of the growth rate of the perturbations, the so called growth factor,
covers a fundamental role in the estimate of the expansion rate of the universe.
The more the expansion is intense, indeed, the more the gravitational collapse will
be hindered; therefore, by induction, it is possible to infer the cosmic expansion
rate. Operationally, many observations at different redshifts provide the Hubble
parameter H(z), that parametrizes the expansion rate.
The density perturbations observed in the cosmic microwave background, at red-
shift z ' 1100, are very small, corresponding to a density contrast δ

δ =
ρ− ρ̄
ρ̄

=
δρ

ρ
' 10−5, (1.106)

where ρ̄ represents the mean density of the universe. In the recent universe the
density contrast has reached values of 100 or even 1000, and this is a problem in
an Einstein-de Sitter scenario, because this kind of model of universe does not
predict such a high growth of the perturbations. We will see in the following
discussion that this problem can be solved with the so called baryon catch-up.

7The cosmic microwave background is a black-body, therefore the energy of the photons
can be related to a temperature. Moreover, it is possible to show that fluctuations of this
temperature correspond to matter density fluctuations.
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The mathematical linear regime of the fluid equations is a good approximation for
the description of the great part of the structure evolution and growth. Therefore
we will pay attention to this regime of perturbations first, for which we also have
analytic solutions, and subsequently will be treated also the non-linear regime
and the methods used to describe it.

1.10.1 The Jeans theory

The Jeans theory describes the collapse in a homogeneous and isotropic fluid.
The general idea, indeed, is that density perturbations that exceed a critical
scale in this fluid could trigger a gravitational collapse, which would result in a
growth of these perturbations. The denser these fluctuations become the more
they will accrete, resulting in an instability which can cause the formation of a
self-gravitating structure.
Gravitational collapse, however, is not that trivial but involves several hydro-
dynamical and dynamical effects, such as gas heating and the increase of the
angular momentum, resulting in an inhibition of the collapse. These effects can
not be described in a linear regime and mainly affect the formation of galaxies,
or in general the baryonic matter. On larger scales the dominant matter con-
tribution is given by dark matter, which is weakly interactive therefore does not
undergo the physical processes of a gas, and in addition the interaction on large
scales is driven by gravitation only. Large scales and dark matter, therefore, are
two ingredients for a linear regime, and this is the main framework we will focus
on in the following analytic discussion.
Before the description of the evolution of perturbations in the universe, it is useful
to shed light on the significance of the gravitational collapse in the Jeans theory.
Consider a spherical inhomogeneity of radius R, in a background fluid of mean
density ρ̄, with mass M and a positive density fluctuation δρ:

δρ = ρ− ρ̄ > 0. (1.107)

In order to have a collapse, the gravitational potential energy Ep must exceed, in
absolute value, the thermal kinetic energy Ek. We define

Ek =
1

2
Mv2, and (1.108)

Ep = −GM
2

R
= −GM

R
ρR3, (1.109)

where v is the mean velocity derived from the Maxwell-Boltzmann distribution.
The condition for the collapse, |Ep| > Ek, then can be expressed as

GρR2 >
v2

2
. (1.110)
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From this expression we can rewrite the collapse condition by means of the Jeans
scale RJ :

R > RJ = v
1√
2Gρ

. (1.111)

Having the principles of the gravitational collapse in mind, now we can proceed
with a more detailed discussion of the perturbation evolution.

1.10.2 Jeans instability in a static universe

Originally, Jeans studied the gravitational instability of a cloud of gas, for which
the local auto-gravitation makes the effects of the expansion of the universe neg-
ligible. For a collisional, self-gravitating, perfect fluid in a static universe we can
write the equations of motion, in the Newtonian approximation:

∂ρ

∂t
+∇ · ρv = 0 (continuity equation) (1.112)

∂v

∂t
+ (v · ∇)v = −1

ρ
∇ρ−∇φ (Euler equation) (1.113)

∇2φ = 4πGρ (Poisson equation) (1.114)

p = p(S, ρ) (equation of state) (1.115)

dS

dt
= 0 (entropy conservation) (1.116)

where φ is the gravitational potential, and v the flow velocity. From observations
of the cosmic microwave background it turned out that the primordial fluctuations
can be described as adiabatic perturbations (Planck Collaboration 2018, Paper
VI), therefore we can consider the conservation of entropy S. This means that
the pressure p depends only on the density ρ, i.e. p = p(ρ). We then have four
variables: ρ, v, φ, p.

This system of equations admits the static solution with ρ = ρ0 = const, v = 0,
φ = φ0 = const, p = p0 = const. It has to be noted that this static solution
descends from the Cosmological Principle, but it is evident that a homogeneous
and isotropic fluid can not be static. Indeed, looking at the Poisson equation, if
ρ0 6= 0 then the gravitational potential must vary. Therefore the incompatibility
of a homogeneous and isotropic universe with the staticity condition is evident
not only in a relativistic framework, but also in the Newtonian theory. However
we will continue our discussion based on this model, because it leads to relevant
and valid results.

We can perturb the static solution for a small perturbation, so that δρ, δv, δp,
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δφ are � 1 and therefore the linear regime is valid:

ρ = ρ0 + δρ, (1.117)

v = δv, (1.118)

p = p0 + δp, (1.119)

φ = φ0 + δφ. (1.120)

Given that the pressure p can be expressed in terms of the density ρ, we can
consider three variables, ρ, v and φ, and three equations: the continuity, Euler
and Poisson equations. We can then substitute the perturbed solutions in these
three equations, obtaining new equations for which we look for solutions in the
form of Fourier modes f(r, t):

f(r, t) = fk exp(ik · r + iωt). (1.121)

Here r is a position vector, k is a wavevector, ω is the wave pulsation. The
general expression f(r, t) stands for δρ, δv, δφ, and fk is the amplitude. In these
terms it is possible to obtain the dispersion relation from the system defined by
the continuity, Euler and Poisson equations. In particular we set equal to zero
the determinant of the representative matrix of this linear system of equations,
from which the dispersion relation is:

ω2 = c2
sk

2 − 4πGρ0, (1.122)

where cs ' (δp/δρ) is the sound speed for adiabatic perturbations. The Eq.
(1.122) admits two types of solutions, according to the value of the wavelength
λ = 2π/k (where k is a wavenumber) with respect to the Jeans length λJ :

λJ =
2π

kJ
= cs

√
π

Gρ0

. (1.123)

Indeed Eq. (1.122) can be written as

ω = ± kcs

[
1−

(
λ

λJ

)2
]1/2

, (1.124)

then, for λ < λJ the perturbation propagates as a sound wave with constant
amplitude, and for λ → 0 the wave propagates at the sound speed, otherwise if
λ→ λJ the wave becomes static. On the other hand, if λ > λJ the pulsation ω is
imaginary and this implies a non-propagating, stationary solution. Defining the
density contrast δ(x, t) as

δ(x, t) =
δρ(x, t)

ρ0

, (1.125)
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we find, for the case λ > λJ , an exponential form for the solution:

δ = δk exp(ik · r) exp(± |ω|t). (1.126)

Of the two solutions given in this equation, we are interested to the increasing
one, representing the growth of a perturbation due to gravitational collapse. It is
important to note that the exponential growth holds for sufficiently large scales,
i.e. for λ� λJ , for which gravity dominates.

To summarize, perturbations described by Fourier modes with λ < λJ propagate
as sound waves. Only in the case λ � λJ it is possible to have a growth of
the perturbation, that in the static scenario is exponential. We can already
understand that this growth will be lower in an expanding universe, where the
expansion hinders the collapse.

1.10.3 Instabilities in an expanding universe

Let us now consider the effect of the expansion of the universe on the growth of
the perturbations.

Consider first perturbations on scales larger than the particle horizon RH . In this
case the dominant interaction is gravity, therefore we can describe this physical
situation in terms of General Relativity. In particular we consider a perturbation
described as a closed universe, embedded in a EdS, homogeneous and isotropic
background universe. We label with b the properties of this background universe
and with p those of the perturbation, so we have

H2
p +

c2

a2
=

8π

3
Gρp, (1.127)

H2
b =

8π

3
Gρb, (1.128)

and for simplicity we set Hp = Hb. Gravity couples the behaviors of the different
fluid components in the universe, in particular the minor components follow the
time dependency of the density contrast of the dominant one. Before the equi-
valence between the radiation and matter densities, i.e. for t < teq, the dominant
contribution is given by radiation, and it turns out that the radiation density
contrast δr has the following dependency on time,

δr ∝ t, (1.129)

so that also the matter density contrast is directly proportional to t. On the other
hand, after the equivalence the matter is dominant, implying

δm ∝ t2/3. (1.130)
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and therefore also δr ∝ t2/3.8 These dependencies are still valid for scales < RH ,
but with the condition that they are much greater than the Jeans scale. In
this case, however, the minor components do not follow the dependencies of the
dominant one. The general result, in brief, is that perturbations larger than the
particle horizons always grow with time.
On the other hand, for perturbations on scales inside the particle horizon it is
necessary to invoke the dynamics of self-gravitating fluids. As described in Section
1.10.2, we look for perturbed adiabatic solutions. We focus first on the case of
matter-dominated universes, meaning that we consider times t > teq. Differently
from the situation described in Section 1.10.2, now the flow velocity u is not null
but it is given by the expansion of the universe:

u =
dr

t
= ȧx+ aẋ = Hr + aẋ = Hr + vp, (1.131)

where r is the proper coordinate, while x is the comoving component. The first
term in the left hand side of Eq. (1.131) represents the Hubble flow, i.e. the
expansion of the universe, while the second term is a peculiar velocity given by
the perturbation. The functional form of the solutions f(x, t) is still a Fourier
mode, but now the amplitude fk depends on time because of the expansion of
the universe:

f(x, t) = fk(t) exp(ik · x). (1.132)

Considering again the same three variables, and substituting the relative solutions
in the continuity, Euler and Poisson equations, the dispersion relation can be
expressed as

δ̈k + 2Hδ̇k + δk[k
2c2
s − 4πGρ0] = 0. (1.133)

Here δk is the amplitude of the wave that represents the Fourier transform of the
density contrast field. The second term of this relation is a tidal contribution
deriving from the expansion of the universe, and it acts against gravity. The
second term in the square brackets represents the mean gravity, while the term
δkk

2c2
s accounts for the characteristic velocity field of the fluid. In particular this

term hinders the collapse in terms of pressure, which is ingrained in the sound
speed.
From the dispersion relation, considering solutions in the form of a power-law, i.e.
δk ∝ tα, we can derive the behavior of perturbations smaller than the scale of the
particle horizon RH , in a matter-dominated universe. With the same arguments
described in Section 1.10.2, in an EdS universe we find a propagation as waves
for λ < λJ , while for λ > λJ we have

δ± = δk(t)± exp(ikx) = exp(ikx) t

[
−1±5
√

1−(λJ/λ)2
]
/6
. (1.134)

8It has to be noted that after the equivalence the baryonic matter is still coupled to radiation.
Indeed the baryonic matter is decoupled, and therefore can accrete, after recombination. In
general, indeed, a matter perturbation can not grow if the matter fluid is coupled to radiation,
because the radiative pressure inhibits the collapse.
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For the case of λ� λJ , we then have

δ+ ∝ t2/3 (growing solution), (1.135)

δ− ∝ t−1 (decaying solution). (1.136)

As already mentioned, due to the expansion of the universe we do not obtain the
exponential growth found in Eq. (1.126).
Turning to curved universes, the growing solution has the following expression:

δ+ ∝ H(t)

∫
dt

H2a2
, (1.137)

which has no analytic solution. It is possible to derive an approximate form for
the variation of the growing solution, namely the growth factor f :

f ≡ d ln δ+

d ln a
' Ω0.55

m +
ΩΛ

70

(
1 +

Ωm

2

)
. (1.138)

This expression is extremely important because the exponent 0.55 derives from
General Relativity, therefore the measure of f is a test of General Relativity.
Moreover f depends mainly on Ωm, and this is reasonable because the matter
interacts gravitationally, while the dependency on the cosmological constant Λ,
which participates to the expansion of the universe, is weaker. It has to be noted
that in an EdS universe f = 1, because from Eq. (1.135) we find δ+ ∝ a. However,
in our ΛCDM universe, the value of f deviates from unity.
So far we treated matter fluctuations in matter-dominated universes. However we
should point out that after the equivalence and before recombination, the baryonic
matter is still coupled with radiation. When recombination occurs, baryons fall
in the already formed potential wells of dark matter, and this occurrence is called
baryon catch-up. In particular the baryonic density contrast δk,B depends on the
dark matter one δk,DM in terms of the scale factor at the decoupling adec:

δk,B = δk,DM

(
1− adec

a

)
(1.139)

This explains the rapid growth of the baryonic perturbations from z ' 1100 to
the present day.
Lastly, we can mention the main results obtained for perturbations smaller than
RH in a radiative universe, i.e. for times t < teq. In this framework the Jeans scale
for radiative perturbations has no physical meaning, because it is greater than
the scale of the particle horizon RH . Consequently, there are no gravitational
radiative instabilities inside the horizon in this epoch. On the other hand consid-
ering dark matter perturbations in a radiative universe, on scales much greater
than the Jeans scale, we find the so called Meszaros effect. This effect consists of
a inhibited growth of the dark matter perturbations before the equivalence. In
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particular the perturbations exist, but can grow at most of a factor 5/2. This
effect can be intuitively explained by considering the free-fall timescale

τff =
1√

GρDM
(1.140)

and the expansion timescale

τexp =
1

H
' 1

G
√
ρDM + ρr

(1.141)

where ρDM and ρr are, respectively, the density of dark matter and radiation.
Therefore τff � τexp in a radiative universe, so the gravitational collapse in
ineffective.

1.11 Statistical properties of the Universe

The growth of the perturbations is fundamental for the comprehension of the uni-
verse, and it is necessary to describe the probability distribution of these density
fluctuations. A problem related to this is that the universe is a unique object,
not reproducible, and this could make difficult the construction of a meaningful
statistical framework.
However there is a solution to this. As evidenced in Eq. (1.133), we can con-
sider the density contrast δ(x) = δρ(x)/ρ, in the real space, as the fundamental
property of the perturbations. It can also be expressed as

δ(x) =
1

(2π)3

∫ +∞

−∞
δ(k) exp(ik · x) d3k, (1.142)

i.e. it is the inverse Fourier transform of the imaginary δ(k). The quantity δ(x)
has no dimension, while δ(k) has the dimensions of a volume.
We consider δ(x) as a continuum and stochastic field.9 In particular we are
not interested in the exact value of δ(x) in the point x,10 but the aim is to
investigate the mean properties of this field. In a first instance we consider the
ergodic principle, or fair sample principle, which states:

”The result of the mean of many realizations of universe is
equivalent to the mean obtained considering separate, and sufficiently

large, volumes in the universe.”

9The stochasticity of this field derives from the stochastic nature of the fluctuations generated
during the inflationary era.

10And knowing the value of δ(x) would be operationally impossible, given that the observed
matter density field is not continuum.
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These volumes must be sufficiently large to be considered statistically independ-
ent, and their size depends on the cosmic epoch and on the level of non-linearity
of the perturbations, which grows with time.
If the distribution of δ(x) is Gaussian, then the ergodic principle becomes a the-
orem. On this regard, another time the Fourier transforms show their extreme
usefulness. We know that δ(k) is a stochastic field, as well as δ(x). In partic-
ular, given that δ(k) is imaginary, then also the phases of these quantities are
stochastically distributed. A theorem states that:

”Imaginary numbers with casual phases are normally distributed.”

The quantity δ(k) represents the decomposition in Fourier modes of the field δ(x).
This implies that, if δ(k) follows a Gaussian distribution, also δ(x) is normally
distributed. Therefore, the fair sample theorem is valid for the δ(x) field.

A fundamental statistical indicator in cosmology is the two-point correlation func-
tion ξ(r), defined as

ξ(r) := 〈δ(x) δ(x+ r)〉, (1.143)

that measures the autocorrelation of the field δ(x) in positions at a distance r
from x. This is a double operation of mean, because the mean is evaluated for all
the positions x and for all points at a distance r from each x. For the isotropy
of the universe on large scales, ξ is a function of the modulus of r. It is possible
to write the expression for ξ in terms of Fourier transforms:

ξ(r) =
1

(2π)6

∫
d3k

∫
d3k′〈δ(k) δ(k′)〉 exp[ik · (x+ r)] exp[ik′ · r], (1.144)

from which we define

〈δ(k) δ(k′)〉 := (2π)3P (k) δ
(3)
D (k + k′), (1.145)

where P (k) is the power spectrum and δ
(3)
D (k+k′) is the three-dimensional Dirac

delta. From this definition descends the Wiener-Khinchin theorem, which states
that the two-point correlation function is the inverse Fourier transform of the
power spectrum:

ξ(r) =
1

(2π)3

∫
d3kP (k) exp(ik · r). (1.146)

In general the power spectrum is P (k) ∝ 〈|δ(k)|2〉, because

〈δ(k) δ∗(k)〉 ≡ 〈|δ(k)|2〉 := (2π)3P (k) δ
(3)
D (k − k) (1.147)

where δ∗(k) in the complex conjugate of δ(k), and in general δ∗(k) = δ(−k).
Therefore P (k), similarly to ξ(r), depends only on the modulus of k, k, and it is
a mean over the set of {kx, ky, kz} that give the same value of k.11

11Moreover, for the isotropy it is not important what is the set of {kx, ky, kz} that originates
a vector with modulus k.
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We showed that δ(x) is normally distributed, therefore its distribution is uniquely
defined by its mean and its variance. In particular the variance σ2 is defined as
σ2 := 〈δ2(x)〉, therefore it is an operation of mean of the δ2 over a volume, followed
by a second operation of mean over many volumes. Moreover, it is possible to
show that

σ2 =
1

(2π)3

∫
d3kP (k), (1.148)

i.e. the variance is a three-dimensional integral of the power spectrum P (k).
However our observable is not the δ(x) field, but the distribution of the galaxies,
that is not continuum. We define this observable, called δgal, considering volumes
instead of single points:

δgal =
Ngal(V )− N̄gal(V )

N̄gal(V )
=
δN(V )

N̄(V )
, (1.149)

where Ngal(V ) is the number of galaxies in a given volume V . Similarly, we can
define the density contrast of the matter field, δM as

δM =
M(V )− M̄(V )

M̄(V )
=
δM(V )

M̄(V )
. (1.150)

We can also write this relation in terms of a convolution of δ with a window
function or filter W (kR),

δM(x) = δ(x) ∗W (kR), (1.151)

from which the mass variance σ2
M can be obtained in the form

σ2
M =

1

(2π)3

∫
d3kP (k)Ŵ 2(kR) (1.152)

where Ŵ (kR) is the Fourier transform of the window function. For high values
of R, or similarly for high values of the mass M , we filter on large scales and
the mass variance σ2

M tends to zero. Conversely, for small values of R we have
σ2
M → σ2.

In addition, we can not know in principle if the galaxy distribution reflects the
distribution of the total matter in the universe. For this reason we parametrize
the relation between δgal and δM with a bias factor b:

δgal = b δM (1.153)

The bias factor depends on the cosmology, and is defined by the Mo-White rela-
tion (Mo & White, 1996)

b(M, z) = 1 +
1

δc

(
δ2
c

σ2
Mδ

2
+(z)

− 1

)
, (1.154)
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where δc is the critical density contrast for the collapse, derived in the spherical
collapse formalism (described in Chapter 3).
The arguments that led to Eq. (1.150) and Eq. (1.153) affect, obviously, also
the two-point correlation function ξ(r). The bias factor grows with the redshift
z and, particularly, with the mass M . Then we expect that galaxy clusters have
a two-point correlation function larger than galaxies.

Lastly, we will focus on another fundamental topic related to the theory of the
perturbations: the evolution of the power spectrum P (k).

1.11.1 The evolution of the power spectrum

The power spectrum P (k) can be expressed, in a first instance, as a power-law of
the wavenumber k with an arbitrary amplitude A,

P (k) = Akn, (1.155)

where n is the spectral index. In the linear regime we have seen that the growing
solution δ+ for the evolution of the perturbations is independent on k, or equival-
ently on the physical scale R.12 This is a relevant advantage of the linear regime,
for which the growth of an initial perturbation with density contrast δin(k) is
modulated as δ+(t)δin(k). Indeed, given that P (k) ∝ 〈|δ(k)|2〉, we therefore have
a parallel shift of the initial power spectrum Pin with time:

P (k) = Pin(k)δ2
+(t). (1.156)

It is important to point out that these arguments are valid for the primordial
power spectrum. In particular the inflationary models predict a value for the
spectral index n ' 1, which in terms of gravitational potential translates in
perturbations with the same amplitude on all scales, giving rise to the so called
white noise. The Planck satellite measured the value of n (Planck Collaboration
2018, Paper VI), that can be expressed as

n = 1 + 2ε− 6η, (1.157)

where ε and η are the slow-roll parameters defined in the inflationary models (see
Linde, 2007), obtaining n ' 0.96. This result is extremely important because
it is in accordance with the prediction of the modern models of inflation, and
in addition it supports the hierarchical clustering scenario. The latter, indeed,
predicts a range −3 < n < 1 for the spectral index.
This particular range can be derived with simple considerations. From the ex-
pression for σ2

M , Eq. (1.152), and considering the Eq. (1.156), neglecting the
effect of the window function we have

σ2
M ∝ δ2

+(t)kn+3 ∝ δ2
+(t)R−(n+3) ∝ δ2

+(t)M−(n+3)/3. (1.158)

12It is important to stress that the dimension of the wavenumber k is the inverse of a physical
scale.
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Now, the assumption for the non-linear regime is the following:

”The upper limit of the linear regime is in general set by σ2 ' 1,
δ ' 1. When the variance of the perturbation distribution reaches the
value σ2 ' 1, the structures are formed and the non-linear regime is

established.”

With this assumption, from Eq. (1.158) we have 1 ∝ δ2
+(t)M

−(n+3)/3
∗ , where M∗

is the mass of the structure that forms at a given time t∗. Therefore

M∗ ∝ δ
6/(n+3)
+ , (1.159)

and for a matter-dominated EdS model (a good approximation for our universe)
we know that δ+(t) ∝ a ∝ t2/3, so that

M∗ ∝ (1 + z)−6/(n+3) (1.160)

and, from Table 1.1,
t∗ ∝ (1 + z)−3/2 ∝M (3+n)/4

∗ . (1.161)

In a hierarchical model the formation time must be smaller for the smaller objects,
therefore n > −3. In addition the energetic of the systems should increase with
the mass, therefore n < 1. Then we have obtained the aforementioned range
−3 < n < 1.
Another implication of n ' 1 is that when the perturbations begin to be con-
tained in the particle horizon, they have the same power. We also know that, as
discussed in Section 1.10.3, the dark matter perturbations that enter the horizon
before the equivalence undergo the Meszaros effect, i.e. their growth is almost
inhibited. In this way, before the equivalence, the perturbations enter the hori-
zon in correspondence of the same wavenumber k and can no longer grow. On
the other hand, the perturbations on scales bigger than the horizon continue to
grow at the same rate, following the parallel shift of the power spectrum. As a
consequence, the power spectrum at the moment of the equivalence has a peak
in correspondence of keq, and is expressed in the form

P (k, teq) = PinT
2(k) = AknT 2(k), (1.162)

where T 2(k) is the transfer function, whose values are T 2(k) ∝ k0 for k < keq,
and T 2(k) ∝ k−4 for k > keq.
Moreover, non-linearity manifests itself on the small physical scales first, or in
correspondence of the big wavenumbers k, indeed the variance σ2 decreases with
the physical scale. As a consequence, the probability distribution of the density
contrasts δ on small scales becomes larger with time first, until the form of the
distribution deviates completely from a Gaussian. Indeed the original Gaussian
distribution is centered on zero, and the wing in the regime of the underdensities
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con not extend to density contrasts lower than -1. This originates a non-zero
skewness in the distribution, which in particular tends to privilege the formation
of underdensities. This is the reason of the existence of the cosmic web.
Moreover, given that the non-linear regime is manifested on the small scales first,
also the power spectrum changes its shape at high values of k. For this reason
the power spectrum in the linear regime is reflected in the observable structures
only at high redshifts, or in the evolved universe on large scales. In particular in
the local universe non-linearity is reached on scales of ∼ 8 Mpc.

1.12 Non-linearity

As discussed in the previous section, the non-linearity of perturbations is achieved
when a self-gravitating structure as a galaxy or galaxy cluster is formed. In these
cases, an analytic description of the evolution of the perturbations is almost
impossible to attain. An analytic approach to the collapse of cosmic structures is
the spherical collapse, which leads to the Press-Schechter formalism of the mass
function, and that will be detailed in Chapter 3.
In general, however, it is necessary to use numerical methods in order to un-
derstand the non-linear nature of the structures in the universe. Therefore the
exploitation of N -body simulations is mandatory, and typically the initial condi-
tions are set through the use of the Zel’dovich approximation.

1.12.1 The Zel’dovich approximation

The Zel’dovich approximation provides remarkable results for density contrasts
of the order of unity. It consists of an extension of the linear regime formalism
for systems in a weakly non-linear regime, and in particular it is a Lagrangian
perturbative theory at the first order.13

We consider a fluid whose particles are distributed on a grid, and each particle
is subjected to a displacement caused by a density perturbation. The position r,
in physical coordinates, can be expressed as

r(q, t) = a(t) [q − b(t)∇qφ(q)] (1.163)

where q is the initial position of the particle, a(t)q represents the Hubble flow
with a(t) dimensionless, while the second term in the brackets descends from
the factorization of a perturbation F (q, t). The latter represents, therefore, the
displacement of the particle and φ is the potential of the peculiar velocity field,
while b(t) can represent the linear growing solution δ+(t).

13In the Lagrangian point of view, the description of the fluid is based on the motion of the
single particles. Conversely, the Eulerian formalism focuses on a given point of the fluid, from
which we observe the passing particles.
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The main limit of this approach is that the particles feel only the initial force,
which causes their displacement, but in later times there are no additional inter-
actions. This implies that two particles can cross each other without any interac-
tion, giving rise to the so called shell-crossing problem. However these problems
affect mainly the representation of the small scales, where non-linearity develops
first. On large scales, but also for small times, the Zel’dovich approximation is a
fundamental computational tool.
Considering the equivalence of the mass differential dM in the r and q coordinates,
ρ̄ d3q = ρ(r, t) d3r, we obtain

ρ(r, t) =
ρ̄

a3

[
δij − b(t)

∂2φ

∂qi∂qj

]
= (1.164)

=
ρ̄

a3
[1− b(t)λ1]−1 [1− b(t)λ2]−1 [1− b(t)λ3]−1 , (1.165)

where λ1 > λ2 > λ3 are the eigenvalues of the symmetric deformation tensor,
expressed in the brackets in Eq. (1.164). This framework is a representation
of an ellipsoidal perturbation, for which the length of each axis is related to
the value of the corresponding λi. For positive eigenvalues, given that b(t) is a
monotonically increasing function, the brackets [1−b(t)λi]−1 tend to zero, making
the density ρ(r, t) divergent. Apart from this problem, the general idea is that
the bracket containing the largest λi tends to zero first, and this means that the
minor axis collapses first.
On the other hand, if the eigenvalues are negative the brackets can not be null
at any time, and a dilatation takes place, instead of a collapse.
Therefore different combinations of positive and negative eigenvalues lead to dif-
ferent formed structures.

1.12.2 N-Body simulations

Computational methods are necessary in order to reproduce observations, when
the non-linear regime of the perturbations manifests itself. In particular the
cosmological simulations involve cubes of universe containing a large number N
of point masses. We will focus on N -body simulations rather than hydro N -body
simulations: the former consider only gravitational interactions between the N
particles, while the latter also consider the effects of gas such as shocks, cooling,
turbulence. Indeed for large simulations, i.e. for large simulated volumes of
universe, accounting for the gas physics would require enormous computational
times. In particular, in the specific case of simulations on grids, the resolution is
not sufficient for the evaluation of these effects.
The initial conditions are set through the use of the Zel’dovich approximation. A
possible method consists of particles distributed on a grid that undergo a small
perturbation.
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In general each of the N particles has a mass Mi, and the aim of the simulations
is the resolution of the following system:

F i = GMi

∑
i 6=j

Mj

r2
ij

r̂ij

ẍi =
d2xi
dt2

=
dvi
dt

=
F i

Mi

ẋi =
dxi
dt

= vi

(1.166)

where F i is the gravitational force acting on the i-th particle, xi and vi are
respectively the comoving coordinates and the velocity of the i-th particle, rij
is the comoving distance between i-th and j-th particles, and r̂ij is the related
versor.
Given the system (1.166), the fundamental equations to consider for gravitational
interactions are, in comoving coordinates, the Euler equation

dvi
dt

+ 2
ȧ

a
vi = − 1

a2
∇φ = −G

a3

∑
i 6=j, j

Mj
xi − xj
||xi − xj||3

=
F i

a3
, (1.167)

and, applying the second Friedmann equation (1.49), the Poisson equation

∇2φ = 4πGρ̄(t)a2δ =
3

2
H2

0 Ω0
δ

a
. (1.168)

Here a is the scale factor, ρ̄(t) is the average non-relativistic matter density of
the universe, δ the density contrast, H0 the Hubble constant, and Ω0 the matter
density contrast.
Given a time t, the force F i is evaluated for each particle. Then after a time
step δt are evaluated the new velocities and positions, vi(t + δt) and xi(t + δt),
resolving the system (1.166). In these new positions is evaluated again the force,
and the process is repeated iteratively at each time step.
There are different computational methods used in N -body simulations, that we
will describe below: particle-particle (PP), particle-mesh (PM), particle-particle-
particle-mesh (P3M), and hierarchical tree (HT) methods.

Particle-Particle (PP)

The PP method is the simplest method and also the most accurate, because it
consists in the evaluation of the gravitational force acting on each particle at any
time step. However it is the most computationally expensive, because for each
time step it requires the computation of the N(N − 1)/2 distances between the
particles, i.e. the number of operations scales as O(N2).
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Particle-Mesh (PM)

With the PM method, the gravitational potential is computed on a regular grid
with periodic boundary conditions, which allows to use the Fast Fourier Trans-
form (FFT) methods. In particular from the interpolation of the particle positions
is computed the density on the grid, from which is evaluated the FFT of the dens-
ity. Consequently, thanks to the Poisson equation, it is possible to retrieve the
potential on the grid and therefore the force in the Fourier space. Applying the
inverse FFT one obtains the force in the real space, on the grid. Then the force
acting on each particle is evaluated through an interpolation. Given that most
of the operations are made in the Fourier space, the scaling of the number of
operations is O(N logN), better than the PP case.

Particle-Particle-Particle-Mesh (P3M)

The P3M method combines and exploits the advantages of PP and PM. The grav-
itational force is computed most accurately by PP, therefore on small scales F i is
computed with this method. On the other hand, good and less computationally
expensive results are provided by the PM method on large scales. The number of
operations scales as O(k N logN), where k is a factor depending on the chosen
scale.

Hierarchical Tree (HT)

The HT method consists in the division of the simulated volume of universe
in cells, whose sizes follow a hierarchy based on the spatial distribution of the
particles. Firstly the volume is divided into large cells, then each cell can be sub-
divided in smaller ones if it contains more than one particle, and this division con-
tinues until each cell contains approximatively one particle. Considering a given
particle P , the gravitational interaction is computed with the single particles if
they are sufficiently close to P . On the other hand, for distant clumps of particles
it is sufficient to compute the force produced by the biggest cell containing the
clump, i.e. the highest cell in the hierarchy, considering its barycenter as the
distance between the clump and P .
The number of operations involved with this method scales as O(N logN).
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Chapter 2

Galaxy clusters

Galaxy clusters, reaching masses larger than 1015 M�, are the biggest virialized
structures present in the Universe, lying on the highest peaks of the dark matter
density field. These objects are critically important probes in cosmology and
their observed properties can be linked to the physical quantities of their host
haloes of dark matter, modelled as functions of cosmological parameters. In this
chapter we will describe the main properties of galaxy clusters and how these
objects play a role in cosmological studies.

2.1 Clusters as cosmological probes

The use of clusters for cosmological studies dates back to Zwicky’s discovery of
dark matter in the Coma Cluster (Zwicky, 1933). Indeed the masses obtained
from the measured velocity dispersions were found to exceed the total mass of all
the member galaxies by factors of ∼ 200 − 400, which implied the necessity to
postulate the existence of large amounts of dark matter. A further confirmation
of dark matter relied on the discovery of an extended hot intracluster medium
(ICM) emitting by thermal bremsstrahlung in X-rays. Measurement of the tem-
perature of this gas additionally implied that the depth of potential wells of
clusters requires the presence of a dark component.

According to the standard model of cosmic structure formation, the hierarch-
ical model, clusters are thought to be the result of a sequence of mergers and
accretion of smaller systems driven by gravity and dark matter. Indeed the dark
component dominates the gravitational field and the evolution of galaxy clusters
can be determined, in a first approximation, simply by the initial conditions, dark
matter, and gravity.

In particular, gravitational dynamics is the dominant interaction on the large
scales for which the linear or weakly non-linear regime is valid. In these cases gas
physics effects are negligible, and the gravitational dynamics preserves memory
of initial conditions. On smaller scales instead, i.e. on scales of the galaxies, the
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physical processes related to baryonic matter such as gas cooling, star formation,
feedback from supernovae and active galactic nuclei produce a complex ensemble
of effects on the gas, that significantly change the cosmic evolution of baryons,
erasing the cosmological information. In these cases, the non-linear regime holds.
Since galaxy clusters mark the transition between the two regimes of the perturb-
ations, and additionally are the largest virialized objects in the Universe, they
can be considered as extremely important tools in cosmological investigations.

Galaxies have, indeed, mass-luminosity ratios of the order of M/L ∼ 10,
therefore baryons significantly contribute to the total mass and for this reason
non-linearity is dominant. On the other hand we know that in the Universe
the dark matter fraction increases with the mass of the systems, and for galaxy
clusters the mass-luminosity ratio is M/L � 100, where L is essentially the
luminosity of the member galaxies. In these systems the dominant contribution
to the baryonic component is given by the ICM, that however reaches ∼ 15% of
the total mass.

Consequently the formation and evolution of galaxy clusters can be described
only in terms of the dark matter potential well, and this simplification also al-
lows to run simulations of large volumes of universe reproducing the large scale
structure. Accounting also for the physics of baryons is possible, albeit it is much
more computationally expensive and implies strict limitations on the simulated
volume.

Having a model for their evolution, galaxy clusters become powerful cosmolo-
gical probes with a wide spectrum of applications. As we shall see in Chapters 3
and 5, the galaxy cluster mass function strongly depends on cosmological para-
meters, allowing the assessment of the evolutionary models of the Universe from
the study of the distribution of galaxy clusters at different redshifts.

Moreover, the correlation function of galaxy clusters is another fundamental
topic in cosmology. As discussed in Section 1.11 the two-point correlation function
ξ(r), as well as the general N -point correlation function are tracers of the bias
factor b. Moreover the correlation function is a measure of the autocorrelation of
the density contrast field, and with galaxy clusters it is possible to measure the
impact of non-Gaussianity on the density field (e.g. Mana et al. 2014). Lastly,
galaxy clusters are good tracers of linear and non-linear effects leading to redshift
space distortions (e.g. Marulli et al. 2017).

2.2 Bulk properties

Galaxy clusters studies have developed into a broad and multiwavelength field.
Observations in X-rays, optical, NIR and also gravitational lensing studies allow
to study in depth these objects, as we shall discuss in the next section. These
objects reach masses of ∼ 1015 M�, generating potential wells that induce the
member galaxies to reach dispersion velocities of ∼ 1000 km/s.

43



The diffuse plasma, ICM, has on average a free electron density ne ∼ 10−3 cm−3

and temperatures T ∼ 107 − 108 K, therefore it emits in X-rays by thermal
bremsstrahlung. Despite it is not associated with individual galaxies, the tem-
perature of the ICM is consistent with the velocities of galaxies, implying that
both galaxies and gas are nearly in equilibrium within a common gravitational
potential well, which, we stress, includes also the dark matter contribution. This
equilibrium is the basic idea of the β-model (Cavaliere & Fusco-Femiano, 1976),
which remarkably describes the density radial profile of relaxed galaxy clusters,
namely

ρgas(r) =
ρ0

[1 + (r/rc)2]3β/2
. (2.1)

Here rc is the core radius, while β is the ratio between the kinetic energy of
galaxies defined by their one-dimensional velocity dispersion σ2, and the thermal
energy of the gas, namely β = µmpσ

2/(kBT ). The β-model is a flat profile in
proximity of the centre and decreases towards the outskirt.

It must be noted that the assumption of equilibrium is fair only for relaxed
galaxy clusters, or cool-core clusters. For clusters that underwent major mergers
in the past Gyr, called non-cool-core, this assumption is not valid.

Given that the central regions in relaxed clusters are denser than the outskirt,
cooling is more efficient and therefore the temperature is lower (e.g., Fabian,
1994). However spectroscopic observations with the Chandra and XMM-Newton
satellites have shown that only a modest fraction of this gas cools down to low
temperatures (e.g. Böhringer et al. 2001, Peterson et al. 2001). This conundrum
can be solved by invoking the AGN feedback from the central dominant galaxy
(e.g. Vernaleo & Reynolds, 2006).

Another important feature of galaxy clusters is the Navarro-Frenk-White pro-
file (NFW; Navarro et al. 1997), obtained from N -body simulations. It describes
the density profile of the dark matter haloes of clusters of any mass, indeed grav-
ity has not privileged scales. Of course it is a mean profile, real clusters have
different merger histories and could be not completely relaxed.

In particular the basic idea, in a hierarchical model, is that of a self-similar
evolution of galaxy clusters: at any mass, clusters have the same properties.
From this assumption descend important relations that link masses to more direct
physical quantities, namely (see for instance Borgani, 2006)

TX ∝M2/3(1 + z), (2.2)

LX ∝ T 2(1 + z)3/2, (2.3)

where TX and LX are, respectively, the temperature and the luminosity of
the ICM from X-ray observations. However observations are in contrast with the
relations (2.2) and (2.3), therefore with the self-similar growth of galaxy clusters.
In particular the obtained observational relation is (e.g. Xue & Wu, 2000)

LX ∝ Tα with α ' 2.5− 3, (2.4)
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flattening towards the self-similar scaling only for the very hot systems with
TX > 10 keV.

2.3 Detection and mass measurements

There are several methods to detect galaxy clusters and to determine their mass.
Here we present the main methods to accomplish these tasks.

2.3.1 Gravitational lensing

According to general relativity, the mass of a galaxy cluster causes a distortion of
the space-time geometry in the surroundings. In turn, the light rays passing near
to the cluster follow a distorted path, in a phenomenon known as gravitational
lensing. This can both magnify and distort the images of background sources.
Specifically, when the images of background sources such as galaxies are distorted,
the phenomenon is classified as weak lensing. Occasionally, if the background
source is well aligned with the cluster along the line of sight, lensing can also lead
to strong distortions and multiple images of individual sources, and in this case
it is classified as strong lensing.

Gravitational lensing depends on the total mass of the system, and has the
advantage to not rely on any assumption on the physical state of the cluster.
Given a model for the surface density distribution, an estimate of the total mass
is provided through the fit of the gravitational shear profile. A more detailed
description of this process will be discussed in Chapter 4, in the description of
the assessment of the observable-mass scaling relation for the AMICO KiDS-DR3
catalogue, exploited in this Thesis work.

2.3.2 X-ray observations

Most of the baryonic matter in the Universe is in the form of diffuse gas. In
galaxy clusters, the deep potential well of the dark matter halo induces virial
temperatures of ∼ 107−108 K for the diffuse ICM. The most abundant element in
the Universe is hydrogen, therefore this gas is in a first approximation composed of
free electrons and protons, and it emits in the X-ray through free-free interactions
(bremsstrahlung). The other primary X-ray emission processes are free-bound
(recombination) and bound-bound (line emissions). The emissivity in all the
three cases is proportional to the square of the electron density, which ranges
from ∼ 10−1 cm−3 in the inner regions of bright cool core clusters to ∼ 10−5 cm−3

in the outskirts, implying an optically thin regime and therefore a non-auto-
absorbed emission.

Observing this emission in the X-rays allows in a first instance to detect
galaxy clusters, but also to determine their mass. This is possible if one assumes
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a spherically distributed ICM in hydrostatic equilibrium, namely

dPgas
dr

= −ρgas
dφ

dr
= −ρgas

GM(r)

r2
, (2.5)

where Pgas and ρgas are, respectively, the pressure and density of the baryonic
gas composing the ICM, while φ is the gravitational potential of the system.
Therefore, assuming the equation of state of ideal gas, the total mass contained
within the radius r, M(r), can be expressed as

M(r) = − r
G

kT

µmp

(
d ln ρgas

d ln r
+

d lnT

d ln r

)
, (2.6)

where µ is the mean molecular weight (µ ' 0.59 for primordial composition1),
and mp is the mass of the proton. In order to describe the density profile of the
ICM usually is assumed a β-model, described in Section 2.2.

On the other hand, the temperature profile T (r) is determined by perform-
ing X-ray observations at different distances from the centre of the cluster: the
exponential cut-off of the bremsstrahlung spectrum, if the gas density is known,
provides the value of T .

Having the temperature and density profiles, the Eq. 2.6 provides a measure
of the total mass. The problem with this method, however, is that the estimated
masses are ∼ 15 − 20% lower than those obtained via lensing analyses. The
reason is that in Eq. 2.6 are not included the contributions to the pressure from
turbulence, magnetic fields and interactions with cosmic rays.

Lastly, as we already have seen in Section 2.2, the Eq. (2.4) provides a scaling
relation between X-ray luminosity and temperature, from which it is possible to
derive a mass-temperature relation, whose first calibration has been presented in
Reiprich & Böhringer, 2002.

2.3.3 Optical and NIR observations

Through optical and near-infrared (NIR) observations of galaxies it is possible
to identify clusters and determine their mass. Historically galaxy clusters were
identified as overdensities of galaxies in optical images, and Abell (Abell, 1958)
provided the first catalogue based on this method. However this technique is
subject to projection effects, for which field galaxies along the line of sight could
be mistakenly identified as members of a cluster.

A solution to this problem is to exploit the photometric properties charac-
terizing the galaxies in a cluster. Galaxy clusters contain a well-defined, highly
regular population of elliptical and lenticular galaxies, observed in optical and
NIR bands. These member galaxies in a color-magnitude diagram (e.g. a (B-R)

1Note, however, that the ICM has not primordial composition due to supernova and AGN
feedback from galaxies.
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- R diagram) dispose along a sequence, called red-sequence (Bower et al. 1992).
In particular it is a tight linear relationship between color and magnitude, show-
ing that the redder galaxies are brighter. Therefore it plays a considerable role
in the identification of galaxy clusters. An algorithm based on red-sequence is
redMaPPer (Rykoff et al. 2014), widely used to build up cluster catalogues from
SDSS surveys.

There are also other detection algorithms that do not rely on the red-sequence.
For example the AMICO algorithm, that will be extensively described in Chapter
4, assumes a model for the density and luminosity profiles of galaxy clusters, and
identify them by finding galaxy overdensities and matching them with the defined
model. In particular, in this case each galaxy has an assigned probability to be a
member of a cluster or to be part of the field.

The algorithms described above are based on photometric data and provide
mass proxies as direct observables, allowing the calibration of a richness-mass
scaling relation, where the richness is a measure of the number of member galaxies
in a cluster. This is possible thanks to data from lensing, whose effects depend on
the whole distribution of matter in a galaxy cluster. It has to be noted, however,
that a richness-mass scaling relation is strictly related to the algorithm used and
to the data, therefore the calibration must be carried out for each dataset.

Let us now turn to another method to estimate the mass of galaxy clusters,
this time based on spectroscopic data. Given the redshift and the position in
the cluster of a large number of member galaxies, under the assumption of virial
equilibrium the mass is given by

M =
π

2

3σ2
vRV

G
, (2.7)

where π/2 accounts for geometry projection, σ2
v is the velocity dispersion along

the line of sight and RV is the virialization radius. The latter is defined as

RV = N2

(∑
i>j

r−1
ij

)−1

, (2.8)

where rij is the distance projected onto the sky between the i-th and j-th
galaxy, and N is the number of member galaxies. This method, however, has the
problem of the contribution from galaxies along the line of sight misidentified as
members of the cluster. This in general leads to overestimations of M .

2.3.4 Sunyaev Zel’dovich effect

CMB photons passing through the ICM of a galaxy cluster undergo a shift in fre-
quency due to inverse Compton with free electrons, known as Sunyaev-Zel’dovich
effect (SZ; Sunyaev & Zel’dovich, 1972) or thermal SZ effect (tSZ). Therefore

47



the low-frequency photons gain energy and the result is a distortion of the black
body spectrum of the CMB, consisting in a lower number of photons with fre-
quency ν < ν0 ' 217 GHz, and accordingly an higher number with frequency
ν > ν0 ' 217 GHz. In particular ν0 is a characteristic frequency, in correspond-
ence of which the spectrum is not distorted.

This effect is merely a spectral distortion and does not depend on redshift,
indeed in the low frequency approximation it induces variations in the intensity
I of the signal equal to

∂I

I
=
∂T

T
= −2

σT
mec2

∫
Pe dl, (2.9)

where σT is the Thomson cross-section, me the electron mass, c the speed of
light, Pe the thermal pressure of the free electrons integrated along the distance
traveled by photons in the ICM. The typical signal variation is ∂I/I ∼ 10−4,
therefore this effect is not negligible since the CMB shows variations of the order
of ∼ 10−5.

As evidenced in Eq. 2.9, in contrast to X-ray and optical measurements, the
SZ signal of a cluster does not undergo surface brightness dimming. As a con-
sequence, SZ surveys are well-suited to search for massive clusters at high red-
shifts. Current measurements of tSZ are carried out with the South Pole Tele-
scope (Vanderlinde et al. 2010), the Atacama Cosmology Telescope (Marriage et
al. 2011) and also with the Planck satellite (Erler et al. 2018). Moreover, tSZ
provides a reliable estimate of the thermal pressure by free electrons, therefore
in combination with measurements of the temperature from X-ray observations
it contributes to mass measurements (see for instance Grego et al. 2000).

Another effect on CMB spectrum from inverse Compton scattering in galaxy
clusters is the kinetic SZ (kSZ; Carlstrom, Holder & Reese, 2002). This effect
is due to Doppler effect of clusters with a non-zero peculiar velocity along the
line of sight, i.e. a proper motion with respect to the Hubble flow. In this case,
differently from tSZ, the shape of the spectrum does not undergo distortions but
the bulk temperature of the CMB spectrum changes. Therefore the kSZ is a good
tracer of the peculiar velocity field, despite it induces variations in temperature
|∂T/T | ∼ 10−5, an order of magnitude lower than those produced by tSZ.
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Chapter 3

Galaxy cluster mass function

This Thesis work is based on the observed galaxy cluster mass function, defined
as the number density of virialized haloes at a given redshift and in a range of
masses. The mass function plays a crucial role in cosmology since it depends
on fundamental cosmological parameters. Moreover, the specific mass regime of
galaxy clusters is considered, because as already discussed in Chapter 2 these
objects mark the transition between the linear and the non-linear regime of the
gravitational perturbations, so that their formation and evolution can be theor-
etically described with good accuracy.

In particular the dark component of matter is dominant, therefore it is pos-
sible to model the mass function of galaxy clusters accounting only for the dark
matter contribution, neglecting the non-linear effects related to the ordinary mat-
ter. For this reason, in the literature the theoretical mass functions are modeled
as the number density of virialized dark matter haloes. Additionally, it is import-
ant to point out that many attempts have been made in order to consider the
gas component in the models of galaxy clusters, but as we shall see the results
obtained in different works do not converge yet.

3.1 Spherical collapse

Despite galaxy clusters do not reach the level of non-linearity that characterizes
the physical scales of the galaxies, their formation and evolution can not be
described properly within the linear regime. Numerical simulations are therefore
necessary, since the non-linear regime can not be treated analytically.

However it is possible to make use of a simple and analytic approach for the
collapse of an inhomogeneity, the spherical collapse, which leads to the Press-
Schechter formalism for the mass function. The spherical collapse is based on the
following assumptions:

• Initially spherical perturbation, so that it is possible to describe it as a
closed universe;
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• In order to be spherical the perturbation must be spatially small, otherwise
it would be more likely to have asymmetric geometries;

• At the initial time ti the density contrast δi is small, 0 < δi � 1;

• The perturbation expands with the background universe, therefore the ini-
tial peculiar velocity at the edge is null, with a Fourier mode vk,i = 0;

• The background universe is described by an EdS model in the matter era,
i.e. the initial time is greater than the time of the equivalence teq.

In a dust EdS universe the growing and decaying modes of a perturbation
are described, respectively, by Eq. (1.135) and Eq. (1.136). Combining and
parametrizing the contributions of these modes, the density contrast δ can be
expressed in such a way

δ = δ+(ti)

(
t

ti

)2/3

+ δ−(ti)

(
t

ti

)−1

, (3.1)

where the subscript ′+′ denotes the growing mode, and ′−′ the decaying one.
Moreover, in the linear regime it is possible to derive the form of the continuity
equation for the Fourier modes, in comoving coordinates, as

δ̇k + i
kcomvk
a

= 0, (3.2)

from which

vk =
iaδ̇k
kcom

. (3.3)

where kcom is the wavenumber in comoving coordinates. From Table 1.1 we
know that a ∝ t2/3, and combining Eq. (3.1) with Eq. (3.3) we obtain, for t = ti
and in turn vk,i = 0,

2

3
δ+(ti)− δ−(ti) = 0 → δ−(ti) =

2

3
δ+(ti). (3.4)

Therefore Eq. (3.1) for t = ti becomes

δi = δ+(ti) + δ−(ti) =
5

3
δ+(ti) → δ+(ti) =

3

5
δi. (3.5)

Then the remaining 2/5 of δi decays with time, tending to become negligible.
The collapse is described in terms of a closed universe, therefore the density

parameter of the perturbation has to be Ωp > 1. In particular

Ωp(ti) =
ρp(ti)

ρc(ti)
=
ρb(ti)(1 + δi)

ρc(ti)
= Ω(ti)(1 + δi), (3.6)
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where ρc is the critical density and ρb the background density, therefore 1+δi =
Ωp(ti)/Ωb(ti). Thus for a closed universe it is necessary that (1 + δi) > 1/Ωb(ti),
and from the Eq. (1.95) describing the evolution of the density parameter in a
Friedmann universe we obtain

δ+(ti) =
3

5
δi >

3

5

1− Ω0,b

Ω0,b(1 + z)
. (3.7)

Hence, if the background universe has Ω0,b ≥ 1 then any positive density
contrast leads to a gravitational collapse, while for open universes the expansion
inhibits the collapse if δi is not enough greater than zero.

The Friedmann equation (1.66) in a closed universe has parametric solutions
described by Equations (1.86) and (1.87), and for θ = π is defined the time
tmax for which the perturbation reaches the maximum expansion. More in detail,
the perturbation expands with the expansion of the background universe until
it reaches the maximum physical scale Rmax at the time tmax. After this time,
the evolution of the perturbation undergoes a turn-around and the collapse takes
place.

It is possible to obtain that the density of the perturbation in correspondence
of the moment of maximum expansion is

ρp(tmax) =
3π

32Gt2max
(3.8)

and, knowing the value for ρb from Table 1.1, the corresponding density con-
trast is

δ+(tmax) '
ρp(tmax)

ρb(tmax)
− 1 =

(
3π

4

)2

− 1 ' 4.6. (3.9)

Thus from the definition of non-linearity given in Section 1.11.1 we see that
the perturbation is already in a non-linear regime before the collapse.

After the turn-around the physical scale of the perturbation decreases until
the time tcoll = 2tmax, when the collapse is arrested by internal thermal motions.1

Then the perturbation has oscillations around the scale reached at time tcoll, which
will not change in later times and therefore is equal to the virialization scale Rvir.
In particular from numerical simulations we know that the virialization is reached
at a time tvir = 3tmax.

From the virial theorem in scalar form, the total energy of the perturbation
is

Etot(tvir) = −1

2

3

5

GM2

Rvir

, (3.10)

and, in absence of mass and energy losses since the time tmax, we can set

Etot(tmax) = Etot(tvir) → −1

2

3

5

GM2

Rvir

=
3

5

GM2

Rmax

, (3.11)

1For the baryonic matter the pressure hinders the collapse. On the other hand, for a dark
matter fluid this role is played by the velocity dispersion of the particles.
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because at t = tmax the only contribution to Etot is given by the potential
energy. Thus we obtain

Rvir =
Rmax

2
, (3.12)

Therefore the density at t = tvir is ρp(tvir) = 8ρp(tmax). Then we obtain that

δ+(tcoll) '
8ρp(tmax)

ρb(tmax)

(
tcoll
tmax

)2

' 180, (3.13)

δ+(tvir) '
8ρp(tmax)

ρb(tmax)

(
tvir
tmax

)2

' 400. (3.14)

It is important to point out that these results depend on the background cos-
mology, which in this case is a matter-dominated EdS model. The extrapolation
of the linear growth, for which δ+ ∝ t2/3, would give instead

δ+(tcoll) '
3

5

(
3π

4

)2/3(
tcoll
tmax

)2/3

' 1.68, (3.15)

δ+(tvir) '
3

5

(
3π

4

)2/3(
tvir
tmax

)2/3

' 2.2 . (3.16)

3.2 Press-Schechter formalism

An analytic expression for the mass function, proposed by Press and Schechter
(PS; Press & Schechter, 1974), derives from the model of spherical collapse. The
basic idea is that the objects form in correspondence of matter overdensities,
thus it is necessary to know their probability distribution. In the PS formalism is
assumed a Gaussian probability distribution for the filtered density contrast δM
defined in Eq. (1.150), namely

P (δM) =
1√

2πσ2
M

exp

(
− δ2

M

2σ2
M

)
, (3.17)

where σ2
M is the filtered mass variance.2 As discussed in Section 1.11.1, the

Gaussian form of P (δM) holds only in a linear regime. The evolution of perturb-
ations and consequently the entrance in the non-linear regime cause a deviation
from Gaussianity, manifested in a non-zero skewness of the probability distribu-
tion.

Coherently with this assumption for P (δM), the chosen threshold for the
filtered density contrast describing collapsed structures is δc ' 1.68, obtained

2The filtered density contrast is δM = δ(x)∗W (k,M), i.e. a convolution between the density
contrast and the filter. The advantage of the convolution is that it does not affect the probability
distribution, therefore if δ(x) has a Gaussian distribution the same will be valid for δM .
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in Eq. (3.15) by extrapolating the linear theory in the spherical collapse approx-
imation. Therefore we can define the probability that a fluctuation δM exceeds
the critical value δc, namely

P>δc(M) =

∫ ∞
δc

P (δM) dδM , (3.18)

which directly depends on the mass M defined by the filter and also on red-
shift, because σM is time-dependent. In particular in the PS formalism only the
isolated collapsed structures are considered, i.e. those surrounded by underdense
regions, characterized by the probability

P>δc(M)− P>δc(M + dM). (3.19)

In this way, however, is totally ignored the cloud-in-cloud problem, which
takes into account the possibility that a given overdensity, initially isolated, can
be contained within another object on a larger mass scale at a later time. Only the
objects that have just collapsed are considered, i.e. those who have just reached
the threshold δc. In this regard it is important to stress that the mass scale M is
defined by the filter and affects the probability P>δc(M).

Another problem related to the assumption contained in (3.19) is that the
underdense regions are not treated. In turn an half of the mass is not considered,
for symmetry of the Gaussian distribution. Therefore a factor 2 is introduced,
representing the accretion from underdense regions onto the overdensities, so that

n(M)MdM =2ρ̄m [P>δc(M)− P>δc(M + dM)] = (3.20)

=2ρ̄m

∣∣∣∣dP>δcdσM

∣∣∣∣ ∣∣∣∣dσMdM

∣∣∣∣ dM, (3.21)

therefore the expression of the PS mass function is

n(M)dM =

√
2

π

ρ̄m
M2

δc
σM

∣∣∣∣d lnσM
d lnM

∣∣∣∣ exp

(
− δ2

c

2σ2
M

)
dM (3.22)

To sum up, the PS formalism relies on strong and problematic assumptions:
the spherical collapse and the factor 2. It is possible to show that, in the random
walk theory, the factor 2 is merely an artifact of overcounting due to cloud-in-
cloud effects (Bond et al. 1991). Therefore the main problem of the PS mass
function is the spherical collapse. In this regard, Sheth and Tormen (Sheth &
Tormen, 1999) generalized the geometric description introducing the triaxial col-
lapse, calibrating the free parameters of the mass function through the use of
numerical simulations.

Despite the problems residing in the Press-Schechter formalism, it produces
results in good agreement with N -body simulations.
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3.3 Mass function in literature

The modern theoretical mass functions in the mass regime of galaxy clusters,
i.e. from ∼ 1013 to ∼ 1015 M�, are derived from numerical simulations, given the
absence of analytic methods that accurately describe N -body systems in a non-
linear or weakly non-linear regime. A general approach to find collapsed objects
in these simulations is based on the definition of a spherical overdensity, around
density peaks, within which is estimated the value of the mass. Alternatively, the
friends-of-friends (FoF) is another method that allows to find collapsed structures.
In this case, given an halo, the algorithm looks for other haloes at a distance
smaller than a certain fraction of the mean interparticle distance. This procedure
is iterated for each object, and finally ensembles of haloes constitute big collapsed
structures. However the relation between the FoF masses and observables is quite
uncertain.

The general form of the mass function can be expressed as a differential volume
density dn(M, z),

dn(M, z)

dM
= f(σM , z)

ρ̄m
M

d lnσ−1
M

dM
, (3.23)

where ρ̄m is the mean cosmic background density and f(σM , z) is the multi-
plicity function. The latter has a different functional form on the basis of the
different assumptions considered in the model. As a reference, for the PS form-
alism we have

f(σM , z) =

√
2

π

δc
σM

exp

(
− δ2

c

2σ2
M

)
. (3.24)

We point out that the exponential contribution characterizes all the multipli-
city functions in literature.

As shall be discussed in Chapter 5, the theoretical model employed in this
Thesis work is the commonly used Tinker mass function (Tinker et al. 2008). In
addition to this model, several new models have been developed (e.g. Watson et
al. 2013; Despali et al. 2016) that use higher resolution simulations and better
statistics. However, differences still remain between them.

Moreover, by considering the Tinker halo mass function, the modelling of gas
physics and galaxy formation is neglected. The Tinker model indeed, as well as
the great part of the mass functions in literature, only accounts for the masses of
dark matter haloes. However baryons affect the collapse of dark matter haloes and
then alter the mass function (Stanek et al. 2009), and this effect can be included
in the models (e.g. Velliscig et al. 2014; Bocquet et al. 2016). Nevertheless, the
contribution of the gas is still uncertain and varies between different simulations
and codes.
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3.4 Dependency on cosmological parameters

From the general form expressed in Eq. 3.23, it is evident that the mass function
depends on fundamental cosmological parameters and redshift. In the following
we will present the main features of the mass function, with a particular focus on
the parameters that will be constrained through the exploitation of the AMICO
KiDS-DR3 catalogue, as discussed in Chapter 5.
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Figure 3.1: Mass function (Tinker et al. 2008) at z = 0 computed for the parameters obtained
by the Planck satellite (Planck Collab. 2018, Paper VI: Table 2, TT,TE,EE+lowE+lensing,
black solid line), and for different values of Ωm (dotted lines) at fixed redshift. The value of
Ωm affects normalization of the mass function and the exponential cutoff.

In a first instance the presence of ρ̄m implies a direct dependency on the dens-
ity parameter Ωm, which as discussed in Section 1.9 is one of the six fundamental
parameters of the Universe.3 Moreover Ωm affects the mass function by means of
the growth factor f :

f ≡ d ln δ+

d ln a
' Ω0.55

m +
ΩΛ

70

(
1 +

Ωm

2

)
. (3.25)

Indeed the mass function depends on the filtered mass variance σ2
M , namely

σ2
M =

1

(2π)3

∫
d3kP (k)Ŵ 2(kR), (3.26)

3The importance of Ωm and the other density parameters is that their sum is related to the
geometry of the universe, and they define the evolution of H(z) through Eq. (1.68).
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which is, therefore, an integral of the power spectrum P (k) = δ2
+Ak

nT 2(k).

In the expression of P (k), δ+ is the growing solution, that for a generic universe
has the form of f , Eq. (3.25). Qualitatively, for higher values of Ωm, going from
z = 0 to higher redshifts we will have a lower number of objects at high masses.
Additionally, in Fig. 3.1 we can see how different values of Ωm affect the mass
function at a fixed redshift: both the normalization and the exponential cutoff
vary.

Turning to the specific case of σ2
M , the quantities kn, i.e. the power law of the

primordial power spectrum, and T 2(k), i.e. the transfer function that describes
the physical processes occurred before the equivalence, are integrated and there-
fore they weakly affect the mass function. On the other hand the amplitude of
the primordial power spectrum A and the growing mode δ+ are constants in the
integral, implying a strong dependency of the mass function on these paramet-
ers. Additionally we point out that A is another fundamental parameter of the
standard cosmological model. In particular the amplitude can be parametrized
by means of σ2

8, the mass variance σ2
M computed on scales of 8 Mpc/h at redshift

z = 0, where h = H0/100. The reason of this choice descends from the fact that
in the local universe σ8 = 1, therefore the objects on scales smaller than 8 Mpc/h
are defined as in a non-linear regime. In Fig. 3.2 are shown several mass functions
with different values of σ8, while in Fig. 3.3 is given the mass function at different
redshifts.
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Figure 3.2: Mass function (Tinker et al. 2008) at z = 0 computed for the parameters from
the Planck satellite (Planck Collab. 2018, Paper VI: Table 2, TT,TE,EE+lowE+lensing, black
solid line), and for different values of σ8 (dotted lines), at fixed redshift. As for the case of
Ωm, lower values of σ8 imply a lower normalization of the mass function and also affect the
exponential cutoff.
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Figure 3.3: Mass function computed at different redshifts, in the range z ∈ [0.1, 1]. The
number density of virialized haloes regularly decreases with increasing z.

The parameters Ωm and σ8 will be the main focus of the analysis described
in Chapter 5, and are related to each other by means of a degeneracy expressed,
in general, as

σ8 = cΩ−γm , (3.27)

where c and γ are positive parameters, and depend on the direction of the
degeneracy along the confidence regions in the parameter space defined by Ωm

and σ8.
Another fundamental parameter that affects the mass function is wDE, which

characterizes the dark energy equation of state expressed as

wDE =
pΛ

ρΛc2
. (3.28)

This equation represents the general form of a perfect fluid equation of state,
as already discussed in Section 1.8.3. In the ΛCDM model wDE = −1 = const,
and this value derives from the definition of the cosmological constant within the
energy momentum-tensor (see Section 1.8.2). A famous alternative to the ΛCDM
value of wDE is the Chevallier-Polarski-Linder parameterization (CPL, Chevallier
& Polarski, 2001; Linder, 2003), for which the parameter of the equation of state
depends on redshift:

wDE(z) = w0 + wa
z

1 + z
. (3.29)

Here w0 is the value of wDE at the present cosmic time, while wa accounts for
the first derivative of wDE with respect to redshift. In literature, these models
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in which the equation of state of dark energy changes with cosmic time are also
called quintessence models.

In the ΛCDM model the energy density of dark energy is a constant, as
evidenced by the expression of the density ρΛ (see Section 1.8.3):

ρΛ = ρ0,Λ(1 + z)3(1+wDE). (3.30)

On the other hand, allowing wDE to vary with time implies a variation of the
energy density itself, and this affects the growth of the perturbations. A value
−1 < wDE < −1/3 implies that ρΛ grows with redshift, while for wDE < −1 the
density decreases. An increase of ρΛ could imply an increase of ΩΛ, and therefore
in a flat universe, for which Ωtot = 1, we would have a delay of the structure
growth as we can see in Eq (3.25). However the increase of ΩΛ is not assured
because it also depends on the critical density, which in turn depends on the
Hubble parameter H(z). More specifically, considering the Friedmann equation
in the form (1.68) we have, for a general model of universe,

H2(z) = H2
0

[(
1−

∑
i

Ω0,wi

)
+ Ω0,r(1 + z)4 + Ω0,m(1 + z)3+

+Ω0,Λ(1 + z)3(1+w0+wa)e−3wa[z/(1+z)]

]
. (3.31)

If wDE(z) is such that the Hubble parameter increases, then the critical density
increases. This would compete with the increase of ρΛ for the final value of ΩΛ.

Moreover if H(z) increases then the cosmic distances decrease and, in turn,
the number of galaxy clusters at a given redshift changes. In this sense we can
say that there is a degeneracy between Ωm and wDE, given that Ωr at the present
day is negligible. Another degeneracy between wDE and Ωm manifests itself in
the flat universes because of the direct dependency of the mass function on ρm,
which decreases for higher values of ΩΛ.

As we shall see in Chapter 5, constraining both w0 and wa along with the
fundamental parameters Ωm and σ8 is unfeasible, because of the huge amount of
degeneracies at stake. In addition, w0 and wa slightly affect the shape of the mass
function, as shown in Fig. 3.4 and 3.5, and in particular the effect of wa is almost
negligible. As a consequence, current observations have not the required accuracy
to measure w0 and wa separately, so that the only reliable measurements of the
equation of state of the dark energy are on w0 assuming wa = 0. The danger with
this assumption is, however, that if the true wa would strongly deviate from zero
then the estimated w0 would be biased correspondingly.
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Figure 3.4: Mass function (Tinker et al. 2008) computed for the parameters from the Planck
satellite (Planck Collab. 2018, Paper VI: Table 2, TT,TE,EE+lowE+lensing, solid line), and
for different values of w0 (dashed lines), at fixed redshift. We stress that in order to consider
the dark energy as related to a repulsive force, w0 (or wDE) must be < −1/3. The impact of
this parameter on the mass function is much lower with respect to the effects caused by Ωm

and σ8.
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Figure 3.5: A case similar to that in the previous figure, but with fixed w0 and varying wa,
for a fixed redshift. The impact of the parameter wa on the mass function is negligible.
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Chapter 4

The cluster sample

The goal of this Thesis work is to constrain the fundamental cosmological para-
meters through the observed mass function of galaxy clusters at different red-
shifts. The catalogue of galaxy clusters, named AMICO KiDS-DR3, is based on
the third data release of the Kilo Degree Survey (KiDS), a photometric dataset
of galaxies. Galaxy clusters have been identified through the use of the AMICO
algorithm, described in this chapter.

The catalogue is very rich and covers a wide range of redshift, compared to the
ones previously used for cosmological analyses on galaxy clusters, e.g. the works
by Costanzi et al. (2018) on SDSS, and by Pacaud et al. (2018) on X-ray selected
clusters. Even more importantly, the dataset in general allows a high precision
analysis, thanks to the availability of a model-independent selection function.

4.1 AMICO: the detection algorithm

AMICO, Adaptive Matched Identifier of Clustered Objects (Bellagamba et al.
2017), is a detection algorithm aimed at identifying galaxy clusters given a pho-
tometric dataset of galaxies. In particular, through the use of AMICO it has
been possible to build up the catalogue of galaxy clusters used in this Thesis
work (Maturi et al. 2018).

4.1.1 Description of the algorithm

AMICO is an algorithm based on Optimal Filtering, a technique that allows to
extract a signal from a noisy background maximizing the signal-to-noise ratio
(S/N). In particular, in Bellagamba et al. (2011) is shown that in the case of
photometric detections, under the assumption of a homogeneous background, the
Optimal Filter is actually corresponding to a Matched Filter. Through a Matched
Filter the signal is identified by a correlation between a template and the signal
itself.
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The basic assumption of the AMICO algorithm is, indeed, that the back-
ground of field galaxies is uniform. Then the general approach of the algorithm
is that of a Matched Filter: given a model, the clusters in the field are identified
as the regions with the maximum likelihood, which is computed accounting for
the data and the model itself.

The formalism of Optimal Filtering is highly generic and allows to consider or
neglect any galaxy property in the model. The algorithm, indeed, finds the most
reliable properties to accomplish the detections in a given dataset, assigning the
appropriate weights to the galaxies in the catalogue. Thanks to this flexibility,
optical data can be combined with other observables such as weak gravitational
lensing, Sunyaev-Zel’dovich effect, X-rays observations.

The basic assumption of Optimal Filtering is that a dataset D can be ex-
pressed as the sum of a signal component, described by a model M with a nor-
malization A, and a noise component N . In the framework of cluster detections,
the data are expressed as the galaxy density D(θ,m, z), which is a function of
the angular position θ, the magnitudes m and the redshift z:

D(θ,m, z) = A(θc, zc)Mc(θ − θc,m, z) +N(m, z). (4.1)

Aside from the magnitudes, the array m may include any other property
of the observed galaxies, such as morphological type or ellipticity. The model
Mc(θ−θc,m, z) describes the distribution of galaxies in a given cluster centered
in (θc, zc), while A(θc, zc) is the normalization of the galaxy distribution of a
detection, also called amplitude, and N(m, z) is the noise component associated
to the distribution of the field galaxies.

In line with the theory of Optimal Filtering, the amplitude A is obtained by
filtering the data D with an optimal filter Ψc

A(θc, zc) = α−1(zc)

∫
Ψc(θ − θc,m, z)D(θ,m, z) d2θ dnmdz −B(zc), (4.2)

where α is a normalization constant, B is the background component and n is
the number of dimensions of the array m. Under the assumption that the noise
is uniform and is produced by random Poissonian counts of galaxies, the filter Ψc

is the ratio between model and noise:

Ψc(θ − θc,m, z) =
Mc(θ − θc,m, z)

N(m, zc)
. (4.3)

Given a value of the amplitude A for each angular position and redshift, the
first galaxy cluster candidate lies in the location with the largest likelihood and
positive amplitude:

L(θc, zc) = L0 + A2(θc, zc)α(zc), (4.4)

where L0 is a constant of no relevance. Maxima of the amplitude are also
maxima of the likelihood at a given redshift, because when the cluster model
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is centered in correspondence of a massive cluster, the likelihood has a bigger
improvement compared to the case of a faint galaxy cluster.

Given the detection of a cluster j, the membership probability Pi(j) of the
i-th galaxy in the region is:

Pi(j) = Pf,i
AjMj(θi − θj,mi) pi(zj)

AjMj(θi − θj,mi) pi(zj) +N(mi, zj)
. (4.5)

Pf,i is the probability of the galaxy to belong to the field, defined as

Pf,i ≡ 1−
∑
j

Pi(j). (4.6)

This definition takes into account the fact that galaxies may be associated to
different clusters, due to superimposition of detections along the line of sight.

After the evaluation of these probabilities for all the galaxies considered, in
order to identify a new galaxy cluster the contribution of the last detection is
removed from the amplitude map, and the likelihood is computed again. This
removal is based on the membership probabilities Pi(j), and is fundamental to
retrieve objects blended with those with larger amplitudes.

4.1.2 The cluster model

The model Mc describes the expected galaxy distribution in a galaxy cluster. It
is a function of the distance from the centre, r = |θi−θc|, and the magnitude m
in the r band, given the redshift zc. In particular, the model in this framework
is defined as

Mc(r,m) =
∑
i

Ψi(r)Φi(m), (4.7)

where the index i is referred to the member galaxies, Φ is a luminosity function
and Ψ a radial profile.

The luminosity function considered here follows the Schechter profile (Schechter,
1976):

Φ(m) = 10− 0.4 (m−m∗) (β+1) exp
[
−10− 0.4 (m−m∗)] . (4.8)

Only the functional form of the distribution is considered, because the normal-
ization is absorbed by the constants during the filter construction. The quantity
m∗ is the typical magnitude, a function of redshift, derived from a stellar pop-
ulation evolutionary model with a faint-end slope β. The central galaxies are
modelled instead by a Gaussian distribution in magnitude.

For the radial profile, a Navarro-Frenk-White profile is assumed (NFW; Nav-
arro et al. 1997)

Ψ(r) =
C0

r/rs (1 + r/rs)
2 , (4.9)
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where C0 is a normalization parameter. The scale radius rs is defined as

rs ≡ R200/c200, (4.10)

where c is the concentration parameter and R200 corresponds to a cluster mass
M200 = 1014M�/h.

4.2 The AMICO KiDS-DR3 catalogue

The measured galaxy cluster mass function considered in this study is based on
a real catalogue of galaxy clusters (M. Maturi et al. 2018) built up through the
use of the AMICO algorithm.

As described in Section 4.1, AMICO is based on the Optimal Filtering tech-
nique applied on photometric data, in order to detect the overdensities in a dis-
tribution of galaxies and identify galaxy clusters. In particular, the detection
process adopted for this study relies solely on spatial coordinates, magnitude and
photo-z of galaxies. The use of the colors and, in turn, of the red-sequence has
been avoided in order to make this work consistent with the future surveys bey-
ond z = 1, such as the Euclid mission (Laureijs et al. 2011). At high redshifts,
indeed, the knowledge of the appearance of galaxy clusters is limited, along with
the knowledge of their physical properties. Therefore it is better to avoid the
detection algorithms based on the red-sequence, in view of the future surveys.

The galaxy catalogue this work is based on comes from the Kilo Degree Survey
Data Release 3 (KiDS-DR3; de Jong et al. 2017), therefore the catalogue of galaxy
clusters is also referred as AMICO KiDS-DR3 catalogue. These galaxies have
been detected with the OmegaCAM wide-field imager (Kuijken, 2011) mounted
at the VLT Survey Telescope, a 2.6 m telescope sited at the Paranal Observatory
(Capaccioli & Schipani, 2011). OmegaCAM offers a field of view of 1 deg2 with a
resolution of 0.21 arcsec/pixel, counting a total of 32 science CCDs. In particular
are provided the 2 arcsec aperture photometry in u, g, r, i bands and photometric
redshifts for all galaxies down to the 5σ limiting magnitudes of 24.3, 25.1, 24.9
and 23.8 for the four bands, respectively. For the final galaxy cluster catalogue,
only the galaxies with magnitude r < 24 have been selected, for a total of 32
million objects.

The survey covers an area of 438 deg2 but all the galaxies falling in regions
affected by image artifacts, or falling in the masks used for the weak lensing
analysis (described in Section 4.2.2), have been rejected. This yields a final
effective area of 377 deg2, the 86% of the total area of the survey. The final
catalogue of galaxy clusters contains all the detections with a signal-to-noise
ratio S/N > 3.5, for a total of 7988 candidate galaxy clusters in the redshift
range z ∈ [0.1, 0.8].

In particular, the photo-z of the galaxies has been obtained through a Bayesian
template-fitting method, which yields a posterior probability exploited by AMICO
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to determine the cluster redshifts. In Fig. 4.1 is shown the distribution of the
objects of the final catalogue, and in particular the redshifts in the figure, as all
the redshifts used in the analysis, have been corrected by a value 0.02 (1 + z):

zcorrected = z − 0.02 (1 + z). (4.11)

The whole redshift interval, indeed, shows a constant relative scatter in red-
shift that amounts to ∆z/(1 + z) ∼ 0.02, corresponding to what was found by de
Jong et al. (2017) when comparing KiDS photo-zs with GAMA spec-z (Driver et
al. 2009, 2011; Liske et al. 2015). In Fig. 4.2 is also shown the difference in the
galaxy cluster distribution with and without the redshift correction. Moreover,
there is a drop in the number of detections at z ' 0.38 due to problems related
to the shape of the g and r filters, which imply a not optimal covering of the
4000 Å break at that redshift.

Figure 4.1: RA, Dec, z distribution of the galaxy clusters of the catalogue. The redshifts are
corrected for the relative scatter ∆z/(1 + z) ∼ 0.02.
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Figure 4.2: Distribution of the objects as a function of redshift. In particular are shown
the cases of not corrected redshifts, and redshifts corrected for the constant relative scatter
∆z/(1 + z) ∼ 0.02.

4.2.1 Mass proxies

In order to undertake a study based on the observed galaxy cluster mass function,
it is necessary to have suitable proxies to obtain the values of the masses. Given
the mass proxies described in this section, the masses have been obtained via a
stacked weak lensing analysis presented in F. Bellagamba et al. 2019.

AMICO provides a natural mass proxy, the signal amplitude A defined in Eq.
(4.2), which is also the first observable of the algorithm. It is a measure of the
galaxy content in a detected cluster in units of the input model.

A second mass proxy is the intrinsic richness λ∗:

λ∗j =

Ngal∑
i=1

Pi(j) with

{
mi < m∗(zj) + 1.5

Ri(j) < R200(zj)
(4.12)

The radius R200 and the magnitude m∗, as discussed below in Section 4.1.2,
are two parameters of the model adopted for the clusters, while zj is the redshift of
the detected cluster (labeled as j). Pi(j) is the probability, assigned by AMICO,
that the i-th galaxy is a member of a given detection j, Eq. (4.5). The intrinsic
richness represents the sum of the membership probabilities, i.e. the number of
visible galaxies belonging to a detection, under the shown conditions.

The sum of the membership probabilities, indeed, is a good expression of the
total number of member galaxies, as described in F. Bellagamba et al. 2017, (see
Fig. 8 in the reference). In particular, by running AMICO on mock catalogues,
it has been shown that if the cluster model is a good representation of the mean
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properties of the data, there is a tight relation between the probabilistic associ-
ation of member galaxies and the fraction of members that actually belong to the
identified cluster.

Furthermore we can define the more general apparent richness λ

λj =

Ngal∑
i=1

Pi(j). (4.13)

However this quantity has a severe dependence on redshift, and for this reason
it can not be exploited as a mass proxy. As the redshift increases, indeed, the
faintest member galaxies will overcome the limiting magnitude of the survey. This
is not the case for λ∗, given that the threshold m∗ + 1.5 is below the magnitude
limit for the galaxies in the sample, for the whole redshift range considered in
this analysis. Therefore λ∗ is nearly redshift independent and for this reason it is
a suitable mass proxy.

Figure 4.3: Amplitude and intrinsic richness distributions for the clusters selected to carry
out the weak lensing analysis. The redshift range is 0.1 ≤ z < 0.6, for a total of 6962 objects.
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In Fig. 4.3 are shown the distributions of A and λ∗, in the redshift range
0.1 ≤ z < 0.6, for the clusters selected for the weak lensing analysis. As the
selection is performed with a S/N threshold, the amplitude and intrinsic richness
thresholds are not constant in redshift. This produces the increase in cluster
counts from the first bins to the subsequent ones.

In Fig. 4.4 is instead shown the correlation between amplitude and intrinsic
richness.

Figure 4.4: Correlation between amplitude A and intrinsic richness λ∗ in the redshift range
0.1 ≤ z < 0.6.

4.2.2 Weak-lensing mass calibration

Weak gravitational lensing in photometric datasets is a crucial tool to estimate
the masses of galaxy clusters. Through the distortion of the images of back-
ground sources, gravitational lensing provides a measure of the total matter dis-
tribution in the cluster. Moreover, the mass estimated through this method is
independent of any assumption on the physical state of the cluster, differently
from methods dependent on the gas properties such as X-ray observations and
Sunyaev-Zel’dovich effect on the CMB.

As explained in F. Bellagamba et al. 2019, the analysis is based on the study
of the shear profile of background sources. A flat ΛCDM cosmology is considered,
with H0 = 70 km/s/Mpc and Ωm = 0.3.

In a first instance, it is necessary to avoid the contributions of foreground
sources and galaxies belonging to the clusters that could be considered as back-
ground. Those contributions, indeed, would produce a dilution of the signal.

In order to retrieve only the lensing signal from the background sources, first of
all has been carried out a photo-z selection. Only the galaxies with zs > zl + ∆z
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have been considered, where zs is the photometric redshift of the galaxy, zl is
the redshift of the lens and ∆z is set to 0.05, similar to the typical error on
photometric redshifts in the galaxy catalogue. With this approach have been
excluded all the galaxies with non-negligible probability to have a redshift equal
or lower to the one of the lens.

A second criterion is the color selection, aimed to recover part of the pop-
ulation of galaxies behind the clusters excluded through the previous method.
The photo-z selection, indeed, excludes a large part of background candidates.
In particular the effectuated cut follows the selection performed by Medezinski
et al. (2017):

(g − r < 0.3) ∨ (r − i > 1.3) ∨ (r − i > g − r). (4.14)

At the conclusion of this selection, it is obtained the shear signal in the tan-
gential direction with respect to the center of the cluster. In particular the shear γ
is not an observable, indeed what is measured is the reduced shear g = γ/(1−k),
where k is the convergence defined as

k =
Σ

Σcrit

. (4.15)

Σ is the surface density of the lens, while Σcrit is the critical density:

Σcrit =
c2

4πG

Ds

DlDls

, (4.16)

where Ds, Dl and Dls are, respectively, the angular diameter distance between
observer and source, observer and lens, and lens and source. In the case of
Σ > Σcrit, we face the case of gravitational lensing. In the case of this study,
however, the regime is that of the weak-lensing1, and this implies k << 1, which
allows to estimate the shear from g because γ ∼ g.

Consequently it can be constructed the observed differential surface profile of
the lens ∆Σ

∆Σ(R) = Σcritγ+, (4.17)

where γ+ is the tangential component of the shear. However, for the greater
part of the clusters the signal-to-noise ratio of the lensing data is low, so the
density profile is constrained through a stacking procedure. It consists of an
estimate of the mean lens mass of objects grouped in bins, according to their
amplitude A or intrinsic richness λ∗, and their redshifts. In particular the redshift
bins considered in the analysis are 0.1 ≤ z < 0.3, 0.3 ≤ z < 0.45, 0.45 ≤ z < 0.6.
Objects with z ≥ 0.6 have been discarded because the density of background
galaxies does not allow a robust lensing analysis.

1Strong gravitational lensing requires very specific alignment conditions.
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Extracting the stacked shear profile from each bin can be derived an estimate
of the mass, by assuming for the lens a smoothly-truncated NFW model plus
a 2-halo term, taking into account uncertainties related to concentration and
miscentering.

The obtained mass-observable relation is then:

log
M200

1014M�/h
= α + β log

O

Opiv

+ γ log
E(z)

E(zpiv)
, (4.18)

where E(z) = H(z)/H0 and the term γ logE(z) accounts for the redshift
evolution. The quantities Opiv and zpiv represent the typical values of observable
and redshift of the total sample, respectively. As we shall see, the only mass
proxy of interest in the analysis carried out in this Thesis work is the intrinsic
richness, λ∗, therefore we provide the parameters of the scaling relation for this
case: 

α = 0.004± 0.038

β = 1.71± 0.08

γ = −1.33± 0.64

λ∗piv = 30

zpiv = 0.35

(4.19)

It is important to stress that the mass-observable scaling relation is calibrated
only for the redshift ranges 0.1 ≤ z < 0.3, 0.3 ≤ z < 0.45, 0.45 ≤ z < 0.6, while
for 0.6 ≤ z < 0.8 this relation is extrapolated. In the analysis described in
Chapter 5, the cosmological parameters will be constrained by neglecting this
last redshift bin.

4.3 The mock catalogue

In addition to the high number of objects in the galaxy cluster catalogue and
the wide redshift range, the strength of the dataset used in this work lies in
the availability of a model-independent selection function, obtained through the
realization of a catalogue of mock clusters based on the properties of the KiDS-
DR3 data itself (M. Maturi et al. 2018). Moreover, this mock catalogue allows
to estimate the uncertainties of the main quantities characterizing the detected
clusters.

Basing the construction of the mock clusters on the original galaxy dataset,
all the properties of the survey are taken into account, such as absorption, photo-
z uncertainties and clustering of the galaxies, and in addition in this way are
minimized the assumptions necessary to build up the mock catalogue.
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4.3.1 Description

The method used to build up the mock catalogue exploits the probabilities of
the galaxies of being associated to the field Pf,i, Eq (4.6), or being members of a
cluster Pi(j), Eq. (4.5), computed by AMICO.

The subsequent step is a Monte Carlo extraction of the mock field galaxies,
based on their probability of being member of the field, Pf,i. In particular, a
uniform Monte Carlo extraction of a number ni between 0 and 1 is performed,
and then the i-th galaxy is assigned to the field if ni < Pf,i.

To retrieve the mock clusters, in a first instance have been defined bins of
apparent richness λ, which is the number of visible galaxies for a given cluster, and
redshift z, in order to collect the galaxies with membership probability Pi(j) > 0.
Those galaxies with a probability to belong to more than one cluster have been
attributed to more than one bin accordingly. Then every bin of λ and z contains
all the potential member galaxies associated to the bin itself. Mock clusters are
then generated through a Monte Carlo extraction of galaxies in the corresponding
bins via a Monte Carlo sampling, based on their probability Pi(j) and accounting
for the presence of masked areas in the actual survey.

The mock clusters are then placed into the field with the same angular po-
sitions, λ and z of the detected clusters with S/N ≥ 3.0 found in the original
catalogue. This preserves the correlation of clusters with clusters and of clusters
with the Large Scale Structure, and also allows to take into account missing
data, absorption, blending and photometric uncertainties. In addition, the dif-
ference between the signal-to-noise ratio considered here and the one considered
for the final cluster catalogue, S/N > 3.5, is essential to derive reliable statistical
properties for the sample.

The final mock catalogue contains 9018 mock clusters, over a total area of
189 deg2. In order to derive the selection function and the uncertainties of the
dataset, the AMICO code has been run on the mock catalogue. The uncertainties
on the detection properties are already considered in the final galaxy cluster
catalogue used for this study.

In general the richness (λ and λ∗) is unbiased at all redshifts, as well as the
redshift assignation carried out by AMICO. Of a particular relevance, instead, is
the bias on the amplitude at z < 0.3 shown in Fig. 4.5. As a consequence, we
will base the analysis discussed in Chapter 5 only on the intrinsic richness λ∗,
which covers the range λ∗ ∈ [2.78, 136.73].

The other fundamental output of this procedure based on mock clusters is
the evaluation of the selection function, i.e. the completeness and the purity of
the dataset. The computation and application of completeness and purity will
be detailed in Chapter 5.
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Figure 4.5: Relative 1σ errors on the amplitude A. A clear bias shows up in the first redshift
bin.
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Chapter 5

Cosmological constraints from
the number counts of the
AMICO KiDS-DR3 catalogue

In this chapter we will present the analysis employed to derive constraints on the
cosmological parameters Ωm, σ8 and S8, from cluster counts in the AMICO KiDS-
DR3 catalogue. We will focus in a first instance on the computational tools and
the theory at the basis of this work. Then we will present the methods used to
apply the selection function to the sample. Subsequently, we will present the two
cosmological pipelines developed in order to derive constraints on the cosmological
parameters, finally focusing on the effects of the super sample covariance on our
results.

5.1 General approach

The whole analysis carried out in this Thesis work can be summarized as fol-
lows. The starting point is the set of observed values of redshift, z, and intrinsic
richness, λ∗, namely {zobs,i, λ∗obs,i}, provided by the AMICO KiDS-DR3 galaxy
cluster catalogue. We will present two different pipelines through which we will
derive constraints on the cosmological parameters Ωm, σ8 and S8, by performing
the analysis on cluster counts in the aforementioned catalogue.

In the first pipeline, Pipeline I, from the set of data we compute the mass, M ,
of each galaxy cluster, through the proxy-mass scaling relation (Eq. 4.18) which
is calibrated on the observed values of z and λ∗. The uncertainties on the scaling
relation are parametrized in terms of the uncertainties in the parameters α, β and
γ, and are considered in the analysis by means of Monte Carlo extractions. The
uncertainties on photometric redshifts and intrinsic richnesses have to be con-
sidered as well, by extracting random values from the probability distributions
retrieved in the catalogue of mock clusters described in Section 4.3. Finally, the
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selection function of the sample is taken into account by assigning the appropri-
ate weights w to the objects. The final set of data includes the redshift values
obtained from the relative probability distributions, along with the masses and
the weights: {zi,Mi, wi}.

The second pipeline, Pipeline II, consists in accounting for the uncertainties
on the data by weighting appropriately the assumed theoretical model. This
becomes possible by including in the model the uncertainty on the scaling relation
and on the photometric redshifts, by means of Gaussian probability distributions.
Therefore in this case the final set of data comprises the observed redshifts and
richnesses, along with the weights: {zobs,i, λ∗obs,i, wi}. In turn, we avoid Monte
Carlo extractions and we improve the reliability of the analysis, since we do not
assume any cosmological model in order to obtain the values of the masses.

The first cosmological analysis we perform on the data concerns the compu-
tation and modelling of the number counts as a function of M , namely N(M),
and as a function of λ∗, that is N(λ∗), for different redshift bins. Additionally,
we consider the whole dataset simultaneously, modelling N(z,M) and N(z, λ∗).
In this way we obtain constraints on the matter density parameter Ωm, the power
spectrum normalization σ8, and the derived parameter S8 ≡ σ8(Ωm/0.3)0.5.

In presenting our results, we take as a reference the constraints on Ωm, σ8 and
S8 obtained by:

• Planck Collab. (2018) (Table 2, TT,TE,EE+lowE+lensing), the most re-
liable parametrization of our Universe, based on the observations of the
cosmic microwave radiation (CMB) carried out with the Planck satellite;

• Hinshaw et al. (2013) (Table 3, WMAP-only Nine-year), the results based
on the observations of the CMB with the WMAP probe;

• Costanzi et al. (2018), a recent work on galaxy cluster counts in a photo-
metric catalogue based on data from the Sloan Digital Sky Survey.

We will recall these references, respectively, as Planck18, WMAP9 and Cost-
anzi18, both in the figures and in the text, for the sake of brevity. In the first two
cases, the constraints are nearly statistically independent from those retrieved in
this Thesis work. Indeed they are based on observations of the cosmic microwave
background, the radiation coming from the primordial Universe. On the other
hand, we account also for the work carried out by Costanzi18 in order to have a
comparison with a similar analysis on counts of galaxy clusters.
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5.2 Models and computational tools

In this section we outline the fundamental steps of the cosmological analysis un-
dertaken in this Thesis work. The used models and computational tools are imple-
mented in the CosmoBolognaLib (Marulli et al. 2016), a large set of C++/Python
libraries, that provide an efficient numerical environment for cosmological invest-
igations of the large-scale structure of the Universe. In particular, we developed
methods to manage the selection function (Section 5.3), and we implemented the
model for the expectation values of the counts described in Section 5.2.1, along
with the codes used to account for the super sample covariance at the likelihood
level (Section 5.10).

5.2.1 The model for cluster number counts

The theoretical mass function model at the base of this analysis is the Tinker
halo mass function (Tinker et al. 2008), which can be expressed in the general
form given in Eq. (3.23), with multiplicity function f(σM , z) having the following
functional form:

f(σM , z) = A

[(σM
b

)−a
+ 1

]
e−c/σ

2
M , (5.1)

where σ2
M is the filtered mass variance, Eq. (1.152). The quantity A is the overall

amplitude of the mass function, a and b set the slope and the amplitude of the
low-mass power law, respectively, while c determines the cut-off scale where the
abundance of haloes exponentially decreases. These parameters, along with σM ,
contain also the dependence on redshift.

The Tinker mass function is accurate to better than 5% for the cosmologies
close to the ΛCDM model and for the mass and redshift range of interest in this
study. Moreover, the advantage of this choice lies in the wide use of this theor-
etical mass function in the literature. This allows a more consistent comparison
of our results with those obtained in other works on the observed galaxy cluster
mass function.

In particular, according to the assumptions in the lensing analysis described in
the previous chapter, M200 halo masses are considered in the computation of the
mass function models. These values are referred to the mass enclosed in a radius
r200, where the mean density is 200 times the critical density of the Universe at the
corresponding redshift. A further consideration, valid for the entire cosmological
investigation carried out in this Thesis, is that we developed an analysis based on
number counts instead of mass function. In fact, working with the mass function
implies the assumption of a cosmological model on the data itself, because of the
normalization to mass and volume (see Eq. 3.23). Additionally, dealing with the
observed counts of galaxy clusters we need to consider a range of redshift, and
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consequently the mass function must be integrated on this quantity. Then the
final functional form of the model is:

N(∆M,∆zobs) = Ωeff

∫
∆M

∫
∆zobs

dn(M, zobs)

dM

d2V

dzobsdΩ
(zobs) dMdzobs, (5.2)

where ∆zobs is the observed redshift range, d2V/(dzdΩ) is the comoving volume
element per unit redshift and solid angle, and Ωeff is the effective area of the
survey. To compute the power spectrum P (k), and thus the mass variance σM ,
the algorithm provided by Eisenstein and Hu has been used for the mass function.1

5.2.2 The likelihood function

Given the mass function model (Eq. 5.2) and the assumption of a base cosmology,
the cornerstone of our analysis is the Bayesian approach. In particular, given the
model with a set of free parameters θ = (θ1, . . . , θp), the aim is to obtain the
marginalized posterior of these parameters.

Specifically, in a first instance we set the priors for the free parameters of the
model, that is Ωm and σ8 in our case. Then a functional form for the likelihood L
is chosen, which in this kind of this studies is in general a Poissonian likelihood,
here expressed as a logarithm:

lnL(x1, . . . , xn |µ1, . . . , µn) =
n∑
i=1

ln(µi)xi −
n∑
i=1

µi −
∑
i

ln(xi!), (5.3)

where xi represents the datapoints, while µi is the model computed in correspond-
ence of the bins in which the data are collected. The free parameters (θ1, . . . , θp)
are implicitly contained in the model.

In two dimensions, as for the case of N(M), the Poissonian log-likelihood is
the following:

lnL(x11, . . . , xmn |µ11, . . . , µmn) =
m∑
j=1

n∑
i=1

ln(µij)xij −
m∑
j=1

n∑
i=1

µij−

−
m∑
j=1

n∑
i=1

ln(xij!).

(5.4)

As we shall see, we will make use also of the Gaussian likelihood, expressed in
general as the natural logarithm of a multivariate Gaussian. Moreover we will
also exploit a convolution of Poissonian and Gaussian. Given the expression for
L, the analysis proceeds with the sampling of the posterior, via a Markov chain
Monte Carlo (MCMC) algorithm.

1http://background.uchicago.edu/~whu/transfer/transferpage.html
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5.2.3 Markov chain Monte Carlo

The MCMC has a central role in cosmology and astrophysics. It is indeed fun-
damental when the physical model has several free parameters and the posterior
does not have an analytic expression.

Given the θ free parameters of the model, the general goal of MCMC al-
gorithms is to draw a given number n of samples {θi}, with i = 1, . . . , n, from
the posterior probability density P (θ |D), which is expressed as follows:

P (θ |D) =
1

P (D)
P (D |θ)P (θ). (5.5)

This equation represents the most common notation used for the Bayes’ theorem.
Here P (D |θ) represents the likelihood and P (θ) is the prior, while P (D) is the
evidence, which can be neglected once the form of the generative model is chosen.

After obtaining the samples, the mean parameter values, θ̄, of the posterior,
along with their uncertainties, can be retrieved from the histogram of the samples
projected onto the relative parameter subspace. In Fig. 5.1 we show a typical
output of the MCMC for this analysis: both the confidence contours and the
histograms of the marginalized posteriors are fundamental tools for the evaluation
of the results.

There are different algorithms that can be implemented to compute the chains.
The general idea is that of generating random walks in the parameter space
that, over time, draw a representative set of samples from the distribution of the
posterior. Each point in the chain X(ti) = θi depends only on the position of the
previous step X(ti−1). The analysis carried out in this work exploits the stretch
move sampling algorithm (Goodman & Weare, 2010).

In our procedure the chains are initialized, in the parameter space, in volumes
of a given radius around the posterior best-fit parameter values, i.e. the values
obtained from the posterior maximization. This implies a shorter time for the
convergence of the algorithm. Furthermore, we assume flat priors for the free
parameters in order to not privilege any value. These priors are Ωm ∈ [0.5, 1] and
σ8 ∈ [0.1, 2].
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Figure 5.1: Visualization of a typical output of the MCMC algorithm. The steps of the
process are shown in the top panel, referred to the free values of the model (in this case, Ωm

and σ8). It is very important that the chains do not get stuck in correspondence of the extreme
values of the priors, thus a good choice of these extreme values is mandatory. The histograms
of the marginalized values of the parameters are shown in the bottom panel, along with the
confidence contours at 68% and 95%. If the chains do not show problems, as in the case in this
figure, the histograms show a single mode, allowing the computation of mean and percentiles
of the distribution obtained from the sampling.
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5.3 Completeness and purity

The completeness and purity of the dataset define the selection function, an
essential tool in mass function studies. Knowing how many objects are lost in
the detection procedure, and how many are mistakenly identified as clusters, is
indeed critically important. In our analysis these two quantities are computed
by comparing the clusters detected with the AMICO code, run on the mock
catalogue, to the mock clusters originally injected into the field. As discussed
in Chapter 4, the mass proxy considered in the analysis is the intrinsic richness
λ∗. The completeness and purity are based on this quantity. Specifically, the
completeness is defined as the number of detections correctly identified as clusters
over the total number of mock clusters, in a given bin of redshift and intrinsic
richness. In other words, it provides a measure of how many objects are lost
in the detection procedure. On the other hand, the purity is a measure of the
contamination level of the cluster sample. It is defined as the fraction of detections
that match with the mock clusters over the total number of detections, in a given
bin of redshift and intrinsic richness.

To obtain a suitable binning for purity and completeness, we exploited the
results of AMICO relative to the mock clusters, obtained by Maturi et al. (2018).
In particular, the computation of purity and completeness relied on two datasets,
one containing the properties of the mock clusters injected into the field and those
of the detected ones, such as their redshifts, the values of intrinsic richness, their
signal-to-noise, while the other dataset contains the properties of detected mock
clusters and the relative match with the injected clusters, if any. From the former
file we obtain the completeness, while from the latter the purity.
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Figure 5.2: Completeness of the AMICO KiDS-DR3 cluster catalogue as a function of the
redshift, z, and the intrinsic richness, λ∗.
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Figure 5.3: Purity of the AMICO KiDS-DR3 cluster catalogue as a function of the redshift,
z, and the intrinsic richness λ∗.

Fig. 5.2 and 5.3 show the AMICO KiDS-DR3 completeness and purity, re-
spectively, as functions of λ∗ for different redshift ranges. It turns out that the
catalogue is highly pure, with a purity approaching 90% over the whole redshift
range. It is important to point out that both completeness and purity are com-
puted as a function of the true redshift, as will be detailed in Section 5.6.

Since the completeness is a function of the true intrinsic richness, λ∗tr, it is re-
quired to implement a method that assigns a value of completeness to an observed
value of intrinsic richness.2 For this purpose, two alternative methods have been
developed, based on the observed and true values of λ∗ of the mock clusters: the
first method is based on cumulative probability distributions, while the second
relies on a Gaussian fitting of the data for each bin of λ∗.

The method based on the cumulative probability distributions consists of the
following steps:

• Among the results related to the mock clusters, only the detections with
S/N > 3.5 are regarded, being this the threshold applied in the real dataset.

• Then we construct a matrix for which the rows are referred to the observed
values of intrinsic richnesses, while the columns are related to their true
values. In particular, rows and columns are relative to the central value of
each bin, and a linear binning is considered. The bins for observed and true
values are equal in number and spacing.

2Here, the term “observed” indicates the values relative to the detections accomplished by
AMICO. It may refer to mock or real clusters. Differently, the term “true” is only referred to
the observables of the mock clusters injected into the field.
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• Each detection has a value of observed intrinsic richness λ∗obs, which desig-
nates the row of the matrix, while the true λ∗true of the corresponding mock
cluster designates the column.

• In this way, for each bin of the observed intrinsic richness, different bins for
the true values are filled.

• It is then necessary to normalize each bin in a row to the total number of
objects in the row itself. This provides a cumulative probability distribu-
tion, that allows the assignation of a true bin to an observed one. In turn
it is assigned a completeness value to each observed intrinsic richness.

With this matrix at hand, we consider the values of intrinsic richness of the real
catalogue. Given the value of the observable for a real cluster, it is assigned to the
relative bin, or row, in the matrix. Then we perform an extraction of a uniform
random number, n, between 0 and 1. If the extracted random number n is greater
than the probability value assigned to the first bin, i.e. the first column relative
to the row, then the probability of the first and second columns are added up,
and so on. The iterations stop when n is lower than the cumulative probability,
computed for example from the first to the i-th bin. Then the observed value
λ∗obs will be assigned to the completeness value relative to the bin labeled as i. In
turn, the relative object of the catalogue will be weighted in accordance with the
value of completeness in that bin.

The second method, instead, is based on Gaussian probability distributions,
retrieved also in this case from the mock catalogues. It follows the same steps of
the previous one, from the setting of the threshold on the S/N to the construction
of the matrix. However in this case, for each bin of observed values of intrinsic
richness, the distribution of the true values is described through an appropriate
Gaussian function. In particular, in a first instance a value of λ∗obs in the real
catalogue is assigned to the relative bin. Then a random Gaussian extraction is
performed, based on the mean and standard deviation values of the Gaussian that
describes the distribution of the true values in that bin. Fig. 5.4 shows a typical
Gaussian probability distribution retrieved from the mock catalogue. It turns out
that the two methods used to assign the values of completeness are statistically
equivalent, producing results on the final number of counts consistent within 1σ.

On the other hand, the purity is a function of the observed intrinsic richness,
λ∗obs, being strictly related to the quality of the observations. We assign each
object in the real catalogue to a bin of observed intrinsic richness. Subsequently,
we extract a uniform random number between 0 and 1, and if it is lower than
the purity corresponding to the aforementioned bin, the object is considered in
the analysis. Otherwise, it is rejected. In this way, the final sample will take into
account the effects of impurities.
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Figure 5.4: Probability distribution P (λ∗tr|λ∗obs, ztr), in the case of a bin with a central value
of the observed intrinsic richness equal to λ∗obs = 27.5 and a true value of redshift in the range
0.1 ≤ ztr < 0.3.

In Fig. 5.5 we show the number counts of AMICO KiDS-DR3 clusters, with
and without weighting for purity and completeness. It is important to point out
that the application of the selection function requires a preliminar treatment of
the redshift uncertainties, as we shall detail in Section 5.6. We can appreciate
how for low masses, about 1014 M� h

−1, the selection function weighting helps to
improve the agreement with Planck18 predictions. At lower masses, however, the
effects of the Malmquist bias, not included in our weighting corrections, introduce
a systematic bias in the counts. As we shall see in the following, we will exclude
this small mass range from our analysis, considering only the masses from∼ 5·1013

M� h
−1 to ∼ 1015 M� h

−1.
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Figure 5.5: Effects of the selection function on the binned counts. The open red dots represent
the counts directly retrieved from the AMICO KiDS-DR3 catalogue, while the black dots show
the counts weighted for the completeness and statistically corrected for the impurity. The error
bars represent the Poissonian error. As a reference, the number counts predicted in the ΛCDM
model with parameters from Planck18 is shown (blue solid line), computed assuming the mass
function Tinker et al. (2008).

5.4 Redshift selection

The AMICO KiDS-DR3 catalogue provides a large set of galaxy clusters over a
large range of redshift, z ∈ [0.1, 0.8], which allows us to retrieve constraints on
cosmological parameters from a wide spectrum of epochs in the history of the
Universe. Nevertheless, as discussed in Section 4, the observable-mass scaling
relation is not calibrated in the redshift bin z ∈ [0.6, 0.8]. Therefore we exclude
this part of the dataset from the analysis. This is not a dramatic loss in terms
of the number of objects, since only the high mass regime can be considered in
this redshift range, for a total of almost 100 objects. Indeed, as we can see in
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Fig. 5.5, the selection function appears to be overestimated in the low mass range,
assuming Planck18 expectations. Therefore the cosmological parameters derived
by introducing these data in the modelling are critically biased.

Furthermore, as shown in Fig. 5.3, the detections in this redshift range are
severely affected by impurity. Given all these considerations, we will base our
analysis on the redshift ranges z ∈ [0.1, 0.3], [0.3, 0.45], [0.45, 0.6].

5.5 Cosmological pipelines

In the analysis carried out in this Thesis, the treatment of the uncertainties plays
a crucial role. Apart from the Poissonian errors assigned to the binned counts,
the uncertainties on redshifts and on the observable-mass scaling relation must be
taken into account. We developed two alternative pipelines in order to evaluate
their effects. In the following sections we will focus on the first pipeline, while the
second will be discussed in Section 5.8. As we shall see, aside from the evaluation
of the uncertainties, the second pipeline differs from the first one also because it
is based on counts as a function of the observable λ∗, instead of masses.

The first pipeline, which we will refer to as Pipeline I, exploits the model
described in Section 5.2.1, i.e. the number counts as a function of the mass M
(Eq. 5.2). In particular, the uncertainties on photometric redshifts and on the
observable-mass scaling relation, are considered by means of Monte Carlo extrac-
tions, as we shall discuss in the following section.

5.6 Treatment of uncertainties in Pipeline I

In this section we will detail the methods used to account for the uncertainties
in Pipeline I. As in the case of the selection function described in Section 5.3,
the uncertainties on the data are evaluated through Monte Carlo extractions. In
particular, we extract each quantity of every object in the catalogue n times, thus
obtaining n realizations of every single galaxy cluster. Therefore we deal with a
larger dataset, in which a weight 1/n is assigned to each object.

The first considered property is the cluster mass M . This value is retrieved
from the observable-mass scaling relation which is calibrated, as already men-
tioned in Section 5.1, on the observed values of z and λ∗, and the uncertainties
are parametrized in terms of the errors on the three parameters α, β, γ. For this
reason, a Gaussian Monte Carlo extraction is performed for each of these para-
meters, with mean equal to the given value of α, β or γ, and standard deviation
equal to the error in the parameters. Both the mean values and the uncertainties
on these three parameters, along with the pivot values for redshift and intrinsic
richness, are listed in Eq. (4.19). It is important to outline that in order to obtain
a mass value, it is necessary to assume a cosmological model, because the scaling
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relation depends on cosmology. However, as we shall discuss in Section 5.8, we
will overcome the limit of the assumption of a cosmology a priori.

The evaluation of uncertainties is necessary also for the redshifts z. In addi-
tion, we point out that all the redshifts are previously corrected for the bias de-
scribed in Chapter 4. Also in this case, the procedure is based on Monte Carlo ex-
tractions from Gaussian probability distributions, obtained from the mock cluster
catalogue. These Gaussian distributions, in particular, describe the probability
to obtain a true value of redshift given an observed one, namely P (ztr|zobs). We
outline that when we perform such extractions, we account for the dispersion of
the distribution P (ztr|zobs), obtaining a proxy value z of the true redshift. For
the sake of clarity, from now on we will refer to the distribution P (ztr|zobs) as
P (z|zobs). In the left panel of Fig. 5.6, we show a typical case of these probab-
ility distributions, while in the right panel the values of the standard deviations
of such distributions are represented as a function of the redshift z. As for the
case of the completeness, each value of redshift in the catalogue is assigned to
the relative bin, then the true values are randomly extracted from the Gaussian
probability distributions relative to each bin.
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Figure 5.6: In the left panel, probability distribution P (z|zobs) for the case of a bin with
a central value of the observed redshift equal to zobs = 0.45. On the right, the values of the
standard deviation of the probability distributions P (z|zobs) retrieved from the mock catalogue.

At this level of the analysis, a proxy value z of the true redshift ztr is associated
to each object of the catalogue, along with a value of mass M . Having an estimate
of the proxy value of redshift we can apply the selection function, which is indeed
dependent on z, as we detailed in Section 5.3. In this way we assign a weight w
to every galaxy cluster in the catalogue. Therefore each object, labeled as i, is
completely defined, for the purposes of our analysis, by the triplet {zi,Mi, wi},
namely by a proxy value of redshift, a mass and a weight.
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As already mentioned, we exclude the redshift bin z ∈ [0.6, 0.8] after these
Monte Carlo extractions. In this way we avoid any significant loss of objects due
to bin changes. In Fig. 5.7 we show the results obtained by the extractions of the
redshift and of the scaling relation, considered separately and neglecting the selec-
tion function. It turns out that the Gaussian extractions relative to the scaling
relation provide results consistent within 1σ with respect to the original cata-
logue. On the other hand, the redshift extractions are significant. The standard
deviation of the probability distributions P (z|zobs), as shown in the right panel
of Fig. 5.6, ranges from ∼ 0.017 to ∼ 0.035, then the changes of redshift bins
are abundant. Indeed, the scatter of the redshift values is not negligible with
respect to the width of the redshift bins considered. However, it turns out that
these fluctuations are not so relevant in our analysis. In Fig. 5.8 we can see the
differences in the counts between the cases with and without extractions, for each
redshift bin. The largest variations manifest themselves at very low masses, and
we point out that this low mass regime, below M200 ∼ 5 · 1013 M� h

−1, will not
be considered in the analysis due to its severe incompleteness, as we discussed in
Section 5.3.
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Figure 5.7: The AMICO KiDS-DR3 cluster counts with and without the Monte Carlo ex-
tractions of redshift and masses, not correcting for the selection function. The left top panel
shows the number of objects as a function of the redshift (black histogram), and after Gaus-
sian extractions of the values of the proxies of the true redshift (barred histogram). On the
bottom left panel we show the number of objects as a function of the mass, from the catalogue
(black histogram) and as a result of Gaussian Monte Carlo extractions of the scaling relation
parameters (barred histogram). The values of the masses in the catalogue have been obtained
by neglecting the uncertainties on the scaling relation, and assuming H0 = 70 km/s/Mpc and
Ωm = 0.3. In the right panels, Nnoex and Nex represent the counts obtained from the original
catalogue and from Gaussian extractions, respectively. These panels show the ratio of the dif-
ference (Nex −Nnoex) over the Poissonian error relative to Nnoex. Significant differences with
respect to the original catalogue are present only in the case of redshift extractions.
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5.7 Pipeline I for a flat ΛCDM Universe

As a general approach in this work, we perform a cosmological analysis of cluster
number counts based on the assumption of a flat ΛCDM model (see Section 1.9).
The aim is to constrain in a first instance the matter density parameter Ωm,
defined as Ωm ≡ ρm/ρc, and σ8, defined as the square root of the mass variance
σM (Eq. 1.152) computed at z = 0 on scales of 8 Mpc/h. Therefore we set them
as free parameters of the model, which in the framework of Pipeline I is defined by
Eq. (5.2). We outline that the values of both Ωm and σ8 are at redshift z = 0, and
we avoid the notation Ω0,m for compactness. In particular, given an observation
of cluster counts at a given redshift z∗, in the modelling procedure the values of
Ωm and σ8 are set at z = 0, and their values at z∗ are retrieved by considering
their evolution.

The other fundamental parameters are fixed to the Planck values. We con-
sider the values obtained by Planck Collaboration 2018, Paper VI (Table 2,
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TT,TE,EE+lowE+lensing), which in particular are the baryon density parameter
Ωb = 0.0486, the parametrization of the Hubble constant h = 0.6736 and the
spectral index ns = 0.9649. Furthermore, in this baseline cosmological model we
assume three neutrino species, approximated as two massless states and a single
massive neutrino of mass mν = 0.06 eV.

In our analysis we will also constrain the value of the cluster normalization
condition parameter S8, defined as

S8 ≡ σ8

(
Ωm

0.3

)0.5

. (5.6)

The significance of this parameter is rooted in the degeneracy between σ8 and
Ωm. In particular, S8 is defined along the σ8 − Ωm confidence regions. Since
the number of massive clusters increases with both σ8 and Ωm, in order to hold
the cluster abundance fixed at its observed value, any increase in σ8 must be
compensated by a decrease in Ωm, implying that S8 is held fixed.

5.7.1 Modelling N(M) in different bins of redshift

In the following we take the case without extractions as the reference. In fact,
we compare the results obtained with the Pipeline I with those retrieved by
considering the objects in the original catalogue, on which we only apply the
corrections for the completeness and the purity.3 Furthermore, in the case without
extractions the masses of the clusters are derived by assuming h = 0.70 and
Ωm = 0.30 in the scaling relation, Eq. 4.18. The counts in the two cases, that is
without extractions and with Pipeline I, are shown in Fig. 5.9. We can appreciate
the overall agreement with both Planck18 and WMAP9.

Turning to the analysis, the first step we perform in all the redshift bins con-
sists in considering first only the high mass regime, within which the completeness
and the purity of the sample are ' 1. In particular the minimum masses that
define the regime with purity and completeness ' 1 are, from the first to the
last redshift bin, 1.4 · 1014 M� h

−1, 1.45 · 1014 M� h
−1, 1.78 · 1014 M� h

−1. Con-
sequently, we gradually consider lower minimum masses Mmin. In Fig. 5.10 we
show the results on Ωm and σ8 for the two cases considered, with and without
extractions, for different values of Mmin. In particular, given a redshift bin we
select the same Mmin for the two cases.

The best-fit values of Ωm and σ8 retrieved by assuming different cuts in min-
imum mass are in agreement in a given redshift bin, both by considering the
case without extractions and Pipeline I. Furthermore, the obtained values of Ωm

3In order to apply the correction for the completeness, it is always necessary to perform
extractions. If we would not act in this way, indeed, we would introduce a guaranteed bias on
the data.
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and σ8 remain consistent by assuming different minimum masses. The only re-
markable difference between extractions and no extractions appears for a high
minimum mass in the redshift bin z ∈ [0.45, 0, 6] for the case without extractions
(lower panels in Fig. 5.10). This is a typical behavior emerging for some choices
of mass ranges, especially if only a few bins of mass are considered for the fit.
Indeed, when we consider lower values of Mmin, the results become consistent
with those obtained in Pipeline I and additionally with Planck18.

Focusing on the case of Pipeline I, another interesting feature of the results
shown in Fig. 5.10 is that, in the first and last redshift bins, the constraints on
Ωm and σ8 are consistent with Planck18 and WMAP9 almost in all cases. On the
other hand, in the redshift bin z ∈ [0.3, 0.45] our results are in agreement with
Costanzi18.
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Figure 5.9: Counts of the galaxy clusters in the AMICO KiDS-DR3 catalogue as a function
of the mass, weighted for the selection function, in the redshift bins z ∈ [0.1, 0.3], [0.3, 0.45],
[0.45, 0.6]. The cases without extractions of the uncertainties on the data are shown in the
left panels, while the cases with extractions (Pipeline I ) are shown on the right side. The
filled black dots represent the counts considered in the analysis. The error bars are referred
to the Poissonian uncertainties relative to the weighted counts. The vertical black dotted line
represents the minimum cut in mass considered in our pipelines. The blue solid lines show the
Planck18 prediction, while the dashed red lines are referred to WMAP9.
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Figure 5.10: In the left panels, the best-fit values of Ωm obtained as the median values of the
marginalized posterior, as a function of the minimum mass Mmin considered in the analysis.
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Furthermore, it is important to consider also the 2D confidence contours in the
posterior, in order to have a complete view of the results, and to assess the
degeneracy between Ωm and σ8. As we can see in Fig. 5.11, we find that the
constraints on the cosmological parameters obtained in different redshift bins are
in good agreement for the case of extractions, i.e. Pipeline I, and within the high
mass regime, where the counts have weights ∼ 1 (first and third right panels).
The confidence contours in the other cases are not consistent simultaneously in
the three redshift bins, despite they show agreement with the constraints provided
by Planck18, WMAP9 and Costanzi18. Furthermore, we can notice the tendency
of the confidence contours to become tighter when we consider lower values of
Mmin (the panels labeled as Minimum cut in mass in the figure), a behavior
also evidenced in the error bars in Fig. 5.10. This is due to the nature of the
Poissonian error, associated to the cluster counts: the relative error decreases
when the counts become larger, that is at low masses. In turn, the consideration
of the low masses critically affects the outcome of our analysis. Despite we show
only the extreme cases of the cuts in mass, i.e. the minimum and the maximum
Mmin, the same behavior holds for the other cuts in minimum mass.

Subsequently, we proceed by taking into consideration the marginalized pos-
terior distributions of σ8, Ωm and S8. We show these results in the Figures 5.12,
5.13, 5.14.
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Costanzi18.
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Figure 5.13: Marginalized posteriors for σ8 in the case without extractions (left panels) and
Pipeline I (right panels). The symbols are the same as in Fig. 5.12.
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The posteriors obtained in the different redshift bins can be combined, being
these conditionally independent parts of the dataset. Given the good agreement
between the results in the three redshift bins for the case of Pipeline I and com-
plete regime of the counts, shown in the Figures 5.12, 5.13, 5.14, we proceed with
the product of the posteriors for our three parameters in this case, as shown in
Fig. 5.15. We derive the following constraints:

Ωm = 0.25+0.03
−0.03

σ8 = 0.86+0.04
−0.04

S8 = 0.80+0.01
−0.01

(5.7)
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Figure 5.15: Combined marginalized posteriors for Ωm, σ8 and S8 from the three bins of
redshift considered in the analysis, within the case of Pipeline I and considering the regime of
high masses. The vertical dashed lines over the marginalized histograms show the 16-th, 50-th
and 84-th percentiles.
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5.7.2 Considerations on N(M)

So far we have dealt with counts of galaxy clusters as a function of the mass
M , in a given redshift bin. What we found is a general inconsistency between
the results in different redshift bins, for a fixed minimum mass Mmin, apart for
the case of Monte Carlo extractions, in Pipeline I, within the complete regime.
Of course we are neglecting several sources of error at the likelihood level, in
the covariance matrix that defines our likelihood function. Indeed, by means of
Monte Carlo extractions we scatter the data but we do not enhance the freedom
of the fitting procedure.

Adding additional sources of error in the likelihood, however, is everything but
trivial. The reason is that in order to include in our analysis the most reliable
part of the dataset, the high masses, we need to assume a Poissonian likelihood,
due to the low counts in this regime. This assumption is highly limiting since
a Poissonian distribution is completely defined by the diagonal of its covariance
matrix. Then we would need an appropriate convolution of the Poissonian like-
lihood with at least another distribution, in general a Gaussian, one for each
additional source of error. We will introduce one of these convolutions, in Section
5.10, in order to account for the most interesting among the additional sources of
error: the super sample covariance. As we shall see, this additional contribution
to the uncertainties does not rectify the inconsistency between the results in dif-
ferent redshift ranges, albeit it implies very interesting effects when we consider
the whole dataset at the same time in the modelling.

With regard to the rest of the sources of uncertainties to be considered at the
likelihood level we are neglecting, for example: the error on the selection function,
on photometric redshift, on the scaling relation, and the intrinsic scatter of the
scaling relation. Apart from the latter, all these contributions require simulations,
and we will perform them in the near future.

5.7.3 Modelling the whole dataset

After the considerations on N(M), we take into account all the bins of redshift
z ∈ [0.1, 0.3], [0.3, 0.45], [0.45, 0.6] simultaneously in the modelling, along with
the bins of mass previously considered, by modelling N(z,M). In this way, we
aim at evaluating if there is any substantial difference, with respect to the case
of N(M), in the confidence contours.

The answer is immediate by looking at Fig. 5.16, in which we show the con-
fidence contours in the parameter spaces defined by the couple Ωm−σ8, Ωm−S8.
In particular we show the 68% and 95% confidence levels retrieved in each bin
of redshift separately, and those obtained considering the whole dataset at once.
Therefore, as we can see, the modelling of N(z,M) provides the combination of
the posteriors of the parameters, retrieved separately in the three bins of redshift.
Of course, despite in Fig. 5.16 it might seem that the product should return zero,
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we point out that we show only the 68% and 95% confidence levels. The rest of
the parameter space, indeed, is not empty.

Let us then visualize more in detail, in Fig. 5.17 and Fig. 5.18, the results that
the whole dataset taken into consideration provides us, within the framework of
Pipeline I. In Fig. 5.17 we show the case of the confidence contours retrieved
from the modelling of N(z,M), by considering the three redshift bins and the
high mass regime, that is the mass domain in which purity and completeness are
' 1. There is a general agreement with the external datasets, and we outline the
fact that for the cases of Planck18, WMAP9 and Costanzi et al. (2018) we are just
showing the mean values of the marginalized posteriors of the parameters. We
retrieve, from this case of N(z,M) in the regime of high purity and completeness,
the following constraints on the cosmological parameters:

Ωm = 0.27+0.02
−0.02

σ8 = 0.86+0.02
−0.02

S8 = 0.81+0.01
−0.01

(5.8)

By considering the case of the lowest cut in minimum mass, Mmin = 5 · 1013 M�
h−1, shown in Fig. 5.18, we can see how the tightness of the confidence contours
inhibits the agreement with the external datasets. We have in this case the
following, restrictive, constraints on Ωm, σ8 and S8:

Ωm = 0.258+0.007
−0.007

σ8 = 0.875+0.013
−0.013

S8 = 0.811+0.004
−0.004

(5.9)

However, as we can see in Fig. 5.19, we have a majestic agreement between the
case of N(z,M) modelled by considering only the high mass regime, and the case
with the lowest cut in minimum mass. We can conclude that the constraints on
Ωm, σ8 and S8 are broadly defined by the high mass regime, while the consider-
ation of lower minimum masses restricts the uncertainties.
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Figure 5.16: Case of Pipeline I. Confidence contours at 68% and 95% in the parameter spaces
defined by Ωm − σ8 (top four panels) and by Ωm − S8 (bottom four panels), for the cases of
completeness and purity ' 1 and minimum Mmin = 5 · 1013 M� h−1. The case of N(M) is
shown in the left panels, while the case of N(z,M) is shown on the right. The black, grey
and green bands define the interval between the 68% and 95% confidence levels respectively for
z ∈ [0.1, 0.3], [0.3, 0.45], [0.45, 0.6], for the case of N(M). The magenta bands define the interval
between 68% and 95% confidence levels for the case of N(z,M). The blue solid line represents
the values of Planck18, the red dashed line represents WMAP9, while the green dotted line
provides the values obtained by Costanzi et al. (2018).
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Figure 5.17: Complete visualization of the constraints obtained by modelling N(z,M) in
Pipeline I, considering the redshift bins z ∈ [0.1, 0.3], [0.3, 0.45], [0.45, 0.6] and the high mass
regime. We show the confidence contours at 68% and 95% in the parameter spaces defined by
Ωm − σ8, Ωm − S8 and σ8 − S8, along with the marginalized histograms. The vertical dashed
lines over the marginalized histograms show the 16-th, 50-th and 84-th percentiles. The blue
solid line represents the values of Planck18, the red dashed line represents WMAP9, while the
green dotted line provides the values obtained by Costanzi et al. (2018).
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Figure 5.18: Complete visualization of the constraints obtained by modelling N(z,M) in
Pipeline I, considering the redshift bins z ∈ [0.1, 0.3], [0.3, 0.45], [0.45, 0.6] and the minimum
cut in mass, Mmin = 5 · 1013 M� h−1. We show the confidence contours at 68% and 95% in
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histograms. The vertical dashed lines over the marginalized histograms show the 16-th, 50-th
and 84-th percentiles. The blue solid line represents the values of Planck18, the red dashed line
represents WMAP9, while the green dotted line provides the values obtained by Costanzi et al.
(2018).
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Figure 5.19: Visualization of the consistency between the confidence contours obtained by
modelling N(z,M) in Pipeline I, by considering the results obtained with the assumption of
the minimum cut in mass Mmin = 5 · 1013 M� h−1 (black plots), and the high mass regime
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green dotted line provides the values obtained by Costanzi et al. (2018).
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5.8 Improving the analysis: Pipeline II

So far we have considered the case of counts as a function of the mass, M . However
this approach has a drawback, since the mass is not an observable quantity.
Moreover, we need to assume a cosmological model a priori in order to retrieve
the mass for each object, since the scaling relation described in Eq. (4.18) depends
on cosmology. In particular, to obtain the masses in this Thesis work we assume
h = 0.7 and Ωm = 0.30.

To address this issue, we develop an alternative likelihood model for cluster
number counts. We consider a widely-used approach adopted in literature works
on cluster counts (e.g., Costanzi et al. 2018, Rozo et al. 2009), and introduce a
new model that replaces the one described in Eq. (5.2), used in Pipeline I. This
model has the following functional form:

〈N(∆λ∗obs,i,∆zobs,j)〉 =

∫ ∞
0

dz Ω
dV

dzdΩ

∫ ∞
0

dM n(M, z) ·

·
∫

∆λ∗obs,i,∆zobs,j

dλ∗obsdzobs P (zobs|z,∆λ∗obs,i)P (λ∗obs|M, zobs) , (5.10)

where V is the volume, Ω is the effective survey area (377 deg2 in our case),
and n(M, z) is the mass function, for which we assume the model by Tinker et
al. (2008), as for the case of the model described in Section 5.2.1. This model
depends on the observed values of intrinsic richnesses and redshifts, provided
in the AMICO KiDS-DR3 catalogue, and it is integrated in the ranges ∆λ∗obs,i
and ∆zobs,j. In this case we do not perform Monte Carlo extractions, since we
model directly the cluster counts as a function of the observed values of intrinsic
richnesses and redshifts. The treatment of the errors on redshifts and scaling
relation is accounted in the likelihood model, by means of the probability dis-
tributions P (zobs|z,∆λ∗obs,i) and P (λ∗obs|M, zobs). These distributions are assumed
to be Gaussian in our case, and act as weights of the mass function within the
integral.

The probability distribution P (zobs|z,∆λ∗obs,i) is retrieved from the mock cata-
logue developed by Maturi et al. (2018) (see Section 4.3). With this distribution
in Eq. (5.10), we account for the redshift uncertainties. To compute the mean
and the standard deviation of this distribution, we consider a grid of redshifts
and intrinsic richnesses. However, the mock catalogue has been developed over
the same effective area covered by the original catalogue, which is quite limited.
It turns out that we do not have enough statistics in the bins if we consider
both bins in intrinsic richness and redshift. We thus decide to consider P (zobs|z).
This means that we neglect any dependence of the uncertainty on zobs on the in-
trinsic richness. The probability distribution P (zobs|z) is then retrieved similarly
to P (z|zobs), used in Pipeline I to randomly extract the values of redshift.

With respect to the mean of P (zobs|z), we assume that it is equal to the value
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Figure 5.20: Left panel: probability distribution P (zobs|z) for the case of a bin central value
of redshift equal to z = 0.4, retrieved from the mock catalogue. Right panel: values of the
standard deviation of the probability distributions P (zobs|z).

of redshift z considered. This approximation is justified, as we can see in the
left panel of Fig. 5.20. On the other hand, we have to take into account that
the standard deviation of P (zobs|z) depends on redshift, as we can see in the
right panel of Fig. 5.20. Therefore we perform a polynomial fit that describes the
standard deviation as a function of zobs.

On the other hand, P (λ∗obs|M, zobs) in Eq. (5.10) is a Gaussian that weights
the theoretical prediction of the counts in accordance with the uncertainty on the
observable-mass scaling relation. In order to retrieve a function to be integrated
in the model, we need a functional form for the mean and the standard deviation
of this distribution. Then we invert the scaling relation, Eq. (4.18), expliciting
the observed intrinsic richness λ∗obs. Firstly, we consider triplets of values of mass,
M , observed redshift, zobs, and Ωm, namely {Mi, zobs,i,Ωm,i}, on which we base
the derivation of several distributions P (λ∗obs,i|Mi, zobs,i). Secondly, we scatter
the values of the parameters α, β, γ in the scaling relation, through the use
of Gaussian Monte Carlo extractions. Given the values {Mi, zobs,i,Ωm,i}, and
the new set of parameters {αk, βk, γk}, we derive a value of intrinsic richness
λ∗obs,k from the inverted scaling relation. Iterating the scatter of the parameters
for a fixed set {Mi, zobs,i,Ωm,i}, we obtain a distribution for λ∗obs,i, with a given
mean and standard deviation. Realizing several distributions, one for each set
{Mi, zobs,i,Ωm,i}, we perform a polynomial fit for the standard deviation as a
function of the mass, the observed redshift and Ωm. Conversely, given that we
assessed the absence of relevant systematics, we set the mean of these distributions
equal to the value of λ∗obs derived by neglecting the uncertainty on the scaling
relation.4

4The described procedure is a first attempt to derive the shape of the distribu-
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We outline the importance of the dependency of the standard deviation on
Ωm. Indeed, this implies a direct relation between the error on the scaling relation
and the cosmology assumed for the model. In this way, P (λ∗obs|M, zobs) changes
at each step of the MCMC that we compute to derive the constraints on Ωm, σ8

and S8.

5.9 Modelling N(λ∗obs) in a ΛCDM Universe

Similarly to the case of the cluster counts as a function of the mass, we begin
the analysis in the framework of Pipeline II by considering the counts in a given
redshift bin, namelyN(λ∗obs). We show in Fig. 5.21 the cluster counts as a function
of the observed intrinsic richness, λ∗obs, with a common threshold λ∗obs = 23, chosen
in order to avoid the regime affected by Malmquist bias. As for the case of N(M)
described in Section 5.7.1, we can see an overall agreement with Planck18 and
WMAP9.

Since the model defined in Eq. (5.10) depends on the observed redshifts and
intrinsic richnesses, the Pipeline II does not require any Monte Carlo extraction.
As a consequence, we can compare the constraints on Ωm, σ8 and S8 retrieved in
Pipeline II with those obtained assuming the model for N(M), Eq. (5.2), in the
case without extractions. This allows us to evaluate any remarkable difference
in the results obtained by assuming the two models considered in this work. We
point out that it is not possible to relate a secure value of mass M to a value
of λ∗obs, in a first instance because the scaling relation has an uncertainty, and
in addition because the value of M provided by the scaling relation depends
on the redshift. Therefore, to a value of λ∗obs correspond diverse values of mass
in a redshift bin. Nevertheless, we can fine-tune the choice of the minimum
masses corresponding to the designated minimum intrinsic richnesses by making
some assumptions. From the redshift distribution of the objects in the original
catalogue within a given redshift bin, we consider the mean value of redshift.
Then, neglecting the uncertainties on the scaling relation, we derive the value of
Mmin, for a given λ∗obs,min and a mean value of redshift. In Fig. 5.22 we can see
that, both for the case of Pipeline II and the case of N(M) without extractions,
the posteriors on Ωm, σ8 and S8 obtained in different bins of redshift show the
same inconsistencies. Then we conclude that, considering the approximations
applied to the probability distributions P (zobs|z,∆λ∗obs,i) and P (λ∗obs|M, zobs), the

tion P (λ∗obs|M, zobs). Indeed, we are assuming P (λ∗obs|M, zobs) = P (M |λ∗obs, zobs), where
P (M |λ∗obs, zobs) is the scaling relation. Conversely, we should base ourselves on the Bayes’
theorem, considering the scaling relation as the posterior. In turn, we should consider the prior
on the intrinsic richness, P (λ∗obs), and the evidence, which in this case is the mass function.
Furthermore, it is necessary to account for the covariance between the parameters of the scaling
relation, α, β, γ. This can be retrieved from the fit of the scaling relation. We will derive the
improved functional form of P (λ∗obs|M, zobs) in the near future.
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model for the counts on which the Pipeline II is based, Eq. (5.10), and the model
as a function of the mass, Eq. (5.2), provide results that are in agreement on the
cosmological parameters Ωm, σ8 and S8.
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Figure 5.21: Counts of the galaxy clusters in the AMICO KiDS-DR3 catalogue as a function
of the observed intrinsic richness, λ∗obs, weighted for the selection function, in the redshift
bins z ∈ [0.1, 0.3], [0.3, 0.45], [0.45, 0.6]. The common threshold in minimum intrinsic richness
λ∗obs,min = 23 is applied to all the redshift bins. The black dots represent the counts considered
in the analysis. The error bars are referred to the Poissonian uncertainties relative to the
weighted counts. The blue solid lines show the Planck18 prediction, while the dashed red lines
are referred to WMAP9.
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Figure 5.22: Confidence contours at 68% and 95% in the parameter spaces defined by Ωm−σ8
(top four panels) and by Ωm−S8 (bottom four panels), for the cases of completeness and purity
' 1 and minimum Mmin = 5 · 1013 M� h−1. The cases without extractions in the framework
of N(M) are shown on the left, while on the right we have the results from Pipeline II. The
black, grey and green bands define the interval between the 68% and 95% confidence levels,
respectively, for z ∈ [0.1, 0.3], [0.3, 0.45], [0.45, 0.6]. The blue solid lines represent the values of
Planck18, the red dashed lines represent WMAP9 values, while the green dotted lines provide
the values obtained by Costanzi18.
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In Fig. 5.23 we show the values of σ8 and Ωm obtained in Pipeline II, for
different values of minimum intrinsic richness. As we can see, the same arguments
expressed in Section 5.7.1 with regard to the case of N(M), hold also in this case:
we find an agreement with the Planck18 and WMAP9 predictions in the redshift
bins z ∈ [0.1, 0.3], z ∈ [0.45, 0.6], while in z ∈ [0.3, 0.45] the values of σ8 and Ωm

are consistent with Costanzi18. Furthermore, in the redshift bin z ∈ [0.45, 0.6]
we find the same behavior described in Fig. 5.10. The results on σ8 and Ωm, in
this case, diverge from the predictions by Planck18, WMAP9 and Costanzi18 due
to the low number of bins of λ∗obs considered for the modelling.

109



0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Ω m

z∈ [0.1, 0.3]
Planck18
WMAP9
Costanzi18
Pipeline II

0.7

0.8

0.9

1.0

1.1

σ 8

z∈ [0.1, 0.3]

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Ω m

z∈ [0.3, 0.45]

0.7

0.8

0.9

1.0

1.1

σ 8

z∈ [0.3, 0.45]

25 30 35 40
λ *

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Ω m

z∈ [0.45, 0.6]

25 30 35 40
λ *

0.7

0.8

0.9

1.0

1.1

σ 8

z∈ [0.45, 0.6]

Figure 5.23: In the left panels, the best-fit values, provided in Pipeline II, of Ωm obtained
as the median values of the marginalized posterior, as a function of the minimum observed
intrinsic richness λ∗obs,min considered in the analysis. On the right, the values of σ8 as a function
of λ∗obs,min. The blue solid lines represent the values of Planck18, the red dashed lines represent
WMAP9 values, while the green dotted lines provide the values obtained by Costanzi18.
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5.9.1 Modelling the whole dataset in a ΛCDM Universe

Once we have considered the one-dimensional analysis in terms of N(λ∗obs), we
proceed with the modelling of N(zobs, λ

∗
obs). In Fig. 5.24 we can see that, similarly

to the case ofN(z,M) described in Section 5.7.3, the confidence contours obtained
by considering only the regime with completeness and purity ∼ 1 are consistent
with those obtained with the lowest cut in intrinsic richness, namely λ∗obs,min = 23.

We obtain the following constraints for the case of completeness and purity
' 1: 

Ωm = 0.27+0.03
−0.02

σ8 = 0.85+0.03
−0.03

S8 = 0.81+0.01
−0.01

(5.11)

For the case of λ∗obs,min = 23, instead, we have:
Ωm = 0.270+0.009

−0.009

σ8 = 0.864+0.014
−0.014

S8 = 0.820+0.004
−0.004

(5.12)

In both cases, we can see that these results are remarkably consistent with those
obtained by modelling N(z,M) in Pipeline I (see Section 5.7.3). Therefore, the
methods developed in the two pipelines considered in this Thesis work, lead to
consistent results on the constraints on Ωm, σ8, S8
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Figure 5.24: Visualization of the consistency between the confidence contours obtained by
modelling N(zobs, λ

∗
obs) in Pipeline II, by considering the results obtained with the assumption

of the minimum cut in intrinsic richness, λ∗obs,min (black plots), and the high richness regime
(orange plots). We show the confidence contours at 68% and 95% in the parameter spaces
defined by Ωm − σ8, Ωm − S8 and σ8 − S8, along with the marginalized histograms. The blue
solid lines represent the values of Planck18, the red dashed lines represent WMAP9, while the
green dotted lines provide the values obtained by Costanzi18.
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5.10 Super sample covariance

As we outlined during the presentation of our results, we are neglecting several
sources of uncertainty in the modelling of our data. However, we need large
simulations in order to derive most of the additional contributions to include into
the covariance matrix of our likelihood.

Nevertheless, among the sources of error to be considered in the likelihood
function, we can include the most peculiar: the super sample covariance (SSC).
Due to the limited portion of Universe observed, the measure of the background
density of matter from a survey of galaxies can be intrinsically biased. Indeed,
in the context of the description of the matter density in the Universe by means
of Fourier modes, the local observables can be modulated by density fluctuations
with wavelength larger than the survey size. That is, the sample derived from a
survey could reflect a local overdensity or underdensity, implying a bad character-
ization of the mean background density of the Universe. The role of the SSC is to
account for the fluctuations of the measured background density, parametrized as
δb, with respect to the true value. In particular, for each bin of redshift, labeled
as i, we will introduce a variable δb,i.

To account for this contribution, we consider a new expression for the likeli-
hood. Following Lima & Hu (2004) and Lacasa & Grain (2019), the new likelihood
considered for the modelling of cluster number counts has the following functional
form:

L =

∫
dδnz

b

[∏
i,j

Poiss

(
Ni,j|N̄i,j +

∂Ni,j

∂δb,j
δb,j

)]
·Gauss(δb|0, S) . (5.13)

This likelihood is, thus, a convolution of a Poissonian likelihood, the first term
of the integrand, and a Gaussian likelihood, the second term. In particular, the
Poissonian likelihood describes the cluster counts, while, as we shall discuss, the
Gaussian is referred to the SSC. In Eq. (5.13), i and j are the labels of the bins
of observed intrinsic richness and redshift, in the framework of Pipeline II. As a
consequence, Ni,j ≡ N(∆λ∗obs,i,∆zobs,j) is the observed cluster number counts in a
bin of intrinsic richness and redshift, while N̄i,j is the model defined in Eq. (5.10).
The term ∂Ni,j/∂δb,j is the response of the counts, the measure of how the counts
vary with changes of the background density, and is expressed as

∂Ni,j

∂δb,j
=

∫ ∞
0

dz Ω
dV

dzdΩ

∫ ∞
0

dM n(M, z) b(M, z) ·

·
∫

∆λ∗obs,i,∆zobs,j

dλ∗obsdzobs P (zobs|z,∆λ∗obs,i)P (λ∗obs|M, zobs) . (5.14)

That is, the response is equal the model described in Eq. (5.10), in which we also
include the contribution of the linear bias b(M, z). The mean of each Poissonian
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distribution in Eq. (5.13) is perturbed by the product of this term and the density
fluctuation δb,j defined in the j-th redshift bin.

Turning to nz in Eq. (5.13), it is the number of redshift bins considered in the
modelling procedure, and it defines the dimension of the integral. Considering
for example three redshift bins at once, by modelling N(zobs, λ

∗
obs), we have three

different integration variables δb,j, with j = 1, 2, 3. Furthermore, each deltab,j is a
variable of the Gaussian distribution in Eq. (5.13), which thus is multivariate in
general. This Gaussian is centered on zero and has covariance matrix S, which has
dimension nz × nz. This matrix quantifies the covariance between the variables
δb,j in the bins of redshift considered, and each element of S is expressed as

Sj,j′ =
1

2π2

1

fsky

∫
dk k2P (k)

Uj(k)

Ij

Uj′(k)

Ij′
, (5.15)

where Uj(k) has the form

Uj(k) =

∫
dVj W

2
j (zj)g(zj)j0(krj), (5.16)

while Ij is expressed as

Ij =

∫
dVj W

2
j (zj). (5.17)

In these equations, Vj is the comoving volume within the j-th redshift bin, P (k)
is the linear power spectrum, g is the linear growth factor of the perturbations, j0

is the Bessel spherical function, and the terms Wi refer to the window functions,
assumed as top-hat in our case. Lastly, fsky is the sky fraction covered by the
survey, defined by the effective area which in our case is 377 deg2.

In order to implement the formalism for Sj,j′ in our C++ libraries, the Cos-
moBolognaLib, we referred to the codes in Python provided by Lacasa & Grain
(2019). In our analysis, we do not explicitly compute the integral in Eq. (5.13).
Conversely, we assume the natural logarithm of another likelihood L′, corres-
ponding to the integrand of Eq. (5.13), namely

lnL′ = ln

[∏
i,j

Poiss

(
Ni,j|N̄i,j +

∂Ni,j

∂δb,j
δb,j

)
·Gauss(δb|0, S)

]
. (5.18)

Therefore we set δb = {δb,1, ..., δb,nz} as free parameters of the model, with Gaus-
sian priors defined by the diagonal of the S matrix. Since the S matrix depends
on the cosmological parameters Ωm and σ8, the values of its elements change at
every step of the chain, which is computed in order to derive the posteriors of Ωm

and σ8. In turn, a variation of S implies the change of the prior on δb. At the end
of the chains, we marginalize over δb to derive the posteriors of our parameters
of interest.
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5.10.1 Including the SSC in Pipeline II

In order to obtain the most reliable results, we make use of Pipeline II. Therefore,
in this framework, we consider the additional contribution of the SSC, which takes
place in the likelihood function, as discussed in the previous section. We consider
in a first instance the modelling of N(λ∗obs) in a given bin of redshift. As we can
see in Fig. 5.25, where we show the case of the first redshift bin as an example, the
inclusion of the SSC in the modelling provides the same results obtained in the
case of a simple Poissonian likelihood. Then, the perturbations of the Poissonian
probability functions in Eq. (5.13) are negligible, along with the contribution of
the Gaussian.
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Figure 5.25: Comparison of the confidence contours obtained from the assumption of a Pois-
sonian likelihood (black bands) and a SSC likelihood (green bands), in the case of the modelling
of N(λ∗obs) in the redshift bin z ∈ [0.1, 0.3]. On the left we show the confidence contours ob-
tained by considering the pure and complete regime, while the case for the lowest cut in intrinsic
richness is shown on the right. Despite the confidence contours obtained by considering the
SSC seem to be larger, we do not rely on this feature for the moment.

Conversely, by modelling N(λ∗obs, zobs), that is by considering simultaneously
in the modelling the three redshift bins z ∈ [0.1, 0.3], [0.3, 0.45], [0.45, 0.6], it turns
out that the SSC produces a systematic shift of the confidence contours along
the direction of the Ωm − σ8 degeneracy, namely along S8. This effect is shown
in Fig. 5.26. The reason of these results resides in the S matrix in Eq. (5.13).
When we consider only one bin of redshift, S is a scalar, and we see that this
does not produce remarkable differences. When we consider more than one bin
of redshift, instead, the terms out of the diagonal in the S matrix produce visible
differences. In the case of the modelling of N(λ∗obs, zobs), including the SSC, we
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obtain the following constraints on Ωm, σ8 and S8:
Ωm = 0.28+0.01

−0.01

σ8 = 0.85+0.02
−0.01

S8 = 0.82+0.01
−0.01

(5.19)

We consider this as our best result, obtained by including 2816 objects.
Lastly, we point out that the SSC produces the same effects in the case of

the cluster counts as a function of the mass M , namely by assuming the model
described in Eq. (5.2). The reason is that, as we have discussed in Section 5.9,
both the model for the cluster counts as a function of the mass and as a function
of the intrinsic richness describe the observations in a very similar fashion. Then,
the effects of the SSC in our work only depend on the covariance between the
redshift bins, that changes as a function of the cosmological parameters, and on
the assumed likelihood function for the description of the cluster counts, which
in this work is always Poissonian.
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Figure 5.26: Comparison of the confidence contours obtained from the assumption of a Pois-
sonian likelihood (orange contours) and a SSC likelihood (grey filled contours), in the case of
the modelling of N(λ∗obs, zobs) for a cut in minimum intrinsic richness λ∗obs,min = 23. The blue
solid lines represent the values of Planck18, the red dashed lines represent WMAP9 values,
while the green dotted lines provide the values obtained by Costanzi18.
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Chapter 6

Discussion and conclusion

According to the ΛCDM cosmological model, the large-scale structure of the
Universe results from the gravitational growth of local density perturbations,
within an expanding Universe. Galaxy clusters are the tracers of the highest
of such perturbations, and the development of advanced instrumentation, along
with the combination of observations of galaxy clusters in different wavelengths,
steadily enhance our knowledge of the Universe on large scales. Observations in
X-rays, optical, NIR and also gravitational lensing studies allow to investigate
in depth the properties of these objects. In this framework, it is necessary to
construct pure and complete galaxy cluster catalogues up to high redshifts, in
order to derive cosmological constraints from the physical properties of these
structures.

In this Thesis we carried out a work on cluster counts based on a photometric
catalogue of galaxy clusters, the AMICO KiDS-DR3 catalogue. The final sample
consists of three redshift bins, z ∈ [0.1, 0.3], z ∈ [0.3, 0.45], z ∈ [0.45, 0.6], in
an effective area of 377 deg2. Considering the intrinsic richness, λ∗, as our mass
proxy, we performed an accurate analysis of the sample by making use of a scaling
relation between the mass, M , and λ∗, calibrated on the objects of dataset. In
this way we carried out an analysis by considering two different approaches, or
pipelines, in order to derive the cosmological parameters Ωm, σ8 and S8, assuming
a ΛCDM model. As detailed in Chapter 5, the main results of this Thesis work
can be summarized as follows:

• We carried out the analysis in the framework of the Pipeline I, based on the
treatment of the uncertainties on redshifts and scaling relation by means
of Monte Carlo extractions. In a first instance, we focused on the one-
dimensional modelling, namely the counts as a function of the mass in a
bin of redshift, N(M). We found a good agreement between the constraints
on cosmological parameters obtained with this method, and those obtained
without performing Monte Carlo extractions. In addition, we found results
in agreement with the results obtained in Planck18, WMAP9 and Cost-
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anzi18.

• Focusing on the confidence contours and on the marginalized posteriors of
the parameters Ωm, σ8 and S8, we found a general inconsistency between
the results in different bins of redshift.

• Considering the bi-dimensional modelling, N(z,M), we derived constraints
from the whole dataset. We obtained the following results by considering
only the mass regime not affected by incompleteness and impurity:

Ωm = 0.27+0.02
−0.02

σ8 = 0.86+0.02
−0.02

S8 = 0.81+0.01
−0.01

(6.1)

By considering the case of the lowest cut in minimum mass, instead, we
found: 

Ωm = 0.258+0.007
−0.007

σ8 = 0.875+0.013
−0.013

S8 = 0.811+0.004
−0.004

(6.2)

• Subsequently, we developed a new pipeline, namely Pipeline II, by intro-
ducing a new model for the theoretical description of cluster counts, based
on two probability distributions which account for the uncertainties on the
photometric redshifts and on the scaling relation. This model is a function
of the observed intrinsic richness λ∗obs, instead of the mass. By perform-
ing the one-dimensional analysis in a given redshift bin, we found that this
new model provides constraints on the cosmological parameters that are in
agreement with the model assumed for the Pipeline I.

• Then we modelled the entire dataset, and by accounting for the objects in
the regime of completeness and purity ' 1, we found the following con-
straints: 

Ωm = 0.27+0.03
−0.02

σ8 = 0.85+0.03
−0.03

S8 = 0.81+0.01
−0.01

(6.3)

On the other hand, we found the following results on the cosmological
parameters by considering 

Ωm = 0.270+0.009
−0.009

σ8 = 0.864+0.014
−0.014

S8 = 0.820+0.004
−0.004

(6.4)

Therefore, we found that Pipeline I and Pipeline II provide consistent res-
ults.
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• Lastly, we introduced the super sample covariance in the analysis, by devel-
oping a new framework for the likelihood function. We found an interesting
effect in the case of the bi-dimensional modelling of the whole dataset, con-
sisting in a shift of the confidence contours in the parameter space Ωm−σ8

along the S8 direction. In this case, we found the following results:
Ωm = 0.28+0.01

−0.01

σ8 = 0.85+0.02
−0.01

S8 = 0.82+0.01
−0.01

(6.5)

These results represent our final best constraints obtained in this Thesis work.
They are fully consistent with ΛCDM predictions, and competitive, in terms of
uncertainties, with results of state-of-the-art cluster number count analyses.

In order to improve the analysis, in the near future we will perform new sim-
ulations aimed at assessing the uncertainty on the selection function. Further-
more, we will analyze the data from the weak-lensing analysis in order to better
characterize the probability distribution P (λ∗obs|M, zobs) in the model defined in
Eq. (5.10).
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[7] G. Lemâıtre, Un Univers homogène de masse constante et de rayon croissant
rendant compte de la vitesse radiale des nébuleuses extra-galactiques, 1927,
Annales de la Société Scientifique de Bruxelles A47: p. 49-59

[8] Planck Collaboration, Planck 2018 results. VI. Cosmological parameters,
2018, arXiv:1807.06209

[9] Suhail Dhawan, Saurabh W. Jha, Bruno Leibundgut, Measuring the Hubble
constant with Type Ia supernovae as near-infrared standard candles, 2018,
arXiv:1707.00715v2

[10] Adam G. Riess, Stefano Casertano, Wenlong Yuan, Lucas M. Macri, Dan
Scolnic, Large Magellanic Cloud Cepheid Standards Provide a 1% Founda-
tion for the Determination of the Hubble Constant and Stronger Evidence for
Physics Beyond LambdaCDM, 2019, arXiv:1903.07603v2
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