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Abstract

One of the biggest challenges of the 21st century cosmology is to accurately estimate
the cosmological model parameters and to discriminate among alternative cosmo-
logical frameworks. The large-scale structure of the Universe provides powerful
probes to put constraints on the main cosmological parameters. Galaxy surveys
exploit galaxies as observable tracers to map the total matter distribution of the
Universe. During the last decade, increasingly large galaxy surveys have been con-
ducted both with ground-based and space-borne telescopes. These instruments are
able to produce tens of terabytes of data every day. Next-generation astronomical
facilities, such as Euclid, the James Webb Space Telescope and the Large Synop-
tic Survey Telescope, will dramatically increase the amount of data available for
cosmological investigations. This scenario suggests that Machine Learning (ML)
techniques will play a key role in future researches, revolutionizing all astronomi-
cal data analysis methodologies. ML algorithms can learn the representations of
the data they are fed with, and produce outputs the goodness of which depends
on the amount of the input data. The ML models considered in this thesis work
are often referred to as Artificial Neural Networks, being inspired by the biological
neural networks that constitute animal brains. These supervised ML networks pro-
vide output responses without following specific instructions, learning from past
experiences by judging how they performed on previously analyzed data.

In this thesis work we exploited two alternative ML-based techniques to put
constraints on the matter density contrast, Ωm, from the two-point correlation
function of galaxies in the Baryon Oscillation Spectroscopic Survey (BOSS), which
is part of the Sloan Digital Sky Survey (SDSS) III. The considered galaxy sam-
ple consists of almost 1.2 millions massive galaxies over an effective area of 9329
square degrees, in a comoving volume of 18.7 Gpc3 spanning the redshift range
0.2 < z < 0.75. The two implemented ML models perform a Multi-Class Classifi-
cation and a Regression Analysis, and have been trained with a large set of mock
two-point correlation function measurements, obtained from log-normal mock cat-
alogues with the same observational selections of the BOSS sample.

The constraints we obtained with the Classification and Regression models
are Ωm = 0.30 ± 0.03 and Ωm = 0.307 ± 0.006, respectively. These results are
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remarkably consistent with the ones from Alam et al. (2017), that have been
obtained through a standard Bayesian analysis using the same galaxy catalogue.
In particular, the Regression ML method implemented in this thesis work provides
Ωm constraints that are competitive with the ones obtained by state-of-the-art
standard analyses, providing a new, independent confirmation of the standard Λ
Cold Dark Matter (ΛCDM) cosmological framework.

This thesis work demonstrates that supervised ML techniques can be effectively
applied to observed cosmological data such as galaxy catalogues, and not only to
images or simulations. The main advantage of these techniques with respect to
standard analyses is that they are likelihood-free statistical methods: no theoreti-
cal model has to be developed for the analyzed statistics, the algorithm itself can
learn the representation of the input data that produce the best possible output.
Moreover, once the model has been implemented and trained, the application on
a new, previously unseen dataset requires a negligible computational time. On
the other hand, the need of a huge number of examples to learn the correct repre-
sentation of the data and the fact that this number exponentially increases when
multiple cosmological parameters are considered, represent the main drawbacks of
the method. Nevertheless, modern techniques and free software codes are nowa-
days available to address these issues. ML techniques can thus be considered as a
powerful, independent alternative to standard cosmological methodologies.



Sommario

Una delle più grandi sfide della cosmologia del ventunesimo secolo è quella di sti-
mare accuratamente i parametri che caratterizzano il modello cosmologico, e quindi
di operare una corretta discriminazione tra i vari contesti cosmologici. La struttura
a grande scala dell’Universo fornisce un importante metodo d’indagine per porre
vincoli sui più importanti parametri cosmologici. Le surveys di galassie utilizzano
questi oggetti cosmologici come traccianti per mappare la distribuzione di materia
nell’Universo. Nel corso dell’ultima decina di anni, il numero di queste surveys è au-
mentato, sia utilizzando telescopi da terra, che telescopi spaziali. Questi strumenti
sono in grado di produrre decine di terabytes di dati ogni giorno. Gli strumenti as-
tronomici della prossima generazione come, ad esempio, Euclid, James Webb Space
Telescope e il Large Synoptic Survey Telescope, aumenteranno drasticamente la
quantità di dati disponibile per indagini cosmologiche. Questo scenario suggerisce
che le tecniche di apprendimento automatico, meglio conosciuto con il termine
inglese Machine Learning (ML), potranno avere un ruolo chiave nelle ricerche fu-
ture, rivoluzionando tutte le tecniche di analisi di dati astronomici. Gli algoritmi
di ML possono imparare delle specifiche rappresentazioni dei dati che vengono loro
forniti e riescono, da queste, a produrre degli output, la bontà dei quali dipende
dalla quantità dei suddetti dati forniti in input. Spesso ci si riferisce ai modelli di
ML trattati in questa tesi con il termine Reti Neurali Artificiali, poichè originari-
amente furono ispirati dalle reti neurali biologiche che formano il sistema nervoso
degli animali. Le reti di apprendimento supervisionato forniscono un output senza
seguire specifiche istruzioni, ma imparando dalle passate esperienze, valutando la
loro prestazione su dati che hanno precedentemente analizzato.

In questa tesi abbiamo utilizzato due differenti tecniche basate sul ML per porre
vincoli sul parametro cosmologico che caratterizza il contrasto di densità della ma-
teria, Ωm, partendo dalla funzione di correlazione a due punti di galassie misurata
a partire dal catalogo della Baryon Oscillation Spectroscopic Survey (BOSS), che
fa parte della terza fase della Sloan Digital Sky Survey (SDSS). Il campione di
galassie preso in considerazione conta quasi 1.2 milioni di galassie massive, su
un’area effettiva di 9329 gradi quadrati, in un volume comovente di 18.7 Gpc3 e in
un intervallo di redshift compreso tra z = 0.2 e z = 0.75. I due modelli di ML che
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sono stati implementati sono in grado di eseguire una Classificazione a più classi e
una Regressione, e sono stati allenati con un grande numero di funzioni di corre-
lazioni a due punti misurate a partire da cataloghi mock generati assumendo una
distribuzione log-normale di contrasti di densità. Questi cataloghi mock sono stati
costruiti in modo da avere le stesse selezioni osservative del campione di BOSS.

I vincoli che abbiamo ottenuto con la Classificazione e la Regressione sono,
rispettivamente, Ωm = 0.30 ± 0.03 e Ωm = 0.307 ± 0.006. Questi risultati sono
considerevolmente in accordo con quelli di Alam et al. (2017), i quali sono stati
ottenuti attraverso una analisi standard bayesiana, usando lo stesso catalogo di
galassie. In particolare, l’algoritmo di Regressione che è stato implementato in
questo lavoro di tesi ha fornito un vincolo su Ωm che risulta essere competitivo
rispetto a quelli ottenuti attraverso le analisi standard più all’avanguardia, for-
nendo quindi una nuova e indipendente conferma della validità del modello cos-
mologico standard Λ Cold Dark Matter (ΛCDM).

Questa tesi dimostra che le tecniche di apprendimento supervisionato possono
essere applicate con efficacia a dati osservativi cosmologici, come cataloghi di
galassie, e non solo a immagini o simulazioni. Il vantaggio principale di queste
tecniche, rispetto all’analisi standard, è che queste consistono in un metodo statis-
tico in cui non è necessario sviluppare un modello teorico dell’oggetto che si vuole
analizzare: l’algoritmo impara da solo la rappresentazione dei dati di input che
gli permette di fornire in output il miglior risultato possibile. Per questo motivo
queste tecniche sono chiamate likelihood-free. Inoltre, una volta che il modello
è stato costruito e allenato, la sua applicazione ad un nuovo dataset mai visto
prima richiede un tempo di calcolo trascurabile. D’altro canto, il bisogno di un
numero di esempi molto grande per poter imparare la corretta rappresentazione
dei dati e il fatto che questo numero aumenti esponenzialmente nel caso in cui più
parametri cosmologici vengano presi in considerazione, rappresentano i principali
svantaggi di questo metodo. Ciononostante tecniche all’avanguardia e specifiche li-
brerie numeriche sono oggigiorno disponibili per fronteggiare queste problematiche.
Le tecniche di ML possono quindi essere già oggi considerate come un’alternativa
valida e indipendente rispetto ai metodi standard di analisi cosmologica.



Introduction

The cosmological framework that in the recent years has become the standard one
for the scientific community is the ΛCDMmodel. This model is based on Einstein’s
theory of General Relativity (Einstein 1915), which provides the current best de-
scription of the gravitational force, the dominant interaction when large scales, like
the cosmological ones, are considered. The ΛCDM model assumes the presence
of a Cosmological Constant, Λ, in Einstein’s field equations and in the existence
of CDM particles, which can interact with each other and with the rest of their
environment only gravitationally. Fritz Zwicky was the first one to hypothesize
the existence of DM, after applying the virial theorem to the Coma Cluster and
obtaining the evidence of unseen mass (Zwicky 1937). The Universe described by
the ΛCDM model is experiencing an accelerated expansion, first proved by Perl-
mutter et al. (1998) and Reiss et al. (1998) using Type Ia SuperNovae as standard
candles. The Universe is assumed to be composed for almost 70% of Dark Energy,
represented by Λ in a General Relativity framework, and for approximately 25%
of CDM. This means that what we are able to measure directly through photons
is only 5% of the mass/energy content of the Universe.

The study of the distribution of collapsed structures, like galaxies and galaxy
clusters, plays a key role in the cosmological investigation. The large-scale struc-
ture of the Universe is the result of an evolution that lasted about 14 billions
years, and that was driven by the laws that govern the Universe and by their
parameters. Therefore, understanding the evolution of the matter distribution is
of fundamental importance to put constraints on the parameters of the ΛCDM
model. The primordial fluctuations of matter density started growing, driven by
gravity, when matter became neutral for the first time in cosmic history. This
cosmic epoch is called recombination. According to the standard cosmological sce-
nario, the evolution of density perturbations started from a Gaussian distribution,
fully described by its variance. In configuration space, the variance of the field
is called two-point correlation function and it is a function of the modulus of the
distance between objects, r. In particular, the correlation function is defined as
the excess of probability of finding two objects with a relative comoving distance r
with respect to the case these objects were distributed randomly. At large scales,
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the matter distribution can still be approximated as a Gaussian distribution, and
thus, the two-point correlation function contains most of the information.

The two-point correlation function and its analogous in Fourier space, the
power spectrum, have been the centre of many analyses of observed galaxy cata-
logues (e.g. Totsuji and Kihara 1969, Peebles 1974, Hawkins et al. 2003, Alam et
al. 2016 and many others). Measuring the correlation function of galaxy catalogues
is not an easy task. Many estimators of this statistic have been proposed, with
the aim of minimizing both the scatter and the bias in the measurements (Davis
and Peebles 1983, Hamilton 1993, Landy and Szalay 1993). The correlation func-
tion is affected by two main sources of distortions, that is dynamic and geometric
distortions. The dynamic, or redshift-space distortions (RSD), are introduced if
the peculiar velocities of the objects are neglected when measuring their comoving
distances along the line of sight using the redshift of their spectra. The geometric
distortions are caused instead by a wrong cosmological model assumption when
computing the distances between objects, starting from observed coordinates.

The standard way to put constrains on cosmological parameters from the two-
point correlation function is by fitting the measured statistic through a likelihood
which should account for all kinds of distortions and uncertainties. In this thesis
work we present two new likelihood-free ML-based techniques to put constraints on
the matter density fraction, Ωm, starting from the two-point correlation function
of the BOSS galaxy catalogue.

ML algorithms can be used to provide reliable outputs that are based on previ-
ous experiences, and not on specific instructions (Samuel 1959, Goodfellow 2016).
The level of reliability of the outputs increases when the amount of input data
increases. This makes ML a powerful tool in a scenario such as the current one, in
which real extra-galactic surveys and simulations are producing increasingly large
amounts of cosmological datasets (e.g. Cole et al. 2005, Parkinson et al. 2012,
Anderson et al. 2014).

This thesis work is organized as follows:

• In Chapter 1 we introduce the fundamental laws that govern the Universe, fo-
cusing on the description of the standard ΛCDM model and its observational
constraints.

• In Chapter 2 we describe the evolution of the matter density distribution,
from the primordial density fluctuations to the present day distribution of
collapsed objects.

• In Chapter 3 we introduce clustering as the study of the spatial distribution
of cosmic objects, like galaxies and galaxy clusters. Then we investigate
which features of this distribution can be used to put constraints on the
cosmological parameters.
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• In Chapter 4 we describe the fundamentals of ML. We explain what an
Artificial Neural Network is and what it is composed of. We then provide
information about the training process, showing how it can teach the model
to give trustworthy predictions and which are its hyperparameters that can
be modified to improve the performances.

• In Chapter 5 we present the dataset we applied our ML models to, that is
the BOSS galaxy catalogue. Then we explain how we measured its two-point
correlation function, and how the same correlation function has been used
to put constraints on cosmological parameters by Alam et al. (2017), using
a standard Bayesian approach.

• In Chapter 6 we introduce the method to construct log-normal mock cata-
logues and its importance in cosmology. Then we present the training set
and validation set we constructed.

• In Chapter 7 we give a detailed description of the implemented ML models
and of the training processes they went through. Then, we present the results
obtained from those trained models.

• In Chapter 8 we summarize the results of this thesis work and discuss about
future perspectives.
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Chapter 1

Thoretical cosmological background

1.1 Elements of General Relativity
Gravity is the most relevant interaction when large spatial scales are considered
and it is so far best described by Einstein’s Theory of General Relativity (Einstein
1915).

This theory is able to describe the curvature in the space-time structure induced
by a distribution of mass and energy and it is this curvature that governs the
motion of whatever has not null mass or energy. In a Relativity framework an
event is described by one time coordinate and three spatial coordinates: xµ =
(t, x1, x2, x3). Starting from this definition it is possible to define the distance
between two events, that is:

ds2 = gµνdx
µdxν . (1.1)

The metric tensor that describes a space-time structure where gravity is present
is defined starting from its analogous in Special Relativity ηαβ:

gµν ≡ ηαβ
∂ξα

∂xµ
∂ξβ

∂xν
, (1.2)

where ξα is the set of coordinates of the reference frame that do not experience the
gravitational force and sees in a uniform straight motion what the other reference
frame (characterized by the set of coordinates xµ) sees in free fall.

The Einstein’s field equation for the Theory of General Relativity links the met-
ric tensor to the energy-momentum tensor Tµν which is the source term that takes
into account the amount of energy and mass that is generating the gravitational
field. The field equation is the following:

Rµν −
1

2
Rgµν =

8πG

c4
Tµν , (1.3)

13



14 CHAPTER 1. THORETICAL COSMOLOGICAL BACKGROUND

where G is the universal gravitational constant, c is the speed of light, Rµν is the
Ricci Tensor, that comes from the contraction of the Riemann Tensor Rκ

µκν , and
R is the Ricci scalar, representing the contraction of the Ricci Tensor. Equation
(1.3) actually consists of a set of 10 differential equations whose solutions are 10
different potentials that form the metric tensor. Everything that is on the right
side of the field equation is called the source term and is a tensorial description of
the distribution of mass and energy we expect is originating the gravitational field;
while on the left side there are the terms that are strictly connected to gravity itself
and to the curvature it causes in the space-time structure.

1.2 Friedmann-Lemaître-Robertson-Walker metric
The Einstein’s notation states that whenever an index is repeated in a covariant
coordinate and in a controvariant one a sum over all the values this index can
assume must be performed. Equation (1.1) can be therefore written as

ds2 = g00dt
2 + 2g0idtdx

i + gijdx
idxj , i, j = (1, 2, 3) (1.4)

where the time, mixed and spatial terms have been separated.
In order to have a metric tensor that can be used for cosmological purposes it

is convenient to introduce the Cosmological Principle: at sufficiently large scales
(that today are hundreds of Megaparsecs) the Universe can be considered homoge-
neous and isotropic, and so no point or direction can be considered privileged. The
assumption of the impossibility to have a privileged reference frame automatically
eliminates from Equation (1.4) the mixed term.

To determine the value of g00 it is sufficient to take into account the motion of
a photon that (by definition) has ds2 = 0. This leads to:

0 = g00dt
2 − dl2

g00 =
dl2

dt2

g00 = c2 ,

where dl2 is the spatial term of equation (1.4) and its minus sign comes from the
signature that has been chosen in this work: (+ - - -).

The analytical expression for the spatial distance, dl2, can be determined as-
suming three different 3D surface geometries: the Euclidean one, the hyperspher-
ical one and the hyperbolic one. There is a general way to express this term in
polar coordinates that already takes into account all of these cases:

dl2 = a2(t)

[
dr2

1− κr2
+ r2(dθ2 + sin2 θdφ2)

]
, (1.5)
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where a(t) is called the cosmic scale factor and has the dimensions of a length,
while κ is the curvature parameter that can assume only three different values: -1
if the geometry of the Universe is hyperbolic (open Universe), 0 if it is Euclidean
(flat Universe) and 1 if it is hyperspherical (closed Universe).

Therefore it is now possible to write the metric as:

ds2 = c2dt2 − a2(t)

[
dr2

1− κr2
+ r2(dθ2 + sin2 θdφ2)

]
. (1.6)

Equation (1.6) is called Friedmann-Lemaître-Robertson-Walker metric and has to
be used if the assumption of homogeneity and isotropy is valid, in a reference frame
that can be described in 3D polar coordinates.

1.3 Distances in Cosmology and the Hubble’s Law
The proper distance is defined as the distance between two events measured in a
reference frame where the separation in time (dt) is null. Without loss of generality,
it can be chosen a reference frame where also dθ = dφ = 0. Putting all these
assumptions and choices together, the proper distance (dpr) is defined as follows:

dpr =

∫ r

0

a(t)
dr′√

1− κr′2
= a(t)f(r) ; (1.7)

in the last term of Eq. (1.7) the time-dependent part and the spatial-dependent
one have been explicitly separated. The analytical form of f(r) depends on the
value of κ, thus on the geometry of the Universe:

f(r) =


sinh−1(r) if κ = −1

r if κ = 0

sin−1(r) if κ = 1

. (1.8)

The comoving distance is defined as the proper distance evaluated at the present
time. When a time-dependent variable has "0" as subscript it means that it has
been calculated at t = t0, the present time. So the comoving distance becomes

dc = a0f(r) = a0f(r)
a(t)

a(t)
=

a0

a(t)
dpr . (1.9)

The comoving distance usually turns out to be useful because it is time-independent,
the same cannot be said for the proper distance. Calculating the time derivative
of the proper distance, it is possible to find a very important result:

ḋpr = ȧ(t)f(r) = ȧ(t)f(r)
a(t)

a(t)
=
ȧ(t)

a(t)
dpr = H(t)dpr , (1.10)
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where H(t) is called Hubble’s parameter and the equation itself is known as the
Hubble’s Law, which states that the relative speed between two cosmic objects is
proportional to their relative distance. By evaluating H(t) at t = t0 we obtain H0:
the Hubble constant. Ivanov et al. (2019) found H0 = (67.89±1.06) km s−1Mpc−1

by fitting the galaxy power spectrum of BOSS galaxy catalogue.

Let us now consider a photon emitted at time tem and observed in another
position at tobs. For a photon ds2 = 0, and so, starting from Eq. (1.6) and
assuming that the reference frame is the one that leads us to Eq. (1.7), we have
that

tobs∫
tem

cdt

a(t)
= f(r) . (1.11)

The same thing can be said for another photon, emitted at time tem + δtem and
observed at tobs + δtobs, and so we have also

tobs+δtobs∫
tem+δtem

cdt

a(t)
= f(r) . (1.12)

Due to the fact that f(r) does not depend on t, we reach the necessary conclusion
that the first member of Eq. (1.11) and the one of Eq. (1.12) must be equal to
each other. If we now assume δtem and δtobs to be small enough in order to be
able to consider a(t) as a constant during the integrations, the evaluation of the
two integrals leads us to

tobs
aobs
− tem
aem

=
tobs
aobs

+
δtobs
aobs

− tem
aem
− δtem
aem

. (1.13)

Considering that λ = cδt, where λ is the wavelength of the signal, it can be derived
that

1 + z =
aobs
aem

, (1.14)

where z = (λobs − λem)/λem is the redshift. If we now consider a photon emitted
at time t and observed at the present day, Eq. (1.14) becomes

1 + z =
a0

a(t)
. (1.15)

Equation (1.15) shows us that the redshift of a signal is inherently linked to the
cosmic scale factor and therefore to the distance between two objects. The positive
sign of the Hubble parameter tells that a increases with the passing of time, and so
the redshift can be considered as a measure of both distance and time; the higher
the redshift of an object is, the further the object is from the observer.
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1.4 Friedmann models

We already found a metric (Eq. (1.6)) that takes into account the assumptions of
homogenity and isotropy; considering the Universe as a perfect fluid, its energy-
momentum tensor can be written as

Tµν = −pgµν + (p+ ρc2)uµuν , (1.16)

where p and ρ are the pressure and the density, respectively, and ui are the elements
of the 4-velocity of a fluid’s element.

It is now possible to use the Friedmann-Lemaître-Robertson-Walker metric (Eq.
(1.6)) and the energy momentum of a perfect fluid (Eq. (1.16)) in Einstein’s field
equation (Eq. (1.3)) in order to obtain two differential equations useful to derive
the time evolution of the cosmic scale factor a(t); these equations are called first
and second Friedmann’s Law, and their analytical expressions are the following:

ä = −4

3
πG

(
ρ+

3p

c2

)
a (1.17)

ȧ2 + κc2 =
8

3
πGρa2 ; (1.18)

from now on the fact that a depends on time t is given as implicit. Starting from
one of the two Friedmann Laws it is possible to obtain the other one using the
adiabatic condition dU = −pdV , where U is the internal energy of the whole system
and V its volume. The same condition can also be written as d(ρc2a3) = −pda3.

The Friedmann’s Laws, firstly presented by Aleksandr Friedmann in 1922
(Friedmann, 1922), are a direct solution of the Einstein’s field equation for General
Relativity. By that time the universe was thought to be static (ä = ȧ = 0). But
if the static conditions are assumed in Eq. (1.17) this new condition arises:

ρ = −3p

c2
, (1.19)

which is physically not acceptable because both the density and the pressure are
positive quantities, by definition.

For this reason Einstein modified his field equation in the simplest way possible:
introducing a constant (Λ) multiplied by gµν in order to have a correct tensorial
formalism. Equation (1.3) therefore became

Rµν −
1

2
Rgµν − Λgµν =

8πG

c4
Tµν , (1.20)

and Λ took the name of Cosmological Constant.
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This new version of the field equation of General Relativity can be written just
like the previous one, but with a modified energy-momentum tensor:

Rµν −
1

2
Rgµν =

8πG

c4
T̃µν , (1.21)

with T̃µν = Tµν+ Λc4

8πG
gµν . Having the same analytical expression, solving Eq. (1.21)

using Friedmann-Lemaître-Robertson-Walker metric (Eq. (1.6)) will be exactly the
same as solving Eq. (1.3) and will again lead to Friedmann’s first and second Laws,
but instead of ρ there will be ρ̃ = ρ+ ρΛ = ρ+ Λc2

8πG
, and instead of p there will be

p̃ = p+ pΛ = p− Λc4

8πG
.

When, in 1929, Edwin Hubble discovered the expansion of the Universe (Hub-
ble, 1929), Einstein himself removed the Cosmological Constant from his formula,
because the static Universe assumption was not needed any more. The Cosmolog-
ical Constant was reintroduced (this time in the source side of (1.3), at the right
of the equal sign) to explain the accelerated expansion of the Universe proved by
Perlmutter et al. (1998) and by Riess et al. (1998) with the observations of Type
Ia SuperNovae.

If we consider the second Friedmann Law and divide every term by a2 we can
obtain the following equation:

H2

(
1− ρ

ρcrit

)
= −κc

2

a2
, (1.22)

where we have defined the critical density as

ρcrit ≡
3H2

8πG
≈ 1.9 · 10−29h2 g

cm3
, (1.23)

with h = H/(100 km s−1Mpc−1).
From Eq. (1.22) it can be easily seen that if the Universe (considered as a perfect
fluid) has a density equal to the critical density, it means that κ must be null and
so the Universe is to be considered flat; similarly, if ρ < ρcrit the Universe is open,
while if ρ > ρcrit the Universe is closed.

So far the Universe has been considered as a perfect fluid. This assumption will
not be discarded, but it is important to take into account the different components
that are part of this fluid. Each of these components (non-relativistic matter,
radiation and relativistic matter and Dark Energy, which is represented by the
Cosmologial Constant in a General Relativity framework) has a different Equation
of State (EoS) that links its pressure to its density:

• Non-relativistic matter (or simply matter): p = NkBT ; this pressure is
negligible compared to the one of the other components;
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• Radiation and relativistic matter: p = 1
3
ρc2;

• Dark Energy: p = −ρc2, as can be easily derived from the definitions of p̃
and ρ̃.

It is useful to write down the EoS for all of the components in a unique way:

p = wρc2 , (1.24)

so that the components will be now identified by a specific value of w, that will
therefore be 0 for matter, 1

3
for radiation and relativistic matter and −1 for the

Dark Energy.
Starting from the adiabatic condition, it is possible to find a relation between

the density of each component, considered separately, ρw and a (or the redshift z):

ρw = ρw,0

(
a

a0

)−3(1+w)

∝ (1 + z)3(1+w) . (1.25)

It is now clear how the different components evolve differently in density through
cosmic time. Figure 1.1 shows how the different trends of the densities can be used
to divide the cosmic time into three main epochs, each of them dominated by a
particular component. The moment in which there has been the matter-radiation
crossover point is called the time of equivalence (teq).

From the combination of Eq. (1.25), Eq. (1.22) and Eq. (1.15), considering
the Universe as formed by multiple components, it is possible to obtain a law that
describes the dependence of the Hubble parameter on the redshift, z:

H2(z) = H2
0 (1 + z)2

[
1−

∑
i

Ω0,wi
+
∑
i

Ω0,wi
(1 + z)1+3wi

]
, (1.26)

where it has been defined a new variable, Ωw ≡ ρw/ρcrit, that indicates what
fraction of the critical density is equal to the density of a specific component char-
acterized by w. The first two terms of the squared bracket of Eq. (1.26) are
called the curvature density parameter. If this parameter is null then it means
that ρtot =

∑
i ρwi

= ρcrit, and so the Universe is flat. For high values of z the
curvature density parameter is negligible if compared to

∑
i Ω0,wi

(1 + z)1+3wi . So
it can be asserted that every Universe that follows Friedmann’s equations can be
considered flat at high redshift.

If we re-write the second Friedamnn law for a single component, we obtain

ä = −4

3
πGρ(1 + 3w)a ; (1.27)
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Figure 1.1: Evolution through cosmic time of the densities of the cosmic components. It
is clear from the image that the Dark Energy begun to be the dominant part only in recent
times, so its contributes can be neglected when high redshifts are concerned. Image from
https://pages.uoregon.edu/jimbrau/. Credits to 2011 Pearson Education, Inc.

if the Universe is dominated by a component with w > −1
3
(as we are supposing

it is for high redshift, when ρΛ is negligible) then ä < 0 and the Universe is in a
phase of decelerated expansion. This means that there has been a precise moment
when a was null. This is called the Big Bang. The existence of this singularity
comes directly from the initial conditions of homogeneity and isotropy.

1.5 Flat, open and closed models

We have already demonstrated how at high redshift every model that follows Fried-
mann’s Laws behaves like a flat one.

However, for lower values of z the curvature becomes more and more important,
making it possible to see differences in the evolution of the cosmic scale factor
between an open model of the Universe and a closed one.

An open Universe (1 −
∑

i Ω0,wi
> 0) is characterized by an asymptotically
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constant growth of a(t). A closed Universe (1−
∑

i Ω0,wi
< 0) is fated to reach a

maximum expansion, and then begin to shrink until it reaches again a singularity
similar to the Big Bang, which has been called the Big Crunch. If the Universe
maintains its flatness with a dominant component with w > −1

3
then will keep

on growing, like it happens in a flat model, but the growth rate will be lower.
In Figure 1.2 the three models are shown and compared. It can be seen that for

Figure 1.2: Comparison between the trends of the cosmic scale factor a(t) in a closed Universe
(green line), flat Universe (black dots) and open Universe (black line).

t → 0 all the three different models behaves the same as far as the trend of a(t)
is concerned; and when the difference becomes evident, at a fixed time t, the size
of the closed Universe will always be lower than the size of the flat one, which is
lower than the size of the open one.

1.6 The ΛCDM Model

The cosmological model with the lowest number of free parameters, in agree-
ment with observations, within the uncertainties, and with the Theory of General
Relativity is called Standard Cosmological Model. According to this model the
Universe is flat and it is composed mainly by Λ and CDM; the densities of these
two components are of the same order of magnitude at the present time.
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The fact that the Universe is flat comes as a necessary final condition of the
inflation models that describe a particular moment of the cosmic time when the
Universe experienced a huge expansion. An observational proof of the flatness of
the Universe comes from the Cosmic Microwave Background (CMB), in partic-
ular from the position of the first peak of its angular spectrum. The CMB is a
thermal radiation field that permeates the whole Universe, described by a Black
Body radiation with T ≈ 2.726K at the present time. It was emitted during the
recombination, that is the moment when the Universe became neutral for the first
time.

From the temperature of the CMB it is also possible to obtain a measure of
the radiation density fraction at the present time:

Ω0,r ≈ 10−5 , (1.28)

that results to be very small if compared to the density fractions of other compo-
nents.

There are multiple ways to evaluate the matter density fraction of the Universe,
for example by measuring the radial velocities of objects in a galaxy to evaluate
the total gravitational mass of the galaxy, or the radial velocities of galaxies in a
cluster in order to obtain the total gravitational mass of the cluster. There are
also other techniques such has Gravitational Lensing, that can measure the total
mass of an object from the deflection on the path of light that it causes.

All these measurements lead to the same conclusion concerning the matter
density fraction:

Ω0,m ≈ 0.3 . (1.29)

Let us now define as baryonic matter all the matter that interacts with electro-
magnetic fields, like dust and gas. The density fraction of the baryonic matter,
Ω0,b ≈ 0.04, results to be only a small fraction of the total density fraction of
matter. This fact suggests the existence of another type of matter: the DM, that
has only gravitational interactions. It was the Swiss astronomer Fritz Zwicky who
in 1937 first proposed the existence of DM to explain the motion of galaxies in
the Coma Cluster (Zwicky 1937), but a direct measurement of a DM particle is
yet to be done, though there are many hypothesis on how this particle should be.
DM can be divided in two big categories: Hot and Cold. The DM is called Hot if
at the time of its decoupling it is relativistic, Cold if it is not. The fact that the
main part of the matter component of the Universe is Cold implies a “Bottom-Up”
scenario for the formation of compact objects, that means that smaller objects are
formed first, and then they merge forming bigger ones. This scenario is favored by
observations.

If the Universe is flat then the sum of the density fractions of all the components
of the Universe must be equal to 1, but if we consider only matter and radiation
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we obtain Ω0,m + Ω0,r ≈ 0.3. The remaining 0.7 is the density fraction of the Dark
Energy, represented by Λ, the dominant component of the present Universe. The
fact that Ω0,Λ ≈ 0.7 comes not only from the flatness of the Universe, but also from
a very important measure already cited in section 1.4. Perlmutter et al. (1998) and
Riess et al. (1998) measured the value of what is called the deceleration parameter,
q = − äa

ȧ2
, using Type Ia SuperNovae as standard candles; they found that this

parameter is q0 ≈ −0.55. This implies that ä must be positive, and therefore the
expansion of the Universe is accelerated. Moreover it can be demonstrated that

q =
Ωm

2
− ΩΛ , (1.30)

and replacing the known values of q0 and Ω0,m we obtain

Ω0,Λ ≈ 0.7 , (1.31)

that is exactly what was expected for a flat Universe. The Dark Matter, expressed
in terms of the Cosmological Constant, is therefore is considered to be the main
component of the Universe, and to be also what causes its accelerated expansion.

The estimation of the Hubble constant is an open issue for the ΛCDM model,
because it appears to be a tension between the results derived from different ob-
servations. The H0 tension is the discrepancy between the measures of the Hubble
constant through CMB fitting and the results that comes from the use of empirical
distance ladders such as Classical Cepheids (CCs) (Riess et al. 2019).

Recently, Breuval et al. (2019) adopted the second Gaia release (GDR2) paral-
laxes of the companions of 23 Galactic CCs as a proxy for the parallaxes of those
CCs in order to have a new measure of H0. Figure 1.3 shows that, for low offsets
between the considered Cepheid and the companion whose parallax measure is
used to measured the value of H0, this value is consistent with the Planck Collab-
oration result (Planck Collaboration, 2018). This could be a step in the direction
of the solution of the H0 tension, but in order to be sure, GDR2 parallaxes for the
Cepheids are needed.

The ΛCDM model has thus some open issues, but most of the measurements,
made in the recent years with sophisticated technologies and techniques able to
acquire a constantly increasing amount of data, are in agreement with its predic-
tions.

In the near future, new instruments and telescopes are planned to acquire
quantities of high-accuracy data that are without precedents. One example of
these missions is Euclid.

The European Space Agency (ESA) mission Euclid (whose launch is scheduled
for June 2022) will play an important role in the study of the Cosmological Con-
stant, measuring the shape and the redshift of galaxies and galaxy clusters up to
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Figure 1.3: Values of the Hubble constant evaluated with three different methods: CMB
modelling (pink), Classical Cepheids using HST/FGS parallaxes (green) and CCs with GDR2
parallaxes of the companions, as a function of the offset between the Cepheid and the companion
(blue) (Breuval et al. 2019).

z ≈ 2. The goal is to put constraints on the distance-redshift relationship and
to have a better understanding about the formation of cosmic structures (Laure-
jis et al. 2011), Amendola et al. 2018). The sky coverage of Euclid will be of
15.000 square degrees of extragalactic sky for wide surveys, during a lifetime of 7
years. Three deep surveys are planned, too. These surveys will reach two magni-
tudes deeper then the wide ones, for a total of 40 square degrees. The telescope
is a three mirror Korsch configuration with a 1.2 m diameter and a 24.5 m focal
length.

The visible instrument (VIS) is composed by a 6x6 matrix of 4096x4132 12
micron pixels CCDs and is equipped with a broad band filter that covers from
550 nm to 900 nm. The mean resolution of VIS is about 0.23 arcseconds and the
sensitivity will be of 25 mag.
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A second instrument, the Near Infrared Spectrometer and Photometer (NISP)
is composed of a matrix of 4x4 2040x2040 18 micron pixel TIS detectors. The
photometric channel of this instrument is equipped with three broad band filters
(Y, J and H), covering a total wavelength range that goes from 900 nm to 2000
nm. The spectroscopic channel is equipped with 4 infrared grisms, 3 red grisms
and one blue grims, but with no slits.

Euclid will observe about 10 billion astronomical objects and will measure the
spectroscopic redshift of 50 million sources.
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Chapter 2

Cosmic structures formation

To draw conclusions about which cosmological model is the closest to the observed
one, is of primary importance to understand how the cosmic structures, like galax-
ies and galaxy clusters, were formed and how fast these overdensities can grow.

The starting point is the recombination (z ≈ 1100). Since then, the baryonic
matter has been able to increase the amplitude of its density fluctuations, driven by
gravity, falling into DM halos that had started forming at the time of equivalence.

By the time of recombination the distribution of baryonic matter was highly
homogeneous. It can be demonstrated that the amplitude of the perturbations in
the density field was of the same order of the temperature fluctuations that can
be seen in the CMB:

δρ

ρ
∝ δT

T
≈ 10−5 . (2.1)

The task is now to describe how these perturbations evolved in an expanding
Universe, starting from recombination, into what we see at the present time, that
is a density field with fluctuations of the order of 102 on the scale of collapsed
objects.

2.1 Jeans lenght
How small fluctuations can evolve into collapsed structures is well described by the
Jeans Theory, first presented at the beginning of the 20th Century by the English
physicist James Jeans (Jeans, 1902).

Let us now consider a homogeneous fluid, which has to satisfy the following
conditions:

• Conservation of mass, that is guaranteed if the continuity equation is satis-
fied:

∂ρ

∂t
+∇(ρ~v) = 0 , (2.2)

27
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where ~v is the velocity of the considered fluid element;

• Euler equation, which guarantees the conservation of the momentum:

∂~v

∂t
+ (~v · ∇) · ~v = −1

ρ
∇p−∇Φ , (2.3)

where Φ is the Newtonian gravitational potential that is present at the po-
sition of the fluid element;

• Poisson equation:
∇2Φ = 4πGρ . (2.4)

The equation of state of this fluid is p = p(S, ρ), where S is the entropy, but we
will further consider only adiabatic perturbations, so dS/dt = 0. Therefore the
pression will be considered as a function of the density only.

We can now assume to know a solution of this kind:
ρ = ρb = const

Φ = Φb = const

p = pb = const

~v = ~0

. (2.5)

The set of equations (2.5) (in which the subscript b means background) implies a
static Universe with no perturbations of any kind.

This cannot be a real solution because from Eq. (2.4) we have that Φ =
const ⇐⇒ ρ = 0. But we are not really interested in the static background
situation, we are interested in the perturbations.

Let us hence add some small perturbations to our static solution, that is almost
negligible if compared to the background values of our four variables:

ρ = ρb + δρ

Φ = Φb + δΦ

p = pb + δp

~v = δ~v

. (2.6)

Imposing that the values of the variables expressed in Eq. (2.6) still are solutions
of Eq. (2.2), Eq. (2.3) and Eq.(2.4), and discarding all the second-order and
higher-order terms of the perturbations, we obtain the following set of equations:

∂δρ
∂t

+ ρb∇δ~v = 0
∂δ~v
∂t

= −v2s
ρb
∇δρ−∇δΦ

∇2δΦ = 4πGδρ

. (2.7)
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The element vs that appears in the second line of Eq. (2.7) is the sound speed in
the fluid we are considering.

It is now possible to assume that every perturbation has a wavelike analyti-
cal expression, δρ(r, t) = δρke

ikr+iωt. This assumption leads to a new system of
equations whose determinant is null if

ω2 = v2
sk

2 − 4πGρb . (2.8)

If we now define the Jeans length as

λJ =
2π

kJ
= vs

√
π

Gρb
, (2.9)

we can see that if the dimension of a perturbation is bigger than λJ , then the
amplitude of this perturbation will grow exponentially with time, otherwise it will
keep oscillating with no significant increase nor decrease.

2.2 Perturbations in an expanding Universe

If the expansion of the Universe is taken into account, we can still assume a
solution similar to Eq. (2.6), but now the velocity ~v will have two terms: the
peculiar motion of the fluid element, ~vp, and the velocity that comes from the
Hubble flow:

~v =
d~r

dt
=
d(a~x)

dt
= a

d~x

dt
+
da

dt
~x = Hr + a

d~x

dt
= Hr + ~vp . (2.10)

In Eq. (2.10) ~r is the proper position of the fluid element, while ~x is the comoving
one. The peculiar motion of the fluid element will be treated as a perturbation with
respect to the Hubble flow. We can now proceed as we did in the previous section,
imposing that our new perturbed solution still satisfies the continuity equation
(2.2), the Euler equation (2.3) and the Poisson equation (2.4). The result is a
system of three equations, analogous to Eq. (2.7):

∂δρ
∂t
|~x + ρb

a
∇~x~vp = 0

∂~vp
∂t
|~x +H~vp = −v2s∇~xδ

a
− 1

a
∇~xδΦ

1
a2
∇2
~xδΦ = 4πGρbδ

, (2.11)

where δ = δρ/ρb.
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Again, it is possible to assume a wavelike analytic expression for all the per-
turbations: 

δ̇k +
ikvp,k
a

= 0

v̇p,k + ȧ
a
vp,k = − ik

a
[v2
sδk + δΦk]

δΦk = −4πGρbδka
2

k2

. (2.12)

By combining the three equations of this system, the following differential equation
arises:

δ̈k + 2Hδ̇k +

[
k2

a2
v2
s − 4πGρb

]
δk = 0 . (2.13)

Equation (2.13) is called dispersion equation and it has different solutions, again
depending if the dimension of the perturbation is bigger or smaller than the Jeans
length:

• If λ < λJ (k > kJ) the solution of the differential equation is a wavelike
function whose amplitude does not increase through time;

• If λ > λJ (k < kJ) the spatial part of the exponential that describes the
wave keeps on being imaginary, but the time dependent one does not and so
the amplitude of the perturbation will change through time.

In this second case, the general solution will be a linear combination of two solu-
tions: the increasing one, δ+, and the decreasing one, δ−.

We are interested in the increasing solution, because it is the one that can lead
to the formation of collapsed structures. For a generic cosmological model we have:

δ+(z) = −H(z)

∫ z

0

(1 + z′)

a2
0H

3(z′)
dz′ . (2.14)

Since Eq. (2.14) has no general solutions, usually an approximated parametric one
is used, defining the growth factor f :

f ≡ d ln δ+

d ln a
≈ Ωγ

m +
ΩΛ

70

(
1 +

Ωm

2

)
, (2.15)

where the value of α depends on which gravity model is assumed. If General Rel-
ativity is assumed to be the right theory for gravitation then γ ≈ 0.545 (Linder
et al. 2003). Constraining the value of γ from observations provides a powerful
test for General Relativity. As an example, in Alam et al. (2016), measurements
from the Planck satellite mission and galaxy redshift surveys over the last decade
have been used for such a purpose and the result was γ = 0.612± 0.072, compat-
ible with what is predicted by General Relativity. Another parameter that can
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be constrained to gain information about the value of γ is fσ8, where σ8 is the
normalization of the power spectrum (see section 2.3) at z = 0. In Pezzotta et al.
(2017) was found fσ8 = 0.55± 0.12 at z = 0.6 and fσ8 = 0.40± 0.11 at z = 0.86
by modelling the anisotropic galaxy clustering measured on the VIPERS survey.

As it can be seen from Eq. (2.15), the formation of cosmic structures depends
strongly on the density fraction of matter and poorly on the Cosmological Con-
stant. This enforces the concept that this formation is driven by matter (both
baryonic and dark) through gravity.

2.3 Correlation Function and Power Spectrum

The first fluctuations in the density field were created by the inflation, that is
supposed to have perturbed the structure of the Universe, that is its metric. This
perturbation can be seen as a perturbation of the gravitational potential Φ, from
a Newtonian point of view. The Poisson equation (2.4) provides the link between
Φ and the density fluctuation δ.

The evolution of the density fluctuations is the key phenomenon to be described
to model the statistical properties of the large-scale structure of the Universe. A
frequentist approach may sound difficult to exploit, because we have only one Uni-
verse from which we can draw our samples. Anyhow, the ergodic hypothesis allows
to use different volumes of the Universe just as they were an ensemble of Universes,
as long as these volumes are not superimposed and big enough to be independent
from each other (Ellis, Maartens and MacCallum, 2012).

Primordial density fluctuations are imaginary numbers with random phase,
and they have a Gaussian distribution. An analysis of the fluctuations’ statistical
properties can be done both in real and Fourier space. In the first case we will
consider δ(~x), while in the second δ(~k) or simply δk; the relation that links these
two quantities is

δ(~x) =
1

(2π)3

∫
δ(~k)e−i

~k·~xd~k . (2.16)

A very important statistic is the Correlation Function ξ(r), defined as follows:

ξ(r) = 〈δ(~x)δ(~x+ ~r)〉 , (2.17)

where the angle brackets mean that the correlation function is defined as an average
over all the positions ~x and all the points that are distant from ~x by a vector whose
magnitude is r. The fact that the correlation function does not depend on the
direction of ~r comes directly from the isotropy assumption.
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It is also possible to express the correlation function using δ(~k) instead of δ(~x),
by combining Eq. (2.16) with Eq. (2.17):

ξ(r) =
1

(2π)3

∫
P (k)ei

~k·~rd3k , (2.18)

where we have defined the power spectrum P (k) (using the three-dimensional Dirac
Delta δ3

D) using the following expression:

P (k)δ3
D(~k + ~k′) =

〈δ(~k)δ(~k′)〉
(2π)3

. (2.19)

Equation (2.18) shows that the Correlation Function and the Power Spectrum are
connected by a Fourier transform, while from Eq. (2.19) we can see that the Power
Spectrum is proportional to 〈|δk|2〉, that is the mean of the squared amplitude of
all the perturbations characterized by a wave number k, independently of their
position ~x.

Inflation models predict that the primordial density fluctuations have a Gaus-
sian distribution, which has, by definition, a null mean. Let us now define the
variance of this distribution:

σ2 = 〈δ2(~x)〉 =
1

V

∫
〈|δ(~x)|2〉d3x , (2.20)

where V is the total volume of the Universe and the average is taken from a sample
of different realizations of V .

It can be demonstrated, starting from Eq. (2.20) and using the Parseval’s
relation, that

σ2 =
1

2π2

∫ ∞
0

P (k)k2dk . (2.21)

Most of the time a direct measure of δ(~x) is impossible to perform and the only
available observable is the distribution of cosmic objects in a finite volume.

It is also impossible to obtain the measure of a continuous density field. There-
fore a set of small volumes shall be defined. If galaxies are used as tracers of the
density fluctuations, their density contrast in the i− th volume can be written as
follows:

δgal(Vi) =
Ngal(Vi)−Ngal(V )

Ngal(V )
, (2.22)



2.3. CORRELATION FUNCTION AND POWER SPECTRUM 33

where Ngal(Vi), is the measured number of galaxies in the volume Vi, and Ngal(V )
is the expectation value of the number of galaxies in V .

In a similar way we can define the density contrast for the total mass density
fluctuations in volume Vi:

δM(Vi) =
M(Vi)−M(V )

M(V )
, (2.23)

where the expected and measured number of galaxies have been replaced by the
total mass (again, expected and measured) in the volume V .

The linear bias factor, b, is used when the observed distribution of galaxies is
taken into account to trace the total mass distribution, and it is defined as follows:

b =
δgal
δM

. (2.24)

The total mass discrete density fluctuation, δM , is the convolution between the
continuous density fluctuation, δ(~x), and a window function characterized by a
radius R:

δM(~x) = δ(~x)⊗W (~x,R) . (2.25)

One example of window function is the Top Hat function:

W (R) =
3

4πR3
Θ

(
1− |x− x

′|
R

)
, (2.26)

where Θ is the Heaviside step function, x is the magnitude of ~x and x′ is the center
of the step function.

It is now possible to define the mass variance, using Eq. (2.25) and the convo-
lution theorem, as

σ2
M ≡ 〈δ2

M〉 =
1

(2π)3

∫
P (k)Ŵ 2(~k,R)d3~k , (2.27)

where Ŵ (~k,R) is the Fourier transform of the window function.
The mass variance depends on the value of R in the window function:

• if R −→∞ (M −→∞) the window function is filtering over the whole Universe,
so the mass variance will be null: σ2

M −→ 0;

• if R −→ 0 (M −→ 0) the window function is not filtering at all, and the mass
variance will be the same as the punctual variance: σ2

M −→ σ2.
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2.4 Evolution of the Power Spectrum

The primordial perturbations in the density field were formed during the inflation
with no privileged scale. It is then rightful to assume that the primordial power
spectrum’s analytical expression is a power law:

P (k) = Akn . (2.28)

Combining Eq. (2.21) with Eq. (2.28) we obtain

σ2 =
A

2π2

∫ ∞
0

kn+2dk . (2.29)

In Section 2.2 we learnt that the growth of perturbations is described by the
increasing solution of Eq. (2.13), that is Eq. (2.14). This increasing solution does
not depend on the scale of the perturbation, so in the linear growth regime we
have

δk(z) = δk,iδ+(z) , (2.30)

where δk,i is the initial value of the density fluctuation characterized by the wavenum-
ber k. Considering that P (k) ∝ 〈|δk|2〉 the evolution through time of the power
spectrum will be

P (k, t) = Pi(k)δ2
+(t) . (2.31)

Combining Eq. (2.21) with Eq. (2.31) it is possible to obtain

σ2(t) ∝ δ2
+(t)kn+3 . (2.32)

Taking into account that k ∝ R−1 and that M ∝ V ∝ R3, Eq. (2.32) becomes

σ2(t) ∝ δ2
+(t)M−n+3

3 . (2.33)

If we now consider a fixed scale R and take into account Eq. (2.33) and the
perturbation of the Newtonian gravitation field, we have

δΦ ∝ GδM

R
∝ GδρR3

R
∝ σR2 ∝M

n−1
6 . (2.34)

Inflation models tell us that the squared amplitude of a certain primordial fluctua-
tion of the gravitational field should not depend on the mass of this perturbation.
Thus the spectral index, n, has to be equal to 1, and the analytical form of the
primordial power spectrum, or Zel’dovič Spectrum, becomes:

P (k) = Ak , (2.35)



2.4. EVOLUTION OF THE POWER SPECTRUM 35

where A is a free parameter of inflation models and has to be constrained by ob-
servations.
The primordial power spectrum expressed in Eq. (2.35) evolves through time as
it is shown in Eq. (2.31), with no dependencies on the scale; this means that all
perturbations grow with the same rate, as it is shown in Figure 2.1.

Figure 2.1: Time evolution of the Zel’dovich Spectrum. The solid line is the primordial power
spectrum, while the dotted line is the power spectrum at a certain time t > 0. This Figure shows
how the time evolution does not depend on the scale, and the power spectrum remains parallel
to itself. Due to the fact that the spectral index is equal to one, the line forms a 45◦ angle with
the x-axis.

It is convenient here to introduce the Cosmological Horizon, RH(t),which is the
radius of the sphere which contains all the events that can be causally connected
with the center of the sphere:

RH(t) = a(t)

∫ t

0

c

a(t′)
dt
′
. (2.36)

For scales bigger than the Cosmological Horizon the only possible interaction is
the gravitational one, so all the density fluctuations bigger than RH(t) grow in
amplitude through time.

Before the equivalence, only the perturbations bigger than the Cosmological
Horizon were able to grow because the pressure of the radiation (the dominant
component of the Universe by that time) hindered the collapse of smaller fluctua-
tions.

The Cosmological Horizon is an increasing function of time. So as time went
on (from the end of the inflation to the equivalence) always less fluctuations were
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able to grow in amplitude and only the largest ones kept on growing like in Figure
2.1.

This phenomenon modified the shape of the power spectrum, by reducing its
value for the scales smaller than the Cosmological Horizon evaluated at the equiv-
alence, RH(teq).

The Transfer Function, T (k), is introduced to describe all these scale-dependent
modifications in the shape of P (k):

P (k, teq) = AkT 2(k) , (2.37)

where T 2(k) is proportional to k−4 for the small scales (k > 2π/RH(teq)) and to
k0 for the big ones (k < 2π/RH(teq)).

Figure 2.2 shows the Power Spectrum at the present day (Tegmark et al. 2004).
The figure compares data from different observational probes with a line that repre-
sents the best fit of the data points coming from SDSS galaxy clustering, assuming
the linear CDM power spectrum of Eisentstein and Hu (1999), with fixed baryon
fraction Ωb/Ωm = 0.17 and Hubble parameter h = 0.72.

After the equivalence, every density fluctuation bigger than the Jeans Scale can
grow, so the power spectrum keeps on evolving as stated in Eq. (2.31) for every
scale, as long as it is in the linear regime (σ2 < 1).

The first scales that enter the non-linear regime are the smallest ones. The non-
linear regime is very hard to treat analytically. Approximate analytical solutions
can be obtained if the following three main assumptions are made:

• Null initial velocity field;

• Flat Universe composed only by matter;

• Perfectly spherical collapse.

Outside the linear regime the distribution of density fluctuations is no more Gaus-
sian. Once a certain scale k reaches and crosses the edge of the linear regime
(δk ≈ 1) the fluctuations can rapidly grow in amplitude up to values of the order
of 102.

This growth requires a numerical approach to be described. Even in the case
of the analytical solutions of a spherical collapse, the value reached by δk strongly
depends on the cosmological model that has been assumed.
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Figure 2.2: The matter power spectrum P (k) at the present time. For values of k close to
0.01Mpc/h it is possible to see the change in the shape, because that one is considered to be the
scale of the Cosmological Horizon by the time of recombination. In the plot are shown results
coming from different observables at different scales. Credits to Tegmark et al. (2004).

2.5 N-body simulations

A widely used numerical approach to describe the non-liner evolution of cosmic
structures is the one of N-body simulations. Firstly, the number of particles that
are used as tracers of the density field is set. Then the initial conditions have to
be defined, that are the positions of the particles that describe the density field of
the Universe at high redshifts. Finally, the physical laws the particles must follow
have to be decided and implemented.

The main physical law the particles must follow is the gravitational force. The
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three equations that the i− th particle shall satisfy for each time step dt are
~Fi = GMi

∑
j 6=i

Mj

r3ji
~rji

~ai =
~Fi

Mi
= d~vi

dt

~vi = d~xi
dt

, (2.38)

where ~Fi is the gravitational force acting on the i − th particle, Mi the mass of
that particle, ~ai its acceleration and ~vi its velocity, ~rji is the distance between the
i− th and the j − th particles, and rji its amplitude.

In the followings we present four different methods to compute ~Fi:

• Particle-particle: the force on the i− th particle is computed as the sum of
the forces exerted by each of the others particles, computed separately. This
is the most precise and accurate method, but it is certainly very expensive
from the computational point of view;

• Particle-Mesh: in this case the volume in which the simulation takes place is
divided into cells, forming a grid. The most relevant quantities (for example
the number density of particles) are evaluated for every cell, and not for
every particle. The Poisson equation (2.4) is solved in the Fourier space.
The force on the i − th particle in the real space is then computed using
a fast Fourier transform algorithm. If compared to the Particle-Particle
method, this method is less precise (spatial resolution is lost because of the
use of a grid) but faster;

• Particle-Particle Particle-Mesh: this third method is a hybrid of the previous
ones. It is necessary to define a certain distance R. The gravitational force on
the i− th particle will then be calculated with the Particle-Particle method
for distances smaller than R, otherwise a Particle-Mesh approach is used.
For obvious reasons, both accuracy and speed of this method lie between the
ones of the Particle-Particle and the Particle-Mesh methods. The bigger the
value chosen for R is, the closer the Particle-Particle Particle-Mesh method
will be to the Particle-Particle one;

• Hierarchic tree: the volume of the simulation is divided into regions so that
every region contains a certain number of particles and the gravitational
force on the i− th particle exerted from distant particles is calculated using
the coordinates of the centre of mass of the region these particles are in.

If other phenomena such as hydrodynamic interactions are required to be taken
into account, then other kinds of laws that govern the behaviour of particles must
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be implemented. Hydrodynamic simulations are the best choice when one is inter-
ested in galaxy formation or baryonic matter flows, but they are very expensive
from the computational point of view.

Finally, there is also an alternative way to simulate the distribution of galaxies,
which consists in taking a DM simulation and placing galaxies inside the DM
halos or sub-halos following a Halo Occupation Distribution model. The role of
Halo Occupation Distributions is to provide descriptions of how galactic matter
is distributed inside halos of given size and mass (Zheng et al. 2005). These
distributions are built using real data or hydrodynamical simulations.
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Chapter 3

Clustering

We now focus on the study of how cosmic structures, such as galaxies or galaxy
clusters, are distributed in space. These objects can be used as tracers of the
underlying total matter density distribution. In this chapter the role of the two-
point correlation function will be discussed, as long as the distortions that can
affect it.

3.1 The two-point correlation function
Let us consider N point masses uniformly distributed in a volume V . For every
comoving position ~x in V we can define the number density of objects in that
position as

n(~x) = n+ δn(~x) = n[1 + δ(~x)] , (3.1)

where n = N/V is the average density and δ(~x) is the fractional number density
fluctuation.

The two-point correlation function (defined in Eq. (2.17)) in terms of the
fractional number density fluctuation can hence be written as

ξ(|~x1 − ~x2|) = 〈δ(~x1)δ(~x2)〉 =
〈n(~x1)n(~x2)〉

n2 − 1 . (3.2)

If we now consider a sub-volume δV (~x) centered in ~x, then the number of objects
in that sub-volume will be n(~x)δV (~x) and so the value of n(~x)δV (~x)/N can be
interpreted as the probability that one object is in δV (~x).

Combining Eq. (3.1) with Eq. (3.2), the joint probability of having an object
in δV (~x1) and another one in δV (~x2) can be written as follows:

P12 =

〈
n(~x1)δV (~x1)

N

n(~x2)δV (~x2)

N

〉
= [1 + ξ(r)]

δV (~x1)

V

δV (~x2)

V
, (3.3)

41
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where r = |~x1 − ~x2|.
The probability of having an object in δV (~xi) is δV (~xi)/V , so from Eq. (3.3) it
is clear that the conditional probability of having an object in δV (~x2), given that
another object is in δV (~x1), is

P2|1 = [1 + ξ(r)]
δV (~x2)

V
. (3.4)

The correlation function thus represents the excess of probability, compared to a
random uniform distribution, of finding two objects (for example galaxies) at a
distance r from each other (Vittorio 2017).

It is clear from this last definition that if ξ(r) > 0 then galaxies will tend to
cluster on the scale of r, otherwise, if ξ(r) < 0, galaxies will be anti-correlated on
that scale and will avoid to be at distance r from each other.

The expectation number of galaxies within a range r from another galaxy can
be computed as

〈N(< r)〉 =

∫
V

dP2|1 =

∫
V

ndV [1 + ξ(r)] =
4

3
πr3n+ 4π

∫ r

0

ξ(r′)r′2dr′ . (3.5)

If r −→ ∞, 〈N(< r)〉 is expected to be equal to the left term of the last member
of Eq. (3.5), so 4π

∫∞
0
ξ(r′)r′2dr′ = 0. It is then clear that there is an integral

constraint which tells that for every positive value of ξ(r) there must be another
one that will be negative in order to compensate it. One last constraint can be
derived from Eq. (3.4): there can be no value of r for which ξ(r) < −1 because a
probability cannot be negative.

3.2 Estimators of the correlation function
It is now time to look at how the correlation function can be estimated from a
sample of galaxies. The first step is to create a random distribution of objects with
the same selection effects of the analyzed catalogue. A not sufficiently accurate
random catalogue will lead to a wrong evaluation of the correlation function, so
particular attention is needed in its creation.

Let us indicate the number of objects in the real catalogue with ND and the
number of objects in the random catalogue with NR. The numbers of pairs will
therefore be NDD = ND(ND − 1)/2 and NRR = NR(NR − 1)/2, for the real and
the random catalogue, respectively. The number of pairs that can be obtained
combining the two catalogues is NDR = NDNR. Finally, let DD(r) be the number
of pairs at distance r present in the real catalogue, RR(r) its analogous for the
random catalogue and DR(r) the number of objects in the random catalogue with
a distance r from the objects of the real catalogue.

Here we present three of the most used estimators for ξ(r):
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• The first proposed estimator, also called the natural estimator, is the one
proposed in 1983 by Davies and Peebles (Davies and Peebles, 1983):

ξ(r) =
NRR

NDD

DD(r)

RR(r)
− 1 ; (3.6)

• Ten years later, in 1993, two other estimators were proposed. The first
of them was proposed by Hamilton (1993) to avoid the main defect the
estimator presented in Eq. (3.6) had. This defect was that the uncertainty
of that estimator at large scales was limited by the uncertainty in the mean
density. Hamilton therefore proposed the following estimator, proving that
it did not suffer from such limitation:

ξ(r) =
N2
DR

NDDNRR

DD(r)RR(r)

DR(r)2
− 1 ; (3.7)

• The other estimator firstly proposed in 1993 by Landy and Szalay (1993) is
the following:

ξ(r) = 1 +
NRR

NDD

DD(r)

RR(r)
− 2

NRR

NDR

DR(r)

RR(r)
. (3.8)

In their article they demonstrated how this estimator has a Poissonian vari-
ance and should be used any time the error on the pair counts is assumed to
be Poissonian, too.

Hamilton’s estimator and Landy and Szalay’s one have been demonstrated to per-
form almost indistinguishably on the Hubble volume simulation by the Virgo Su-
percomputing Consortium (Kersher et al. 2000). For further details see Keihänen
et al. (2019).

3.3 Measures of two-point correlation function
The first galaxy two-point correlation function measures came from Totsuji and
Kihara, (1969) and, independently, from Peebles, (1974). These measures pointed
out that for scales between 10 kpc/h and 10 Mpc/h the correlation function can
be well approximated by a single power law:

ξ(r) ∝
(
r

r0

)−γ
. (3.9)

The power law beaviour was extended by Gott and Turner, (1979) and Maddox et
al. (1990) to smaller and bigger scales, respectively.
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The values of the parameters of Equation (3.9) depend on the selection that is
used on the tracers. For example, as far as galaxies are concerned, the values of γ
and r0, that describe the spatial distribution of such objects, depend on the red-
shift (e.g. Marulli et al. 2013), the luminosity (e.g. Davis et al. 1988, Marulli et
al. 2013), the stellar mass (e.g. Li et al. 2006, Marulli et al. 2013), the colour (e.g.
Willmer et al. 1998), the environment (e.g. Abbas and Sheth, 2006) and the mor-
phological (e.g. Davis and Geller, 1976) and spectral type (e.g. Brown et al. 2003).

Generally speaking it can be said that luminous and massive galaxies with
morphologies dominated by the bulge and red colours cluster more strongly, in
agreement with the scenario of hierarchical growth of cosmic structures (Kaiser,
1984).

As an example of comparison between two different analyses of the galaxy
correlation function, let us consider the works by Hawkins et al. (2003) and Zehavi
et al. (2004). In both cases the two-point correlation function has been fitted with
a single power law up to r = 30 Mpc/h. Hawkins et al. (2003) obtained, as best-
fit values, γ = 1.67± 0.003 and r0 = (5.05± 0.26) Mpc/h, while the results from
Zehavi et al. (2004) are γ = 1.80 and r0 = 5.77 Mpc/h.

The differences in the best-fit parameters are due to the different galaxy se-
lection of the two surveys used in the experiments: Two degrees Field Galaxy
Redshift Survey for Hawkins et al. (2003) and SDSS for Zehavi et al. (2004),
which are blue-magnitude and red-magnitude selected surveys, respectively.

3.4 Geometric distortions

In a typical observed galaxy catalogue the positions of the objects are expressed
with three coordinates: Right Ascension (RA), Declination (Dec) and redshift.
The first two coordinates are the angular ones, while the redshift tells us how far
the galaxy is on the line of sight (Equation (1.10)).

In order to estimate the correlation function we need to calculate the distances
between objects starting from their coordinates, but this needs an assumption on
the underlying geometry of the Universe, and hence on the background cosmolog-
ical model (Marulli et al. 2012).

The distance r between two objects can be separated into r⊥ and r‖: the
component perpendicular to the line of sight and the one parallel to it, respectively.
Each of these components will be affected by the assumption of a cosmological
model.

The connection between r⊥,1 and r⊥,2, where the subscripts “1” and “2” indicate
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two different assumed cosmological models, is

r⊥,1 =
DA,1(z)

DA,2(z)
r⊥,2 , (3.10)

where DA is the angular diameter distance, defined from the comoving distance

DC(z) = c

∫ z

0

dz′

H(z′)
(3.11)

as follows:
DA(z) =

c

H0(1 + z)
√
−Ωk

sin
(√
−ΩkDC(z)

)
, (3.12)

with Ωk = 1− Ωm − ΩΛ.

Analogous calculations can be done for the component of r which is parallel to
the line of sight. Assuming two different cosmological models, the relation in this
case is

r‖,1 =
H2(z)

H1(z)
r‖,2 . (3.13)

If the real shape of an object, or of a statistic is known, but a different one
is observed because of geometric distortions, it is possible to put constraints on
the background cosmological parameters. This cosmological analysis is known as
the Alcock and Paczyński test (Alcock and Paczyński 1979). Specifically, this test
consists in searching for the values of the parameters that turn the distorted shape
of what is observed into the shape it is assumed it should have.

One example can be the iso-correlation contours (i.e. the curves along which
the two-point correlation function has the same value) as a function of r⊥ and
r‖. Under the assumption of isotropy, these contours should be circles, but the
observed ones may be not, because r⊥ and r‖ do not depend in the same way on the
assumed cosmological model. Hence, an Alcock Paczyński test can be performed
to spot what cosmological model assumption can turn the observed shape of these
curves into circles.

3.5 Redshift-space distortions

When dealing with observed galaxies, the redshift is not caused only by the Hubble
flow, but also by the peculiar motion those objects might have, for example due
to the gravitational interaction with other galaxies in a galaxy cluster. Therefore
the observed redshift, zobs, differs from the cosmological one, z.
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The observed redshift can be expressed as a function of the cosmological one
as follows:

zobs = z +
v‖
c

(
1 + z

)
+
σv
c

, (3.14)

where v‖ is the component of the peculiar velocity parallel to the line-of-sight and
σv is the random error of the observed redshift.

The cosmological redshift is known in simulations, but it is generally now known
in the case of observed catalogues of objects. In this case the observed redshifts
are used to compute the comoving distances of all the objects through Eq. (3.11),
neglecting the last two terms of Eq. (3.14). This approximation introduces the so
called redshift-space distortions (RSD) (Kaiser 1987).

These distortions can be seen, for example, when plotting the iso-correlation
contours of ξ(r⊥, r‖) in the (r⊥, r‖) space, as it is shown in Figure 3.1, where the co-
ordinate system (s⊥, s‖) is used instead of (r⊥, r‖) for the redshift space (the space
where RSD are present). For low values of r⊥ the contours are lengthened along
the r‖ axis because of the peculiar motion of cosmic objects due to their gravita-
tional interaction with their surroundings. These distortions of the iso-curvature
contours for low values of the perpendicular component of the distance are often
referred to as “Fingers of God” due to their peculiar shape (Jackson 1972). The
flattening of the iso-correlation contours on large scales is due to the dynamic flow
of matter towards overdense regions, the so called bulk flow.

In linear theory the RSD can be expressed as a function of β ≡ f(z)/b(z),
where f(z) is the growth factor and b(z) the linear galaxy bias (Kaiser, 1987).
The ratio between the redshift-space and real-space correlation functions can be
approximately expressed using the large-scale limit of the Kaiser model:

ξ(s)

ξ(r)
= 1 +

2

3
β +

1

5
β2 . (3.15)

3.6 Baryon Acoustic Oscillations
Baryon Acoustic Oscillations (BAO) are an oscillation pattern in the power spec-
trum that has been generated before decoupling (zdec ≈ 1100) by the sound waves
in the baryon-photon fluid (Eisenstein and Hu 1998).

Before decoupling, baryons were not able to freely follow the gravitational
collapse because they were still coupled with radiation, whose pressure opposed
such a collapse. In that fluid, density fluctuations in the form of sound waves were
able to propagate up to the scale that took the name of sound horizon, rs ≈ 150
Mpc, before they were dissipated. Such a scale remained imprinted in the present
matter distribution and can be measured from clustering.
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Figure 3.1: Example of iso-correlation contours in real space (left panel) and redshift space
(right panel) for DM particles in a simulation at z=0. This simulation follows the formation of
the large-scale structure is a cubic box with a side of 1200 Mpc/h and considering 10243 particles
(Pillepich et al. 2010). In the right panel both the large-scale and small-scale effects of the RSD
are visible. These are the gravity-driven flow of matter towards overdense regions at large scales
and the stretching of the contours along the line of sight at small scales, due to the peculiar
motion of objects, gravitationally interacting with their surroundings. Credits to Kuruvilla and
Porciani (2018).

The BAO can therefore be used as a standard ruler to extract cosmological in-
formation by modelling the power spectrum and the two-point correlation function
(Sanchez et al. 2013).

As an example case, in Veropalumbo et al. (2016) the BAO of galaxy clusters
was used for the first time to constrain the redshift-distance relation. It has also
been used to put constraints on the parameters of the cosmological model: H0 =
64+14
−9 km/(s·Mpc), Ωk = −0.015+0.34

−0.36 and ω = −1.01± 0.44.
Figure 3.2 shows that BAO appears in the two-point correlation function as a

single peak at s ≈ 100 Mpc/h, that represents an excess of clustering compared
to its adjacent scales.
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Figure 3.2: Three examples of two-point correlation functions in redshift space, calculated
from three different galaxy cluster catalogues: Main Galaxy Cluster Sample (left panel), LOWZ
Galaxy Cluster Sample (central panel), CMASS Galaxy Cluster Sample (right panel). The
errorbars are computed with the lognormal mock method, that will be presented in detail later
in this work, and the shaded areas are the 68% posterior uncertainties that came from a Monte
Carlo Markov Chain analysis. In each panel, N is the number of objects of the catalogue and z
the median redshift. Credits to Veropalumbo et al. (2016).



Chapter 4

Fundamentals of Machine Learning

The term ML was used for the first time by Arthur Samuel (1959) and it refers to
the development of algorithms, programs and models that computers can use to
draw conclusions starting from previous experience instead of specific instructions
(Goodfellow, 2016).

ML techniques rely both on the ability of the programmer, in building the
fittest model for its specific purpose and feeding it with the correct representation
of the data, and on the quantity of data that it is used to train the model.

During the last decades, increasing large data samples became available, con-
cerning large-scales structures traced by galaxies and galaxy clusters (Cole et al.
2005, Parkinson et al. 2012, Anderson et al. 2014). Ground-based and space
telescopes produce every day tens of terabytes of data, the complexity and quality
of which are without precedents (Ravanbakhsh et al. 2017).

A few years from now, new instruments like Euclid, the Large Synoptic Survey
Telescope and the James Webb Space Telescope will increase even more the amount
of data that will be available for future researches. ML can therefore play a key
role in modern cosmology.

Infact, ML is already used for many astrophysical and cosmological purposes,
for example in image recognition in Gravitational Lensing studies (Ostrovski et al.
2016, Hezaveh et al. 2017), in measuring photometric redshift using galaxy images
(Hoyle, 2016), in morphological galaxy classification (De La Calleja and Fuentes,
2004), in measuring the dynamical mass of galaxy clusters (Ntampaka et al. 2015)
and in exoplanet transit detection (Schanche et al. 2018).

Image and pattern recognition is not the only task that a ML algorithm can
be used for. Every kind of data can be used as input for the model.

In this chapter we will look at how a ML model is built, and how it works.

49
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4.1 Supervised Machine Learning

Supervised ML is the task of learning a function that maps a vector ~x of the input
space to an output based on previously seen input-output pairs (Russel 2016).

The alternative to supervised learning is unsupervised learning, that concerns
models that are able to subdivide the data into small groups, according to pe-
culiarities and resemblances that the model finds, without any previously given
information about the output that should be produced. Unsupervised learning
will not be described in detail in this work.

The main elements of supervised ML are: Labels, Features, Examples and
Models.

Labels are what we want to predict, the output of the model. It can be a
continuous variable (for example the value of y in the case of a linear regression)
or a discrete one (for example in a classification algorithms).

The features are the input variables. The choice of the features to feed the
algorithm with is very important. Features have to be a good representations
of our data, every aspect of our dataset must be well described by the features
we choose. If the features we use are not able to give a proper overview of the
dataset’s peculiarities, then, after the training is done, the model will not be able
to generalize and to give correct predictions over previously unseen inputs. For
instance, if the purpose is to constrain cosmological parameters starting from a
catalogue of observed galaxies, then useful features might be the coordinates of
those galaxies, or their masses, or their absolute magnitude, but not their names.

With the term Example we denote a particular instance of data, ~x. For exam-
ple, let’s say we want to predict the mass of a galaxy as a function of its position
in the cluster it lives in, then an example will be a vector containing the three
coordinates of a particular galaxy.

Examples can be divided into two categories: labeled examples and unlabeled
examples. Labeled examples are composed by both features and labels. These
are used to train the model, so they have to represent all the possible scenarios in
order to have a trained model able to generalize.

Once the model has been trained, unlabeled examples (composed only by fea-
tures) are used to make predictions on their label. If the label of an unlabeled
example is known by the user, then it is possible to test the performance of the
model comparing this label with the prediction.

The last key element of supervised ML is the model. The model is the element
that provides the relationship between the features and the labels. As it will be



4.2. MODEL’S ARCHITECTURE OF NEURAL NETWORKS 51

better described in the next section, a model is composed by layers, and each layer
has a certain number of parameters and plays a different role in the creation of
the relationship mentioned above. The ensemble of layers of a model is called
architecture.

Deep Learning is a class of ML algorithms that uses complex architectures,
formed by multiple layers, to progressively extract higher level features from the
input data (Deng et al. 2014).

Part of the ML analysis consists in understanding which model’s architecture
is the fittest for the purpose. If the model is too simple it will not be able to learn
much from the features, so it will generalize well to previously unseen examples,
but the performance will not be as good as it might be. Otherwise, if the model
is over-complicated (or, using the ML language, is too deep), then it will perform
very well on the training set, but will not be able to generalize. This phenomenon
is called overfitting.

Once the model is created, it goes through two different steps: the training
and the inference. During the training the model learns the representations that
connect the input data to the labels. Once the model is trained, it can be used to
do inference and make predictions on unlabeled examples (the test set).

It is common to refer to ML models as Artificial Neural Networks, or, simply,
Neural Networks (NNs). This is because these models are collections of units, or
nodes, that are similar to the biological neural networks that constitute animal
brains. For the same reason, the units of the model, that are the single elements
able to perform operations on the inputs and are connected to each other, are also
called neurons.

4.2 Model’s architecture of Neural Networks

When creating a model, it is very important to choose properly its architecture.
The best architecture depends on the purpose the NN is created for.

There is always an input layer, the one that just introduces the features to the
model, and an output layer, the one that performs the last operations and gives
the output values of the predictions. Every other layer that lies between the input
and the output ones is called hidden layer.

In order to have an idea of how layers work, let’s take as an example the simplest
model possible: a model with no hidden layers. We also assume that our input is a
list of examples and that every example is composed by four features, our example
will therefore be ~x = (x1, x2, x3, x4). Figure 4.1 is a graphical representation of
this model.

The single node of the output layer (the green dot) performs the following
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Figure 4.1: Representation of a model with no hidden layers and four features as input.

operation, to produce the prediction y′:

y′ = a

(∑
i

~wi · ~xi

)
, (4.1)

where ~wi is a vector containing weights (also known as kernel matrix) and a is the
activation function of the layer.

Both the weights and the activation function are crucial elements of the training
process.

The weights are parameters of the model, the objects that are going to be
modified at every step of the iterative process the training consists in, to produce
the prediction y′, that has to be as close as possible to the label y of our example.

The weights are not the only parameters the model can have. Every layer can
have an extra parameter: the bias, b. In this case Eq. (4.1) becomes

y′ = a

(∑
i

~wi · ~xi + b

)
. (4.2)

4.2.1 Activation functions

From Equation (4.2) it is clear that if no activation function (a) is involved, then
the output layer is only able to perform linear operations. Even if the model was
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formed by several layers and every layers was composed by several nodes (or units)
the result would always be a linear function of the input, because a combination of
linear functions is still a linear function. Thus, the role of the activation function
is almost always to introduce non-linearity in the model.

Some examples of activation functions are the following:

• Rectified Linear Unit (ReLU) (Glorot et al. 2011): this function returns 0
if the value of the input is negative, otherwise it returns the value of the
input itself. This activation function is widely used in several applications
and model architectures;

• Hyperbolic tangent: given an input p this function returns tanh(p);

• Sigmoid function: this function is defined as S(p) = 1/(1 + e−p). This
activation function is used in the output layer of Classification algorithms
with two possible outcomes (also known as Binary Classifications).
For example, this kind of activation function can been used in algorithms
that classify galaxies as spherical or elliptical, or in algorithms trained to
understand if an image of a galaxy is or is not deformed by Gravitational
Lensing;

• Softmax function. This function takes as input a vector ~p of n real numbers
and gives as output a vector ~σ that is also composed by n real numbers.
Softmax function is defined as follows:

σ(~p)i =
epi∑n
j=1 e

pj
, (4.3)

where pi is the i− th element of ~p.

From its definition it is clear that the output of the softmax function is a
vector of real numbers, all belonging to the interval (0, 1). Moreover, the
sum of these elements is the unity.

These properties makes the softmax function the perfect candidate for the
output layers of non-binary classification models. When we want to know
to which of n classes an unlabeled example belongs to, the i− th element of
the output of the softmax function can be considered as the probability for
the example to be in the i− th class.

4.2.2 Categories of layers

In order to build the best model for our scientific purpose, it is important to choose
a convenient number of layers, how many units these layers should have and what
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type of layers they should be. There are several categories of layers. Here we
present the most used ones:

• Dense layer: this layer is the most used one and it simply performs the
operation described in Equation (4.2). It is a fully connected layer, which
means that it is connected with all the units of the previous layer. Both the
ML models we implemented use this type of layer. Figure 4.2 shows how a
model built using only dense layers looks like.

Figure 4.2: Model built using only dense layers. In this case there are three hidden layers, and
each of them has 6 units (blue) and a bias (orange). Credits to Rezaie et al. (2019).

• Dropout layer: this layer randomly sets a specific fraction of input units to 0
at each iteration of the training. The value of this fraction is decided during
the construction of the model. The following layer therefore will not have all
the information that comes from the previous one. This is useful in deep and
large models to prevent overfitting. We used this layer in the Classification
model we implemented, that will be described in detail further in this work.

• Distribution Layer: this layer was presented, with the name of Distribution-
Lambda layer, for the first time at the 2019 TensorFlow Dev Summit (6-7
March 2019) together with the library it belongs to: TensorFlow Probabil-
ity. This layer takes as input n values and gives as an output a distribution
instance parameterized by those n inputs. In our Regression model we used
this layer to have as output a Gaussian distribution as prediction of the value
of Ωm for each example.
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• Convolutional layers: these types of layers, as the Pooling layers and the
Flattening layers, have not been used in the ML algorithms presented in this
work, but they are described here to give a proper overview on the wide
range of types of layers that can be used in ML. Convolutional layers apply
filters to the input tensors. If, for example, the input of this layer is a 2D
image, this image is seen as a matrix, and every element of this matrix is a
number indicating the brightness of one pixel. Convolving this image means
replacing the value of every element of it with the result of the dot-product
of two matrices. The elements of the first of these matrices are the values of
the pixel we are replacing and of the pixels that are next to it. The second
matrix is the filter (or kernel) we want to apply at the image. This process
can, for example, clean the image from noise, if an averaging filter is applied,
or it can ephasize features of the image, like contours and repeated patterns.

Convolutional layers can work on 1, 2 or 3D inputs. These kind of layers are
of central importance in image classification algorithms.

• Pooling layers. Together with Convolutional Layers, these layers are the
core of Convolutional Neural Networks (CNNs) that are the best models for
image recognition and classification. One example of the structure of a CNN
that performs handwritten digits recognition is shown in Figure 4.3.

Pooling layers take as input a matrix and perform down sampling, reducing
the dimension of such a matrix, improving the speed of the model without
any major loss of information. If our input data is a 2D image, a pooling
layer subdivides this image in small blocks of pixels and replaces every block
with a single real number, that can be for instance the average value of the
pixels that are in that block (average pooling) or the maximum value of those
pixels (max pooling);

• Flattening layers: these layers flatten the input, turning it into a 1D vector.

Once the structure of the model has been decided and built, it is time to feed it
with the input features and to start the training (or learning) process, that will be
described in detail in the following section.

4.3 Training process

Setting up the fittest architecture is not the only thing that has to be done in
order to obtain good results from ML. The training process is characterized by
some choices and hyperparameters that are going to be explained in the next
section.
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Figure 4.3: Structure of a CNN that performs a classification of handwritten digits. The input
consists in a (28x28) matrix containing the values of brightness of every pixel. The blue squares
are representations of the inputs that pass through two convolutional layers and two pooling
layers. The output of the second pooling layers is then flattened and used as input for the final
part of the model, that consists of two dense layers. The output of the model is a vector of
ten elements. Every element is the probability that the input represents a specific digit. Cred-
its to https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-
the-eli5-way-3bd2b1164a53.

4.3.1 Loss

The goal of the training process is to find good values for all the weights and biases.
The best values will be the ones that lead the predictions for the labeled examples
to be as close as possible to the labels. The measure of how bad the predictions
are is called loss, J . The smaller the loss, the better the model is to predict on
the labeled examples.

Once the input features have gone through all the layers of the model and a
prediction has been made for each example, we have to find a way to compute
the total loss. There are many ways to do it, here we present the most used loss
functions:

• Mean Squared Error. This loss function is widely used in linear regression
algorithms, and the operation that performs is

J =
1

N

N∑
i=1

(y(~xi)− y′(~xi))2
, (4.4)
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where N is the number of examples present in our dataset, y(~xi) is the label
of the i− th example and y′(~xi) its prediction;

• Mean Absolute Error. This loss function, like the next two ones, is very
similar to Mean Squared Error. The expression for Mean Absolute Error is

J =
1

N

N∑
i=1

|y(~xi)− y′(~xi)| ; (4.5)

• Mean Absolute Percentage Error:

J =
1

N

N∑
i=1

100 · |y(~xi)− y′(~xi)|
y(~xi)

; (4.6)

• Mean Squared Logarithmic Error:

J =
1

N

N∑
i=1

[log(y(~xi))− log(y′(~xi))]
2

; (4.7)

• Binary Cross Entropy: in information theory entropy, H(~p), is defined as the
average amount of information that comes from one sample drawn from a
given distribution and it is defined as follows:

H(~p) = −
∑
i

pi log2(pi) , (4.8)

where pi is the probability associated to the i − th element of the sample.
If two probability distributions, the real one, p, and the predicted one, q,
are taken into account over the same set of events, the cross-entropy can be
defined as a function of both these distributions:

H(~p, ~q) = −
∑
i

pi log2(qi) , (4.9)

where pi and qi are the probabilities of the i − th event, according to the
real and the predicted probability, respectively. If the predicted probability
is different from the true one, then the cross entropy will be higher than
the entropy. The difference between entropy and cross entropy is called
relative entropy, or, more commonly, Kullback-Leibler Divervence (Kullback
and Leibler, 1951).
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Binary Cross Entropy loss function is the most used in Binary Classification,
where the label of each example can be either 0 or 1. In these models the
output layer has a sigmoid activation function, that returns the probability
the example has to have 1 as label.

The analytic expression of binary cross entropy is:

J = − 1

N

N∑
i=1

y(~xi) · log[p(y(~xi))] + (1− y(~xi)) · log[1− p(y(~xi))] , (4.10)

where p(y(~xi)) is the predicted probability for the i− th example to have 1
as label;

• Categorical Cross Entropy: this loss function is very similar to the previous
one, but it is used in non-binary classifications, where the model has to
choose which of M classes best represents the example. If the labels are
integer numbers (like almost always are), then it is common to use the Sparse
Categorical Cross Entropy, defined by the following expression:

J = − 1

N

N∑
i=1

M∑
j=1

yj(~xi) · log[p(yj(~xi))] , (4.11)

where yj(~xi) is a binary indicator: 1 if j is the correct label for ~xi, 0 if not.
This loss is used in models that have as activation function of the output
layer a softmax function, and p(yj(~xi)) is the predicted probability for ~xi to
belong to class j.

If the labels are continuous, then the sum over j turns into an integral be-
tween the minimum label and the maximum one.

It is now time to understand how the model can improve during the training, and
how it is supposed to reach the lowest loss possible. First of all, let us recall that
the training is an iterative process. The same example passes through all the layers
several times. Every time all the examples are processed is called “epoch”. Usually
the training process consists in thousands of epochs, and at the end of every epoch
the weights are updated in order to reach a lower loss during the following one.

4.3.2 Optimization

The updating of the weights is called optimization. There are many optimizers
that can be used in ML. Here some examples are presented:
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• Gradient Descent: this optimizer is very basic and can be used as a starting
point to understand the functioning of all the other ones.

This optimizer computes the gradient of the loss, as a function of all the
weights of the model. The gradient, by definition, points towards the direc-
tion of the steepest increase in the loss function. This optimizer updates the
weights of the model in order to be a step away from the previous ones, in
the direction of the negative gradient. This is repeated at the end of every
epoch, until the model eventually converges to a minimum loss.

The length of the step is a fraction of the magnitude of the gradient. This
fraction is called learning rate or, sometimes, step size. The choice of the
value of the learning rate is not an easy task to do and often requires a
little bit of trial and error. If the learning rate is too big, then the model
goes rapidly towards the minimum of the loss function, but the risk is to
never reach this minimum exactly. If the learning rate is too small, then the
training process can require too many epochs to reach the minimum of the
loss. Moreover, the risk of a low step size is to fall into a local minimum,
without being able to leave it.

A correct learning rate is therefore the one that can lead the model to the
lowest loss possible, without taking too many epochs.

If the training set is too big to compute the loss for every example, it is
possible to calculate it only on one randomly sampled example for each epoch
(Stochastic Gradient Descent) or on a subsample of the dataset (mini batch
Stochastic Gradient Descent). Here we have introduced the term “batch” to
indicate a subsample of the dataset that can contain any number of examples
from one to N .

The mathematical expression for Gradient Descent optimization is

~we+1 = ~we − η∇J(~we) , (4.12)

where ~we is a vector containing the values that weights have in the e − th
epoch, and η is the learning rate.

• Adaptive Gradient Algorithm (AdaGrad)(Duchi et al. 2011) is an adaptive
learning rate method. This means that every weight is varied individually.
The analytic expression does not differ much from Eq. (4.12):

wi,e+1 = wi,e −
η√

Gi,e + ε

∂J

∂wi,e
, (4.13)

where wi,e is the value of the i− th weight at epoch e, ε is a parameter that
has to be set during the construction of the model (just like the learning
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rate) and Gi,e is defined as follows:

Gi,e =
e∑
j=1

(
∂J

∂wi,j

)2

. (4.14)

From Eq. (4.13) and Eq. (4.14) it can be seen that the effective learning
rate for each weight depends on the training itself. The more one weight
had been updated up to a certain epoch, the lower its effective learning rate
will be in that specific epoch. The AdaGrad optimizer is therefore capable
of taking into account that not every weight behaves in the same way during
the training, and it is most likely that every weight gets to its best value on
a different epoch.

• Adadelta (Zeiler 2012) is basically the same as AdaGrad, but Gi,e is no more
the sum of squared gradients over all epochs, but the sum is now restricted
to a window of n iterations. This means that the denominator of the first
fraction in Equation (4.13) can no more tend to infinite, and so the effective
learning rate will never become negligible, even after many epochs.

• Root Mean Square propagation (RMSprop) (Tieleman and Hinton 2012):
this optimizer is very similar to AdaGrad. Infact Eq. (4.13) is still valid,
while the definition of Gi,e is modified as follows:

Gi,e = βGi,e−1 + (1− β)

(
∂J

∂wi,j

)2

, (4.15)

where the new hyperparameter β has to be set just like η and ε, and it is
usually close to 0.9.

• Adaptive Moment Estimation (Adam) (Kingma and Ba, 2014) is an opti-
mizer that uses estimates of the first and second moments of the gradient of
the loss function in order to update the effective learning rate. Adam uses
exponentially moving averages to estimate the moments: me and ve for the
first and second moments, respectively, at epoch e. The moving averages are
computed as follows:

me = β1me−1 + (1− β1)∇J(~we) (4.16)
ve = β2ve−1 + (1− β2)∇[J(~we)]

2 , (4.17)

where β1 and β2 are two hyperparameters set during the construction of the
model. Usually those hyperparameters are set to be β1 = 0.9 and β2 = 0.999,
as it was done in the original paper that presented this optimizer.
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It can be demonstrated that me and ve are biased estimates, but they can
be corrected performing the following operations:

m̂e =
me

1− βe1
(4.18)

v̂e =
ve

1− βe2
(4.19)

where m̂e and v̂e are the unbiased estimators.

Once the unbiased estimates have been defined, it is easy to understand the
way the weights are updated:

~we = ~we−1 − η
m̂e√
v̂e + ε

, (4.20)

where η and ε play the same role they played in the previously presented
optimizers.

Now we know the layers that a model can be composed of, the loss functions that
are able to measure how wrong our predictions are at every epoch, and how to
optimize the model in order to reduce that error.

Using the fittest layers, with the correct loss function and optimization is
mandatory in order to have a well performing model.

4.4 Validation
So far we have talked about the training set of labeled examples and the test set
of unlabeled examples. Note that, as far as the test set is concerned, the labels
are not given to the model, but might be known by the user.

As we have discussed in the previous sections, there are several choices that
have to be done and hyperparameters to be set during the construction of the
model. These choices, however, should not be done based on how the model
performs on the training set, because, for instance, if we build a huge and deep
model, it will most likely perform very well on the set it has been trained on, but
will not be able to generalize to previously unseen examples.

This means that the number of layers, the value of the learning rate and so
on, have to be chosen based on how well the model performs on the test set. But
this again leads to some contradictions: modifying the model depending on the
predictions on the test set sounds like indirectly feeding the model with the set,
and this is not good if we want an absolute generalization.

Here is where validation comes up. The training set can be split into two
subsamples: one of them keeps on being the training set the model learns the
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weights on, and the other will be the validation set, that will not be used to
update the weights, but to make choices about the architecture of the model and
the optimization parameters.

If we want to summarize what have been said so far we can say that the dataset
is divided into three different sets:

• The training set is used to train the model. This means that the optimization
of the loss function and the updating of the weights is performed based on
this set;

• The validation set is used to improve the structure of the model;

• The test set, composed by unlabeled examples, is used to make predictions
on previously unseen examples and, if the labels of this set are known by the
user, to check whether the training and validation processes worked properly
or not.

In the next chapters we will present how the concepts of ML that have been
introduced here have been applied in order to build models that can put constraints
on the value of Ωm, starting from the BOSS galaxy catalogue data.



Chapter 5

The analyzed dataset

In this work we exploited supervised ML methods providing as input training data
the correlation functions of thousands of mock galaxy catalogues. These mock
catalogues have been created following the characteristics of the BOSS galaxy
catalogue, using a technique that is going to be presented in the next chapter.

This catalogue has been chosen because it is public and contains the coordi-
nates of a large number of observed galaxies (≈ 1.200.000), distributed in a large
sky volume. Moreover, BOSS has been the object of other previous projects (e.g.
Sanchez et al. 2013, 2016a, 2016b, Li et al. 2016, Alam et al. 2017, Ntelis et
al. 2017, Salazar-Albornoz et al. 2017, Satpathy et al. 2017, Slepian et al. 2017,
Ivanov et al. 2019) that used standard analysis techniques on clustering statistics
to put constraints on cosmological parameters. In particular, we compared our re-
sults with the results obtained by Alam et al. (2017), that are presented in detail
in this chapter.

5.1 The Sloan Digital Sky Survey
BOSS is part of SDSS, which is an imaging and spectroscopic redshift survey that
used a 2.5m modified Ritchey-Chrétien altitude-azimuth optical telescope located
at the Apache Point Observatory in New Mexico, USA (Gunn et al. 2006).

The data we have worked on are from the Data Release 12 (DR12), that is
the final data release of the third phase of the survey (SDSS-III), that lasted from
2008 to 2014 (Alam et al. 2015).

BOSS is not the only survey of SDSS-III. In fact there are three more, that are
not considered in this work (Eisenstein et al. 2011):

• APO Galactic Evolution Experiment (APOGEE) used high resolution in-
frared spectroscopy to survey 100,000 red giant stars across the full range of
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the Galactic bulge, bar, disk and halo;

• Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS)
monitored the radial velocities of 11,000 bright stars in order to detect giant
gaseous planets orbiting around them;

• SEGUE-2 is the second version of the original Sloan Extension for Galac-
tic Understanding and Exploration (SEGUE-1) that took spectra of almost
230,000 stars, of all the spectral types, in order to investigate the structure
of the Milky Way. SEGUE-2 added 119,000 more spectra to the survey.

5.2 Properties of BOSS

BOSS mapped the spatial distribution of luminous red galaxies and quasars to
investigate the scales imprinted by the BAO.

The observations were performed from fall 2009 to spring 2014, with a 1000-
fiber spectrograph with a resolution R ≈ 2000. The wavelength range goes from
360 nm to 1000 nm, and the coverage of the survey is almost 10.000 square degrees.
The spatial coverage of BOSS is shown in Figure 5.1.

The catalogue from BOSS DR12, used in this work, contains the positions in
observed coordinates: RA, Dec and redshift, of 1.198.004 galaxies.

Figure 5.2 shows how these objects are distributed along the three coordinates.
For this thesis work it has been used also a random catalogue with the same

geometrical characteristics and the same angular and redshift selection functions
of the data catalogue, but with a number of objects that is ten times bigger than
the observed galaxies. The choice of having a more populated random catalogue
has been done to minimize the impact of Poisson errors in random pair counts.

Both the data and the random catalogue have been created considering the sur-
vey footprint, veto masks and systematics of the survey, for example fiber collisions
and redshift failures (Reid et al. 2015).

5.3 The correlation function of BOSS galaxies

All the measurements of correlation functions we used to train, validate and test
our NNs, that are going to be explicitly described in the next chapter, have been
done using the Landy and Szalay estimator (see Eq. (3.8)) from mock catalogues
that have the same geometric structure of BOSS. The errors on the measures are
computed as the Poissonian uncertainties on the number of pairs, both for the data
catalogue and the random catalogue. These measurements have been performed
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Figure 5.1: Footprints of the Northern and Southern galactic caps of BOSS DR12 sample.
Credits to Alam et al. (2015).

using the CosmoBolognaLib, that are a set of Open Source C++ and Python
numerical libraries for cosmological calculations (Marulli et al. 2016).

Figure 5.3 shows an example of such measures, obtained with a fitting range
of s from 25 Mpc/h to 145 Mpc/h, divided in 24 linear bins. A redshift selection
has been applied on both the data and random catalogue, in the range between
z = 0.4 and z = 0.6. The two-point correlation function is calculated assuming
a fiducial cosmology whose parameters are the ones that result from the 2018
measurements of Planck satellite (Planck Collaboration 2018), but with Ωm = 0.31
instead of Ωm = 0.3153 (keeping Ωtot = 1). In the same figure, our measurements
are compared with the ones of Satpathy et al. (2017), that have been chosen
as comparison because are performed with the same catalogues, with the same
estimator, in the same distance and redshift ranges and with the same bin size,
and because they are publicly available. In particular, Satpathy et al. (2017)
performed their measurements assuming a fiducial ΛCDM cosmology with Ωm =
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Figure 5.2: Histograms representing the distribution of objects in BOSS DR12 catalogue as a
function of Right Ascension (top left panel), Declination (top right panel) and redshift (bottom
panel).



5.3. THE CORRELATION FUNCTION OF BOSS GALAXIES 67

Figure 5.3: Different measures of the two-point correlation function obtained with the Landy
and Szalay estimator, from BOSS DR12 catalogue, considering only objects with redshift between
0.4 and 0.6. The blue dots (with Poissonian error bars) have been measured assuming the fiducial
cosmology of Planck’s 2018 results with Ωm = 0.31 instead of Ωm = 0.3153. The red squares
are the measures obtained in Satpathy et al. (2017) assuming a fiducial ΛCDM cosmology
with Ωm = 0.31, H0 = 0.676, ΩΛ = 0.69, Ωbh

2 = 0.022 and σ8 = 0.8. The red error bars
have been obtained from the covariance matrix computed from mock catalogues. The black line
represents a model for the galaxy correlation function obtained from a DM model multiplied by
the Kaiser factor and the squared linear bias. The cosmology represented by this model is the
one parameterized by Planck results of 2018. Both the measures have been done in 24 linear
bins of s from 25 Mpc/h to 145 Mpc/h.

0.31, H0 = 0.676, ΩΛ = 0.69, Ωbh
2 = 0.022 and σ8 = 0.8. The error bars are

obtained from the square root of the diagonal elements of the covariance matrices
computed from the Multi-Dark Patchy mock catalogues (Kitaura et al. 2013).
The black line in Figure 5.3 is the theoretical model of the galaxy correlation
function in redshift space, computed as the correlation function of DM in real
space multiplied by the Kaiser factor (see Equation (3.15)) to model RSD, and
by the squared linear bias. Specifically, the model, parameterized by bσ8 and fσ8,
has the following analytical expression:

ξgal(s) =

[
(bσ8)2 +

2

3
fσ8 +

1

5
(fσ8)2

]
1

σ2
8

ξDM(r) . (5.1)

In our case ξDM(r) is obtained by Fourier transforming the power spectrum mod-
eled with the Code for Anisotropies in the Microwave Background (CAMB)(Lewis
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and Challinor, 2011) and assuming Planck18 fiducial cosmology. CAMB is a Boltz-
mann solver to calculate the evolution of density perturbations in an assumed
cosmological framework. The values of f and σ8 are set by the cosmological as-
sumption and bσ8 is the result of a fit of BOSS correlation function through Monte
Carlo Markov Chain, as explained in details in the next Section.

5.4 Standard analysis on clustering statistics

5.4.1 Bayesian statistical analysis

The NNs developed in this work have been used as a likelihood-free alternative
to the standard Bayesian analysis, to put new constraints on the matter density
contrast parameter, Ωm, using the measured correlation function of the BOSS
galaxy catalogue.

In the following, we provide a detailed description of the standard approach
generally exploited by cosmological analyses, as a comparison to the new technique
introduced in this work.

The first step of the standard approach is to choose a statistic to analyze. The
two-point correlation function is often chosen because, under the assumption of a
Gaussian distribution of the density field, it encloses all the spatial information,
being the variance of a Gaussian field, that has null mean.

Once the statistic have been chosen, a likelihood has to be implemented. For a
better understanding of what the likelihood is, and what is its role in this analysis,
we introduce the Bayes’ theorem:

P (~θ| ~D) =
L( ~D|~θ)p(~θ)∑
i L( ~D|~θ)p(~θ)

, (5.2)

where ~θ is the vector that contains the values of the model parameters we are fitting
our data, ~D, with. P (~θ| ~D) is referred to as the posterior probability for the model
given the data. It represents a probability distribution on the parameters, based
on how the model fits the input data. The main goal of this kind of analyses is to
fully characterize the posterior distribution. The prior probability, p(~θ), is also a
probability distribution of the parameters, but it is only based on the knowledge
we had on them before the data, ~D, were considered. The prior probability in an
experiment can be, for example, the posterior probability of previous experiments.
Finally, L( ~D|~θ) is the likelihood, that represents the probability of getting the
observed data, given the model parameterized by ~θ. The likelihood is the same
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probability that is used in a frequentist approach. It includes the model itself,
together with a description of the uncertainties.

As far as a measure of the two-point correlation function is concerned, the first
thing the likelihood has to contain is the model of this statistic for DM in real-
space. One example of this can be obtained by Fourier transforming the power
spectrum modeled with CAMB. In the likelihood there must be also the bias of
the galaxies the correlation function of which we have measured, the RSD, the
geometric distortions and the covariance matrix of the measure. The implementa-
tion of the likelihood is of central importance in the standard analyses.

The standard Bayesian analysis consists in an iterative process that has the
role of sampling the posterior probability distribution. This kind of process can
be done through the Monte Carlo Markov Chain (MCMC) technique. A chain
is a series of random numbers, where the conditional probability of an element
given the others can be explicitly expressed. A chain itself can be seen as a single
random object. A Markov chain is a chain in which the conditional probability
of every element, xn+1, depends only on the previous one, xn. This probability,
p(xn+1|xn), is called the transition kernel. The elements of the Markov chain are
points in the parameter space. At the n − th step of the fitting process, we are
in the point characterized by the element xn of the chain. The fit then moves to
a new point, characterized by xn+1, taking a step in a random direction of the
parameter space. This step can be either accepted or rejected. To be accepted the
new element xn+1 has to fulfill a specific requirement, for example, the likelihood
in that point of parameter space must be higher than the likelihood of the previous
element of the chain. During the whole process the chain cannot exit from the
limits on the values of parameters that are set by the prior distributions.

As the fitting algorithm goes on, the chain will converge to a small region of
the parameter space, where the posterior reaches the highest possible values. The
values of the parameters that are elements of the Markov chain consist of the
sample of the posterior probability. The mean, or the median, of the posterior
probability of each parameter can then be considered as the best-fit value of that
specific parameter.

To initialize the chain it is necessary to make an initial guess of the values of
the parameters, and this guess might often be away from the region the chain will
converge to. Therefore, it is common practice to start considering the sampling of
the posterior after a certain number of steps, called the burn-in period.

5.4.2 Cosmological constraints from BOSS clustering

Alam et al. (2017) combined individual measurements of the two-point correlation
functions and power spectra of the BOSS DR12 galaxy catalogue presented in
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seven companion papers (some of which were by that time still unpublished) to
put constraints on cosmological parameters. In particular, the BAO scale has been
measured in the anisotropic two-point correlation function in Ross et al. (2016)
and in Vargas-Magaña et al. (2018) and using the anisotropic power spectrum
in Beutler et al. (2016b). The full shape of the two-point correlation function
has been analysed in Satpathy et al. (2017) and in Sanchez et al. (2016a). The
equivalent analysis in the Fourier space has been done using the power spectrum
in Beutler et al. (2016a) and in Grieb et al. (2017).

To estimate the covariance matrix of their clustering measurements, two differ-
ent types of mock catalogues have been used, created with two distinct methods:
Multi-Dark Patchy (Kitaura et al. 2013) and Quick Particle Mesh (White et al.
2013). The former method simulates the growth of density perturbations with a
combination of second-order Lagrange perturbation theory and a stochastic halo
biasing scheme based on high-resolution N-body simulations. The Quick Particle
Mesh method uses instead low-resolution particle-mesh simulations to evolve the
density field, then selects particles from this field to match the statistics of the
DM haloes. Both these methods then use halo occupation methods to construct
galaxy distributions that match the observed redshift-space clustering and the an-
gular selection function of BOSS catalogue. A total of 2000 catalogues were used
in the analysis, 1000 for each method.

As an example, we illustrate here the likelihood used in Satpathy et al. (2017).
In this paper the correlation function has been used as the analyzed statistic. The
correlation function multipoles have been considered to be Gaussian distributed,
and the parameter dependence of the covariance matrix has been ignored.

The Gaussian likelihood, L, as a function of parameters ~p, can be written as
follows:

L(~p) ∝ exp

[
−χ2(~p)

2

]
, (5.3)

where
χ2 = (ξdata − ξmodel) Σ−1 (ξdata − ξmodel)T . (5.4)

In Eq. (5.4) Σ−1 is the inverse of the covariance matrix, that in Satpathy et
al. (2017) was obtained from the Multi-Dark Patchy mocks, and ξmodel is the
theoretical value of the correlation function the data have been compared with.
The analytical expression that has been used to evaluate the value of ξmodel is the
following:

1 + ξmodel(s‖, s⊥) =

∫
exp

{
−[s‖ − r‖ − µv12(r)]2

2[σ2
12(r, µ) + σ2

FOG]

}
· 1 + ξ(r)√

2πσ2
12(r, µ)

dy . (5.5)

The elements present in Eq. (5.1) are the following:
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• s‖ and r‖ are the line of sight separations in redshift space and real space,
respectively;

• r =
√
r2
‖ + s2

‖ is the the pair separation in real space,

• µ = r‖/r is the cosine of the angle between the line-of-sight separation in
real space and the pair separation vector ~r;

• the parameter σFOG (where FOG stands for Fingers of God) serves to de-
scribe an isotropic dispersion that modifies the scale-dependence of the mo-
ments on small scales (Reid et al. 2012);

• the parameters v12(r) and σ12(r) represent the mean infall between pairs of
matter tracers and the velocity dispersion along the line of sight, respectively.

In Satpathy et al. (2017) the temperature anisotropy data from Planck 2015 release
has been used to compute the Planck likelihood, LPlanck. The two likelihoods have
been multiplied to get a joint constraint on the parameters:

LTotal(p) = L(p)× LPlanck(p) . (5.6)

The combination of the seven different analyses in Alam et al. (2017) has a higher
constraining power than each individual measure, because they have been done
on the same catalogues (data and random), but independently and using different
clustering statistics and modelling assumptions. The measurements, the likeli-
hoods and the posterior distributions obtained by BAO and full-shape measure-
ments have been combined into sets of consensus constraints using the method
presented in Sanchez et al. (2016b).

The posterior has been sampled with a MCMC using a version of the workhorse
CosmoMC code (Lewis and Bridle, 2002). The model spaces include variations in
the matter density Ωmh

2, the baryon density Ωbh
2, the amplitude and the spectral

index of the primordial power spectrum and the optical depth at recombination.
Note that the choice of the analytical expression of the likelihood, the sampling
of the posterior and all the uncertainties on the results that come from them are
avoided in the likelihood-free ML approach presented in this work.

In Alam et al. (2017) the BAO and full-shape measurements of the BOSS cat-
alogue have been combined with the CMB anisotropy data from Planck satellite’s
2015 measurements (Planck Collaboration, 2016) 1. Assuming a standard ΛCDM
model, the combination of BOSS and Planck data leads to the following constraint
on the matter density:

Ωm = 0.311± 0.006 , (5.7)
1Power spectra for both temperature and polarization have been used, using the likelihoods

plik_dx11dr2_HM_v18_TTTEEE and lowTEB for the high and low multipoles, respectively.
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this is the value that we used as comparison for the constraints obtained by the
NNs presented in this thesis work.



Chapter 6

The training, validation and test
datasets

The reliability of the results of a NN relies on the input features and examples the
model was trained with. In this chapter we are going to explain how the mock
catalogues of the training, validation and test set have been created.

6.1 Construction of log-normal mock catalogues
Let us define a random field in a given volume as a field whose value at the position
~r is a random variable (Peebles 1993, Xavier et al. 2016). One simple example is
the Gaussian random field, N(~r). In this case the one-point Probability Density
Function (PDF) is a Gaussian (or Normal) distribution, fully characterized by the
mean µ and the variance σ2:

f1(N) =
1√
2πσ

exp

[
−(N − µ)2

2σ2

]
. (6.1)

If n positions are considered, instead of just one, Eq. (6.1) becomes

fn( ~N) =
1

(2π)n/2|M |1/2
exp

[
−1

2

∑
i,j

M−1
ij NiNj

]
, (6.2)

where Ni = N(~ri), and M is the covariance matrix, the elements of which are
defined as follows:

M ij = 〈(Ni − µ)(Nj − µ)〉 . (6.3)

Equation (6.2) is the definition of the Multivariate Gaussian distribution.
As far as the primordial matter density contrasts are concerned, it is correct to

approximate the PDF for δ(~x) with a Gaussian distribution, with null mean and
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the correlation function as variance. The same definitions can be used in Fourier
space as well, with δk that will thus have null mean and P (k) as variance.

In more general cases, the Gaussian random field is only an approximation of
the real random field that may present features, such as significant skewness and
heavy tails (Xavier et al. 2016).

Coles and Barrow (1987) showed how to construct non-Gaussian fields through
non-linear transformations of a Gaussian field. One example of such fields is the
log-normal random field (Coles and Jones 1991), obtained through the following
transoformation:

L(~r) = exp[N(~r)] . (6.4)

The log-normal transformation results in the following one-point PDF:

f1(L) =
1√
2πσ

exp

[
−(log(L)− µ)2

2σ2

]
dL

L
, (6.5)

where µ and σ2 are the mean and the variance of the underlying Gaussian field N ,
respectively.

Similarly to what has been done for the Gaussian distribution, we can also
determine a Multivariate version for the log-normal random field, that is defined
as follows:

fn(~L) =
1

(2π)n/2|M |1/2
exp

[
−1

2

∑
i,j

M−1
ij log(Li) log(Lj)

]
n∏
i=1

1

Li
, (6.6)

where M is the covariance matrix of the N-values.

We are now going to present the algorithm that has been used to generate the
mock catalogues needed for the ML training process. As for the measurements
of the two-point correlation functions, also for the construction of these mock
catalogues the CosmoBolognaLib have been used (Marulli et al. 2016).

The algorithm takes as input:

• one data catalogue;

• one random catalogue;

• the bias of the data catalogue;

• the cosmological model we want the output catalogues to follow.

The first two inputs are used to define a grid with the same geometric structure of
the data catalogue and a visibility function that comes from the pixel density of
the random catalogue. The assumed cosmology is used to compute the distances
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starting from the observed coordinates and to model, together with the bias of the
data catalogue and its average redshift, the power spectrum that will serve as the
logarithm of the variance for the log-normal random field generation. The density
field is sampled from this random field.

Once the algorithm has associated to all the grid cells their density value, we
can extract from each of them a certain number of points that depends on the
density of the catalogue and on the visibility function. These points compose the
output mock catalogue.

The main application for log-normal mock catalogues is the fast generation
of mocks for covariance matrix estimate, in particular in anisotropic clustering
analyses (e.g. Veropalumbo et al. 2016, Blot et al. 2019).

The log-normal technique allows to generate density fields (and then, cata-
logues) with the required characteristics very rapidly, specially if compared to
N-body simulations, which, nevertheless, would have been more accurate and with
more trustworthy higher-order statistics.

The cosmological parameter this work focuses on is Ωm. Therefore, this was the
only parameter that has been modified during the construction of all the different
categories of mock catalogues. For all the other parameters, it has been chosen
a fiducial cosmology from Planck satellite’s 2018 measurements, as it has already
been explained in Section 5.3. Every time the value of Ωm was modified, ΩΛ was
also changed, in order to keep Ωtot = 1.

When a new category of mock catalogues, characterized by Ωm = Ωm,i, was
constructed, a new linear galaxy bias had to be used. The galaxy bias was ob-
tained by fitting the correlation function of BOSS, measured in the scale range
8 < s[Mpc/h]< 50, that is the same range that is going to be used to train and
test the NNs. The fit was performed on the scale range 30 < s[Mpc/h]< 50. We
used a Gaussian likelihood (see Eq. (5.3) and Eq. (5.4)), considering as theorical
model for the two-point correlation function the one expressed in Eq. (5.1), and a
Poissonian covariance matrix. The model is parameterized by fσ8(z) and bσ8(z).
From now on the dependence on the redshift will no more be made explicit. The
value of every redshift-dependent parameter has been calculated using the mean
redshift of the data catalogue, z = 0.481. The value of fσ8 was set by the cosmo-
logical model assumed during the measure of the two-point correlation function
and the construction of the theoretical model. The other parameter of the model,
bσ8, is thus the only free parameter. We used a uniform prior between 0 and 2.7
for it. The posterior of bσ8 has been sampled using a MCMC with 10.000 steps
and a burn-in period of 100 steps. The mean value of the posterior is then taken
and multiplied by σ8, which is again set by the cosmological model that has been
assumed, to obtain the value of b that has been used during the construction of
log-normal catalogues.
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As an illustrative example, Figure 6.1 shows different measures of correlation
functions, obtained on the scale range 8 < r[Mpc/h]< 50, in 30 logarithmic bins of
s. The blue dots and the green ones are the measures performed using two different
classes of log-normal mocks. For each class, the measures of 50 mock catalogues
are represented. These two classes are the ones characterized by the lowest and the
highest values of Ωm that have been considered in this work, that are 0.24 (blue
dots) and 0.38 (green dots). The solid black line is the theoretical model for the
correlation function, calculated with the same cosmological assumptions the class
of log-normal mocks characterized by Ωm = 0.24 were created with. The dotted
line is the analogous of the solid one, but calculated assuming Ωm = 0.38. The
average values of the correlation functions of each class of log-normal catalogues
stay close to their correspondent theoretical model. This is because these mock
catalogues represent galaxy catalogues that actually follow the cosmology that was
assumed during their construction. According to the ML models we are about to
describe, a mock catalogue characterized by Ωm = Ωm,i is an example of how galaxy
catalogues would be if Ωm,i was the true value. The red and the yellow crosses are
two measures of the correlation function of the BOSS catalogue obtained assuming
Ωm = 0.24 and Ωm = 0.38, respectively. Neither of the two measurements of
BOSS correlation function follows the model that is characterized by the same
cosmological assumptions. This is because both 0.24 and 0.38 are bad guesses for
the value of Ωm. Moreover, the two measures of BOSS correlation function have
the same trend, and are only slightly different from each other. These differences
are caused by the geometric distortions introduced by the two assumptions on Ωm.
As it will be shown in the next Chapter, the NNs presented in this work are able
to predict the same value of Ωm when applied to the correlation function measured
from BOSS, thus not being significantly affected by the geometric distortions.
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Figure 6.1: Different measures of the correlation function evaluated from 8 Mpc/h to 50 Mpc/h
in 30 logarithmic bins of s. The dots represent the measures obtained with 50 log-normal mock
catalogues constructed with Ωm = 0.24 (blue dots) and 50 constructed with Ωm = 0.38 (green
dots). The black lines represent the theoretical models calculated assuming the same cosmological
parameters as the measures. The solid line is characterized by Ωm = 0.24, while the dotted one
by Ωm = 0.38. The red and yellow crosses show the BOSS correlation function obtained assuming
Ωm = 0.24 and Ωm = 0.38, respectively.
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Chapter 7

Exploitation of the Neural Networks

Two different ML models have been exploited in order to put constraints on Ωm

using the correlation function measured from BOSS. The first model performs
a Multi-Class Classification, while the second one performs a Regression. These
models are implemented in Keras (Chollet 2015) with a Tensorflow backend (Abadi
et al. 2016).

In this chapter we are going to explain the architectures of the two models, the
details of the training processes and the results that come out from them.

The architectures, the numbers of epochs and the values of the hyperparameters
that are going to be presented are the result of a trial-and-error process. A wide
variety of configurations has been tested. We kept the models’ structures that had
the best performances in avoiding overfitting and in providing reliable predictions
on the test sets.

7.1 The Classification model

The Classification ML model we implemented for this thesis work takes as input the
values of the measured correlation function, calculated in 30 logarithmic bins of s,
from 8 Mpc/h to 50 Mpc/h. The model then generates as output, for each example,
a vector containing the confidences of how likely the example is represented by each
of the different classes the model is trained for.

In our case there are 11 classes, each of them characterized by a different value
of Ωm, from 0.26 to 0.36, separated by ∆Ωm = 0.01.

The architecture of the implemented NN is the following:

• Input layer that feeds the 30 values of the measured correlation function to
the model;

• Dense Layer with 8 units and ReLU activation;
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• Dropout Layer with 0.125 as dropout rate;

• Dense Layer with 4 units and ReLU activation;

• Dense Layer with 11 units and softmax activation.

Figure 7.1 is a schematic representation of the architecture of this model. This

Figure 7.1: Schematic representation of the Classification model. The input layer is represented
by blue dots, the hidden layers by green dots and the output layer by orange dots. The Dropout
is represented by the cross on the fifth unit of the first hidden layer. Infact, at each epoch a
random unit of that layers is chosen and it is not used to produce the predictions for that epoch.
This helps to avoid overfitting.

architecture has been chosen because it is the simplest one we tested which is able
to provide accurate cosmological constraints. Deeper models have been tried, but
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no differences were spotted in the output predictions, and they often incurred in
overfitting. This ML architecture is an example of Deep Learning NN, because
multiple layers have been used, and each of them learned a different level of rep-
resentation of the input features.

The training set considered in this work consists of 88.000 measures of corre-
lation functions, that is 8.000 for each class, of which 2.000 measures have been
used for the validation set. Classifications ML methods need big datasets to train,
because every aspect of each class must be learned from the data. As far as the
computation time is concerned, it was not convenient to perform the measures on
catalogues with too many objects. Therefore the mock catalogues used to train
and test this classification algorithm were obtained by slicing BOSS catalogues
(data and random) and selecting only the following intervals of Right Ascension
and Declination:

3 <RA < 3.5

0 <Dec < 0.1 .

All the resulting mock catalogues have approximately 40.000 objects each.
The learning process was performed using the Sparse Categorical Cross En-

tropy loss function, with Adam optimization (see Chapter 4). The optimization
parameters that have been used are η = 0.001, β1 = 0.9 and β2 = 0.99. We tried
also with different values for the parameters of the optimization, but these changes
produced no significant effects on the outputs. Besides the loss function, also the
accuracy of the model has been monitored through epochs, as an indicator of the
goodness of the training. The accuracy here is defined as the ratio between the
number of times that the maximum value of the output vector of confidences cor-
responds to the right class (i.e. to the label of the example) and the total number
of labeled examples the model has been fed with.

The model has been trained for 40 epochs, in batches of 50 examples each,
and has then been used to make predictions on two different sets of unlabeled
examples. The first one, that from now on will be referred to as the test set, is
composed of 550 examples of mock catalogues, 50 for each class. The labels of this
set were known, even if not by model, so these measures have been used to check
whether the training process was successful or not.

The trained model has then been applied to a set consisting of 11 measures of
BOSS correlation functions, calculated assuming the same values of Ωm that were
used to generate the train set. Measuring the correlation function of the same
catalogue of observed objects assuming several cosmological models is important
to quantify the impct of geometric distortions on the NN cosmological constraints.
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7.2 Results of the Classification model

The predictions of our Classification model reached an accuracy of 28% on the
training, the validation and the test sets.

Figure 7.2: Training accuracy (red dots) and validation accuracy (green crosses) as functions
of the epochs.

Figure 7.2 shows the trend of the training accuracy (red dots) and of the
validation accuracy (green crosses) as a function of the epochs. The fact that
the training accuracy is not systematically higher than the validation one means
that the learning process worked properly, without overfitting the training set.
To prevent overfitting, the learning process has been stopped after the first 40
epochs, because after them there was no further improvement in the accuracy, and
the model has already converged.

The performance on the test set is summarized in Figure 7.3, that shows for
each class, characterized by Ωm = Ωm,true, how the predictions on the 50 examples
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Figure 7.3: Values of Ωm predicted by the Classification ML model as functions of the true
value of the labels of the examples in the test set. The black line represents the bisector of the
first quadrant.

of the test set are distributed. For example, for 23 out of 50 examples character-
ized by Ωm,true = 0.31, the model predicted the right value, for 12 examples of the
same class the model predicted Ωm,predicted = 0.30.

The main reason we developed this NN for is to apply it to a set of measured
correlation functions that come from observed data, the BOSS catalogue. For
each of the 11 measures, corresponding to the 11 different assumptions on Ωm,
the 11 values of confidence the prediction is composed of have been fitted with a
Gaussian function. Figure 7.4 is an example of one of these fits, corresponding
to the prediction on the correlation function measured assuming Ωm = 0.27. The
red line represents the best-fit model for the prediction, that is represented by
the blue dots. The best-fit values are µ = 0.30 and σ = 0.03. We can therefore
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Figure 7.4: Prediction on Ωm from the correlation function measured from BOSS, assuming
Ωm = 0.27. The blue dots are the output of the model, while the red line shows Gaussian fit.
The best-fit values for this fit are µ = 0.30 and σ = 0.03, where µ is the mean of the Gaussian,
and σ its standard deviation.

assert that the value of Ωm that the model associates to this specific example is
Ωm = 0.30± 0.03.

An analogous procedure has been done also for all the ten others measures of
BOSS correlation function. Each result is compatible with all the others, within the
uncertainties. Figure 7.5 shows the predictions on Ωm from the eleven correlation
functions of BOSS as a function of the value of Ωm assumed for the measurements.

The constraint we are able to give using this Classification model, applied on
the correlation functions measured from BOSS is thus:

Ωm = 0.30± 0.03 , (7.1)

where the expectation value and the uncertainty have been calculated averaging
all the means and the standard deviations of the best fits.

Even if this result is compatible with the one obtained by Alam et al. (2017)
(see Eq. (5.7)), the uncertainty we have is much larger. For this reason, we
investigated also a different ML method based on the so-called Regression approach
that, as we will see, can be used to put much stronger constraints on Ωm.
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Figure 7.5: ML Classification’s predictions (red dots and bars) on Ωm from the measured
correlation function of BOSS, as a function of the value of Ωm assumed during the measurements.
There is a slightly decreasing trend of the predictions, though not statistically significant. The
results are compared to the Ωm constraint provided by Alam et al. (2017) (green stripe).

7.3 The Regression model

The main difference between a Classification model and a Regression model is that,
while the former produces as output a vector of values, that are the confidences of
the associations between the example and every class, the latter produces as output
one single distribution function, that, in our case, is the predicted probability
distribution of Ωm.

The Regression ML model we are about to introduce has been trained and
tested with measures of correlation functions in the range of s that goes from 8
Mpc/h to 50 Mpc/h. In this range the measures have been performed in 30 loga-
rithmic bins of s.

The architecture of the implemented Regression NN is the following:

• Input layer that feeds the 30 values of the measured correlation function to
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the model;

• Dense layer with 2 units;

• Distribution layer that uses the two outputs of the Dense layer as mean and
standard deviation to parameterize a Gaussian distribution, which is given
as output.

Figure 7.6 is a schematic representation of the architecture of this Regression
model. This archtecture was chosen with the same criteria adopted to choose the

Figure 7.6: Schematic representation of the Regression model. The input layer is represented
by blue dots, the hidden layer by green dots and the output layer by the orange dot.
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architetcure of the Classification NN. In fact it was the simplest model we tested
which was able to produce accurate outputs, without overfitting.

One of the advantages that Regression models have with respect to Classifica-
tion ones, is that they need a lower number of examples to produce trustworthy
predictions. The training set and the validation set have been constructed sepa-
rately. The former consists of 2.000 examples, while the latter of 800. Regression
ML models work better if the range of possible labels is well represented in the
training and validation sets, so it was not convenient to use just the 11 classes that
have been used in the Classification model.

We constructed mock catalogues with 40 different values of Ωm: 29 from Ωm =
0.24 to Ωm = 0.38 with ∆Ωm = 0.005 and 11 from Ωm = 0.2825 to Ωm = 0.3325,
still separated from each other by ∆Ωm = 0.005. The later 11 categories of mock
catalogues have been constructed to improve the density of labeled examples in the
region that has proven to be the one where the predictions on the set composed
of measures of BOSS correlation function were more likely to be, during the first
attempts of training this NN. All the mock catalogues used during the training
and validation have the same dimension of BOSS, i.e. no selection has been done
on the three coordinates.

The training set consists of 50 correlation function measures for each of the 40
values of Ωm, while the validation has been done on 20 measures for each value of
Ωm.

The loss function used during the training process is a custom one we created
for this specific purpose. The analytical expression is very similar to the Binary
Cross Entropy. If we define pi as the value that the Gaussian prediction on a given
example has at the value of the true label of that example, then our loss function
is the following:

J = −
N∑
i=1

pi log pi , (7.2)

where N is the number of examples.
We used the Adam optimization during the training process, that consisted of

three different steps:

• 750 epochs with η = 0.002;

• 150 epochs with η = 0.001;

• 100 epochs with η = 0.0005.

During all the three steps we kept β1 = 0.9 and β2 = 0.99, and the training set
was not divided into batches. Variations in the parameters of the optimization did
not lead to significantly different outputs.
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Gradually reducing the learning rate during the training helps the model to
find the correct global minimum of the loss function (Ntampaka et al. 2019). The
first epochs, having a higher learning rate, lead the model towards the area of the
global minimum, while the last ones, having a lower learning rate, and therefore
being able to take smaller and more precise steps in the parameter space, have the
task to lead the model towards the very bottom of that minimum.

In this model, minimizing the loss function means both to drive the means of
Gaussian distributions we have as output towards the values of the labels, and to
reduce as much as possible the standard deviation of those distributions.

As in the case of Classification, the model was tested on a test set composed
of measures obtained from mock catalogues and then applied to the set of the
measures of BOSS correlation function obtained assuming all the values of Ωm

used in the construction of the mock catalogues that are in the training set.
The test set is composed of 80 different measures obtained from mock cata-

logues with 16 different randomly generated values of Ωm: ten values are between
0.27 and 0.35, three are between 0.24 and 0.27 and three are between 0.35 and
0.38.

For each of these Ωm random values, five mock catalogues have been con-
structed and their correlation functions measured.

During the training process the interval of labels, 0.24 < Ωm < 0.38, has been
mapped into [0, 1] through the following linear operation:

L =
l − 0.24

0.14
, (7.3)

where l is the original label and L is the one that belongs to the [0, 1] interval.
Once the mean, µ[0,1], and the standard deviation, σ[0,1], of the predictions

have been given as output of the model, we converted them to match the original
interval of the labels. The operation we performed on the mean to obtain a useful
prediction is therefore the following:

µ = (µ[0,1] · 0.14) + 0.24 , (7.4)

where µ[0,1] is the prediction the model gives as output in the interval [0, 1], and µ
is its value converted to the correct interval [0.24, 0.38].

As far as the standard deviation is concerned, from the theory of propagation
of uncertainties we have that

dµ[0,1]

dσ[0,1]

=
dµ

dσ
, (7.5)

where σ is the standard deviation associated to µ. So the uncertainty on µ has
been obtained multiplying σ[0,1] by 0.14.
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7.4 Results of the Regression model

As far as Regression is concerned, for all the output Gaussian distributions we
obtained as predictions on the test sets, the mean and the standard deviation have
been extracted to represent the prediction on Ωm and the uncertainty associated
to it, respectively. The standard deviation represents the aleatoric, or statistical,
uncertainty (Matthies 2007, Der Kiureghian and Ditlevsen 2009). The Aleatoric
uncertainty reflects the noise inherent to the data (Kendall and Gal 2017, Russel
and Reale 2019).

Our model is thus able to associate to every point of the input space an uncer-
tainty on the output that depends on the intrinsic scatter of the measures of the
correlation functions, and on how similar to each other are the measures relative
to different values of the labels.

The uncertainty we are going to associate to every example of the test sets is
thus related on how confident the model is about its example-prediction associa-
tion.

The first result of the Regression model we present is the predictions on the
test set, consisting of mock catalogues.

Figure 7.7 shows the predictions on the test set, compared with the true values
of Ωm the mocks in the test were created with. Those predictions, together with
the errors associated to them, have been fitted with a straight line, defined by the
following equation:

Ωm,pred = a · Ωm,true + b . (7.6)

The best-fit values that were found are abest = 0.997 ± 0.014 and bbest = 0.001 ±
0.004. These values are compatible with the angular coefficient and the inter-
cept of the bisector of the first quadrant, which demonstrates that this model is
able to make reliable predictions when fed with measures from mock catalogues
characterized by previously unseen values of Ωm.

The linear best-fit model is represented by the black line in Figure 7.7.
As in the case of the Classification model, the main task we wanted this model

to fulfill was to make predictions on Ωm from measures of the two-point correlation
functions of the real BOSS galaxy catalogue. We remind that these predictions
were required to be not significantly dependent on the geometrical distortions that
come from the assumption of a particular cosmology during the measure.

We applied our trained model to 40 measures of the correlation function of
BOSS, every measure has been done with a different assumption on the value of
Ωm.

Figure 7.8 shows the predictions on Ωm from the correlation function of BOSS,
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Figure 7.7: Predictions and related aleatoric uncertainties on the test set consisting of measures
from mock catalogues (green dots and bars) compared with the best linear fit (black line). The
best-fit values are 0.997± 0.014 for the angular coefficient and 0.001± 0.004 for the intercept.

compared with the Ωm constraints provided by Alam et al. (2017) (see Eq. (5.7)).
The predictions of the Regression model have been fitted with the following linear
function:

Ωm,pred = a · Ωm,assump + b , (7.7)

where Ωm,pred is the prediction of the model and Ωm,assump is the assumed value of
Ωm used to measure the correlation function.

The best fit-values of the parameters are abest = 0.01±0.02 and bbest = 0.305±
0.007. The facts that the angular coefficient of this fit is compatible with zero and
that every prediction is in agreement with all the others, within the uncertainties,
tell us that the model is indeed able to make reliable predictions over observed
data, without being biased by the geometric distortions.

We now check the trend of the aleatoric uncertainties as a function of the value
of Ωm assumed during the measure of the correlation functions.
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Figure 7.8: ML pedictions (red dots and bars) on Ωm from the measured correlation function
of BOSS, as a function of the Ωm assumed for the measurements. The predictions are compared
to the Ωm constraints provided by Alam et al. (2017) (green stripe).

Figure 7.9 shows this trend for both the test set and the set of measures that
come from the observed BOSS catalogue.

It is important here to remember that a fundamental difference exists between
a mock catalogue and BOSS: the former reflects exactly the cosmological model
they were created with, while the latter uses an assumption over the underlying
cosmology just to compute distances and then measure the two-point correlation
function.

The values on the horizontal axis of Figure 7.9 thus represent the true values
of Ωm of the examples, the aleatoric uncertainties of which are represented by the
green dots. On the other hand, the same value of the horizontal axis represents
also the assumption made on the cosmological model to create the examples, the
aleatoric uncertainties of which are depicted by the red dots.
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Figure 7.9: Aleatoric uncertainties on the Ωm predictions from the mock test set (green dots)
and from the set composed of measures of the BOSS correlation function (red dots), as a function
of the value of Ωm assumed during the measure of the test examples.

The aleatoric uncertainties on the predictions of the mock test set have been
fitted with the following linear model:

σ = a · Ωm,true + b , (7.8)

where σ is the aleatoric uncertainty on the prediction, and Ωm,true is the value of
Ωm the catalogue has been created with.

The best-fit values are abest = −0.0006 ± 0.0005 and bbest = 0.0048 ± 0.0002.
The fact that abest is compatible with 0 tells us that the model is able to associate
every two-point correlation function measured starting from a mock catalogue to
its prediction with the same uncertainty.

A linear fit has been performed also on the aleatoric uncertainties of the pre-
dictions on the BOSS set. In this case, the best-fit value for the angular coefficient
is 0.01415 ± 0.00003, while the one for the intercept is 0.00123 ± 0.00001. Even
in this case the angular coefficient is not far from zero, but it is clear from Figure
7.9 that a different trend exists between the red dots and the green ones. This
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might be caused by the fact that the clustering in log-normal mock catalogues do
not represent perfectly, at all the selected scales, the clustering of BOSS galax-
ies. Figure 7.10 shows the values of BOSS correlation function measured assuming
Ωm = 0.307 (red dots) compared with the two-point correlation function of the
model that has been assumed to construct the log-normal mocks, characterized
by the same value of Ωm. From the values of the residuals shown in the bottom
panel of Figure 7.10 it is clear that there is no perfect match. We conclude that
the values of the two-point correlation functions measured from BOSS represent
points in the input space slightly different from the points occupied by the mea-
sures obtained from the mock catalogues. Despite this difference, that causes the
different trends of the aleatoric uncertainties, the model is able to predict a reliable
value of Ωm for BOSS, which is not affected by the geometric distortions.

As far as the BOSS catalogue is concerned, the final result of this Regression
model can be calculated as the mean of the Ωm predictions.

This final result is:
Ωm = 0.307± 0.006 , (7.9)

where the error has been calculated as the value the linear fit of the aleatoric
uncertainty on BOSS assumes at Ωm = 0.307.
This result is remarkably consistent with the one obtained by Alam et al. (2017),
that has exactly the same uncertainty, but a slightly higher expectation value.
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Figure 7.10: In the upper panel is plotted BOSS correlation function measured assuming
Ωm = 0.307 (red dots) compared with the model calculated with the same value of Ωm. The
lower panel shows the residuals between the two.



Chapter 8

Conclusions

8.1 Final results and considerations

In this work we presented two different ML models that provide a new statistical
method to obtain constraints on Ωm from observed galaxy catalogues, without
having to implement a likelihood to model the analyzed statistics. Specifically, we
considered the two-point correlation function of galaxies as a summary statistic of
the large-scale structure of the Universe. The applicability of these ML method-
ologies to observed surveys, and not only to simulations, is what makes this work
innovative, and what took the biggest effort to be implemented.

We implemented and trained two supervised NNs: a Multi-Class Classification
algorithm and a Regression algorithm. The steps performed in both cases are the
following:

• Measure the large-scale galaxy bias that is used to construct the log-normal
mock catalogues. Specifically, we estimated it as the mean of the poste-
rior probability distribution assessed by performing a Bayesian fitting of the
measured two-point correlation function of BOSS galaxies, assuming differ-
ent values of Ωm.

• Construct the log-normal mock catalogues, and measure their two-point cor-
relation functions. The latter statistics have been used as train, validation
and test sets for the NNs.

• Build the architecture of the ML model, choosing in particular how many
layers it should be composed of, how many units these layers should have,
which loss function to use, which optimization algorithm to be used to min-
imize the loss function and the values of its hyperparameters.

95
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• Train and validate the model, paying particular attention to avoid overfitting
while reaching reliable predictions on Ωm on the train and validation sets.

• Test the trained model on the test set composed by measures of two-point
correlation functions of log-normal mock catalogues, to see if the model can
make reliable predictions also on previously unseen examples.

• Apply the trained model to measurements of the two-point correlation func-
tion of BOSS galaxies.

The state-of-the-art constraints on the matter density fraction of this thesis work
have been compared to the ones obtained by Alam et al. (2017), that is:

Ωm = 0.311± 0.006 . (8.1)

The first of the implemented NNs considered in this work, i.e. the Classification
model, has been trained and validated over 88.000 log-normal mock catalogues,
characterized by 11 different values of Ωm, in the range from Ωm = 0.26 to Ωm =
0.36. This model gives as output the following constraint when applied to the
BOSS galaxy catalogue:

Ωm = 0.30± 0.03 . (8.2)

This result is consistent with the one from Alam et al. (2017), though the estimated
uncertainty is too large to be considered competitive.

The second NN we presented is a Regression model, which has been trained
and validated with a total amount of 2.800 examples, characterized by 40 different
values of Ωm, from Ωm = 0.24 to Ωm = 0.38. The output of the Regression model
applied to the BOSS galaxy catalogue is:

Ωm = 0.307± 0.006 , (8.3)

which is in a remarkable agreement and competitive with the constraints from
Alam et al. (2017).

8.2 Future perspectives
In this thesis work, we demonstrated that NNs are powerful tools that can be used
for cosmological purposes, not only applied on simulations and mock catalogues,
but also on observed data. The two ML models considered represent first examples
of this kind of application. There is no doubt that in the future they could be
extended and improved.

One significant improvement is to use different and more accurate mock cata-
logues than the log-normal ones exploited in this work, in both the training and
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validation phases. In particular, using N-body simulations to create the training
and validation sets, we could exploit also higher-order statistics, for example the
three-point correlation function, as features to feed the models with. The higher
the number of features is, the more accurate the predictions of the model will be.

Multi-labeled Regression models can also be implemented in the future to make
predictions on multiple cosmological parameters at the same time. Of course, in
order to do that, bigger datasets will be required. In this work, for example, to
train and validate the Regression model, we used 2800 examples in total. If we
wanted the model to make predictions on n cosmological parameters, a set of 2800n

examples would be required, because each of them would have to be labeled with
a vector containing n numbers, and not just one.

New types of ML methods have been growing in importance during the last
years. One example is the Bayesian NN. The difference between this NN and
the classic ones is that the weights are no more represented by a single value,
but by a distribution. The user has to set a prior over all the weights and what
the model does during the training is sampling their posterior. A prediction of
this model is calculated by sampling a random value from the posterior of each
weight. Therefore, in order to have a trustworthy output of the model for a
specific example, the average value of a large number of predictions on that same
example should be calculated. The dispersion of these predictions can be used as
the uncertainty on the output. This kind of approach can surely be used in the
next future to improve the results obtained in this thesis work.

The analysis we presented in this work can also be extended to larger scales,
up to 150 Mpc/h, but in that case particular attention has to be put to be sure
that the mock catalogues can correctly represent the observed data at the BAO
scales.

In this work we used as features the values of measured two-point correlation
function. A similar analysis could be done using the density map of the catalogues,
or even directly the observed coordinates of the galaxies. Surely this approach
would be less affected by the human interpretation of the data, such as the par-
ticular choice of using the two-point correlation function, and the assumptions on
the cosmological model made during the measurements. However, we note that
using the coordinates of the galaxies of a sufficient number of catalogues would
require a significant amount of RAM and the learning process would need a huge
amount of computation time.

We are now planning to test the Regression model with measurements of the
correlation function obtained by increasingly smaller catalogues, in particular by
selecting increasingly smaller ranges of RA and Dec in the BOSS sample. The trend
of the aleatoric uncertainties as a function of the number of objects contained in
the test catalogues will then be fitted to extrapolate the value of the uncertainty
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that is expected if the model is applied to measures obtained from catalogues with
more galaxies than BOSS, thus providing forecasts for next-generation cosmologi-
cal analyses.



Appendix A

ML code implementation

While the construction of log-normal catalogues and the measurements of the
two-point correlation functions have been performed using the built-in classes and
functions of the CosmoBolognaLib (Marulli et al. 2016), the implementation, the
training, the validation and the test of the NNs have been done using Keras (Chol-
let 2015) with a Tensorflow backend (Abaldi et al. 2016). Keras is an open-source
NN library written in Python, capable of running on top of multiple backends,
such as TensorFlow, Microsoft Cognitive Toolkit, R, Theano and PaidML. Keras
is concerned with modularity and simplicity of development, and it was developed
as part of the research effort of project ONEIROS (Open-ended Neuro-Electronic
Intelligent Robot Operating System). TensorFlow is an open-source library for
dataflow and differentiable programming across a wide range of tasks. It was
developed by the Google Brain team for internal Google use and it was first re-
leased on February, 2017. The codes that are about to be reported have been
implemented using a Google Colaboratory (Colab) notebook. Google Colab is a
free Jupyter notebook environment that requires no setup, and runs entirely in
the clouds. It is optimized to run ML trainings and supports Graphic Processing
Units (GPUs) and Tensor Processing Units (TPUs).

A.1 Classification algorithm
Here is presented the code used to build, train and test the Classification algorithm,
once the data have been loaded on the Colab repository as numpy arrays, together
with the labels.

1 ### Import the required modules
2

3 import tensorflow as tf
4 from tensorflow import keras
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5 import numpy as np
6 import matplotlib.pyplot as plt
7

8 ### Build the Neural Network
9

10 model=keras.Sequential ()
11 model.add(keras.layers.Dense(8, activation=tf.nn.relu ,input_shape

=(30 ,)))
12 model.add(keras.layers.Dropout (0.125))
13 model.add(keras.layers.Dense(4, activation=tf.nn.relu))
14 model.add(keras.layers.Dense(11, activation=tf.nn.softmax))
15

16 #### Compile the model
17

18 model.compile(optimizer=’Adam’, loss=’
sparse_categorical_crossentropy ’,metrics =[’accuracy ’])

19

20 ### Train the model
21

22 history=model.fit(train_data , train_labels , epochs =40, batch_size
=50, validation_data =(val_data ,val_labels),verbose =1)

23

24 history=history.history
25

26 ### Visualize the loss as a function of the epochs
27

28 acc = history[’acc’]
29 val_acc = history[’val_acc ’]
30 loss = history[’loss’]
31 val_loss = history[’val_loss ’]
32 epochs = range(1, len(acc) + 1)
33 plt.figure(figsize =(8,8))
34 plt.scatter(epochs , loss , color=’red’,label=’Training loss’,s=15)
35 plt.scatter(epochs , val_loss ,color=’green’,marker=’x’, label=’

Validation loss’)
36 plt.title(’Training and validation loss’)
37 plt.show()
38

39 ### Visualize the accuracy as a function of the epochs
40

41 plt.figure(figsize =(8,8))
42 plt.scatter(epochs , acc , color=’red’,label=’Training accuracy ’,s

=15)
43 plt.scatter(epochs , val_acc ,color=’green’, label=’Validation

accuracy ’,marker=’x’)
44 plt.title(’Training and validation accuracy ’)
45 plt.show()
46

47 ### Check the performance on the test set
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48

49 results = model.evaluate(test_data , test_labels)
50

51 ### Make predictions on the test set and the BOSS set
52

53 test_pred = model.predict(test_data)
54 test_pred_maxes=list()
55 for i in range (550):
56 test_pred_maxes.append(np.argmax(test_pred[i]))
57 test_pred_maxes=np.asarray(test_pred_maxes)
58

59 BOSS_pred = model.predict(BOSS_data)
60 BOSS_pred_maxes=list()
61 for i in range (11):
62 BOSS_pred_maxes.append(np.argmax(BOSS_pred[i]))
63 BOSS_pred_maxes=np.asarray(BOSS_pred_maxes)

The full version of the code is available at the following link:
https://colab.research.google.com/drive/1_p_pRQQ7cUxcxwqe0n6eMpLuTStl6hPp.

A.2 Regression algorithm
Just as for the Classification algorithm, we provide here the code used to build, train,
validate and test the Regression NN.

1

2 ### Import the required modules
3

4 import tensorflow as tf
5 from tensorflow.python import tf2
6 if not tf2.enabled ():
7 import tensorflow.compat.v2 as tf
8 tf.enable_v2_behavior ()
9 assert tf2.enabled ()

10 import tensorflow_probability as tfp
11 tfd = tfp.distributions
12 import numpy as np
13 import matplotlib.pyplot as plt
14 tfd = tfp.distributions
15

16 ### Move the labels to the [0,1] interval
17

18 norm_train_labels =( train_labels -0.24) /0.14
19 norm_val_labels =(val_labels -0.24) /0.14
20

21 ### Define the loss function
22
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23 negloglik = lambda y, p_y: -p_y.log_prob(y)
24

25 ### Build the Neural Network
26

27 model = tf.keras.Sequential ([
28 tf.keras.layers.Dense(1 + 1, input_shape =[30]) ,
29 tfp.layers.DistributionLambda(make_distribution_fn=lambda t: tfd

.Normal(
30 loc=t[..., :1],scale=1e-5 + tf.math.softplus (0.05 * t

[... ,1:]))),
31 ])
32

33 ### Compile the first phase of the training
34

35 model.compile(optimizer=tf.optimizers.Adam(learning_rate =0.002) ,
loss=negloglik , metrics =[’mean_squared_error ’])

36

37 ### Operate the first phase of the training
38

39 history=model.fit(train_data , norm_train_labels , epochs =750,
validation_data =(val_data ,norm_val_labels), verbose =0])

40

41 ### Compile the second phase of the training
42

43 model.compile(optimizer=tf.optimizers.Adam(learning_rate =0.001) ,
loss=negloglik , metrics =[’mean_squared_error ’])

44

45 ### Operate the second phase of the training
46

47 history=model.fit(train_data , norm_train_labels , epochs =150,
validation_data =(val_data ,norm_val_labels), verbose =0])

48

49 ### Compile the third phase of the training
50

51 model.compile(optimizer=tf.optimizers.Adam(learning_rate =0.0005) ,
loss=negloglik , metrics =[’mean_squared_error ’])

52

53 ### Operate the second phase of the training
54

55 history=model.fit(train_data , norm_train_labels , epochs =100,
validation_data =(val_data ,norm_val_labels), verbose =0])

56

57 ### Make predictions on the test set and the BOSS set
58

59 pred_test = model(test_data)
60 mean_test=np.squeeze(pred_test.mean())
61 std_test=np.squeeze(pred_test.stddev ())
62 mean_test =( mean_test *0.14) +0.24
63 std_test=std_test *0.14
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64

65 yhat_B = model(test_BOSS)
66 mean_B=np.squeeze(yhat_B.mean())
67 std_B=np.squeeze(yhat_B.stddev ())
68 real_mean_B =( mean_B *0.14) +0.24
69 real_std_B=std_B *0.14

The full version of the code is available at the following link:
https://colab.research.google.com/drive/1eiGL287ESvU5R_g-Ns6oKgSUURvLOoQq.
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