
Alma Mater Studiorum · Università di Bologna

SCUOLA DI INGEGNERIA E ARCHITETTURA

Corso di Laurea in Ingegneria e Scienze Informatiche Magistrale

Inferring the behaviour and
security of networked devices via

communication analysis

Relatore:
Gabriele D’Angelo

Presentata da:
Eugenio Pierfederici

Sessione III
A.A. 2018-2019

http://department.university.com
https://corsi.unibo.it/magistrale/IngegneriaScienzeInformatiche

3

A tutti i miei parenti, che con il loro caldo affetto e la loro disponibilità mi
hanno sempre garantito un bellissimo ambiente dove crescere. In particolare a
mio padre e mia madre, genitori veramente speciali, che con la loro guida e
comprensione mi hanno permesso di diventare la persona che sono oggi e di
raggiungere questo notevole traguardo. A mia sorella, che nonostante la

distanza mi sta sempre vicino e mi fa viaggiare con lei.
Un particolare ringraziamento va a Cecilia, la mia ragazza, che da anni mi
sostiene e incoraggia in ogni momento, anche quelli più difficili. È riuscita a

trovare il meglio in me e mi ha sempre aiutato a farlo emergere.
Ringrazio anche tutti i miei amici, e in particolare Giovanni, che ogni giorno
hanno condiviso con me difficoltà e successi. È grazie a loro che sono riuscito

ad apprezzare ancora di più questo splendido periodo della mia vita.
Infine, uno speciale ringraziamento va al professor Gabriele D’Angelo, relatore
di questa tesi, che con la sua passione, competenza ed estrema disponibilità mi
ha guidato nel mio percorso formativo e nella realizzazione di questo lavoro.

5

Contents

1 Introduction 9

2 Background 11
2.1 The evolution of Internet . 11
2.2 Tools for the traffic analysis . 13

2.2.1 Firewalls . 14
2.2.2 Anomalies detection . 16
2.2.3 New powerful tools: Neural Networks 17

Recurrent Neural Network 18
2.3 Behaviour analysis research . 19

3 Problem definition 21

4 A model for the behaviour recognition 23
4.1 Everything is a Stream . 24
4.2 Windowing . 25
4.3 High modularity means easy cooperation 26
4.4 Some definitions . 26
4.5 The main stages . 27

4.5.1 Stage 1: properties extraction 27
4.5.2 Stage 2: behaviour extraction 30
4.5.3 Stage 3: behaviour aggregation 31
4.5.4 Stage 4: behaviour translation 32
4.5.5 Stage 5: result interpretation 34

5 An application for the behaviour recognition 37
5.1 Design . 37

5.1.1 Core structure . 38
PropertiesPacket . 38
Behaviour . 42
AtomicBehaviour . 46
ServiceBehaviour . 47

6 Contents

DeviceBehaviour . 49
5.1.2 Demo structure . 50

Stage 1 . 51
Stage 2 . 52
Stage 3 . 53
Stage 4 . 54

6 Implementation of the application 57
6.1 The tools . 57

6.1.1 Packet capture . 58
6.1.2 Scala . 59
6.1.3 Tensorflow . 60
6.1.4 JSON . 60
6.1.5 CSV . 60

6.2 Stage 1 to 3: the Scala application 61
6.2.1 Packaging . 61
6.2.2 Properties packet . 61

Finding the service name 63
6.2.3 Atomic behaviour . 65
6.2.4 Service behaviour . 67

Service window behaviour 67
6.2.5 Device behaviour . 68

The role of the ServiceManager 68
6.2.6 The Engine . 70
6.2.7 The sniffer . 71

The problem of the properties extraction 72
6.3 Stage 4: the Python application 73

6.3.1 The network model: LSTM 73
6.3.2 The dataset . 77

The structure of the dataset 77
Dataset preprocessing 78
Data gathering . 81

6.4 Applications interaction: the file 84
6.5 Results . 85
6.6 Real-time testing: the live version 86
6.7 The interface . 87

6.7.1 Graphical User Interface 88
6.7.2 Command line . 88

Contents 7

6.8 Some scripts . 90

7 Knowledge applications 93
7.1 The basic interface . 93
7.2 A behaviour encapsulation to detect anomalies 96

7.2.1 The design . 96
7.2.2 Implementation in the demo 98

8 Conclusions 99

9

Chapter 1

Introduction

Nowadays everyone knows what the Internet is and almost all of us use it
regularly; it has pervaded our life intensely and some of us almost can’t anymore
live without it.

In the last years the number of devices connected to Internet has been in-
creasing exponentially and it has reached huge numbers. This means that we
can access our devices from everywhere, but at the same time rarely we are
aware of what those devices are doing other than what we use them for; an
example of that is the fact that most people have at least one smartphone, but
very few of them know what the device is actually doing, if it is spying them or
with whom it is sharing the data.

That represents a big threat to the security of the unaware users and of the
person around them. Luckily, in the last years the attention to security, privacy
and awareness is ever increasing. This means that the users pay more attention
to what their devices are doing and care about it, and at the same time many
researcher are trying to find solutions to understand what the device do and
possibly limit its capabilities.

While big software (like the operative systems and most mobile devices)
make available an increasing number of tools to monitor the device traffic, some
devices cannot be inspected or those same tools may be forged in a way that
makes it impossible to detect some specific bad behaviours.

Therefore security firms, companies and researchers keep high the interest
in any kind of analysis of the behaviour of the devices in the network, mostly
for protecting the privacy of the user or the company, but also to detect and
track malware [1]. Until now every successful method to detect or filter the
behaviour of the devices has been trying to only detect anomalies or manually
lock some specific behaviours; this means nobody ever tried to understand at a
discrete level of accuracy what the device does relying only on the analysis of
the traffic intercepted.

10 Chapter 1. Introduction

That’s why in this thesis I will define a model able to detect the behaviour
which is occurring on the device by the mere observation of its network traffic.
For start I will define a model that takes the raw low-level information regarding
the communications occurring, process them and return information about the
high-level operations occurring on the device. I will then build a demo that
uses that model and demonstrates its feasibility. The data used are low-level
information on the traffic without ever trying to use sensible data regarding the
information content exchanged.

This document is structured in five chapters. In the first one I will intro-
duce what is happening, why we need to do this work and what are the main
limitations of the current tools. In the second one I will analyze in depth the
problem and I will try to explode it in many sub-problems. In the third I will
finally introduce the solution that I theorized and modeled. In the fourth will
be explained how I implemented the solution and I will expose all the problems
and difficulties encountered. Finally in the last one I will draw the conclusions,
analyzing the results obtained and the efficiency of the system.

11

Chapter 2

Background

2.1 The evolution of Internet

When the Internet was born, it was a niche thing; extended among a very strict
network of well known computers, it was used to share research data and for
communication [2]. Everything was strictly controlled and it was very easy to
detect and block every attack. That was because the network was so small
that the technicians could manage and check it manually, having a pretty good
awareness of the network topology. In those days there were still no problems
regarding malicious behaviours; there was no conception of a malicious agent
willing to spend his life in specializing onto how to break the defences of a
system or network in order to gain money from it.

Then the number of machines connected to the Internet started increasing
so rapidly that people started losing control of it and at the same time the
people started gaining interest on how to exploit this phenomenon to their
own advantage. In response to that some specialists started researching tools,
protocols and techniques to increase the overall security of the systems and
networks. This phenomenon marked the beginning of a new era distinguished
by an increasing number of people interested in exploiting the weaknesses of the
network and a little ensemble of people that have always been trying to protect
the Internet, the devices and the people that use it [3].

All this kept expanding until now that the network is so extended and com-
plex that its really difficult event to track the path of the data. While on one
hand it is true that the overall security of the systems and networks has been
increasing, on the other there are still a lot of vulnerabilities both found and yet
to be found. This means that other than keeping mitigating the vulnerabilities,
we still have to improve our detection systems. The detection systems allow
us to detect an ongoing attack right when it is in progress or after it has been
completed (the first the best).

12 Chapter 2. Background

In addiction to that, the workload of every device has been increasing con-
tinuously; this means that we all knew that soon or later we would have lost
control over the network, and it’s becoming every day more complex to under-
stand the network traffic or to detect the presence of anomalies in it [4]. In some
cases it takes months or even years for a company to detect that its network
has been compromised [5].

Now we are at a point where everyone knows what the Internet is, it is a
widespread presence in our lives and the number of people that knows how to
use it is continuously increasing; but it has become extremely difficult to control
what the devices are doing, who they are talking to and what they are saying.
This is the reason for the current rush in finding the best tools that can reverse
that trend and allow us to regain an understanding of what is happening in our
networks and devices.

For example the people reading this thesis probably own a smartphone or
even a home device (Alexa, Google Home...), but they don’t actually know
with whom it is communicating and what information it is telling them, if
the microphone is currently sending data or the camera recording videos. A
smartphone is equipped with GPS, microphone, camera, all tools that can be
used to transform the smartphone into a spying device that we take with us all
the time every day.

The sensibility of the users in that matter is growing stronger, but at the
moment there aren’t tool advanced enough to allow an aware and complete
control of the network traffic. This is an extremely complex task to accomplish
and until now it hasn’t been fully fulfilled yet, there are only tools that allow
its interpretation in a partial and uncertain way.

To make thing worse, in the last years there has been a huge improvement
on the use of privacy techniques: cryptography started being widely used in ev-
eryday applications and not only for research or high-security communications.
This is an enormous and fundamental step in the user privacy and reliability,
but it gets in the way of detecting the behaviour of our devices on the Internet
[6]. Cryptography is spreading like never before, meaning that all those analysis
techniques that directly use the content of the communications, without ever
considering the possibility of encrypted content, are becoming almost useless.
That’s why there is an ever increasing necessity of new and more powerful tools
to interpret the traffic, specially now that content encryption breaks the current
algorithms and increases the complexity for the new tools.

2.2. Tools for the traffic analysis 13

2.2 Tools for the traffic analysis

There are many kinds of traffic analysis; there is the one meant to understand
what the user is doing in order to infer its preferences, for example in the field
of marketing and advertising; there is also the one used to protect the user itself
from the Internet or the same Internet from a malicious or careless user.

The kind that most interest us is the second one, meant to detect anomalies
to the average behaviour on the server for security purposes. There are many
companies that are in the market of analyzing the web traffic with the purpose of
detecting anomalies or malicious behaviours. They aim to protect the company
from any kind of malicious behaviour, be it an external attack or an employee
that likes to play during work time. For this type of analysis there exists two
types of tools: the ones that detect anomalies in the incoming traffic, when
protecting the servers, and the ones that filter some connection types, be it a
specific protocol or destination.

The first type is used to protect server farms, or single servers/services, from
external attack or to detect when some users may have problems in the utiliza-
tion of the service. It’s the case of a malicious entity that behaves abnormally
in the attempt of fulfilling its purpose, for example downloading sensitive data
regarding other users or damaging the system. This is a very specific analysis
because the standard behaviour is well known, so it’s relatively easy to write a
set of rules that must be respected.

The second type is mainly used to filter certain connection types in order to
protect the system or to prevent the local users from having certain behaviours.
It is a tool often placed in between the terminal devices an the network, so that
it can both protect the local machines from the "unknown" and disallow local
devices to get unchecked on the network. This is usually limited to filtering
certain protocol types or host destinations without inspecting the true nature
of the communication.

Both those tools are important and widely used, but those aren’t enough
when it comes to the variability of the behaviours that devices like a smartphone
may have. When we are under a company network the company itself could
disallow us certain connections at all, after all we are at work! This could be
accepted, but when we are home we want complete freedom of behaving as we
like; the same company may be willing to leave us as much freedom as possible,
but it wants to protect itself from both external and internal threat (like an
employee that wants to disclose business secrets). This is a much more complex
task to accomplish; in fact the behaviour of the users is very diversified and

14 Chapter 2. Background

so are the responses from the Internet. For this reason is nearly impossible to
specify a restricted set of rules that each connection must match without the
user incurring into exceptions and too strict limits.

One possible solution would be to install a software on the device itself that
can monitor the behaviour of each application on the network (e.g. Glasswire
[7]). This could be optimal, but it requires us to have full control over the device
and the assurance that the device itself is trusted. The device is considered
trusted when we can trust that whoever is able to control and use it and we are
sure that nobody has taken control over the device in an illicit way. Every time
that we consider the trust level of a device, we must consider what trust we put
on whoever owns it, whats the confidence that nobody took control over it and
whats the trust we put on whoever ever contributed on the software running on
the device (whoever wrote the operative system or any application running on
it). Often this isn’t possible because either the software running on the device
is proprietary (e.g. smart home devices, automobile, ...), we don’t have the
permission to install new software (e.g. devices of the family members in the
house) or simply we don’t have control over the devices that can connect to our
network (e.g. free Wi-Fi in public places, networks for University’s students
or the networks for employee’s smartphones). Another flaw of that approach
is that the device could be compromised, meaning that somebody could have
corrupted the device in a way that it no longer behave as it should, or its
administrator could have malicious intent, therefore the monitoring software
may become unreliable. This is the reason for the necessity of a centralized
tool that allows us to infer all the behaviours of the devices despite the type of
connection used, the destination of the traffic or the encryption itself.

2.2.1 Firewalls

The main purpose of a firewall is to separate, like a wall, the internal network of
trusted devices from the external network, typically Internet. This is a complex
job, therefore there are many different types of firewall that differs in the level of
inspection of the traffic and, consequently, the workload and complexity of the
tasks on the system. The simplest version of a firewall is usually pre-installed
on every home router; this is the cheapest firewall, in effect it requires the
minimum amount of memory and processor, but its also the less precise one.

There are other types of firewall [8], in particular:

• packet-filtering firewalls. It’s the simplest kind of firewall, and the first
one ever used. This type of firewall filters the packets by applying a simple

2.2. Tools for the traffic analysis 15

Figure 2.1: Simple representation of a firewall and its job.

Source: https://it.wikipedia.org/wiki/File:Gateway_
firewall.svg

filter that checks parameters in the packet;

• stateful firewalls. It’s an evolution in respect to the packet filtering ones.
This kind of firewall preserve a state regarding the connection and are
able to filter the packets with some more complex rules. For example it
can allow packets of a connection that would have otherwise individually
filtered;

• application-level gateways; this is the ultimate firewall that can under-
stand certain applications and protocols that the other firewalls couldn’t.
It can detect even applications that try to bypass the firewall using disal-
lowed protocols on allowed ports or similar attempts;

• next-generation firewall (NGFW) is a noteworthy, wider or deeper in-
spection at the application layer. An example of it is the deep packet
inspection (DPI) that inspects the packet validate the type of protocol.

Those firewalls have existed for years and have been improved a lot since
their beginning. Now we have very powerful, fast and optimized firewalls that
allow us to filter network behaviours based on the protocol of communication;
this is a much more powerful technique respect to a simple packet-filtering.

https://it.wikipedia.org/wiki/File:Gateway_firewall.svg
https://it.wikipedia.org/wiki/File:Gateway_firewall.svg

16 Chapter 2. Background

Those firewalls have grown very effective, but have recently met a new huge
obstacle: the encryption of the payload. With the rising of encryption on the
Internet, some certain types of firewall (like the application-level firewall) have
been particularly limited and can’t anymore check every connection. The only
way to make the firewalls perform at their best would be to break the guarantees
of the end-to-end encryption (that can’t even be always done) otherwise we are
forced to choose between a simple and blinded allow-all or deny-all.

2.2.2 Anomalies detection

Anomaly detection is a technique used to identify events that arise suspicions by
differing from the majority of the data. In the network field it allows a network
administrator to detect any kind of anomaly if he compares it to the majority
of the other connections.

The objective of any tool of this kind is mainly to detect any kind of abnor-
mal behaviour and notify the administrator or perform an action predefined;
sometimes the detection can be easily accomplished by checking a threshold
value, but other times it is much more complicated.

The task of identifying anomalies is a really complex one. In first place we
need to understand what are the data that we can consider ordinary, then we
can try to detect all the data that differ from that standard ones. The first
step is achieved observing what is the structure of the majority of the data, and
then we consider that as the standard. When talking of the Internet traffic,
this is a relatively simple task when the traffic is limited to a certain type and a
lot of users perform the same actions over and over again, the case of anomaly
detection over a specific server (there already are researches even using Neural
Networks algorithms [9]). When the tasks accomplished by the users on the
Internet is much more variegated, the complexity rises enormously.

There is a huge difference between the variety of the communications on a
server and the ones on a user device:

• a server must respond to all users in a similar way, its answers are all
similar in structure and all users usually interact in the same way;

• a client device is definitely unpredictable and this complicates the identi-
fication of the expected behaviour.

The risk on a client device is that the anomaly detection algorithm doesn’t
perfectly fit the user behaviour, so the user may incur in limitations when he
is doing a legitimate behaviour or some unwanted traffic could pass trough
anyway.

2.2. Tools for the traffic analysis 17

Figure 2.2: A neuron and its synapses. Some may be active
and some inactive.

Source: https://en.wikipedia.org/wiki/File:Neuron3.png

For that reason the research has been focusing until now on anomaly detec-
tion server-side. The ability of identifying anomalies in the network behaviour of
a device would be a huge progress and it could open to a lot of new capabilities
for securing the Internet and protecting the users that use it.

2.2.3 New powerful tools: Neural Networks

Neural Networks (NN) are a computational technique inspired by the biological
neural network of human and animal brains. The main feature of the neural
networks is a training phase that allows the network to learn and generalize from
a big number of examples. This means that the network can learn extremely
difficult rules and patterns without the user specifying them explicitly (or even
knowing or understanding them).

NN where theorized in the late 1940s but only the recent hardware allowed
us to build and train them effectively. Since the proof of the big advantage
brought from the use of NN, they have been spreading in almost every sector
of the Information Technology (IT). Their adoption have drastically improved
the performance, efficiency and precision of many systems.

The main principle behind a NN is to emulate the brain neurons with ar-
tificial ones: the nodes. Each node can transmit a signal to other neurons,
exactly like the synapses in the biological brain. Each output of the neurons

https://en.wikipedia.org/wiki/File:Neuron3.png

18 Chapter 2. Background

Figure 2.3: An example of layer representation. The number
of layer is arbitrary. Each layer may have a different number of

nodes and perform different transformations.

Source: https://en.wikipedia.org/wiki/File:Colored_
neural_network.svg

is computed by some non-linear function of the sum of its inputs and usually
have a weight that adjusts in the training phase.

Typically neurons are organized in layers. Each layer performs different
transformation on its inputs. The first layer is the input and the last is the
output, all the other layers in between are the hidden layers. The goal of a
neural network is to elaborate the different inputs given to the input layer in
such a way that the output layer returns a result as close as possible to the
expected one.

Recurrent Neural Network

Recurrent Neural Network (RNN) is a class of NN where the connections be-
tween the nodes may be retroactive, unlike the Feedforward Neural Network.
This means that those are able to preserve sort of a memory of the previous
states. With the ability of a memory, RNN can elaborat complex series of data
that are connected to previous states or that can evolve in time.

This makes them able to process sequences of input data, like handwriting
or speech recognition. RNN have been a revolution in this kind of systems
and permitted a big improvement in tools like text predictions, complex speech
recognition, games AI.

Another analogous flow of data is the network traffic, so RNN may be able to
perform a more in-depth analysis of it. This means that their introduction could

https://en.wikipedia.org/wiki/File:Colored_neural_network.svg
https://en.wikipedia.org/wiki/File:Colored_neural_network.svg

2.3. Behaviour analysis research 19

finally allow us to gain a better understanding of actually what is happening in
our devices, otherwise extremely difficult because of the quantity and complexity
of the data shared between the devices and Internet.

2.3 Behaviour analysis research

This type of analysis has already been tried in the past and there exists some
tools like those that implement DPI (Section 2.2.1).

Most of the research performed on the network traffic until now has been
aimed solely to the detection of malware and anomalies. The companies have
pushed to do it and to aim it at the detection of anomalies server side. Their
purpose is to protect the server farms from possible attacks, to promptly detect
an ongoing attack and to protect the privacy and the data of its users.

In this direction there are many different research and approaches. The
standard one tries to either detect the application protocol by putting a third
party between the user and the network (proxy) or to inspect the payload of
each packet in order to infer the application used from it. [10]

There are also different approaches, for example it has been tried to detect
and classify malware through the observation of the artifacts ordering. [11]
This research has obtained promising results in the classification of different
malware and could be coupled with other identification techniques for a more
precise identification of malware.

Other than that the main problem of all those research is that they focus
on the problem of identifying malware. Some of them try to do that at a low
level. This kind of works one way or another give for granted some kind of
knowledge of what is the standard expected behaviour. Some of them consider
only certain types of applications and check them in a standalone way. [12]

Some others consider of being executed on the same machine. This means
that they are always able to ’cheat’ and obtain high quality information regard-
ing the application-level application executed without the necessity of inferring
it. [7]

Although this may be acceptable in most cases, our goal is to infer the
behaviour without any information from the device.

The big difference between this work and all those tools is that its focus is
to obtain the results observing the packets at a low level and without inspecting
its content or gaining information of any kind from the device.

This could enable us to also infer the behaviour when the application en-
crypts its payload.

21

Chapter 3

Problem definition

The number of devices connected to the Internet is ever increasing. Many user
even expose those devices directly on the Internet without knowing it. This is
very dangerous and is becoming a big and complex problem.

To the current situation neither the network administrator or the user itself
are able to check and control the behaviour of every device in the network. This
problem is mostly felt in the enterprises, because of the business secrets, but it
is even more sensible in the privacy of the home.

Every user in an home owns many devices, each one of them made by dif-
ferent producers. Each one of them then mounts a firmware that runs many
different applications from different developers. This means that the number
of possible threat agents is extremely high. Even if not event one of those
agents is malicious, they may not have the time, or the willing, to patch the
vulnerabilities of the software.

All those factors are exposing us and our personal life, and the worst part
is that we don’t have any instrument to detect the type of communication
occurring between our device some third party. The main purpose of this thesis
is to define a model and define a tool able to understand what the device is
doing simply observing the network traffic of the device.

The problem can be broken down into a set of sub-problems:

• finding a way for intercepting the network traffic of the device;

• defining a model for the identification of the behaviour of the device;

• identifying a way for the identification of anomalies in the behaviours of
the device.

The first problem can be resolved in many ways. For the purpose of this
thesis we are going to suppose that we are able to intercept the traffic, for
example because we are the administrators of the local network.

22 Chapter 3. Problem definition

The second problem is the heart of this work and the one I studied in more
depth. This is a problem extremely complex and requires a formal modeling,
the definition of a whole new set of concepts and a new perspective on the
problem able to find new ways to solve the problem. The greater complexity
stands in the fact that the network traffic of a device used by an user can
be extremely unpredictable. Some devices, like the embedded ones, may have
a standard and well defined behaviour; but when the user interferes, like in
a smartphone or pc, the behaviour is so unpredictable that identifying the
boundaries of a certain behaviour is as much difficult as enumerating all the
different behaviours allowed. For example a new behaviour could be a legitimate
new operation permitted by the user as much as an unexpected and unwanted
operation, possibly malicious.

Lastly the third problem regards the capacity of performing an analysis at
a high level of the behaviours identified in the device. During this analysis we
should be able not only to understand what’s the standard behaviour of our
devices, but also to detect any new anomalous one.

The main objective of this thesis is to build a theoretical model and, obvi-
ously, to test it. The objective is to define a model that is able to identify all the
different typologies of behaviours a device can have only inspecting its traffic.
The demo will demonstrate the feasibility of the project and the effectiveness
of the model built.

23

Chapter 4

A model for the behaviour
recognition

In the first phase of the work, I basically documented on the presence of other
similar researches. I found out that there are many limited works mainly aimed
to the malware identification. An example is the thesis of Hamidreza Aria, that
focused its work in the identification of android malware [13]. Another paper
tried to detect anomalies in the traffic of the single application [14]; in this case
they were trying to self-updating malware in Android applications. In doing
so, they installed a client on the Android device. All those solutions have two
main problems:

• they all try to identify the presence of malware, and not the generic be-
haviour of the device;

• many of the solutions consider the possibility to install custom software
on the device.

But I am trying to detect generic behaviours on any device, without any
custom software installed on the final device or without limiting the research
to the simple malware detection [15][16]. In this chapter I’ll talk of the model
that I’ve designed to accomplish that. It is able to recognize the behaviour of
the devices trough the analysis of its network communications.

The objective was to build a model that recognizes the Internet protocol
stack, but it can be adopted to analyze any type of communication (Ethernet,
Bluetooth, USB, etc.). Every single communication on every kind of interface
brings information about what is happening on the device and can be used to
deduce the high-level task executing on the device. Anyway, for the purpose of
this thesis I will focus only on the network traffic, from the network layer up.
This means that I will ignore the link level, ignoring if the device is connected
trough an Ethernet network or wireless or any other type (e.g. virtual machine).

24 Chapter 4. A model for the behaviour recognition

I also tried to make the model as much generic and modular as possible; that
way I will be able to extend it to use other communication interfaces or even the
same interface but at a different level. This modularity also simplifies the work
of improvement of the solution. This makes this solution extremely versatile to
every condition and even applicable to contexts other than the Internet.

4.1 Everything is a Stream

Given the type of operation to be done and the type of data generated (a flow
of information), I decided to manage the algorithm as a series of operations on
a stream of data. The source of the stream is the series, possibly endless, of
raw data intercepted during the communication. The output of the stream (the
sink) is the series of behaviours recognized.

In the middle there is a set of layers of transformations to the stream of
data. Each one of them will keep extracting, aggregating and transforming the
information until we will obtain sensible information from the raw, bulky input.

The choise of the stream approach has been driven by two main factors:

• it allows an almost seamless parallelization of the work, so that it can sus-
tain the large amount of raw input data generated at a possibly extremely
high threshold;

• it permits a strict separation between the different stages of transforma-
tion of the data;

• it is a simple way of describing the sequential application of a number of
function to the input packet.

The first factor also means that the model can scale very well and could also
be applied to multiple devices in parallel, instead of only one at a time.

The second factor is extremely important for the modularity of the model:
like for the stack TCP/IP, each layer is strictly separated and performs a specific
task. That way we are able to replace every layer with a different one in a
seamless way. For example we can perform the same kind of analysis on the
same type of communication, but intercepted with a different tool or on a
different interface, without the need of changing everything else except the first
layer.

4.2. Windowing 25

Figure 4.1: A graphical representation of the three types of
window.

Figure 4.2: How the two times of a window affect the stream.

4.2 Windowing

Intercepting the network traffic means that there will be a huge amount of
raw information flowing through the model. This incredible amount of data is
extremely detailed and variable. To solve this problem I decided to adopt an
approach based on windowing.

Windowing is a technique used to take the stream of data and group them
in batches. Each window is defined by two different parameters: the period and
the size of it. The first parameter defines how often we take the window from
the stream of data; the second one defines how big is the window taken.

There are different types of window, depending on the value of the period
and the size:

• fixed: when the period is the same as the size of the window;

• overlapping: when the period is smaller than the size of the window;

• sampling: when the period is greater than the size of the window.

26 Chapter 4. A model for the behaviour recognition

We can define those parameters based on the time or on the data itself, but
when we consider the time we can choose between two different times:

• event time: the time at which the event actually happened;

• stream time: the time at which the event entered the system.

The event time is more precise, but could cause problems when the events
don’t flow in order in respect to that time. In this case I was more interested on
the precision of the readings and I could assume that the stream time respects
the event time sequence. For this reason I choose to use a fixed window based
on the event time and didn’t worried about late readings. This choice gives me
an extremely high accuracy and avoids the repetition of the data in multiple
windows (overlapping) or the lost of some of the data (sampling).

4.3 High modularity means easy cooperation

A huge effort in the definition of the model went in doing it well and doing it
with a look to the future. In this thesis I had to build a model from scratch and
to do it at the best I could. In doing that I had to consider a lot of problems,
but other than them I also had to consider the possible evolution of this model.
The idea of this kind of traffic analysis is pretty new and it’s in its infancy. For
this reason in the future this could evolve a lot and I had to make the best effort
in supporting, simplifying and helping this evolution.

The main technique I adopted is the design of a model that can be extended
at will with an extremely low effort. Other than the subdivision in stages, the
other big characteristic is the modularity of each stage. In the prospective of an
open and cooperative work to improve this model, anybody could design and
build a new module for a certain stage that could be used by other modules in
turn.

The adoption of this technique obviously complicated the design process,
but it already payed off in the demo and I expect that it will pay it off more in
the near future.

4.4 Some definitions

In order to proceed with the creation of the model I needed to define some
specific terms for the work I am doing.

4.5. The main stages 27

• device behaviour: is the behaviour generated by the set of specific
applications running on the device. The device generates a sequence of
data that I am going to intercept and use to define this behaviour. My final
goal is to deduce the set of applications running on it from the sequence
of device behaviours;

• atomic behaviour: is a portion of the device behaviour. The device
behaviour is deduced by collecting a set of atomic behaviour. While the
device behaviour is the same for a respectable part of the stream, the
atomic behaviour is different at each moment of the analysis and is dif-
ferent for each task attempted from the same applications;

• properties packet: it is a packet containing the sensible data for my
analysis. By processing each raw packet of data I will extract only the
properties useful for the analysis (or those I think will be) and those will
be collected in this packet.

4.5 The main stages

As explained in the Section 4.1, I chose to manage the flow of data as a contin-
uous stream, possibly unbounded. For this reason I defined some basic stages
for the computation of the result.

1. properties extraction;

2. behaviour extraction;

3. behaviour aggregation;

4. behaviour translation;

5. result interpretation.

Until the pattern of stages and their partition is respected, it is possible to
extend or replace each one of it independently extending the functionalities or
precision of the system without the necessity of modifying all the rest of model.

4.5.1 Stage 1: properties extraction

This stage takes in input the raw data intercepted during the communication.
Its main work is to extract and filter only the sensitive information and discards
all the rest of the redundant or useless data.

28 Chapter 4. A model for the behaviour recognition

Figure 4.3: A complete representation of the full model and
the interaction between all the stages.

The fundamental concept of this stage is that every single bit of information
that may be used in the following stages, even if derived, must be computed and
returned at this point. All those information will be contained in the properties
packet (Section 4.4) returned.

The task is performed by the work of an ensemble of modules that respect
the structure defined. The modules can be of two types:

• direct : this kind of modules only depends on the input raw data. In
their transformations they apply simple functions to the data and return
significant information;

• indirect : this kind of modules not only depends on the raw data inter-
cepted, but also on the data generated by some other modules of this stage.
That way it can use both the raw data and some extracted properties.

It is true that an indirect module could re-implement the procedure for
the extraction of the information of the other modules directly from the raw
data, but using the advanced-modules approach I avoided both duplication of
code and I simplified the work of anybody that wants to extend a module.
Anybody could extend a module for any reason; one of them could be to return
redundant properties derived from other ones, but useful to compute for the
following stages. They now don’t have to know how the basic properties were
extracted, neither they need to define again all the algorithms for the extraction
of the basic properties.

An example of the indirect module could be when there have already been
defined a direct module that returns the information regarding the time (e.g.

4.5. The main stages 29

Figure 4.4: A detail of the first stage. It is highlighted the
modularization with some examples.

30 Chapter 4. A model for the behaviour recognition

Figure 4.5: A detail of the second and third stage. There are
some examples of modularization to better understand how it

works.

event time) and another one that returns information like the size of the ex-
changed data. Well, then somebody could be willing to increase the precision
the system while trying to use statistics regarding the size of the packet at a
certain time. He could also discretize the information regarding the size or the
time of the day (e.g. discretization of the time by hour, discretization of the
size by order of megabytes).

Obviously the indirect modules could depend on other indirect modules too,
generating a recurring pattern. This introduces a new problem, which is the
order of computation of all the information. So when the system will be designed
I will have to consider a method to extract all the properties by processing the
packet through the modules in the right order. The solution to adopt will be
freely chosen during the design of the model implementation and is not strictly
defined in this model.

4.5.2 Stage 2: behaviour extraction

This stage is complementary to the next stage (Section 4.5.3): it prepares the
behaviours in a redundant way, while the next stage aggregates them and re-
turns the list of different behaviours without redundancy.

Anyway, as previously mentioned, the purpose of this stage is to transform
the set of properties packets in input into the atomic behaviour describing the
behaviour recognized at that precise moment. In order to do that, the stage
combines the properties and uses a specific algorithm build with them the cor-
responding atomic behaviour.

4.5. The main stages 31

Unlike the properties extraction (Section 4.5.1), these modules are of a single
type (all direct). In effect the concept is that every module directly uses a subset
of the input properties and generates a set of output features for the atomic
behaviour. Everything that any module needs in order to compute the features
must be provided by the properties packet itself.

The goal of this configuration is to model this stage as an direct algorithm
that doesn’t need any interaction with any kind of storage at all (e.g. database).
This choice is determined by the fact that if it works as an algorithm, it can be
enormously improved just optimizing it and without worrying of any external
factor.

With a look to the future we may imagine how somebody could plug a
module realized with a Neural Network (Section 2.2.3) to compute complex fea-
tures from the correct combination of the input properties. This could allow an
enormous improvement in the accuracy of the system [17]. More that anything
else, it wouldn’t need to extract additional properties or to create any kind of
adapter for the network, it would just work and would just improve the system.

I also reckon that somebody might want to improve the algorithm. The
person that tries to improve the algorithm could use new properties previously
ignored as much as he could combine some properties already used by other
modules in a different way. That’s the reason why the modular solution is the
best:

• it allows you to plug or replace modules to the algorithm to compute new
features or improve existing ones;

• it doesn’t require to modify the rest of the algorithm or even know or
understand it.

4.5.3 Stage 3: behaviour aggregation

This stage is aimed at aggregating all the atomic behaviours received in input
using some sort of algorithm. This operations permits the creation of the device
behaviours (Section 4.4), the final representation of the behaviour of the device
in that time interval.

In this stage we are going to take a set of atomic behaviours and we will
collapse them in a single device behaviour. Usually the type of aggregations
is made on the same static subset of features of the atomic behaviour, so it is
one of the stages that is changed more rarely. As all the other stages, that can
make use of a form of modularization too. Though, it may be of little use for
both its complexity and the low frequency in changes; for this reason it’s not

32 Chapter 4. A model for the behaviour recognition

Figure 4.6: A detail of the fourth stage.

a requirement of the model that it is realized in a modular way. In some cases
it could be useful, but in the most of them it is easier to rewrite the whole
algorithm from scratch.

The task this stage has to accomplish is quite different from what the other
stages do. That’s why this stage has been created: to separate those tasks
from the rest of the model. Another benefit of this choice is that now it can be
realized once and used many times with different configurations. By isolating
it, I tried to make the whole model as future-proof as possible. In effect, we
could also use some advanced type of neural networks (the RNN, Section 2.2.3)
to implement the algorithm without even touching one bit of the rest of the
design.

It’s fundamental to denote that the level of atomicity until now was the same
of the intercepted raw data. Now it will be reduced (or increased, depending
on how often the data transit on the interface), to a specific one defined at
this level. The choices made in this stage are those who will define the level of
atomicity for the next stages.

To accomplish that, I proposed to use a technique of windowing (Section
4.2) that permits to take some data in a fixed windows (like batches) that con-
tains information that can be processed altogether. In particular, I suggest to
use a fixed window based on the event time of when the data was in first place
generated. This aggregation permits a better understanding of the device be-
haviours, that happens in a time interval, as well as it simplifies the elaboration
of the data, given that we now know the actual frequency.

4.5.4 Stage 4: behaviour translation

This is the final stage of the analysis: the result returned from it is a set of labels
describing the deduction of the application currently running on the device.

4.5. The main stages 33

While until now the task accomplished by the stages was to transform and
aggregate the information, the purpose of this stage is to infer something. This
means that this is the first stage where we need to introduce the concept of a
possible error or imprecision.

This stage is aimed to behave as a simple algorithm, without using any kind
of storage during the intermediate work. The objective is to define a function,
more or less complex, that is able to infer the set of application running on
the device. This must be done with the lowest possible error (meaning that we
would have a high accuracy of the results).

In input there is the device behaviour : a specific packet containing all the
significant information that describes behaviour generated by a specific set of
running applications. This data could be extremely simple, therefore pretty easy
to read for the human, but it could also become extremely huge and complex,
depending on the transformations accomplished by the previous stages.

Given the model and the complexity of the data, I immediately assumed that
there will be used some kind of Artificial Intelligence to interpret the input data.
The perfect example could be a neural network trained with a huge number of
samples. Another factor in the complexity of the algorithm that justifies this
choice is the elevate number of exceptions to consider. When we analyze the
network traffic and we want to recognize the running applications, the task is
extremely complex and there aren’t easy rules to infer the application. In effect
we just have to rely on the right definition of all the exceptions. To enforce
the effectiveness of neural networks, I read many papers where they used those
networks to detect the presence of malware in the network traffic [14][13]. It was
even done a comparison between different networks used in different studies [18].
From this study it also emerged how most of the studies inspect the payload
of the packets. This is a deep difference between my work and the previous
studies.

An important observation is that often the same network behaviour could
correspond to a different set of applications generating it. For this reason the
ideal solution would be to design an algorithm that considers a bit of the his-
toric behaviour to infer the set of applications running at that time. When I
designed this model I was thinking that the best solution would be a Recurrent
Neural Network (Section 2.2.3), so I tried to conform the model to it.

This is a fundamental stage for this model because it is the first and only
layer that really actively use some form of knowledge to deduce precise infor-
mation regarding what is generating the traffic. Indeed, all the previous stages
passively used only a minimal knowledge or set of rules. They were just trying

34 Chapter 4. A model for the behaviour recognition

to extract significant information, and not to use them to infer anything else.
That’s why we can consider all the previous stages as a structured form of data
preparation for this stage.

If we inspect this layer in the perspective of the use of a RNN (Recurrent
Neural Network), we can see how it is pointless to make it modular. In effect
all the previous stages could be modular and tune/add more properties, instead
this layer consider all the input together, processes them and returns the final
result. Obviously it will be possible to tune the network in the future, but it
will be a bulk operation consisting in the update of all the stage in its entirely.

In conclusion, I would like to state that I know that the choice of the Neu-
ral Network could be considered an early implementation decision that doesn’t
regards the model; at this regard I must say that the type of data generated
by the network traffic would be extremely difficult, if not impossible, to under-
stand for the human. Furthermore the number of exception to define would be
enormous. For this reason I considered extremely useful for the realization of
the best model to take for granted that the final realization of this stage will
be done with a Neural Network; given that, I was able to tune the rest of the
model around that choice.

4.5.5 Stage 5: result interpretation

Once the set of applications running on the device has been generated, we can
combine it to other forms of knowledge. This combination allows both to inform
and to protect the user that uses the device and/or the company who uses this
solution, for example in its firewalls. The implications of the use of this model
could be huge, and this is the layer where the new knowledge obtained is used
to improve the systems or give the user an understanding of what is happening
and what we learned.

At this stage we retain both the extracted device behaviour (or a set of them
if we want to preserve the historic information) and the translated corresponding
set of applications. Those data can be analyzed with a bit of historic knowledge,
a set of rules or an external configuration to perform multiple operations.

An example could be an alarm system that, when detects an application
with a specific behaviour, triggers an alarm that warns the user or blocks the
device. Another example could be a firewall that uses this tool to gain an
understanding of the applications running on the device to improve its policies.

All those operations that uses the results of the algorithm to control other
systems or inform the user will be performed at this level.

4.5. The main stages 35

Figure 4.7: A detail of the fifth stage. The task executed in
this stage are variables, so there is shown what we have in input
and an example of possible interactions with external systems.

37

Chapter 5

An application for the behaviour
recognition

There I present a possible application that uses the model introduced in the
previous chapter. The aim is to demonstrate how the model works and how it
could be actually used, but most of all, to test the model and verify that it can
actually infer the device behaviour from its network behaviour.

In the first place, I designed the application according to the model, then
I implemented it and tested the validity of the model. I tried to respect its
modularity as much as possible, so that both the model and the demo can
be extended for further testing/applications in the future. The design process
is fundamental for the verification and demonstration of the theorized model.
This means that the design of the application is almost as much important as
the model itself. For this reason I had to spend the right amount of time to
make the best design possible without rushing it up.

In this demo, I focused the case of use only to the analysis of the Internet
traffic of networked devices. This allowed me to implement only the modules
needed for that case. Despite that, it was important to reflect the flexibility of
the model into the application itself. So I made a design so that it could always
be reused and extended with many and many other modules.

Anyway, I limited the test cases of the application to the analysis to net-
worked Android devices, like smartphones or some IoT devices (e.g. Google
Home). This choice doesn’t affect at all the design nor the implementation, it’s
a choice made for better defining the boundaries of the thesis and for simplifying
the testing process.

5.1 Design

The application is subdivided in two great sections:

38 Chapter 5. An application for the behaviour recognition

• core: containing all the basic structures required for the model to be
defined and respected;

• demo: containing the specific extensions of the basic core structures, de-
signed specifically for this demo.

First of all, I designed the core structure. It is imperative that it’s boundaries
and constraints are never violated, because they represent the model itself. After
that I designed the demo section. This uses the core structure and extends from
it. By doing that it takes the basic, generic model and specifies it to the case
of the network analysis.

We can see the core functionalities as a core library that can be packaged
and distributed. The second section is an application that uses the core func-
tionalities and realizes its own solution for its own purposes.

5.1.1 Core structure

While the project started with the "simple" analysis of the network traffic, it
would be useful to be able to apply this model to other kind of communication
protocols (e.g. Bluetooth, USB, GPRS, ...). For this reason I designed it so
that it could adapt to any kind of protocol or raw data.

The most of the work in designing the core structure went in the intermediate
data (e.g. properties packet, device behaviour). In the following sections, I will
describe in detail all those data structures I designed to support the model.

PropertiesPacket

This is the packet of information containing all the properties extracted from
the raw data packet. It is generated by the first stage and used by the second
one. Its properties are extracted from the original raw packet and are then
normalized.

In order to grant the high freedom expected from a highly modular system, I
inspired the structure of the packet to the one of the SSL certificate. Simplifying,
those certificates have a main fixed set of attributes and a section containing
all the custom extensions that anyone could define. In a similar way, I though
of organizing the packet in two sections:

• a first section containing all the fixed properties common to any kind of
properties packet;

• a second section where all the extensions can organize their own properties.

5.1. Design 39

Figure 5.1: This is a representation of the structure of a prop-
erties packet. Here is highlighted how it is composed by a fixed
set of properties and a number extensions, each one carrying its

own properties.

Figure 5.2: This is the UML representing how I’ve designed
the PropertiesPacket itself.

Given the high variability and low similarity between the various commu-
nication protocols, in the fixed section there isn’t any common property yet.
Despite that, the design remains like that because that leaves more freedom
to a possible future standardization. In practice the properties packet, as it is
defined now, is an empty canvas ready for adding any kind of new extensions.

In the actual design I made for the realization of the properties packet, other
than the list of properties, it contains one other method: extractProperties.
This method is used to perform the bulk extraction of the values from the raw
data packet. In order for that to correctly work, every other extension must
define how to extract its own properties in the extractProperties method.

With this design every property packet is empty when created, but it can
be decorated with any of the extensions (according to the decorator pattern
adopted). In the first stage, in order to compute and initialize the properties,
it will be called the extractProperties method. This means that all the
properties must be initialized in this method and not in the constructor.

40 Chapter 5. An application for the behaviour recognition

There are two main reasons for this choice:

• to leave the construction of the packets as lightweight as possible;

• to define a strict separation between the packet creation and its initial-
ization with the computation of all the properties. This separation will
allow us to control at an extremely high detail level when and where (e.g.
which thread) the bulk heavy computation is executed.

The extensions have been designed according to the decorator pattern. The
pattern defines how to decorate an object with a specific decorator. In fact it
is the case: I want to decorate the properties packet with as many extensions
(the decorators) as I want. Considered that, each extension must respect this
pattern and at the same time:

• define the list of the new properties;

• specify the function to extract the values of the properties from the raw
packet.

This structure allowed an extreme simplification of the way the extensions
are created and appended to the basic packet. For example when somebody
would like to compute the values of the packet, he wouldn’t need to manually
compute all the properties of each extension. It would be enough just to call
the extractProperties once on the whole packet and it will compute every
property in every extension automatically.

With this in mind, anybody could freely create new extensions any time in
its own project. To create a simple extension, he just has to respect the given
structure.

There is one exception in the computation of the value of the properties:
when someone wants to reuse other properties already extracted. According
to the model it must be possible to accomplish that; in this design it can be
done by defining the decorator so that it decorates a packet that already has
the required extensions.

In addiction I designed some extensions in the core section too. Those are
the ones that I believe are the most useful or, in certain cases, fundamental
(e.g. the address or timestamp for the Internet traffic). If in the future other
extension (proprietary or community ones) will be used in a consistent way,
they will be added to the core section.

The extensions are:

5.1. Design 41

(a)

(b)

Figure 5.3: This UML describes:
(a): the structure of the extensions according to the decorator

pattern I used during in the design;
(b): some examples of possible extensions, those I considered

fundamental for the work.

42 Chapter 5. An application for the behaviour recognition

Figure 5.4: This is a representation of the structure of a generic
behaviour. It contains the core attributes that every behaviour

at every layer of atomicity must always have.

• TimeExtension: contains all the properties regarding the time, for now
it is just the timestamp of the packet;

• AddressExtension: contains all the properties regarding the source and
the destination of the raw packet. Regarding the Internet traffic it means
the IP-address, the port and the host-name (redundant in respect to the
IP-address, but often useful to have);

• CounterExtension: it is meant to contains a set of useful counters re-
garding all the packets. For now it just contains the full length of the
packet.

Behaviour

It represents the abstraction of any kind of behaviour that we have in our model.
It is the root of this data type and it is imperative that any kind of behaviour at
any level always extends from this one. This choice not only allows us to define
some fixed attributes that any behaviour should have, but it also permits to
define an extension that can work at any level of aggregation of the behaviours.

Similarly to the PropertiesPacket, it is composed by two sections:

• a main fixed section, with the basic attributes of every kind of behaviour;

• a section for all the extensions and their attributes.

5.1. Design 43

Figure 5.5: This is the UML representing how I’ve designed
the Behaviour itself.

At the moment the only required attribute that every behaviour should have
is the service name. This permits the identification of different behaviours and
is obtained by the service that generated it in the first place.

As for the PropertiesPacket itself, I designed it according to the decora-
tor pattern. This provides an easy and linear way to manage all the possible
extensions and simplifies its management and design.

I also designed some basic extensions for the Internet protocols that I believe
being very important and useful, if not fundamental. Those are:

• ConnectionsExtension: it contains significant information regarding the
connection established by the device, for example the port number of both
the source and the destination;

• CounterExtension: a set of attributes that store statistical data regard-
ing the behaviour. This is extremely useful when aggregating multiple
behaviours (e.g. applying the windowing);

• TimeExtension: one fundamental attribute regarding the behaviour, given
the importance of the time, is the timestamp at which it occurred. For
this reason it’s almost a impossible not to adopt this extension, whatever
it is the analysis performed;

• NeuralNetworkExtension: this extension has been introduced when plan-
ning to introduce a NN elaboration in the fourth stage. It contains some
useful information for the NN. An example is the discretized version of the
serviceNumber. In effect strings of arbitrary length would be extremely
difficult to handle.

There are 3 actual types of Behaviour in the design I formulated:

• AtomicBehaviour: the first kind of behaviour we meet in the flow, the
one returned from the second stage of the flow;

44 Chapter 5. An application for the behaviour recognition

Figure 5.6: This UML describes the structure of the exten-
sions to the Behaviour showing some examples of extensions I

considered fundamental.

5.1. Design 45

(a)

(b)

Figure 5.7: This image shows:
(a): the relations existing between the different aggregation lev-

els;
(b): a representation of how the data are grouped together.

• ServiceBehaviour: represent the behaviour of a single service in a device.
It aggregates all the atomic behaviours that a device generated in respect
to a specific service;

• DeviceBehaviour: it is the behaviour that a device is having in that
time. It is composed of all the service behaviours currently active from
that specific device.

Both service and device behaviour are collected using the window defined
by the model.

46 Chapter 5. An application for the behaviour recognition

Figure 5.8: This UML describes the structure the
AtomicBehaviour and how it is decorated with the extensions.

AtomicBehaviour

This first kind of behaviour is the one directly extracted from the properties
packet. The atomicity of this behaviour is still the same of the source of raw
packets. This means that it is the behaviour with the highest detail level, the
unit of work of the behaviours. It is assembled during the second stage of the
model.

As previously specified in Section 5.1.1, every kind of behaviour must ex-
tend the basic one, including this one too. This doesn’t mean that the atomic
behaviour can’t have its own fixed attributes. Indeed, I already identified one
fixed attribute: the service address. It represents the address obtained by the
packet, that may be different from the service name already defined for any
behaviour. As a matter of fact, the relationship between the service name and
the service address is one-to-many, meaning that for every service name we can
have many service addresses. For example one service (e.g. Google) could use
multiple service providers (e.g. all the servers in the many clusters) or provide
multiple services at once.

In regards to the demo test case, the Internet traffic, the service address will
contain the specific host-name and port representing the specific communication
session, while the service name will only contain the host-name of the destina-
tion. This allows us to acknowledge the different services despite aggregating
them by service provider.

One useful feature of the atomic behaviour is its possibility to be aggregated
with other atomic behaviours. This aggregation (through the method: +(new

behaviour)) computes a new atomic behaviour. In fact the atomic behaviour

5.1. Design 47

Figure 5.9: There is shown how the grouping of two atomic
behaviours works.

Figure 5.10: This UML describes the structure the
ServiceBehaviour and how it is decorated with the extensions.

can be aggregated later on, providing all the same information but on a bigger
set of data. The attributes of the new one are obtained trough the aggregation
of the values of all the behaviours that make it up. One example of use is when
we want to aggregate the behaviours in the same window of time. Obviously
the specific rules of computation of the new values depend on the choices of
each extension.

ServiceBehaviour

This is another kind of behaviour, meaning that it extends the Behaviour,
exactly as all the others. This one, tough, isn’t a simple behaviour like the
atomic one; it is actually a behaviour of an higher level, that is composed
by a set of the atomic ones. For this reason, other than the fixed attributes
inherited by the behaviour, it also has a field that contains the set of the original
AtomicBahviour.

48 Chapter 5. An application for the behaviour recognition

In effect, this behaviour was born to join all-together the atomic behaviours
relative to a single remote service (distinguished by its serviceName). There is
an important distinction to make: the difference between the service name and
the service address resides in the fact that the first one generically represents
a category of service (for the case of Internet it corresponds more or less to the
service provider), while the second one represents the actual service provided.
For this reason the aggregation of the service can be freely based on the value of
the service name. That way the user can freely choose the level of aggregation
he likes the best. All this is thought in a policy of greater freedom possible,
requiring more work but rewarding with a design of higher quality.

A major reason for the existence of this behaviour is better understood
in the perspective of the fourth stage, and most of all when thinking to the
actual demo test case. On the Internet each serviceName (destination host)
could have 65535 different serviceAddress (one for each port). Despite the
fact that it’s almost impossible that a device communicates with a service on
every port, the dynamicity in the number of service addresses and the possible
enormous number of them remains a problem. It can cause difficulties in the
data preparation for the fourth stage of the model.

As previously anticipated, the fourth stage exploits a Neural Network. Those
networks don’t work very well with a variable-size input. In fact, the input layer
is composed by neurons. Those neurons are in a fixed number, and it deter-
minates the size of the input vector. There are some possible partial solutions.
For example, if the input is an image, it can be downscaled. Another possi-
ble solution is called zero-padding; it basically consists in setting a rather big
input size, and then adding zeros to the input if it is too small. This meant
that the best way to reduce the dynamicity of the input was to aggregate the
atomic behaviours together, like it is performed in the service behaviour. Then,
I adopted a solution similar to the zero-padding that consisted in specifying a
bigger number of services and setting to 0 all the features of the absent services.

Other than the list of atomic behaviours, the service behaviour features a
method, merge, that allows the service to merge-in other atomic behaviours.
This method behaves in different ways, depending on the nature of the be-
haviour to merge:

• in case the atomic behaviour is already present in the service (there is
another one with the same serviceAddress), it aggregates together the
two atomic behaviours;

5.1. Design 49

Figure 5.11: This UML describes the structure of the
DeviceBehaviour.

• in case the atomic behaviour is new, it is simply added to the list.

The extensions for this kind of behaviour are the same specified for all the
other ones (those specified for the generic Behaviour). The difference is that
in this case their values will be computed as aggregation of the values on each
atomic behaviour instead of extracting them from the properties packet.

DeviceBehaviour

This is the maximum level of aggregation of the behaviours. In the perspective
of the analysis of a single device it is almost useless, but when we consider
multiple devices (that’s the case in almost every situation) it is a precious new
structure.

It actually is the ensemble of all the atomic behaviours, grouped by service,
that have occurred on the network for a specific device. It is composed by
aggregating all of the ServiceBehaviour relative to a single device. For each
window of time, it is returned a sequence of DeviceBehaviour out of the third
stage, each one corresponding to a specific device.

Each one of the device behaviours is characterized by the name of the device
that generated it and the list of service behaviours that the device produced.
Cause the way that everything flows like a stream, it was useful to find a way to
incrementally add atomic behaviours to the device. For this reason I designed

50 Chapter 5. An application for the behaviour recognition

a method that takes in input an AtomicBehaviour of any kind and puts it in
the correct place:

• if there isn’t a service for that behaviour, it creates it and insert in it the
atomic behaviour;

• if there is a service for that behaviour, it merges the atomic behaviour in
it, as explained in the Section 5.1.1.

5.1.2 Demo structure

In this section it will be described the design of the actual demo application
I realized. Obviously it uses the core functions already described in Section
5.1.1 but it extends and polishes them in the perspective of the Internet traffic
analysis.

It is organized in two main layers:

• a top layer, containing all the generic modules required for the realization
of the stages of the Internet analysis;

• a bottom layer containing the concrete implementations of the modules
and the packets.

This separation is extremely useful for the standalone definition of the ex-
tension modules. In the specific, it permits to define generic stages that work
with any kind of analysis until it is performed on the network traffic. It is even
possible to design every stage independently from the others, just once, and use
them whenever and wherever needed. This is useful in two situations:

• anyone can create a new module and plug it regardless of the stage im-
plementation that is being used underneath;

• any stage can be designed autonomously from the rest of the application.
Whoever designs the stages doesn’t need to foresee what the source of the
raw data will be or what modules will be used.

Those advantages come, in first place, from the separation applied between
the design and the implementation. In second place, I worked hard on the
design to make it so modular and grant all this freedom. A direct benefit of
the modularity resides in the fact that, in the near future, it will be possible to
prove the flexibility of the model just reusing this same demo.

For the purpose of this work, I only designed the Internet main stages, to
support the Internet protocol. Each one of them computes the basic operations

5.1. Design 51

Figure 5.12: This UML describes the structure of the Stage.

required for the extraction of the required information. This informations con-
sists in the minimal amount of significant data present in the previous stage.
Each stage specifies what is the basic modules required, but it is possible to
add many more of them.

The specific design of each stage is deepened in the following sections. All
those stages have in common the basic Stage from which they extends. It
provides the definition of the main structure of a stage and how it can be
executed, other than providing the management of the flow. It is a simple
structure, but it permits the separation between how any two stages interact
with each other and what each specific stage should do.

Stage 1

The first stage is the one in charge of extracting the properties from the raw
data packets intercepted. Naturally it extends the generic Stage and specifies
which are the input and output data types. As for the input, it remains generic.
The reason is the fact that at this point we are still designing the solution and
we don’t know which sniffing tool will be adopted. The output, instead, is a a
PropertiesPacket with some fundamental modules for the network traffic (as
the AddressExtension, that adds some properties for the memorization of the
source and destination of each packet, or the TimeExtension that permits the
memorization of the time at which the packet has been generated).

Those choices don’t affect at all the possibility of adding more modules.
They simply define the types of data the stage works with and what are the
essential extensions. If anyone wants to add more, he can plug them without
the necessity of modifying the stage at all. In effect the core of the stage
only performs some basic actions, all the rest of the work is performed by the
modules themselves. Just like that, we are now able to create any kind of packet
decorated with an indefinite number of extension, as long of the minimal ones
are respected.

52 Chapter 5. An application for the behaviour recognition

Figure 5.13: This UML describes the structure of the Stage1,
in charge of the properties extraction.

To grant high modularity and extensibility, I used a builder pattern. It is
used to create the desired PropertiesPacket with all the extensions the user
wants to use.

One last thought is spent on the execution of the job. The extraction of the
properties, despite being specified in the extensions of the PropertiesPacket,
it will be computed inside this same stage. It is a powerful feature because it
allows to adopt any kind of execution technique, for example to improve the
performances of the system. Once the computation is completed, the resulting
packet of properties is sent out in the stream to proceed to the following stage.

Stage 2

The second stage is charged with the task to extract the atomic behaviour from
the specified properties packet. Similarly to the previous stage, that too extends
from the generic Stage. It is structured in a similar way to the Stage 1 and
for this reason it enjoys of all the same benefits.

Other than the functions specified in the external modules, it also has a
fundamental task: to distinguish the incoming traffic from the outgoing one.
This job is accomplished by comparing the addresses of the source and the
destination. Once we identified the direction, the extraction of all the other
features is assigned to each respective extension module.

To grant high modularity and extensibility, I used a builder pattern. It is
used to create the desired AtomicBehaviour with all the extensions the user
wants to use.

5.1. Design 53

Figure 5.14: This UML describes the structure of the Stage2,
in charge of the behaviour extraction.

Stage 3

This third stage is aimed at aggregating the atomic behaviours into device be-
haviours. Its design is similar to the previous stages, in effect that too extends
from Stage.

While designing the stage, I had to keep in mind the fact that this stage
performs a heavier computation than the other ones. This is to blame to two
main factors. The first one is the fact that it needs to aggregate all the atomic
behaviours. In particular it must:

• group in a device all the behaviour that are generated from or designated
to the device;

• aggregates all the AtomicBehaviour of the same service into a service.

The second one is the fact that it also needs to fill all the gaps in the data
intercepted. In fact, if a device didn’t communicated for a while, it won’t
generate any form of network behaviour. Since the data flow is driven by the
events and the windows are generated at the arrival of a new event, when the
device doesn’t communicate for more than the time of a window it will be lost.
In fact, at the arrival of the new packet it will notice that the previous window
was closed and will open a new one. If I wouldn’t manually check that, all the
intermediate windows would be lost. My solution was to manually check the
difference in time between the events and, in case, it would emit as many empty
windows (device behaviour) as many have been missed.

54 Chapter 5. An application for the behaviour recognition

Figure 5.15: This UML describes the structure of the Stage3,
in charge of the behaviour aggregation.

To preserve the high modularity, I adopted the builder pattern there too. As
for the previous stages, it enables the creation of the empty DeviceBehaviour

in an extensible way with as many extensions as you will.

Stage 4

In this stage we have by far the most complex task to perform: to infer the
high-level set of application running on the device. Due to its huge complexity
I immediately tried to find the best solution. I found out that the adoption of
a Neural Network (NN) seems to be the best solution. In effect the algorithm
would be full of exceptions, that NN seem to be great at handling. Other than
that the data seems to be perfect for NN, after a first round of pre-processing.

Due to this choice, two new problems have emerged:

• how and where to find a data-set for the training, discussed in the Section
6.3.2;

• how to find which is the best kind of NN to use and how to model it.

The first problem was left to be solved later, in the implementation phase.
Before that I was more concerned in defining the model for the network.

I immediately identified the necessity of using a Recurrent Neural Network
(RNN). The main reason is the necessity of preserving some sort of history.
In effect, as previously said, the window itself is almost useless. The real in-
formation is gained by the analysis of a series of windows. After consulting

5.1. Design 55

with Professor Davide Maltoni I decided to use a Long Short-Term Memory
(LSTM), a special kind of RNN discussed more in depth in Section 6.3.1.

This NN, as many other, requires a fixed input size. So I had to even
think what would be a possible linear representation of a DeviceBehaviour.
This wasn’t an easy job, mostly because the size of the behaviour is extremely
dynamic and the values of the attributes are extremely variable.

For example, if I tried to flatten each AtomicBehaviour by assigning a value
to each feature for each service, we would have an array so big that it would be
almost impossible to manage and it would decrease the chances of convergence
of the network. In effect, for each service we would have as many dimensions as
65535 * the number of features. This space of dimensions would be enormous.

For this reason I decided to:

• aggregate the services with some more sophisticated functions;

• discretize the address of each service by replacing it with a fixed integer
value (using a map for the conversion).

The aggregation has been accomplished trough an elaborate algorithm and
a set of rules and exceptions. It uses the service address to group together
all the service behaviours according to its rules (e.g. everything that hasn’t
been previously aggregated, that is "other" is grouped altogether). The direct
advantage is that it enormously decreases the number of dimensions. At first
I was afraid that the network wouldn’t be able to converge with this level of
aggregation of the data. But after some earlier tests I found out that it is a
great solution.

The algorithm limits the maximum number of global services to pass to the
network. This resulted in the necessity to aggregate together multiple different
service behaviours. To do so, I designed a specific class whose task is to assign
some values to specific services extremely diffused (e.g. Facebook, Google, etc),
and the geographic location to the remaining services. Those values are the
ones used to compare and group together all the services.

At last every DeviceBehaviour will be mapped in its corresponding vector.
The historic information is preserved in the multiple instances of the same
different behaviour in many time-windows.

The complete input vector is then composed as follows:
window1 + window2 + ... + windowN

Where N is the number of windows to provide to the RNN (the historic infor-
mation). Each window is structured as follows:
service1 + service2 + ... + serviceN

56 Chapter 5. An application for the behaviour recognition

Where N is the number of services that we want to use to describe the device
behaviour. Each service is composed by the concatenation of all the direct
attributes it has (counting the extensions too).

57

Chapter 6

Implementation of the application

In this chapter, I will describe the implementation process and the structure of
the demo application. It is a prototype whose purpose is to prove the validity
of the model and its main benefits. The main objectives of this applications,
other than the one aforesaid, are to test the feasibility of the realization of
the model, verify the presence of boundaries too restricting and, last but not
least, to gather some actual data regarding the effectiveness and efficiency of
the model.

The code of the application can be found on the repository at:
https://bitbucket.org/iugin/netbeh. The prototype only focused on the
analysis of the behaviour of Android device. It is only a choice made for testing
reasons: I didn’t have neither the time or the resources to train the system to
perform an analysis on every possible different device. So I chose to focus the
work on Android devices, conscious that in the future it can be exploited on
every possible networked device.

6.1 The tools

The actual application is based on a widespread sniffing tool called pcap. In
order to use it, I adopted the library Pcap4J (Section 6.1.1). This library
works as interface with the aforesaid sniffing tool and permits to sniff the traffic
or read pcap-dump files from any Java application. Its adoption allowed me
to focus on the realization of engine and the tuning of the model, instead of
having to manually intercept the packets from the network interface. It also
exists a version of the library written in C/C++. Obviously the functionalities
are the same, but I decided to use the Java version because it is a language
at an higher level. In effect, it provides me an object-oriented language that
can be compiled to be executed on any operative system. Another benefit of
adopting the Java library is the possibility to include this library directly in a

https://bitbucket.org/iugin/netbeh

58 Chapter 6. Implementation of the application

Scala program. Scala is an advanced language that is described in the Section
6.1.2.

Despite being an high-level object-oriented language, Java still misses a lot
of advanced features. An example is the complete absence of a way to realize
multiple inheritance. Scala (Section 6.1.2), on the other hand, provides an
easy way to realize the multiple inheritance, adds support to the functional
programming and has some advanced features extremely useful.

Picking Scala immediately proved to be a good choice as I was able to realize
a clean, easy to use, easy to understand solution in a relatively small period of
time.

I was able to implement in Scala only the first 3 stages of the model. The
fourth one needed the realization of a Neural Network. This can be an extremely
complex task, when not provided with the correct set of libraries. For this
reason I decided to implement this stage in Python (https://www.python.
org/). This choice was driven by the fact that Python is a language widely
used for Machine Learning and Neural Networks, so extremely rich of specialized
libraries.

Even the Tensorflow library (Section 6.1.3) is provided for Python together
with other tools that are extremely useful when performing this kind of compu-
tations, included preprocess a dataset, build a NN model, train and test it (e.g.
PyTorch, Numpy, ...). Another great feature of Python is its ability to perform
computations directly on vectors or matrices.

6.1.1 Packet capture

There won’t be any engine if there isn’t the fuel. The fuel that powers this
particular engine is the network traffic. It consists in the packets exchanged
during the communication between two entities. For this reason, the source of
the stream is the sequence of packets exchanged between one (or more) device
and the rest of the network. To capture this sequence of packets we need
to perform an action called sniffing. The sniffing consists in intercepting and
reading all the packets flowing trough without blocking or modifying them in
any way.

https://www.python.org/
https://www.python.org/

6.1. The tools 59

To accomplish this sniffing, I used an API called pcap. Its Linux imple-
mentation is realized by libpcap (https://www.tcpdump.org/), developed and
maintained by the tcpdump group, while in Windows there is WinPcap.

There also exists a powerful command-line packet analyzer called tcpdump.
It is maintained by the same developers that realized the libpcap library . It is
extremely useful to sniff the traffic on an interface and then to generate some
dump files. Those dump files can be used for a later bulk processing, instead of
a live processing.

Pcap is an extremely widespread tools for the traffic analysis. Libpcap is
also used by the same Wireshark (https://wiki.wireshark.org/libpcap),
the world’s foremost and widely-used network protocol analyzer. Pcap, and its
libraries, already are pretty stable and rich of features. There is also library
called Pcap4J that brings support to the pcap API on Java.

6.1.2 Scala

Scala (https://www.scala-lang.org/) is a general-purpose programming lan-
guage providing support for functional programming and a strong static type
system. Designed to be concise, many of Scala’s design decisions aimed to
address criticisms of Java.

The code written in Scala will be compiled in Java bytecode, allowing its
programs to run on the JRE. Other than that, Scala also provides language
interoperability with Java, so that Java libraries can be directly referenced into
Scala code (e.g. Pcap4J).

Scala is a high level programming language that features not only the object
oriented abstraction, like Java, but also the functional programming. The adop-
tion of the functional programming enables an ensemble of useful programming
techniques like currying, type inference, lazy evaluation, immutability and pat-
tern matching. It is notable that the ability to adopt a functional programming
permits an almost seamless use of many parallelization techniques of various
kind.

It also allows a discrete speed-up in the development process, a simplification
of the written code (that allows better understanding of the tasks accomplished)
and, last but not least, an improvement in the performance of the program.

https://www.tcpdump.org/
https://wiki.wireshark.org/libpcap
https://www.scala-lang.org/

60 Chapter 6. Implementation of the application

In addiction to all that, a team is already working in the realization of a
compiler aimed to compile the code into native binary (http://www.scala-
native.org/en/v0.3.9-docs/). This will make Scala perform even better
than the binaries executed in the JVM.

6.1.3 Tensorflow

Tensorflow (https://www.tensorflow.org/) is an open-source platform for
machine learning. It is both used for research and production at Google. As
many other libraries, it also permits the creation and training of a neural net-
work model.

The library is rich of feature and tools, thus making it a very powerful
platform. It is pretty easy to use and Google keeps spreading it. In effect it
keeps adding support to other development languages; right now it supports
Python, JavaScript, C++ and Java. Unfortunately, for now the Java version
is experimental and badly documented, reason why I prefer to use Python,
actually one of the best programming language for machine learning.

6.1.4 JSON

JSON (https://www.json.org/) stands for JavaScript Object Notation; it is a
lightweight data-interchange format. There is a considerable number of libraries
for parsing and generating it, and at the same time it is easy to read for the
human.

It is organized as a structured object where the fields are couples key-value.
Every value can be an object or an array, that is an ordered list of objects.

Given the flexibility and the huge availability of parsing libraries, it is a
good solution to exchange structured information between different applications
trough a human-readable file.

6.1.5 CSV

CSV, that stands for comma-separated values is a text file that uses comma to
separate the values. It is the perfect solution to store tabular information in

http://www.scala-native.org/en/v0.3.9-docs/
http://www.scala-native.org/en/v0.3.9-docs/
https://www.tensorflow.org/

6.2. Stage 1 to 3: the Scala application 61

plain text. Each line is a record, and every record consists of one or more fields
separated by comma (or, occasionally, other custom symbols).

Given its ability to store tabular information, it is particularly useful to
exchange data of this kind between different programs. It can also be used to
export the data for human interpretation (e.g. by reading it as a sheet).

6.2 Stage 1 to 3: the Scala application

As previously explained, I implemented the first 3 stages of the engine in Scala,
those that process the data from the single raw packet to the networking device
behaviour.

6.2.1 Packaging

I immediately noticed a net separation between the generic Internet analysis
and the specific use of the Pcap4J library. For this reason I choose to organize
those two section in an independent way. That way both parts of the system
are well separated and it will be extremely easy to plug other implementations
for the sniffer while continuing to use the same Internet engine.

For example we could use another library for intercepting the traffic. Once
I’ve realized the first stage for this new sniffer, all the remaining ones will be
reused. At the same way we could reuse the implementation of the sniffer done
with Pcap4J for sniffing other interfaces and protocols (e.g. USB, Bluetooth)
by simply replacing the next stages.

6.2.2 Properties packet

The actual PropertiesPacket that I used for the Internet analysis, called In-

ternetProperties, combines a specific set of basic extensions of the core mod-
ule:

• AddressExtension;

• CounterExtension;

• TimeExtension.

All it’s needed for us to do, is to implement the extraction function for
the properties of each extension. The extensions in the core module define
how every extension is structured, its properties and how it should behave; the
actual implementation depends on the sniffing library used, so it still need to

62 Chapter 6. Implementation of the application

Figure 6.1: The UML of the properties packet implementation
and its organization in packages.

be actually implemented. This has been done in the Pcap4JProperties, that
realizes the PropertiesPacket using the Pcap4J library.

The implementation of the extraction function is spread in all the exten-
sions, so that each one of them manages only its own properties, accord-
ing to the modularity defined in the model (e.g. Pcap4JAddressExtension,
Pcap4JTimeExtension, ...).

The set of extensions that I selected for those packets provides the fun-
damental set of properties required for the analysis of an Internet behaviour.
Those are:

• label, required by the fourth stage only for the training of the Neural
Network (this isn’t strictly required for the Internet traffic);

• Address extension:

– sourceHostAddress ;

– sourceHostName;

– sourcePort ;

– destinationHostAddress ;

– destinationHostName;

– destinationPort ;

• Counter extension:

– length;

6.2. Stage 1 to 3: the Scala application 63

• Time extension:

– timestamp.

Thanks to the design I made, implementing an extension is pretty easy. It’s
sufficient to extend its interface, that defines the structure each extension should
respect, and implement the extraction function. The following is an example of
the implementation of the counter extension:

1 trait Pcap4jCounterExtension extends Pcap4jPropertiesPacket with CounterExtension {
2
3 // Default values
4 override var length: Int = 0
5
6 // Extraction function
7 override def extractProperties: Boolean =
8 super.extractProperties && (for (
9 // Check packet not null

10 ethPkt <− Option(packet)
11) yield {
12 length = ethPkt.length()
13 }).isDefined
14 }

Finding the service name

When intercepting the packets with Pcap4J, we only have the IP address of each
host (weather sender or receiver). This is an over-detailed and hard-to-read data
for a number of reasons:

• the server of a certain service can change (e.g. it is part of a data-center,
it has been moved, ...) causing the change of IP address;

• the same service can be delivered by different hosts, each one with a
different IP address;

• the number of different IP addresses is incredibly huge and difficult to
both handle and understand.

For those reasons, I decided to define a new parameter: the hostname. It is
a redundant property derived from the IP address, but it’s extremely useful to
have. It permits to aggregate together many different IP addresses on the base
of the kind of service (or the rules define by the programmer) and not on the
specific IP address. This abstracts the concept of service from the specific IP
address, that is a mutable information.

When realizing the system I incurred in a huge problem: the packet itself
doesn’t provide the hostname but only the address. Luckily Pcap4J provides a

64 Chapter 6. Implementation of the application

function to perform a rDNS (reverse DNS) request. It is embedded in every
packet as getCanonicalName and can be called anytime.

Despite that, I still had problems with it. First of all, it doesn’t make use of
any form of caching between different packets. Before this caching, the library
opened a new connection to the DNS provider to solve each address of each
packet. If the source of the packets is a pcap file, the resulting problem is only
a lack of performances; but if we are performing a live analysis it results in an
endless loop where the sniffer intercepts the new rDNS request and recursively
tries to make a rDNS call for its host.

The solution I adopted was to implement a form of manual caching of the
host addresses and its hostnames. To realize that I build an object whose
sole purpose was to cache the host address-host name resolutions. Each time
a packet wants to obtain its hostname, it is first checked if it is present in
the cache, otherwise I make the online resolution and then cache the response.
With that, for each different address there is only one online requests and all
the others are solved offline with the cached value. This solved the problems
by improving the performances and breaking the endless loop.

Unfortunately, the problems didn’t end there. After solving this one, I no-
ticed that some host addresses couldn’t be resolved. This is due to the nature of
the rDNS requests. They don’t "magically" solve the hostname from the IP, but
they query a specific kind of DNS records specifically compiled by the names-
pace owner to answer this kind of questions. In effect it doesn’t either obtain
the hostname originally used to obtain the IP address in question. Therefore, if
the administrator of the DNS namespace doesn’t provide the rDNS record, the
request can’t be accomplished.

To solve this other problem I had to use another tool: whois. Whois is
a network protocol that permit to obtain information regarding an IP address
and its organization/provider. The number of information varies from the net-
work range of belonging, to the organization name and address, going on. It is
composed by a server, public on the network, and a client, making the requests.
The number of online servers owning the database with the information is con-
siderable, but each one of them resolves only a subset of domains. There isn’t
a single server that can solve all the interrogations regarding any host. At the
same time there isn’t yet a protocol to chain them, like in the DNS servers.

There are different ways to build a whois client in Java/Scala, but none
of that was fully functional. The main problem was the fact that I had to
manually redact a list of all the possible whois servers to query, and then I
should contact them sequentially. To keep the system working I would have

6.2. Stage 1 to 3: the Scala application 65

had to periodically update the server list, and it was a useless complication.
For this reason I decided to use the native whois Linux client, the best client I
could use. It is very well made and it manages all those problems by itself. Its
server list is continuously updated and he uses it to query one server at a time
until it obtains the information requested.

In my demo, I invoke the Linux command and then parse the first result
found. The information I decided to take were only the name of the network
(analogous to the hostname) and the geographical country, used in the third
stage for a larger aggregation of the services.

6.2.3 Atomic behaviour

As for the properties packet, this too uses a specific set of extensions for the
analysis of the Internet traffic.

This is used from the second stage on, so it’s oblivious of what has been
used to generate the properties that it want to use, as it should be. In effect
from this point on the implementation is completely oblivious of the choice to
use Pcap4J or any other sniffing tool to obtain the requested properties. This
means that this stages can be used together with any kind of first stage (one
for each kind of sniffing tool), until it generates the required set of properties.

The basic set of extensions making the Internet atomic behaviour are:

• DeviceExtension;

• TimeExtension;

• CounterExtension;

• ConnectionsExtension;

• NeuralNetworkExtension (only required for the training of the Neural
Network at the fourth stage).

Altogether those extensions can represent any kind of Internet behaviour.
Obviously, later on anybody can extend them with other extensions, for a more
advanced analysis. Anyway those basic extensions cover any simple network
analysis of the Internet traffic.

The actual implementation is accomplished in the InternetAtomicBehaviour.
It is composed of all those extensions and defines for each of them how to com-
pute its attributes. This means that the conversion from properties packet to
atomic behaviour is accomplished with a code like the following:

66 Chapter 6. Implementation of the application

Figure 6.2: The UML of the atomic behaviour implementation.

1 /∗∗
2 ∗ Creates an AtomicBehaviour extracting the values from the single packet given.
3 ∗ @param p the packet
4 ∗ @param outgoing true if the packet belongs to the outgoing flow, false otherwise
5 ∗ @return the AtomicBehaviour corresponding
6 ∗/
7 def apply[T<:InternetProperties](p: T, outgoing: Boolean): InternetAtomicBehaviour = if (outgoing) {
8 InternetAtomicBehaviourImpl(
9 p.sourceHostAddress,

10 p.destinationHostName,
11 s"${p.destinationHostAddress}:${p.destinationPort}",
12 p.timestamp,
13 minOutgoingLength = p.length,
14 maxOutgoingLength = p.length,
15 totalOutgoingLength = p.length,
16 nOutgoingPackets = 1,
17 servicePort = p.destinationPort,
18 devicePorts = List(p.sourcePort),
19 labels = List(p.label)
20)
21 } else {
22 InternetAtomicBehaviourImpl(
23 p.destinationHostAddress,
24 p.sourceHostName,
25 s"${p.sourceHostAddress}:${p.sourcePort}",
26 p.timestamp,
27 minIncomingLength = p.length,
28 maxIncomingLength = p.length,
29 totalIncomingLength = p.length,
30 nIncomingPackets = 1,
31 servicePort = p.sourcePort,
32 devicePorts = List(p.destinationPort),
33 labels = List(p.label)
34)
35 }

6.2. Stage 1 to 3: the Scala application 67

Another important feature of the atomic behaviours is their ability to com-
pare each other to identify identical behaviours. With this feature, the be-
haviours belonging to the same type can be aggregated together. Two atomic
behaviours are considered identical when they have the same service name, ser-
vice address and service port, even with different values for the attributes. This
function is fundamental to aggregate different behaviours of the same protocol,
without mixing different protocols up. It is implemented like follows:

1 override def equals(obj: Any): Boolean = obj.isInstanceOf[InternetAtomicBehaviour] &&
2 obj.asInstanceOf[InternetAtomicBehaviour].serviceName == this.serviceName &&
3 obj.asInstanceOf[InternetAtomicBehaviour].serviceAddress == this.serviceAddress &&
4 obj.asInstanceOf[InternetAtomicBehaviour].servicePort == this.servicePort

6.2.4 Service behaviour

The service behaviour is the aggregation of two or more atomic behaviour into
one single object. The common characteristic of those atomic behaviours is
their belonging to the same specific service. Other than the set of atomic
behaviour, it also contains a sequence of features. Those features are defined in
the extensions at the same way they were for the AtomicBehaviour, but this
time they are computed as aggregation from its atomic behaviours.

To simplify the management of this new data structure in the stream, I
defined a function that incorporates a new AtomicBehaviour in the current
service behaviour. If the service already contains the atomic behaviour (has the
same specific address), it chooses to aggregate the new one into it, otherwise it
simply adds the new atomic behaviour to its own list. The code that implements
that algorithm is the following:

1 service.behaviours.find(_ == a) match {
2 // If this behaviour already exists, merge it
3 case Some(b) => b + a
4 // If this is a new behaviour, add it
5 case None => s.behaviours = a +: s.behaviours
6 }

Service window behaviour

Given the fact that in the third stage the model requires to adopt a windowing
technique, for every device I will have a sequence of windows, each one contain-
ing all the services identified in that time window. To simplify the handling
of this complex structure, I defined a new data type that wraps the sequence
of services of one single window: the service window behaviour. It has proven
extremely useful when parsing the output files.

68 Chapter 6. Implementation of the application

For what matters the Internet analysis, it has been implemented in the
InternetServiceWindowBehaviour. It is a simple object that contains just
the numerical window identifier (windowId) and the list of service behaviours
occurred in that window.

6.2.5 Device behaviour

The device behaviour has the task to represent the networking behaviour of a
specific device. To do so, it contains all the service behaviours intercepted for
that device. It is then characterized by the device identifier (device) and the
list of service behaviours.

Given the way we process the stream, proceeding atomic behaviour by
atomic behaviour, it was provided of a method that automatically merges one
new atomic behaviour into the device itself. It is similar to the function defined
for the service behaviour, but this time it works on the whole device. First of
all, it finds the service of belonging of that atomic behaviour, then it merges the
new behaviour into it. The code charged to accomplish this task is the following
one:

1 override def merge(atomicBehaviour: A): Unit = this.serviceBehaviours.find(ServiceManager.hasService(
↪→ atomicBehaviour)) match {

2 // If there isn’t any service behaviour for this atomic one
3 case None => serviceBehaviours = ServiceBehaviour(ServiceManager.serviceName(atomicBehaviour),

↪→ atomicBehaviour) +: serviceBehaviours
4 // If there is already a service behaviour for this atomic one
5 case Some(s) => s merge atomicBehaviour
6 }

This device has a structure so generic that may fit almost any service be-
haviour inside it. For this reason, I provided a default implementation in the
core section of the program. Its realization is trivial, the major complexity
resides in the way we define to which service belongs an atomic behaviour. In
order to separate the device implementation to the algorithmic choice of the
service identification, I decided to use the ServiceManager. It is a utility class,
provided during the construction of the device behaviour, that contains some
methods to perform that specific task of service naming and comparison.

The role of the ServiceManager

During the design of the application, I incurred in the problem of passing the
resulting device behaviours to a Neural Network. One of the problems was the
dynamic number of service behaviours contained in each device behaviour. It
may be empty (in certain windows) or contain only one service as well as it may
even contain dozens of services.

6.2. Stage 1 to 3: the Scala application 69

Figure 6.3: The UML of the ServiceManager.

The possible solutions were two: I could either set a maximum number of
services for each device and drop all the others, or I could apply a function to
compress all the services into a fixed number of values.

In the first case, I would incur in the problem of a possible loss of understand-
ing as well as the loss of precision, but, once defined, it would work seamlessly.
Instead, with the second solution, I could write a function that aggregates all
the services into a fixed subset, and I would fill the missing services with default
values (zeros). This second solution would cause a loss of understanding too,
but the loss of information would be minimal. The only flaw of this second solu-
tion in respect to the first one would be its necessity to be periodically updated
when the network topology changes.

After considering both solutions, I decided that for the demo the second one
was the best solution for both precision and comprehensibility. It could allow
me to quickly implement a solution that would make it easier for me to check
the validity of the model. Nonetheless, in the future it could also be replaced
with a Convolutional Neural Network (CNN).

For this reason I defined the ServiceManager: a utility class that imple-
ments the specified solution trough two main methods:

• getName(serviceName: String): computes the new name of the ser-
vice. This one can be the same for different services and depends on the
actual implementation of the function. An example could be the aggre-
gation of all the Google services, or all the Italian hosts, under the same
hood;

• hasService(a: A)(s: ServiceBehaviour[A]): this method, instead,
is used to check in which service an atomic behaviour should be put.

70 Chapter 6. Implementation of the application

Given the atomic behaviour itself, it returns a partial function that takes
a service behaviour and checks if it contains the specified behaviour.

6.2.6 The Engine

Once the structural objects were implemented, I had to realize an engine capable
of performing all the computations according to the theorized model.

First of all, I defined the actual implementation of the stages from the first
to the third so that they would use the correct version of the properties and
behaviours (Figure 6.4). Each stage basically builds the object for the next
stage and computes its values, as specified in the model.

The only exception is in the third stage, that has a more complex algorithm.
It has the task to aggregate multiple behaviours into groups determined by
the size of the window. During the implementation of this stage, I made the
assumption that all the behaviours are occurring in an ordered way in respect
to the packet that generated them (stream time and event time respect the
same ordering). The assumption allowed me to realize a simpler, yet effective,
solution.

Despite that, there still was a problem, as previously anticipated during the
design: the stream proceed fluently processing the input events, but it doesn’t
consider the possibility of gaps in the source. In effect, the windowing depends
on the event time, that is dictated by the packets themselves. When for a certain
time, bigger than the window, the source doesn’t emit packets, the stream won’t
notice the lack and won’t count the missed window (or windows). So there can
be missed windows, windows where no packets were exchanged.

As result of that, distant windows may result as close as sequential ones just
because in the middle there is a sequence of missed windows. To avoid this
loss, I modified the aggregation function so that, as it creates a new window, it
also checks for possible gaps from the last window created, and eventually emits
empty windows to fill the gap. That way in the following stage we can have
awareness of the actual sequence of windows and the true distance between two
of them.

6.2. Stage 1 to 3: the Scala application 71

Figure 6.4: The UML of the implementation of the engine and
its stages.

This engine, the Internet engine, processes all the data regarding network
traffic. One major feature of this engine is its flexibility. In effect, made excep-
tion for the first stage, all the other stages can be used with any kind of sniffer,
until it analyzes Internet traffic. The first stage is an exception because is the
one that adapts the raw packet to the specific properties required, making the
source independent from the rest of the engine (as well as the engine indepen-
dent from the specific sniffer adopted). For this reason I modelled it in a way
that separated the universally valid stages from the first stage, as shown in the
UML at Figure 6.4 where the first stage is abstract and implemented in the
Pcap4JEngine.

6.2.7 The sniffer

The sniffer is the source of the stream, the one that emits all the raw packets
that will then be processed. As previously anticipated, I chose to use Pcap4J
(Section 6.1.1). It is a library that provides an easy way to intercept the traffic
on almost any networking interface of the device (e.g. ethernet, wifi, USB, ...).

To use it in my project I created a class whose only task was to interface
with Pcap4J to create the stream of packets. Then I created the first stage of
the engine, the properties packet and its extensions so that they extract their
information from this specific type of raw packets. All this is implemented in
the homonym package "pcap4j".

72 Chapter 6. Implementation of the application

The problem of the properties extraction

Retrieving the data from the pcap4j packet wasn’t easy. For each property to
extract, we must check if the packet used that protocol, and only then we can
cast the packet to the specific protocol from which to extract the information.

Doing this for each single property in each extension would have been an
extremely redundant and complex code both to understand and to update. This
is one of the reasons for which choosing Scala was a great idea: I was able to
use the combination of some advanced language features to extremely simplify
this process.

In particular there I used a combination of implicit classes and for compre-
hension. Trough the use of an implicit class I was able to add a method to the
pcap packet that, given a protocol, optionally returns its header only if present.
Then every extension can use a for comprehension to retrieve all the properties
using that method. By doing that, it automatically checks that every param-
eter is present in the packet at once. The following is an example of how the
Pcap4JAddressExtension can extract its properties:

1 override def extractProperties: Boolean =
2 super.extractProperties && (for (
3 // Check packet not null
4 ethPkt <− Option(packet);
5 // Get ip address
6 dstAddress <− ethPkt.as[IpPacket].map(_.getHeader.getDstAddr);
7 srcAddress <− ethPkt.as[IpPacket].map(_.getHeader.getSrcAddr);
8 // Get port
9 dstPort <−

10 ethPkt.as[TcpPacket].map(_.getHeader.getDstPort) // If Tcp packet
11 .orElse(
12 ethPkt.as[UdpPacket].map(_.getHeader.getDstPort));// If Udp packet
13 srcPort <−
14 ethPkt.as[TcpPacket].map(_.getHeader.getSrcPort) // If Tcp packet
15 .orElse(
16 ethPkt.as[UdpPacket].map(_.getHeader.getSrcPort)) // If Udp packet
17) yield {
18 destinationHostAddress = dstAddress.getHostAddress
19 destinationHostName = Pcap4jAddressExtension.getCanonicalHostName(dstAddress)
20 destinationPort = dstPort.valueAsInt
21 sourceHostAddress = srcAddress.getHostAddress
22 sourceHostName = Pcap4jAddressExtension.getCanonicalHostName(srcAddress)
23 sourcePort = srcPort.valueAsInt
24 }).isDefined

With this simple code the extension computes all its properties and returns true
only if it successfully found the data for all the properties.

6.3. Stage 4: the Python application 73

6.3 Stage 4: the Python application

In the design of the application, I decided that the fourth stage should be
implemented with a Neural Network. This choice was driven by the nature
of the data and the high accuracy obtainable with Neural Networks. For this
reason, I decided to implement this stage in Python, a powerful language for
implementing machine learning and neural network solutions.

As mean of communication between the third and fourth stage I decided to
use the filesystem itself. The third stage writes a CSV file (Section 6.1.5) ready
for the neural network, then the python application reads it and processes its
content.

Once the application has the data, it can start processing them. It’s impor-
tant to know that, when working with neural networks, it isn’t enough to design
and implement them in order to evaluate the data; we also need to train it with
a decent dataset. This is a fundamental step, without whom the model would
be useless. In neural networks the correct training is even more important than
building the perfect network. The main steps required for the correct training
of a network are the followings:

1. dataset preprocessing;

2. model definition;

3. model training.

Instead, if we just want to evaluate some data on a network already trained,
it’s sufficient to load a trained model as follows:

1. dataset preprocessing;

2. model loading;

3. dataset evaluation.

Those steps are always valid, regardless the network built or the dataset
used. In this specific case the type of data is discussed in Section 6.3.2 and the
model is explained in Section 6.3.1.

6.3.1 The network model: LSTM

The task to accomplish in this stage is to infer what’s happening on the device.
This must be done trough the analysis of its behaviour generated on the network,
that occurs while the time is elapsing.

74 Chapter 6. Implementation of the application

In this case, the problem could be that the same network behaviour could be
generated by different device behaviours. To avoid to be mislead by that, I chose
a neural network that considers also the previous states. Those networks are
the Recurrent Neural Network, and in the specific I selected the one I thought
being the best: Long Short - Term Memory (LSTM). It is an artificial recurrent
neural network architecture that, unlike standard feedforward neural networks,
has feedback connections. This means that it can not only process single data
points (such as images), but also entire sequences of data (such as speech or
video or sequences of network behaviours).

A common LSTM unit is composed of a cell, an input gate, an output gate
and a forget gate. The cell remembers values over arbitrary time intervals and
the three gates regulate the flow of information into and out of the cell. As many
other networks, this too organizes its cells in layers. Each layer is independent
by the other ones and can have a variable number of cells in it.

Figure 6.5: An LSTM cell with input, output, and forget gates.

Source: https://en.wikipedia.org/wiki/Long_short-
term_memory#/media/File:Peephole_Long_Short-

Term_Memory.svg

For the implementation of the network in Python, I used the Tensorflow
library (Section 6.1.3). It provided all the required tools and extremely simpli-
fied the process of the network modeling. The actual model of my network is
composed by 2 layers sequentially connected: a LSTM layer and a dense layer
(Figure 6.6). The first layer is in reality composed by two different layers: the
input layers, of the size of the input, and an hidden layer with LSTM cells.

https://en.wikipedia.org/wiki/Long_short-term_memory#/media/File:Peephole_Long_Short-Term_Memory.svg
https://en.wikipedia.org/wiki/Long_short-term_memory#/media/File:Peephole_Long_Short-Term_Memory.svg
https://en.wikipedia.org/wiki/Long_short-term_memory#/media/File:Peephole_Long_Short-Term_Memory.svg

6.3. Stage 4: the Python application 75

Figure 6.6: The input and output shape and a simple repre-
sentation of the layers of the network.

In the end there is the dense layer that collects the data to generate the
output vector. Each cell of this layer is a simple cell connected with every cell
of the previous layer (therefore "dense"). Used with the sigmoid activation
function, it returns a probability for each label, indicating if that is present or
not.

The activation function defines the type of output of the node. There are
two main types of function:

• softmax : returns a probability for each node, but the total sum must be
equal to one. It is adopted when the objective of the network is to the
single label that with the highest probability (e.g. classification);

• sigmoid : returns an individual probability for each node. In effect ev-
ery single node can have a value between 0 and 1. The total sum isn’t
constrained, therefore they could even sum up to 0 or to a huge number.

The second function is particularly indicated when an indefinite subset of nodes
can be active together (e.g. when tagging a picture). Therefore the reason why
I chose the second function: I can select all the applications that generate the
network device behaviour given in input to the network.

Two other fundamental properties of a model are:

• the input shape: the shape of the data that is passed in input to the
model;

76 Chapter 6. Implementation of the application

• the output shape: the shape we want the output to respect.

The input shape is sized (t * n), where t is the number of historic states
to consider and n is the number of dimensions of each state. The number of
historic states is the number of windows that must be considered (how much
back the networks remembers).

The number of dimensions of each state is forced to follow what is defined
in the previous stage of the engine. In particular it is (d * s), where d is the
number of dimensions for each service s. Those values respectively depend on
the number of features of each service behaviour (driven by the extensions used)
and the number of services defined in the ServiceManager.

In the actual network:

• I have 10 features for each service behaviour, d=10 ;

• I consider 20 different services, including the "unknown" service, s=20 ;

• the significant historical information is retained for 1 minute (6 windows
of 10 seconds), t=6.

Therefore, the input shape of the network is (6 * 200).
The output shape, instead, is only driven by the number of different labels

(l). Those labels represents the device applications that could have generated
that specific behaviour.

For the purpose of the demo, I used an extremely restricted labels set of 32
different labels, therefore the output has a size of l=32.

Once the model is defined, I need to specify its training parameters. Those
parameters are the optimizer, the loss function and the metrics adopted.

The optimizer is that optimization algorithm that can compute the best
weights so that the cost function is minimized. Many optimization algorithms
have been studied (e.g. Adam, AdaDelta, SDG, Momentum), but one of the
best is Adam [19]. So I chose that and, after testing it, I found out that it
actually works great with this network.

The loss function is the one in charge of computing the loss of the net-
work. It is then used to optimize the network itself trough the calibration of
its weights. There are many different loss functions (e.g. mean squared error,
binary crossentropy, categorical crossentropy, sparse categorical crossentropy).
Of all those, the type of loss function I was interested in is the binary crossen-
tropy. In effect, it permits to compute the loss of the output, as long as the
final nodes return values between 0 and 1, that it’s exactly my case.

6.3. Stage 4: the Python application 77

The metric I used to compare the output to the labels was the accuracy,
that counts how many times the predictions match the labels.

6.3.2 The dataset

The right dataset is a key element for the correct training of the network. While
in the usual algorithms the data is of secondary importance, in the scope of
neural networks its of primary importance, sometimes even more of the model
itself (e.g. ImageNet [20]). This should outline its importance and, therefore,
sometimes developers spend more time in building the right dataset than the
time they spend to model the network.

This led me to study the best dataset to use to train the model. This
problem is divided in three:

• defining the structure that the dataset should have when processed by
the model;

• adapting the dataset to the network input layer (dataset preprocess-
ing);

• collecting the data in order to build the dataset itself (Section 6.3.2).

The structure of the dataset

As every labeled training dataset, that too is composed by the combination of
the features fed to the network, and the labels that the network should return.
The structure of the features was anticipated at the end of Section 6.3.1, and
corresponds to the output of the previous stage of the engine. It is composed
by the concatenation of all the features of a number of services. Given the fact
that the number of services and their positions were predefined, it hasn’t been
necessary to add a dimension for the name of the service. If they weren’t already
discretized by their positions, they would have been manually discretized: the
input of a neuron can’t be a variable string, so neither the IP address, hostname
or alias could have been used.

The training labels, instead, consist of the concatenation of all the expected
labels for that specific network behaviour. The goal of the network is to infer
the device behaviour after analyzing a series of network device behaviours. The
training labels are nothing but that list of applications that compose the device
behaviour.

This means that each record of the training dataset consists of the concate-
nation of all the features previously specified and a string containing the list

78 Chapter 6. Implementation of the application

of applications that generated that behaviour. For the simple evaluation it’s
sufficient to provide to the network only the features. After their evaluation,
will be the network itself to return the inferred labels.

In theory the structure is simple and straightforward, but in the practice it
gave some problems, as explained in the following sections.

Dataset preprocessing

Given any dataset containing all the required information, it must be normalized
before it can be fed to the network. The normalization steps can be easier or
more difficult, depending on the condition of the dataset itself.

In my case I had control over the dataset generation (executed during the
previous stages of the engine). An example of a record and its header, built by
the engine, is the following one:

1 nIncomingPackets0,minIncomingLength0,avgIncomingLength0,maxIncomingLength0,totalIncomingLength0,
↪→ nOutgoingPackets0,minOutgoingLength0,avgOutgoingLength0,maxOutgoingLength0,
↪→ totalOutgoingLength0, nIncomingPackets1,minIncomingLength1,avgIncomingLength1,
↪→ maxIncomingLength1,totalIncomingLength1,nOutgoingPackets1,minOutgoingLength1,
↪→ avgOutgoingLength1,maxOutgoingLength1,totalOutgoingLength1, nIncomingPackets2,
↪→ minIncomingLength2,avgIncomingLength2,maxIncomingLength2,totalIncomingLength2,
↪→ nOutgoingPackets2,minOutgoingLength2,avgOutgoingLength2,maxOutgoingLength2,
↪→ totalOutgoingLength2, ..., nIncomingPackets19,minIncomingLength19,avgIncomingLength19,
↪→ maxIncomingLength19,totalIncomingLength19,nOutgoingPackets19,minOutgoingLength19,
↪→ avgOutgoingLength19,maxOutgoingLength19,totalOutgoingLength19, labels

2 2,66,82,99,165,2,66,83,101,167, 0,0,0,0,0,0,0,0,0,0, 2,46,401,756,802,2,60,261,462,522, ...,
↪→ 5,88,194,312,972,6,72,81,106,486, "0;91;5;178;100;8"

Since I already planned to use a neural network since the design of the
general solution, after the third stage we already have some records almost
ready to feed the network. But since I use a csv file to communicate between
the stages, there are anyway some operations to do:

1. load the dataset from the file where it was written (Section 6.4);

2. parse the features into numerical values (made exception for the labels
that are strings);

3. convert the labels string into a one-hot vector;

4. extract random batches from the dataset, now we have the features to
feed the network;

5. define the labels of the batch, now the labels too are ready to be used.

Those steps that seem so easy, absolutely are not. In the first place, I
had to load a text file (csv) in Python and parse each line to be an array.

6.3. Stage 4: the Python application 79

That was one of the simplest tasks of the list. The library pandas (https:
//pandas.pydata.org/) has the tools to do exactly that, so I simply integrated
it in the application. Therefore, with this library I executed the first step.

The next step consisted in the parsing of all the string features into numeri-
cal. To do that I adopted a feature of the library numpy (https://numpy.org/).
With this I created a matrix that represented all the dimensions (features,
columns) for each window (lines). Numpy is a powerful library and allowed me
to automatically parse the values during the matrix creation. The only limita-
tion of this approach is that there isn’t a simple way to validate the type of the
parameters. In case the type isn’t float, it will trivially throw an exception; for
this reason it’s important that the previous stage returns the correct values.

1 features = np.array(features, dtype=np.float32)

The conversion of the labels to a one-hot vector, instead, was a bit tricky.
A one-hot vector is a sequence of 0 or 1 that represents the presence or not of
each label. It is sized as the number of all the possible different labels (the size
of the output of the network, Section 6.3.1).

The reason behind the use of the one-hot vector implicitly resides in a prop-
erty of this kind of networks: in order to return multiple classes (labels), its
output must be composed by a set of neurons as big as the possible number of
different labels. After the evaluation of each input it will turn on or off each
neuron depending on the fact that that label is present or not. Obviously, it’s a
simplification of how it works, but it’s useful to understand the necessity of the
one-hot vector: it must match the output of the neural network, so that each
neuron has an expected value to compare to.

The function that converts the sparse list of labels (sparse because it contains
only the true labels and not the others) iterates over all the possible, known
labels and verifies which one is active or not. The code used is the following:

1 def labels_to_one_hot(labels_set, all_labels):
2 ground_truth = np.zeros(len(all_labels), dtype=np.int32)
3 if labels_set:
4 idx = 0
5 labels_set = list(map(int, labels_set.split(";")))
6 for label in all_labels:
7 if label in labels_set:
8 ground_truth[idx] = 1.0
9 idx += 1

10 return ground_truth

https://pandas.pydata.org/
https://pandas.pydata.org/
https://numpy.org/

80 Chapter 6. Implementation of the application

The extraction of the batches is required by the nature of the network. In
fact, it is a LSTM, therefore it wants in input a set of consecutive states. In
my case, those are six consecutive windows of the stream. In order to provide
the correct input to the network, I converted the sequence of single windows to
the sequence of set of windows (batches). So one batch consists of the sequence
of historical information that happened in sequence and that are provided as
input to the input layer of the network.

I choose to adopt one of the simplest but more precise version possible of
this batch selection: I take all the odd windows. For each one of them, I also
select the 5 following ones, so that I have the batch of 6 required windows.

In the last step, I had to define the set of labels that correspond to each
batch. The possible options I thought of are:

• collect together all the different labels present on each window of the
batch;

• take only the labels of the last window;

• all the intermediate steps (like taking only the labels of the last two win-
dows).

In the end, I decided to adopt the second solution: to take only the labels of the
last windows. The reasoning behind this choice resides in the fact that more
labels I take, the more the actual device behaviour is affected bu the previous
windows. All the windows have a size of 10 seconds, meaning that we consider
an history of 1 minute. If I consider all the labels of the windows I would infer
a device behaviour that is the compositions of all the behaviours occurred in
this minute.

The only reason I used a recurrent network is to improve its behaviour
recognition, not to bias the actual output. The historical information helps me
to differentiate between many similar network behaviours generated by different
applications, but must not affect the type of output. In conclusion I don’t want
the network to detect a behaviour already terminated because it is present in a
previous window, so I train the network only with the labels of the last window
of each batch.

After all those steps, I finally have the sequence of batches ready to be
processed by the network. I also implemented it so that it can build the nor-
malized dataset from a single file or from all the files in a folder (the batches

6.3. Stage 4: the Python application 81

are concatenated). The last step before the network can be trained consists in
the separation of train and test set. To accomplish that I used a functionality
of Scikit Learn (https://scikit-learn.org/) function: train_test_split.
It performs a train/test random split based on the proportion defined. In the
demo I chose to adopt a test size equals to 1/3 of the dataset size.

Data gathering

Once the whole system was implemented and the neural network built, all
was left to do was to find enough data to build the dataset and train the
network. After a consistent web research I couldn’t find any dataset that I could
exploit. Those I found either were too small, or were missing some information
or contained only certain types of connections.

Any of those cases was problematic. Obviously if the dataset is too small it
can’t be used to train a network, mostly if it doesn’t have enough information
to even build a single batch. If the packets contain only certain information, it
means that I could miss the properties that I need either to process the data
trough the engine or to label it properly (as discussed later on). At last, if the
packets are filtered, it means that I’m not able to correctly train the network.
In effect the network must learn to label the data in real case scenarios, and not
processing a single type of traffic carefully selected. Some examples of those
kind of datasets are the followings:

• https://www.netresec.com/?page=PcapFiles

• https://digitalcorpora.org/corpora/scenarios/nitroba-university-

harassment-scenario

• https://digitalcorpora.org/corpora/network-packet-dumps

After some time I came to the conclusion that the best, nonetheless fastest,
way to gather enough data was to generate the dataset by myself. For this
reason I built a device capable of replacing the wireless network in my house, so
that I could start sniff my wireless devices in a seamless way (especially given
the fact that almost all of them are Android).

Before reaching the best way to accomplish that, I tried many different
ways to do that. Unfortunately I got to the right solution the long way round:
testing before all the other faulty solutions. The final solution consists of a
Raspberry PI (https://www.raspberrypi.org) that works as a gateway of an
internal network, distributed trough an access point. In the meanwhile that it
provides the IP addresses to its clients and redirects all the packets (NATing

https://scikit-learn.org/
https://www.netresec.com/?page=PcapFiles
https://digitalcorpora.org/corpora/scenarios/nitroba-university-harassment-scenario
https://digitalcorpora.org/corpora/scenarios/nitroba-university-harassment-scenario
https://digitalcorpora.org/corpora/network-packet-dumps
https://www.raspberrypi.org

82 Chapter 6. Implementation of the application

Figure 6.7: The picture of the hardware system installed on
my network.

them), it also dumps all the packets that flow trough it. This means that the
Raspberry was able to generate some files containing a copy of the packets that
flowed through it. In order to replace my current networks inside the house in
a seamless way, I used an access point that provided the same SSID with the
same security protocols of the network I had in place. After completing this
configuration, I was able to replace the wireless network without the need to
reconfigure all the wireless devices present in the house.

I left the system running for almost 2 weeks, with an average of 4 devices
always connected, during which it collected almost 10GB of data. When it was
a dataset big enough to start training the network. The problem was that the
data weren’t labeled. Now that I had the data I ran into another problem: the
data wasn’t labeled.

This was the only way I had to rapidly collect enough data to train the
network, but the packets weren’t labeled and I had no idea about which appli-
cations generated them. To solve this problem it came in handy a paper that I
read some days earlier, while I was searching for a public dataset [21]. In this
paper the researchers explain how they collected and labeled enough data for
their network.

They adopted an approach similar to mine. First of all they intercepted a
huge number of packets, then they used a tool called nDPI [10] to label them.
This tool belongs to the family of the Deep Packet Inspection tools (DPI). It
is a type of data processing that inspects in detail the content of the packets
sent over a computer network. It can take action by blocking or re-routing the

6.3. Stage 4: the Python application 83

Figure 6.8: A representation of the structure of the system I
installed on my network. On top the previous infrastructure, on
bottom the new infrastructure with the sniffer-in-the-middle.

traffic, or it could simply log it.
While deepening the research, I found out that there are many tools like it

(e.g. PACE, OpenDPI, nDPI, ...). In a technical report those tools have also
been compared, and it emerged that one of the best and most updated was
actually the same nDPI [22]. After those discoveries, I decided to adopt nDPI
in my project.

This library is huge and provides a lot of functionalities, but I only needed
to label the packets with the alleged high-level application that generated it.
Theoretically it is a simple task, but the size of the library and the fact that
is written in C gave me some problems. First of all it was complex to find out
how to process a dump file and log every single label, instead of statistics. Then
the integration with the main application was extremely difficult. After a long
time while I’ve been trying to correctly make it work with JNI/JNA, the tools
that permit an interaction between Java and C, in Gradle, I decided to keep
the two programs separated. To make it interact with the main application I
decided to use the same filesystem, like between the third and fourth stages.
So now the engine will take in input one mandatory parameter: the dump
containing the packets, and an optional parameter: the file containing the labels.
If the second parameter is provided, the various stages of the engine propagate
the information regarding the labels themselves (contained in the respective
extensions). Otherwise it simply ignores it, moreover that the labels are only
required for the dataset training.

At the end of all that, I was able to sniff the raw packets, label each one
of them through an inspection of their content and, at last, to generate the

84 Chapter 6. Implementation of the application

training dataset by processing the packets and their labels trough the engine.

6.4 Applications interaction: the file

Making two different program interact isn’t always an easy task to accomplish.
It requires to use some sort of middleware of communication. For example, we
could use a web socket, a shared space, or the storage space of the filesystem.

For this application I adopted the third solution: the filesystem. It was
the fastest solution to adopt and also permitted a form of logging that was
extremely useful in the debug phase. In effect, any stage could make some sort
of logging by writing its output to file too, but it isn’t always necessary and
would be an extremely heavy computation of Input/Output.

Instead, I only chose to log the output of the third stage, so that it could
be both displayed (in the fifth stage) or inspected (in the fourth stage). To
make it easier to understand the data, I saved it in different files at a different
aggregation level and with different structures.

The main file formats that I used were JSON (Section 6.1.4) and CSV
(Section 6.1.5). Every device I analyze on the network has its own set of files.
Those files contain different representations of the device behaviour. Obviously
each device behaviour is split in its many windows during whose it has been
detected. The files that describe the behaviour of each device are:

• a json file that contains the full device behaviour. It is sufficient for any
other application to retrieve all the knowledge generated at the third stage.
The only reason for which there are other files is to make it easier for the
user and other programs to extract certain information without parsing
the whole json;

• a csv with the full device behaviour at the maximum detail level. It
contains the same information present in the json, but in a tabular format.
Each line is a record with the data from a different atomic behaviour,
while the information regarding the service behaviour are repeated in a
redundant way;

• a csv with partial information regarding the device behaviour at the detail
level of the single service behaviour. With one record for each service,
it doesn’t retain any information regarding the atomic behaviours that
compose that service. It’s extremely useful to visualize charts without
loosing our self with the enormous number of behaviours. It gives an idea
to the user of what its happening on the device;

6.5. Results 85

Accuracy Loss
Train 98.16% 04.90%
Test 97.93% 05.67%

Table 6.1: The performances of the network at the 15th epoch.

• a csv that contains the information required by the fourth stage: the
Neural Network. Each record is already discretized and structured for the
NN. It is almost impossible for the user to understand those data, given
the fact that those are just a series of numbers. In order to prepare the
data for the NN, the file also contains the empty windows (filled with the
default values) and the rows are formatted so that they contain all the
services. If a service didn’t occurred in a certain windows, that one is
compiled with the default values (zeros).

Obviously there could be a lot more files as could just be one file containing
all the information of the behaviour. The reason why I used those files is to
facilitate both the handover to the fourth stage and the data visualization for
the user during the debug.

6.5 Results

After two weeks of data gathering, the time had finally come for me to test the
effectiveness of the engine. I used the scripts to run the data through the first
3 stages. This operation required approximately 12 hours. From this execution
I obtained the set of files containing the dataset ready for being used to train
the network. The total occupied space was of under 100 megabytes.

To train the network I used a machine with a Intel(R) Xeon(R) CPU E5-
2640 with 32 CPUs running at 2.00GHz. Once the dataset were loaded on the
machine, I launched the network training. As shown in the Figure 6.9, after
just 10 epochs we had an accuracy of 98.09% on the train set and 97.9% on the
test set; the loss was just of 5% for both the train and the test set.

Overall, the best results were obtained in the 15 epoch. At that point the
performances were of an average accuracy of 98.00% and average loss of 5.25%.
From that epoch, the network encountered a famous problem in neural networks:
it started overfitting the training set. This means that, while the train set was
ever increasing its performance, the test set was performing badly, much worse
than at the 15th epoch. For more details refer to the Table 6.1.

Given the little information I gave to the network (under 100 megabytes
regarding the traffic of multiple devices for 2 weeks), I considered those data

86 Chapter 6. Implementation of the application

Figure 6.9: This picture represents the improvements of the
network in accuracy and loss. On the left we can see the values
applied to the train set, on the right those applied to the test

set.

as great. This was the first proof that the model could works, but I still had
to make sure that the network was really inferring some significant information
from the data, and that it wasn’t just matching meaningless labels (e.g. Un-
known). To perform this further check, I modified the application to be able to
process real time information and provide an immediate feedback to the user:
Section 6.6.

6.6 Real-time testing: the live version

The realization of the live version consisted of three essential steps:

• build a sniffer that captures the live traffic from a network interface instead
of loading a dump file;

• make the python application able to be notified of any change to the input
file (modified while the application is running);

• load a trained network and use it to evaluate the input windows.

To complete the first step, I basically modified the Sniffer so that it can
be both initialized with a dump file, and it uses its content, or with an interface
of the device, and it uses the live traffic flowing trough it. The effort required
was more than the one needed to implement the version with the dump files,
but in the end I was able to make it work with both the configurations.

6.7. The interface 87

In order to simplify the debug, I gave the sniffer the ability to dump all
the packets it intercepts into a dump file. This allows me to reprocess all the
packets later on, so that I can double check the result or tune the engine.

Once the sniffer was implemented, the model and the good design of the
application proved themselves again: all the following stages were already ready
to process live traffic. In effect, for those stages the data flow of live traffic isn’t
any different from the flow generated from the live traffic. Without any other
application updates it already generated some output files that it kept updated
as the stream proceeds.

However, the Python application required to be redesigned in order to finish
the second and third steps. It was designed to perform bulk processing on large
datasets and use them to train a network. Now I want to use the aforesaid
trained network to evaluate the live windows.

To do that, I integrated in the application a new tool: Watchdog (https:
//pypi.org/project/watchdog/). It observes a folder and notifies me every
time a file is created, deleted or modified. Thanks to this library I was able to
call a function every time the file is updated.

In this function, I take the last 6 records (the last window and its 5 previous
ones) and evaluate them trough the network. In order to use an already trained
network, I had also to find a way to save it in a file. Luckily, Tensorflow itself
provides a functionality to do that. With a specific callback, we are able to save
all the parameters of the network in a file after each training epoch.

6.7 The interface

For the program I planned two possible usage scenarios:

• via GUI (Graphical User Interface);

• via command line.

The first scenario is useful when the user just want to manually execute the
program, for example a final user or myself during the first stage of the testing.
The second scenario is designed for those who want to embed the program in
a script, run it remotely or execute it periodically. It takes a set of arguments
that specify the task to perform and directly process the data without any kind
of graphical interface. The only exception is the the console logging of the
application.

https://pypi.org/project/watchdog/
https://pypi.org/project/watchdog/

88 Chapter 6. Implementation of the application

6.7.1 Graphical User Interface

For the graphical interface, I decided to use JavaFX (https://openjfx.io/).
It is a powerful open-source library to develop graphical user interfaces in Java.

I designed 3 main application windows:

• The main application window : it’s the first window displayed when the
user executes the application. It guides the user in the selection of the
task he wants to accomplish. Actually there are 2 possibilities: either the
user starts the engine, or he can open an example of the implementation
of the fifth stage;

• the extraction window : this window allows the user to configure the engine
and launch its computation. There are 2 main possibilities: either the
user wants to start the engine with a dump file as source, or he wants
to perform a real-time analysis. Obviously, the user can configure all the
parameters of each one of those configurations;

• the analysis window : this window is a prototype of a version of the fifth
stage that uses the results of the third stage, other than the fourth. In
this case, it uses exclusively the output of the third stage to display some
charts regarding the traffic. It could be extremely useful to the user to
understand what’s happening on the device and to identify some simple
patterns. More details about this interface can be found at Section 7.1.

6.7.2 Command line

This kind of execution is perfect for scripting and automatic executions. I
designed it so that it would be easier to run the program automatically on a
series of files or to provide it the default values for execution.

For the Scala application, the arguments it supports are:

• –no-gui: disables the graphical interface;

• -i $path$: specifies the input path of the pcap file;

• -d $device$: specifies the index of the device that must be used for the
live sniffing;

• -ip $address$: a list of comma separated IP address of the devices we
want to analyze in the network traffic.

https://openjfx.io/

6.7. The interface 89

(a)

(b) (c)

(d) (e)

Figure 6.10: Some screenshots of the application GUI.
(a) the main application window

(b) the extraction window live and (c) the extraction window
from dump files

(d) the analysis window
(e) some analysis charts

90 Chapter 6. Implementation of the application

The first parameters is used when you don’t want the graphical interface to
be shown, but, instead,

The first parameter is used when you want the processing to immediately
start with a specific configuration (provided trough the arguments), without
the need to interact with a graphical user interface. In this case, the GUI isn’t
either shown at all. If it is present, then either the path or the device must be
specified (respectively depending on whether you want to use a dump file or a
live device sniffing), together with the IP address.

In case the GUI is displayed, those parameter are all optional. The are only
used to fill the input fields with the default values.

For what matters the Python application, all the arguments are mandatory.
There are 2 possible version of the application to execute:

• the training program, that uses some dumps to train the network;

• the live program, that keep observing a file to detect new live updates.

The first one, Application.py, only requires the definition of the folder
where it can find all the dumps and the destination where it can save the model
of the network. The second one, Application_live.py, similarly requires the
user to define what is the file to observe and where is the network model he
can load. Both applications, once those parameters are correctly defined, run
seamlessly. They don’t require any kind of interaction with the user except the
application termination.

In order to improve the usability of the whole system, I also wrote some
scripts that make use of those parameters, as explained in Section 6.8.

6.8 Some scripts

I created some scripts to simplify and automate the system execution. In partic-
ular, I created two scripts to automatically process all the pcap files in a folder.
Their creation was driven by the necessity of creating a consistent dataset for
the training of the neural network at the fourth stage (Section 6.3). For this
reason, the primary goal of the scripts was to process the raw packets through
the first 3 stages and to pile them up, ready to be used to train the network. In
practice, it should just simplify the dataset creation. Despite that, the scripts
can be slightly modified to perform bulk analysis of some network traffic, even
trough the following stages. The scripts are:

6.8. Some scripts 91

• dataset_generation.sh: given the pcap path, the IPs to analyze and
the destination of the dataset, it computes and saves the dataset, ready
for NN, in the destination;

• dataset_generation_recursive.sh: given the pcap folder path, the IPs
to analyze and the destination path, it elaborates all the pcap files and
saves all the dataset, ready for NN, in the destination path.

In practice, the second script calls the first one to process all the pcap files
in the folder, so the main complexity resides in that one.

The first script has to perform 3 main actions:

1. generate all the labels of the traffic from the pcap file;

2. generate the dataset files using the pcap and the labels;

3. move the file ready for the NN to the destination path.

The first step is accomplished by executing the C program responsible of
the labeling. It generates a file that, together with the other arguments, is
provided to the Scala application. By executing this program it completes the
second step and obtains all the output files. The last step is to take the neural-
network-ready file and to move it in the destination folder for the datasets.

At last, I also wrote a script to automate the execution of the version in real
time (live_run.sh). It takes as parameters:

1. the path to the configuration of the trained network;

2. the IP to watch;

3. the number of the interface where the traffic is observed;

4. the path to the Java runtime.

In order to make the script work, it must be executed by an user with
administration privileges (e.g. using sudo or providing the specific Linux Ca-
pabilities). The reason resides in the fact that the live sniffing requires special
permission. This kind of permissions can only be granted by the administrator
of the machine, therefore the necessity to execute it with a privileged account.

This script configures the system and executes all the application needed to
build a full engine. Then it starts sniffing the interface and processes the raw
packets trough the engine, until it is provided to the user the inferred device
behaviour.

93

Chapter 7

Knowledge applications

I designed a special stage in charge of using all the information gathered: the
fifth stage. It is the one in charge of using the information retrieved to perform
some specific operations, that can vary from the simple data display, to the
more complex anomaly detection.

Obviously, in order to test the prototype, I had to realize a basic version of
the fifth stage that displays a minimal amount of knowledge. This is deepened
in Section 7.1.

Other than that basic necessity, I also modelled a more complex version of
this stage. The goal of this design is to prove that the fifth stage is actually one
of the more ductile stages in the whole engine. It can take all the information
provided, and use them anyway he wants. Therefore, other than displaying the
results of the previous stages, I designed a possible solution to detect anomalies
in the device behaviour. Its purpose is to "encapsulate" the device behaviours
so that any anomaly triggers an alarm. This version of the stage is detailed in
Section 7.2

7.1 The basic interface

A simple data display can be performed in many ways and can show different
things. The simplest version of the interface displays the device behaviour
inferred at each window. In order to prove the possibility to use the information
generated at the third stage too, I made another interface that displays some
charts.

The first interface, the one who displays the device behaviour detected, is a
simple console output. The purpose of an interface like that is mainly limited to
the debugging and validation of the model. In some real-case scenarios, nobody
would ever want to spend his days in front of the display in order to see all the
occurring behaviours. It would also have problems with the scalability of the

94 Chapter 7. Knowledge applications

system (e.g. many devices at once). A possible output of this interface can be
found in Figure 7.1.

Figure 7.1: This is an example of the output from the fifth
stage when executing the live application.

The fifth stage isn’t limited to display only the data flowing out from the
fourth stage. In fact, it can see all the output generated by the third stage as
well. To prove that feature, I realized the second interface. It takes the output
of the third stage (the networking device behaviour) and displays it trough some
charts. This can provide another level of awareness to the user, because with
that the user can address the reasons why the system says that a certain device
is having a specific behaviour. It can also be used by the user to manually
identify some simple patterns. A visualization of this kind of interface can be
found in Figure 7.2.

7.1. The basic interface 95

Figure 7.2: This is an example of what charts are displayed
when observing a network device behaviour. On top some global
stats regarding the global traffic; on bottom each line of charts
is relative to a single service and details all its different features.

96 Chapter 7. Knowledge applications

7.2 A behaviour encapsulation to detect anoma-

lies

As mentioned above, those discussed in Section 7.1 are interfaces mostly useful
during the debug (and in the validation process of the model). Outside of that,
in some real-case scenarios, the administrator of a system could use this model
to detect the behaviour of the devices inside its network. This detection could
then be combined with a set of rules that check that the behaviour of those
devices respects, for example, the company policies.

Therefore, I believe that one of the most useful, and possibly required, func-
tionalities could be a tool to detect anomalies. Despite that, it is a different
feature than the common anomaly detection tools. Common anomaly detection
tools are trained to detect only a certain type of anomalies, and usually on a
specific kind of traffic. The can be easily adopted server-side, but it’s often
difficult to detect anomalies in the traffic of a device like a smartphone: it is
too unpredictable.

For this reason I designed this detection in a similar way to tools like Ap-
pArmor (https://wiki.ubuntu.com/AppArmor). In practice, this kind of tools
build a "cage" around an application to protect the system. At the same way,
we can build a cage around the device behaviour to protect the network and,
at the same time, possibly detect the presence of malware. Anyway, it’s impor-
tant to point out that the purpose of this tool is not to detect malware, but
anomalies of any kind.

7.2.1 The design

In order to encapsulate the behaviours, I designed a structure that allows the
definition of the encapsulating "cages". It is called expected device behaviour
and permits the definition of the boundaries of a single detected device be-
haviour. How it works, is that it defines some bounds for certain features of
the behaviour. For example, we could specify that a certain behaviour (e.g. all
the communications with a certain service) can never exceed a certain network
throughput in upload or download. Other than those boundaries, the expected
behaviour is also composed of a set of rules. Those rules are required to define
other controls, possibly more strict or simply different, and to specify how the
boundaries must be respected (e.g. percentile tolerance).

https://wiki.ubuntu.com/AppArmor

7.2. A behaviour encapsulation to detect anomalies 97

Figure 7.3: This image represents the structure of the be-
haviour encapsulation. On the left the device behaviour de-
tected, on the right the structure of the cages for the devices
behaviours (expected device behaviour) and their comparison

(behaviour comparison).

The structure of the device behaviour, anyway, is complex and composed
by many applications that generates many service behaviours. For this reason
I designed the expected device behaviour to map this same structure.

For each device behaviour, we can have many applications. Each expected
application is structured similarly to its parent: it can match a set of features of
the application and has a set of specific rules. At the same way, the application
behaviour is composed by many expected service behaviour. In effect, each
application can communicate with different services, generating different service
behaviours on the network. Again, every expected service behaviour defines the
boundaries for its features and can make use of a set of specific rules.

The reason for which I introduced the concept of application behaviour, that
doesn’t exists in the detected device behaviour, is to simplify the management of
those cages. That way, the user can define a set of applications (e.g. Instagram
or Browser) and each one of them contains the corresponding services (e.g.
Instagram communicates in a specific way with both Facebook and Instagram).
Then, many different applications can include the same service (e.g. Instagram
includes Facebook as well as Facebook does) with different boundaries that
must be merged together.

This means that it can be defined some generic profile for each application
(the cage). This would be a standard profile, that could even be distributed
trough an official online database. This would allow each user to download and
activate it for its device, without the necessity to build it manually.

At the end, the principle is that each device behaviour detected is compared

98 Chapter 7. Knowledge applications

with the whitelist or blacklist of expected behaviours. Then, eventually, those
can trigger an alarm when the device is exceeding the boundaries defined.

7.2.2 Implementation in the demo

When I designed the application, I also designed those comparison tools and,
during the implementation, I implemented the basic structures. At the end I
didn’t end up using them fifth stage, but the basic structures are ready to be
adopted and configured.

To generalize the structure, I adopted the concept of expected behaviour and
complex expected behaviour. The first one defines the boundaries and rules for
a generic behaviour in a specific time-window. The second one defines some
more complex rules about the possible sequences of behaviours in a sequence of
windows. This is a generic structure applicable to any layer (device, application
or service), but I didn’t designed the single specific versions.

In the implementation, the ExpectedComplexBehaviour only contains a se-
quence of ExpectedPatternWindowBehaviour. Each one of those objects basi-
cally is a pattern o behaviours. It specifies the boundaries that a sequence of
behaviours should respect and the additional rules. An example of a possible
rule could be the type of comparison that should be done between the sequence
of detected behaviours and this sequence (e.g. ordered or random, consecutive
or sparse, etc). To define the boundaries of each single window behaviour, it
uses the ExpectedBehaviour.

I also provided a basic implementation of the InternetExpectedService-

Behaviour and of the InternetExpectedServiceWindowBehaviour, that ac-
tually compare some Internet behaviours with the specified pattern.

At the end, we are able to compare any sequence of behaviours, occurring
in time, with the specified structure. With this implementation it is possible
to perform a low-level comparison. By removing the concept of application,
we can define the cages for specific sequences of service behaviours. Anyway,
it isn’t ready to be adopted out-of-the-box yet. It will need some more tuning
and the definition of some rules and profiles, so that it can be actually tested.

99

Chapter 8

Conclusions

The purpose of the thesis was to design a model for the recognition of the be-
haviour of networked devices. Without installing any application on the device
itself, or even modifying the network structure, it must only use the network
traffic to obtain the required information. Due to the spread of cryptographic
techniques, the challenge of the thesis was to do it without even using the
payload of the packets.

This led me to discard all the previous researches, that all broke one of the
constraints. Instead, I designed a model that was able to only use the network
traffic metadata to identify the networking behaviour of the devices, and then
to infer the device behaviour itself.

In order to prove the validity of the model, I built a prototype application.
The application implements a basic version of the model, but already provides
promising results. This prototype was built and trained to detect the behaviour
of Android devices, but it’s important to note that it was designed in an ex-
tremely modular way. With a slight modification it would be able to detect
the behaviour of any kind of networked device, not only Android ones, or even
using other protocols (e.g. Bluetooth).

As previously said, the results are extremely promising. The prototype
was able to infer the right behaviour with an extremely high accuracy (about
98%). Given the little information it retains from the network traffic (just some
aggregated data regarding the metadata of the packets), it is an astonishing
result. The model proved to be extremely effective and the efficient. The bigger
risk of the research was that the metadata may not be enough to infer the
device behaviour. With the prototype I was able to prove that they already
retain an incredible amount of information, and can be used to infer significant
knowledge.

With the designed model, I was even able to even perform a live analysis

100 Chapter 8. Conclusions

of the network traffic. That proved the ultimate effectiveness of the model,
since it was able to detect the custom behaviours that I was producing live on
purpose. In fact, I was worried that the prototype could mistake similar network
behaviours. This didn’t occurred, showing that retaining 1 whole minute of data
is enough to consistently infer the correct behaviour.

This is an extremely promising work, that could enable new techniques in
the traffic analysis for both protecting the network and the user itself. This is an
earlier stage for this type of analysis, so there are many possible developments.
First of all the prototype could be improved. In fact, it is just a simplified
prototype and only uses the basic properties of the Internet packets. It even
manually extracts from them the networking device behaviour. This could be
replaced with a neural network properly trained (e.g. CNN). It would also be
possible to use many more features to refine the result, like the duration of a
communication session, the type of established connection and of the client.

Another important characteristic of the model is its polymorphism. In fact,
it is not only able to detect the Internet traffic at the transport layer, but it
could also be used to infer the behaviour of other layers (e.g. encrypted WiFi
packets) or other protocols (e.g. Bluetooth). It wasn’t deepened in this research,
due to obvious reasons of focus and of time, but it is as much powerful as the
Internet analysis.

At last, but not least, the fifth stage can be considerably improved. I only
provided a demonstration of its potential, but it can be replaced with most func-
tional interfaces, especially if it is adopted in the industrial environment. Right
now the inferred behaviour is composed by a simple list of application/proto-
cols; it can be improved with information like the weight of each one of them,
its probability and other similar properties.

The use cases of this work are many and various. It was thought to support
a network administrator to gain a better understanding of the behaviour of
the devices in its network. This new knowledge helps him both protect the
organization from a malicious user as well as protect the user itself. In effect,
the features of this new tool can be used to detect the presence of anomalies,
like malware installed on the device. At the moment, there is the necessity of
providing better tools for Operational Technology (OT) security [23], given the
rising Industry 4.0 [24]. This is as much of interest to the company as much

Chapter 8. Conclusions 101

to the oblivious user that is informed of the risk he is taking (Bring-your-own-
device (BYOD) policies [25]).

The last important feature of this work is its wide flexibility. It works if
installed on a network router, but it simply uses the header of the packets.
This means that if it is meant to be used to supervise the device in a WiFi, it
can even be installed on a custom device in that same network. Just observing
the wireless traffic, it would be able to detect the behaviours of all the other
networked devices (easy-to-install).

At last, I would like to note that the aim of this work is to detect the device
behaviour. Even if the global behaviour is the same, different users could behave
slightly differently. In the future, this slight difference could be exploited to
make a fingerprinting of the user using a device, therefore recognizing him as
soon as he enters the network. For example, this could be used to make a local
authentication of the user or to detect if its device is being used by someone
else. So I chose to focus the work on Android devices, conscious that in the
future it can be exploited on every possible networked device.

103

Bibliography

[1] K. Kannan and R. Telang, “An economic analysis of market for software
vulnerabilities”, Apr. 2004.

[2] B. M. Leiner, V. G. Cerf, D. D. Clark, R. E. Kahn, L. Kleinrock, D. C.
Lynch, J. Postel, L. G. Roberts, and S. Wolff, “A brief history of the
internet”, SIGCOMM Comput. Commun. Rev., vol. 39, no. 5, pp. 22–31,
Oct. 2009, issn: 0146-4833. doi: 10.1145/1629607.1629613. [Online].
Available: http://doi.acm.org/10.1145/1629607.1629613.

[3] E. H. Spafford, “The internet worm incident”, in ESEC ’89, C. Ghezzi
and J. A. McDermid, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg,
1989, pp. 446–468, isbn: 978-3-540-46723-6.

[4] C. Cimpanu, “For two hours, a large chunk of european mobile traffic was
rerouted through china”, ZD Net, Jun. 7, 2019. [Online]. Available: https:
//www.zdnet.com/article/for-two-hours-a-large-chunk-of-

european-mobile-traffic-was-rerouted-through-china/ (visited
on 10/23/2019).

[5] R. Sobers, “Data breach response times: Trends and tips”, ZD Net, Mar. 13,
2019. [Online]. Available: https : / / www . varonis . com / blog / data -
breach-response-times/ (visited on 10/23/2019).

[6] P. Velan, M. Čermák, P. Čeleda, and M. Drašar, “A survey of methods
for encrypted traffic classification and analysis”, International Journal of
Network Management, vol. 25, no. 5, pp. 355–374, 2015. doi: 10.1002/
nem.1901. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.
1002/nem.1901. [Online]. Available: https://onlinelibrary.wiley.
com/doi/abs/10.1002/nem.1901.

[7] S. LLC, GlassWire, https://www.glasswire.com/, [Online],

[8] R. Zalenski, “Firewall technologies”, IEEE Potentials, vol. 21, no. 1, pp. 24–
29, Feb. 2002, issn: 1558-1772. doi: 10.1109/45.985324.

https://doi.org/10.1145/1629607.1629613
http://doi.acm.org/10.1145/1629607.1629613
https://www.zdnet.com/article/for-two-hours-a-large-chunk-of-european-mobile-traffic-was-rerouted-through-china/
https://www.zdnet.com/article/for-two-hours-a-large-chunk-of-european-mobile-traffic-was-rerouted-through-china/
https://www.zdnet.com/article/for-two-hours-a-large-chunk-of-european-mobile-traffic-was-rerouted-through-china/
https://www.varonis.com/blog/data-breach-response-times/
https://www.varonis.com/blog/data-breach-response-times/
https://doi.org/10.1002/nem.1901
https://doi.org/10.1002/nem.1901
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nem.1901
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nem.1901
https://onlinelibrary.wiley.com/doi/abs/10.1002/nem.1901
https://onlinelibrary.wiley.com/doi/abs/10.1002/nem.1901
https://www.glasswire.com/
https://doi.org/10.1109/45.985324

104 BIBLIOGRAPHY

[9] T.-Y. Kim and S.-B. Cho, “Web traffic anomaly detection using c-lstm
neural networks”, Expert Systems with Applications, vol. 106, pp. 66–76,
2018, issn: 0957-4174. doi: https://doi.org/10.1016/j.eswa.2018.
04.004. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0957417418302288.

[10] ntop, nDPI, https://www.ntop.org/products/deep-packet-inspection/
ndpi/, [Online],

[11] A. Mohaisen, O. Alrawi, J. Park, J. Kim, D. Nyang, and M. Mohaisen,
Network-based Analysis and Classification of Malware using Behavioral
Artifacts Ordering, https://arxiv.org/pdf/1901.01185.pdf, [Online],
2019.

[12] A. Shabtai, L. Tenenboim-Chekina, D. Mimran, L. Rokach, B. Shapira,
and Y. Elovici, Mobile malware detection through analysis of deviations in
application network behavior, https://cyber.bgu.ac.il/wp-content/
uploads/2017/10/1-s2.0-S0167404814000285-main.pdf, [Online],
2014.

[13] H. Aria, Android Malware Detection Using Network Behavior Analysis
And Machine Learning Classifiers, https://csec.it/MSTheses/Aria.
pdf, [Online], 2017.

[14] H. P. Barge and P. R. Chandre, “Malware detection in mobile through
analysis of application network behavior by web application”, 2016.

[15] R. Jin and B. Wang, “Malware detection for mobile devices using software-
defined networking”, in 2013 Second GENI Research and Educational Ex-
periment Workshop, Mar. 2013, pp. 81–88. doi: 10.1109/GREE.2013.24.

[16] D. Bekerman, B. Shapira, L. Rokach, and A. Bar, “Unknown malware
detection using network traffic classification”, in 2015 IEEE Conference
on Communications and Network Security (CNS), Sep. 2015, pp. 134–142.
doi: 10.1109/CNS.2015.7346821.

[17] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and J. Lloret, “Net-
work traffic classifier with convolutional and recurrent neural networks
for internet of things”, IEEE Access, vol. PP, pp. 1–1, Sep. 2017. doi:
10.1109/ACCESS.2017.2747560.

[18] S. Rezaei and X. Liu, “Deep learning for encrypted traffic classification:
An overview”, IEEE Communications Magazine, vol. 57, no. 5, pp. 76–81,
May 2019. doi: 10.1109/MCOM.2019.1800819.

https://doi.org/https://doi.org/10.1016/j.eswa.2018.04.004
https://doi.org/https://doi.org/10.1016/j.eswa.2018.04.004
http://www.sciencedirect.com/science/article/pii/S0957417418302288
http://www.sciencedirect.com/science/article/pii/S0957417418302288
https://www.ntop.org/products/deep-packet-inspection/ndpi/
https://www.ntop.org/products/deep-packet-inspection/ndpi/
https://arxiv.org/pdf/1901.01185.pdf
https://cyber.bgu.ac.il/wp-content/uploads/2017/10/1-s2.0-S0167404814000285-main.pdf
https://cyber.bgu.ac.il/wp-content/uploads/2017/10/1-s2.0-S0167404814000285-main.pdf
https://csec.it/MSTheses/Aria.pdf
https://csec.it/MSTheses/Aria.pdf
https://doi.org/10.1109/GREE.2013.24
https://doi.org/10.1109/CNS.2015.7346821
https://doi.org/10.1109/ACCESS.2017.2747560
https://doi.org/10.1109/MCOM.2019.1800819

BIBLIOGRAPHY 105

[19] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization,
2014. arXiv: 1412.6980 [cs.LG].

[20] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “Im-
agenet large scale visual recognition challenge”, International Journal of
Computer Vision, vol. 115, no. 3, pp. 211–252, Dec. 2015, issn: 1573-
1405. doi: 10.1007/s11263-015-0816-y. [Online]. Available: https:
//doi.org/10.1007/s11263-015-0816-y.

[21] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and J. Lloret, “Net-
work traffic classifier with convolutional and recurrent neural networks
for internet of things”, IEEE Access, vol. PP, pp. 1–1, Sep. 2017. doi:
10.1109/ACCESS.2017.2747560.

[22] T. Bujlow, V. Carela-Espãnol, and P. Barlet-Ros, “Comparison of Deep
Packet Inspection (DPI) Tools for Traffic Classification”, Universitat Politèc-
nica de Catalinya, Tech. Rep., Jun. 2013.

[23] R. Piggin, “Industrial systems: Cyber-security’s new battlefront [informa-
tion technology operational technology]”, Engineering Technology, vol. 9,
no. 8, pp. 70–74, Oct. 2014, issn: 1750-9637. doi: 10.1049/et.2014.
0810.

[24] H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann, “Industry
4.0”, Business & Information Systems Engineering, vol. 6, no. 4, pp. 239–
242, Aug. 2014, issn: 1867-0202. doi: 10.1007/s12599-014-0334-4.
[Online]. Available: https://doi.org/10.1007/s12599-014-0334-4.

[25] Y. Wang, J. Wei, and K. Vangury, “Bring your own device security issues
and challenges”, in 2014 IEEE 11th Consumer Communications and Net-
working Conference (CCNC), Jan. 2014, pp. 80–85. doi: 10.1109/CCNC.
2014.6866552.

http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/ACCESS.2017.2747560
https://doi.org/10.1049/et.2014.0810
https://doi.org/10.1049/et.2014.0810
https://doi.org/10.1007/s12599-014-0334-4
https://doi.org/10.1007/s12599-014-0334-4
https://doi.org/10.1109/CCNC.2014.6866552
https://doi.org/10.1109/CCNC.2014.6866552

	Introduction
	Background
	The evolution of Internet
	Tools for the traffic analysis
	Firewalls
	Anomalies detection
	New powerful tools: Neural Networks
	Recurrent Neural Network

	Behaviour analysis research

	Problem definition
	A model for the behaviour recognition
	Everything is a Stream
	Windowing
	High modularity means easy cooperation
	Some definitions
	The main stages
	Stage 1: properties extraction
	Stage 2: behaviour extraction
	Stage 3: behaviour aggregation
	Stage 4: behaviour translation
	Stage 5: result interpretation

	An application for the behaviour recognition
	Design
	Core structure
	PropertiesPacket
	Behaviour
	AtomicBehaviour
	ServiceBehaviour
	DeviceBehaviour

	Demo structure
	Stage 1
	Stage 2
	Stage 3
	Stage 4

	Implementation of the application
	The tools
	Packet capture
	Scala
	Tensorflow
	JSON
	CSV

	Stage 1 to 3: the Scala application
	Packaging
	Properties packet
	Finding the service name

	Atomic behaviour
	Service behaviour
	Service window behaviour

	Device behaviour
	The role of the ServiceManager

	The Engine
	The sniffer
	The problem of the properties extraction

	Stage 4: the Python application
	The network model: LSTM
	The dataset
	The structure of the dataset
	Dataset preprocessing
	Data gathering

	Applications interaction: the file
	Results
	Real-time testing: the live version
	The interface
	Graphical User Interface
	Command line

	Some scripts

	Knowledge applications
	The basic interface
	A behaviour encapsulation to detect anomalies
	The design
	Implementation in the demo

	Conclusions

