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If you torture the data long

enough, it will confess

–Ronald Coase

It’s tough to make predictions,

especially about the future

–Danish proverb





Abstract

Separare nettamente l’evoluzione della fisica delle alte energie dalle risorse com-

putazionali da essa richieste é, oggigiorno, impossibile. LHC, ogni anno, produce

infatti dozzine di PetaBytes di dati, la cui gestione richiede il coordinamento di

storage, risorse di calcolo e networks ad alte prestazioni. Come conseguenza del

passaggio a HL-LHC, é previsto un significativo aumento nel volume di dati. Ció

implica la necessitá di un parallelo upgrade delle risorse computazionali. In tal

senso, la HEP Software Foundation ha pubblicato un documento ufficiale in cui

vengono definite le tappe di sviluppo delle piattaforme software e hardware neces-

sarie a rendere le infrastrutture di calcolo adeguate alla fase ad Alta Luminositá.

INFN-CNAF, centro di calcolo nazionale dell’INFN, contribuendo e partecipando

all’aggiornamento collettivo, ha impostato uno studio preparatorio con l’obiettivo

di definire un paradigma di manutenzione predittiva automatizzata basata su log

file dei servizi ospitati al centro. L’obiettivo di lungo termine consiste sia in un

miglioramento delle performance sia nella costruzione di un’infrastruttura di cal-

colo altamente efficiente e automatizzata.

La tesi contribuisce a tale studio sviluppando un prototipo originale in grado di

identificare, in modo unsupervised. intervalli temporali critici nei log file giornalieri

di un dato servizio relativi ad un dato giorno e di esplorarli mediante tecniche di

Text Processing, estraendo cośı contenuto informativo di alto livello.



Abstract

Splitting the evolution of HEP from the one of computational resources needed

to perform analyses is, nowadays, not possible. Each year, in fact, LHC produces

dozens of PetaBytes of data (e.g. collision data, particle simulation, metadata etc.)

that need orchestrated computing resources for storage, computational power and

high throughput networks to connect centers. As a consequence of the LHC up-

grade, the Luminosity of the experiment will increase by a factor of 10 over its

originally designed value, entailing a non negligible technical challenge at comput-

ing centers: it is expected, in fact, an uprising in the amount of data produced and

processed by the experiment. With this in mind, the HEP Software Foundation

took action and released a road-map document describing the actions needed to

prepare the computational infrastructure to support the upgrade. As a part of

this collective effort, involving all computing centres of the Grid, INFN-CNAF has

set a preliminary study towards the development of data+AI driven maintenance

paradigm. As a contribution to this preparatory study, this master thesis presents

an original software prototype that has been developed to handle the task of iden-

tifying critical activity time windows of a specific service (StoRM). Moreover,

the prototype explores the viability of a content extraction via Text Processing

techniques, applying such strategies to messages belonging to “anomalous” time

windows.
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Introduction

Splitting the evolution of HEP from the one of computational resources needed

to perform analyses is, nowadays, not possible. Each year, in fact, LHC produces

dozens of PetaBytes of data (e.g. collision data, particle simulation, metadata etc.)

that need orchestrated computing resources for storage1, computational power2

and high throughput networks to connect centres and allow data transfers3. These

ambitious requirements have been met by the WLCG project, an infrastructure

that has always played a crucial role in LHC discoveries. The request for resources,

nonetheless, is deemed to raise in the near future, after Long Shutdown 2. The

LHC upgrade will, in fact, increase the Luminosity of the experiment (see Chapter

1 for details) by a factor of 10 over its originally designed value, an unprecedented

result that will entail a non-negligible technical challenge, starting from Run-3 and

Run-4. It is expected, as a consequence of the Luminosity increment, a signifi-

cant uprising in the amount of data produced by the experiment as well as in the

processing workload over Grid members, the Tiers. With this in mind, the HEP

Software Foundation took action and released a road-map document [2] describing

the actions needed to prepare the computational infrastructure to support the up-

grade. As a result, an Operational Intelligence group was established with a view

to improving, via Analytics and Machine Learning tools, the usage of present-day

facilities and their adequacy in view of HL-LHC experiments.

As a part of this collective effort, involving all computing centres of the Grid,

INFN-CNAF has set a preliminary study towards the development of an AI-driven

1order of magnitude required: ExaBytes
2order of magnitude required: 105 high-end CPUs
3order of magnitude: 60 GB/s transfer
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maintenance paradigm [3] based on log files produced by specific computational

services. The foresight is, in the reasonably near future, to build up an automatised

maintenance paradigm, capable of predicting when and why a service might fail,

thus improving the efficiency and reliability of INFN-CNAF computing center.

As a contribution to this preparatory study, this master thesis presents an origi-

nal lightweight software prototype that has been developed to handle the task of

identifying critical time windows of a service (StoRM). Moreover, the prototype

explores the viability of a content extraction via Text Processing techniques, ap-

plying such strategies to messages belonging to “anomalous” time windows.

Chapter 1 provides an overview of the upgrade schedule at LHC, describing

HSF Community White Paper implications over the future of HEP computation.

Intelligence Operations and Machine Learning approaches at LHC are, as well,

discussed.

Chapter 2 provides a description of the WLCG project, with particular at-

tention to the INFN-CNAF Tier 1 facility, which this work focuses on.

Chapter 3 defines the concept of “System Maintenance” describing its com-

mon declinations and introduces the log-based maintenance project, one of the

CNAF main lines of research.

Chapter 4 Describes the theoretical methodology of the prototype developed.

Essential theoretical concepts of used algorithms are given as well

Chapter 5 presents selected results of the prototype application over available

StoRM log files. The discussion will highlight each step of the analysis. Finally,

few remarks related to the exploration of a Text Processing tool over log messages

will be given.

Chapter 6 draws conclusions from the application of the prototype and dis-

6



CONTENTS 7

cusses future developments.
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Chapter 1

HEP Computing and Analytics

This chapter sheds some light on the most interesting aspects of the major

upgrade of LHC and its evolution towards unprecedented collision energy and

discovery-potential. Although this Master Thesis will focus exclusively on com-

putational and analytics-related aspects, it is nonetheless appropriate to briefly

describe a deeply connected topic: the hardware upgrade LHC is bearing. In order

to improve understanding of the following, a technical definition of “Luminosity”

is given.

Definition 1.0.1. (Luminosity) In scattering theory and accelerator physics,

luminosity (L) is the ratio of the number of events detected (dN) in a certain time

(dt) to the interaction cross-section (σ) [1].

L =
dN

σdt

Under a computational point of view, the higher the luminosity the larger the

amount of data that can be extracted from the experiment and, as a consequence,

the higher the potential for useful discoveries and measurements. To give an idea

of the magnitude of the foresaid amount of data, one can observe that at CMS,

with current working Luminosity, the trigger performs a data selection and trans-

fer equal to 1 GB/s [4], enough to fill the memory of the average retail laptop (≈
500 GB HDD) in ≈ 8 minutes.

8



1. HEP Computing and Analytics 9

1.1 The Road to HL-LHC

Figure 1.1: Pictorial representation of the expected LHC evolution towards High

Luminosity run.

The HL-LHC project aims to crank up the performance of the LHC in order

to increase the potential for discoveries after 2025. The objective is to increase

luminosity by a factor of 10 beyond the LHC design value1.

The first part of the project started back in 2011 and was partly financed by the

European Commission’s seventh framework programme (FP7). This first phase

brought together many laboratories from CERN Member States, as well as from

Russia, Japan and the US. The design study came to a close on October 2015 with

the publication of a technical design report, followed by the start of the project

construction phase at CERN and in supporting-industries. The civil-engineering

work started on April 2018.

LHC is currently in its Long Shutdown 2, which is scheduled to last until 2020

included. During this Shutdown, experts will upgrade Phase-1 Injectors, aiming

at the expected 14 TeV Centre-Of-Mass energy and increasing Luminosity of a

factor of 3. Phase-2 will then bring peak Luminosity up to L = 7× 1034cm−2s−1.

An integrated Luminosity of 300fb−1 per year will achieved thanks to new-gen 16

T focusing magnets and crab-cavities. In the final scenario, a mean value of 300

1Ldesign = 1033cm−2s−1

9



1.1 The Road to HL-LHC 1. HEP Computing and Analytics

interaction per bunch is expected to be reached [5]

The project is led by CERN with the support of an international collaboration of

29 institutions in 13 countries, including the United States, Japan and Canada,

with a material budget for the accelerator of 950 million Swiss francs for 2015-2026

term.

1.1.1 HL-LHC Computing

Since such an upgrade will imply the production of a huge amount of previously

unseen data and, as a consequence, facilities for storage as well as computing sys-

tems will require a parallel improvement. In fact, even though often mistakenly

underestimated, only a properly structured data analysis segment will allow the

whole scientific community to take full advantage of this huge upgrade currently

in progress.

Having set this as a goal, the HEP Software Foundation (HSF) released a Com-

munity White Paper (CWP) [2] that paves the expected road-map for software

and computing sector adjustment towards HL-LHC. Following the priorities of the

CWP, the most pressing steps are:

• optimisation of software scalability and computational efficiency (as well as

hardware usage) in function of the future amount of data,

• activation of fruitful new Analytics approaches implementation,

• assurance of software long-term sustainability,

• assurance of appropriate career recognition to physicists that specialise in

the Analytics and software development sector.

As quickly outlined , a lot of work has been done and even more is expected to

be performed in the near future under both hardware and software aspects. This

Master Thesis work will mostly focus on two topics of this enormous collective

effort: Analytics and Statistical/Machine Learning rising as promising methods

for physics data analysis.

10



1. HEP Computing and Analytics 11

1.2 Statistical/Machine Learning at LHC

Definition 1.2.1. (Machine Learning) Machine Learning is a branch of Arti-

ficial Intelligence that applies statistical methods to perform tasks of growing com-

plexity without a specific user instruction, relying only on recognition of recurrent

data structures, often referred to as “patterns” [6].

Through the years, Machine Learning has proven to be a very performing and flex-

ible tool in data analysis, to the point that it changed the way reality is observed.

A simple example can be the growing development of the Self-Driving Cars, whose

creation has been a direct consequence of Machine Learning proving to be able to

perform better traffic handling decision as well as a safer driving conduct.

Also the scientific world has benefitted from the application of Machine Learning.

For instance, Machine Learning techiniques have found a fertile ground also in the

domain of computational optimization, allowing the community to take advantage

of data-driven efficiency improvements and perform faster and with higher reliabil-

ity (e.g. [9]) than traditional approaches without a significative expense in terms

of hardware overhauls.

This latter is rapidly growing its importance in the domain of LHC computation,

as the High Luminosity run will necessarily bring huge challenges to the table of

data analysis.

Considering the foresaid use case, the focus is identifying the state of the art and

the new challenges in this domain.

1.3 Intelligence Operations at LHC

In order to fully exploit the hardware upgrade of LHC, the scientific community of

HEP physics will also have to take action in the domain of software development,

optimization and maintenance.

The first step towards an highly improved computational efficiency at computing

centres has already been done, for example, by recollecting log data coming from

services and making it available for further analyses with Big Data inspired meth-

11



1.3 Intelligence Operations at LHC 1. HEP Computing and Analytics

ods. Nonetheless, the ambitious goal of handling the data flux of HL-LHC can

be reached only after a huge collective effort: as a consequence, recently (Spring

2019), an official OpInt team has been kicked off to focus on this topic. Its goal is

to reach a deeper (actionable) understanding of a variety of computing operations:

among these goals, one is to study fruitful applications of this knowledge, for in-

stance tailoring Machine Learning algorithms to improve and increase the level of

automation of analytical pipelines.

Some of these applications, coming from both previous existent studies and recent

OpInt powered discoveries have proven their value in the following use-cases:

• ML methods helped avoiding network congestion by predicting data transfer

patterns, [7]

• time-series analysis helped improving the estimate of on-CPU time of appli-

cations, [8]

• anomaly Detection helped preventing system failures. [9]

The result of this effort will be a complete change of paradigm when it comes

to computing maintenance: from the simple Breakdown paradigm Today, to the

expected Predictive one Tomorrow. These terms will be explained in depth in

chapter 3.

12



Chapter 2

LHC Computing Grid

The term “Computational/Computing Grid” refers to an organisation of dislo-

cated computer resources linked together via high performance networks to reach

a pre-defined common goal. In the domain of physics, this goal is to provide to

each member of the community the correct amount of resources to efficiently and

independently process physical data.

The WLCG is based on an ad-hoc software called “middleware” that enables actual

experiments’ applications to access and use the deployed hardware. The building

blocks of such middleware, in terms of Grid components, are briefly presented in

the following [4]:

Computing Element (CE) manages the user’s requests for computational

power at a Grid site. This power is provided by clusters of computers organized in

farms and managed by software tools. The CE manages jobs submitted by users

as well as interactions with the services of the Grid.

Working Node represents the physical site where the computation is actually

performed. Code scripts can be used to configure the environment properly.

Storage Element is responsible for data keeping and data-access granting. De-

pending on the importance of data, it gets saved on two different media: Tapes

and Disks. The former guarantees a long-term secure storage, whereas the latter

13



2.1 The WLCG project 2. LHC Computing Grid

is more indicated for data that will be frequently requested for analyses. The pro-

tocol SRM (Storage Resource Manager) offers a common interface to access data

remotely. Main types of stored data include e.g. raw data from the detector, data

produced by users’ analyses and Monte Carlo simulations.

User Interface is the machine on which a user interacts with the Grid; through

the UI, any user can access remote computing resources.

Central Services help the user access computing resources. Some examples

are data catalogues, information systems, workload management systems and

data transfer solutions.

As far as LHC computing is concerned, these solutions are offered by the WLCG

project.

2.1 The WLCG project

The WLCG (Worldwide LHC Computing Grid) is a global collaboration counting

more than 170 infrastructures distributed over 42 countries, linking up national and

international grid infrastructures. Leaning on Grid projects as EGI1 and OSG2,

the WLCG mission is to provide a common middleware on top of which each

experiment can load its own applications and run them on computing facilities,

these latter providing both computational power (e.g. CPU Cores) and storage

supports.

1European Grid Infrastructure
2Open Science Grid

14



2. LHC Computing Grid 15

Figure 2.1: Pictorial representation of the Tier Hierarchy with focus on computing

centres and respective locations.

The whole WLCG infrastructure can be reduced to a four-step hierarchy [10] of

highly specialised computing centers (called “Tiers”). In order of duty-importance

and tasks each Tier-level performs:

Tier-0

• Collection of RAW data for a first reconstruction.

• Distribution of RAW data and reconstruction output to Tier-1.

• Data reprocessing when LHC is not acquiring new data.

Tier-1

• Large-scale centralized data re-processing.

15



2.1 The WLCG project 2. LHC Computing Grid

• Storage for RAW and RECO data.

• Storage for a fraction of simulated Tier-2 data.

Tier-2

• Data transfer from/to Tier-1

• Distributed data analysis.

• Monte Carlo Simulations.

Tier-3

• Small flexible computing resource.

despite not rigidly defined in all LHC experiments at the same level, both a small

computing farm or even a personal laptop might act as Tier-3. Nonetheless, they

represent ultimately a good resource for the local community of physics end-users

and analysts

Figure 2.2: Pictorial representation of the Tier Hierarchy with focus on inter-

facility relations as defined by the MONARC project.

16



2. LHC Computing Grid 17

For the sake of completeness, it is worth pointing out that although their impor-

tance is growing nowadays, Tier-3 facilities have not been formally included in the

Memorandum Of Understanding (MoU) of WLCG (see Figure 2.2); as a conse-

quence, unlike other Tiers, their availability is not checked on a regular basis and

their reliability may thus not be stable in time.

2.2 The INFN-CNAF Tier-1 Facility

Of the 13 LHC Tier-1 facilities spread around the globe, one of them refers to

the National Institute for Nuclear Physics (INFN), the Italian research agency

for nuclear and subnuclear physics related activities. In particular, the Tier-1 is

bound to the National Centre of Research and Development in Information Tech-

nology [11] (INFN-CNAF), an agency that has participated in the development

of a common middleware ever since the foundation of WLCG project and that,

since 2003, hosts the Italian Tier-1 facility.

CNAF Tier-1 operations can be summed up into three main groups:

Farming accounts for all computational services of the Tier.

The computing farm infrastructure acts as the service underlying the workload

management system of all experiments connected with the processing resources

at CNAF, allowing jobs to directly access data at CNAF, since the disk storage

system is organized in file-system mounted straight up the Worker Node.

Each experiment has at least a dedicated queue, and the computing resources are

centrally managed by a unique batch system. On average, a total of the order of

100k batch jobs are executed every day at CNAF, with resources availability of

24/7.

Storage for both storage itself and data transfer services. As foresaid at the

beginning of the chapter, tapes are devoted to data that needs to be long-term

secured, whereas disks, mostly SATAs, are used to store frequently accessed data.

Few SSDs are implemented for those applications that require I/O intensive oper-

ations.

17



2.2 The INFN-CNAF Tier-1 Facility 2. LHC Computing Grid

The storage is managed by StoRM [14], a Storage Resource Manager solution

developed at CNAF, based on a home-made integration of IBM General Parallel

File System (GPFS) [12] for disk access with the IBM Tivoli Storage Manager

(TSM) [13] for tapes.

The amount of data currently stored and being processed at CNAF is in the order

of tens of Petabyte, with a breakdown - at the time of this thesis - of about 23 PB

of data on disk, and 48 PB of data on tape. This is expected to grow massively in

the following years [11].

Networking accounts for network connection and security. Two main networks

must be distinguished: WAN (Wide Area Network) and LAN (Local Area Net-

work). WAN is provided by GARR (Italian National Research and Educational

Network) and is the network CNAF connects to with various levels of redundancy

and performance. LAN connections are based upon the Ethernet standard and

empowered with a specific design to attend the requirements of the centre.

The requirements of heavy CPU-intensive data analyses led to providing a

data access bandwidth of the order of hundreds Gigabit per second, and to im-

plementing a Datacenter Interconnection with CINECA at a rate of 400 Gbps. [11]

In order to improve the quality of CNAF middleware in anticipation of the

computational challenge brought by HL-LHC, the INFN-CNAF is endowing

Tier-1 operations with modern data-driven diagnostic infrastructures, the goal

being to monitor and support the processing efficiency.

This Thesis takes part to this major effort developing a prototype of “intelligent”

maintenance-oriented information extraction from Log Files.

Next chapter will discuss the meaning and impact of “Maintenance” techniques in

the data centre domain and discuss further the log files structure.

18



Chapter 3

Maintenance paradigm at

INFN-CNAF

As previously described in chapter 2, the main CNAF’s guideline is to upgrade the

computational and storage resources to attend the workload jump. Thereby, there

is a strong necessity to create a service infrastructure in order to provide system

monitoring and system maintenance supports. In the following, an overview of

System Maintenances (in the context of computing science) is presented; it is,

thereafter, presented also the CNAF’s specific use case.

3.1 Definition of “System Maintenance”

To define “System Maintenance” in the computational services context, it is nec-

essary to answer the following question:

What defines a service as “properly working”?

First of all, the premise of any service is to perform tasks. Based on it, a mandatory

system’s characteristic is “Reliability”, meaning the system always performs as

correctly as expected. Secondly, any service needs to perform the aforementioned

task with (at least) minimum acceptable performance. Hence, another critical

point is “Efficiency”.

In the context of this thesis, “System Maintenance” is defined as:

19



3.2 Maintenance criteria 3. Maintenance paradigm at INFN-CNAF

Definition 3.1.1. (System Maintenance) “System Maintenance” defines the

combination of all actions, required in the life span of a system, meant to keep it

efficient and reliable during its lifetime [15]

There is a huge variety of criteria that can be used to address the problem. The

choice is mostly based on cost: that is, the computational complexity of algorithms

and resources consumption at run-time.

3.2 Maintenance criteria

To distinguish maintenance processes following the above indicated factors, indus-

trial standards have never been established. The absence of clear standards may

generate some potential misunderstandings and make the most appropriate main-

tenance criterion adoption difficult.

Trojan et al. [16] propose a structure composed by four different approaches ar-

ranged in increasing complexity levels:

• Reactive Maintenance,

• Preventive Maintenance,

• Predictive Maintenance,

• Advanced Maintenance.

To highlight the differences among criteria, they are briefly described in the fol-

lowing.

3.2.1 Reactive Maintenance

Reactive Maintenance, also known as Breakdown Maintenance, refers to the

ensemble of procedures deployed once the failure has already occurred, in order to

restore the pristine behaviour. Since the procedure is done after the breakdown,

this criterion can only aim to reduce to zero the impact of the rupture on the

system [17].

20



3. Maintenance paradigm at INFN-CNAF 21

As a classical example of this procedure, one can think of the mechanic interven-

tion after a car engine break. His duty, in fact, is to allow the vehicle to get back

to work as fast as possible.

The cost of this procedure is based on a loss control policy: if an intervention is

needed, then its cost is accounted for, otherwise there is no cost.

The main disadvantage of this procedure depends on the intervention being per-

formed once the breakdown has happened. This means, in first place, that any

delay in the repairs impacts negatively the system. Then, as a side effect, human

resources may be redirected to stop the performance leak, leading to a cascating

effect on other sectors of the system.

3.2.2 Preventive Maintenance

Preventive Maintenance refers to the collection of procedures performed in order

to lessen the likelihood of a system failure.

Preventive Maintenance actions involve both periodic overhauls of equipment, as

well as mass-replacement of fault-prone parts (Planned Preventive Maintenance).

It may represent, at times, a non-negligible and avoidable cost (e.g. this happens

if a machinery gets substituted because of age, but it would, nonetheless, continue

to work properly). Lately, thanks to the ever-growing branch of data-collecting

technologies, Preventive Maintenance procedures can act in a more targeted

manner since it is easier to evaluate deeply the wear of components using

sensors and metadata analysis (Condition-based Maintenance), thus reducing the

frequency of overhauls [18].

21



3.2 Maintenance criteria 3. Maintenance paradigm at INFN-CNAF

Figure 3.1: CJ-130J Hercules propellers cleaning from salt and moisture is an

example of preventive maintenance.

In short: Preventive Maintenance techniques stem from the idea of achieving the

“nothing breaks down” standard, whereas reactive methods are activated once

the rupture has happened. As a consequence, downtimes of the system, in a

preventive context, can be limited to an intervention scheduling in the best case,

which represents a good improvement with respect to reactive paradigms. On the

other hand, as a drawback, preventive methods tend to happen in overly expensive

bursts, often concomitant with major replacements.

3.2.3 Predictive Maintenance

The natural evolution of Preventive methods is Predictive Maintenance, which is

designed to determine the status of running services and predict events of interest

as soon as possible on them.

Predictive Maintenance is achieved complementing diagnostic data of Preventive

methods with Analytics based on historical trends and/or recurrent patterns. The

continuous system monitoring and prediction maintenance helps preventing rup-

ture events, thus decreasing the chance of breakdowns [19].

In the following, examples of effective Predictive Maintenance application are

given:

Predictive Maintenance examples

• [20] presents disk-sensor based methods to prevent HDD failures.

22



3. Maintenance paradigm at INFN-CNAF 23

• [21] presents a Time-Series based method to forecast the computational

burden over the Wikimedia Grid.

• [22] shows a method to prevent catastrophic data centre failures.

the main drawback of the predictive criterion is represented by the need of spe-

cialists to analyse results as well as the high computational complexity.

3.2.4 Advanced Maintenance

This approach sums up the whole collection of modern paradigms that stem

from the idea of both forecasting failures and diagnose their origins (that’s why

they are called “Advanced”). Thanks to the ever-growing branches of Machine

Learning and Big Data Analytics, Advanced procedures can continuously improve

the quality of their predictions and actions, thus reaching (ideally) maximum

efficiency.

With respect to the predictive criterion, this collection of AI-engined methods is

able to understand when and why failures will occur, thus both supporting (with

dashboards and alerts see Figure 3.2) decisions and taking actions. For instance,

while a predictive method would only point a potential failure, leaving to a

human operator the final decision, an Advanced one would also start a supportive

pipeline when needed. As a consequence, Advanced methods would represent a

huge improvement in any maintenance approach, reducing human intervention

and decreasing downtimes, with respect to previous criteria, even more. As a

drawback, the Advanced infrastructure development and deployment is clearly

time-consuming and requires state-of-the-art methods to perform properly.
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Figure 3.2: Predictive/Advanced maintenance infographic.

Based on previous overview, it is worth focusing on the main research of CNAF

aiming to improve its Quality of Service and getting ready for HL-LHC necessities.

3.3 Log-Based Maintenance

Most of the machines at CNAF is continuously in order to extract useful metrics

(e.g, Computational Load average, CPU-consumption, number of requests to

specific service etc.) and create updated relational databases. In addition, every

machine/service produces one/multiple log files containing typically textual data,

such as the type of request tackled and its state, the Bash-command used and so

on.

Log-files are often non-structured data and machine/service-specific, which makes

their collection and processing quite difficult. Moreover, even when the type of log

files seems to follow a “common standard”, its generation may change depending

on who has written that log file.

Currently, CNAF’s data collection relies upon the Rocket-fast system for Log

processing (Rsyslog [24]), an open source software, based on syslog, which is

a common standard for logging and forwarding messages in a network. At the

same time, to complete the information available, various machines’ metrics
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are stored in a database called InfluxDB, which is a Time-Series database

used to store large amount of timestamped data in several tables, one for

each use-case metric [23]. Every database table is indexed by timestamps and

contains columns corresponding to metrics of a given machine hostname. Vari-

ous tags can be used to group different machines of the same service or experiment.

3.3.1 The Log Bucket

In April 2019, CNAF started developing a single repository (“bucket”) for the data

centre, aiming to providing a storage-safe location and a simpler access point to

log data for analysts, in view of future improvement to the maintenance process.

Nowadays, Data is collected using Rsyslog1 [24] to redirect the flow of log files to

a common folder destination as described in figure 3.3:

Figure 3.3: Structure of Rsyslog collective bucket.

Rsyslog offers high-performance, great security features and a modular design as

being able to accept inputs from a wide variety of sources, transform them, and

output to the results to diverse destinations. Rsyslog can deliver over one million

messages per second to local destinations when limited processing is applied.

1Rocket-fast System for log-processing
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Log files are accessible via Network File System (NFS), allowing the access to files

via network with performance similar to local operations.

In the following, the StoRM service, whose logs were studied by this thesis

prototype, will be quickly described.

3.3.2 StoRM Log Files

StoRM [14] is the storage management service adopted by the INFN-CNAF Tier-1

and developed in the context of WLCG project with the aim of providing high

performing file systems to manage storage capabilities distribution. In particular,

it is used by HEP experiments, including e.g. ATLAS. With each experiment

implementing differently the StoRM service. Its performance relies on the Storage

Resource Manager (SRM) protocol, that divides operations in synchronous and

asynchronous, where the former indicates typically Namespace operations(srmLs,

srmMkdir and so on), while the latter indicates specific functionalities, such as

srmPrepareToPut, srmPrepareToGet and so on. Its structure can be split into two

main stateless components: Front-End (FE) and Back-End(BE). To give an idea of

the background of StoRM, a simple StoRM service schema is proposed in figure 3.4.

Figure 3.4: Schema of StoRM with one FE and one BE component.
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In the following, the case of the ATLAS experiment is chosen for a first explo-

ration. There is no specific reason for choosing ATLAS over other experiments:

the pipeline, in fact, was designed to be as flexible and “experiment-independent”

as possible.

Next paragraphs shed some light on the nature of logs coming from FE and BE.

3.3.3 StoRM Front-End

This part of the StoRM structure provides the final user the access to the SRM

web service interface, manages user credentials and authentication processes,

stores SRM request data and retrieves the status of ongoing requests.

Whenever a new SRM request has to be managed, FE logs a new line associated to

that specific request, including the token that links the request to BE operations.

In order to manage the wide amount of requests2, two Frontend services have been

deployed for the ATLAS experiment on two different servers (storm-fe-atlas-07

and storm-atlas) logging two different files, named storm-frontend-server.log. An

example of such log file is shown in Figure 3.5:

Figure 3.5: Sample of log messages structure coming from StoRm-FE

each lines contains:

• Datetime

• Thread that manages the request

• Type of message (INFO, WARN, DEBUG, ERROR, NONE)

• Request-ID

• content of the message

2order of few dozens per second on the average day
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3.3.4 StoRM Back-End

Since it runs all synchronous and asynchronous SRM functionalities (requests for

files, memory spaces and so on) and allows interaction with other Grid elements,

the Back-End can be considered the core of StoRM service. Typical BE log files

(named storm-backend.log) entries include the operator that has requested the

action(DN), the involved files locations (SURL) and the result of the operation.

Moreover, the verbosity level of BE log files relies on the log-back framework, that

allows it to be set up appropriately with respect to the use-case. In conclusion,

BE logging activity includes also a storm-backend-metrics.log(containing type,

number of operations in the last minute, operations from start up and average

duration of operations) and a heartbeat.log file that contains information on the

number requests processed by the system from its startup, adding new information

at each “beat”. An example of log messages contained in a storm-backend.log is

shown in figure 3.6:

Figure 3.6: Sample of log messages structure coming from StoRM-BE
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3.4 Aim of this work

As aforementioned, CNAF is implementing an “Intelligent” Maintenance on

its site, aiming to both improve present-day performance and prepare for the

upcoming HL-LHC challenge.

Currently, most of the CNAF efforts are focused on the log files produced by

services running at CNAF Tier-1, with particular attention, since April 2019, to

the StoRM storage service, whose log files where made available as expendable

study-cases.

This work, continuing the recent research line [3], [42], develops an original

software prototype, endowed with a modular approach, for Anomaly Detection

on log files data. The goal of this software is ultimately to find, with good

performance, interesting insights about the computational behaviour of the

service, with the intention of paving the way for further technical studies as well

as future development of a full Predictive Maintenance paradigm at CNAF Tier-1.

3.4.1 Code formal annotations

The analysis was performed using the most recent version of Python, namely

3.7, as well as the most updated packages, for optimal code efficiency and sup-

port. The code is distributed under GNU GPLv2 licence and is freely available on

https://github.com/FrancescoMinarini.

The code was tested over two different “retail” machines:

• HP Spectre x360 2018 Intel i5 8th-gen 4-Core 8-Thread CPU, 8 GB RAM,

Windows 10 + Windows Subsystem for Linux.

• Asus K501UX 2015 intel i7 6th-gen 2-Core 4-Thread CPU, 12 GB RAM,

Ubuntu 19.04

The execution of the software requires less than a single hour when deployed on

the average log file. This is a good result in comparison with previous results,

that scaled up to 8 hours [42]. As of this thesis, the correct functioning of the
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code is verified on both architectures.

Next chapter will highlight the theoretical background of the prototype that

was developed, explaining the ansatz on which work was built on and reporting

essential aspects of the algorithms involved in the structure of the prototype.

Next chapter will present essential concepts of the developed prototype, explaining

the supposition on which work was built on and highlighting useful remarks of the

algorithms involved.
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Chapter 4

Methodology description

4.1 System’s behaviour extraction.

Before building a Maintenance approach, it is necessary to characterise the system

behaviour, in order to identify aspects of interest related to a given phenomenon

and ground the analysis on them. As previously outlined, log files are generated

according to a specific action on the system. That is, it is possible to extract

information regards to its behaviour analysing its logging activity.

The required “logging activity” definition, in the context of this thesis, is presented:

Definition 4.1.1. (logging activity) is the writing of a line on a corresponding

log file according to a given service

Given this, the following supposition is assumed:

Any running service undergoing a potentially irregular workload tends

to express its execution with a peculiar shape of its logging activity: this

may happen either in form of activity drops/uprisings or plateaux-like

shapes.

Following this line of thought, a naive method to deal with the identification of

interesting behaviour phases, such as anomalous ones, would be simply extracting

the amount of log entries the service produced in a certain time-window and

(visually) isolate criticalities.
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This approach, conversely, results fruitful only in case of simple detections; that

is, by-eye-detectable steep drops/uprisings and major trends. In other more

subtle cases, this approach will inevitably misread, if not ignore totally, the

whole variety of interesting phenomena, such as, for instance, anomaly precursors

clusters and deeper patterns (see Appendix B).

4.1.1 Log Volatility

The method is based on an observable capable of intercepting changes in logging

activity and highlight them. A promising candidate for this role is a well-known

and extensively used metric belonging to the “Econophysics” domain, where it is

used to detect swings in Stock Market data: the “Volatility” [25].

Definition 4.1.2. (Volatility) Volatility is a measure of change through time that

quantifies behaviour swings of a determined physical quantity: Higher Volatility

values indicate lack of stability.

Mathematically, it’s the standard deviation of the physical quantity over a time

window and it is bounded to the interval [0, +∞]

The metric behaviour is quite simple: it peaks whenever a consistent change hap-

pens in the dataset.It stays low if data is not appreciably changing over time.

Figure 4.1 helps grasping some intuition about the Volatility.

Figure 4.1: Simplified representation of Volatility (green line) when evaluated on

a ramp-up line (top) and on a ramp-down one (bottom).

As shown in Figure 4.1, Volatility cannot distinguish between “Ups-and-Downs”,

which is not to be seen as a defect: for our purpose, in fact, the tool has to
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highlight just the changes of behaviour.

Once Volatility data is produced from log-activity, it is reasonable to think that

potentially critical states of the system would be expressed in form of anoma-

lous volatility points with respect to the other collected ones. At the same time,

time windows could be marked as “anomalous” depending on the persistence of

anomalies (see chapter 5 for details). Moreover, The Volatility, as it was defined,

is extremely specialised in capturing changes in trends, which makes it capable of

capturing potential precursors and similar phenomena. Therefore, it is required

the deployment of a pipeline able to determine whether a point should be consid-

ered as regular or not is required. Luckily enough, this task can take advantage

of a well developed branch of statistical unsupervised learning algorithms called

“Anomaly Detection”.

4.2 Unsupervised Learning

Unsupervised Learning is defined as follows [26]:

Definition 4.2.1. (Unsupervised Learning) Unsupervised learning is a type

of “learning” whose goal is to find patterns without having any kind of pre-formed

label to rely on.

The application of an Unsupervised algorithm is often more challenging than a

Supervised one for a quite simple reason: in a Supervised environment it is possible

to back-check our work, assessing accuracy and interpretability at the same time.

As a consequence, Unsupervised techniques are used for exploratory tasks, where

finding patterns may be helpful for further right-on-target analyses. Since labeling

data is a heavily time-consuming practice in pattern recognition, unsupervised

learning is widely used as problem solving resource, Unsupervised methods are

nowadays growing their importance in the research scenario.

As an illustration of their successful diffusion, some possible application are:

• Medical research [27]: unsupervised methods are used to discover subgroups

inside pathology classes or to segment tissues in PET images.
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• Digital marketing [28]: by clustering customer information and web be-

haviour, one can recommend better services (“who bought this also pur-

chased...”) and improve publicity visualisation across sites (“Put ads where

customers click the most”).

4.3 Essential concepts of Anomaly Detection

Firstly, let’s define what is a “statistical anomaly” in the context of this thesis.

Definition 4.3.1. Let x1. . . xn be some observation that follow a certain distri-

bution F . A statistical anomaly is an observation that appears not to come from

F. [29]

For the sake of completeness, it is worth pointing out that an anomaly, in general,

can happen in several ways. The most common three are listed in the follow-

ing [30]:

Point-like anomaly: a data point may be anomalous if its value happens to

be significantly too far from the rest of data. Figure 4.2 shows a simple case:

Figure 4.2: Simple representation of a point-like anomaly.
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Contextual anomaly: The anomaly is context-specific. That is, a quality that

generally does not, in general, imply an anomalous behaviour, but could be in a

specific environment (see Figure 4.3).

Figure 4.3: Simple representation of a contextual anomaly.

Collective anomaly: In this case, the anomaly is not carried by the single

value/behaviour but by the co-occurrence of multiple similar values/behaviours.

Figure 4.4 shows an example taken from a personal project1.

Figure 4.4: Network reconstruction, color-coded in terms of degree centrality, of a

fraud (Ponzi Scheme). Centralization of arrows is a case of collective anomaly.

1Personal didactic project for Complex Networks course
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Definition 4.3.2. Anomaly Detection (AD), also frequently referred to as “Outlier

Detection (OD)”, consists in the identification of items, events or observations

which raise statistical suspicions by being significantly different from the majority

of data. [31]

The discipline of detecting anomalies has a quite relevant importance since, by

providing rich and easily interpretable actionable information about the nature of

data points, it may lay the groundwork for a broad variety of applications, spacing

from banking fraud detection to a contribution in scientific discoveries/validation

of discoveries.

The typical AD algorithm consists in the following pipeline:

• Build a set (Profile) P of instances following a Gaussian distribution.

• Pass instances through P.

• Mark as “anomalous” every instance that does not statistically conform to

P.

Throughout the years, this line of thought generated a plethora of viable algo-

rithms based on well known statistical learning methods such as, for instance,

clustering-based AD algorithms. However, although the availability of a deeply

tested toolbox of algorithms constitutes an undoubtful advantage, most of what

could be called “classical” approaches may suffer from at least two potentially

insidious drawbacks, briefly discussed in the following.

Profiling vs Detection quality Trade-off: Since “classical” algorithms are

optimized for profiling Gaussian -at least in good approximation- distributed in-

stances, and find anomalies as a consequent step, some data might lead to obtaining

too many false-positives and/or false-negatives that both ruin the accuracy of the

model and make it harder to interpret the output of the detection. This frequently

happens when one forces these methods over non-normal data.
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Curse of Dimensionality: Since classical algorithms tend to have high re-

quirements in terms of computational complexity when dimensions of the feature

space rise up, as distribution densities have to be extracted, classical algorithms

viability is constrained to lower-dimensional problems.

For this thesis work, an unsupervised method inspired by a well-known supervised

algorithm was chosen: One-Class Support Vector Machines (OCSVM). In the

following, basic intuition about Support Vector Machines (SVM) based on [32]

are given.

4.4 Support Vector Machines

Let’s take into account a classic 2-class linear classification task. The goal of our

classifier is to structure a model f(x) that will correctly assign the right class to

each point . Its performance is typically achieved evaluating the “Empirical Risk”

(that can be calculated for instance as the mean fraction of misclassified points

over the total). [32]

Focusing exclusively on optimising the Empirical error may potentially lead to two

drawbacks.

Firstly [32], one should take into account a huge amount of data points to ensure

a proper convergence of Empirical Risk to the Expected Risk (not known a-priori).

(Law of large numbers).

Secondly [32], an eccessive optimisation of the Empirical Risk may assist the adop-

tion of overfitting models; as to say: “models that over-train their decision function

to exactly match the training data.”

While the first observation may be dealt with with proper data collecting tech-

niques, the second issue is clearly more insidious and subtle and may affect models

without any evident symptom.
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Figure 4.5: Simplified representation of a classification task and a classification

model. [32]

The green line in Figure 4.5 above represents the adoption of a linear model.

As one can see, although committing few errors, it seems able to capture the

“spirit” of data. As a consequence, a good performance can be expected while

generalizing to unseen examples. On the other hand, the dashed line seems to

memorise the position of any single training data point. Hence, when generalizing,

poor performance might be expected.

Figure 4.5 intuitively shows, hence, that a good performing model should strike

the balance between:

• Complexity (in terms of mathematical refinement of the model function).

• Accuracy (in terms of mis-classification ratio).

To sum up: the best performing model tends frequently to be the simplest one

(accordingly to the complexity of the task, of course). This Occam’s razor inspired

intuition happens to be fully proved. In the following, the most interesting ideas

of the theory (namely Vapnik-Chervonenkis theory) that allows to fully verify our

intuitions will be showed.

Vapnik and Chervonenkis [33] translated the intuition of model complexity

introducing the Vapnik-Chervonennkis (VC) Dimension.
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Definition 4.4.1. (VC Dimension) The VC Dimension H of a function/class

of functions is a measure of complexity and can be evaluated via the number of

data samples that function/class of functions explains.

further details of this measure are beyond the scope of this thesis. They can

be found, however, in [32], [33]. Thereafter, it was proved that the Expected risk

(not-known a-priori), given a model f , could be bound by the following expression

named “Structural risk”:

Rexpected(f) 6 Rempirical(f) +

√
H · (log(2N/H) + 1)− log(ε/4)

N︸ ︷︷ ︸
VC confidence

(4.1)

where:

• N is the number of samples in the dataset

• H is the VC Dimension

with constant ε small but different from zero.

the empirical risk has been already described, so focus is on interpreting the VC

confidence. As can be seen, as the ratio of N/H gets larger, the VC confidence

tends to zero, which is consistent with the idea that for large values of N ,

empirical risk minimization is sufficient.

The idea of Vapnik and Chervonenkis is then to optimize this bound, which should

lead to a balance between model complexity (VC Dimension) and Empirical risk.

This direct approach, nonetheless, proved not to be good enough in a variety of

typical situations, as equation 4.1 can lead to a non-linear optimization problem

[32].

Cherkassky and Mulier [34] and Muller et al. [35] showed that, for a linear

classification problem, the hyperplane leaving the highest margin between the

classes led to the best results.
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Figure 4.6: A simple pictorial representation of the maximum margin model. [32]

Vapnik et al [36], then, showed that the VC Dimension of a model could be bound

by the following expression:

H 6 min
(R2

m2
, D
)

+ 1 (4.2)

Where:

• R is the radius of the sphere containing all examples.

• m is the margin left by the hyperplane.

• D is the dimension of the feature space.

Therefore, maximizing the margin means minimizing the VC Dimension. More-

over, as the Optimal hyperplane is a perfect separator (see Figure 4.6), maximizing

the margin will also minimize the upper bound on the expected risk.

The whole problem now reduces to estimating the margin and maximize it. As

for the margin, it is a simple trigonometry result (distance generical point x vs

plane(w, b) in 3D space):

d(x, (w, b)) =
|wTx+ b|
||w||

(4.3)

with freedom to choose the canonical hyperplane for simplicity: |wTx + b| = 1.
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Thus, the margin can be written as:

m =
2

||w||
(4.4)

To maximize the margin, one can formulate the following optimization

problem[32]:

• minimize J(w) = 1
2
||w||2 where the quadratic function is chosen in order to

avoid local minima.

• subject to the condition: yi(|wTxi + b|) > 1 ∀i

It is possible to find its solution via the Karush-Kuhn-Tucker conditions [37],

[38]. (We will not delve into the mathematical details of the full proof as it

exceeds the scope of this thesis). The outcome is nonetheless interesting as it

states that for every point [32]:

αi[yi(w
Txi + b)− 1] = 0 (4.5)

So, apart from the trivial case of αi = 0, one can see that data points (which are

vectors in the feature space) should then lie over the two supporting hyperplanes

that build the optimum margin, which has a deep consequence: the result of

the optimization shows that the ideal hyperplane can be built focusing only on

support vectors. A state-of-the-art classification can be performed by assessing

correctly the margin and the support vectors, which allows SVMs to have low

computational power absorption.
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Figure 4.7: Graphical example of Support Vectors. [39]

By now SVMs, in the case of linearly separable classes, were discussed. Nonethe-

less, SVMs can be a viable choice also for non-linear problem, as they can take

advantage of some interesting mathematical results it is worth noting in the

following.

A well-known theorem of data analysis (Cover’s Theorem [39]) suggests that

hard learning problems (including non-linear ones) may find a simpler solution,

typically linear, if properly cast to a higher (but still under control) dimensions.

This operation, in the domain of SVMs, is called “Kernel trick”, which consists in

a mapping of points to a different domain performed through a set of functions

(typically Radial Basis Functions (RBF), but it’s not a mandatory choice) that

allow a simpler approach to data.

Having developed some intuition about the class of Support Vector Machines,

this thesis focuses now on seeing how their behaviour can be adapted to work

with only one class in an unsupervised environment.
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4.4.1 One-Class SVMs

In this thesis, the Schölkopf idea of One-Class SVM. A brief description is pre-

sented in the following.

In an AD paradigm, our data is split, ultimately, in two expected classes: regu-

larities and anomalies. OCSVM, having to deal with an Unsupervised splitting,

considers a mapping of data that separates data itself from the origin of the feature

space. At this point, the OCSVM algorithm kernel-tricks input data into a higher

dimensional feature space and iteratively finds the maximal margin hyperplane

which best separates the training data from the origin.

In the following picture, the graphical result of a standard OCSVM application,

taken from its official documentation, is showed in figure4.8 [40].

Figure 4.8: Pictorial representation of the application of a OCSVM with RBF

kernel trick.

Since the prototype tries to take advantage of the implicit information contained

inside log messages collected in log files, it is appropriate to describe the Natural

Language Processing (NLP) method that was proposed as a mean of textual

information extraction.
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4.5 TFIDF Information Retrieval

Definition 4.5.1. (Information Retrieval) Information Retrieval (IR) de-

scribes the ensemble of content-mining techniques involved in searching for specific

information over a collection of textual documents and/or other medias.

To mine out information about system failures and/or lags, the implementation

of a IR technique able to reach out for those informations is thus required. Text-

Frequency Inverse Document Frequency analysis (TFIDF) was then chosen.

Definition 4.5.2. (TFIDF) TFIDF is a measure whose goal is highlighting the

importance of a word/Ngram to a document in a collection/corpus of other doc-

uments. Its value increases proportionally to the number of times a word/Ngram

appears in the corpus and inversely proportionally to the number of documents that

contain the word.

Definition 4.5.3. (Ngram) An Ngram is a contiguous sequence of N items from

a given sample of text or speech. The items can be phonemes, syllables, letters,

words or base pairs according to the application.

For instance, splitting in 2-grams a simple sentence such as “This font is black”

leads to:

• This font

• font is

• is black.

In the following, we will focus, for the sake of simplicity, on 1grams (words).

TFIDF value can be calculated from two separate terms: Term Frequency (TF)

and Inverse Document Frequency (IDF).

TF extraction is really straight-forward:

TFi,j =
ni,j

Nj

(4.6)
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where:

• ni,j indicates the occurrence of item i in document j.

• Nj indicates the dimension of document j.

So, as an example, consider a document of 1000 words, where the word “physics”

appears 32 times. Then, TFphysics = 32/1000 = 0.032.

IDF extraction is defined as:

IDFt,D = log

[
N

1 + |d ∈ D : t ∈ d|

]
(4.7)

Where:

• N indicates the number of documents available in the collection.

• 1 + |d ∈ D : t ∈ d| indicates the number of documents where item t is

readable. The +1 accounts for avoiding the risk of divide-by-zero errors.

So, for example, consider a collection on 1000 documents with the word “physics”

appearing in 10 of them. Then IDFphysics,1000 ≈ 2.

Finally, TFIDF can be extracted by multiplying TF and IDF. To conclude the

example, the TFIDF value for the word “physics” in our simple example is

TFIDFphysics = 2 · 0.032 = 0.064.

Figure 4.9 shows an example of how a generic output of TFIDF may appear.

As one can see, TFIDF calculation allows to change the encoding of our IR

analysis from the context of pure language to a more numerical one. At the same

time, evaluating words under an “importance” basis, allows us to mine out only

the most interesting locutions, leaving out very common ones.

45



4.5 TFIDF Information Retrieval 4. Methodology description

Figure 4.9: TFIDF matrix of a generical corpus of documents.

The following picture shows how words would rank in a fictional TFIDF value-

Occurrence space.

Figure 4.10: Representation of words positioning in a TFIDFscore-Occurrence

space .
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Following chapter will implement all the algorithms described in this one,

discussing thoroughly any choice made to perform the analysis as well as each

output step of the pipeline.
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Chapter 5

Analysis results

In this chapter, the application of the prototype discussed in Chapter 4 to the

available logging data from CNAF systems is presented. Some insights from such

analysis are highlighted in detail.

5.1 Data preprocessing

Before proceeding with the analysis, the following operations of data whitening

are performed:

• Handling missing data. Log data are treated by checking occurrencies of

“NaN values” and erronous entries among all log messages in the dataset.

This is performed as a primary step in data preparation.

• Data re-sampling. A rounding up of log message timestamps to the nearest

5 minutes is performed. The reason for this choice is related to the fact that

the input log files may count up to 3-4 million messages per day, and they are

collected with a granularity to the level of the millisecond, potentially leading

to high load on computational resources in the analysis phase. Moreover, as

outlined in Chapter 4, there is no interest in a point-like view of log files,

focusing on each of the specific log entries, but more in overall changes of
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behaviour of the service that produces such log files.

Several different time-windows were analysed: the only detected difference

between each resulting outcome was the higher/lesser smoothing effect over

patterns. Rounding up to 5 minutes of logging activity proved to yield a

resampling of all messages in time windows without any loss of generality

and richness of the information therein.

• Data scaling. The volatility value are scaled in the [0,1] interval. This step

is performed after the calculation of the volatility (see Chapter 4 for details)

and before applying the unsupervised method. The motivation behind this

step is to avoid a scale-factor bias towards higher volatility values.

5.2 Data analysis

The deployment of the prototype on StoRM Front-End data will be described in

the next section, whereas the application on Back-End data will be described in

Section 5.2.2).

5.2.1 Results on StoRM Front-End service

The input data under study has been collected in the time-period ranging from

December 2nd to December 8th, 2018. The reason for this choice is related to the

fact that a “ticket” (a notification of a technical problem by a user via official

reporting systems, like GGUS [41] in this case) had been opened, thus indicating

an anomaly whose cause was not understood, and assigned to the attention of the

proper CNAF StoRM team.
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5.2 Data analysis 5. Analysis results

Figure 5.1: A GGUS ticket reporting an anomaly in the behaviour of the StoRM

Front-End service at INFN-CNAF (more details in the text). User information

have been anonymized.

As explained in [3], the information in the ticket suggests to further investigate

the days ranging from December 5th to December 8th and tag this as a “critical”

time-window, while days ranging from December, 2nd to December 4th are tagged

as a “regular” time window. Starting from these data, the prototype developed in

this thesis is hence expected to be able to detect an anomaly in the time window

tagged as “critical”.

The number of log entries (“log count” in the following) is extracted from the data

on December 2nd - the regular sample - and from the data on December 7th - the

critical sample. The log count for the regular sample is shown in Figure 5.2.

The comparison of 5.2 and 5.3 shows that the latter displays evident peaks in log

count, twice as high as in the former. Due to the absence of evident peaks, the

regular time window is harder to interpret, as dominated by various oscillations

that may well not be so relevant at all. The identification of a proper observable

able to spot changes of behaviours in log count emerges as a need, and such need

has been addressed by using the Volatility variable. The Volatility was evaluated

via a 6-entry rolling window sliding over log message counts. Due to the 5 minutes

resampling of the timestamps, Volatility is hence evaluated over a 30 minutes time

window. In 5.4 the Volatility for 4 reference days is shown, with box plot that

help to highlight percentile compositions for each.
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Figure 5.4: Volatility on CNAF StoRM Front-End logs, on 4 reference days.

On December, 2nd the Volatility presents just very few outliers, which is compat-

ible with it being a “regular” day. On December, 6th-7th the Volatility shows a

large number of outliers, which becomes even more evident on December, 7th; on

this day, they reach the maximum value across all examined days, and also reveal

a peculiar structure in one tail, compatible with a “critical” day. This shows that

the Volatility is indeed a promising variable to disentangle between “regular” and

“critical” days.

As a consequence, December, 2nd and December, 7th can be chosen as a reference

for “regular” and “critical” days respectively. As such, the unsupervised anomaly

detection algorithm described in detail in Chapter 4 has been applied to both, as

discussed in the following.

The unsupervised algorithm (OCSVM) was implemented with RBF kernel and

applied to this case to perform an anomaly detection task. Results are shown for
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December, 2nd in Figure 5.5 and for December, 7th in Figure 5.6

In the top plot of Figures 5.5 and 5.6, the Volatility values are color-coded after

the application of the algorithm, as follows: red dots represent detected anomalies,

whereas green dots represent regularities.

On the “regular” day, the detected anomalies are a minority among the dots,

and when they occur they persist for relatively short time intervals: most of

the dots on that “regular” day - mainly visible in its first half - are green, thus

indicating that that day was behaving regularly most of the time, apart from few

and short oscillations. On the other hand, on a “critical” day, anomalies that

occur tend to peak more and be more persistent over time. Another interesting

observation is that there are quite some almost-zero Volatility intervals (one of

which is very persistent): these might also be indication of a problem, e.g. a

“frozen” service, thus being properly tagged by the algorithm as anomalies as

well. A similar analysis was performed also on other days shown in Figures

6.1, 6.2 for which data was available and tagged as “regular” vs “critical”:

results of these analyses lay along the lines of the aforementioned discussion,

and the corresponding figures can be found in Appendix A. Despite the limited

amount of tagged days on which to run the OCSVM method, the method turns

out to be reasonably validated as a tool to spot anomalies in the log count volatility.

The application of the same prototype to StoRM Back-End logging data is de-

scribed in the following section.
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5.2.2 Results on StoRM Back-End service

The Back-End analysis focuses on a specific day, i.e. May, 23rd 2019. This choice is

motivated by previous analyses [42] that identified this as a potentially problematic

day. While the CNAF operators could not offer expert insight on what actually

might have happened on that specific day, evidence shows that the size of the

StoRM Back-End log on that day was larger that other daily logs by a factor

almost 3, as shown in Figure 5.7.

Figure 5.7: Size of StoRM Front-End logs throughout the analysed period. May,

23rd 2019, the day discussed in the text, presents an anomaly.

Despite the evident anomaly, this cannot be used to infer that this day was for

sure a “critical” one for StoRM operations: indeed, the file size only depends

on the amount, and not the kind, of messages produced and logged on the

file itself. As an example, if many researchers would need a large set of files

for a given data analysis at the very same time, this would appear in the

logging as a much larger number of e.g. authorisation requests, SRM Prepare-

ToGet entries, etc. Despite its load, if that amount gets correctly managed

and carried out by StoRM services, one would end up with a huge log file

for that day, while no major operation disruption or system malfunction asso-

57



5.2 Data analysis 5. Analysis results

ciated with it. Yet, May, 23rd stand as an interesting day to explore in more depth.

Following the same data preparation steps outlined before, the log count (i.e.

the number of log messages) was extracted also for May, 23rd, and it is shown in

Figure 5.8.

During morning hours, with the exception of few spikes and bumps, the activity

seems to have an oscillatory behaviour. Between (indicatively) 3:00:00 PM and

4:30:00 PM there is a high peak of activity followed by a steep drop. In late evening,

between (indicatively) 6:00:00 and 10:00:00 PM, activity bumps up again, despite

never again at the same level as earlier in the day.

This, although not allowing any assumption on the nature of the behaviour of the

StoRM service yet, it indicates few specific time windows that would benefit from

a deeper analysis. As in the Front-End case study, the emerging need of a more

quantitative observable able to spot changes is addressed by the Volatility. The

Volatility for May 23rd, 2019 is shown in Figure 5.9.

It is hence of interest to compare Figure 5.8 (log count) with Figure 5.9 (Volatility).

The morning activity in the Volatility plot actually shows few bumps that were

somehow previously partially hidden. This confirms once again the usefulness of

the Visibility as a variable to enhance the expressivity of log count information.

Moreover, a trend of bumps, starting at (approximately) 12:00:00 PM and allegedly

preempting the main peak has been very clearly highlighted in the Volatility plot,

way more evidently (and less oscillating) that in the log count plot. Additionally,

the large steep drop seen in the log count plot was also correctly detected in the

Volatility plot, in terms of a very large peak. Its impact seems to be limited to

the interval between 15:00:00 PM and 16:00:00 PM, an indication that comes in

a clear manner only from the Volatility plot. The late evening bump, between

(approximately) 06:00:00 PM and 10:00:00 PM, appears to be highlighted mostly

in its ending part (between 21:30:00 PM and 22:00:00 PM) in the Volatility plot.

In general, the Volatility plot offers a much better method to visualise changes
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of behaviour (see also Appendix B) with respect to other methods, thus making

its use an advantage with respect to other options. In fact, by highlighting very

specific time windows, based on Volatility quantitative behaviour, the analysis

can focus over a selected amount of messages to be analysed, instead of requiring

the analysis of the entirety of the logs of that given day. On average, over the days

analysed in this thesis, this reduces the burden of at least a factor of 10 for every

day of logging, which in turn helps the application of any further CPU-intensive

algorithm, i.e. Analytics tools would eventually perform faster. This brings up

an aspect of actual effectiveness of this method in view of its integration in the

overall CNAF strategy on predictive maintenance: the ability to run e.g. text

processing CPU-consuming algorithms only on the segments of the log files that

are identified as interesting by the anomaly detection algorithm. This is discussed

in more depth in Section 5.3.

The OCSVM algorithm, as before, can also be applied to the logs from this partic-

ular day. The top plot of Figure 5.10 represents Volatility values color-coded after

the application of the algorithm (as before, red points represent detected anoma-

lies whereas green ones represent regularities). The plot shows that the algorithm

highlights major peaks as well as almost-zero Volatility values.

Not surprisingly, the same method applied to this day produces results as in figure

5.10 that are interesting for various reasons.

Firstly, the time-series view as from the bottom plots of 5.6 and 5.10 may suggest

that the distinction between red and green dots could be as effectively done by

applying static threshold (e.g. Volatility greater than a given value). This would

be an over-simplification: first of all, one would need 2 thresholds, one for high

values and one for low values; additionally, 5.10 shows that these thresholds would

not work as good, given there are periods in which red and green dots were not

so easy to be predicted as such. In other words, a decision boundary here is

not a trivial linear threshold (as one naively one could do via a purely visual

inspection), instead it appears as an elliptic decision boundary. This underlines
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the importance of implementing an algorithm like this one, instead of focusing on

a just visual identification of thresholds.

Secondly, the algorithm is good at identifying peaks and drops that deserve atten-

tion. The peaks highlighted by the algorithm are a subset of the peaks assumed as

interesting in the previous step: this represents a good step forward in the analysis,

as the indications get clearer and clearer. At the same time, the algorithm also

highlights as anomalies very low values of Volatility that are stable for long time,

resulting in a low-Volatility plateau: this might happen when the activity of the

service may drop to zero (due to a major breakdown) or get stuck in a loop that

produces regularly the same logging.

Thirdly, with respect to Figure 5.6, Figure 5.10 allows to reduce even further the

number of log messages to be analyzed in order to extract textual information

about what may have caused the issue. This is discussed in more depth in Section

5.3.

5.3 Content extraction through Text Processing

As a final component of the prototype developed in this thesis work, text processing

techniques have been applied to the segments of the log messages identified as

anomalies in order to extract content to be connected with possible sources of

such anomaly. This step could in principle be implemented with sophisticated

techniques from Natural Language Processing (NLP). This will be discussed in the

conclusion remarks, as it goes beyond the scope of this thesis: still, an attempt

towards this direction was tried out, and it is presented and briefly discussed in

the following.

5.3.1 Methodology and preliminary results

Once the relevant time window(s) from a given daily log are identified by the

OCSVM algorithm, the entire text in the log entries corresponding to the selected

time window can be extracted and analysed. To do so, information retrieval was
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5.3 Content extraction through Text Processing 5. Analysis results

done via TFIDF (see Chapter 4) and following steps are briefly listed in the fol-

lowing.

In this specific analysis, the focus is on May 23rd, 2019 , precisely on the time

range from 3:00:00 PM and 4:00:00 PM, i.e. log data corresponding to the peak

in Figure 5.9

The text processing analysis follows this pipeline:

• Anonymisation. Proper filtering via regular expressions is applied in order

to anonymise all user-related entries. These include e.g. IDs, e-mail contacts,

name and surname as from the Grid certificate’s Distinguished Name (DN),

user affiliation, etc). All these details would be anyway under privacy regu-

lations, but are anyway parts of the log text that are completely unnecessary

to the test at stake.

• TFIDF Word Tokenisation. The text from log message is then tokenised

in tuples of words with 2 (diads) or 3 (triads) items each. This steps could be

done in more sophisticated ways, while this one is still a simple and efficient

approach in order to grasp the “sense” of the message.

• TFIDF Information Retrieval. Tokenised messages were then used as

collection of documents onto which TFIDF could be deployed. This step

requires TFIDF fine-tuning setting, in particular i) automatic exclusion of

English stop-words; ii) ignoring diads/triads with a frequency strictly greater

to 80%.

The outcome of this entire process for the mentioned log file highlighted the pres-

ence of some most relevant key-tuples, among which for example:

• “SRM-FAILURE REQUESTS FAILED”;

• “SURL SURL FAILED”1;

• “FAILED STATUS SRM-FAILURE”.

1The repetition of “SURL” here is just a consequence of the regex filtering.
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The SRM documentation (and the StoRM experts at CNAF) confirms that all

these messages are related to operations expected to succeed but actually failing

on the SRM interface, namely the first and the third are symptoms of a failed

SRM request (e.g. prepare to access a file, actually access a file, prepare to

write a file, actually write a file), while the second is a typical signature of a

transfer failure from a source “SURL” (Storage URL on the WLCG Grid) to

the destination SURL. In a nutshell, it can be inferred that in the time window

tagged as anomalous via the OCSVM algorithm, the text content indeed indicates

a possible source of the anomaly in the failure of SRM-level interactions among

user requests and CNAF storage, that might have resulted in massive logging

activity.

In conclusion, the analysis done based on this prototype seems along the original

requirements and indicates the possibility of allowing any CNAF operator to dig

deeper into what happened in critical time windows, and consequently acquire

knowledge on it. This step is fundamental in the evolution of a CNAF predictive

maintenance paradigm.
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Chapter 6

Conclusions and next steps

This thesis outlines my contribution to the work done in view of the future

deployment of a log-based Predictive Maintenance solution at INFN-CNAF

Tier-1. The original contribution of this work is an original lightweight software

prototype designed to identify critical time windows of the StoRM service.

Moreover, the prototype was designed to be extensible to other services in

which the criticality is related to the production rate of log entries. Another ad-

dressed point is the potential of content extraction via Text Processing techniques.

After defining and preprocessing the observable, namely the Volatility, an

Anomaly Detection algorithm was deployed to detect automatically anomalous

time windows of a service taken as example (StoRM storage service in this case)

inside analysed days. Finally, using a Text Processing tool, namely TFIDF,

some actionable content was extracted from the aforementioned anomalous time

windows.

The pivotal results were:

• The Unsupervised approach has been validated and ranked as effective in the

proposed task. This work confirms previous results ([3], [41]) developing an

original and independent prototype based on the volatility metric revealing

critical workloads. The prototype is currently part of the analytical tools
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that support CNAF’s maintenance infrastructure.

• The run-time of the algorithm over a off-the-shelf business laptop1 can be

considered good, as time consumption of the entire prototype action is well

below a single hour over average log file sizes from StoRM (≈ 1 GB), which

represents a step forward with respect to previous works.

6.1 Next Steps

Future directions of the work from this thesis involve: Text Processing of log

messages and prototype’s computational speed further improvement.

As regards the former, the speeding-up of message processing laid the groundwork

for further and more rigorous Text Processing studies: as an example, collabora-

tors of this work are already exploring the development of an original Sentiment

Analysis strategy over log messages to detect recurrent speech templates over

time.

Regarding the domain of computational speed some improvement can be obtained

exploring the evergrowing domain of external computing resources (e.g. Graphical

Processing Units (GPUs), Artificial Processing Units (APUs) and Tensor Process-

ing Units (TPUs), etc.) and adapting code to run over it. Moreover, adapting the

approach showed in this thesis to run over advanced Analytics platforms (such as

Apache, Openstack, etc.) may extend the potential of the prototype even further.

All the aforementioned next steps, some of which have explored in a preliminary

manner (e.g. Text Processing) stand as strong suggestions for future directions of

development. INFN-CNAF is strongly interested in advancing on projects and is

currently focusing on increasing the amount of different log files (from different

services) in order to explore e.g. correlations, metrics etc.

To encourage further developments, the entire prototype’s code

will be released with GNU GPLv2 Free Software Licence

1HP Spectre x360 2018 Intel i5 8th-gen 4-Core 8-Thread CPU, 8 GB RAM,Windows 10 +

Windows Subsystem for Linux
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(https://github.com/FrancescoMinarini), being an initial help to sup-

port the evolution of a Predictive Maintenance architecture at INFN-CNAF

Tier-1.
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Appendix A

This appendix shows, for the sake of completeness, more charts obtained during

the Front-End analysis (see Chapter 5). Figures 6.1 and 6.3 refer to a day marked

as “critical”(December 6th). Figures 6.2 and 6.4 refer to a day marked as “regular”

(December 8th).
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Appendix B

This appendix shows a further example obtained during Back-End analysis (see

Chapter 5). Figure 6.5 shows the log count extracted from May 27th and Figure

6.6 shows the volatility chart related, where volatility is able to capture also a

growing trend. This is a further confirmation of its flexibility.
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