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Abstract

In questa tesi abbiamo eseguito uno studio sistematico, tramite un approccio com-
putazionale ab-initio, delle proprietà ottiche di un insieme di quattordici diverse per-
ovskiti. Questi quattordici materiali sono stati scelti in modo da formare un insieme
rappresentativo delle perovskiti di metalli di transizione, ed includono di�erenti con�g-
urazioni elettroniche, ordinamenti magnetici e caratteristiche strutturali, con bandgap
che variano da 0.1 eV a 6.1 eV.
Lo studio è stato compiuto utilizzando un approccio basato sulla risoluzione dell'equazione
di Bethe-Salpeter, dove le energie di quasi-particella e l'interazione schermata sono state
ricavate da una precedente simulazione basata sull'approssimazione GW .
Il lavoro svolto è �nalizzato alla valutazione del ruolo e del contributo dell'interazione
elettrone-lacuna sugli spettri ottici dei materiali considerati. Per ogni perovskite abbi-
amo inoltre confrontato i risultati ottenuti con le misure sperimentali, laddove presenti,
e con precedenti risultati numerici ottenuti nell'ambito dell' Approssimazione di Par-
ticelle Indipendenti (ottenuti a partire da spettri GW). In�ne abbiamo determinato
l'origine delle strutture all'interno dello spettro, attribuendole a transizioni tra speci-
�che bande.
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Introduction

Transition Metal Oxide (TMO) perovskites are an extensively studied class of ma-
terials, with widely interesting chemical and physical properties and promising tech-
nological applications. A series of recent works have investigated, through ab-initio
simulations, their structural and electronic properties with grat precision. However
their optical properties (excluding the Metal Halide perovskite and SrT iO3) have been
less explored from a computational point of view, and to our knowledge their calcula-
tions have almost always been performed using the Independent Particle Approxima-
tion (IPA). This approach, however, has often proved to be inadequate to reproduce
accurately the experimental spectra. Moreover, the IPA approximation is not able to
describe the excitonic properties (that is, the electron-hole interaction).

The aim of the present work is therefore to address these issues by analysing the contri-
bution of the electron-hole interaction to the optical properties of the studied materials.
We also argue that the inclusion of the this interaction, beyond the Independent Parti-
cle Approximation, is crucial to obtain a better agreement with the experimental data
for many TMO perovskites, such as the cubic non-magnetic ones SrT iO3, KTaO3,
SrZrO3, SrHfO3.
We examined a representative dataset of fourteen 3d, 4d, and 5d TMO perovskites
with di�erent crystal structures and magnetic orderings. Speci�cally, we considered
(1) non-magnetic d0 cubic perovskites STMO3 (TM = Ti,Hf, Zr) and KTaO3; (2)
non-magnetic and structural distorted 3d0 LaScO3; (3) magnetic and structural dis-
torted LaTMO3 (TM = Ti, V, Cr, Fe,Mn), SrTMO3 (TM = Mn, Tc), NaOsO3 and
Ca2RuO4. Their structural and electronic properties are brie�y described in chapter 4.

The investigation of the optical properties outlined above is performed through ab-
initio calculations made with the Vienna Ab initio Simulation Package (V ASP ).
The �rst step needed to obtain a optical spectra which includes the excitonic e�ect is
a preliminary DFT calculation of the ground state properties of the compound; chap-
ter 1 is devoted to an overview of the Density Functional Theory and of the Hartree
Fock Approximation. However, such mean �eld methods are inadequate to describe
the excited states properties, as we discuss in chapter 1.3: therefore they are un�t to
describe the optical properties.
The state-of-the-art method to estimate the bandgap and the excited states properties
is the so-called GW approximation, introduced in chapter 2. The GW method uses
the one-body Green's functions and the many-body Perturbation Theory to determine
the single-particle excitation spectrum of the quasiparticles. The implementation of
the GW approximation relies on a perturbative treatment starting from DFT wave-
function and energies.
Nonetheless, in this method the interactions between quasiparticles are neglected, and
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the quasiparticles are considered independent; In fact the so-called Independent Parti-
cle Approximation employs directly the results of a GW calculation to determine the
optical spectra.
To overcome the IPA and include the interaction between electron-hole quasiparti-
cles, we need to solve the Bethe-Salpeter Equation (BSE) for the two-particle Green's
function (presented in chapter 3) starting from the wavefunction and the screened in-
teraction calculated at the previous GW step. In chapter 5 we describe instead the
parameters employed in the DFT and G0W0 runs.

The main disadvantages of the approach based on the Bethe-Salpeter equation
are the large computational cost and memory requirements. The reason behind these
disadvantages and the procedures chosen to cope with them are discussed in chapters
6.1, 7.1 and 6.3. Finally, in chapters 6.4, 7.2 and 7.3 the results are presented and
commented.
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As we brie�y described in the introduction, three di�erent steps are needed to ob-
tain a single optical spectra which includes the excitonic e�ect: a preparatory Density
Functional Theory calculation; a following GW calculation which improves the band-
structure obtained by the DFT method (the GW approximation in fact represents the
current state of the art to simulate the bandstructure of a given compounds); a �nal
step which the Bethe-Salpeter equation is solved to determine the dielectric function
with the inclusion of the electron-hole interaction.
The �rst three chapter in this section are dedicated to these three methods: in each
chapter we brie�y summarize the theoretical background of the method itself (with a
particular attention to the description of the excited states) and its implementation
inside the software V ASP .
In the fourth chapter an introduction to the transition metal oxide perovskites and
their electronic and structural properties is given instead.
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Chapter 1

Mean �eld methods

The fundamental idea behind the mean-�eld methods presented in this chapter is
to replace an interacting many-body problem, notoriously hard to treat, with an
independent-particle problem associated with an e�ective potential. This potential,
which is the key of these methods, can be chosen as an approximation for the interac-
tion e�ects in an average sense (as in the Hartree-Fock approximation) or de�ned in
such a way to reproduce selected properties of the interacting system.
This chapter will provide a short summary of the Density Functional Theory, which
will be applied in Part II, and of the Hartree Fock method, which will be not employed
directly but will be used to understand the GW method.

1.1 Hartree-Fock Approximation

The Hartree-Fock approximation was developed by D.R. Hartree and W. Hartree[1],
who combined their previous work[2] (the so called Hartree method) with the ideas on
the antisymmetric wavefunction due to Fock[3].
The equations in the Hartree method neglect any non-classical interactions in the no-
homogenneous electron gas, and can be obtained starting from a single-particle wave-
function product antsaz for the many-body wavefunction. We can re�ne the result by
including the fermion nature of the electrons (that is the obedience of the Pauli ex-
clusion principle) and still remain inside an independent particle approximation, and
thus keeping the electrons uncorrelated. To do this we take as antsaz a single Slater
determinant:

ΨHF =
1√
N !

∣∣∣∣∣∣∣∣
ψ1,σ1(~r1) ψ1,σ2(~r2) ψ1,σ3(~r3) ..
ψ2,σ1(~r1) ψ2,σ2(~r2) ψ2,σ3(~r3) ..
ψ3,σ1(~r1) ψ3,σ2(~r2) ψ3,σ3(~r3) ..

.. .. .. ..

∣∣∣∣∣∣∣∣ (1.1)

whew ψ are the single-particle orbitals, ~ri and σi the position and spin of the i-th
particle.
The total energy of a system of electrons in an external potential vext is

E = 〈ΨHF |Ĥ|ΨHF 〉 = −
∫
d~r
∑
i,σi

ψ∗i,σi(~r)
∇2

2
ψi,σi(~r) +

∫
d~r vext(~r)n(~r) + EH + Ex

(1.2)

10



11 CHAPTER 1. MEAN FIELD METHODS

where

EH =
1

2

∫
d~rd~r′

n(~r)n(~r′)

|~r − ~r′|
(1.3)

is the Hartree contribution to the total energy and

Ex = −1

2

∑
σ

occ∑
i,j

∫
d~rd~r′ ψ∗j,σ(~r′)ψi,σ(~r′)

1

|~r − ~r′|
ψj,σ(~r)ψ∗i,σ(~r) (1.4)

is the corresponding Fock (exchange) term (n is the density). This term is negative,
reducing the total energy with respect to the Hartree approximation, and therefore
stabilizing the electronic system.
To obtain the Hartree-Fock equations we perform a variational minimization of the
total energy while requiring the orthonormality of the single-body orbital ψi,σ, i.e.:

δE

δψ∗i,σ
= 0

∫
d~r ψ∗i,σ(~r)ψj,σ(~r) = δi,j

The Hartree-Fock equations are:−∇2

2
+ vext(~r) +

∑
j,σj

∫
d~r′ψ∗j,σj(

~r′)ψj,σj(~r
′)

1

|~r − ~r′|

ψi,σ(~r) (1.5)

−
occ∑
j

∫
d~r′ψ∗j,σ(~r′)ψi,σ(~r′)

1

|~r − ~r′|
ψj,σ(~r) = εi,σψi,σ(~r) (1.6)

Equation 1.5 represents a coupled set of integro-di�erential equations, and can be solved
exactly only in some special cases.
The potential on the �rst line, arising from the Hartree energy (equation 1.3),

vH =
∑
j,σj

∫
d~r′ψ∗j,σj(

~r′)ψj,σj(~r
′)

1

|~r − ~r′|
=

∫
d~r′

n(~r′)

|~r − ~r′|
(1.7)

is also called the Hartree potential and it's local in space and time. It's the electrostatic
potential arising from the electron charge density and includes the self-interactions (i.e.
each electron acting on itself), and does not depend on the spin.
The second term is the non-local1 and integral Fock operator, which can be rewritten
as the so-called Fock Self-energy Σxσ(~r, ~r′):

Σxσ(~r, ~r′)
def
= −

occ∑
j

ψ∗j,σ(~r′)ψi,σ(~r′)
1

|~r − ~r′|
→ (1.8)

−
occ∑
j

∫
d~r′ψ∗j,σ(~r′)ψi,σ(~r′)

1

|~r − ~r′|
ψj,σ(~r) = −

∫
d~r Σxσ(~r, ~r′)ψi,σ(~r) (1.9)

which is non-zero only for like spins. It originates from the antisymmetry of the wave-
function, and thus is linked to the Pauli's exclusion principle (in fact this term is absent

1in the sense that its evaluation requires an additional integration over the variable ~r′.
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1.1. HARTREE-FOCK 12

in the Hartree method). Note that the case j = i cancels exactly the spurious self-
interaction term inside the Hartree potential.

In second quantization the mean �eld character of the Hartree-Fock approximation
becomes more clear. The Hartree and Fock terms have the form:

Û =
1

2

∑
mm′nn′

∑
σσ′

Umm′nn′ ĉ
+
mσ ĉ

+
m′σ′ ĉn′σ′ ĉnσ (1.10)

where m,m′, n, n′ = 1, .., Nstates refer to the set of independent-particle wavefunctions
and ĉ+

m′σ′ , ĉn′σ′ are the creation or annihilation operators.
The Hartree Fock method corresponds to the approximation of the two-particle terms
in equation 1.10 with single-particle ones:

ĉ+
mσ ĉ

+
m′σ′ ĉn′σ′ ĉnσ → 〈ĉm′σ′ ĉn′σ′〉ĉ+

m′σ ĉnσ − δσ,σ′
〈
ĉ+
mσ ĉn′σ′

〉
ĉ+
m′σ′ ĉnσ (1.11)

where the �rst term yields the Hartree potential and the second term yields the ex-
change term.

Exchange hole
In this section we will concisely sketch an intuitive picture of the e�ect of the exchange
term. Let's de�ne the pair correlation functions:

hσ,σ′(~r, ~r′)
def
=
〈
ψ̂+
σ (~r)ψ̂+

σ′(
~r′)ψ̂+

σ′(
~r′)ψ̂+

σ (~r)
〉
−
〈
n̂σ(~r)

〉〈
n̂σ(~r′)

〉
(1.12)

gσ,σ′(~r, ~r′)
def
=

〈
ψ̂+
σ (~r)ψ̂+

σ′(
~r′)ψ̂+

σ′(
~r′)ψ̂+

σ (~r)
〉

〈
n̂σ(~r)

〉〈
n̂σ(~r′)

〉 (1.13)

We can obtain one de�nition from the other with:

hσ,σ′(~r, ~r′) =
〈
n̂σ(~r)

〉〈
n̂σ(~r′)

〉 [
gσ,σ′(~r, ~r′)− 1

]
(1.14)

where ψ̂+
σ (~r), ψ̂σ(~r) are the creation and annihilation operators and n̂σ(~r) = ψ+

σ (~r)ψσ(~r)
is the particle density operator. hσ,σ′ evaluates the correlation in the system: in fact,
if the probability of �nding an electron (with spin σ) at ~r and a second one (with spin
σ′) at ~r′ are uncorrelated then hσ,σ′(~r, ~r′) = 0.

The Hartree-Fock equations don't contain any term which accounts for the electron-
electron correlation stemming from the electron-electron interaction. We recall in fact
that the Hartree-Fock wavefunction is a single Slater determinant.
However, the pair correlation function is di�erent from zero for electron with like spin
even when no electron-electron interaction is present, such as in the Hartree-Fock ap-
proximation. For example, in the three-dimensional homogeneous Fermi-gas ground
state we can prove that[4, 5]:

hσ,σ(~r, ~r′) = −
[(

3n

2

)
sin(x)− x cos(x)

x3

]2

(1.15)

with x = kF |~r − ~r′|, and n is the density. The probability of �nding an electron
with σ spin in the vicinity of another σ electron on the scale of the reciprocal Fermi

12



13 CHAPTER 1. MEAN FIELD METHODS

wave number 1/kF si partially suppressed, due to the Pauli principle. This e�ect, called
exchange hole, is totally independent of electron-electron interaction and descends only
from the exchange e�ects. In fact, for electrons with di�erent spins we instead �nd
that electrons are totally uncorrelated:

hσ,−σ(~r, ~r′) = 0 (1.16)

Historically, the correlation energy has been de�ned as the Hartree-Fock energy de�ned
in equation 1.2 (completely uncorrelated) minus the exact ground-state energy.

13



1.2. DENSITY FUNCTIONAL THEORY 14

1.2 Density Functional Theory

1.2.1 Kohn-Hohenberg theorems

The Density Functional Theory (hereafter DFT ) is a very popular and successful the-
ory, frequently adopted to study the ground state electronic and structural properties
of a vast class of materials. The foundation of this approach is given by the two Kohn-
Hohenberg theorems[6]. Their statement will be presented and commented without
giving a proof, which can be found in many books[4, 7, 8, 9, 10]. The original for-
malism is derived assuming a non degenerate ground state, however later works by
Kohn[11], as well as the alternative formulation provided by Levy[9], overcome this
limitation.

Theorem 1 For any system of interacting particles in an given external potential
vext(~r), the potential itself is determined uniquely (within an additive constant) by the
ground state particle density n0(~r).

Mathematically, the �rst theorem proves that the map vext → n0 is injective [9,
p. 10][10, p. 232][12, p. 435]. If we restrict to the n0 determined by a given vext (we will
elaborate on this later) this map can be inverted: the density therefore becomes the
basic variable in this approach and vext becomes an unique functional of the electron
density n0.

Figure 1.1: The First Kohn-Hohenberg theorem proves that the map (C◦D) is injective,
and thus invertible (restricting n0 to the v-representable ones). Taken from [13].

The immediate consequence of the �rst theorem is that the many-body hamiltonian is
fully determined by the ground state density n0(~r). This in turn implies that the many-
body wavefunctions of all states (ground and excited)[4] are determined by the same
ground state density n0(~r), and therefore all properties of the system are completely
determined by it :

ψ(~r1, ~r2, .., ~rN) = ψ[n0(~r)] =⇒
〈
Ô
〉

= 〈ψ[n0(~r)]|Ô|ψ[n0(~r)]〉

14



15 CHAPTER 1. MEAN FIELD METHODS

Because every expectation value is fully determined by the ground state density, the
energy (which obviously is the expectation value of the hamiltonian) can be written as
a functional of n0(~r). Hence we can easily �nd that:

E[n0(~r)] =
〈
T̂ [n0(~r)]

〉
+
〈
V̂ne[n0(~r)]

〉
+
〈
V̂ee[n0(~r)]

〉
(1.17)

where T̂ is the kinetic energy, V̂ne the term arising from the nucleus-electron interaction
and V̂ee the term associated to the electron-electron interaction. We can reorganize this
equation by de�ning the so called Hohenberg-Kohn functional FHK :

FHK [n0(~r)]
def
=
〈
T̂ [n0(~r)]

〉
+
〈
V̂ee[n0(~r)]

〉
→ E[n0(~r)] = FHK [n0(~r)]+

∫
d~rvext(~r)n0(~r)

(1.18)
This form has the merit to make the dependence on the external potential vext explic-
itly. In fact the functional FHK is de�ned independently of the external potential vext;
that is, the formal de�nition of this functional is the same for all electron systems.

The second theorem paves a way to calculate E, de�ning the variational behaviour
of the energy functional:

Theorem 2 Let vext(~r) be the external potential of a speci�c system with exact ground
state density n0(~r). The exact ground state energy of the system is the global minimum
value of the functional E[n(~r)], and the density that minimizes the functional is n0(~r).

So it follows that, supposing that the expression for FHK was known, we can �nd the
exact ground state density and energy by minimizing the total energy of the system
with respect to variation of the density n(~r). Note that the theorem determines only
the ground state properties (density and energy), and it does not provide any hint
regarding the excited states.

However, a technical but important problem arises: the framework requires that n0

is the ground state density of an Hamiltonian with a suitably chosen vext(~r); such
densities are called v-representable.
However we can't exclude a priori the existence of n0 that cannot be derived from
any Hamiltonians with some external potential. Moreover, di�erent works have found
speci�c examples of reasonably well-behaved function that cannot be determined from
a speci�c hamiltonian[14, 15] (an overview can be found in [9]). This problem has still
no solution in the case of continuous systems.
Another issue concerns the N-representability, corresponding to the question: is it
possible to derive a corresponding N-body antisymmetric wavefunction given an arbi-
trary n(~r)?
This problem was solved for by Gilbert[16], who found that the answer is positive under
the conditions n(~r) ≥ 0 and

∫
d~r|n(~r)1/2|2 �nite.

1.2.2 Kohn-Sham equations

While it's possible, in principle, to implement a direct minimization of an explicit
energy functional of the density, this is not the most e�cient approach. DFT 's pop-
ularity is due to the reformulation by Kohn and Sham: they introduced an auxiliary
independent-particle theory, which is solvable and is speci�cally chosen to reproduce

15



1.2. DENSITY FUNCTIONAL THEORY 16

exactly some properties of the full many-body system (the density n0), but not all. In
other words, the Kohn-Sham formulation of DFT maps an N interacting electrons sys-
tem onto a system of N non-interacting �ctitious particles - the Kohn-Sham particles
- which move in an e�ective potential, while reproducing only certain properties (such
as the density) of the original system.
Formally, the Kohn-Sham approach relies on two assumptions[4]:

1. The exact many body ground state density can be represented by the ground state
density of an auxiliary system of non-interacting particles: n(~r) =

∑
σ

∑N
i=1|ψKSi,σ (~r)|2

where ψKSi (~r) are the single particle wavefunctions and are called Kohn-Sham or-
bitals.
This is referred as non-interacting V-representability, and we will assume its va-
lidity.

2. The auxiliary hamiltonian is de�ned with the usual kinetic operator and an ef-
fective potential Veff . We assume, for simplicity, that Veff is spin independent,
although it's not strictly necessary.

The Kohn-Sham approach now proceeds to rewrite the ground state energy functional
1.17 through ψKSi σ :

E[n] =Tip[n] +

∫
d~rvext(~r)n(~r) + EH [n] + Exc[n]

Tip[n] = −1

2

∑
σ

N∑
i=1

〈
ψKSi,σ

∣∣∇2
∣∣ψKSi,σ 〉 =

1

2

∑
σ

N∑
i=1

|∇ψKSi,σ |2

EH [n] =
1

2

∫
d~rd~r′

n(~r)n(~r′)

|~r − ~r′|

(1.19)

Tip is the independent-particle kinetic energy and EH is the Hartree Energy de�ned in
equation 1.3. But what is Exc?
The exchange-correlation functional contains the di�erence between the exact kinetic

energy
〈
T̂
〉
and Tip, plus the di�erence between the exact interaction energy

〈
V̂ee

〉
and

the Hartree Energy. In other words, Exc contains all many-body e�ects of exchange
and correlation:

Exc[n]
def
= FHK [n]− (Tip[n] + EH [n]) =

〈
T̂
〉
− Tip[n] +

〈
V̂ee

〉
− EH [n] (1.20)

Exc is a functional of the density since all the variables on the right-hand side are
functional of it; moreover, it's a universal functional in the same sense of FHK .
Finally, we can write the auxiliary hamiltonian:[

−1

2
∇2 + veff (~r)

]
ψKSi (~r) = εKSi ψKSi (~r) (1.21)

The condition of minimum energy for �xed particle number de�nes veff :

veff (~r)
def
= vext(~r) +

δEH [n]

δn(~r)
+
δExc[n]

δn(~r)
= vext(~r) + vH(~r) + vxc(~r) (1.22)

These equations are called theKohn-Sham equations and must be solved self-consistently,
since the potential is a functional of the density.

16



17 CHAPTER 1. MEAN FIELD METHODS

The potential vxc has a critical role in this formulation, however an explicit and exact
form for it is not known: we have to resort to approximations. To quote Kohn's Nobel
Prize Lecture (Kohn, 1999):

"The Kohn�Sham theory may be regarded as the formal exacti�cation of
Hartree theory. With the exact Exc and Vxc all many-body e�ects are in
principle included. Clearly this directs attention to the functional Exc[n].
The practical usefulness of ground-state DFT depends entirely on whether
approximations for the functional Exc[n] could be found, which are at the
same time su�ciently simple and su�ciently accurate."

1.2.3 Exchange and Correlation functionals

One of the reason of the success of the DFT approach is that even comparatively simple
functionals can often reach overall good results for many properties.
The simplest approximation is the Local Density Approximation (LDA), where
Exc is assumed only locally dependent on the charge density. It's de�ned from the
homogeneous electron gas exchange-correlation energy density εHEGxc :

ELDA
xc [n]

def
=

∫
d~rn(~r)εHEGxc (n) (1.23)

Where εHEGxc (n) is equal to the sum of the exchange and correlation contributions
εHEGxc (n) = εHEGc (n) + εHEGc (n). εHEGx (n) is known analytically:

εHEGx (n) = −3

4

(
3

π

)1/3

n4/3 (1.24)

The determination of εHEGc (n) is more complicated. Early expressions were based on
perturbation theory[17] (speci�cally the Random Phase Approximation), but modern
implementations rely on parameterizations of Quantum Monte Carlo calculations[18].

A re�nement of the LDA is the Generalized Gradient Approximation (GGA),
where Exc is not only function of n(~r) but also of ∇n(~r) (functionals of this kind are
called semilocal):

EGGA
xc [n]

def
=

∫
d~rf (n(~r),∇n(~r))) (1.25)

The most popular GGAs are PBE (proposed in 1996 by Perdew. Burke and Ernzen-
hof [19]) and BLYP (the combination of Becke's 1988 exchange functional[20] with the
1988 correlation functional by Lee, Yang and Parr [21]).

There have been e�orts in the past to move beyond the GGA. One class of very
successful functionals are the hybrids ones, which mix a fraction of the (non local)
Hartree-Fock exchange into the DFT exchange-correlation functional, but also other
mixtures are possible. The original de�nition of a hybrid functional involves a certain
empiricism in the choice of the component functionals and of the weights to assign to
each one2. In this work we will brie�y employ the HSE06 [24] hybrid functional.

2although several self-consistent and parameter free hybrid functionals have been de�ned in the
recent years [22, 23].
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1.2. DENSITY FUNCTIONAL THEORY 18

Exact constraint and the exchange-correlation hole
While the construction of the LDA scheme calls for application only to systems with a
slowly varying density, many somewhat satisfying results have been reported for inho-
mogeneous systems quite di�erent from homogeneous electron gas. This success calls
for an explanation.

This can be related to the fact that LDA satis�es several constraints and reproduce
various properties of the exact exchange-correlation functional. The �rst one is linked
to the exchange-correlation hole, already introduced in section 1.1. We start by de�n-
ing a variant of the correlation function (equation 1.13), the average pair correlation
function:

ḡ(~r, ~r′)
def
=

∫ 1

0

dλgλ(~r, ~r′) (1.26)

where gλ(~r, ~r′) is de�ned within a system with a rescaled electron interaction λ

|~r−~r′|
;

λ = 0 is associated with a system with no interaction, where λ = 1 describes the usual
Coulomb interaction.
Gunnarsson et.al.[25] de�ne the exchange-correlation hole density, representing the
charge density depletion around the electron due to exchange and correlation as:

nxc(~r, ~r′)
def
= n(~r)ḡ(~r, ~r′) (1.27)

This hole density satis�es the sum rule:∫
~rd~r′nxc(~r, ~r′) = −1 (1.28)

which means the charge depletion sums up to exactly one electron charge.
We can restate the exact exchange-correlation energy through nxc:

Exc =
e2

2

∫
d~rn(~r)

∫
d~r′nxc(~r, ~r′)

1

|~r − ~r′|
(1.29)

Interestingly, Exc depends only on the monopole part of the multipole expansion of
nxc(for a given ~r), that is only on the spherical average of nxc:

nxc(~r, ~r′) =
∑
l,m

nlmxc (~r, ~r′)Ylm(Ω) =⇒ Exc =
1

2

∫
d~rn(~r)

∫
dR

1

R
n00
xc(~r,R) (1.30)

where R = |~r − ~r′|.

Does the LDA approximation describe correctly the exchange-correlation hole density
and its properties? An important success of the LDA approximation is the correct
reproduction of the sum rule de�ned in equation 1.28[9, p. 186]. Moreover it replicates
rather well the hole spherical average, even if the exact curve is poorly approximated.
For example, we show the results for the Ne atom by Gunnarsson et.al.[25].
Lastly, it's important to note that also the GGA approximation developed by Perdew
et.al ful�lls the sum rule for the exchange-correlation hole.

18



19 CHAPTER 1. MEAN FIELD METHODS

Figure 1.2: Exchange hole nxc of Ne atom for (a)r = 0.09a0 and (b)r = 0.4a0. The
full curves are the exact results while the dashed curves are obtained with LDA. From
[25].

Figure 1.3: Spherically average exchange hole nxc of Ne atom (r′nxc(r, r
′)/sqrt4π)for

(a)r = 0.09a0 and (b)r = 0.4a0. The full curves are the exact results while the dashed
curves are obtained with LDA. From [25].

1.3 Excited states

The correct estimation of the excited states and in particular of the bandgaps is critical
for the study of the optical properties. Therefore, in this chapter we brie�y summarize
how the two methods discussed in this chapter perform these tasks.

1.3.1 Excited states in Hartree Fock

In the Hartree Fock theory, the Koopmans' theorem gives a very clear physical meaning
to the eigenvalues:

εHFi = E(f1, .., fi, .., fn)− E(f1, .., fi − 1, .., fn) (1.31)

where εHFi is the i -th Hartree Fock eigenvalue, fi is the occupancy of the i -th level
and E(f1, .., fi, .., fn) represents the total energy of a system of f1 + .. + fi + .. + fn
electrons. Therefore the eigenvalues of the single electron equation have a unambiguous
physical meaning: they represent the energy required to remove an electron from the
i -th orbital, i.e. the ionization energy.
However, the Hartree Fock description usually o�ers a very poor comparison with
the experimental data: for example, the method consistently overestimates the direct
bandgap for di�erent materials (see Table 1.1). This can be traced back to two main
reasons:

• The glaring de�ciency of Hartree Fock theory is the absence of any description
of the correlation e�ects.

19



1.3. EXCITED STATES 20

• Moreover, Koopmans' theorems describe the addition or removal of electrons to
the system, but HF description neglects the relaxation e�ects: indeed the other
HF eigenvalues (εHFj 6=i) remain unchanged and at the same value. In other words,
the other orbitals are not relaxed to a new equilibrium con�guration after the
addition or removal, but are "frozen"[26, p. 330].

DFT (eV) HF (eV) Experimental (eV)

Ge 0.5[27] 4.3[28] 1.0[28]
C 5.6[29] 15.0[29] 7.3[29]
Si 2.6[29] 9.4[29] 3.4[29]
Ne 21.2[29] 25.1[29] 21.4[29]
Ar 8.3[29] 18.5[29] 14.3[29]
Kr 6.8[29] 16.4[29] 11.6[29]

Table 1.1: Comparison of minimum direct bandgap (in eV) calculated with the HF
and DFT methods.

1.3.2 Excited states in DFT

We brie�y hinted before that the second Kohn-Hohenberg theorem applies only to
ground state. It is possible to extend the Kohn-Hohenberg framework to the excited
states and properties?
First of all, the map n0 → vext loses its bijectivity: Epstein and Rosenthal proved[30]
(via �nite dimension counterexample) that the external potential is in general not
uniquely associated to a given excited state density. Another important work on the
topic was written by Perdew and Levy[31], which proved various results:

• Every extremum density ni(~r) of the ground state energy functional E[n(~r)] yields
the energy Ei of an exact stationary state of the system. The absolute minimum
corresponds to the ground state density and energy, while the other extrema
correspond to excited state densities.

• the coverage is incomplete: not every excited state density ni(~r) is an extrema
of the ground state energy functional. In other words, the extrema of E[n(~r)]
represent only a subset of all excited state density.

• If nexacti (~r) is an arbitrary exact excited state density with energy Eexact
i then

the ground state energy functional provides a lower bound for the exact energy
(E[nexacti ] ≤ Eexact

i ) and this equality holds if and only if nexacti (~r) is an extremum
of ground state energy functional E[n(~r)].

Janak's theorem
However the one-particle KS eigenvalues have been commonly used as excitation en-
ergies without, as we saw, formal justi�cation. While in Hartree Fock theory the
Koopmans' theorem gives a sound physical meaning to the eigenvalues of the single
electron equation, this association between eigenvalues and ionization energies is not

20



21 CHAPTER 1. MEAN FIELD METHODS

longer in general valid in the DFT framework.
However a result involving eigenvalues exists, the so called Janak's theorem:

∂E

∂fi
= εKSi (1.32)

where fi represents a fractional particle number. From this result we can give a physical
meaning only to the highest occupied eigenvalue εKSN :

E(N)− E(N − 1) =

∫ 1

0

dfN
∂E

∂fN
=

∫ N

N−1

dfNε
KS
N (1.33)

where EN and EN−1 are the ground energies for a system with N and N − 1 electrons
and εKSN is the highest occupied eigenvalue of a system of N electrons.
Because εKSN does not depends3 on fN we �nd that EN − EN−1 = −εKSN , which means
that from this theorem we can easily �nd the ionization energy. We stress that this is
true within an exact DFT, so without taking into consideration the various approxi-
mations used for Exc.
Can we reproduce the same procedure for all eigenvalues of a given KS hamiltonian?
For example, for EN and EN+1 holds EN+1 − EN = −εKSN+1: however this eigenvalue
does not belong to the N -electron KS hamiltonian, but to the N + 1 one: they are not
eigenvalue of the same hamiltonian.

The bandgap problem
One of most important properties that involves excited states is the bandgap, which is
unfortunately signi�cantly underestimated by the DFT ; In general the LDA predicts
bandgaps at least 30%− 50% smaller than the experimental ones. This issue is called
in literature the bandgap problem.
Following the reasoning presented previously, the DFT could in principle evaluate the
exact value for the bandgap as a di�erence of total ground state energies:

Eexact
gap = (EN+1 − EN)− (EN − EN−1) = εKSN+1(N + 1)− εKSN (N) (1.34)

where we have slightly changed the notation and εKSM (N) means the M-th KS eigen-
value of a system with N electrons.

The Kohn-Sham gap is εKSgap = εKSN+1(N)− εKSN (N + 1), implying that:

Eexact
gap = εKSgap + εKSN+1(N + 1)− εKSN+1(N) (1.35)

Thus, even an exact DFT underestimates Eexact
gap by the correction ∆ = εKSN+1(N + 1)−

εKSN+1(N). Works of the early 1980s[32, 33] gave an expression to ∆ in term of the exact
vxc potential:

∆ = lim
∆n→0

vxc[n+ ∆n]− vxc[n−∆n] (1.36)

When an electron is added or removed from a solid, the density change is in�nitesimal
and periodic, thus ∆n→ 0. We would therefore expect that also vxc changes in�nites-
imally upon electron addition or removal, but this is not correct. In fact the exact vxc

3this is true because the exact ground state energy functional is a series of straight lines with
discontinuities at integer occupancies[32].
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1.4. DFT IMPLEMENTATION IN VASP 22

varies discontinuously, and ∆ 6= 0: it can reach values up to 1 eV [34]. This shows
that even exact DFT calculations cannot yield the correct bandgap, because it doesn't
account for ∆.
Furthermore, standards exchange-correlation functionals such as the LDA possess no
derivate discontinuity, and in this sense fails to reproduce an important feature of the
exact exchange-correlation functional. It has also been proved that an exact exchange-
correlation functional, possessing the derivative discontinuity, cannot be an explicit
and di�erentiable functional of the electron density[35].

Additional shortcoming of vxc: local nature and self-interaction
Another important drawback that we only hint at is the local nature of the exchange
correlation potential. We recall that the vxc potential, at least in the LDA approxi-
mation, is static and a local functional of the density. Many authors[36, 37, 38] have
pointed out that the exact exchange correlation functional, however, is an highly non
local functional of the density: a change in the density at a given point ~r may induce
strong variation at a distant point ~r′.
In fact, as discussed previously, many modern approach such as the hybrid one or the
meta-GGA try to implement a functional which have a non local dependence on the
density, either by including a fraction of Hartree Fock exchange or a dependence on
the non-interacting kinetic energy.

Finally, other important properties of the exact functional are two conditions which
embody the absence of arti�cial self-interaction[39]: in the one-electron limit the cor-
relation and exchange energy must satisfy Ec[n

(1)] = 0 Ex[n
(1)] = −EH [n(1)].

These conditions are satis�ed by the Hartree Fock approximation, but not by LDA and
GGA.
The self-interaction error is particularly critical for localized states, such as the d states
in transition-metal oxides: DFT often leads to an arti�cial stabilization of delocalized
states[40].

1.4 DFT implementation in VASP

One of the fundamental milestones in condensed matter physics is the Bloch theorem,
which argues that the electronic wavefunction in a system exhibiting translational
invariance can be written as

ψn~k(~r) = un~ke
i~k·~r (1.37)

where un~k represents a periodic function with the same periodicity of the crystal (i.e.
of the crystal potential), and can be expanded on a plane wave basis set associated
with the reciprocal lattice vectors (Ω is the primitive cell volume):

un~k =
1√
Ω

∑
~G

C ~Gn~ke
i ~G·~r =⇒ ψn~k(~r) =

1√
Ω

∑
~G

C ~Gn~ke
i( ~G+~k)·~r (1.38)

why a plane wave basis set? There are di�erent reasons, that can be traced back to his-
torical, practical and computational ones. The historical one is that the pseudopotential
theory, which was a precursor of the method implemented in VASP (The Projected
Augmented Wave, or PAW ), was originally developed to cope with elements that can

22



23 CHAPTER 1. MEAN FIELD METHODS

be easily interpreted in a free electron picture, like metallic s and p compounds.
The practical reason argues that the total energy expressions (brie�y discussed in chap-
ter 1.2.2) and the hamiltonian Ĥ have an easy implementation within this basis set.
Finally, Ĥ |ψ〉 can be evaluated in a e�cient manner using the Fast Fourier Transform.

While the exact basis set contains an in�nite number of plane waves, for implementa-
tion reason their number of the plane waves must be �nite. The cuto� (de�ned by the
parameter ENCUT ) is imposed on the energy, i.e:

ψn~k(~r) =
1√
Ω

h̄2

2m
|~k2+ ~G2|<ENCUT∑

~G

C ~Gn~k e
i( ~G+~k)·~r (1.39)

Note that this implies that the number of plane waves can di�er for each kpoints.

Ideally, the computation of quantities like energies and densities would require in-
tegrations over the entire Brillouin Zone (BZ) (de�ned as the Wigner�Seitz cell in
reciprocal space). From a numerical standpoint, an integral evaluation can be carried
out only in an approximate way through a weighed sum on a �nite set of point (called
kpoint grid or kpoint mesh), carefully chosen:

1

ΩBZ

∫
ΩBZ

d~kf(~k) '
∑
~k

ω~kf(~k) (1.40)

For the DFT calculations VASP takes advantage of the crystal points symmetries
of the system to run the calculation only to the kpoints belonging to the Irreducible
Brillouin Zone (which is de�ned as the smallest fraction of the BZ that reproduce the
complete BZ through the symmetries).

1.4.1 The Projector Augmented-Wave method (PAW)

Within the DFT approach, several methods have been developed to solve the Kohn-
Sham equations. The one implemented in VASP, the Projector Augmented Wave
Method (PAW )[41], was �rst introduced as a combination of the augmented wave
methods[42] and the pseudopotential methods[43], and then improved by Kresse[44, 45].
The electrons are divided in two sets: the core electrons, which are close to the nucleus,
and the valence electrons, which are further away from the nucleus itself. The valence
electrons play a major role in processes such as bonding or electron transfer, and be-
cause of this their wavefunctions can signi�cantly change; the core wavefunctions play
instead a minor role in such processes, and so their wavefunctions undergo only minor
changes.

The �rst idea is, therefore, to de�ne a core region (called Augmentation Region with ra-
dius rc) and substitute the all-electron Kohn-Sham wavefunction |ψe〉 with a "pseudized"
one

∣∣∣ψ̃p〉: this wavefunction reproduces the behaviour of the all-electron one outside

the core region but is smoothly simpli�ed within this region.
The method starts with a partial wave expansion for the pseudized wavefunction and
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1.4. DFT IMPLEMENTATION IN VASP 24

the full one-electron Kohn-Sham wavefunction |ψe〉 within the augmentation region:

|ψe〉 =

{∑
i ci |φei 〉 r < rc

|ψe〉 r ≥ rc

∣∣∣ψ̃p〉 =

{∑
i ci

∣∣∣φ̃pi〉 r < rc

|ψe〉 r ≥ rc
(1.41)

the partial waves |φe〉 are the solutions of the radial Schröedinger equation:[
− h̄2

2m
∇2 + veff

]
|φei 〉 = εi |φei 〉 (1.42)

and the special projector functions ci are de�ned through the relation:

ci =
〈
p̃i

∣∣∣ψ̃p〉 (1.43)

which must ful�ll the condition
〈
p̃i

∣∣∣φ̃j〉 = δij. The connection between the pseudized

wavefunction and the full Kohn-Sham wavefunction is given by the identity:

|ψe〉 =
∣∣∣ψ̃p〉+

(
|ψe〉 −

∣∣∣ψ̃p〉) =
∣∣∣ψ̃p〉+

∑
i

ci |φei 〉 −
∑
i

ci

∣∣∣φ̃pi〉 (1.44)

The idea behind this equation is to reconstruct |ψe〉 by starting from
∣∣∣ψ̃p〉, subtracting∑

i ci

∣∣∣φ̃pi〉 and �nally replacing it with
∑

i ci |φei 〉.
The pseudo partial waves are determined by:[
− h̄2

2m
∇2 + ṽeff +

∑
i,j

∣∣∣φ̃pi〉Dij

〈
φ̃pi

∣∣∣] ∣∣∣φ̃pi〉 = εi

[
1 +

∑
i,j

∣∣∣φ̃pi〉Dij

〈
φ̃pi

∣∣∣] ∣∣∣φ̃pi〉 (1.45)

with Qij =
〈
φei
∣∣φej〉 − 〈φ̃pi ∣∣∣φ̃pj〉, Dij =

〈
φej
∣∣ h̄2

2m
∇2 + veff

∣∣φej〉 − 〈φ̃pj ∣∣∣ h̄2

2m
∇2 + ṽeff

∣∣∣φ̃pj〉.
The PAW method implemented in VASP exploits also the Frozen Core approxima-
tion.
This method employs a smaller core radius rc than the one used by a simple pseudopo-
tential one: this makes it more computationally expensive, but in turn it o�ers higher
quality results and a better reproduction of the nodes inside the core region.

1.4.2 The Self-Consistent cycle

The Hartree potential, being a functional of the density, requires the density itself to be
evaluated. Thus the KS equations, which can be employed to determine n(~r), require
too the density itself. Thus, to solve these equations we need a self-consistent loop:

1. Start from an initial guess for the density n(~r).

2. Calculate the KS e�ective potential veff (~r) de�ned in equation 1.22.

3. Solve the KS equations 1.21, obtaining ψKS(~r).

4. Evaluate the electronic density n(~r) = 2
∑

i|ψKSi (~r)|2 and the total energy 1.19.

5. Check if it satis�es the convergence condition; otherwise repeat the loop. The
convergence criterion can be either imposed on the density (if the input and
output densities of a given cycle are equal within a certain accuracy), on the
total energy or on di�erent physical quantities.
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Chapter 2

The GW Approximation

2.1 Theory: the Green function approach

Let's consider a non relativistic system of N electrons with exact ground state
∣∣ψN0 〉.

The one particle Green function in coordinate space is de�ned as:

G(~r, t, ~r′, t′)
def
= −i

〈
ψN0
∣∣T̂ [ψ̂(~r, t)ψ̂†(~r′, t′)

]∣∣ψN0 〉 (2.1)

=

{
−i
〈
ψN0
∣∣ψ̂(~r, t)ψ̂†(~r′, t′)

∣∣ψN0 〉 θ(t− t′)
+i
〈
ψN0
∣∣ψ̂†(~r′, t′)ψ̂(~r, t)

∣∣ψN0 〉 θ(t′ − t) (2.2)

ψ̂(~r, t) and ψ̂†(~r′, t′) are the annihilation and creation �eld operators in the Heisenberg

representation (i.e. ψ̂(~r, t) = eiĤtψ̂(~r)e−iĤt, assuming Ĥ is time-independent), T̂ is the

time-ordering operator (T̂
[
ψ̂(~r, t)ψ̂†(~r′, t′)

]
def
= ψ̂(~r, t)ψ̂†(~r′, t′)θ(t−t′)−ψ̂†(~r′, t′)ψ̂(~r, t)θ(t′−

t)) and θ(t− t′) the step function. The ground state wavefunction is assumed normal-
ized, i.e.

〈
ψN0
∣∣ψN0 〉 = 1.

This de�nition is either valid for the interacting and non-interacting cases: the only
di�erence is the ground state

∣∣ψN0 〉 used for the calculation of the expectation value.

Equation 2.1 has an immediate qualitative interpretation: for t′ > t we add a particle
at time t′ at position ~r′ to the ground state

∣∣ψN0 〉 through the action of ψ̂†(~r′, t′)
∣∣ψN0 〉;

the (N+1) particle state just created propagates from t′ to time t under the action
of the time-independent hamiltonian Ĥ. Lastly, we evaluate the overlap between the
propagated state and the (N+1) particle state

〈
ψN0
∣∣ ψ̂(~r, t), which represents the tran-

sition amplitude for the propagation of a test particle added to the N particle ground
state from ~r′ → ~r during the interval t′ − t.
On the other side, for t > t′ we "add a test hole" : that is, we study the transition
amplitude for the propagation of a (N-1) particle state.
It's moreover possible to establish a relation between the single particle Green func-
tion and the density matrix. We recall the de�nition for the density matrix in second
quantization:

n̂(~r, ~r′) = ψ̂†(~r′)ψ̂(~r) (2.3)

The density matrix is then:

n(~r, ~r′) =
〈
ψ0
N

∣∣n̂(~r, ~r′)
∣∣ψ0

N

〉
= iG(~r, t, ~r′, t+) (2.4)
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2.1. THEORY: THE GREEN FUNCTION APPROACH 26

where t+ denotes t plus an in�nitesimal shift, i.e. limη→0 t + η, with the purpose of
select the right expression of the time ordering operator. Therefore the Green function
can be considered a time-dependent generalization of the density matrix.

Fourier transforms of the Green function
We can quickly derive an expression for the Green function in other single particle
basis. Let's consider the de�nitions of the �eld operators:

ψ̂(~r, t)
def
=

1√
Ω

∑
α

φα(~r)ĉα(t) ψ̂†(~r′, t′)
def
=

1√
Ω

∑
α

φα(~r)ĉ†α(t′) (2.5)

The expression for the Green function in term of the creation and annihilation operators
associated to the basis {φα} is therefore:

G(~r, t, ~r′, t′) = −i
∑
α,α′

φα(~r)φα′(~r)
〈
ψN0
∣∣T̂ [ĉα(t)ĉ†α′(t

′)
]∣∣ψN0 〉 (2.6)

We can also de�ne the Fourier Transform with respect to the space variable ~r and ~r′

[46, p. 62]:

G(~r, t, ~r′, t′) =
1

Ω

∑
~k

∑
~k′

G(~k, t, ~k′, t′)ei(
~k̇~r−~k′̇~r′) (2.7)

A correspondence can be found between this formulation and the Green function as

written in equation 2.6 on a plane wave basis φ~k = 1√
Ω
ei
~k·~r:

G(~k, t, ~k′, t′) = −i
〈
ψN0
∣∣T̂ [ĉ~k(t)ĉ†~k′(t′)]∣∣ψN0 〉 (2.8)

Let's now focus on the Fourier transform with respect to the time variables:

G(~k, t, ~k′, t′) =
1

2π

∫∫
dωdω′G(~k, ω, ~k′, ω′)e−i(ωt−ω

′t′) (2.9)

In a system with a translationally invariant hamiltonian, G(~r, t, ~r′, t′) does not de-
pend on ~r and ~r′ separately but only on their di�erence ~r − ~r′ (that is G(~r, t, ~r′, t′) =

G(~r − ~r′, t, t′)). This implies that the Green Function becomes diagonal in ~k, ~k′, i.e.

G(~k, t, ~k′, t′) = δ~k,~k′G(~k, t, t′) [47, p. 124] and that:

G(~r − ~r′, t, t′) =
1

Ω

∑
~k

G(~k, t, t′)ei
~k(̇~r−~r′) (2.10)

Similarly, if the hamiltonian is translationally invariant in time, the Green function
depends only on the di�erence t − t′ and non separately on t and t′, and therefore
becomes diagonal in ω and ω′:

G(~k, t− t′) =
1

2π

∫
dωG(~k, ω)e−iω(t−t′) (2.11)
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27 CHAPTER 2. THE GW APPROXIMATION

The Lehmann representation
It's possible to write the Green function of the interacting N particle system as a
function of the excitation energies. For simplicity, let's consider a time independent
and translationally invariant system (allowing us to use the diagonal Green function

in reciprocal space G(~k, t− t′)) and insert the completeness relation in Fock space:

1̂ = |vac〉 〈vac|+
∑
m≥0

∣∣ψ1
m

〉 〈
ψ1
m

∣∣+ ..+
∑
m≥0

∣∣ψNm〉 〈ψNm∣∣+ .. (2.12)

where
∣∣ψNm〉 denotes the the m-th eigenstate of a system with N particles.

Thus:

G(~k, t− t′) =

 −iθ(t− t′)
∑

m≥0 |
〈
ψN+1
m

∣∣ĉ†~k′∣∣ψN0 〉|2e− i
h̄

(
E

(N+1)
m −E(N)

0

)
(t−t′)

+iθ(t′ − t)
∑

m≥0 |
〈
ψN−1
m

∣∣ĉ†~k′∣∣ψN0 〉|2e+ i
h̄

(
E

(N−1)
m −E(N)

0

)
(t−t′)

(2.13)

This result can be obtained by remembering that the scalar products between wave-
functions with di�erent particle number are equal to zero, and hence the only non-zero
contributions come from states with N + 1 and N − 1 particles.
Now we employ the integral representation equation of the (Heaviside) step function:

θ(τ) = lim
η→0+

− 1

2πi

∫ +∞

−∞
dω

e−iωτ

ω + iτ
(2.14)

obtaining:

G(~k, t− t′) = lim
η→0+

1

2π

∫ +∞

−∞
dωe−iω(t−t′)

∑
m≥0

|
〈
ψN+1
m

∣∣ĉ†~k′∣∣ψN0 〉|2
ω − 1

h̄

(
E

(N+1)
m − E(

0N)
)

+ iη

+
∑
m≥0

|
〈
ψN−1
m

∣∣ĉ~k′∣∣ψN0 〉|2
ω + 1

h̄

(
E

(N−1)
m − E(

0N)
)
− iη


Recalling equation 2.11 we �nd the Lehmann representation:

G(~k, ω) = lim
η→0+

∑
m≥0

|
〈
ψN+1
m

∣∣ĉ†~k′∣∣ψN0 〉|2
ω − 1

h̄

(
E

(N+1)
m − E(N)

0

)
+ iη

+
∑
m≥0

|
〈
ψN−1
m

∣∣ĉ~k′∣∣ψN0 〉|2
ω + 1

h̄

(
E

(N−1)
m − E(N)

0

)
− iη
(2.15)

We de�ne the two spectral functions and reformulate G(~k, ω) through these functions:

A+(~k, ω)
def
=
∑
m≥0

|
〈
ψN+1
m

∣∣ĉ†~k′∣∣ψN0 〉|2δ
[
ω − 1

h̄

(
E(N+1)
m − E(N)

0

)]
(2.16)

A−(~k, ω)
def
=
∑
m≥0

|
〈
ψN−1
m

∣∣ĉ~k′∣∣ψN0 〉|2δ [ω +
1

h̄

(
E(N−1)
m − E(N)

0

)]
(2.17)

G(~k, ω) = lim
η→0+

∫ +∞

−∞
dω′

[
A+(~k, ω)

ω − ω′ + iη
+

A−(~k, ω)

ω + ω′ − iη

]
(2.18)
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A(~k, ω)
def
= A+(~k, ω)+A−(~k, ω) is called spectral function. A− and A+ are real, positive

and and equal to zero for ω < 0:

A+(~k, ω) =A∗+(~k, ω) ≥ 0 A−(~k, ω) = A∗−(~k, ω) ≥ 0 (2.19)

A+(~k, ω) = 0 = A−(~k, ω) for ω < 0 (2.20)

and their sum satis�es the sum rule:∫ ∞
0

dωA(~k, ω) = 1 (2.21)

Due to the two properties above, A(~k, ω) can be formally interpreted as a probability
density. We will give a physical intuition to it in the next paragraph.
The interacting Green function has poles at the exact excitation energies, de�ned as
the addition or removal energies and involving the exact eigenvalues of the N and N+1
system. These energies comprehend the correlation e�ects and the orbital relaxations
(following the electrons addition or removal) which were neglected in the Hartree Fock
theory (chapter 1.3.1). This is an important and nice result.

We state also another expression for G that will be useful later:

G(~r, ~r′, ω) = lim
η→0+

∑
m≥0

ΨN+1
m (~r)ΨN+1

m
∗
(~r)

ω − 1
h̄

(
E

(N+1)
m − E(N)

0

)
+ iη

+
∑
m≥0

ΨN−1
m (~r)ΨN−1

m
∗
(~r)

ω + 1
h̄

(
E

(N−1)
m − E(N)

0

)
− iη

(2.22)
where ΨM

m (~r) =
〈
ψMm
∣∣ψ̂†(~r)∣∣ψN0 〉 (ψ̂†(~r) is the �eld operator, de�ned in equation 2.5).

To obtain this expression we start from the Lehmann representation (equation 2.15)1,
insert it inside the Fourier transform formula (equation 2.1) and apply the de�nition

of the �eld operator (equation 2.5) implemented on a plane wave basis (1/
√

Ω)ei
~k·~r.

2.1.1 The interpretation of A(~k, ω)dω: excited states and quasi-
particles

It's possible to give a very clear interpretation to the spectral function A(~k, ω) =

A+(~k, ω) + A−(~k, ω) in the Lehmann representation.

First of all we point out that, while
∣∣∣ψ(N+1)

m

〉
and

∣∣∣ψ(N)
m

〉
are eigenstates respectively

of the N and N + 1 interacting particle systems, ĉ†~k′
∣∣ψN0 〉 is not an eigenstate of the

interacting system. Therefore it has �nite lifetime2 and propagates as a superposition

of N+1 particle eigenstates
∣∣∣ψ(N+1)

m

〉
.

The modulus |
〈
ψN+1
m

∣∣ĉ†~k′∣∣ψN0 〉|2 represents the component of the state ĉ†~k′
∣∣ψN0 〉 over the

excited eigenstates. Therefore A(~k, ω) represents the normalized density of states with

1The Lehmann expression given in equation 2.15 is diagonal in the momentum; to obtain equation
2.22 however we employ a slightly di�erent version of it, i.e. the non diagonal one G(~k, ~k′, ω).

2the only case where ĉ†~k′

∣∣ψN
0

〉
is a eigenstate is when the system is not interacting.
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29 CHAPTER 2. THE GW APPROXIMATION

energy in the interval [ω, ω + dω] which are involved in the propagation of an added

particle with momentum ~k [48, p. 35]. Other authors[49, p. 280] describe qualitatively

A(~k, ω)dω as the probability of being able to create an excitation with wavevector ~k
and energy in the interval [h̄ω, h̄ω + h̄dω].

We explore now the quasiparticle concept and answer the question Under which cir-
cumstances is it possible to consider the additional state (created by ĉ†~k) as a separate
particle that propagates in the system? This is the exactly idea behind the quasiparticle
picture; that is, to approximate the description of a strongly interacting system with a
description in term of a new type of particles, which reproduces (approximately) the
same physics. These particles are weakly interacting, have di�erent properties and are
called quasiparticles.
We start from the Green function of a non interacting electron system (that we can ob-
tain directly from the de�nition 2.1 by replacing

∣∣ψN0 〉 with the non interacting ground
state):

G0(~k, t− t′) = −ie−iE~k
(t−t′)/h̄ [θ(t− t′)θ(k − kF )− θ(t′ − t)θ(kF − k)] (2.23)

⇓

G0(~k, ω) = lim
η→0+

θ(k − kF )

ω − 1
h̄
E~k + iη

+
θ(kF − k)

ω − 1
h̄
E~k − iη

(2.24)

and this is the Lehmann representation for the non interacting Green function (k is

used for k = |~k|). The spectral functions are therefore:

A+(~k, ω) =θ(k − kF )δ(ω − 1

h̄
E~k) (2.25)

A−(~k, ω) =θ(kF − k)δ(ω − 1

h̄
E~k) (2.26)

We can now restate the question: to behave in an approximate free particle way, the
interacting Green function must be similar to the non interacting one during the quasi-
particle lifetime:

G(~k, t) ≈ −iZ~ke
−iẼ(~k)t/h̄e−Γ~k

t +Gincoherent(~k, t) (2.27)

The term e−Γkt represents the fact that this approximation holds only during a �nite
time interval (ĉ†~k′ψ

N
0 is not an eigenstate of the interacting system): we de�ne the

quasiparticle lifetime as 1/Γ~k.
In summary, we have seen that for a non interacting system the spectral functions are
represented by Dirac deltas. The interaction however is going to broaden the peaks;
nonetheless, to preserve the form 2.27, A(~k, ω) must be similar to equations 2.25 and
2.26 and hence must still exhibit a peaked structure over a continuous incoherent
background.
A typical lineshape of a quasiparticle peak, characteristic of a Fermi liquid, is the
Lorentzian one:

A(~k, ω) ≈ Z~k
Γ~k

ω − 1
h̄

(
E~k −∆E~k

)2
+ Γ2

~k

+ Aincoherent(~k, ω) (2.28)

The area under the peak is equal to Z~k and the (complex) energies EQP
~k

def
= E~k −∆E~k

are renormalized with respect to the non interacting ones E~k; The width of the peak
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2.1. THEORY: THE GREEN FUNCTION APPROACH 30

Figure 2.1: Qualitative picture of the spectral function: we can recognize the peak over
an incoherent background.

Γk is equal to the inverse lifetime of the quasiparticle. A schematic representation of
the spectral function in this approximation can be seen in �gure 2.1.
We have therefore characterized the expression of A(~k, ω) by the initial requirement on

G(~k, t) : if A(~k, ω) satis�es this constraint the quasiparticle approximation holds.

We can think about these quasiparticles as bare particles carrying along a cloud of
neighbouring particles that changes their properties. It's important to note that, while
G in principle contains all information necessary to fully characterize the properties of
a quasiparticle, it carries no information concerning the interaction between quasipar-
ticles.

2.1.2 The Dyson equation and the quasiparticle equation

In the previous paragraph we have studied the formal properties of the Green func-
tion, but we haven't so far found a way to calculate G, because the de�nition involves
the unknown interacting ground state

∣∣ψN0 〉.
Moreover, we are also interested in the excited quasiparticle energies: we can in prin-
ciple determine them as poles of the Lehmann representation of the Green function
itself. However, it would be more convenient to obtain them as a solution of an equa-
tion in a similar way to the ones de�ned for the DFT (equation 1.21) and Hartree Fock
(equation 1.5).

The �rst step to derive an equation of this kind is the Dyson equation, which con-
nects the Green function of the interacting system with the one belonging to the non
interacting system:

G(~r, ~r′, ω) = G0(~r, ~r′, ω) +

∫∫
d~r1d~r2G0(~r, ~r1, ω)Σ(~r1, ~r2, ω)G0(~r, ~r2, ω) (2.29)

Although the expression in momentum and frequency space is more common:

G(~k, ω) = G0(~k, ω) +G0(~k, ω)Σ(~k, ω)G(~k, ω) (2.30)

The newly de�ned Σ(~r, ~r′, ω) is the so-called self-energy, a non local, non hermitian and
frequency dependent operator which contains all many body exchange and correlation
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31 CHAPTER 2. THE GW APPROXIMATION

contributions. We will devote an entire section to analyze and understand it.
By iterating the Dyson equation we de�ne the Dyson series:

G = G0 +G0ΣG0 +G0ΣG0ΣG0 + .. (2.31)

We can solve it with respect to the interacting G3:

G(~k, ω) =
G0(~k, ω)

G0(~k, ω)− Σ(~k, ω)
(2.32)

and, �nally, by substituting the explicit expression of G0:

G(~k, ω) =
1

ω − 1
h̄
E~k + iη − Σ(~k, ω)

(2.33)

we have hence expressed G through G0 (which is known) and through Σ (which on
the contrary is unknown). Because we have not yet presented a way to calculate Σ,
the question "how we can calculate G?" is not yet solved: in the next sections we will
introduce di�erent methods.
For one thing, equation 2.33 allows us to give a precise meaning to the quantities
∆E~k and Γ~k which characterize a quasiparticle peak (equations 2.27 and 2.28). The

Green function described has a pole at ω ≈ 1
h̄
E~k − iη + Σ(~k,E~k/h̄), which implies

∆E~k = h̄Re
[
Σ(~k,E~k/h̄)

]
, Γ~k = h̄/ Im

[
Σ(~k,E~k/h̄)

]
.

Let's now focus on the quasiparticle equation anticipated at the beginning of the
paragraph. Starting form the Lehmann representation (equation 2.22) and the Dyson
equation we �nd[50, Appendix B]:

∑
m≥0

Ψ∗m(~r′)

h̄ω − εm −+iη

[[
h̄ω − ĥ0(~r)

]
Ψm(~r)−

∫
d~r1Σ(~r, ~r1, ω)Ψm(~r1)

]
= δ(~r − ~r′)

(2.34)

where εm = E
(N+1)
m −E(N)

0 and ĥ0 is the hamiltonian associated with the non interacting
Green function (which takes into account only the Hartree contribution). From this
we �nally �nd the quasiparticle equation, which is the purpose of this paragraph:[
− h̄2

2m
∇2 + vext(~r) +

1

2

∫
d~r

n(~r′)

|~r − ~r′|

]
Ψm(~r) +

∫
d~r′Σ

(
~r, ~r′,

εm
h̄

)
Ψm(~r) = εmΨm(~r)

(2.35)
the amplitude Ψm(~r) and the quasiparticle energies were de�ned in equation 2.22. The
real parts of the QP-energies εm describe the positions of the quasiparticle peaks, while
the imaginary parts Im(εi) describe their lifetimes.
The equation is nonlinear in εi (because εi appears ar argument of Σ) and is the
analogue of the equation 1.21 and 1.5 for DFT and Hartree-Fock. However this equation
does not constitute a mean-�eld approach, and can reproduce the exact excitation
energies. Lastly, Σ has an analogous role of the exchange-correlation potential vxc in
the DFT formalism.

3this is formally equivalent to sum the in�nitely many terms in the Dyson series.
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2.2 The Self energy Σ: diagrammatic approach

The perturbation expansion, brie�y discussed in this section, gives a �rst interpretation
of the self energy.
The procedure to obtain the result presented in this section is quite cumbersome and
will therefore be omitted. We split the many body hamiltonian in the non interacting
part Ĥ0 plus the interaction part ĤI , which is considered as a perturbation and is
described in the Dirac picture. The main result is:

G(~k, t− t′) =
−i〈

ψ
(N)
0

∣∣∣Û(−∞,+∞)
∣∣∣ψ(N)

0

〉 ∞∑
n=0

1

n!

1

(ih̄)n

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2..

∫ ∞
−∞

dtn

×
〈
ψ

(N)
0

∣∣∣T̂ [ĉ~k(t) ĤI(t1)ĤI(t2)..ĤI(tn) ĉ†~k(t
′)
]∣∣∣ψ(N)

0

〉
(2.36)

where T̂ is the time ordering operator and Û is the time evolution operator (in the
Dirac picture). The integrand is evaluated through Wick's theorem, and reduces to a
product of non interacting Green function.

It's possible to associate to every term in the sum a pictorial representation, known
as Feynman diagrams. Remember that G0(~k, t − t′) describes the propagation of an

electron created at time t′ with wavevector ~k and destroyed or measured at time t; this
is associated to a straight line:

Figure 2.2: Association between a straight line and a non interacting Green function
G0 in a Feynman diagram.

The interaction potential is instead usually denoted by a wavy line (::::::), and the
double line ( ) represents the interacting Green function. A set of rules exists to
recover the integral formulation from the pictorial one and vice-versa. We can refor-
mulate the Dyson equation through Feynman diagrams:

Figure 2.3: Dyson equation in Feynman representation.

The perturbation expansion provides also an explicit de�nition for the self energy, that
is as the sum of all diagrams that cannot be split in two by breaking a single fermion
line, as showed in �gure 2.4:
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33 CHAPTER 2. THE GW APPROXIMATION

Figure 2.4: The �rst two order of diagrams contributing to the self energy term. The
order of a given diagram is de�ned by the number of wavy lines (::::::).

2.3 The GW Approximation

A systematic procedure to determine the self energy and the interacting Green func-
tion was developed by Hedin in his seminal paper[51]. This scheme, derived through
Schwinger's functional derivative technique, is composed of �ve coupled integral equa-
tions, usually called Hedin equations :

Σ(1, 2) = i

∫
d(3, 4)G(1, 3)Γ(3, 2, 4)W (4, 1+) (2.37)

G(1, 2) = G0(1, 2) +

∫
d(3, 4)G0(1, 3)Σ(3, 4)G(4, 2) (2.38)

W (1, 2) = v(1, 2) +

∫
d(3, 4)v(1, 3)P (3, 4)W (4, 2) (2.39)

P (1, 2) = −i
∫
d(3, 4)G(1, 3)G(4, 1+)Γ(3, 4, 2) (2.40)

Γ(1, 2, 3) = δ(1, 2)δ(1, 3) +

∫
d(4, 5, 6, 7)

δΣ(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Γ(6, 7, 3) (2.41)

where we used the notation 1 = (~r1, σ1, t1), 1+ = (~r1, σ1, t1 +δ) with δ positive in�nites-
imal. The physical quantities involved in Hedin equation are:

1. The self energy Σ (equation 2.37) and the interacting Green function G (Dyson
equation 2.38 in position and time space); G0 is non interacting (and known)
Green function.

2. The irreducible polarizability P (equation 2.40).

3. The screened interaction W (equation 2.39).

4. The vertex function Γ.

These equation are exact and must be solved self-consistently. A straight numerical
implementation is computationally too cumbersome and expensive, and some approx-
imations are required. The most used, the GW approximation, assumes the vertex
function Γ to be diagonal in space and time coordinates:

Γ(1, 2, 3) = δ(1, 2)δ(1, 3) (2.42)
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Hedin equation became in this approximation:

Σ(1, 2) = iG(1, 2)W (1+, 2) (2.43)

G(1, 2) = G0(1, 2) +

∫
d(3, 4)G0(1, 3)Σ(3, 4)G(4, 2) (2.44)

W (1, 2) = v(1, 2) +

∫
d(3, 4)v(1, 3)P (3, 4)W (4, 2) (2.45)

P (1, 2) = −iG(1, 2)G(2, 1+) (2.46)

Γ(1, 2, 3) = δ(1, 2)δ(1, 3) (2.47)

We now discuss the physical meaning of the various quantities and the e�ect of the
approximation itself.

The Screened Interaction W
The e�ective classical electrostatic interaction in an polarizable system is not the bare
interaction v(1, 2) but the screened oneW (1, 2), which represents the classical screened
potential at 2 generated by a charge in 1. We remark again that it contains only
the classical (Hartree) potential: the exchange-correlation correction to the screening
potential is described by Γ[52, p. 250]: its introduction changes the e�ective (screened)
interaction from W to WΓ.

The Irreducible Polarizability P and the Vertex Correction Γ
P describes the change of the density δn in 1 upon a small perturbation of the total
classical potential δvtot evaluated in 2 [52, p. 247] (δvtot is given by the sum of an
external potential δvext plus the variation of the Hartree potential δvH : δvtot = δvext +
δvH) :

P (1, 2)
def
= −iδG(1, 1+)

δvtot(2)
=
δn(1)

δvtot
(2.48)

where we used equation 2.4. By employing the de�nition of the functional derivative

(δF
def
=
∫
dx [δF/δf(x)] δf(x)), it can be proved that this is equivalent to δn(1) =∫

d(2)P (1, 2)vtot(2).
The connection between δvtot and δvext is given by the inverse dielectric function:

ε−1(1, 2) =
δvtot(1)

δvext(2)
(2.49)

The polarization of the medium, as described by the Hedin equation 2.40 for P , results
from the creation of pairs of particles at time 1 described by the two Green function.
The idea is that the electron addition / removal excites the system through the for-
mation of electron-hole pairs (neutral excitations). In particular, if t3 = t4 the couple
is formed by an electron and a hole4. For simplicity, in the following discussion we
restrict to this electron-hole pair case.
All contributions to the polarization come therefore from these particle pairs (following
the perturbation) and give rise to the screening of the perturbation.
In section 2.1.1 we have brie�y described a quasiparticle as a bare particle plus a po-
larization cloud; equation 2.40 tells us that this polarization cloud is formed by these

4otherwise t3 and t4 could lie on di�erent sides of t1 which implies the same time ordering for the
two Green function
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35 CHAPTER 2. THE GW APPROXIMATION

electron hole pairs (at least in the description given by this approach).

A �rst role of the vertex function Γ is to describe how (and if) the particles inside
a given pair interact. In fact the vertex function Γ couples the two particles in a
given pair and describe how they interact, including exchange-correlation e�ects[52,
p. 250][53, p. 250] and excitonic e�ects[54, p. 619] (if the couple is formed by an elec-
tron and a hole).
The GW approximation decouples the two Green functions and imposes t3 = t4 = t2:
thus P becomes constituted by two Green functions describing a cloud of non interact-
ing electron-hole pair.

There is an important result concerning P in the GW approximation. We start by
Fourier transforming it to the coordinate and frequency space:

PGW (~r, ~r′, ω) = − ih̄
2π

∫
dω′G(~r, ~r′, ω − ω′)G(~r, ~r′, ω′) (2.50)

From this we can determine an explicit expression[54, p. 618][55, p. 41] :

PGW
0 (~r, ~r′, ω) = PRPA(~r, ~r′, ω)

def
=
∑
ij

(fi − fj)
ψi(~r)ψ

∗
j (~r)ψj(~r

′)ψ∗i (~r
′)

ω − 1
h̄

(εi − εj) + iη
(2.51)

This expression is formally equal to the RPA polarization; this is in fact the same
result originally developed by Bohm and Pines[56] to study the density oscillations
in the homogeneous electron gas. Hubbard[57] showed that the Bohm�Pines approach
provides similar results as the perturbative expansion in bubble diagrams for the dielec-
tric function. Ehrenreich and Cohen[58] employed a linearised time dependent Hartree
approach, which was proved equivalent to the RPA, to calculate the frequency depen-
dent dielectric function and other quantities. Andler and Wiser[59, 60] expanded this
approach some years later.
This expression can be usually interpreted as a sum over independent transitions (each
one identi�ed by the couple of quantum number i, j).
Moreover, the RPA polarization (being equivalent to the GW approximation) con-
tains the electron-electron interaction only through the classical Coulomb interaction
with the polarization charges and neglects the short-range e�ects due to exchange and
correlation[61, p. 13,19].

The Self Energy Σ
We have already introduced the self energy Σ in section 2.1.2, where we noted its role
as "generalized" exchange-correlation potential in the quasiparticle equation. In this
paragraph we'll analyze the self energy in the GW approximation through successive
approximations and comparisons with the Hartree Fock approach. Before discussing
the various approximation, we recall the Fourier transform of Σ to frequency variables:

ΣGW (~r, ~r′, ω) =
i

2π

∫
dω′W (~r, ~r′, ω)G(~r, ~r′, ω + ω′) (2.52)

To understand what are the consequences of screened interaction presence in ΣGW
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we brie�y examine the �rst approximation, the Screened Exchange Approximation
(SEX). This approximation neglects the frequency (or energy) dependence of W,
i.e. W (~r, ~r′, ω) ≈ W (~r, ~r′, ω = 0) (therefore, being constant with respect to ω, only
the poles in G provide contributions to the integral in equation 2.52). The approxi-
mation is equivalent to neglect the non-locality in time of W and replace it with an
instantaneous interaction:

ΣSEX(~r, t, ~r′, t′) = G(~r, t, ~r′, t′)W (~r, ~r′, ω = 0)δ(t′ − t+) (2.53)

It can be proved[52, p. 229][55, p. 36] that the Hartree Fock self energy is ΣHF (1, 2) =
G(1, 2)v(1+, 2) where v is the classical Coulomb interaction. Thus the Screened Ex-
change Approximations replaces the bare (and static) Coulomb potential in ΣHF with
a (static) screened potential, and hence can be understood as as statically screened
Hartree Fock operator. Static screening contains the information about the relaxation
after an electron addition/removal [52, p. 254], and is one of the fundamental aspects
of the GW method that are absent in the Hartree Fock Approach. We have discussed in
section 1.3.1 that Hartree Fock approach doesn't describe the relaxation e�ects upon
electron addition; the polarization (and thus the screening) in the Green function ap-
proach represents these e�ects.

However, a proper integration in equation 2.52 would of course receives contributions
also from the W poles. Therefore in the static limit Σ can be written as a sum of two
contribution[52, p. 254][55] ΣSEX(~r, ~r′)+ΣCOH(~r, ~r′), where ΣSEX is given by equation
2.53 and ΣCOH is:

ΣCOH(~r, ~r′, ω) =
1

2
δ(~r − ~r′)W p(~r, ~r′, ω = 0) (2.54)

where W p def
= W − vc is called the polarization contribution. This second term, lo-

cal and static in space, is called COulomb Hole contribution, and the approximation
ΣCOHSEX = ΣSEX+ΣCOH is called COulomb Hole plus Screened Exchange (COHSEX ).
ΣCOH is the e�ect of the polarization of the system due a static Coulomb potential
hole which is induced by a single hole or electron; the charge is represented classically
as a point charge.

The COHSEX approximation, while being quite crude, captures some fundamental
contributions to the self energy, that is the exchange one and the static screening of a
point charge.
However, the dynamical properties of W (i.e. the frequency dependence of the self-
energy) are not described by this approximation. This is another important aspect that
distinguish the GW approximation from Hartree Fock and any other static mean-�eld
theory. It can be proved[52, p. 255] that, taking into account these properties, the
Coulomb hole (described by ΣCOH) became non-local and non-static (depending hence
on ω).
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2.4 GW implementation

The numerical implementation of the GW method relies on the quasiparticle equation
2.35 and make use of di�erent approximations:

Figure 2.5: band gap compar-
ison between DFT@LDA and
G0W0 starting from LDA.
From [62].

1. We employ the �rst order perturbation to ap-
proximate the quasiparticle energies:

εi ≈ εKSi +
〈
ψKSi

∣∣Σ(εi/h̄)− vxc
∣∣ψKSi 〉

(2.55)

This approximation is justi�ed by the similarity
between the quasiparticle and the Kohn-Sham
wavefunction5.

2. The self energy depends on εi too; to avoid this
dependence (which would make the equation self
consistent) and to simplify the equation we adopt
the Taylor expansion:

Σ(~r, ~r′, εi/h̄) = Σ(~r, ~r′, εKSi /h̄)+
εi − εKSi

h̄

∂Σ(~r, ~r′, ω)

∂ω

∣∣∣
h̄ω=εKS

i

+O
((
εi − εKSi

)2
)

(2.56)
which implies that

εi ≈ εKSi + Zi
〈
ψKSi

∣∣Σ(εKSi /h̄)− vxc
∣∣ψKSi 〉

(2.57)

where the quasiparticle renormalization factor Zi is given by:

Zi =

[
1−

〈
ψKSi

∣∣∂Σ(~r, ~r′, ω)

∂ω

∣∣∣
ω=εKS

i

∣∣ψKSi 〉]−1

(2.58)

To determine Σ(1, 2) we employ the Hedin equation in the GW approximation, with a
series of further approximations:

1. as a starting point for G(1, 2) we use the non interacting Green function build
from the Kohn-Sham energies and wavefunctions.

2. Moreover P is evaluated from the RPA form (expression 2.51) starting from the
Kohn-Sham energies and wavefunctions. From PRPA we evaluate the frequency
dependent dielectric function and the screened interaction W .

Moreover, GW implementations di�erentiate themselves by the level of self-consistency
secured:

1. update G self-consistently while keeping W at the RPA expression: the GW0
approach.

2. update both G and W self-consistently through Hedin equation (or some derived
set of equation): the full GW approach.

5For discussion on this approximations' validity, see [63, 64].
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3. do not iterate self-consistently at all, keeping both G and W �xed at the starting
entries: the G0W0 approach. Despite the numerous approximations, the G0W0
method succeeds in correcting the bandgap problem of DFT , as we can see from
�gure 2.5, taken from [62].

An in detail explanation of the di�erent GW implementations in V ASP can be found
in [65, 66, 67].
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Chapter 3

The Bethe-Salpeter equation

It's known that the correlated electron-hole excitations have a important role in the
optical properties of many materials, especially semiconductors and insulators. One
way to incorporate them is to go beyond the RPA in the GW approximations by
including the vertex correction[68]. Another approach (which is equivalent to partially
include the vertex corrections, as we will brie�y mention later) starts from the two-
particle Green function:

G(1, 2, 1′, 2′)
def
= (−i)2

〈
ψN0
∣∣T̂ [ψ(1)ψ(1′)ψ†(2′)ψ†(2)

]∣∣ψN0 〉 (3.1)

which describes the propagation of two particles, which can be either two electrons,
two holes or an electron-hole pair. From this equation we de�ne the 4-particle reducible
polarizability L:

L(1, 2, 1′, 2′)
def
= L0(1, 2, 1′, 2′)−G(1, 2, 1′, 2′) (3.2)

where L0 is the independent-electron polarizability L0(1, 2, 1′, 2′)
def
= iG(1, 1′)G(2′, 2)

which, in a similar way to PRPA(1, 2) = −iG(1, 2)G(2, 1), describes the polarization
due to the independent propagation of two particles (electrons or holes).
This function satis�es a Dyson-like equation, the Bethe-Salpeter equation:

L(1, 2, 1′, 2′) = L0(1, 2, 1′, 2′) +

∫
d(3, 4, 3′, 4′)L0(1, 2, 3′, 4′)K(3, 4, 3′, 4′)L(3′, 4′, 1′, 2′)

(3.3)
where the kernel K is

K(3, 4, 3′, 4′) = δ(3, 4)δ(3′, 4′)vc(3, 3
′) + i

δΣ(3, 3′)

δG(4, 4′)
(3.4)

The Bethe-Salpeter equation thus describes the propagation of two interacting and
coupled particles, and the kernel K de�nes the e�ective interaction between the two.
Note that[52, p. 349] in equation 2.40 P = −iGGΓ the electron-hole coupling is in-
troduced by the vertex function; here, the variation of the exchange-correlation self
energy introduces this coupling through K.

To solve equation 3.4, however, we need to specify the term δΣ(3, 3′)/δG(4, 4′) inside
the kernel. From this point di�erent approximations depart: if we substitute Σ(3, 3′)
with a local and instantaneous potential such as the Kohn-Sham exchange-correlation
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Figure 3.1: Diagrammatic expression for the Bethe-Salpeter equation 3.4, describing
the coupled motion of an electron hole pair.

one, Σ(3, 3′) ≈ δ(3, 3′)vxc(3), and utilize the Kohn-Sham Green function we �nd the
linear response screening equation of TDDFT (Time-Dependent DFT ), the so-called
Casida equation[69]. This approach is less demanding from a computational point of
view, because it reduces the four-arguments equation to two-arguments (single-particle)
one.
Another approach based on a mean-�eld theory employs the non local (but instan-
taneous in time) Fock exchange together with the Hartree-Fock Green function: this
leads to the linear response time-dependent Hartree Fock [70].

A better approximation would be to start from theGW self energy Σ(1, 2) = iG(1, 2)W (1, 2).
Carrying out the derivative we �nd:

δΣGW (3, 3′)

δG(4, 4′)
= iδ(3, 4′)δ(3′, 4)W (3, 3′) + iG(3, 4)

δW (3, 4)

δG(4′, 3′)
(3.5)

The second term, which represents the variation of the screening due to the excitation,
is supposed to be small and can be neglected[71, 72]; intuitively, the �rst term is �rst
order in W , while it can be proved that the second term contains only higher orders of
W [68]. Thus the kernel becomes:

K(3, 4, 3′, 4′) = δ(3, 4)δ(3′, 4′)vc(3, 3
′)− δ(3, 3′)δ(4, 4′)W (3, 4) (3.6)

Contrary to the mean �eld method cited before, here the interaction between particles
is frequency dependent: this is introduced by the frequency dependence of the screen-
ing. However, in many others ab-initio implementations, W is replaced by its static
approximation. An in-depth discussion of the impact of neglecting the dynamical ef-
fects can be found in [73][52, Chapter. 4.10].
Note that we cannot write K as single-particle function, because the presence of
δΣ(3, 3′)/δG(4, 4′) prevents any contraction of indices - in other words, we cannot
reduce this expression to a single-particle one.

Bethe-Salpeter from an iterated Hedin equation
It's possible to arrive to (a slightly di�erent) Bethe-Salpeter equation by starting from
a di�erent point and going beyond the GW approximation for Γ, approximating it at
the �rst order in W .
Let's rewrite the Hedin equation for Γ (equation 2.41) in an iterative form[68], where
the n-th order expression is denoted by superscript n:

Γ(n+1)(1, 2, 3) = δ(1, 2)δ(1, 3)+

∫
d(4, 5, 6, 7)

δΣ(n)(1, 2)

δG(n)(4, 5)
G(n+1)(4, 6)G(n+1)(7, 5)Γ(n+1)(6, 7, 3)

(3.7)
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41 CHAPTER 3. THE BETHE-SALPETER EQUATION

If we now substitute the GW expressions for Σ (equation 3.5) in the right side of the
equation and neglect the term δW/δG coming from δΣGW/δG, we �nd[54]:

Γ(2)(1, 2, 3) = δ(1, 2)δ(1, 3) +

∫
d(4, 5, 6, 7)W (1)(1, 2)G(1)(4, 6)G(1)(7, 5)Γ(2)(6, 7, 3)

(3.8)

If we multiply both sides of this equation by −iGG and integrate we can write1 a
Bethe-Salpeter equation for the two-particle irreducible2 polarizability 4P : 4P = 4P0 +∫

4P0W
(1) 4P .

3.1 E�ective two particle Hamiltonian

Di�erent ways to solve the Bethe-Salpeter exist; in this section we sketch one of the
most common approach, which is based on mapping the problem onto an e�ective two-
particle hamiltonian.
The procedure is composed of two main step: �rst, we recast the Bethe-Salpeter equa-
tion as a matrix inversion problem (equation 3.13); then, we use the spectral represen-
tation of a non-hermitian matrix to map this problem onto a diagonalization problem.
We start by de�ning the matrix element for the two-particle (four point) function:

Ln1′n2′
n1n2

def
=

∫
d~r1d~r2d~r1′d~r2′L(1, 2, 1′, 2′)ψn1(~r1)ψ∗n2

(~r2)ψ∗n1′
(~r1′)ψn2′

(~r2′) (3.9)

where the n index contains the band and wavevector index. The Bethe-Salpeter equa-
tion 3.4 can be reinstated for the matrix elements:

Ln1′n2′
n1n2

= L0n1′n2′
n1n2

+ L0n3n4

n1n2
Kn5n6
n3n4

Ln1′n2′
n5n6

(3.10)

If we choose the single-particle basis that diagonalize G0 also L0 becomes diagonal:

L0n1′n2′
n1n2

= (fn2 − fn1)
δn1,n1′

δn2,n2′

En2 − En1 − ω − iη
(3.11)

Equation 3.10 can be formally solved in a similar way to the Dyson equation 2.32:

Ln1′n2′
n1n2

=

[
1

1− L0K

]
L0 (3.12)

This equation can be rewritten[75] by de�ning the two-particle excitonic Hamiltonian:

Ln1′n2′
n1n2

=
[
H2p − Iω

]−1n1′n2′

n1n2

(
fn1′
− fn2′

)
(3.13)

H2pn1′n2′
n1n2

def
= (En2 − En1) δn1,n1′

δn2,n2′
+ (fn1 − fn2)Kn1′n2′

n1n2
(3.14)

vn1′n2′
n1n2

=

∫
d~r1d~r2ψ

∗
n1

(~r1)ψ∗n2′
(~r1)v(~r1, ~r2)ψ∗n1′

(~r2)ψ∗n2
(~r2) (3.15)

W n1′n2′
n1n2

=

∫
d~r1d~r2ψ

∗
n1

(~r1)ψ∗n2′
(~r1)W (~r1, ~r2)ψ∗n1′

(~r2)ψ∗n2
(~r2) (3.16)

1we omitted the details of the derivation, which can be �nd in Onida et.al(2002)[54], Section IV.B.
2The relation between the two-particle irreducible polarizability 4P and the reducible one L, which

we have de�ned at the beginning of the chapter, is[74] 4P = L+
∫
Lv4 P .
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3.1. EFFECTIVE TWO PARTICLE HAMILTONIAN 42

Equation 3.13 can be solved by direct matrix inversion or with a di�erent approach
based on the spectral representation of the inverse matrix. If we de�ne An1n2

λ and Eλ
as the eigenvectors and eigenvalues of the excitonic hamiltonian H2p (A is also called
excitonic wavefunction):

H2pn1′n2′
n1n2

A
n1′n2′
λ = EλA

n1n2
λ (3.17)

then the spectral representation of H2p is:

[
H2p − Iω

]−1n1′n2′

n1n2
=
∑
λ,λ′

An1n2
λ S−1

λλ′A
n1′n2′
λ′

ω − Eλ + iη
(3.18)

where Sλλ′ is the overlap matrix, de�ned as Sλλ′
def
=
∑

n1n2
A
n1′n2′
λ A

n1′n2′
λ′ .

H2p is non-hermitian, but the spectral representation is also valid for a generic non-
Hermitian matrix. However this in turn implies that its eigenvectors are not orthogonal
and Sλλ′ di�ers from the identity.
We have therefore recast the Bethe-Salpeter equation 3.4 in a eigenvalue problem re-
lated to the e�ective excitonic hamiltonian. It's also convenient to derive an expression
for the dielectric function:

εBSE(ω) = 1− lim
~q→0

v(~q)
∑
λ

∣∣∣∑v,c

∑
~k

〈
ψv,~k

∣∣∣e−i~q·~r∣∣∣ψc,~k+~q

〉
A

(v~k)(c~k+~q)
λ

∣∣∣2
ω − Eλ + iη

(3.19)

where v and c are the band index of the valence bands (v) and conduction bands(c),
v(~q) = 4πe2/q2 3. Let's compare this expression to the one in the Independent Parti-
cle picture, derived from the RPA (using the non interacting Green function G0 [77,
equation 2.33 and 2.72]):

εIPA(ω) = 1− lim
~q→0

v(~q)
∑
v,c

∑
~k

∣∣∣ 〈ψv,~k∣∣∣e−i~q·~r∣∣∣ψc,~k+~q

〉 ∣∣∣2
ω −

(
Ec~k − Ev~k+~q

)
+ iη

(3.20)

The two equations reduce to:

εIPA(ω) =1− C
∑
v,c

∑
~k

∣∣∣ 〈ψv,~k∣∣∣p̂∣∣∣ψc,~k〉 ∣∣∣2
ω −

(
Ec~k − Ev~k

)
+ iη

(3.21)

εBSE(ω) =1− C
∑
λ

∣∣∣∑v,c

∑
~k

〈
ψv,~k

∣∣∣p̂∣∣∣ψc,~k〉A(v~k)(c~k)
λ

∣∣∣2
ω −

(
Ec~k − Ev~k

)
+ iη

(3.22)

Where C is a constant and p̂ is the usual momentum operator. We observe that

the expression (|
∑

vc~k

〈
ψv~k
∣∣p̂∣∣ψc~k〉A(v~k)(c~k)

λ |2) has the same role of the usual transition
dipole moment squared inside εIPA, and thus represents a transition probability. It's
usually called in literature as BSE oscillator strength. Finally we note that inside its

3A discussion about the ~q = 0 component of v(~q) is found in Sander et.al [76, p. 7] and references
therein.
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expression A mix the (formerly) independent transitions.
Let's now discuss the structure of H2p in the optical limit ~q → 0. The conservation of
momentum implies that each independent transition must conserve the wavevector ~k.
H2p can be written explicitly as:

H2p =

(
Hresonant Hcoupling

−
[
Hcoupling

]∗ − [Hresonant]
∗

)
(3.23)

The matrix Hresonant is hermitian, involves only positive frequency transitions (hence
its eigenvalues are real, which in turn implies that all excitons have in�nite lifetimes),
and has expression:

Hresonant = H2pv
′c′

vc = (Ev − Ec) δvv′δcc′ −
[
2vcc

′

vv′ −W v′c′

vc

]
(3.24)

It has three di�erent contributions:

1. The �rst term is the di�erence between the valence and conduction band energies
involved in the independent particle transition.

2. The second term (vcc
′

vv′) includes the unscreened interaction and is called electron-
hole exchange. It's positive and leads to an increase of the transition energy.

3. The third term (W v′c′
vc ) includes the screened interaction and is called direct

electron-hole interaction (even if it stems from the variation fo the exchange-
correlation potential). It's negative (attractive interaction) and thus reduces the
transition energy.

The other element has expression:

Hcoupling = H2pc
′v′

vc = 2vcv
′

vc′ −W c′v′

vc (3.25)

It's symmetric and mixes transitions of positive and negative energy. The neglect of
this term constitutes the Tamm-Danco� approximation, and makes H2p hermitian and
of half size.

From a qualitative point of view, the e�ect is twofold:

1. excitonic peak may appear within the fundamental bandgap.

2. The oscillator strength of the BSE spectrum appears redshifted (due to the term
W v′c′
vc that usually overcomes vcc

′

vv′ ) with respect to the GW −RPA one.

Figure 3.2: Qualitative representation of the excitonic e�ects on the Im(ε).
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Chapter 4

Transition Metals Perovskites

All perovskite-type materials owe their name to the very �rst perovskite, CaTiO3.
These materials share the same chemical formula ABX3, where A and B are positively
charged ions and X is a negatively charged ion.
In this work we study a representative set of a particular class of perovskites, the so-
called Transition Metals Oxide (TMO) perovskites, which are characterized by having
transition metals as cations and Oxygen as X. The properties of the metals' partially
�lled d orbitals give rise to a rich landscape of interesting physical properties, such as
metal-insulator transitions[78], superconductivity[79], two-dimensional electron gas[80]
and many others.
The di�erent transition metals covered in the set distinguish themselves for the various
ionic radii, which are linked to di�erent lattice types and structural distortions, and for
di�erent types of d orbitals, which modulate the degree of electronic correlation and
electron and spin itineracy.
In the �rst part of this chapter we will enumerate the di�erent unit cells and lattice
types, while in the second part we will discuss the electronic structures.

4.1 Structural properties

The �rst discovered perovskite, CaTiO3, has a cubic unit cell, with the Ca atom at cube
corner positions, Ti at body center positions and lastly the O atoms at face centered po-
sitions.

Figure 4.1: Example of
cubic perovskite struc-
ture.

The Ti cation is in 6-fold coordination (surrounded by an
octahedron of oxygens), while the larger Ca cation is in
12-fold cuboctahderal coordination, as shows in �gure 4.1.
The relative size requirements on the ions for the stability
of the cubic structure are quite strict; distortions, needed
to stabilize the cell, result in lower symmetry, such as or-
thorhombic, tetragonal or trigonal.
An empirical guess of the perovskite's structure (and its
distortion) can be attained from the Goldschmidt toler-
ance factor t, which is based on the size mismatch between
the cations radius and tries to determine the structure sta-
bility:

t =
RA +RO√
2(RB +RO)

(4.1)
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where t is the tolerance factor and RA, RB, RO the ionic radii of the elements in ABO3.
If 0.9 < t ≤ 1 the perovskite has the ideal cubic structure, while t > 1 refers to an
hexagonal or tetragonal structure and 0.7 < t ≤ 0.9 to an orthogonal or rhombohedral
ones. Finally, if t < 0.7 then it might have a ferroelectric or a di�erent structure.
However the Goldschmidt rule is not always e�ective for the TMO perovskites, since
not all transition metals were investigated by Goldschmidt and some of the stoichiome-
tries studied[81] were not matching with the previously found ones.
In addition to this, other sources of structural distortions exist. For example, LaMnO3

exhibits a GdFeO3-like distortion[82, 83], which leads to a decrease in the d-d hop-
ping and bandwidth and gives the compound its orthorhombic structure. Moreover
LaMnO3 displays another type of distortion[84, 85], the so called Jahn-Teller e�ect
(which removes the degeneracy of the 3d eg orbitals).
The set of compounds considered in the present thesis and their fundamental charac-
teristics are summarized in table 4.1.

Compound Crystal Structure a b c

SrT iO3[86] C − Pm3m 3.905 3.905 3.905
SrZrO3[87] C − Pm3m 4.109 4.109 4.109
SrHfO3[88] C − Pm3m 4.114 4.114 4.114
KTaO3[89] C − Pm3m 3.988 3.988 3.988
LaScO3[90] O − Pnma 5.680 5.680 5.680
LaCrO3[91] O − Pnma 5.480 7.759 5.517
LaTiO3[92] O − Pnma 5.589 7.901 5.643
LaV O3[93] M − P21/b 5.592 7.752 5.562
LaMnO3[82] O − Pnma 5.742 7.668 5.532
LaFeO3[94] O − Pnma 5.568 7.850 5.557
SrMnO3[95] C − Pm3̄m 5.374 5.374 7.600
SrTcO3[96] O − Pnma 5.535 7.845 5.588
NaOsO3[97] O − Pbca 5.384 7.580 0.703
Ca2RuO4[98] O − Pbca 5.388 5.632 11.75

Table 4.1: The crystal structure (C=cubic, T=tetragonal, O=orthorhombic,
M=monoclinic) and experimentally found lattice parameters (in Ȧ) of the compounds.
All values are taken from the cited papers.

4.2 Electronic properties

In this section we will recall some models aimed to describe the electronic structure of
the coordination complexes, and then we will discuss the compounds' bandstructures.

Crystal �elds and Molecular Orbitals
We start from crystal �eld theory (CFT ), which describes the degeneracy breaking of
d orbitals due to a static electric �eld produced by the surrounding ligands.
The d levels of an isolated transition metal are degenerate. However, in a perovskite
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Figure 4.2: Di�erent types of lattice distortions in the compounds studied in this thesis:
(a)Pm3̄m ; (b)Pnma ; (c) P217b ; (d) Pcba. Taken from [99].

structure (see �gure 4.1) the positively charged metal ions are surrounded by six neg-
atively charged ligands organized in an octahedral symmetry: this will cause a rear-
rangement of the d orbitals, where dx2 , dx2−y2 (together called eg orbitals) will move at
higher energies and dxy, dxz, dyz will be shifted at lower energies and called t2g orbitals,
as shown in �gure 4.3. The energy splitting between the two group is called crystal
�eld splitting.

Figure 4.3: The crystal �eld splitting of a transition metal oxide surrounded by six
negative oxygen ions in an octahedral arrangement. Taken from [100].

It's also important to consider another model, the Molecular Orbital (MO) theory,
which considers the overlaps between orbitals. The 3d orbitals of the transition metals
are more localized than 4p orbitals, and the 4p are more localized than 4s; this means
that the overlap with the ligands' orbitals is larger for 4s orbital than for 4p, and so on.
Consequently, the order of the energy splitting between the bonding and anti-bonding
states is 4s > 4p > 3d. Moreover, the σ∗ bonds as well have larger overlaps than π∗

bonds, which results in the eg splitting being larger than the t2g splitting.
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Figure 4.4: Molecular orbital diagram from a transition metal ion with its octahedral
coordination complex. Taken from [100].

Bandstructures: Band, Mott and Charge-transfer insulators
While the CFT and MO theories can account for the electronic structure of coordina-
tion complexes, to understand the optical properties of the compounds it's necessary
to describe accurately the perovskites' bandstructures.
However, the band theory based on the independent electron approximation cannot
always correctly predict the materials' behavior, and this is especially true when tran-
sition metals are involved. Where unpaired d electrons are present, the system is in this
approximation is often predicted to have a metallic behaviour, but many perovskites
studied in this thesis (for example LaTiO3) have unpaired electrons and are known to
be insulators.

Figure 4.5: Schematic Example of
metal-insulator transition.

The insulating behaviour in those perovskites can
only be explained by including the correlation
e�ects neglected in band theory. The simplest
model which can explain this behaviour is the Hub-
bard model.
Within this model, the electronic structure is
governed by the competition between the local
Coulomb interaction (U) and the bandwidth (W )
of the d shell of the transition metals. Through
this model Mott[101] studied the metal-insulator
transition and observed how a strong short-range
Coulomb interaction between electrons U can
open a gap inside the d band, splitting it in two
so-called Hubbard subbands.
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Figure 4.6: Example of TM d or-
bitals extensions. Taken from [99].

The strength of U depends primarily on
the spatial extent of the d orbitals and on
the orbital �lling. It reaches it largest val-
ues for 3d TMs[102, 103, 104], while 5d and
4d (which have less localized states) give rise
to weaker electron-electron interaction and larger
hopping. At the same time, localization of d
orbital should increase with the atomic num-
ber along the same TM row of the periodic ta-
ble.

According to the classi�cation scheme by Zaanen, Sawatzky and Allen[105], Mott in-
sulators are classi�ed into two types: the criterion is based on the relative values of the
Hubbard gap U (equal to the energy splitting between the two Hubbard subbands) and
the charge transfer energy ∆. If ∆ > U , the insulator is called Mott-Hubbard (MH); if
U > ∆, it's called Charge Transfer (CT ) type, as shown in �gure 4.7.

Figure 4.7: Classi�cation of Mott insulators and relative position between the Hubbard
subbands and the Oxygen 2p band. Taken from [106].

The perovskites studied in this thesis are all insulators, and some of them are magnetic
insulators. The most favourable magnetic ordering among the studied compounds is
the antiferromagnetic one, where two sublattices of transition metals ions with opposite
spins occurs.
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We now list in table 5.1 the di�erent electronic characteristics of the various material
and brie�y discuss the compositions of the valence and conduction bands (following
[99]):

Compound
Electronic
Con�guration

Band Gap (eV)
Behaviour

Magnetic
OrderingExp. G0W0

SrT iO3 3t02g 3.3 3.55
band
insulator

NM

SrZrO3 4t02g 5.6 5.29
band
insulator

NM

SrHfO3 5t02g 6.1 5.69
band
insulator

NM

KTaO3 5t02g 3.6 3.56
band
insulator

NM

LaScO3 3t02g 6.0 4.56
band
insulator

NM

LaTiO3 3t12g 0.1 0.49
Mott
insulator

G-AFM

LaV O3 3t22g 1.1 1.14
Mott
insulator

G-AFM

LaCrO3 3t32g 3.3 2.95
Mott
insulator

G-AFM

LaMnO3 3t32ge
1
g 1.1 0.97

Mott
insulator

A-AFM

LaFeO3 3t32ge
2
g 2.1 1.91

charge-transfer
insulator

G-AFM

SrMnO3 3t32g 1.75
charge-transfer
insulator

G-AFM

SrTcO3 4t32g 1.14
Magnetic
insulator *

G-AFM

NaOsO3 5t32g 0.1 0.27
Magnetic
insulator *

G-AFM

Ca2RuO4 4t32ge
1
g 0.3-0.5 0.50

charge-transfer
insulator

AFM

Table 4.2: Electronic con�guration, magnetic ordering, Experimental vs G0W0@PBE
bandgaps and behaviours for the studied set. The G0W0 calculations employed the
parameters listed in table 5.1 and were taken from [99]. The asterisk on SrTcO3

and NaOsO3 symbolizes that, while having an insulator-like bandstructure, the two
compounds are close to the metal-insulator transition[107, 108, 109].

The cubic non magnetic perovskites (SrT iO3, SrZrO3, SrHfO3 and KTaO3) and
LaScO3 display a band insulator behavior where the valence bands are dominated by
O − p states and the conduction bands by TM − d.
Mott insulators can be observed when the 3d band starts to be �lled, exhibiting a
predominant d−d gap character with only minor O−p states in the uppermost valence
orbital (The O − p percentages in the highest valence band are 10% for LaTiO3, 26%
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for LaV O3, 22% for LaCrO3 and 28% for LaMnO3
1) and lowest conduction ones (7%

for LaTiO3, 19% for LaV O3 18% for LaCrO3 and 15% for LaMnO3). The Jahn-Teller
distortion plays also an important role in LaMnO3[84, 85] (as already cited), lifting
the orbital degeneracy in the eg states.
The charge-transfer insulators have a very pronounced intermix of O− p and TM − d
states for the highest valence band (the O−p percentage are 40% for LaFeO3, 40% for
SrMnO3 16% for Ca2RuO4 and 42% for NaOsO3), while the lowest conduction band
is generally dominated by the Tm− d states (O − p percentage are 12% for LaFeO3,
8% for SrMnO3 26% for Ca2RuO4 and 22% for NaOsO3).
NaOsO3 shows a peculiar nature[110, 111, 109]: with its 5d orbitals and their less
localized nature (which results in weaker electron-electron interaction U and larger
hopping W ) NaOsO3 behaves like an insulator on the verge of a Lifshitz insulator-to-
metal transition and exhibits a spin orbit coupling (∼ 0.3 eV).
Lastly, we focus on SrTcO3: while some authors[112] have identi�ed it as a Slater
insulator (Slater's view on the metal-insulator transition are essentially based on the
exchange interaction and deeply linked with the antiferromagnetic ordering[113]), it
has been described with characteristics at the border between the itinerant-metallic
and localized-insulating regimes [107, 108, 114].
The bandstructures and densities of states of all materials, calculated at G0W0 level
(with a PBE starting point), are showed in the next page in �gure 4.8.

1the percentages of all perovskites are taken from [99].
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Figure 4.8: Calculated band structures from DFT (grey lines) and G0W0 (black)
calculations together with TM − d(shadow, cyan line) and O − p(full line, red) the
G0W0 density of states. The �lled circles indicate the calculated G0W0 QP-energies
(used for the Wannier interpolation). Taken from [99].
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Methods and Results
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In this section the optical properties of the perovskites set (computed using the
methods described in the previous chapters) will be presented. The compounds set
is divided in two classes, which are discussed separately: In chapter 6 we will dis-
cuss the results concerning the four cubic non magnetic (NM) perovskites SrTMO3

(TM = Sr,Hf, Zr) and KTaO3, while in Chapter 7 we will address the remaining ten
materials, which exhibit di�erent types of structural distortions and magnetic orderings:
The Lanthanide series LaTMO3 (TM = Sc, T i, Cr,Mn, Fe, V ), SrTMO3 (TM =
Mn, Tc), NaOsO3 and Ca2RuO4.

Initially, in chapter 5, we will outline step by step the general procedure employed
for the optical spectra calculations.
The analysis of the optical properties of each material starts from the study of the
convergence of the spectra with respect to the number of kpoints and to the numbers
of valence and conduction bands employed in the BSE calculations. These two steps,
short of being routine procedures, are computationally very expensive and became al-
most exceedingly so for the non cubic materials (due to the large size of the unit cells,
which contain 20 atoms for LaTMO3, SrTMO3, NaOsO3 and 28 for Ca2RuO4), as
we will discuss in chapters 6.1 and 7.1. We will therefore introduce in chapter 6.3 the
techniques used to address these issues and their trade-o�s.
Then, in the chapters 6.4, 7.2 and 7.3, we will compare the results obtained through
the G0W0@PBE and BSE methods, discussing the contribution of the electron-hole
correlation for each perovskite and investigating the origin of the structures inside the
various spectra. The remaining discrepancies with the experimental data will be �nally
examined.
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Chapter 5

Computational details

The calculations presented in this paper were conducted using the Vienna Ab Initio
Simulation Package (VASP), Version 5.4.4[115].
The GW approximation was used in the G0W0 �avour[66], where the screening W0

was �xed at the DFT − RPA level. As a starting point for the G0W0 calculation we
exploited a full DFT calculations using the generalized gradient approximation (GGA)
parametrization introduced by Perdew, Burke, and Ernzerhof (PBE)[19]. When the
GGA was not able to open the gap, a small on-site Hubbard U was added following
the scheme of Dudarev[116] (this strategy was employed only for LaTiO3 and LaV O3;
the starting point for them was a DFT + U calculation with U − J = 2 eV).

The same perovskites set analysed in the present thesis was subject of a thorough
study (at G0W0 level) by Ergönenc.et.al [99]. In this work the authors outlined a
proper procedure to obtain well-converged1 quasiparticle(QP) energies and accurate
bandgaps within the G0W0 method:

1. While keeping the kpoint mesh �xed, the bandgap Eg is computed as a func-
tion of the number of bands (NBANDS ) for di�erent values of the cut-o� en-
ergy(ENCUT ).

2. Then, by �xing NBANDS and ENCUT to their optimum values, Eg is converged
with respect to the number of k-points.

Unless otherwise noted, the ENCUT, NBANDS and kpoint densities used for the con-
secutiveDFT andG0W0 calculations were taken from this paper and obtained through
the procedure described; the actual parameters are listed in table 5.1. Conversely, the
ENCUTGW 2 was kept at the standard value = 2/3ENCUT .
All calculation employed Ultrasoft GW PAW , except SrT iO3 ones, which adopted
Norm-Conserving ones: the reason behind this PAW choice for SrT iO3 were discussed
in [99]. A number of frequency points in the G0W0 calculation (NOMEGA variable)
of 64 was deemed su�cient for all materials (with the exception of SrHfO3, which
employed 96).
For the cubic non magnetic perovskites and LaScO3 we performed non-spin polarized

1A band gap is said converged when di�erences between bandgap values obtained with di�erent
(consecutive) parameter values are lower than a given threshold. The parameters in Table 5.1 satisfy
a threshold of 100 meV.

2ENCUTGW represents the cuto� energy for the response function P as described in https:

//cms.mpi.univie.ac.at/wiki/index.php/ENCUTGW (url checked on October 3, 2019).
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Compound ENCUT NBANDS kpoints mesh

SrT iO3 600 512 4× 4× 4
SrZrO3 650 1792 4× 4× 4
SrHfO3 650 2304 4× 4× 4
KTaO3 500 896 4× 4× 4
LaScO3 500 1280 5× 5× 3
LaTiO3 500 448 5× 3× 5
LaV O3 500 448 5× 3× 5
LaCrO3 500 448 5× 3× 5
LaMnO3 500 448 5× 3× 5
LaFeO3 500 448 5× 3× 5
SrMnO3 500 448 4× 4× 2
SrTcO3 500 512 5× 3× 5
NaOsO3 500 448 5× 3× 5
Ca2RuO4 500 521 4× 4× 2

Table 5.1: Set of parameters, taken from [99]. This setup guarantees well-converged
QP energies within a accuracy of around 100 meV.

calculations; all the others compounds required spin polarized ones. Finally, for for
NaOsO3 we took into account the spin-orbit coupling (and thus used non collinear
calculations).
Finally, allBSE calculations were performed within the Tamm-Danco� approximation[76].
The experimental data were taken from [117] (SrHfO3), [118] (SrT iO3), [119] (SrZrO3

and KTaO3), [120] (La series)(except LaMnO3 from [121]),[109] (NaOsO3), [122]
(Ca2RuO4). For SrMnO3 and SrTcO3 no experimental reports in the literature have
been found.
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Chapter 6

Cubic non magnetic perovskites

6.1 Kpoints convergence

The BSE step, performed on top of the G0W0 calculation, requires two additional
parameters: the number of conduction bands (NBANDSO) and of valence bands
(NBANDSV ) included in the excitonic hamiltonian and e�ective eigenvalue equation
(see equation 3.17 and section 3.1). Therefore, to obtain meaningful results, we must
study the spectra convergence with respect to these two parameters.
However, this is not the end of the story: often the kpoints meshes which provide
well converged total energies or bandgaps are inadequate to attain converged exciton
binding energies and fails to deliver converged spectra. For example, as can be seen
from �gure 6.1, for SrZrO3 the 4× 4× 4 mesh (which proves enough for the bandgap
calculation[99]) provides a poor spectra, and even a 10×10×10 mesh fails to reach con-
vergence.

Figure 6.2:
Work�ow of
each BSE
calculation.

Thus a question arises: how can we choose these parameters?
The general outline of the procedure employed recalls the one
sketched in Section 5. To determine the convergence of the di-
electric function with respect to the number of kpoints, we com-
pare the dielectric function curves for di�erent kpoint meshes: con-
vergence is achieved when the curve itself does not exhibit signif-
icant changes with further increase of the mesh density. There-
fore, such study requires to repeat the entire chain of calcu-
lation (DFT → G0W0 → BSE, see �gure 6.2) for each
mesh.
Once we have picked a mesh, we have to determine NBANDSV and
NBANDSO in a similar way, while keeping the mesh and all the
other parameters �xed (The convergence of the bands number will be
discussed in the next section).

However the application of this procedure exhibits some complica-
tion: It's well known in literature[52, p. 370][123, 76, 124] that the
optical spectra determination requires a much denser sampling of the
Brillouin Zone than the corresponding ground-state properties calcu-
lation. The �rst reason behind the slow convergence of the dielectric
function with respect to the kpoint mesh is that the BSE oscillator
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Figure 6.1: BSE calculation of the imaginary part of SrZrO3 using di�erent kpoints
meshes. All calculations employed the cuto� energy and number of bands for the
DFT@PBE and G0W0 runs listed in table 5.1 and NBANDSO = NBANDSV = 10
for the BSE runs.
The G0W0@PBE + BSE on 6× 6× 6 run required ∼ 5 hours, the one on 8× 8× 8
required ∼ 23 hour and the one on 10× 10× 10 required ∼ 72 hours (all on 64 cores).

.

strengths (see the numerator in equation 3.19, i.e. |
∑

vc~k

〈
ψv~k
∣∣p̂∣∣ψc~k〉A(v~k)(c~k)

λ |2) mix

transitions at precise kpoints in space, and both A
(v~k)(c~k)
λ and

〈
ψv~k
∣∣p̂∣∣ψc~k〉might depend

in critical way on the ~k values inside the Brillouin Zone. Most ground state properties
don't depends on values at individual kpoints (and thus on the details of the electronic
structure), but only on integrals that span the entire Brillouin Zone[52, p. 370].

Another cause is associated to the localization of the exciton wavefunction A
(v~k)(c~k)
λ

inside the Brillouin Zone: while Frenkel -like excitons mix transitions from a rather
large portion of the Brillouin Zone and, as such, allow a more coarse sampling[74],
Wannier-Mott-like excitons are usually very localized in the Fourier space and require
denser mesh to be described properly.

This in turn, make both the �nal calculation and the convergence study exceedingly
time consuming and computationally expensive. The reason behind this is twofold:

1. TheG0W0 step scales unfavorably with the kpoints number, roughly in a quadratic
manner in the current V ASP implementation[123]. As introduced before, the op-
tical properties simulation requires very dense kpoint meshes, and this is a mayor
hindrance in this type of calculations. Luckily, V ASP handles e�ciently the sym-
metry of the unit cell, restricting the calculation only to the kpoints inside the
Irreducible Brillouin Zone: this somewhat helps speeding the calculations partic-
ularly for compounds with highly symmetric cells (such as the cubic perovskites
of this section).

2. Also the last step, the BSE one, poses a di�culty: the memory requirement of
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6.1. KPOINTS CONVERGENCE 58

BSE implementation in V ASP scales quadratically with respect to the number
of kpoints while the time requirement scales with the third power1.

How we can proceed?
To mitigate these issues we slightly modify the approach summarized previously replac-
ing the BSE step in the kpoint convergence study with the so-called modelBSE[125,
126]. Its purpose is to approximate a full BSE calculation by skipping the interme-
diate G0W0 run, simulating the G0W0 correction to the bandstructure and replacing
the dielectric function ε−1

~G, ~G′
(~k) (determined in the G0W0 step at a RPA level) with a

local model function:

ε−1(~k + ~G) = 1− (1− ε−1
−∞) exp

[
−|
~k + ~G|2

4λ2

]
(6.1)

This allows to replace the RPA screening W (employed in the G0W0 run) with an
analytical model:

W cv~k
c′v′~k

=
4πe2

Ω

∑
~G

Bc~k
c′~k

(~G)
ε−1(~k + ~G)

|~k + ~G|2
Bv~k
v′~k

(~G) (6.2)

Where Bn~k
n′~k

(~G) = 1
Ω

∫
Ω
d~run~k(~r)u

∗
n′~k

(~r)ei(
~k+ ~G)·~r, ε∞ is the static ion-clamped dielectric

function in the long-wave limit, and λ is a screening length parameter to be determined
by �tting ε−1 to the screened Coulomb kernel diagonal values obtained through a
previous G0W0@PBE run (for the 4 cubic perovskites we �tted λ on a G0W0 run
performed on a 8× 8× 8 mesh).
To approximate the G0W0 correction to the bandstructure we rigidly shift the DFT
(PBE) conduction bands: the value of this shift, sometimes called in literature Scissor
operator [127, 128], is again determined by �tting the bandgap to a previous G0W0
run. The values of the �tted quantities are collected in table 6.1, while the graphs of
the �tted curve are displayed in �gure 6.3.

SrZrO3 SrT iO3 SrHfO3 KTaO3

Scissor Op.(eV) 0.944 1.645 1.913 1.395
λ 1.356 1.463 1.448 1.432
ε−1
∞ 0.105 0.165 0.242 0.194

Table 6.1: value of the �tted parameter required for the mBSE runs. The �t was
performed on a G0W0@PBE using a 8 × 8 × 8 mesh and the cut-o� energies and
numbers of bands listed in table 5.1.

1as detailed in the online manual https://cms.mpi.univie.ac.at/wiki/index.php/NBANDSV
(url checked on October 3, 2019). The requirements are: time ∼ (NBANDSO ∗ NBANDSV ∗
Nkpoints)

3, while memory ∼ (NBANDSO ∗NBANDSV ∗Nkpoints)
2. Furthermore we note that the

BSE implementation in V ASP 5.4 does not exploit symmetry, while the G0W0 one does.
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Figure 6.3: �tted model dielectric function and screened Coulomb kernel diagonal
values obtained through a G0W0@PBE run. The G0W0@PBE runs were performed
with a 8×8×8 mesh and the cut-o� energies and numbers of bands listed in table 5.1.

For the convergence study with the mBSE method we included only four conduc-
tion and valence bands, with the purpose of reducing the computational cost. Even so
the calculations with the 18×18×18 mesh required between 8.6GByte/core (KTaO3)
and 12.8GByte/core (SrZrO3) using 256 total cores2.
Two general trends are recognizable in �gure 6.4:

1. The kpoint density increase is associated to a strong reduction of the height
(intensities) di�erences between the peaks and the adjacent valleys' minimums:
spectral weight is shifted away from the peaks and make the overall shape more
uniform. This e�ect is indeed visible in the BSE calculations (see �gure 6.5, 6.8,
6.11, 6.14). The fact that a coarse kpoint sampling introduces additional features
is well known in literature[77, chapter. 6.2.2]. The reason behind the slower
convergence of the dielectric function has been previously discussed; nonetheless,
at 18× 18× 18 the peaks' intensities are well converged.

2. The peaks transition energies (i.e. the positions) are in general not fully con-
verged, even if the outcomes are markedly material-dependent. While SrHfO3

line shape is almost converged, the peaks transition energies of other material
(especially KTaO3) have not yet reached such outcome. From a qualitative per-
spective, each spectra's features remain coherent and similar between the di�erent
meshes (at least starting from 12× 12× 12) and well discernible. The structure's
onset however is very well converged for all materials.

2V ASP redistributes the BSE matrix among all cores: thus increasing the total number of cores
reduces the memory allocated on a single core.
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Figure 6.4: dielectric function of the four cubic non magnetic perovskites for di�erent
kpoint mesh obtained with the mBSE method with NBANDSV = NBANDSO = 4
kept �xed. The cut o� energies are listed in table 5.1.

6.2 NBANDSV and NBANDSO convergences

As mentioned in chapter 6.1, a full BSE calculation requires two additional param-
eters, that is the numbers of conduction and valence bands included in the calcula-
tion. The optimal procedure would dictate to run, using the (well enough) converged
kpoint mesh, many full BSE or mBSE simulations with varying NBANDSV and
NBANDSO until convergence is reached. However, as explained before, the memory
requirement of BSE implementation in V ASP scales quadratically with respect to the
number of kpoints while the time requirement scales with the third power. Because of
this, a NBANDSV/NBANDSO convergence study on the denser (18 × 18 × 18)
kpoint mesh would have been computationally very costly. Therefore we ran the
NBANDSV/NBANDSO convergence study on an 8× 8× 8 mesh.
Moreover, for this study we opted to discard the mBSE approach (adopted in the
kpoints convergence) and employ the full BSE approach. The reason behind this
choice is that, short of being a purely technical step, this convergence study can also
give information about the origin of the peaks and structures in the full spectra[128].
The converged values are shown in table 6.2.
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SrT iO3 KTaO3 SrHfO3 SrZrO3

NBANDSO 12 12 12 12
NBANDSV 10 12 13 12

Table 6.2: Converged value for NBANDSV and NBANDSO for the cubic non mag-
netic perovskites considered, determined on a 8× 8× 8 mesh.

6.3 Methods adopted

As outlined above, the considerable computational cost could make running BSE cal-
culations for large system a daunting task. Di�erent paths were adopted to face this
challenge.
A way to reduce the computational cost is to avoid the direct diagonalization of the
e�ective eigenvalue equation and rely on iterative solvers[129, 130]. These methods can
achieve time requirements scaling as O(N2) (instead of O(N3)) and reduced memory
occupation. However they don't yield excitons eigenvalues and eigenfunctions, which
are usually very helpful to interpret the results.
Another possibility is to adopt a "hybrid" kpoints mesh[124, 131], that is a grid that
is denser in the region of the Brillouin Zone that is most relevant for the exciton and
coarser in the other regions. This technique however can be applied only withWannier-
Mott-like exciton; moreover, due to technical reasons related to the kpoints sampling in
the VASP implementation of the GW method, it is presently not possible to calculate
the QP energies for non-uniform k-point meshes.

We employ a di�erent approach, based on the averaging of shifted-grid independent
calculations[76, 132]:

1. Generate all irreducible kpoints ~knp=1,..,L with weights wp=1,..,L from a Γ-centered
n× n× n mesh.

2. Generate L m×m×m kpoints meshes shifted o� Γ by the previously calculated
shifts ~knp=1,..,L: we denote asMp the mesh with shift ~knp .
The set formed by the union of all shifted meshes

⋃
Mp includes all kpoints of a

regular (Γ centered) (m · n)× (m · n)× (m · n) mesh, with the proper weights.

3. Perform an independent calculation for each meshMp, and average the dielectric

functions over the L calculations: ε = 1
W

∑L
p=1wpεp where W =

∑L
p=1wp and εp

denotes the dielectric function calculated on the meshMp.

Using this scheme, the computational time required reduces roughly by a factor (n3)
2

in the GW calculations and (n3)
3
in the Bethe-Salpeter ones[76].

The trade-o� is that the interaction range of the exciton is limited by the m×m×m
mesh used in each GW and BSE calculation; in other words, we truncate the long-
range part of the Coulomb kernel at roughly m times the unit cell size. This means
that this approximation is viable only if the compound exhibits localized (in real space)
excitons, and must be applied with care in presence ofWannier-Mott-like excitons (due
to their large real-space radius).
In the next paragraphs we'll compare the spectra obtained with this methods the ones
obtained with the standard method, and analyze the results.
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6.4 Optical Properties

KTaO3

(a)

(b)

Figure 6.5: (a): Spatially averaged optical conductivity of KTaO3, obtained with
di�erent approaches: in red through an averaged BSE on a 20 × 20 × 20 mesh
(n× n× n = 4× 4× 4,m×m×m = 5× 5× 5), in violet through an BSE on a
8 × 8 × 8 mesh, in blue through a IPA on G0W0 QP-energies and 8 × 8 × 8 mesh,
while the black one is the experimental curve. (b): Zoom of the �rst structure of =[ε]
with the associated oscillator strength.

We can identify two structures inside the spectra showed in �gure 6.5: a series of peaks
plus a shoulder in the range ∼ [3, 8] eV and a less prominent structure for energies
above 9 eV.
The two BSE curves exhibit a overall good agreement with the experimental data
for what concerns the transition energies of the �rst structure: The onset's transition
energies (at 4 eV) are only slightly underestimated (by about 0.3− 0.4 eV), while the
shoulder at 7 eV exhibits a more severe underestimation.
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We recall from �gure 6.4 that denser meshes, while resulting in a shift of the peaks,
don't modify the onset position (which only requires a 12 × 12 × 12 mesh to be well
converged). Thus, the onset position error cannot be traced back to the not fully at-
tained kpoint convergence. Furthermore, the curve associated with the 20 × 20 × 20
mesh o�ers satisfying peak intensities for what concerns the �rst structure , as opposed
to the 8× 8× 8 mesh.
The second structure is instead underestimated by almost 1 eV by the BSE curves,
and this e�ect cannot again be traced back to the kpoints convergence (the transition
energies between the two BSE curves are similar despite the di�erent meshes adopted).
We will show in section 6.5 that this issue is related to the choice of the DFT starting
point.
The IPA picture severely overestimates the �rst structure' position, while the second
structure's onset results less overestimated.
The excitonic e�ects are prominent, as we can see from the marked redshift in the
oscillator strength in �gure 6.5.
To understand the origin of the peak structures we followed the method employed by
Sponza.et.Al [128], based on the convergence of the spectra with respect to the number
of conduction bands while keeping �xed the number of valence bands (at 12).

(a)

(b)

(c)

Figure 6.6: (a): bandstructure (taken from [99]), with a focus on the QP-energies at
the Γ point and the projected wavefunction character of each band.
(b),(c): Convergence with respect of the number of conduction band (with NBANDSO,

number of valence bands �xed). The spectra were obtained through a full BSE calcula-
tions on a 8× 8× 8 mesh.
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The �rst structure (range [3, 7] eV) is completely converged by including the �rst
three conductions bands (NBANDSV = 3), and is completely determined by the
O p→ Ta t2g transitions.
These O p→ Ta t2g transitions give also a substantial contribution to the second struc-
ture (range [8, 11] eV); the description of the second feature's onset (range [8, 10] eV)
is attained with NBANDSV = 6, which encompasses the O p → Ta eg, O p → K s
transitions. Finally, the shoulder's description requires NBANDSV = 8, which in-
volves the transitions between the O p near the Fermi level and the Sr 3eg states
(which lie at 9.9 eV at Γ).

Figure 6.7: Plot of absolute value of the
exciton wave function along high symmetry
lines in reciprocal space. The circle radius
is proportional to |Aλ

c,v,~k
|. The transition's

numbers refers to the label in �gure 6.5b.

We can validate the peaks attribution
and further elaborate it by looking at the
plot of |Aλ

c,v,~k
| along given high symmetry

directions in reciprocal space (�gure 6.7).
This allow us to point out the kpoints
mixed for a given transition and to study
the valence bands involved in each tran-
sition.
The �rst transition is strongly localized at
Γ (with a minor contribution along the
Γ − X direction) and involves only the
highest occupied and lowest unoccupied
levels. This transition is associated to
the �rst eigenvalue with non-zero oscil-
lator strength: hence it is related to the
optical gap.
The exciton wavefunctions of the sec-
ond and third transition described in �g-
ure 6.7 are less localized on Γ and more
distributed along the Γ − X direction.
The major contributions from the valence
bands came not from the three highest
occupied but from valence bands 4 − 6;
conversely, the only conduction bands
with relevant contributions are the low-
est (triply degenerate) ones, in agreement
with the description in �gure 6.6b.
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SrTiO3

(a)

(b)

Figure 6.8: (a): Spatially averaged optical conductivity (103Ω−1cm−1) of SrT iO3,
obtained with di�erent approaches: in red through an averaged BSE on a 16×16×16
mesh (n× n× n = 4× 4× 4,m×m×m = 4× 4× 4), in violet through an BSE on
a 8× 8× 8 mesh, in blue through a IPA on G0W0 QP-energies and 8× 8× 8 mesh,
while the black one is the experimental curve. (b): Zoom of the �rst structure (range
[2, 8] eV) of =[ε], with the associated oscillator strength.

The experimental spectra of SrT iO3 stands out from the other cubic perovskites' spec-
tra because, while exhibiting the usual double peaked structure, the �rst peak is the
brightest (highest) between the four. The BSE curves reproduce correctly the fea-
tures of the �rst peak (including the onset), and in particular the averaged BSE curve
estimates accurately the peak intensities. The second structure is, as usual for the
cubic perovskites, severely underestimated in the transition energies and simultane-
ously overestimated in the intensities by the 8× 8× 8 BSE curve. The averaged curve
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corrects the intensities overestimation but does not shift at all the transition energies,
sign that this error is not related to the kpoint convergence.
As usual the IPA curve severely overestimates the two structures' transition energies.
We now move to study the NBANDSV convergence, showed in �gure 6.9.

(a)

(b)

(c)

Figure 6.9: (a): bandstructure (taken from [99]), with a focus on the QP-energies at
the Γ point and the projected wavefunction character of each band.
(b),(c): Convergence with respect of the number of conduction band (with NBANDSO,

number of valence bands, �xed) of the (a)�rst structure, (b)second structure inside
SrT iO3's spectra. The spectra themselves were obtained through a full BSE cal-
culations on a 8× 8× 8 mesh.

SrT iO3 convergence shows a similar trend as KTaO3, that is the �rst peak involves
only the �rst three conduction bands and is completely establish by the O p→ Ti t2g
transitions. However, the �rst structure's shoulder (range [6, 7] eV) requires also the
transition to Ti eg states (corresponding to the NBANDSV = 5 curve) to be ac-
counted for.
Conversely the second structure can be described only by including transitions to con-
duction bands 6, 7, 8 (not showed in �gure 6.15a), where the �rst two are Sr eg states
lying at 11.8 eV (at Γ) and the last one is the Sr s state at 12.4 eV at Γ.
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Figure 6.10: Plot of absolute value of the
exciton wave function along high symmetry
lines in reciprocal space. The circle radius
is proportional to |Aλ

c,v,~k
|. The transition's

numbers refers to the label in �gure 6.8b.

We further elaborate on the peaks at-
tribution by studying the excitonic wave-
functions (see �gure 6.10). Similarly to
KTaO3, the �rst transition (with cor-
responds to the �rst excitonic eigen-
value with non-zero oscillator strength)
involves only the triple degenerate high-
est occupied valence band and lowest un-
occupied bands at Γ, with negligible con-
tribution at other kpoints.
The second transition, interestingly, is
not localized at Γ and receives the ma-
jor contribution from the kpoints situ-
ated along the Γ − X direction. It still
involves almost exclusively the highest
valence band and the lowest conduction
band.
The third transition showed in �gure 6.10
is instead almost completely localized at
Γ; compared to the �rst transition, how-
ever, the dominating contributions orig-
inate no longer from the highest valence
bands, but from the bands below (these
band have the same character, dominated
by O p).
These results are in full agreement with a
recent work by Begum.et.al [133].
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SrZrO3

(a)

(b)

Figure 6.11: (a): Spatially averaged optical conductivity (103Ω−1cm−1) of SrZrO3,
obtained with di�erent approaches: in red through an averaged BSE on a 20×20×20
mesh (n× n× n = 4× 4× 4,m×m×m = 5× 5× 5), in violet through an BSE on
a 8× 8× 8 mesh, in blue through a IPA on G0W0 QP-energies and 8× 8× 8 mesh,
while the black one is the experimental curve. (b): Zoom of the �rst structure (range
[4, 9] eV) of =[ε], with the associated oscillator strength.

In �gure 6.11, in a similar way to KTaO3 and SrT iO3, we can identify two structures,
a peak plus shoulder between ∼ [6, 9] eV and a less pronounced crest between ∼ [11, 14]
eV. The higher transition energies associated to the �rst peak with respect to the anal-
ogous one of KTaO3 are due to the higher bandgap[99].
The BSE calculation based on an 8× 8× 8 mesh underestimates the onset of the ex-
perimental �rst peak by almost 1 eV and almost doubles the experimental peak height;
the calculation based on the averaging technique reduces the discrepancy on the onset
(but it does not completely erase it). This technique succeeds in reproducing with
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excellent agreement the �rst peak's height, but does underestimate its shoulder.
As in KTaO3, the transition energies of the second structure are underestimated by
both BSE calculations; The averaged BSE calculation describes correctly its intensi-
ties, while the 8 × 8 × 8 exhibits a very bright peak, which is an artefact due to the
coarse kpoint mesh.
The IPA curve severely overestimates the �rst peak's transition energies, while repre-
senting with overall good agreement the second peak.
As we can see from �gure 6.11, the compound exhibits strong excitonic e�ects.

To relate the spectra's feature to the bandstructure we studied (�gure 6.12) the con-
vergence with respect to NBANDSV :

(a)

(b)

(c)

Figure 6.12: (a): bandstructure (taken from [99]), with a focus on the QP-energies at
the Γ point and the projected wavefunction character of each band.
(b),(c): Convergence with respect of the number of conduction band (with NBANDSO,

number of valence bands, �xed) of the (a)�rst structure, (b)second structure inside
SrZrO3's spectra. The spectra themselves were obtained through a full BSE cal-
culations on a 8× 8× 8 mesh.

Figure 6.12 exhibits a marked di�erence from the previous compounds, that is the
�rst structure requires up to six conduction band (NBANDSV = 6 curve) to attain
convergence, meaning that transitions from O p to Zr t2g (1st, 2nd and 3rd conduction
bands), Sr s(4-th conduction band) and Sr eg(5, 6-th conduction bands) are involved.
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Although, the structure's onset at 5 eV is described completely by the �rst three bands.
This behaviour can be explained by di�erences in the bandstructure: for SrHfO3 t2g
and eg bands overlap inside the ∼ [6, 8] eV range, while for SrT iO3 andKTaO3 (�gures
6.6a, 6.9a) these bands have a distinct energy separation.
The second structure is not fully converged until NBANDSV = 11: this curve con-
tains contribution from transitions to Zr s states (conduction bands 7, 8 ; degenerate
at Γ at 10.3 eV) and to Sr t2g states(band from 9 to 11, lying at Γ at 10.6 eV).

Figure 6.13: Plot of absolute value of the
exciton wave function along high symmetry
lines in reciprocal space. The circle radius
is proportional to |Aλ

c,v,~k
|. The transition's

numbers refers to the label in �gure 6.11b.

The �rst two transitions described in
�gure 6.13 are associated to the on-
set of the �rst structure, as we re-
call from �gure 6.12b (Transition #1
is the �rst transition with non-zero os-
cillator strength). The dominant con-
tributions to the excitonic wavefunc-
tions came from the lowest (triply
degenerate at Γ) unoccupied bands
and highest occupied bands, in agree-
ment with the previous result (with
the usual exception of transition #3,
where the lower valence bands are in-
volved). Interestingly, the wavefunc-
tions possess a signi�cant magnitude
along the Γ − R and Γ − X direc-
tions.
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SrHfO3

(a)

(b)

Figure 6.14: (a): Spatially averaged optical conductivity (103Ω−1cm−1) of SrHfO3,
obtained with di�erent approaches: in red through an averaged BSE on a 20×20×20
mesh (n× n× n = 4× 4× 4,m×m×m = 5× 5× 5), in violet through an BSE on
a 8× 8× 8 mesh, in blue through a IPA on G0W0 QP-energies and 8× 8× 8 mesh,
while the black one is the experimental curve. (b): Zoom of the �rst structure (range
[5, 10] eV) of =[ε], with the associated oscillator strength.

As usual in the cubic perovskites, SrHfO3's spectra exhibits two prominent structures.
While the �rst peak is correctly reproduced by both BSE curves, its onset's transition
energies are consistently underestimated by ∼ 0.5 − 0.6 eV. Because the two curves
follow the same trend and are almost superimposed in the range ∼ [4, 7]eV , this is
probably unrelated to the kpoints convergence. As in the two previous compounds,
the 8× 8× 8 mesh BSE calculation overshoots severely the �rst peaks' height, while
the averaged BSE curve reaches a much better agreement.
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However, as in SrZrO3, the �rst peak shoulder height is underestimated and the sec-
ond peak's transition energies are too low.
The IPA picture severely overshoots the �rst structure's energy transitions while de-
scribing more accurately the second structure's onset.
As we can see from �gure 6.14, the redshift due to the excitons contribution is consid-
erable.

The NBANDSV convergence, which allows to determine the role of single conduction
bands to the spectra, is performed below:

(a)

(b)

(c)

Figure 6.15: (a): bandstructure (taken from [99]), with a focus on the QP-energies at
the Γ point and the projected wavefunction character of each band.
(b),(c): Convergence with respect of the number of conduction band (with NBANDSO,

number of valence bands, �xed) of the (a)�rst structure, (b)second structure inside
SrHfO3's spectra. The spectra themselves were obtained through a full BSE cal-
culations on a 8× 8× 8 mesh.

The interpretation provided by �gure 6.15 is quite similar to SrZrO3's one: To con-
verge the �rst structure the inclusion of O p → Hf t2g transitions (1st, 2nd and 3rd
conduction bands) is not enough and we have to take into account O p → Sr s (4-
th conduction band) and O p → Sr eg (5, 6-th conduction bands) transitions. The
behavior can be explained, as in SrZrO3, by the energy range overlap of Hf t2g and
Sr s, Sr eg bands.
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The second structure (range [10, 12] eV) require up to conduction bands 11 to be con-
verged: these include Hf eg (7, 8-th conduction bands degenerate at Γ at 10.31 eV),
Sr t2g (9-11-th conduction bands at 10.61 eV at Γ).

Figure 6.16: Plot of absolute value of the
exciton wave function along high symmetry
lines in reciprocal space. The circle radius
is proportional to |Aλ

c,v,~k
|. The transition's

numbers refers to the label in �gure 6.14b.

We now discuss the contributions to the
excitonic wavefunctions |Aλ

c,v,~k
| for some

selected transitions (�gure 6.16).
The �rst transition (which is the
�rst transition with non-zero oscillator
strength) is strongly localized at Γ, with
only marginal contribution from the di-
rection Γ − X, and involves only the
highest occupied and lowest unoccupied
bands. The second transition (which cor-
responds to the beginning of the �rst
structure, see �gure 6.14) follows a very
similar behaviour: the only di�erence is
the dominating valence band, which is the
second-highest one (instead of the highest
one).
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6.5 Addendum: Suggestions from Hybrid calculations

Figure 6.17: Comparison between the experimental data and the optical conductivity of
SrT iO3 and KTaO3. The BSE curves were obtained using di�erent starting points: a
standard DFT (PBSE) calculation and a hybrid(HSE06) one. all methods employed
a 8× 8× 8 mesh.

Recently Begum et.al [133] have discussed how replacing the starting point for the
G0W0 method from a PBE to a hybrid calculation could improve the description of
SrT iO3's dielectric function. We replicated their result and employed the same ap-
proach for KTaO3.
The two spectra show very intense peaks which, as discussed in the previous sections,
are artifacts of the coarse mesh employed (8 × 8 × 8 for both calculations) and must
not be attributed to the starting hybrid calculations.
as we can see in �gure 6.17, the agreement regarding the peaks transition energies be-
tween the experimental data and the BSE curves is greatly improved. The positions
of the peaks in the �rst structure are very well reproduced, and, above all, the error of
the second structure's position is signi�cantly reduced.

In fact, in the previous four calculations we found that the BSE methods consis-
tently underestimated the second structure, while the IPA could reach a somewhat
more accurate reproduction of its onset. We postulate that the initial partial success
of the IPA spectra (based on a G0W0@PBE) in reproducing the second structure's
onset can be explained as a error cancellation:

1. The �rst error was due to the absence of excitonic e�ects; these e�ects, as we
have already discussed, produce a redshift of the features in the spectra.

2. the second error si due to an inaccurate description of localized d states made by
the starting DFT (PBE) calculation. A better account of these states produces
a blueshift (with respect to the calculations based on PBE).

The IPA spectra lack both corrections: the errors thus partially compensate them-
selves. The BSE calculations based on PBE include instead only one of the two
corrections: this is the reason of the error in the original BSE calculations. Finally,
the inclusion of the hybrid starting point improves the description of the localized d
states. Moreover the necessity to choose accurately the starting point for the G0W0
methods when dealing with compounds with d orbitals is already well-known in liter-
ature [134, 135, 136, 137].
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Chapter 7

Large perovskites: Lanthanide series,

SrMnO3, 4d and 5d TMO perovskites

7.1 Convergences

As outlined in section 6.1, the �rst steps to perform a BSE run are the two convergence
studies. Let's recall the two aspects (expressed in section 6.1) that make these studies
di�cult to perform - are they demanding also for the large perovskites subset?

1. The �rst point (the scaling of the G0W0 with respect to the number of kpoints)
is somewhat aggravated by the fact that the majority of the large perovskites
exhibit distorted structures and di�erent types of antiferromagnetism ordering
(see tables 4.1 and 4.2). Because of that their cells possess lower symmetry than
the cubic ones, making calculations with the same kpoint number more costly
(with respect, again, to the cubic ones)1.

2. However, to describe the magnetic orderings and the distortions we must use
a large supercell containing up to 28 atoms (instead of 5): a larger supercell
corresponds to a smaller Brillouin Zone, thus strongly reducing the demand of
dense kpoint meshes. In fact, as we well see, this aspect is less crucial for the
large perovskites.

3. The memory requirement of the BSE approach becomes instead critical for this
set. This is caused by the high number of atoms inside the supercell (up to 28
atoms for Ca2RuO4), which imposes a very high number of bands needed to con-
verge the spectra.
For example, the supercell of the perovskites in the La series contains 12 O atoms,
each one contributing with 6 p orbitals; thus a total of 48 bands must be included
only to describe the O − p levels. While the number is material-dependent (and
in particular depend on the bandstructure of the considered compounds), some
perovskites require values of NBANDSO or NBANDSV over 60 to describe
the spectra in the range [0, 10] eV.
This, in turn, make the requirement on the memory side formidable: for ex-
ample, in the BSE run for LaCrO3 (with mesh 5 × 4 × 5 and NBANDSV =
NBANDSO = 32) the BSE matrix alone occupied ∼ 5.8GB per core (∼ 380GB
total).

1we recall that the G0W0 implementation exploits the cell symmetry.
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Compound kpoint mesh NBANDSV / NBANDSO Total memory required

LaScO3 5× 5× 3 32 / 32 ∼ 207GBytes
LaT iO3 5× 3× 5 34 / 34 ∼ 824GBytes
LaV O3 5× 3× 5 30 / 30 ∼ 387GBytes
LaCrO3 5× 3× 5 32 / 32 ∼ 380GBytes
LaMnO3 6× 6× 4 26 / 26 ∼ 963GBytes
LaFeO3 5× 3× 5 34 / 34 ∼ 762GBytes

Table 7.1: Memory requirement for the standard BSE calculations for the La se-
ries. The total memory is calculated multiplying the total memory per core (�ag total
amount of memory used by VASP on root node) times the core number employed.

We face thus an almost opposite situation with respect to the cubic perovskites: the
kpoint convergence is less problematic (due to the smaller Brillouin Zones associated
to the larger supercells) and the NBANDSV/O one proves complex, and becomes
especially critical for the La series, as we can see from table 7.1:

As we will see in section 7.2, most of the La compounds require the inclusion of far more
bands (often more than double) than the ones showed in table 7.1 to reach a meaning-
ful convergence inside the range [0, 10] eV. Recalling that BSE memory requirements
scales as ∼ (NBANDSO ∗NBANDSV ∗Nkpoints)

2, a converged calculation becomes
quickly too demanding for a standard calculation due to memory constraints.
To address this matter we discarded the mBSE approach (the mBSE and BSE meth-
ods have similar memory requirement2), and fully employed the averaging technique
(as described in section 6.3). In this way each single calculation in this technique uses
a much coarser mesh, which reduces the memory demand to acceptable values.

2As detailed in the online manual https://cms.mpi.univie.ac.at/wiki/index.php/BSE_

calculations (url checked on October 3, 2019).
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7.2 La series

LaScO3

Figure 7.1: (Spatially averaged optical conductivity (105Ω−1cm−1) of LaScO3, obtained
with di�erent approaches: in red through an averaged BSE on a 9 × 6 × 9 mesh
(n× n× n = 3× 3× 2,m×m×m = 3× 3× 3), in violet through an BSE on a 5 ×
3× 5 mesh, in blue through a IPA on G0W0 QP-energies and 5× 5× 3 mesh, while
the black one is the experimental curve.

Before discussing the comparison with the experimental data, we point out the very
high number of bands (equal to NBANDSV = NBANDSO = 74) required to con-
verge the optical conductivity up to 9 eV. A standard BSE calculation with these
parameters would be computationally infeasible due to memory requirements3, as we
discussed in section 7.1. Moreover, the standard BSE calculation on the 5 × 5 × 3
mesh does not reach convergence even in the lower part of the spectra (i.e. < 6eV).
We will explain the reason of this behaviour in the next section.
Both the IPA and the BSE describe correctly the spectra from a qualitative point of
view, with its wide single structure: however, from a quantitative point of view both
approaches strongly underestimate its onset (the IPA one by 1.0 − 1.1 eV and the
averaged BSE by 1.8− 1.7 eV on the onset). This error can be partially related to the
underestimation of experimental band gap (equal to 6.0 eV) performed by the G0W0
approach, which predicts a value of 4.56 eV (see table 4.2).

If the IPA achieves a better account of the onset, this result is no longer valid for
the main peak: the IPA severely overestimate it (by about 1.2 − 1.3 eV), and the
introduction of the excitonic e�ects reduce the error to ∼ 0.4 eV.

3The oscillator strengths for the IPA and BSE curves are extracted from the non averaged
calculation. However, for LaScO3 this approach results inadequate and insu�cient to reproduce the
spectra even at the onset, and thus we omit them.
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We conclude this paragraph by observing that the excitonic redshift is prominent in
LaScO3: the shift at the onset is equal to ∼ 0.9 eV, but it reaches ∼ 1.9 eV between
the peaks' centers of mass.

(a)

(b)

(c)

Figure 7.2: (a): bandstructure (taken from [99]), with the Density of States of
TM − d(shadow, cyan line) and O − p (full line, red).
(b),(c): Convergence with respect of the number of conduction band (with

NBANDSO = number of valence bands �xed).

LaScO3 is a band insulator with a 3d0 con�guration, and this implies that its spectra
lacks the Mott peak visible in the other compound of this series, which can be observed
only when the 3d orbitals start to be �lled. The structure visible in the spectra is thus
identi�able as a peak formed by transitions between the O p valence bands and the d
conduction bands. The �rst 8 conduction bands have a Sc d character and reside up
to 7.2 eV over the Fermi energy (at Γ); however, their contribution to the peak is fairly
limited.
We can observe (�gure 7.2c) that transitions involving bands between the 40-th and
the 70-th are needed to converge the peak and provide the major part of the structure.
Bands from 37-th to the 46-th (range [8.4, 8.8] eV at Γ) have a mixed La d/Sc d char-
acter; inside the range [47, 57] ( ∼ [7.1, 8.4] eV at Γ) Sc d forms the main constituent,
and for bands from 58-th on (> 8.4 eV at Γ) it becomes mixed with La d.
Besides, the bands between the 26-th and the 40-th, with a predominant La d char-
acter, reside at very high energy (∼ [9.3, 9.7]eV at Γ) and thus give only a minor
contribution (see �gure 7.2b). This also explains why the standard calculation with
NBANDSV/O = 30/30 fails to reproduce the peak.
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LaTiO3

(a)

(b)

Figure 7.3: (a): Spatially averaged optical conductivity (105Ω−1cm−1) of LaTiO3,
obtained with di�erent approaches: in red through an averaged BSE on a 9 × 6 × 9
mesh (n× n× n = 3× 2× 3,m×m×m = 3× 3× 3), in violet through an BSE on
a 5× 3× 5 mesh, in blue through a IPA on G0W0 QP-energies and 5× 3× 5 mesh,
while the black one is the experimental curve. (b): Zoom of the �rst structure (range
[0, 4] eV) of =[ε], with the associated oscillator strength.

Before discussing the comparison with the experimental data and the spectra's details,
we brie�y consider the kpoint and conduction bands convergences. First, we can see
that within the range [0, 6] eV the averaged BSE calculation and the standard one
superimpose consistently, sign that the kpoint convergence is achieved. Secondly, the
standard BSE calculation with NBANDSV/O = 34/34 fails to reach convergence for
energies > 5 eV, making it necessary to employ the averaging technique. This behavior
is shared between all studied compounds in the La series, thus con�rming the proposi-
tion made in section 7.1 regarding the kpoint convergence.
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From a qualitative point of view, the BSE and IPA calculations reproduce the main
feature of the experimental spectra[120]: a �rst feature in the region < 2 eV and an
intense peak starting at 4 eV. Arima et.al. assign the former peak to a Mott transition
and the latter to a charge transfer transition, and our results validate this attribution,
as we will discuss in the next paragraph.
However, from a quantitative point of view signi�cant discrepancies can be observed.
The Mott feature at < 2 eV is overestimated by about ∼ 0.5 eV in the transition ener-
gies by the BSE approach; the intense charge transfer peak is severely overestimated
by all calculations, even if the BSE one partially reduces this error.
The redshift e�ect due to excitonic interactions is limited in the �rst peak, about ∼ 0.3
eV (�gure 7.3b), and much more marked for the charge transfer peak (about ∼ 0.7−1.0
eV); moreover the CT peak lineshape is partially altered.

(a)

(b)

(c)

Figure 7.4: (a): bandstructure (taken from [99]), with the Density of States of
TM − d(shadow, cyan line) and O − p (full line, red).
(b),(c): Convergence with respect of the number of conduction band (with

NBANDSO = number of valence bands �xed).

The Mott peak (feature (1)) is completely converged by NBANDSV = 6, although
the main contribution is given by transitions to the �rst two bands; these �rst 6 conduc-
tion bands lie in the energy range [0.7, 2.6] eV at Γ, have predominant Ti d character
(between 40% and 90%), and can be qualitatively assigned to structure a in the density
of states.
The shoulder to the Mott peak (feature (2)) is instead determined by the �rst eight
bands, that however belong to the the same structure in the density of states.
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Only transitions to two di�erent set of conduction bands are associated to the
charge transfer peak. The �rst 8 conduction bands form a �rst structure (feature (3)),
and taking into account transitions to conduction bands from 10 to 38 (∼ [3.9, 5.0]
eV at Γ) doesn't substantially modify this structure. These bands have a main La f
character, with a total d percentage between 3% and 30%.
The conduction bands from 39 up to 62 give the predominant contribution to the
charge transfer structure: these bands lie in the energy range [3.5, 4.8] eV over the
Fermi energy at Γ (roughly including structure b in the density of states) and have a
mixed character between La d and Ti d.

Figure 7.5: Plot of absolute value of the exciton wave function along high symmetry
lines in reciprocal space. The circle radius is proportional to |Aλ

c,v,~k
|. The transition's

numbers refers to the label in �gure 7.3b.

We now analyze the wavefunctions associated to three transitions belonging to the
�rst structure (transition #1 is related to the �rst eigenvalue with non-zero oscillator
strength).
The �rst two transitions show a similar behavior: a wavefunction localized on the
Γ−X direction which involves the �rst and second conduction bands, thus con�rming
the attribution of this structure to a Mott-type peak.
The third transition displayed (which is associated to the shoulder of the Mott peak)
exhibits a slightly di�erent behavior, picking up minor contributions from the Γ − T
direction.
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LaVO3

(a)

(b)

Figure 7.6: (a): Spatially averaged optical conductivity (105Ω−1cm−1) of LaV O3, ob-
tained with di�erent approaches: in red through an averaged BSE on a 9 × 6 × 9
mesh (n× n× n = 3× 2× 3,m×m×m = 3× 3× 3), in violet through an BSE on
a 5× 3× 5 mesh, in blue through a IPA on G0W0 QP-energies and 5× 3× 5 mesh,
while the black one is the experimental curve. (b): Zoom of the �rst structure (range
[0, 4] eV) of =[ε], with the associated oscillator strength.

LaV O3 spectra shows very similar characteristics to LaTiO3's one: A Mott peak
in the region < 3 eV and a bright charge transfer peak in the region > 4 eV.
The BSE curves underestimate the transition energies of the Mott peak's onset (by
about ∼ 0.6− 0.8 eV), while the IPA one describes them more accurately.
As in LaTiO3, the transition energies of the charge transfer structure are overestimated
by both types of calculation; however, the redshift due to the excitonic e�ect partially
compensates this error.
The lineshapes obtained by the IPA and BSE simulations are quite similar (almost
only shifted) in the region [0, 6] eV (the redshift amounts at ∼ 0.6 − 0.7 eV on the
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onset); the charge transfer structure instead shows a pronounced weight transfer to
lower energies and a redshift ∼ 1.0− 1.2 eV.

(a)

(b)

(c)

Figure 7.7: (a): bandstructure (taken from [99]), with the Density of States of
TM − d(shadow, cyan line) and O − p (full line, red).
(b),(c): Convergence with respect of the number of conduction band (with

NBANDSO = number of valence bands �xed).

Figure 7.8: HSE06
bandstructures of
LaTiO3 and LaV O3.
From [138].

The spectra shows very similar features to the ones exhib-
ited by LaTiO3, and thus we adopt the same numbering.
The peak in the Mott structure (inside the energy range
[1, 2] eV, feature (1)) is completely converged by consider-
ing the �rst two conduction bands, which correspond to the
structure a in the density of states and have a predominant
d character (∼ 70% at Γ). Therefore the attribution of the
�rst structure to a Mott-type transition is supported.
Both in LaTiO3 and LaV O3 the �rst peak's shoulder (en-
ergy [2, 3] eV, feature (2) in �gure 7.7b) doesn't receive any
contributions from the �rst two bands. However, while in
LaTiO3 transitions to bands from the 3-th to the 8-th par-
ticipate, here this feature is completely determined by in-
cluding only band 3 and 4 (these two bands generate the b
structure in the DOS and have a d character ∼ 80% at Γ).
This di�erent behavior can be explained by a di�erence in
the conduction part of the two bandstructures:
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in LaV O3 the bands starting from the 3-rd on are shifted to higher energies with
respect to LaTiO3 ones, as we can see from �gure 7.8 or by comparing the two density
of states (for example, in LaTiO3 the 3-rd and 4-th bands still contribute to the feature
a in the density of states, while in LaV O3 they are associated to feature b).

In a similar manner to LaTiO3, both features (3) and (4) (belonging to the charge
transfer structure) receive only minor contributions from the �rst ten conduction bands
(feature (a) and (b) in the density of states). The inclusion of bands between the 10-th
and 30-th (which have La f character and lies at [4.7, 5.6] eV at Γ, forming the upper
part of feature (c) in the density of states) does not provide signi�cant contributions.
In fact, the CT structure is mainly determined by bands between 30-th and 50-th (lying
in the energy range between 3.6 eV and 5.6 eV over the Fermi level and corresponding
to the lower part of feature c in the density of states). The La f character is still
predominant between the 30-th and 37-th bands, while for the last thirteen (from 38
to 50) La d is prevailing (with an average of about ∼ 35% of V d at Γ).

Figure 7.9: Plot of absolute value of the exciton wave function along high symmetry
lines in reciprocal space. The circle radius is proportional to |Aλ

c,v,~k
|. The transition's

numbers refers to the label in �gure 7.6b.

We now study the excitonic wavefunctions related to di�erent transitions (as usual
transition #1 in �gure 7.9 is associated to the �rst eigenvalue with non-zero oscillator
strength). Both the �rst and the second transitions are related to Mott peak: both
involve the lowest conduction bands (in agreement with the previous paragraph), and
receive contributions from transitions along the Γ− T direction. Conversely, the third
eigenvector (which is associated to the shoulder of the Mott peak) is strongly delocalized
around Γ−X, with also notable magnitude along Γ− T .
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LaCrO3

(a)

(b)

Figure 7.10: (a): Spatially averaged optical conductivity (105Ω−1cm−1) of LaCrO3,
obtained with di�erent approaches: in red through an averaged BSE on a 9 × 6 × 9
mesh (n× n× n = 3× 2× 3,m×m×m = 3× 3× 3), in violet through an BSE on
a 5× 3× 5 mesh, in blue through a IPA on G0W0 QP-energies and 5× 3× 5 mesh,
while the black one is the experimental curve. (b): Zoom of the �rst structure (range
[2, 6] eV) of =[ε], with the associated oscillator strength.

We can observe inside LaCrO3 spectra the two structures shared by all perovskites be-
longing to the La series with partially �lled 3d bands. Moreover, the experimental Mott
peak position in LaCrO3 is situated at greater energies than in LaTiO3 and LaV O3,
in agreement with the general tendency that electron correlation becomes stronger as
the atomic number increases[120].
In a similar fashion to LaV O3, the BSE calculations underestimate this Mott peak's
transition energies by 0.8 − 1.0 eV, while the IPA calculation somewhat reduces the
error to 0.3 − 0.5 eV. Conversely, the averaged BSE curve reproduces correctly the
charge transfer peak onset (while overestimating its intensity), while the IPA as usu-
ally overestimates both its transition energies and its intensity. Finally, the redshift
between BSE and IPA amounts at ∼ 0.7− 0.8 eV on the onset.
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Regarding the convergence, we note that a very high number of conduction and va-
lence bands is required to obtain a converged spectra, which is hardly achievable in a
standard BSE calculation and requires the averaging method.

We now move to the tentative attribution of the peaks through the study of the
NBANDSV convergence:

(a)

(b)

(c)

Figure 7.11: (a): bandstructure (taken from [99]), with the Density of States of
TM − d(shadow, cyan line) and O − p (full line, red).
(b),(c): Convergence with respect of the number of conduction band (with

NBANDSO = number of valence bands �xed).

The �rst peak (range [3, 4] eV, feature (1) in �gure 7.11b) is converged byNBANDSV =
10 and is mainly formed by transitions extending to the conduction bands between the
3-th and 8-th, which reside between 3.5 eV and 4.1 eV over the Fermi energy (at Γ).
This structure is thus formed by transitions from the valence Mott subband near the
Fermi energy (the levels at −3 eV are too low in energy to contribute) to these con-
duction bands.
Let's now draw a comparison between this Mott structure and the analogue ones in
LaTiO3 (�gure 7.4b) and LaV O3 (�gure 7.7b). The peak is not split in two di�er-
ent features as in LaV O3 and LaTiO3 (the second feature is missing here). However,
LaCrO3's single peak exhibits a characteristic typical of the second features of all other
Mott insulators' spectra, namely the fact that the �rst two conduction bands give only
a very limited contribution.
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The second structure (which includes features (3) and (4)) is, as usual, determined
by transitions involving two di�erent groups of conduction bands. The �rst group in-
cludes transitions to bands from 7 to 22, and provides the main contribution to feature
(3) of the charge transfer peak (see �gure 7.11c). Bands from 7 to 10 have a main Cr d
character and energy in the range [3.7, 4.1] eV at Γ, while between the 11-th and the
22-th (lying in the energy window [6.0, 6.7] eV) the La f character is dominant.
To complete the charge transfer structure (features (3) and (4)) and converge the spec-
tra up to 9 eV we need however to include the bands between the 42-th and the 62-th.
These bands have very strong La d character (with an average Cr d character of 17%
at Γ) and reside in the energy range [4.5, 6.9] eV at Γ4.

The �rst 6 bands do not participate at all to these two features, as we can see from �g-
ure 7.11b; likewise transitions involving bands between the 22-th and the 40-th (with
La f character and energy > 6.5 eV) contribute to this structure to a very limited
extent (�gure 7.11c).

Figure 7.12: Plot of absolute value of the exciton wave function along high symmetry
lines in reciprocal space. The circle radius is proportional to |Aλ

c,v,~k
|. The transition's

numbers refers to the label in �gure 7.10b.

The excitonic wavefunctions (which are respectively the �rst transition with non-zero
oscillator strength and two transitions related to the Mott peak) display a similar be-
havior to LaTiO3's ones. The �rst wavefunction is localized on the Γ − X direction
and, conversely, the second and third ones are strongly delocalized. As expected they
are dominated by transitions between the two Mott subbands, without involving the
valence bands formed by O p states, thus validating the attribution of the �rst structure
(feature (1) of �gure 7.11b) to a Mott-type peak.

4With the exception of bands 43, 44, 45 which have energy in the range [3.8, 4.2] eV.
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LaMnO3

(a)

(b)

Figure 7.13: (a): Spatially averaged optical conductivity (105Ω−1cm−1) of LaMnO3,
obtained with di�erent approaches: in red through an averaged BSE on a 9 × 6 × 9
mesh (n× n× n = 3× 2× 3,m×m×m = 3× 3× 3), in violet through an BSE on
a 6× 6× 6 mesh, in blue through a IPA on G0W0 QP-energies and 6× 4× 6 mesh,
while the black one is the experimental curve. (b): Zoom of the �rst structure (range
[0, 4] eV) of =[ε], with the associated oscillator strength.

LaMnO3 spectra shows a quite di�erent behavior with respect to the previous com-
pounds: the IPA curve reproduces exactly the onset's position and slightly overesti-
mates its intensity, while both BSE curves underestimate the experimental peak onset
by ∼ 0.4 eV, but reproduce correctly its height.
Conversely, the IPA calculation underestimates the second structure and the inclusion
of the excitonic e�ects worsens its description.
Overall the lineshapes with and without excitonic e�ects exhibit a strong similarity,
and the redshift amounts to ∼ 0.3 eV on the onset and to ∼ 0.6−1.0 eV for the second
structure.
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(a)

(b)

(c)

Figure 7.14: (a): bandstructure (taken from [99]), with the Density of States of
TM − d(shadow, cyan line) and O − p (full line, red).
(b),(c): Convergence with respect of the number of conduction band (with

NBANDSO = number of valence bands �xed).

The Mott peak (feature (1) in 7.14b) is completely determined by NBANDSV = 4:
these bands have an Mn d character and lie between 0.9 eV and 2.0 eV at Γ.
The onset of the second structure (feature 2) is mainly determined by the �rst 8 con-
duction bands, which have prevalent Mn d character (over 75% at Γ) and complete
the Mott subband visible in the density of states. The �rst two bands do not provide
any contribution, a behaviour shared with LaTiO3's and LaV O3's similar features.
However, unlike LaTiO3's and LaV O3's ones, this feature is not completely converged
until the 50-th band, as we can see from �gure 7.14c.

The shoulder of the charge transfer peak (feature (3), range [4.5, 6.0] eV) is established
only by two di�erent sets of bands. A �rst contribution is provided by transitions in-
volving bands between the 8-th and the 22-th, dominated by La f (and almost without
any trace of Mn d character) and lying between [4.4, 6.4] eV over the Fermi energy (at
Γ).
A second set of bands, from 38 to 62, is required to converge feature (3) and (4), i.e. the
main charge transfer peak and its shoulder. These bands have a main La d character
(with a Mn d percentage < 10%) and energy between 3.1 eV and 6.3 eV (at Γ).
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Figure 7.15: Plot of absolute value of the exciton wave function along high symmetry
lines in reciprocal space. The circle radius is proportional to |Aλ

c,v,~k
|. The transition's

numbers refers to the label in �gure 7.13b.

We now move to the analysis of the excitonic wavefunction. The one relative to the
�rst eigenvalue with non zero oscillator strength (Transition #1 in �gure 7.15) shows
a very delocalized wavefunction, mainly along the Γ−X direction but with signi�cant
magnitude also along the Γ− T direction (and, interestingly, almost zero on Γ).
The second and third eigenvectors of �gure 7.15 are associated to the Mott struc-
ture (feature (1) in 7.14b). This structure exhibits a double-peaked lineshape, and
this peculiar lineshape cannot found explanation in the previous analysis (both the
NBANDSV = 1 and NBANDSV = 2 curves in �gure 7.14b exhibit this charac-
teristic). To understand this structure we examine the wavefunctions associated to
transitions belonging to each peak. The di�erence between the two wavefunctions is
the direction of higher magnitude: the 2-nd peaks along the Γ−X direction, while the
third one along Γ− T .
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LaFeO3

(a)

(b)

Figure 7.16: (a): Spatially averaged optical conductivity (105Ω−1cm−1) of LaFeO3,
obtained with di�erent approaches: in red through an averaged BSE on a 9 × 6 × 9
mesh (n× n× n = 3× 2× 3,m×m×m = 3× 3× 3), in violet through an BSE on
a 5× 3× 5 mesh, in blue through a IPA on G0W0 QP-energies and 5× 3× 5 mesh,
while the black one is the experimental curve. (b): Zoom of the �rst structure (range
[1, 4] eV) of =[ε], with the associated oscillator strength.

LaFeO3 spectra shows some similarity to LaCrO3 one: both the BSE and IPA calcu-
lations underestimate the experimental onset (between [2, 3] eV), and the introduction
of excitonic e�ects worsens its description (the underestimation amounts at 0.8 − 1.0
eV at the onset).
The spectra displays a second peak between the Mott onset and the charge transfer
structure which represents a marked di�erence from the previous perovskites. The
BSE calculations underestimate both this peak and the charge transfer structure by
0.6−0.8 eV, while the IPA calculation correctly predicts their position and intensities.
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(a)

(b)

(c)

Figure 7.17: (a): bandstructure (taken from [99]), with the Density of States of
TM − d(shadow, cyan line) and O − p (full line, red).
(b),(c): Convergence with respect of the number of conduction band (with

NBANDSO = number of valence bands �xed).

We recognize in �gure 7.17b the typical �rst feature which characterizes the lower part
of the spectra of the other perovskite in the La series. The spectra onset (range [1.5, 2.0]
eV, feature (1)) is determined completely by transitions to the �rst 6 conduction bands
, which have dominant Fe d character and energy in the [1.90, 2.25] eV range at Γ
(feature a in the density of states). Given the energy position (transition energies) of
the peak, and considering that the fundamental gap between the two Mott subbands
is equal to 1.91 eV (see table 4.2), we validate its attribution as a Mott peak.
Transitions to these six conduction bands do not participate in shaping feature (2).
This peaks is almost completely formed by transitions to conduction bands between
the 8-th and 10-th: these bands have an average mixed character, ∼ 60% Fe d and
∼ 25% La f and energy in the [3.5, 4.7] eV range. The peak's energy position, around
3.5 eV, allows us to conclude that this peak is formed by transitions between the va-
lence Mott subband and the band group corresponding to the feature b in the density
of states.
A marked di�erence between the other perovskites studied in this section is the very
high intensity of the second peak (feature (2)).

While the �rst ten conduction bands do not contribute to the charge transfer structure
(features (3) and (4)), the bands between the 11-th and the 20-th give a very limited
contribution with respect to the previous materials; the main contribution is given by
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bands between the 36-th and the 60-th. The bands between the 11 and 39 have a
dominating La f character and reside in the region [2.9, 7.5] eV at Γ(from the 11-th
and the 20-th are located in the energy window [2.9, 3.1] eV), while the orbitals from
the 40-th to the 60-th lie in the range [4.0, 7.3] eV and have La d as main character.

Figure 7.18: Plot of absolute value of the exciton wave function along high symme-
try lines in reciprocal space. The circle radius is proportional to |Aλ

c,v,~k
|. The tran-

sition's numbers refers to the label in �gure 7.13b. The �rst two graph employed
NBANDSV/O = 34/34, while the third used NBANDSV/ == 10/10.

Lastly, we study three excitonic wavefunctions associated to di�erent transitions:
the �rst wavefunction, as usual, is related to the �rst bright eigenvalue, the second to
feature (1) and the third one to feature (2). The �rst two wavefunctions show a very
coherent behavior: they involve only the Mott subbands closer to the Fermi energy.
The third one, however, comprise transitions from the uppermost valence subband to
conduction bands near 4 eV, con�rming the previous exposition.
All three plots are strongly localized along the Γ − T direction. All Mott insulators
in this series exhibit a signi�cant magnitude in this direction for the �rst Mott peak;
however LaTiO3, LaCrO3 and LaMnO3 share a strong contribution along the Γ−X
direction which is absent for LaFeO3 and LaV O3.
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7.3 SrMnO3, 4d and 5d TM perovskites

SrMnO3

(a)

(b)

Figure 7.19: (a): Spatially averaged optical conductivity (103Ω−1cm−1) of SrMnO3,
obtained with di�erent approaches: in red through an averaged BSE on a 8 × 8 × 4
mesh (n× n× n = 4× 4× 2,m×m×m = 2× 2× 2), in violet through an BSE on
a 6× 6× 4 mesh, in blue through a IPA on G0W0 QP-energies and 6× 6× 4 mesh.
We could not �nd any experimental reports in literature. (b): Zoom on the range [1, 6]
eV of =[ε], with the associated oscillator strength.

Before starting to analyze the spectra, we brie�y discuss the kpoint convergence: the
two BSE curves in �gure 7.19a superpose almost completely on �rst part of the graph
(range [0, 5] eV) and possess overall very similar features. Thus, an 8× 8× 4 mesh was
deemed adequate.
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SrMnO3's BSE spectra exhibits a �rst structure at [2, 4] eV, a second smaller peak
at 6 eV and a larger structure at [8, 11] eV. The BSE curve shows a marked redshift
with respect to the IPA curve.
The excitonic e�ects on the �rst structure are quite relevant: the �rst peak is more
intense (almost double height), the peak's shape is modi�ed (a spectral weight trans-
fer is present) and a noticeable redshift is visible in the transition energies (equal to
0.5− 0.6 eV).
The features at higher energies however maintain similar shapes and intensities, and
are only redshifted. Similarly, the oscillator strengths are redshifted from the IPA one
and display few very bright transitions in correspondence of the peaks.

We now discuss the NBANDSV convergence, displayed in �gure 7.20:

(a)

(b)

(c)

Figure 7.20: (a): bandstructure (taken from [99]), with the Density of States of TM −
d(shadow, cyan line) and O − p (full line, red).
(b),(c): Convergence with respect of the number of conduction band (with NBANDSO,

number of valence bands, �xed).

The �rst peak (feature (1)) is completely described by NBANDSV = 11, which in-
cludes the transitions to conduction Mn − 3d states between 1.6 eV and 3.0 eV over
the Fermi energy (at Γ).
The second structure (range [7, 12] eV, feature (3)) is completely missed untilNBANDSV =
14 and starts to be described only by NBANDSV = 15 (see �gure 7.20b); it's com-
pletely converged only by NBANDSV = 33 (see �gure 7.20c). Hence this second
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structure is de�ned by transitions between the 15-th and the 33-th conduction bands,
corresponding to the Sr 4d and 6s states lying between 6.2 eV and 11.1 eV over the
Fermi energy at Γ (states not shown in �gure 7.20a).
The peak between [5, 7] eV (feature (2)) is the last to be described, involving transitions
up to conduction bands 35 (thus including both Mn − 3d states between 1.6 eV and
3.0 eV and Sr 4d and 6s states lying between 6.2 eV and 11.1 eV).

Figure 7.21: Convergence
of the �rst structure with
respect of the number of
valence band.

From �gure 7.19b we can see that a single very
bright transition gives the dominant contribution to
the �rst peak; it would interesting to understand
which valence bands are involved. While the pref-
erential method would be the direct investigation of
the BSE eigenvector, in this particular case it's
not possible due to computational limitation5. To
gain a qualitative understanding we executed a se-
ries of calculations with a limited number of va-
lence bands, see �gure 7.21. The �rst 8 va-
lence bands include states with energies (at Γ) from
the Fermi energy down to 0.8 eV under the Fermi
level: states that are strongly hybridized between
O − p and Mn − d (see �gure 7.20a and [99,
p. 91]).

Lastly we inspect (in �gure 7.22) the excitonic eigenvec-
tor associated to the �rst eigenvalue with non-zero oscillator strength. All the relevant
electron-hole pairs in the eigenvector involve the lowest unoccupied band (higher band
give almost no contribution); however they comprise not only the highest occupied
band but the �rst 7 valence band, which are strongly hybridized between O − p and
Mn − d, as said before. Interestingly, the wavefunction is strongly delocalized, with
the major contribution coming from the Γ−R direction and the strongest one at R.

Figure 7.22: Plot of absolute value of the exciton wave function along high symmetry
lines in reciprocal space. The circle radius is proportional to |Aλ

c,v,~k
|. The transition's

numbers refers to the label in �gure 7.19b.

5The current V ASP implementation cannot provide in output an arbitrary eigenvector, but only
every eigenvector from the �rst to the desired one; in other words, the output �le must start from
the �rst eigenvector and continue in order. The very bright transition corresponds to the 4673 -th
and 4674 -th degenerate BSE eigenvalues; but a �le with 4674 eigenvectors would require more than
100GByte, making its parsing exceedingly cumbersome.
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Ca2RuO4

(a)

(b)

Figure 7.23: (a):Spatially averaged optical conductivity (103Ω−1cm−1) of Ca2RuO4,
obtained with di�erent approaches: in violet through an BSE, in blue through a IPA
on G0W0 QP-energies. Both calculations used a 4 × 4 × 2 mesh (b): Zoom on the
range [0, 3.8] eV of =[ε], with the associated oscillator strength.

Ca2RuO4 is characterized by 4 di�erent peaks inside the range [0, 5] eV, the third one
being the most intense; these peaks can be recognized more easily from the dielec-
tric function graph (�gure 7.23b). Interestingly, the BSE curve presents only a slight
redshift from the IPA one (∼ 0.15 eV at the onset) and very similar structures for
what regard the lineshapes and the intensities. This result is essentially in line with a
previous work from Jung et.al [122].
However, both IPA and BSE curves show only a partial agreement with the exper-
imental curve: the IPA curve underestimates the onset by ∼ 0.2 eV and the BSE
curve, being redshifted with respect to the IPA one, accentuates this discrepancy (to
∼ 0.4 eV).

97



7.3. SRMNO3, 4D AND 5D TM PEROVSKITES 98

(a)

(b)

(c)

Figure 7.24: (a): bandstructure (taken from [99]), with the Density of States of
TM − d(shadow, cyan line) and O − p (full line, red).
(b),(c): Convergence with respect of the number of conduction band (with

NBANDSO = number of valence bands �xed).

The picture emerging from �gure 7.24 essentially con�rms the peaks attribution made
by Zeynep et.al [99] and Jung et.al [122]. The �rst peak (range [0, 1] eV, feature (1)) is
determined by transitions to the �rst 4 conduction bands. These bands are dominated
prevalently by Ru − d states (feature a in the density of states), and thus (given the
peak's position < 1 eV) can be associated only to i→ a transitions.
The second peak (range [1, 2] eV, feature (2)) is completely converged by conduction
band 6, which gives also the dominant contribution to the third peak (feature (3));
band 5 and 6 are the �rst two bands associated with the b structure inside the DOS.
To converge the third and fourth peak is however necessary to include band 7 and 8,
which complete the b structure inside the DOS (the b structure is primarily constituted
by Ru− d states too).
The structure in the range [4, 8] eV requires the �rst 20 conduction bands to be de-
scribed correctly. The 10−th and 11−th conduction bands are also primarily associated
to Ru− d states, while the bands from 12 to 20, lying from 4.2 eV to 5.6 eV at Γ, have
Ca− d character.
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We now analyze (in �gure 7.25) the excitonic eigenvectors relative to the �rst non-
zero oscillator strength (transition #1 in �gure 7.25) and to features (1), (2) and (3) of
�gure 7.24b:

Figure 7.25: Plot of absolute value of the exciton wave function along high symmetry
lines in reciprocal space. The circle radius is proportional to |Aλ

c,v,~k
|. The transition's

numbers refers to the label in �gure 7.23.

All eigenvectors are very delocalized and, interestingly, there are no relevant contri-
bution at Γ. The �rst two wavefunctions, related to the �rst peak, are associated to
transitions i → a (where i and a are structures in the density of states, see �gure
7.24a). On the contrary the brightest transition belonging to the second peak (#3)
involves the j and a structures (j → a), and the last wavefunction describes a i → b
transition, in agreement with the previous discussion.
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SrTcO3

(a)

(b)

Figure 7.26: (a): Spatially averaged optical conductivity (103Ω−1cm−1) of SrTcO3,
obtained with di�erent approaches: in violet through an BSE on a 5× 3× 5 mesh, in
blue through a IPA on G0W0 QP-energies and the same mesh. We could not �nd any
experimental reports in literature.(b): Zoom of the �rst two structures (range [0, 7] eV)
of =[ε], with the associated oscillator strength.

SrTcO3 spectra shows a very intense peak near 2 eV and a series of less high peaks in
the range [4, 10] eV. The BSE and IPA curves display a very similar shape, without
marked di�erences apart from the usual redshift, also visible in the oscillation strengths
in �gure 7.26. While in SrMnO3 the inclusion of excitonic e�ects gives rise to a very
intense peak (�gure 7.19), here the peak between [1, 2] eV is only marginally enhanced
and shifted by ∼ 0.3 eV.
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We now analyze, as usual, the NBANDSV convergence in �gure 7.27:

(a)

(b)

(c)

Figure 7.27: (a): bandstructure (taken from [99]), with the Density of States of TM −
d(shadow, cyan line) and O − p (full line, red).
(b),(c): Convergence with respect of the number of conduction band (with NBANDSO,

number of valence bands, �xed).

The structure between [1, 2] eV requires the �rst 8 conduction bands to be completely
converged, although a signi�cant contribution originates from transitions involving the
�rst 4 conduction bands. These eight bands, between 1.6 eV and 2.4 eV (at Γ) over
the Fermi energy, are dominated by Tc d states.
The second, smaller, peak at [4, 6] eV is not described by the �rst four bands and
receives the major contribution from transitions to conduction bands 8 − 16, lying
between 2.4 eV and 5.5 eV (at Γ) over the Fermi energy (not showed in �gure 7.27a).
The 8-th, 9-th and 10-th conduction bands exhibit a predominant Tc d character, while
the ones from the 11-th to the 16-th display a strong Sr d character (with the exception
of the 14-th, which still retains a strong Tc character and is weakly hybridized with
O p states).
Only the spectra segment > 6 eV receives contribution from transitions involving bands
over the 22− th.
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We now display (in �gure 7.28) the excitonic wavefunctions associated to the �rst
transition with non-zero oscillator strength and to the �rst peak.

Figure 7.28: Plot of absolute value of the exciton wave function along high symmetry
lines in reciprocal space. The circle radius is proportional to |Aλ

c,v,~k
|. The transition's

numbers refers to the label in �gure 7.26b.

In the �rst �gure (transition #1) the only strong contribution came from kpoints near
the Γ−T direction, and involves bands with predominant Tc d character; in the second
one the eigenvector is much more delocalized, and exhibits no contribution at Γ.
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NaOsO3

(a)

(b)

Figure 7.29: (a): Spatially averaged optical conductivity (103Ω−1cm−1) of NaOsO3,
obtained with di�erent approaches: in violet through an BSE, in blue through a IPA
on G0W0 QP-energies- Both calculations used a 5× 3× 5 mesh. (b): Zoom of the �rst
two structures (range [0, 5] eV) of =[ε], with the associated oscillator strength.

NaOsO3 spectra is characterized by a very intense and large peak between [0, 2] eV
(as we can see from �gure 7.29, the oscillator strengths associated to this peak span
almost 1 eV for both curves) and a second peak with a large shoulder starting from
3 eV. The excitonic e�ects modify only in a very weak manner the IPA spectra: the
BSE's oscillator strength redshift is much less pronounced than SrTcO3 one (∼ 0.1
eV for the �rst peak), and the lineshape variation is less conspicuous.
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(a)

(b)

(c)

Figure 7.30: (a): bandstructure (taken from [99]), with the Density of States of TM −
d(shadow, cyan line) and O − p (full line, red).
(b),(c): Convergence with respect of the number of conduction band (with NBANDSO,

number of valence bands, �xed).

As we can see from �gure 7.30b the �rst peak is mostly determined by transitions
involving the �rst �ve conductions bands (NBANDSV = 5, dark red line), located
between 0.5 eV and 0.8 eV over the Fermi energy at Γ. However it's completed only by
the 10− th conduction band, which includes bands up to 1.4 eV. These �rst ten bands
are primarily associated to Os − d t2g levels (even though they possess also sizable
components of O − p and Os− d dz2 states).
Transitions to the �rst 10 bands provide also an important contribution to the peak
between [2, 4] eV, which requires up to conduction bands 25 (corresponding to 4.9 eV
over the Fermi level) to be converged. These bands between the 11-th and the 25-th
have a prevalent Os d character.

104



105
CHAPTER 7. LARGE PEROVSKITES: LANTHANIDE SERIES, 4D AND 5D

TMO PEROVSKITES

We now study (in �gure 7.31)the excitonic wavefunction (or, speci�cally, its absolute
value |Aλ

c,v,~k
|) for some speci�c transitions:

Figure 7.31: Plot of absolute value of the exciton wave function along high symmetry
lines in reciprocal space. The circle radius is proportional to |Aλ

c,v,~k
|. The transition's

numbers refers to the label in �gure 7.29.

The �rst picture displayed in �gure 7.31 corresponds to the �rst transition with non-
zero oscillator strength; it exhibits localized contributions in the Γ− T direction. The
second transition is associated with the very bright peak at 1 eV (see �gure 7.29b).
This wavefunction attains signi�cant weight not only on the highest valence band and
lowest conduction band, but from all bands (in the Γ− T direction) inside the energy
range [−1, 1] eV.
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Chapter 8

Conclusions and Outlooks

The main focus of this thesis was the computational study of the optical spectra of
a selected set of Transition metal Oxide perovskites with state-of-art methodologies
implemented in the software V ASP (Vienna Ab-Initio Simulation Package).
The set was chosen in order to constitute a minimal dataset representative of the variety
of properties and characteristic of this class of materials: magnetic and non-magnetic
systems, with and without structural distortions, with di�erent spatial extensions (n =
3, 4, 5 with n = main quantum number) and occupancies of the outermost d states
(d0 → d5). The bandgaps cover a range from 0.1 eV (NaOsO3) to 6.1 eV (SrHfO3),
and the spectra exhibit di�erent types of main optical excitations (Mott-Hubbard,
Charge-Transfer and band insulators).
A previous study of the same dataset was performed by Ergönenc et.al [99] employing
the G0W0 method, which allowed the authors to evaluate the bandgaps with good
precision; the spectra however have been evaluated only in the Indipendent Particle
Approximation using as a starting point a PBE (GGA) calculation. An important
question left open by this work is hence the e�ect of electron-hole interaction on the
perovskites' optical conductivity spectra.
The inclusion of the electron-hole interaction beyond the IPA (through the Bethe-
Salpeter equation), which is the focus of this thesis, modi�es the IPA spectra in two
main ways: the �rst one involves an almost uniform redshift of the entire spectra,
while the second one is associated to a lineshape change, in the form of a shift to lower
energies of a feature's spectral weight or in the development of very bright peaks at
the onset. We can therefore summarize the result inside this framework:

• The �rst four materials of the dataset (see chapter 6.4), the band insulators
KTaO3, SrT iO3, SrZrO3 and SrHfO3, exhibit a pronounced redshift and spec-
tral weight transfer to lower energies, in particular for the �rst structure inside
the spectra. The agreement is overall good on the onset and less satisfactory for
the second structures of the spectra.
We discussed in Chapter 6.5 that the remaining discrepancies can be strongly
reduced by employing a di�erent starting point (i.e. a hybrid HSE06 calcula-
tion instead of a standard DFT one) which guarantees a better description of
the localized d states and hence allows to reach a very good agreement with the
experimental data.
Finally we examined the attribution of the spectra's peaks to speci�c transitions
between bands. With a broad generalization, the �rst structure derives from
transition from O p states to the transition metals' t2g ones, while the second
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structure involves mainly transitions to the transition metals' or Sr eg states.

• The second subset (see chapter 7.2) comprises the six perovskites in the La Series,
which display a spectra redshift between 0.3 eV and 0.8 eV on the onset. However
they don't exhibit any relevant changes in the lineshapes and don't display the
development of new peaks or features (even at the onset).
Regarding the comparison with the experimental data, the structures are cor-
rectly identi�ed (with overall similar shapes) and the transitions attributions
con�rm the results of previous experimental works[120, 121]. The Mott peaks'
transition energies however are consistently underestimated by 0.4−1.0 eV (with
LaTiO3 as only exception). On the contrary, the agreement of the Charge-
Transfer peaks does not show a general trend, shared by the compounds of this
subset, and appears material dependent.

• The IPA andBSE comparisons in the last subset (comprising SrMnO3, SrTcO3,
NaOsO3 and Ca2RuO4 ; see chapter 7.3) show a similar behaviour with respect
to the La series: The spectral weight transfers are small and the redshifts amount
at ∼ 0.1 − 0.5 eV, sign that the excitonic e�ects have a smaller impact with re-
spect to the other subsets. For Ca2RuO4 and NaOSO3 the agreement with the
experimental data is not complete, and for SrMnO3, SrTcO3 no experimental
reports in literature have been found.

Another important set of considerations, developed in chapters 6.1, 6.2 and 7.1, con-
cerns the technical but crucial issue of the convergence of the BSE spectra.
In fact, as discussed in chapter 6.1, the assessment of the optical properties requires
much denser kpoint meshes inside the Brillouin Zone than the corresponding ground
state calculations. In turn (see chapter 7.1), the larger perovskites (comprising all
the materials with more than 20 atoms inside the unit cell, i.e. the second and third
subsets) require the inclusion of transitions between a large number of valence and con-
duction bands to appropriately converge the optical conductivity up to 10 eV. These
considerations imply that a standard calculation with converged parameters would be
infeasible due to time and memory requirements. To address this issue we used a di�er-
ent approach, employing a method based on the averaging of shifted-grid independent
BSE calculations (described in chapter 6.3). This approach allowed us to reduce the
computational load and divide it into more tractable calculations, while retaining spec-
tra almost identical to the ones obtained with the standard BSE procedure.

Finally, the remaining discrepancies in the La series need to be addressed and inves-
tigated further. Moreover the remarkable results obtained in chapter 6.5, employing
calculations with hybrid functionals as a starting point, are expected to be extended
to all materials in the dataset: this will improve the overall quality of the spectra and
may represent a possible way to address these discrepancies.
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