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Volevo che tu vedessi che cosa è il vero coraggio, tu che credi che sia
rappresentato da un uomo col fucile in mano.

Aver coraggio significa sapere di essere sconfitti prima ancora di cominciare,
e cominciare ugualmente e arrivare sino in fondo, qualsiasi cosa succeda.

È raro vincere, in questi casi, ma qualche volta succede.
Atticus Finch.



Introduzione

L’equazione di Schrödinger indipendente dal tempo

−h2∆ψ(x) + V (x)ψ(x) = Eψ(x),

gioca un ruolo fondamentale nella meccanica quantistica poiché la sua soluzione
modellizza la distribuzione di probabilità di trovare una particella in un punto
x ∈ Rn.
Nel caso monodimensionale consideriamo un potenziale continuo V (x) che
forma una ”buca” rispetto all’energia totale E ∈ R del sistema. Nella mec-
canica classica le regioni in cui E < V (x) sono proibite, intendendo con
ciò che la probabilità di trovarvi un punto materiale è identicamente nulla.
In meccanica quantistica, invece, elettroni (generalmente particelle) possono
oltrepassare le barriere di potenziale e possono essere trovate in regioni dove
classicamente non dovrebbero essere; matematicamente, la distribuzione di
probabilità della particella è esponenzialmente piccola ma non nulla in questi
domini. Ciò è detto ”effetto tunnel” ed è largamente usato nelle applicazioni
tecnologiche.

L’analisi semiclassica che useremo in questa tesi è basata sul cosiddetto
parametro semiclassico h > 0. Esso dà una profonda caratterizzazione del
modello usato: quando h è la famosa costante di Planck stiamo lavorando
in un regime di meccanica quantistica, mentre quando h= 0 ci troviamo in
regime di meccanica classica. Considereremo sempre il suo limite in 0 che
ci permetterà di collegare questi due ambiti tramte il principio di corrispon-
denza di Bohr.

In questa tesi considereremo un sistema 2×2 P di operatori di Schrödinger
interagenti tale che

Pu = Eu (1)

dove

P :=

(
P1 hW
hW ∗ P2

)
, u :=

(
u1
u2

)
, E ∈ R,

iii
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e

Pj = −h2 d
2

dx2
+ Vj(x), j = 1, 2

e W, W ∗ sono un operatore di interazione del primo ordine e il suo aggiunto
formale, i quali verranno discussi in dettaglio durante la tesi.
Tale modello proviene dallo studio di molecole biatomiche tramite approssi-
mazione di Born-Oppenheimer. In questo caso V1 e V2 sono potenziali effettivi
(livelli elettronici) dovuti all’azione degli elettroni sui nuclei e h2 rappresenta
il rapporto tra la massa degli elettroni e quella dei nuclei.

Considereremo diversi casi in cui due funzioni potenziali, entrambe che
formano una buca, possono interagire. In ognuno di essi costruiremo soluzioni
di (1) ognuna definita nel proprio intervallo. Successivamente le estenderemo
all’intera retta reale usando la loro dipendenza lineare nelle intersezioni dei
loro intervalli di definizione trovando infine un’unica soluzione globale. Tutte
queste funzioni dipenderanno dal parametro semiclassico h.
Lo scopo finale di questa tesi è di trovare una condizione su E ∈ [E0 −
δ, E0 + δ], dove E0 è fissata e δ > 0 abbastanza piccola, tale che l’unica
soluzione globale trovata sia in L2(R)⊕L2(R) e rappresenti una distribuzione
di probabilità per due particelle in presenza di due potenziali. In meccanica
quantistica questa condizione è nota come condizione di quantizzazione di
Bohr-Sommerfeld.

Nel primo capitolo, seguendo il lavoro fondante [Y], studieremo il caso
monodimensionale con un solo potenziale. Costruiremo soluzioni dell’equazione
di Schrödinger e preveremo che se E è un autovalore, allora

φ(E) :=

∫ b(E)

a(E)

(
E − V (y)

)1/2
dy = π

(
n+

1

2

)
h+O(h2) (2)

doe n ∈ Z e a(E) e b(E) sono i punti per cui V (a) = V (b) = E. E si dice
quantizzata perché può solamente assumere valori che dipendono da numeri
interi.

Successivamente considereremo due potenziali e studieremo la condizione
di quantizzazione per E in base a come interagiscono.

Il primo caso considerato è quello in cui la loro intersezione si trova sopra
il livello fissato di energia E0:
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E0

V1(x) V2(x)

x1 x2 x3 x40

Figure 1: Intersezione sopra il livello di energia.

Seguendo il lavoro [A] tratteremo quattro intervalli L,R, I, J e in ognuno di
essi costruiremo soluzioni del sistema. Successivamente, imponendo la loro
dipendenza lineare nelle intersezioni degli intervalli si ottiene la condizione
per cui E ∈ [E0 − δ, E0 + δ], δ > 0, è un autovalore implica

cos
(
h−1φ1(E)

)
cos
(
h−1φ2(E)

)
= O(h−1/3). (3)

Questa condizione sarà discussa in dettaglio nella Sezione 2.8 e condurrà a
due condizioni su E simili a (2) ma riferite ai due potenziali.

Nel terzo capitolo consideriamo il caso in cui l’intersezione tra le funzioni
potenziali è sotto il livello dell’energia E0, seguendo il lavoro [FMW3].

E0

V1(x) V2(x)

x1 x2 x3 x4
0

Figure 2: Intersezione sotto il livello dell’energia.

Il metodo è di ancora di trovare soluzioni di (1) e usare la loro dipendenza
lineare per ottenere la condizione di quantizzazione (3) per E con O(h1/6)
invece che O(h−1/3) nel secondo membro. Ad eccezione di questa differenza
sarà discussa con lo stesso metodo del caso precedente.
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Il quarto capitolo rappresenta un’eccezione poiché i potenziali non si in-
tersecano e la buca di V2 è completamente inclusa nella buca di V1.

E0

V1(x)

V2(x)

x1 x2 x3 x4
0

Figure 3: Potenziali che non si intersecano.

Tuttavia la discussione non ha differenze significative: useremo gli stessi oper-
atori integrali del secondo e quinto capitolo per trovare delle soluzioni globali
del sistema e per ottenre la stessa condizione di quantizzazione per φj e di
conseguenza per E.

Per l’ultimo caso ci atterremo a [FMW1] e [FMW2]. L’intersezione delle
funzioni potenziali questa volta coincide con l’energia E0.

E0

V1(x) V2(x)

x1 x3x2

0

Figure 4: Intersezione dei potenziali al livello dell’energia.

Gli intervalli considerati saranno (−∞, 0] e [0,+∞) quali hanno un tratta-
mento speculare e arriveremo ancora alla condizione (3).



Introduction

The time-independent Schrödinger equation

−h2∆ψ(x) + V (x)ψ(x) = Eψ(x),

plays a fundamental role in quantum mechanics since its solution models the
probability distribution of finding a particle in a point x ∈ Rn.
In the one-dimensional case we consider a continuous potential V (x) forming
a ”well” with respect to the total energy E ∈ R of the system. In clas-
sical mechanics the regions where E < V (x) are prohibited, meaning that
the probability to find any material point inside them is identically null. In
quantum mechanics, instead, electrons (more generally particles) can over-
come the potential barriers and be found in regions where they classically
should not be; mathematically the distribution of probability of the particle
is exponentially small but not null in these domains. This is called ”tunnel
effect” and is extensively used in technological applications.

The semiclassical analysis we are using during this thesis is based on the
so-called semiclassical parameter h > 0. It gives a deep characterization of
the model used: when h is the famous Planck constant we are working in
the quantum mechanics regime, while when h=0 we are in the classical me-
chanics regime. We will always consider its limit approaching 0 permitting
us two link these two frameworks via the Bohr correspondence principle.

In this thesis we will mainly consider a 2 × 2 system P of interacting
Schrödinger operators such that

Pu = Eu (4)

where

P :=

(
P1 hW
hW ∗ P2

)
, u :=

(
u1
u2

)
, E ∈ R,

and

Pj = −h2 d
2

dx2
+ Vj(x), j = 1, 2

vii
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and W, W ∗ are an interaction first-order operator and its formal adjoint,
which will be discussed in details during the thesis.
Such a model comes from the study of diatomic molecules in the Born-
Oppenheimer approximation. In this case V1 and V2 are the effective po-
tentials (electronic levels) due to the action of the electrons on the nuclei
and h2 represents the quotient between the mass of the electron and that of
the nuclei.

We are considering several possible cases in which two potential func-
tions, both forming a well, can interact. In each of them we will construct
solutions of (4) each one defined in its own interval. We will then extend
them to the whole real line using their linear dependence in the intersections
of their intervals of definition having finally a unique global solution. All
these functions will depend from the semiclassical parameter h.
The final aim of this thesis is to find a condition on E ∈ [E0 − δ, E0 + δ],
where E0 is fixed and δ > 0 small enough, such that the unique global so-
lution found is in L2(R) ⊕ L2(R) and represents a probability distribution
for two particles in presence of two potentials. In quantum mechanics this
condition is known as the Bohr-Sommerfeld quantization condition.

In the first chapter, following the foundational work [Y], we will study
the one dimensional case with only one potential. We will build solutions of
the Schrödinger equation and we will prove that if E is an eigenvalue, then

φ(E) :=

∫ b(E)

a(E)

(
E − V (y)

)1/2
dy = π

(
n+

1

2

)
h+O(h2) (5)

where n ∈ Z and a(E) and b(E) are the points where V (a) = V (b) = E. E is
said to be quantized because it can take only values that depend on integer
numbers.

From this point on we will consider two potentials and study the quanti-
zation condition on E depending on how they interact.

The first case considered is when their intersection point is above a fixed
energy level E0:
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E0

V1(x) V2(x)

x1 x2 x3 x40

Figure 5: Intersection above energy level

Following the work [A] we are considering four intervals L,R, I, J and in
each of them construct solutions of the system. Then, imposing their linear
dependence in the intersection of the intervals we arrive to the condition that
E ∈ [E0 − δ, E0 + δ], δ > 0, is an eigenvalue implies

cos
(
h−1φ1(E)

)
cos
(
h−1φ2(E)

)
= O(h−1/3). (6)

This condition will be discussed in details in Section 2.8 and will lead to two
conditions on E similar to (5) but referred to the two potentials .

In the third chapter we consider the case in which the intersection of the
potential functions is below the energy level E0, following the work [FMW3].

E0

V1(x) V2(x)

x1 x2 x3 x4
0

Figure 6: Intersection below the energy level

The method is again to find solutions of (4) and to use their linear depen-
dence to obtain the quantization condition (6) on E with O(h1/6) instead of
O(h−1/3) in the right-hand side. Except for this difference it will be discussed
with the same method of the previous case.
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The fourth chapter is an exception since the potentials do not intersect
and the well of V2 is completely included in the well of V1.

E0

V1(x)

V2(x)

x1 x2 x3 x4
0

Figure 7: Non intersecting potentials

Nevertheless the discussion has not significant differences: we will use simi-
lar integral operators as the second and fifth chapter to find global solutions
of the system and to reach the same quantization conditions on the φj and
consequently on E.

For the last case we stick to [FMW1] and [FMW2]. The intersection of
the potential functions is this time coincident with the energy E0.

E0

V1(x) V2(x)

x1 x3x2

0

Figure 8: Intersection of potentials at energy level

The interval considered are (−∞, 0] and [0,+∞) which have a specular treat-
ment and we then will arrive again to the condition (6).
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Chapter 1

Asymptotic solutions of scalar
Schrödinger equation.

In this chapter we will describe the solution ψ(x) = ψ(x;h,E) of the
Schrödinger equation

−h2ψ′′(x) + V (x)ψ(x) = Eψ(x) (1.1)

assuming V (x) to be a real scalar potential and E to be a scalar having the
role of the total energy of the system.
We are following the methods in [Y] and [FMW1], Appendix A.1 and A.2.
The potential V (x) and E are such that they form a potential well, that is
the equation V (x) = E has two distict solutions, denoted by a = a(E) and
b = b(E) such that for x ∈ (a, b) one has V (x) < E.

E

V (x)

a b

Moreover we assume
lim inf
|x|→+∞

V (x) > E,

V (x) ∈ C∞ in some neighborhoods of a and b, |V ′(a)|, |V ′(b)| 6= 0 and,

∀k ∈ N, V (k)(x) = O(〈x〉−k) (1.2)

3



4 1. Asymptotic solutions of scalar Schrödinger equation.

where in general
〈x〉m := (1 + |x|2)m/2, m ∈ R. (1.3)

We start by setting
u(x) := h2ψ(x) (1.4)

such that (1.1) becomes

−u′′(x) + h−2(V (x)− E)u(x) = 0. (1.5)

Now it has the form of an Airy equation

−w′′(t) + tw(t) = 0 (1.6)

which has two linearly independent solutions Ai(t) and Bi(t). For negative
arguments they have an oscillatory and slowly decaying behaviour with a
phase shift. For positive t, Ai(t) has an exponential decay while, on the
contrary, Bi(t) grows exponentially. Further details can be found in [O].
Explicitly:

Ai(t) =
1

2
√
π
t−1/4 exp

(
− 2

3
t3/2
)(

1 +O(t−1)
)
, t→ +∞ (1.7)

Ai(t) =
1√
π

(−t)−1/4 sin
(2

3
(−t)3/2 +

π

4

)
+O

(
|t|−7/4

)
, t→ −∞ (1.8)

Bi(t) =
1√
π
t−1/4 exp

(2

3
t3/2
)(

1 +O(t−1)
)
, t→ +∞ (1.9)

Bi(t) = − 1√
π

(−t)−1/4 sin
(2

3
(−t)3/2 − π

4

)
+O

(
|t|−7/4

)
, t→ −∞ (1.10)

These functions are linearly independent as we can observe that their
Wronskian is

W(Ai(t),Bi(t)) := Ai(t)Bi′(t)− Ai′(t)Bi(t) = π−1 ∀t ∈ R. (1.11)

From the definition of Ai(t) and Bi(t) and their Wronskian we can see that

d

dτ

(Bi(τ)

Ai(τ)

)
=

Bi′(τ)Ai(τ)− Bi(τ)Ai′(τ)

Ai2(τ)
=

1

πAi2(τ)
(1.12)

and, integrating between two values s, t yields

Bi(s)Ai−1(s)− Bi(t)Ai−1(t) =
1

π

∫ s

t

Ai−2(τ)dτ. (1.13)
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Figure 1.1: Airy functions

Definition 1.1. Now we define the following auxiliary functions ξa(x;E)
and ξb(x;E).
Let x1 ∈ (a, b):

ξa(x) =
(3

2

∫ a

x

√
V (y)− E dy

)2/3
, x ≤ a (1.14)

ξa(x) = −
(3

2

∫ x

a

√
E − V (y) dy

)2/3
, a ≤ x ≤ x1. (1.15)

Similarly let x0 ∈ (a, b) and x0 < x1:

ξb(x) =
(3

2

∫ x

b

√
V (y)− E dy

)2/3
, x ≥ b (1.16)

ξb(x) = −
(3

2

∫ b

x

√
E − V (y) dy

)2/3
, x0 ≤ x ≤ b. (1.17)

Please note that both ξa(x) and ξb(x) are positive when x is outside the
potential well and negative otherwise. Moreover the intersection of their
domains is the interval [x0, x1] ⊆ (a, b).

These functions have the following properties:



6 1. Asymptotic solutions of scalar Schrödinger equation.

Lemma 1.0.1. ξa(x) ∈ C3(−∞, x1), ξb(x) ∈ C3(x0,+∞) and ξa,b(x)→ +∞
as x→ ±∞.
The derivatives are such that

ξ′a(x) < 0, ξ′b(x) > 0 (1.18)

for every x in their respective domain and

ξ′a(a) = V ′(a)1/3 (1.19)

ξ′b(b) = V ′(b)1/3. (1.20)

Furthermore the functions ξa,b(x) satisfy the equation

ξ′a,b(x)2ξa,b(x) = V (x)− E.

Proof. By the Taylor theorem we can expand V (x)− E near b:

V (x)− E = αx+O(x2) (1.21)

where obviously α = V ′(b). Then

ξb(x) =
(3

2

∫ x

b

√
αt+O(t2) dt

)2/3
∼
([√

αt3/2
]x
b

)2/3
∼ α1/3x. (1.22)

Analogously the same holds in a neighbourhood of a.
The last identity can be easily proved noting that

ξ′a,b(x) =
(
± 3

2

∫ x

a,b

√
|V (x)− E|dy

)−1/3√
|V (x)− E|. (1.23)

Remark 1. Moreover, since ξ′a,b(x) 6= 0 and ξa,b ∈ C3, the functions

pa,b(x) =
(
|ξ′a,b(x)|−1/2

)′′|ξ′a,b(x)|−3/2

are continuous.

Remark 2. By means of a Taylor expansion of the potential function near
the inversion point b we can give a Taylor expansion of the function ξb(x)
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with the same holding in a neighbourhood of a for the function ξa(x):

E − V (x) = c|x− b|+O
(
(x− b)2)

)
⇒√

E − V (x) =
√
c|x− b|

(
1 +O(|x− b|)

)
⇒(∫ x

b

√
c|t− b|

(
1 +O(|t− b|)

)
dt
)2/3

=

=
([
c1|t− b|3/2

]x
b

+O(|x− b|5/2)
)2/3

=

=
(
c2|x− b|3/2 +O(|x− b|5/2)

)2/3
⇒

|ξb(x)| = c3|x− b|+O(|x− b|5/3).

(1.24)

The scalar Schrödinger equation is a second order ordinary differential
equation and every solution is a linear combination of two linearly indepen-
dent functions. We will build a basis of solutions separately on the intervals
[x0,+∞) and (−∞, x1] and will name them u−R(x) and u+R(x) in [x0,+∞) and
u−L(x) and u+L(x) on (−∞, x1]. The subscripts ”R” and ”L” stands for ”right”
and ”left”. This construction implies that in the interval [x0, x1] ⊆ [a, b] all
these four functions are defined and, in particular, u±L(x) are linear combi-
nation of u±R(x) and vice versa since, as already stated, both these couples of
functions are a basis of solutions.

Theorem 1.0.2. (See [Y], Thm. 2.5 and [FMW1], Prop. A.2.) The equation
(1.5) admits two linearly independent solutions u±R(x) on [x0,+∞) such that,
for x→ +∞ and uniformly with respect to h > 0:

u±R(x) =
h1/6√
π

(V (x)− E)−1/4 exp
(
± h−1

∫ x

b

√
V (y)− E dy

)(
1 +O(h)

)
.

(1.25)
while on [x0, b) they are

u±R(x) =
h1/6√
π

(E − V (x))−1/4 sin
(
h−1

∫ b

x

√
E − V (y) dy ∓ π

4

)
+O(h7/6).

(1.26)

Asymptotically as h→ 0 we have

u−R(x) =2(ξ′b(x))−1/2 Ai(h−2/3ξb(x))
(
1 +O(h)

)
,

u+R(x) =2(ξ′b(x))−1/2 Bi(h−2/3ξb(x))
(
1 +O(h)

)
.

(1.27)
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Conversely, on (−∞, x1], the equation (1.5) admits two linearly indepen-
dent solutions u±L(x) such that, for x → −∞ and uniformly with respect to
h > 0:

u±L(x) =
h1/6√
π

(V (x)− E)−1/4 exp
(
∓ h−1

∫ x

a

√
V (y)− E dy

)(
1 +O(h)

)
(1.28)

while on (a, x1] they are

u±L(x) =
h1/6√
π

(E − V (x))−1/4 sin
(
h−1

∫ x

a

√
E − V (y) dy ∓ π

4

)
+O(h7/6).

(1.29)

Asymptotically as h→ 0:

u−L(x) =2(ξ′a(x))−1/2 Ai(h−2/3ξa(x))
(
1 +O(h)

)
,

u+L(x) =2(ξ′a(x))−1/2 Bi(h−2/3ξa(x))
(
1 +O(h)

)
.

(1.30)

1.1 Norm of the solutions u−R,L(x)

Before proceeding to the proof of the theorem we are going to estimate
the L2-norm of the function u−R(x) since for u−L(x) the same reasoning holds.
The functions u+R,L(x) do not belong to L2 in their domain because they have
an exponential growing behaviour.

Proposition 1.1.1.
||u−R,L(x)||L2 = O(h1/6). (1.31)

Proof. In order to do so we are splitting the interval [x0,+∞) into the union
of [x0, b− ch2/3], [b− ch2/3, b+ ch2/3] and [b+ ch2/3,+∞) for some fixed c > 0
so that the norm is

||u−R(x)||2L2([x0,+∞)) =

∫ b−ch2/3

x0

u−R(x)2 dx+

∫
|x−b|≤ch2/3

u−R(x)2 dx+

+

∫ +∞

b+ch2/3
u−R(x)2 dx.

(1.32)

The function in the first integral is explicitly written as

u−R(x)2 = π−1h1/3
(
E−V (x)

)−1/2
sin2

(
h−1

∫ b

x

√
E − V (y) dy+

π

4

)
+O(h4/3)

(1.33)
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and, since E − V (x) and the sine are bounded and the former non-vanishing
in that interval, all the integral is O(h1/3).
The second integral, since we can consider ξb(x) ∼ x, is∫

|x−b|≤ch2/3
|Ai(h−2/3x)|2 dx =

∫
|y|≤c
|Ai(y)|2h2/3 dy = O(h2/3) (1.34)

because Ai(y) is in L2
loc after having set y = h−2/3x.

The last integral is again O(h2/3) using the same change of variables as
above and noting that Ai2(y) converges in a neighbourhood of +∞ since is
O
(
(V (x)− E)−1/4 exp

(
− 2

3
y3/2

))
.

Gathering the integrals yields:

||u−R,L(x)||L2 =
(
O(h1/3) +O(h2/3)

)1/2
= O(h1/6). (1.35)

1.2 Proof of Theorem 1.0.2

We will first treat the cases u±R(x) referring to the interval [x0,+∞).

Let us make the change of variables

t := h−2/3ξb(x) (1.36)

f(t) := ξ′b(x)1/2u(x) (1.37)

so that the Schrödinger equation becomes

−f ′′(t) + tf(t) = R(t)f(t) (1.38)

where
R(t) = h4/3pb(h

2/3t) (1.39)

and
pb(x) =

(
|ξ′b(x)|−1/2

)′′|ξ′b(x)|−3/2 = O
(
(1 + |ξb(x)|)−2

)
(1.40)

already defined soon after Lemma 1.0.1.
The last estimate can be proved remembering that ξb(x) = O(ξb(x)−1/2|V (x)−
E|1/2). Substituting into the definition of pb(x) yields

p(x) = − 5

16
ξb(x)−2 + ξb(x)

( 5

16
|V (x)−E|−3

(
V ′(x)

)2 − |V (x)−E|−2V ′′(x)
)
.

(1.41)
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By hypothesis both |V (x)− E|−3 and |V (x)− E|−3 are bounded and either
(V ′(x))2 and V ′′(x) are O(|x|−2). Moreover, since V (x) = O(1),

ξb(x) =
(3

2

∫ x

b

√
|c| dt

)2/3
= O(x2/3) (1.42)

and then

|p(x)| ∼ |ξb(x)|−2 + |ξb(x)||x|−2 (1.43)

which is O
(
(1 + |ξb(x)|)−2

)
because the ratio

|ξb(x)|−2 + |ξb(x)||x|−2

|ξb(x)|−2
= 1 + |ξb(x)3||x|−2 = 1 +O(1). (1.44)

Hence we can reduce this to a Volterra integral equation by setting the inte-
gral kernel

K(t, s) := −π
(
Ai(t)Bi(s)− Ai(s)Bi(t)

)
(1.45)

Remark 3. Remember that a Volterra integral equation is in general defined
as

F (x) = G(x) +

∫ x

α

K(x, y)F (y)dy (1.46)

with α ∈ R, F (x) being the unknown function and G(x) given.

Thus our equation (1.38) is equivalent to

f(t) = Ai(t) +

∫ +∞

t

K(t, s)R(s)f(s)ds (1.47)

since derivating it twice and using the definition of Airy functions and their
Wronskian one has:

f ′′(t) =Ai′′(t)− π
(
Ai′(t)Bi(t)− Ai(t)Bi′(t)

)
R(t)f(t)+

− π
∫ ∞
t

(
Ai′′(t)Bi(s)− Ai(s)Bi′′(t)

)
R(s)f(s) ds =

=tAi(t)−R(t)f(t) + t

∫ ∞
t

K(t, s)R(s)f(s) ds =

=tf(t)−R(t)f(t).

(1.48)

We are treating separately the functions u−R(x) and u+R(x) and for each
one we will consider the cases t ≥ 0 (that is x ≥ b) and t ≤ 0 (corresponding
to x ∈ [x0, b]).
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Defining the new function

g(t) := f(t)Ai−1(t) (1.49)

and inserting it into (1.47) yields

Ai(t)g(t) = Ai(t) +

∫ ∞
t

K(t, s)R(s)Ai(s)g(s)ds⇒

g(t) = 1 +

∫ ∞
t

Ai−1(t)K(t, s)Ai(s)R(s)g(s)ds

(1.50)

Now, posing the new kernel of the last integral equation as

L(t, s) := Ai−1(t)K(t, s)Ai(s), (1.51)

we can expand it using the definition of K(t, s) and the relation (1.13) as

L(t, s) = −πAi−1(t)
(

Ai(t)Bi(s)− Ai(s)Bi(t)
)

Ai(s) =

= −π
(

Ai(s)Bi(s)− Ai−1(t)Bi(t)Ai2(s)
)

=

= −π
(

Ai−1(s)Bi(s)− Ai−1(t)Bi(t)
)
Ai2(s) =

= −
∫ s

t

Ai−2(τ)dτAi2(s).

(1.52)

The new kernel L(t, s) corresponds to an integral operator

L :C0
b (Γ ∩ {t ≥ 0})→ C0

b (Γ ∩ {t ≥ 0})

g(t) 7→
∫ ∞
t

L(t, s)R(s)g(s)ds
(1.53)

where Γ := {t := h−2/3ξb(x);x ∈ [x0,+∞)} and in general

Ck
b (I) :=

{
u : I → C of class Ck, I ⊆ R;

∑
0≤j≤k

sup
x∈I
|u(j)(x)| < +∞

}
(1.54)

equipped with the norm

||u||Ckb (I) =
∑

0≤j≤k

sup
x∈I
|u(j)(x)|. (1.55)

We want to give an estimate of its norm in order to solve equation (1.50) via
the fixed-point theorem:

||L||L(C0
b ,C

0
b )

= sup
t∈[0,+∞)

|Lg(t)|
|g(t)|

(1.56)
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where

|Lg(t)| ≤
∫ +∞

t

∣∣∣∣ ∫ s

t

Ai−2(τ)dτ

∣∣∣∣|Ai2(s)||R(s)||g(s)|ds

≤ c sup
t∈[0,+∞)

|g(t)|
∫ +∞

t

exp
(4

3
s

3
2

)
s−

1
2 exp

(
− 4

3
s

3
2

)
(1 + h2/3s)−2h4/3ds =

= ch4/3 sup
t∈[0,+∞)

|g(t)|O(h−1/3) =

= c sup
t∈[0,+∞)

|g(t)|O(h).

(1.57)

noting that the integral∫ +∞

t

s−1/2(1 + h2/3s)−2ds = O(h−1/3) (1.58)

by the change of variables y = 1 + h2/3s.
In this way ||L||L(C0

b ,C
0
b )

= O(h) and the equation

g(t) = 1 + Lg(t) (1.59)

can be solved by iterations:

g = 1 + Lg ⇒ (1− L)g = 1 ⇒

g =
+∞∑
k=0

Lk(1)
(1.60)

where each terms has norm

||Lk(1)||C0
b
≤ ||L||kC0

b
||1||C0

b
= O(hk) (1.61)

so that we can write g(t) as

g(t) = 1 + L(1) + L2(1) +O(L3(1)) = 1 +O(h), (1.62)

that is f(t) = Ai(t)(1 +O(h)).

Please remember that all this costruction has been made in the case t ≥ 0.
We will now assume t ≤ 0 that is, as already stated, x ∈ [x0, b].

Into the Volterra equation

f(t) = Ai(t) +

∫ +∞

t

K(t, s)R(s)f(s)ds
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already defined we can split the integral into two parts having

f(t) = Ai(t) +

∫ +∞

0

K(t, s)R(s)f(s)ds+

∫ 0

t

K(t, s)R(s)f(s)ds. (1.63)

and rename

f (1)(t) :=

∫ +∞

0

K(t, s)R(s)f(s)ds

f (0)(t) := Ai(t) + f (1)(t).

(1.64)

Using the definition of K(t, s) and (1.62) we have the estimate on f (1)(t)∫ +∞

0

K(t, s)R(s)f(s)ds ≤

≤ C
(
|Ai(t)|

∫ +∞

0

Ai(s)Bi(s)|R(s)|ds+ |Bi(t)|
∫ +∞

0

Ai2(s)|R(s)|ds
)

(1.65)

and, taking into account that, from the definition of Airy functions for posi-
tive arguments one has

Ai2(t) + Ai(t)Bi(t) ≤ c
(
t−1/2 exp

(
− 4

3
t3/2
)

+ t−1/2
)
≤

≤ c
(
1 + t

)−1/2 (1.66)

the estimate is∫ +∞

0

K(t, s)R(s)f(s)ds ≤C1(1 + |t|)−1/4h4/3
∫ +∞

0

(1 + s)−1/2(1 + h2/3s)−2ds ≤

≤C2(1 + |t|)−1/4h.
(1.67)

having used the same calculation as in (1.58).
We are now solving the integral equation

f(t) = Ai(t) +

∫ 0

t

K(t, s)R(s)f(s)ds (1.68)

setting
g(t) := f(t)Ai−1(t) (1.69)

in order solve the new integral equation by iterations

g(t) = 1 +

∫ 0

t

Ai−1(t)K(t, s)R(s)Ai(s)g(s) ds. (1.70)
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The new kernel is bounded by

c(1 + |t|)1/4(1 + |t|)−1/4(1 + |s|)−1/4h4/3(1 + |s|)−1/4 = ch4/3(1 + |s|)−1/2.

where s ∈ [x0, 0]. Repeating the same calculations done when considering
t ≥ 0 yields

g(t) = 1 +O
(
h4/3(1 + |s|)−1/2

)
⇒

f(t) = Ai(t)
(
1 +O(h4/3(1 + |s|)−1/2)

)
.

(1.71)

In particular we can give another estimate on the remainder

|f(t)− f (0)(t)| ≤
∫ 0

t

|K(t, s)||R(s)||f(s)|ds ≤

≤ C1

∫ 0

t

|K(t, s)||R(s)|(1 + |s|)−1/4ds

≤ C2h
4/3

∫ 0

t

(1 + |s|)−3/4ds ≤

≤ C3h
4/3(1 + |t|)1/4.

(1.72)

where we have used that f(s) ∼ Ai(s) ∼ (1 + |s|)−1/4 and that |t| ≥ |s| ⇒
(1 + |t|)−1/4 ≤ (1 + |s|)−1/4.
In conclusion the first integral in the right-hand side of (1.63) tends to 0 with
an order (1 + |t|)−1/4h which dominates over the second integral having an
order (1 + |t|)1/4h4/3 leading to the solution

f(t) = Ai(t) +O
(
h(1 + |t|)−1/4

)
. (1.73)

A very similar construction can be done to prove the representation
formulae referred to the function u+(x) again defined only in the interval
[x0,+∞).
The only difference is that now we start from the integral equation

f(t) = Bi(t) +

∫ 0

t

K(t, s)R(s)f(s)ds (1.74)

that is itself equivalent to (1.38) using the definition of Bi(t) as in (1.48).

Let us first treat the case t ≥ 0; in this case we define the new function
as

g(t) = f(t)Bi−1(t) (1.75)



1.2 Proof of Theorem 1.0.2 15

and this time we obtain the integral equation

Bi(t)g(t) = Bi(t) +

∫ 0

t

K(t, s)R(s)Bi(s)g(s)ds⇒

g(t) = 1 +

∫ 0

t

Bi−1(t)K(t, s)Bi(s)R(s)g(s)ds =

= 1 + π

∫ t

0

(Ai(t)

Bi(t)
Bi2(s)− Ai(s)Bi(s)

)
R(s)g(s)ds =

= 1 + Lg(t).

(1.76)

The estimate on ||L||L(C0
b ,C

0
b )

is obtained from

|Lg(t)| ≤ π

∫ t

0

∣∣∣∣Ai(t)

Bi(t)
Bi2(s)− Ai(s)Bi(s)

∣∣∣∣|R(s)||g(s)|ds ≤

≤ cπh4/3 sup
t∈[0,+∞)

|g(t)|·

·
∫ t

0

(∣∣∣∣Ai(t)

Bi(t)
Bi2(s)

∣∣∣∣+

∣∣∣∣Ai(s)Bi(s)

∣∣∣∣)(1 + h2/3s)−2ds.

(1.77)

Now we fix a value T0 and split the integral into the sum of two integrals
referred to t ∈ [0, T0] and t ∈ [T0,+∞) respectively.
The one in [0, T0] converges because all the functions involved are bounded
in a bounded interval, while for the other one we have∫ t

T0

(∣∣∣∣Ai(t)

Bi(t)
Bi2(s)

∣∣∣∣+

∣∣∣∣Ai(s)Bi(s)

∣∣∣∣)(1 + h2/3s)−2ds ≤

≤ c

∫ t

T0

(
s−1/2 exp

(
− 4

3
t3/2 − 4

3
s3/2
)

+ s−1/2
)
(1 + h2/3s)−2ds ≤

≤ c1

(∫ t

T0

s−1/2 exp
(
− 4

3
s3/2
)
(1 + h2/3s)−2ds+

∫ t

T0

s−1/2(1 + h2/3s)−2ds
)
.

(1.78)

The first one converges, the second one is O(h−1/3) as in (1.57); so that
globally means

|Lg(t)| ≤ ch4/3
(
O(1) +O(1) +O(h−1/3)

)
sup

t∈[0,+∞)

|g(t)| =

= O(h) sup
t∈[0,+∞)

|g(t)|,
(1.79)

that is, trivially,
||L||L(C0

b ,C
0
b )

= O(h). (1.80)
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The proof ends by iterations in the same way as the case u−(x) leading to

g(t) = 1 +O(h), (1.81)

that is f(t) = Bi(t)(1 +O(h)).

The only case missing is when t ≤ 0 for which, as the previous case we
write the integral equation with the new function g(t) := f(t)Bi−1(t):

g(t) =1 + πBi−1(t)

∫ t

0

(
Ai(t)Bi(s)− Ai(s)Bi(t)

)
R(s)Bi(s)g(s) ds =

=1 + Bi−1(t)Lg(t)

(1.82)

having the estimate

Bi−1(t)|Lg(t)| ≤(1 + |t|)1/4h4/3 sup
s∈[t,0]

|g(s)|
∫ t

0

(1 + |s|)−3/4 ds ≤

≤(1 + |t|)1/2h4/3 sup
s∈[t,0]

|g(s)|
(1.83)

and since t := h−2/3ξb(x) = O(h−2/3) as ξb(x) is bounded for x ∈ [x0, b],

(1 + |t|)1/4|Lg(t)| = O(h) sup
s∈[t,0]

|g(s)| (1.84)

that allows us to solve (1.74) by iterations obtaining

f(t) = Bi(t) +O(h(1 + |t|)−1/4). (1.85)

By replacing the interval [x0,+∞) with (−∞, x1] so that one has to con-
sider the function ξa(x) instead of ξb(x) and by making exactly the same
calculations we can obtain the formulae (1.28) and (1.30) referred to u±L(x).
This concludes the proof of the theorem.

1.3 Quantization condition.

As already stated right before Thm 1.0.2, in the interval [x0, x1] both the
couples u±L(x) and u±R(x) are a basis of solutions for equation (1.5). It means
that there exist four numbers α±, β± ∈ R such that the two equations hold:

u±L(x) = α±u
−
R(x) + β±u

+
R(x) ∀x ∈ [x0, x1]. (1.86)
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Actually, since u±R(x) are defined on [x0,+∞) these relations let us extend
the domain of u±L(x) from (−∞, x1] up to the whole set of real numbers. Nat-
urally, the same holds considering u+L(x) and u−L(x) as a basis of solutions so
that we can expand the domain of u±R(x).

The scope of this section is to find values of the energy E for which there
exist two proportional global solutions in L2. This theorem refers to [Y],
Theorem 4.1.

Theorem 1.3.1. E is an eigenvalue of the operator P := −h2 d2

dx2
+ V (x) if

and only if the wronskian W(u−L , u
−
R) = 0

Before proceeding to the proof we calculate the wronskian for every x ∈
[x0, x1] and in order to do so we introduce the new functions

ϕa(x;E) :=

∫ x

a(E)

(
E − V (y)

)1/2
dy (1.87)

ϕb(x;E) :=

∫ b(E)

x

(
E − V (y)

)1/2
dy (1.88)

φ(E) = ϕa(x;E) + ϕb(x;E) =

∫ b(E)

a(E)

(
E − V (y)

)1/2
dy. (1.89)

The Wronskian is

W(u−L , u
−
R) =u−L(x)

d

dx

(
u−R(x)

)
− d

dx

(
u−L(x)

)
u−R(x) =

=− h−2/3

π
sin
(
h−1ϕa(x;E) +

π

4

)
cos
(
h−1ϕb(x;E) +

π

4

)
+

− h−2/3

π
cos
(
h−1ϕa(x;E) +

π

4

)
sin
(
h−1ϕb(x;E) +

π

4

)
+O(h1/3) =

=− h−2/3

π
cos
(
h−1φ(E)

)
+O(h1/3)

(1.90)

and the relation W(u−L , u
−
R) = 0 is equivalent to

cos
(
h−1φ(E)

)
= O(h) (1.91)

which is satisfied for any E ∈ R such that

φ(E) =

∫ b(E)

a(E)

(
E − V (y)

)1/2
dy = π

(
n+

1

2

)
h+O(h2) (1.92)
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for some n ∈ Z. This relation is famous in quantum mechanics as the Bohr-
Sommerfeld quantization condition.

Thus, the following corollary holds:

Corollary 1.3.2. E is an eigenvalue of the operator if and only if

φ(E) = π
(
n+

1

2

)
h+O(h2)

Proof of Theorem 1.3.1. Let us prove that for every number π
(
n + 1

2

)
h

exists an eigenvalue En sufficiently near, that is the estimate∣∣φ(En)− π
(
n+

1

2

)
h
∣∣ ≤ Ch2 (1.93)

holds.
We can see that φ(E) is a one-to-one correspondence via the inverse function
theorem:

φ′(E) =
1

2

∫ b(E)

a(E)

(
E − V (y)

)−1/2
dy > 0 (1.94)

since by costruction V (a) = V (b) = E. Now we can set µ = φ(E) and

ε(µ, h) := πh2/3W(u−L , u
−
R)− sin

(
h−1µ+

π

2

)
(1.95)

which has the role of an error and, from the calculation of the wronskian,
one has

|ε(µ, h)| ≤ Ch. (1.96)

We have to show that the equation

π−1h2/3w(φ−1(µ), h) = sin
(
h−1µ+

π

2

)
+ ε(µ, h) = 0 (1.97)

has solutions µn := φ(En) satisfying the estimate in (1.93) and in order to
do it we make the change of variables

s := h−1µ+
π

2
⇐⇒ µ = h

(
s− π

2

)
(1.98)

such that the new solution sn(h) of the new equation

sin s+ ε
(
h
(
s− π

2

)
, h
)

= 0 (1.99)
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satisfy the estimate

|h
(
sn −

π

2

)
− hπ

(
n+

1

2

)
| ≤ Ch2 =⇒

|sn − π(n+ 1)| ≤ Ch.
(1.100)

This is true because, by means of (1.96), equation (1.99) is equivalent to

sin s = O(h), (1.101)

that is the solution of sin s = 0 differ from the points π(n + 1) of an order
O(h) and this is actually equation (1.100).

On the contrary, we have to show that for any n ∈ Z exists only one
eigenvalue En of H close enough to it as stated in (1.93). That means that
the solution of equation (1.99) satisfying (1.100) is unique for any n.
Let us suppose the contrary and observe that, since there exist infinite solu-
tions of (1.99), there exist also a point s̃ different from any of them in which
the derivative of the left hand side of (1.99) is null, that is

h−1 cos s̃+
∂ε

∂µ

(
h(s̃+

π

2
), h
)

= 0 =⇒

cos s̃ = −h ∂ε
∂µ

(
h(s̃+

π

2
), h
)
.

(1.102)

Deriving the formula for the Wronskian in µ yields

∂

∂µ
W(u−L , u

−
R) = −h

−5/3

π
cos
(
h−1µ+

π

2

)
+O(h−2/3). (1.103)

Please note that the last term O(h−2/3) appears because in (1.90) the terms
O(h1/3) actually depend on h−1φ(E) and therefore on µ.
Hence we have, from (1.95),

∂ε

∂µ
(µ, h) = h−1 cos

(
h−1µ+

π

2

)
− h−1 cos

(
h−1µ+

π

2

)
+O(1). (1.104)

The left-hand side of (1.102) is, given the previous estimate,

cos s̃ = cos
(
π(n+ 1) +O(h)

)
= (−1)n+1 +O(h)

h→0−−→ (−1)n+1 (1.105)

while the right-hand side is O(h), so we have a contradiction.
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Now, taking into account (1.86),

0 =W(u−L , u
−
R) =W(α−u

−
R + β−u

+
R, u

−
R) = β−W(u+R, u

−
R) (1.106)

and, being u+R(x) and u−R(x) linearly independent, that implies β− = 0, that
is, if E is an eigenvalue of P ,

u−L(x) = α−u
−
R(x) (1.107)

meaning that u−L(x) and u−R(x) are proportional solutions of the Schrödinger
equation in L2(R).



Chapter 2

Intersection of potential
functions above the energy level

We are now adding another potential function and treat the following
2× 2 Schrödinger operator

P =

(
P1 hW
hW ∗ P2

)
(2.1)

in order to solve the system

Pu = Eu ⇐⇒

{(
P1 − E

)
u1 = −hWu2(

P2 − E
)
u2 = −hW ∗u1.

(2.2)

with E close to some fixed value E0.
In order to do so we will refer to [A] and extensively use the results in the
previous chapter.
In particular Pj are the scalar Schrödinger operators

Pj = −h2 d
2

dx2
+ Vj(x) (2.3)

and the off-diagonal part is made by a first order perturbation operator and
its formal adjoint

W = W (x, h∂x) = r0(x) + r1(x)h
d

dx
(2.4)

W ∗ = W ∗(x, h∂x) = r0(x)− r1(x)h
d

dx
− r′1(x) (2.5)

where r0(x) and r1(x) are bounded and analytic functions. In the case consid-
ered now the two potential wells are disjoint. It leads us to consider different
intervals between them as illustrated in figure.

21
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E0

V1(x) V2(x)

x1 x2 x3 x40a b c dα β

L

I

J

R

The intervals L and R (respectively for ”left” and ”right”) span from an
arbitrary point inside the wells, excluded x2 for L and x3 for R, towards −∞
or +∞. The intervals I and J have one extreme inside one well and the
other in the interval (x2, x3) between them. We will also assume I and J to
be closed.
The crucial features for these four intervals are that each of them must con-
tain only one inversion point for the potential and must intersect two-by-two
along an interval.

From the costruction made in Chapter 1 in the interval L only the func-
tions u−1,L(x) and u−2,L(x) are well defined and in L2. Simmetrically in the

interval R we must consider only the functions u−1,R(x) and u−2,R(x).

In I and J , since they are bounded, all the four functions u−1,R(x),u+1,R(x),u−2,L(x)

and u+2,L(x) must be taken in consideration as they are all in L2.

In order to find solutions to the system we have to introduce new functions
from the solutions already calculated in the first chapter:

v+2,b := eS2/hu−2,L, v−2,b := e−S2/hu+2,L (2.6)

v+1,c := eS1/hu−1,R, v−1,c := e−S1/hu+1,R (2.7)
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with S1 :=
∫ x3
x2

(V1(t)− E)1/2 dt and S2 :=
∫ x3
x2

(V2(t)− E)1/2 dt.

2.1 Fundamental operators on I

We are defining fundamental solutions of the operators P1−E and P2−E
on the interval I.
The operators are

K1,I , K
′
1,I , K

′′
1,I : C(I)→ C2(I) (2.8)

for P1 − E and
K2,I : C(I)→ C2(I) (2.9)

for P2 − E defined as, ∀v ∈ C(I):

K1,I(v)(x) :=

=
1

h2W(u−1,R, u
+
1,R)

(
u−1,R(x)

∫ x

a

u+1,R(t)v(t) dt+ u+1,R(x)

∫ c

x

u−1,R(t)v(t) dt
)

;

(2.10)

K ′1,I(v)(x) :=

=
1

h2W(u−1,R, u
+
1,R)

(
u−1,R(x)

∫ x

a

u+1,R(t)v(t) dt− u+1,R(x)

∫ x

a

u−1,R(t)v(t) dt
)

;

(2.11)

K ′′1,I(v)(x) :=

=
1

h2W(u−1,R, u
+
1,R)

(
− u−1,R(x)

∫ c

x

u+1,R(t)v(t) dt+ u+1,R(x)

∫ c

x

u−1,R(t)v(t) dt
)

;

(2.12)

K2,I(v)(x) :=

=
1

h2W(v−2,b, v
+
2,b)

(
v−2,b(x)

∫ x

a

v+2,b(t)v(t) dt+ v+2,b(x)

∫ c

x

v−2,b(t)v(t) dt
)
.

(2.13)

Lemma 2.1.1. These operators satisfy

(P1 − E)K1,I = Id, (P1 − E)K ′1,I = Id, (P1 − E)K ′′1,I = Id, (2.14)

and
(P2 − E)K2,I = Id (2.15)

where Id is the identity operator.



24 2. Intersection of potential functions above the energy level

Proof. We are proving only the relations for K1,I , the others being similar.
Writing explicitly (P1 − E)K1,If(x) one has(

h2
d2

dx2
+ V1(x)− E

)( u−1,R(x)

h2W(u−1,R, u
+
1,R)

∫ x

a

u+1,R(t)f(t)dt+

+
u+1,R(x)

h2W(u−1,R, u
+
1,R)

∫ c

x

u−1,R(t)f(t)dt
)

=

(2.16)

=h2
d2

dx2

( u−1,R(x)

h2W(u−1,R, u
+
1,R)

)∫ x

a

u+1,R(t)f(t)dt+

+
(
V1(x)− E

) u−1,R(x)

h2W(u−1,R, u
+
1,R)

∫ x

a

u+1,R(t)f(t)dt+

+ 2h2
d

dx

( u−1,R(x)

h2W(u−1,R, u
+
1,R)

)
u+1,R(x)f(x)+

+ h2
u−1,R(x)

h2W(u−1,R, u
+
1,R)

( d
dx
u+1,R(x)f(x) + u+1,R(x)f ′(x)

)
+

+ h2
d2

dx2

( u+1,R(x)

h2W(u−1,R, u
+
1,R)

)∫ c

x

u−1,R(t)f(t)dt+

+
(
V1(x)− E

) u+1,R(x)

h2W(u−1,R, u
+
1,R)

∫ c

x

u−1,R(t)f(t)dt+

− 2h2
d

dx

( u+1,R(x)

h2W(u−1,R, u
+
1,R)

)
u−1,R(x)f(x)+

+ h2
u+1,R(x)

h2W(u−1,R, u
+
1,R)

(
− d

dx
u−1,R(x)f(x)− u−1,R(x)f ′(x)

)
=

=
2

W(u−1,R, u
+
1,R)

d

dx

(
u−1,R(x)

)
u+1,R(x)f(x)+

+
1

W(u−1,R, u
+
1,R)

u−1,R(x)
d

dx

(
u+1,R(x)

)
f(x)+

− 2

W(u−1,R, u
+
1,R)

d

dx

(
u+1,R(x)

)
u−1,R(x)f(x)+

− 1

W(u−1,R, u
+
1,R)

u+1,R(x)
d

dx

(
u−1,R(x)

)
f(x) =

=f(x)
1

W(u−1,R, u
+
1,R)

( d
dx

(
u+1,R(x)

)
u−1,R(x)− u+1,R(x)

d

dx
u−1,R(x)

)
= f(x).

having used that u±1,R(x) are solutions of P1u = Eu.
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We are defining a new function space where to work: let v(x, h) be a
continuous function on I such that v(x, h) 6= 0∀x ∈ I, we set

C(v, h) := {u : I → R continuous}

equipped with the norm

||u||C(v,h) = sup
x∈I

|u(x)|
|v(x, h)|

.

In the following lemma we are giving an estimate of the norm of these
operators.

Lemma 2.1.2. (See [A], Lemma 4.1.)
In the limit as h→ 0+ the following estimates hold:

||hK1,IW ||L(C(u±1,R,h))
= O(1), (2.17)

||hK2,IW
∗||L(C(u±1,R,h))

= O(h5/6), (2.18)

||hK ′1,IW ||L(C(v+2,b,h))
= O(h2/3), (2.19)

||hK ′′1,IW ||L(C(v−2,b,h))
= O(h1/2), (2.20)

||hK2,IW
∗||L(C(v±2,b,h))

= O(1). (2.21)

Proof. We are adapting the proof in [A], Lemma 4.1, with the difference that
here the variables x and t are intended to be x− c and t− c. The estimates
(2.18) and (2.19) are better than the corresponding ones in [A] because the
interval I does not have 0 as extreme point.

In order to prove (2.17) we define the new functions

U1(x, t) := |u+1,R(x)u−1,R(t)|1{t<x} + |u−1,R(x)u+1,R(t)|1{t>x} = U1(t, x) (2.22)

U ′1(x, t) := |u+1,R(x)h∂tu
−
1,R(t)|1{t<x} + |u−1,R(x)h∂tu

+
1,R(t)|1{t>x} (2.23)

Ũ1(x, t) = U1(x, t) + U ′1(x, t). (2.24)

so that, from the definition of the operators and integrating by parts,

|hK1,IWv(x)| =
∣∣∣ u−1,R(x)

hW(u−1,R, u
+
1,R)

∫ x

a

u+1,R(t)
(
r0(t) + hr1(t)∂t

)
v(t)dt+

+
u+1,R(x)

hW(u−1,R, u
+
1,R)

∫ c

x

u−1,R(t)
(
r0(t) + hr1(t)∂t

)
v(t)dt

∣∣∣ =
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=O(h−1/3)
∣∣∣ ∫ x

a

u−1,R(x)u+1,R(t)v(t) dt+

−
∫ x

a

u−1,R(x)h∂t
(
u+1,R(t)

)
v(t) dt+ hu−1,R(x)u+1,R(x)v(x)+

− hu−1,R(x)u+1,R(a)v(a) +

∫ c

x

u+1,R(x)u−1,R(t)v(t) dt+

−
∫ c

x

u+1,R(x)h∂t
(
u−1,R(t)

)
v(t) dt+ hu+1,R(x)u−1,R(c)v(c)+

− hu+1,R(x)u−1,R(x)v(x)
∣∣∣ =

=O(h−1/3)
(∫ c

a

Ũ1(x, t)|v(t)| dt+ hU1(x, a)|v(a)|+

+ hU1(x, c)|v(c)|
)
.

(2.25)

Estimating (2.17) is equivalent to give evaluations for∫ c

a

Ũ1(x, t)|v(t)||u±1,R(x)|−1 dt, (2.26)

hU1(x, a)|v(a)||u±1,R(x)|−1 and hU1(x, c)|v(c)||u±1,R(x)|−1 (2.27)

as a consequence of the definition of the norm in C(u±1,R, h).

Let us remember the asymptotics of u+1,R(x) and its derivative as found in
the first chapter:

u±1,R(x) =
h1/6√
π

(
V1(x)− E

)−1/4
exp

(
± h−1

∫ x

a

√
V1(t)− E dt

)(
1 +O(h)

)
(2.28)

h∂xu
±
1,R(x) = exp

(
± h−1

∫ x

a

√
V1(t)− E dt

)
·

·
(
±
(
V1(x)− E

)1/4h1/6√
π

+O(h7/6)
)(

1 +O(h)
)
.

(2.29)

Considering the different possible values taken by x and t we have, having
fixed a positive constant C1:

• If a ≤ x, t ≤ a+ C1h
2/3:

Ũ1(x, t)|u±1,R(t)||u±1,R(x)|−1 = O(1) (2.30)

because all the functions involved are bounded inside the well.
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• If a ≤ x ≤ a+ C1h
2/3 ≤ t ≤ c:

Ũ1(x, t)|u±1,R(t)||u±1,R(x)|−1 =

= O(h1/3)|V1(t)− E|−1/2 exp
(
− 1

h

∫ t

x

(V1(s)− E)1/2ds+

± 1

h

∫ t

x

(V1(s)− E)1/2ds
)
,

(2.31)

and the same holds simmetrically exchanging x and t.

• If a+ C1h
2/3 ≤ x, t ≤ c:

Ũ1(x, t)|u±1,R(t)||u±1,R(x)|−1 =

= O(h1/3)|V1(t)− E|−1/2 exp
(
− 1

h

∫ t

x

(V1(s)− E)1/2ds+

± 1

h

∫ t

x

(V1(s)− E)1/2ds
)
.

(2.32)

These estimates show that uniformly with respect to x, t ∈ [a, c],

Ũ1(x, t)|u±1,R(t)||u±1,R(x)|−1 = O(1) (2.33)

as h→ 0+ and, in particular,∣∣∣∣Ũ1(x, a)|v(a)|
∣∣∣∣
C(u±1,R)

≤ C
∣∣∣∣v∣∣∣∣

C(u±1,R)
(2.34)∣∣∣∣Ũ1(x, c)|v(c)|

∣∣∣∣
C(u±1,R)

≤ C
∣∣∣∣v∣∣∣∣

C(u±1,R)
(2.35)

and this gives estimates of the two functions in (2.27) as O(h) in || · ||C(u±1,R)
.

The integral in (2.26) is estimated as∫ c

a

Ũ1(x, t)|v(t)||u±1,R(x)|−1 dt =O(1)

∫ a+C1h2/3

a

dt+

+O(h1/3)

∫ c

a+C1h2/3
(t− a)−1/2 dt =

=O(h1/3)

(2.36)

where we used that in a bounded interval
(
V1(t)− E

)−1/2 ∼ (t− a)−1/2 and
the integrals are: ∫ a+C1h2/3

a

dt = O(h2/3),∫ c

a+C1h2/3
(t− a)−1/2 dt =

[
2(t− a)1/2

]c
a+C1h2/3

= 2|c|1/2 − 2
√
C1h

1/3.
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Finally, from the last step in (2.25),∣∣∣∣hK1,IW
∣∣∣∣
L(C(u±1,R,h))

= O(h−1/3)
(
O(h1/3) +O(h) +O(h)

)
= O(1). (2.37)

Proceeding, we are proving (2.18). Please note that we are going to use
the new functions in (2.6).
We are defining the functions

V2,b(x, t) := |v−2,b(x)v+2,b(t)|1{t<x} + |v+2,b(x)v−2,b(t)|1{t>x} = V2,b(t, x), (2.38)

V ′2,b(x, t) := |v−2,b(x)h∂tv
+
2,b(t)|1{t<x} + |v+2,b(x)h∂tv

−
2,b(t)|1{t>x}, (2.39)

Ṽ2,b(x, t) = V2,b(x, t) + V ′2,b(x, t) (2.40)

and, from an integration by parts similar to the previous case one obtains

|hK2,IW
∗v(x)| =

= O(h−1/3)
(∫ c

a

Ṽ2,b(x, t)|v(t)|dt+ hṼ2,b(x, a)|v(a)|+ hṼ2,b(x, c)|v(c)|
)
.

(2.41)

Similarly as above we are giving different estimates of the functions involved
based on the values of x and t from the solutions already found in the first
chapter

u±2,L(x) =
h1/6√
π

(
V2(x)− E

)−1/4
exp

(
∓ h−1

∫ x

0

√
V2(t)− E dt

)(
1 +O(h)

)
,

(2.42)

h∂xu
±
2,L(x) = exp

(
∓ h−1

∫ x

0

√
V2(t)− E dt

)
·

·
(
∓
(
V2(x)− E

)1/4h1/6√
π

+O(h7/6)
)(

1 +O(h)
)
.

(2.43)

• If a ≤ x, t ≤ a+ C1h
2/3:

Ṽ2,b(x, t)|u±1,R(t)||u±1,R(x)|−1 =

= O(h1/3)|V2(x)− E|−1/4|V2(t)− E|−1/4 exp
(
− 1

h

∫ x

t

(V2(s)− E)1/2ds
)
·

· |V1(x)− E|1/4

|V1(t)− E|1/4
exp

(
∓ 1

h

∫ x

t

(V1(s)− E)1/2ds
)

=

= O(h1/3) exp
(
− 1

h

∫ x

t

(V2(s)− E)1/2ds
)
.

(2.44)
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• If a ≤ x ≤ a+ C1h
2/3 ≤ t ≤ c:

Ṽ2,b(x, t)|u±1,R(t)||u±1,R(x)|−1 =

= O(h1/3)|V2(x)− E|−1/4|V2(t)− E|−1/4 exp
(
− 1

h

∫ t

x

(V2(s)− E)1/2ds
)
·

· |V1(x)− E|1/4

|V1(t)− E|1/4
exp

(
∓ 1

h

∫ x

t

(V1(s)− E)1/2ds
)

=

= O(h1/3)
exp

(
− 1

h

∫ t
x
(V2(s)− E)1/2ds∓ 1

h

∫ x
t

(V1(s)− E)1/2ds
)

|V1(t)− E|1/4
.

(2.45)

• If a ≤ t ≤ a+ C1h
2/3 ≤ x ≤ c:

Ṽ2,b(x, t)|u±1,R(t)||u±1,R(x)|−1 =

= O(h1/6) exp
(
− 1

h

∫ t

x

(V2(s)− E)1/2ds∓ 1

h

∫ x

t

(V1(s)− E)1/2ds
)

(2.46)

making the same calculations as above and considering v+2,b(t) = eS2/hu−2,L(t) =
O(1).

• If a+ C1h
2/3 ≤ x, t ≤ c:

Ṽ2,b(x, t)|u±1,R(t)||u±1,R(x)|−1 =

= O(h1/3)
exp

(
− 1

h

∫ t
x
(V2(s)− E)1/2ds∓ 1

h

∫ x
t

(V1(s)− E)1/2ds
)

|V1(t)− E|1/4
(2.47)

like in the second case.

Every integral appearing in these cases converges and so, ∀x, t ∈ [a, c]

Ṽ2,b(x, t)|u±1,R(t)||u±1,R(x)|−1 = O(h1/6) (2.48)

and in particular ∣∣∣∣hṼ2,b(x, a)|v(a)|
∣∣∣∣
C(u±1,R,h)

= O(h7/6), (2.49)∣∣∣∣hṼ2,b(x, c)|v(c)|
∣∣∣∣
C(u±1,R,h)

= O(h7/6). (2.50)

Now we are going to study
∫ c
a
Ṽ2,b(x, t)|u±1,R(t)||u±1,R(x)|−1dt dividing into

three possibile cases for the value of x.
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If a ≤ x ≤ a+ C1h
2/3 there exist a constant α > 0 and δ > 0 such that∫ c

a

Ṽ2,b(x, t)|u±1,R(t)||u±1,R(x)|−1dt =O(h1/3)

∫ a+δ

a

e−α|x−t|/hdt+O(e−α/h) =

=O(h4/3)

(2.51)

having used equations (2.44) and (2.45) and noting that the integral is∫ a+δ

a

e−α|x−t|/hdt =
[
− h

α
e−α|x−t|/h

]a+δ
a

= O(h).

When a + C1h
2/3 < x ≤ c − δ′ for some δ′ > 0 there exists a constant

α > 0 such that∫ c

a

Ṽ2,b(x, t)|u±1,R(t)||u±1,R(x)|−1dt =O(h1/6)

∫ δ′/2

a

e−α|x−t|/hdt+O(e−α/h) =

=O(h7/6)

(2.52)

from equations (2.46) and (2.47).

When c− δ′ < x ≤ c there exist two constant α, β > 0 such that:∫ c

a

Ṽ2,b(x, t)|u±1,R(t)||u±1,R(x)|−1dt =O(h1/3)

∫ c

c−2δ′
e−β|x−t|/hdt+O(e−α/h) =

=O(h4/3)

(2.53)

because
∫ c
c−2δ′ e

−β|x−t|/hdt = O(h) simply calculating its antiderivative.
Returning back to (2.51), (2.52) and (2.53) we have∣∣∣∣∣∣ ∫ c

a

Ṽ2,b(x, t)|v(t)|dt
∣∣∣∣∣∣
C(u±1,R,h)

≤ Ch5/6||v||C(u±1,R,h)
(2.54)

and globally, from (2.41):

||hK2,IW
∗||C(u±1,R,h)

= O(h−1/3)
(
O(h5/6) +O(h7/6)

)
= O(h1/2). (2.55)

The proof of (2.19) is similar to the previous one, with the important
difference that the norm is referred to v+2,b = eS2/hu−2,L.
The usual integration by parts yields

|hK ′1,IWv(x)| =

= O(h−1/3)
(∫ x

a

Ũ1(x, t)|v(t)|dt+ hŨ1(x, x)|v(x)|+ hŨ1(x, a)|v(a)|
)
(2.56)
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where, analogously as the estimate for (2.17) and (2.18),

• If a ≤ t ≤ x ≤ a+ C1h
2/3:

Ũ1(x, t)|v+2,b(t)||v
+
2,b(x)|−1 = O(1) exp

(
− 1

h

∫ x

t

(V2(s)− E)1/2ds
)
.

(2.57)

• If a ≤ t ≤ a+ C1h
2/3 ≤ x ≤ c:

Ũ1(x, t)|v+2,b(t)||v
+
2,b(x)|−1 =

= O(h1/6)
exp

(
−
∫ x
t

(V2(s)− E)1/2ds/h−
∫ x
a

(V1(s)− E)1/2ds/h
)

|V1(x)− E|1/4
(2.58)

where we considered u−1,L(t) in Ũ1(x, t) as O(1), as well as |V2(x)−E|
1/4

|V2(t)−E|1/4

from |v+2,b(t)||v
+
2,b(x)|−1.

• If a+ C1h
2/3 ≤ t ≤ x ≤ c:

Ũ1(x, t)|v+2,b(t)||v
+
2,b(x)|−1 =

= O(h1/3)
exp

(
−
∫ x
t

(V2(s)− E)1/2ds/h−
∫ x
t

(V1(s)− E)1/2ds/h
)

|V1(t)− E|1/4|V1(x)− E|1/4
.

(2.59)

Globally that means that Ũ1(x, t)|v+2,b(t)||v
+
2,b(x)|−1 = O(1) ∀x ∈ [a, c], ∀t ∈

[a, x] as h→ 0+, that is∣∣∣∣Ũ1(x, x)|v(x)|
∣∣∣∣
C(v+2,b,h)

≤ C||v||C(v+2,b,h)
(2.60)∣∣∣∣Ũ1(x, a)|v(a)|

∣∣∣∣
C(v+2,b,h)

≤ C||v||C(v+2,b,h)
. (2.61)

For what it concerns
∫ x
a
Ũ1(x, t)|v(t)|dt, when a ≤ x ≤ a + C1h

2/3 or a +

C1h
2/3 < x ≤ c − δ′ for some constant δ′ > 0, there exist a constant α > 0

such that∫ x

a

Ũ1(x, t)|v+2,b(t)||v
+
2,b(x)|−1dt ≤ O(1)

∫ x

a

e−α(t−x)/hdt = O(h) (2.62)

from the first two cases above, while when c − δ′ < x ≤ c, there exists a
positive constant β such that∫ x

a

Ũ1(x, t)|v+2,b(t)||v
+
2,b(x)|−1dt =O(h1/3)

∫ x

c−2δ′
e−β|x−t|/hdt+O(eα/h) =

=O(h4/3).

(2.63)
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Hence we have ∣∣∣∣∣∣ ∫ x

a

Ũ1(x, t)|v(t)|dt
∣∣∣∣∣∣
C(v+2,b,h)

≤ Ch||v||C(v+2,b,h)
(2.64)

and, from (2.56)
||hK ′1,IW ||C(v+2,b,h)

= O(h2/3). (2.65)

We are now proving (2.20). Please note that this time the norm is referred
to v−2,b = e−S2/hu+2,L. Once again we have

|hK ′′1,IWv(x)| =

= O(h−1/3)
(∫ c

x

Ũ1(x, t)|v(t)|dt+ hŨ1(x, x)|v(x)|+ hŨ1(x, c)|v(c)|
) (2.66)

and the various estimate for the functions appearing are

• If a ≤ x ≤ t ≤ a+ C1h
2/3:

Ũ1(x, t)|v−2,b(t)||v
−
2,b(x)|−1 = O(1) exp

(
− 1

h

∫ t

x

(V2(s)−E)1/2ds
)

(2.67)

• If a ≤ x ≤ a+ C1h
2/3 ≤ t ≤ c:

Ũ1(x, t)|v−2,b(t)||v
−
2,b(x)|−1 =

= O(h1/6)
exp

(
−
∫ t
x
(V2(s)− E)1/2ds/h−

∫ t
a
(V1(s)− E)1/2ds/h

)
|V1(t)− E|1/4

(2.68)

where u−1,L(x) = O(1) in Ũ1(x, t), similarly to |V2(x)−E|
1/4

|V2(t)−E|1/4
from |v−2,b(t)||v

−
2,b(x)|−1.

• If a+ C1h
2/3 ≤ x ≤ t ≤ c:

Ũ1(x, t)|v−2,b(t)||v
−
2,b(x)|−1 =

= O(h1/3)
exp

(
−
∫ t
x
(V2(s)− E)1/2ds/h−

∫ t
x
(V1(s)− E)1/2ds/h

)
|V1(t)− E|1/4|V1(x)− E|1/4

.

(2.69)

having Ũ1(x, t)|v−2,b(t)||v
−
2,b(x)|−1 = O(1) ∀t ∈ [a, c], ∀x ∈ [a, t] as h → 0+.

That means ∣∣∣∣Ũ1(x, x)|v(x)|
∣∣∣∣
C(v−2,b,h)

≤ C||v||C(v−2,b,h)
(2.70)∣∣∣∣Ũ1(x, c)|v(c)|

∣∣∣∣
C(v−2,b,h)

≤ C||v||C(v−2,b,h)
. (2.71)
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For what it concerns
∫ c
x
Ũ1(x, t)|v(t)|dt, when a ≤ x ≤ a+C1h

2/3 there exists
a constant δ > 0 and α > 0 such that∫ c

x

Ũ1(x, t)|v−2,b(t)||v
−
2,b(x)|−1dt ≤ O(1)

∫ a+δ

x

e−α(t−x)/hdt+O(eα/h) = O(h)

(2.72)
from the first two cases above.
Instead, when a+C1h

2/3 < x ≤ c−δ′, for some constant δ′ > 0 small enough
there exists a positive constant α (possibly different from the previous one)
such that∫ c

x

Ũ1(x, t)|v−2,b(t)||v
−
2,b(x)|−1dt = O(1)

∫ c−δ′/2

x

e−α(t−x)/hdt+O(eα/h) = O(h).

(2.73)
Finally, if c− δ′ < x ≤ c, there exist two positive constants α, β such that∫ c

x

Ũ1(x, t)|v−2,b(t)||v
−
2,b(x)|−1dt =O(h1/3)

∫ c

x

e−β|x
2−t2|/hdt+O(eα/h) =

=O(h5/6).

(2.74)

Hence we have∣∣∣∣∣∣ ∫ c

x

Ũ1(x, t)|v(t)|dt
∣∣∣∣∣∣
C(v−2,b,h)

≤ Ch5/6||v||C(v−2,b,h)
(2.75)

and, from (2.66)

||hK ′′1,IW ||C(v−2,b,h)
= O(h−1/3)

(
O(h5/6) +O(h)

)
= O(h1/2). (2.76)

At last, let us prove (2.21). In order to do so we have to estimate (2.41)

|hK2,IW
∗v(x)| =

= O(h−1/3)
(∫ c

a

Ṽ2,b(x, t)|v(t)|dt+ hṼ2,b(x, a)|v(a)|+ hṼ2,b(x, c)|v(c)|
)
.

(2.77)

but referring to the norm centered in v±2,b.
It is sufficient to observe that, for every x, t ∈ [a, c]:

Ṽ2,b(x, t)|v±2,b(t)||v
±
2,b(x)|−1 =

= O(h1/3) exp
(
− 1

h

∫ x

t

(
V2(s)− E

)1/2
ds± 1

h

∫ x

t

(
V2(s)− E

)1/2
ds
)

(2.78)
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so that ∣∣∣∣Ṽ2,b(x, a)|v(a)|
∣∣∣∣
C(v±2,b,h)

≤ Ch1/3||v||C(v±2,b,h)
(2.79)∣∣∣∣Ṽ2,b(x, c)|v(c)|

∣∣∣∣
C(v±2,b,h)

≤ Ch1/3||v||C(v±2,b,h)
. (2.80)

The integral, instead, is calculated as, for every a ≤ x ≤ c,∫ c

a

Ṽ2,b(x, t)|v±2,b(t)||v
±
2,b(x)|−1dt = O(h1/3)

∫ c

a

dt = O(h1/3). (2.81)

The estimate of (2.21) is

||hK2,IW
∗||L(C(v±2,b,h))

= O(h−1/3)O(h1/3) = O(1). (2.82)

2.2 Fundamental operators on J

For what it concerns the interval J = [b, d] there are little adjustments to
be done with respect to the interval I.
The operators to be considered are this time:

K1,J(v)(x) :=

=
1

h2W(v+1,c, v
−
1,c)

(
v+1,c(x)

∫ x

b

v−1,c(t)v(t) dt+ v−1,c(x)

∫ d

x

v+1,c(t)v(t) dt
)
(2.83)

K2,J(v)(x) :=

=
1

h2W(u+2,L, u
−
2,L)

(
u+2,L(x)

∫ x

b

u−2,L(t)v(t) dt+ u−2,L(x)

∫ d

x

u+2,L(t)v(t) dt
)

(2.84)

K ′2,J(v)(x) :=

=
1

h2W(u+2,L, u
−
2,L)

(
− u+2,L(x)

∫ d

x

u−2,L(t)v(t) dt+ u−2,L(x)

∫ d

x

u−2,L(t)v(t) dt
)

(2.85)

K ′′2,J(v)(x) :=

=
1

h2W(u+2,L, u
−
2,L)

(
u+2,L(x)

∫ x

b

u−2,L(t)v(t) dt− u−2,L(x)

∫ x

b

u+2,L(t)v(t) dt
)

(2.86)
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and, like before they map C(J) in C2(J) and the analogous of lemma (2.1.1)
holds:

Lemma 2.2.1.

(P1 − E)K1,J = Id, (P2 − E)K2,J = Id,

(P2 − E)K ′2,J = Id, (P2 − E)K ′′2,J = Id.

and the norms of the operators that will be used to build solutions are

Lemma 2.2.2. (See [A], Lemma 4.2.)

||hK2,JW
∗||L(C(u±2,L,h))

= O(1), (2.87)

||hK1,JW ||L(C(u±2,L,h))
= O(h5/6), (2.88)

||hK ′2,JW ∗||L(C(v±1,c,h))
= O(h2/3), (2.89)

||hK ′′2,JW ∗||L(C(v−1,c,h))
= O(h1/2), (2.90)

||hK1,JW ||L(C(v±1,c,h))
= O(1) (2.91)

as h→ 0+.

2.3 Fundamental operators on L and R.

We are now defining integral opertors acting on functions defined on each
interval. Starting from this operators we will be then able to build solutions
of the system.
For this section we refer to [A], Section 4.3.
Let us define the new function spaces, ∀ k ∈ N:

Ck
b (L) =

{
u : L→ R of class Ck

∣∣ ∑
0≤j≤k

sup
x∈L
|u(j)(x)| ≤ ∞

}
;

Ck
b (R) =

{
u : R→ R of class Ck

∣∣ ∑
0≤j≤k

sup
x∈R
|u(j)(x)| ≤ ∞

}
.

with the norms

||u||C0
b (L,R) =

∑
0≤j≤k

sup
x∈L,R

|u(j)(x)|.

The four operators to be considered are

Kj,L : C0
b (L)→ C2

b (L), Kj,L : C0
b (R)→ C2

b (R),
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Kj,L(v)(x) :=

=
1

h2W(u+j,L, u
−
j,L)

(
u+j,L(x)

∫ x

−∞
u−j,L(t)v(t) dt+ u−j,L(x)

∫ α

x

u+j,L(t)v(t) dt
)

;

(2.92)

for v ∈ C0
b (L);

Kj,R(v)(x) :=

=
1

h2W(u−j,R, u
+
j,R)

(
u−j,R(x)

∫ x

β

u+j,R(t)v(t) dt+ u+j,R(x)

∫ +∞

x

u−j,R(t)v(t) dt
)

;

(2.93)

for v ∈ C0
b (R).

The following lemma holds:(see [A], Lemma 4.3)

Lemma 2.3.1. For h→ 0+ we have∣∣∣∣hK2,LW
∗∣∣∣∣
L(C0

b (L))
= O(h); (2.94)∣∣∣∣hK1,LW

∣∣∣∣
L(C0

b (L))
= O(h−1/6); (2.95)

and, for R: (see [A], Lemma 4.4)

Lemma 2.3.2. For h→ 0+ we have∣∣∣∣hK1,RW
∣∣∣∣
L(C0

b (R)
= O(h); (2.96)∣∣∣∣hK2,RW

∗∣∣∣∣
L(C0

b (R))
= O(h−1/6); (2.97)

Proof. We will only prove Lemma (2.3.1), the other being similar.
Setting

ũ±j,L := max{|u±j,L|, |h∂xu
±
j,L|}

Uj,L(x, t) := ũ+j,L(x)ũ−j,L(t)1{t<x} + ũ−j,L(x)ũ+j,L(t)1{t>x}

and integrating by parts we obtain

|hK1,LWv(x)| = O(h−1/3)
(∫ α

−∞
U1,L(x, t)|v(t) dt+ hU1,L(x, α)|v(α)|

)
(2.98)

and

|hK2,LW
∗v(x)| = O(h−1/3)

(∫ α

−∞
U2,L(x, t)|v(t) dt+ hU2,L(x, α)|v(α)|

)
.

(2.99)
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To estimate U2,L(x, t) we observe that for any x, t < α,

U2,L(x, t) = O(h1/3)e−|
∫ x
t (V2(s)−E)1/2ds|/h = O(h1/3)

and, moreover there exists a constant γ > 0 such that∫ α

−∞
U2,L(x, t)|v(t) dt = O(h1/3)

∫ α

−∞
e−γ|x−t|/h dt = O(h4/3). (2.100)

That is, ∣∣∣∣hK2,LW
∗∣∣∣∣
L(C0

b (L))
= O(h−1/3)O(h4/3) = O(h). (2.101)

To estimate U1,L(x, t), instead, we see that for any δ > 0 small enough
there exist (a different) γ > 0 such that

• If |t− x1| ≤ C1h
2/3 or α−C1h

2/3 ≤ t ≤ α, then for any −∞ ≤ x ≤ α :

U1,L(x, t) = O(1);

• If x1 + C1h
2/3 ≤ t ≤ α− C1h

2/3 then for any −∞ ≤ x ≤ α :

U1,L(x, t) = O(h1/6)|t− α|−1/4;

• If x1 − 2δ ≤ t ≤ x1 − C1h
2/3 then for any −∞ ≤ x ≤ α :

U1,L(x, t) = O(h1/6)|t− x1|−1/4;

• If t ≤ x1 − 2δ and x ≤ x1 − δ then

U1,L(x, t) = O(h1/3)e−γ|t−x|/h;

• If t ≤ x1 − 2δ and x1 − δ ≤ x ≤ α then

U1,L(x, t) = O(h1/6)e−γ|t−x1+δ|/h.

Hence U1,L(x, t) = O(1). For what it concerns the integral, when x ≤ x1− δ:∫ α

−∞
U1,L(x, t) dt =O(h1/3)

∫ x1−2δ

−∞
e−γ|t−x|/h dt+O(1)

∫ x1+C1h2/3

x1−C1h2/3
dt+

+O(1)

∫ α

α−C1h2/3
dt+O(h1/6)

∫ α−C1h2/3

x1+C1h2/3
|t− α|−1/4 dt+

+O(h1/6)

∫ x1−C1h2/3

x1−2δ
|t− x1|−1/4 dt =

=O(h1/3) +O(h2/3) +O(h2/3) +O(h2/3) +O(h1/6) =

=O(h1/6).

(2.102)



38 2. Intersection of potential functions above the energy level

When x1 − δ ≤ x ≤ α we have∫ α

−∞
U1,L(x, t) dt =O(h1/6)

∫ x1−2δ

−∞
e−γ|t−x1+δ|/h dt+O(1)

∫ x1+C1h2/3

x1−C1h2/3
dt+

+O(1)

∫ α

α−C1h2/3
dt+O(h1/6)

∫ α−C1h2/3

x1+C1h2/3
|t− α|−1/4 dt+

+O(h1/6)

∫ x1−C1h2/3

x1−2δ
|t− x1|−1/4 dt =

=O(h1/6),

(2.103)

so, from (2.99),∣∣∣∣hK1,LW
∣∣∣∣
L(C0

b (L))
= O(h−1/3)

(
O(h1/6) +O(h)

)
= O(h−1/6). (2.104)

2.4 Solutions of the system on I

The purpose of the costruction done in the previous sections is to build
solutions in each interval considered and to give conditions in order to have
global solutions in L2(R)⊕ L2(R).

We make use of new operators on the interval I

MI := h2K2,IW
∗K1,IW, (2.105)

M ′
I := h2K2,IW

∗K ′1,IW, (2.106)

M ′′
I := h2K2,IW

∗K ′′1,IW (2.107)

which are respectivelyO(h5/6), O(h2/3) andO(h1/2) when acting on C(u±1,R, h),

C(v+2,b, h) and C(v−2,b, h). The key fact is that they all tend to 0 as h→ 0+.

The vector-valued functions

w±1,I :=

(
u±1,R + hK1,IW

∑
j≥0M

j
I

(
hK2,IW

∗u±1,R
)

−
∑

j≥0M
j
I

(
hK2,IW

∗u±1,R
) )

, (2.108)

w+
2,I :=

(
−hK ′1,IW

∑
j≥0(M

′
I)
jv+2,b∑

j≥0(M
′
I)
jv+2,b

)
, (2.109)
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w−2,I :=

(
−hK ′′1,IW

∑
j≥0(M

′′
I )jv−2,b∑

j≥0(M
′′
I )jv−2,b

)
, (2.110)

are solution of the system (2.2){(
P1 − E

)
u1 = −hWu2(

P2 − E
)
u2 = −hW ∗u1.

From (2.14) the second equation is equivalent to

u2 =
(
P2 − E

)−1(− hW ∗u1
)

= −hK2,IW
∗u1 (2.111)

and so the first equation becomes(
P1 − E

)
u1 = h2WK2,IW

∗u1 (2.112)

equivalent to

u1 =
(
P1 −E

)−1
h2WK2,IW

∗u1 ⇐⇒ u1 = h2K1,IWK2,IW
∗u1 (2.113)

which has solution of the type

u1 = u±1,R + h2K1,IWK2,IW
∗u1 = u±1,R +MIu1. (2.114)

The function (2.108) satisfies this relation since

u±1,R +MIu1 =u±1,R +MI

(
u±1,R + hK1,IW

∑
j≥0

M j
I

(
hK2,IW

∗u±1,R
))

=

=u±1,R +MIu
±
1,R + hK1,IW

∑
j≥1

M j
I

(
hK2,IW

∗u±1,R
))

= u1

(2.115)

where u1 is the first component of w±1,I .

For what it concerns w+
2,I (and w−2,I changing K ′1,I into K ′′1,I and M ′

I into M ′′
I )

we make a substitution from the other equation in order to have

u1 = −hK ′1,IWu2 ⇒
(
P2 − E

)
u2 = h2W ∗K ′1,IWu2 (2.116)

where we used again the relations in (2.14), (2.15).
This last equation has solutions of the type

u2 = v+2,b +M ′
Iu2 (2.117)
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and, posing u2 =
∑

j≥0(M
′
I)
jv+2,b, this satisfies

u2 =
∑
j≥0

(M ′
I)
jv+2,b = v+2,b +M ′

I

∑
j≥0

(M ′
I)
jv+2,b = v+2,b +M ′

Iu2. (2.118)

These solutions, thanks to the estimates given in the previous lemmas, tends
to, as h→ 0+,

w±1,I =

(
u±1,L +O(h1/2u±1,R)

O(h1/2u±1,L)

)
−→

(
u±1,R

0

)
, (2.119)

w±2,I =

(
O(h1/2v±2,b)

v±2,b +O(h1/2v±2,b)

)
−→

(
0
v±2,b

)
=

(
0

e±S2/hu∓2,L

)
. (2.120)

2.5 Solutions of the system on J

The same holds again for the interval J with the operators

MJ := h2K1,JWK2,JW
∗, (2.121)

M ′
J := h2K1,JWK ′2,JW

∗, (2.122)

M ′′
J := h2K1,JWK ′′2,JW

∗ (2.123)

which are respectivelyO(h5/6), O(h2/3) andO(h1/2) when acting on C(u±2,L, h),

C(v+1,c, h) and C(v−1,c, h). Once again, they all vanish for h→ 0+.

Having defined these operators the solutions of the system (2.2) are

w+
1,J :=

( ∑
j≥0(M

′
J)jv+1,c

−hK ′2,JW ∗∑
j≥0(M

′
J)jv+1,c

)
, (2.124)

w−1,J :=

( ∑
j≥0(M

′′
J )jv−1,c

−hK ′′2,JW
∑

j≥0(M
′′
J )jv−1,c

)
, (2.125)

w±2,J :=

(
−
∑

j≥0M
j
J

(
hK1,JWu±2,L

)
u±2,L + hK2,JW

∑
j≥0M

j
J

(
hK1,JWu±2,L

)) . (2.126)

which, thanks to the several estimates done,

w±1,J −→
(
v±1,c
0

)
=

(
e±S1/hu∓1,R

0

)
, (2.127)

w±2,J −→
(

0
u±2,L

)
. (2.128)
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2.6 Solutions of the system in L, R

Similarly as the intervals I and J , the vector functions on L

w1,L :=

( ∑
j≥0(ML)ju−1,L

−hK2,LW
∗∑

j≥0(MJ)ju−1,L

)
, (2.129)

w2,L :=

(
−
∑

j≥0M
j
L

(
hK1,LWu−2,L

)
u−2,L + hK2,LW

∗∑
j≥0M

j
L

(
hK1,LWu−2,L

)) (2.130)

and on R

w1,R :=

(
u−1,R + hK1,RW

∑
j≥0M

j
R

(
hK2,RW

∗u−1,R
)

−
∑

j≥0M
j
R

(
hK2,RW

∗u−1,R
) )

, (2.131)

w2,R :=

(
−hK1,RW

∑
j≥0(MR)ju−2,R∑

j≥0(MR)ju−2,R

)
, (2.132)

are solutions of the Schrödinger system (2.2).
Since the norm of the operators involved vanish for h→ 0+, these solutions
tend to

w1,L →
(
u−1,L

0

)
; w2,L →

(
0
u−2,L

)
;

w1,R →
(
u−1,R

0

)
; w2,R →

(
0
u−2,R

)
.

2.7 Connection of the solutions

Let us come back to the beginning of the chapter. As stated there we

have now two solutions in the intervals L,R respectively in
(
L2(L)

)2
and(

L2(R)
)2

, while in the middle intervals I, J the space of solutions of the sys-
tem is four-dimensional, since these intervals are bounded.
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L

I

J

R

{w1,L, w2,L}

{w±1,I , w
±
2,I}

{w±1,J , w
±
2,J}

{w1,R, w2,R}

Taken any of the functions wk,L, k = 1, 2, it can be written, in the inter-
section L ∩ I, as a linear combination of the four functions w±k,I but, thanks
to these linear combinations, wk,L is extended to the whole interval I. Now,
analogously, any of the functions w±k,I is written as a linear combination on

I ∩ J of the function w±k,J and we can extend w±k,I and, as a fundamental
consequence, wk,L to the whole interval J . At last, using that wk,R is a basis
of solutions in R, we prolong w±k,J from J ∩ R to R and so, transitively, we
have defined wk,L not only on L but on L ∪ I ∪ J ∪R = R.
The same can be done reversely starting from wk,R on R up to the interval
L in order to have a global definition of wk,R.

The condition to have a global solution in L2(R) ⊕ L2(R) is that the
intersection between the space generated by wk,L and the space generated by
wk,R must not be reduced only to the null function, that is there must exist
four real numbers α, β, γ, δ, with (α, β, γ, δ) 6= (0, 0, 0, 0), such that

αw1,L + βw2,L = γw1,R + δw2,R. (2.133)

Obviously α and β are different from the extreme points of the intervals L
and R.

2.8 Quantization condition

Proposition 2.8.1. E is an eigenvalue of the operator P if and only if

cos
(
h−1φ1(E)

)
cos
(
h−1φ2(E)

)
= O(h−1/3). (2.134)

Proof. The condition (2.133) is equivalent to ask the Wronskian of the solu-
tions to be vanishing. It is defined as

W(w1,L, w2,L, w1,R, w1,R) = det

(
w1,L w2,L w1,R w2,R

w′1,L w′2,L w′1,R w′2,R

)
. (2.135)
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This matrix is well defined and is 4× 4. We will use the limit of the vector
functions for h → 0 and omit the vanishing parts. As it is explained in
[FMW3], Section 4, derivating the operators reduce the exponent in their
norm by 1. Namely, for what it concerns the operators in L (in R being
similar):∣∣∣∣∂xML

∣∣∣∣
L(C0

b (L))
= O(h−1/6),

∣∣∣∣h∂xK2,LW
∗∣∣∣∣
L(C0

b (L))
= O(1), (2.136)∣∣∣∣h∂xK1,LW

∣∣∣∣
L(C0

b (L))
= O(h−7/6),

∣∣∣∣h2∂xK2,LW
∗K1,LW

∣∣∣∣
L(C0

b (L))
= O(h−1/6)

(2.137)

and so the Wronskian becomes

W(w1,L, w2,L, w1,R, w2,R) =

=

∣∣∣∣∣∣∣∣
u−1,L 0 u−1,R 0

0 u−2,L 0 u−2,R
(u−1,L)′ +O(1) O(h−1) (u−1,R)′ +O(1) O(h1/6)

O(h1/6) (u−2,L)′ +O(1) O(h−1) (u−2,R)′ +O(1)

∣∣∣∣∣∣∣∣
(2.138)

and by developing by Laplace rule with respect to the first row and consid-
ering u−j,S = O(h1/6) and (u−j,S)′ = O(h−5/6) in 0, j = 1, 2, S = L,R we
obtain

W(w1,L, w2,L, w1,R, w2,R) =W
(
u−1,L, u

−
1,R

)
W
(
u−2,L, u

−
2,R

)
+O(h−5/3). (2.139)

Both the Wronskians in the right-hand side have been calculated in the pre-
vious chapter being , j = 1, 2:

W
(
u−j,L, u

−
j,R

)
= −h

−2/3

π
cos
(
h−1φj(E)

)
+O(h1/3), (2.140)

where

φ1(E) =

∫ x2(E)

x1(E)

(
E − V1(y)

)1/2
dy, φ2(E) =

∫ x4(E)

x3(E)

(
E − V2(y)

)1/2
dy.

Hence it becomes:

W(w1,L, w2,L, w1,R, w1,R) =

= π−2h−4/3 cos
(
h−1φ1(E)

)
cos
(
h−1φ2(E)

)
+O(h−1/3) +O(h−5/3)

(2.141)

Finally, posing it equal to 0 gives the equation (2.134).
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Now, let us discuss the condition (2.134). Using the formulae for the sum
of cosine functions the condition is equivalent to

1

2

(
cos
(φ1(E) + φ2(E)

h

)
+ cos

(φ1(E)− φ2(E)

h

))
= O(h−1/3). (2.142)

which is equivalent to

cos
(φ1(E)− φ2(E)

h

)
= − cos

(φ1(E) + φ2(E)

h

)
+O(h−1/3). (2.143)

When φ1(E)−φ2(E)
h

6= 0, π mod 2π the cosine is invertible, and so

φ1(E)− φ2(E)

h
= ±

(
φ1(E) + φ2(E)

h

)
+ π +O(h−1/3) mod 2π (2.144)

and when we consider the ”−” sign the solution is

2
φ1(E)

h
= π +O(h−1/3) + 2nπ =⇒

φ1(E) = π
(1

2
+ n
)
h+O(h2/3) (2.145)

for n ∈ Z and analogously with the ”+” sign:

φ2(E) = π
(1

2
+m

)
h+O(h2/3) (2.146)

with m ∈ Z.
On the contrary, when φ1(E)−φ2(E)

h
is near 0 or π modulus 2π, we use the

Taylor expansion of the cosine (renaiming x = φ1(E)+φ2(E)
h

, y = φ1(E)−φ2(E)
h

and considering O(h−1/3) = αh−1/3, α ∈ R):

cosx = cos y +O(h−1/3) =⇒

1− x2

2
∼ 1− y2

2
+O(h−1/3) =⇒

x2 ∼ y2 + αh−1/3 =⇒
φ1(E)− φ2(E)

h
= ±

(
φ1(E) + φ2(E)

h

)
+ π +O(h−1/6) mod 2π (2.147)

which is discussed as above giving the results

φ1(E) = π
(1

2
+ n
)
h+O(h5/6) (2.148)
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for the ”−” sign and

φ2(E) = π
(1

2
+m

)
h+O(h5/6) (2.149)

when considering the ”+” sign.
Please note that the only difference from the previous case when the cosine
was invertible is in the bigger exponent of h.

These are the Bohr-Sommerfeld conditions on the energy in order to be
an eigenvalue of the system. As stated in the introduction the energy is
quantized because its admissible values depend on integer numbers.
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Chapter 3

Intersection of potential
functions below the energy
level

In the case treated in this chapter we are assuming the two potentials to
have an intersection below the value of the energy. We are mainly following
the work [FMW3].

E0

V1(x) V2(x)

x1 x2 x3 x4
0

L R

We are considering only the two intervals L := (−∞, 0] and R := [0,+∞).
Their intersection point 0 will be crucial in linking the solutions built sepa-
rately in the two intervals.

47
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The bidimensional Schrödinger operator is again

P =

(
P1 hW
hW ∗ P2

)
(3.1)

bringing to the 2× 2 system

Pu = Eu ⇐⇒

{(
P1 − E

)
u1 = −hWu2(

P2 − E
)
u2 = −hW ∗u1.

(3.2)

Pj are the scalar Schrödinger operators previously treated

Pj = −h2 d
2

dx2
+ Vj(x) (3.3)

and the off-diagonal part is made by a first order perturbation operator and
its formal adjoint

W = W (x, h∂x) = r0(x) + r1(x)h
d

dx
(3.4)

W ∗ = W ∗(x, h∂x) = r0(x)− r1(x)h
d

dx
− hr′1(x) (3.5)

where r0(x) and r1(x) are bounded and analytic functions.

3.1 Fundamental operators on L

Given the spaces

Ck
b

(
L
)

=
{
u : (−∞, 0]→ R;

k∑
j=0

sup
x≤0
|u(j)(x)|

}
(3.6)

equipped with the norm

||u||Ckb =
k∑
j=0

sup
x≤0
|u(j)(x)|. (3.7)

we can define two fundamental operators K1,L, K2,L on L = (−∞, 0] as

Kj,L : C0
b (L)→ C2

b (L) (3.8)

Kj,L[v](x) =
u+j,L(x)

h2Wj,L

∫ x

−∞
u−j,L(t)v(t)dt+

u−j,L(x)

h2Wj,L

∫ 0

x

u+j,L(t)v(t)dt, (3.9)
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where by Wj,L we have denoted W(u−j,L, u
+
j,L) which is

W(u−j,L, u
+
j,L) =

−2

πh−2/3
(1 +O(h)) (3.10)

already calculated in the first chapter.

The core of the chapter is in the following theorem

Theorem 3.1.1. Given the previous operators, one has∣∣∣∣h2K1,LWK2,LW
∗∣∣∣∣
L(C0

b (L))
+
∣∣∣∣h2K2,LW

∗K1,LW
∣∣∣∣
L(C0

b (L))
= O(h1/3),

(3.11)∣∣hK2,LW
∗v(0)

∣∣+
∣∣hK1,LWv(0)

∣∣ = O(sup
L
|v|). (3.12)

The proof of this theorem is rather involved and makes use of several
lemmas inside.

Proof. We are denoting by U1(x, t) and U2(x, t) respectively the distributional
kernels of h2W1,LK1,LW and h2W2,LK2,LW

∗. Explicitly we have

h2W1,LK1,LW [v](x) =u+1,L(x)

∫ x

−∞
u−1,L(t)

(
r0(t) + r1(t)h

∂

∂t

)
v(t)dt+

+ u−1,L(x)

∫ 0

x

u+1,L(t)
(
r0(t) + r1(t)h

∂

∂t

)
v(t)dt

(3.13)

and integrating by parts

h2W1,LK1,LW [v](x) =

=u+1,L(x)

∫ x

−∞
W (u−1,L(t)v(t))dt+ u+1,L(x)

∫ x

−∞

tW (u−1,L(t))v(t))dt+

+ u−1,L(x)

∫ 0

x

W (u+1,L(t)v(t))dt+ u−1,L(x)

∫ 0

x

tW (u−1,L(t))v(t))dt =

=u+1,L(x)hr1(x)u−1,L(x)v(x) + u+1,L(x)

∫ x

−∞

tW (u−1,L(t))v(t))dt+

+ u−1,L(x)hr1(0)u+1,L(0)v(0)− u−1,L(x)hr1(x)u+1,L(x)v(x)+

+ u−1,L(x)

∫ 0

x

tW (u−1,L(t))v(t))dt,

(3.14)

that is
U1(x, t) = Ũ1(x, t) + hr1(0)u−1,L(x)u+1,L(0)δt=0 (3.15)
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where δt=0 is the Dirac delta in t = 0,

Ũ1(x, t) := u+1,L(x)
(
W1u

−
1,L

)
(t)1{t<x} + u−1,L(x)

(
W1u

+
1,L

)
(t)1{x<t<0} (3.16)

and

W1 = tW = r0 − hr1
∂

∂t
. (3.17)

In the same way we can calculate

U2(x, t) = Ũ2(x, t) + hr1(0)u−2,L(x)u+2,L(0)δt=0, (3.18)

Ũ2(x, t) = u+2,L(x)
(
W2u

−
2,L

)
(t)1{t<x} + u−2,L(x)

(
W2u

+
2,L

)
(t)1{x<t<0}. (3.19)

The theorem requires an estimate of the norm of h2K1,LWK2,LW
∗, which,

in our new notation reads

h2K1,LWK2,LW
∗[v](x) =

1

h2W1,LW2,L

0∫
−∞

0∫
−∞

U1(x, t)U2(t, s)v(s) ds dt =

=O(h−2/3)

0∫
−∞

0∫
−∞

U1(x, t)U2(t, s)v(s) ds dt

(3.20)

Referring to the definitions of U1 and U2 above this last integral can be
decomposed into the sum of four terms:

0∫
−∞

0∫
−∞

U1(x, t)U2(t, s)v(s) ds dt = A1(x) + A2(x) + A3(x) + A4(x) (3.21)

where the various Ai(x) are

A1(x) =

0∫
−∞

0∫
−∞

Ũ1(x, t)Ũ2(t, s)v(s) ds dt, (3.22)

A2(x) = hr1(0)u+2,L(0)v(0)

∫ 0

−∞
Ũ1(x, t)u

−
2,L(t)dt, (3.23)

A3(x) = hr1(0)u−1,L(x)u+1,L(0)

∫ 0

−∞
Ũ2(0, s)v(s)dt, (3.24)

A4(x) = h2r1(0)2u−1,L(x)u+1,L(0)u+2,L(0)v(0) (3.25)
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and from now on we are estimating them with respect to the parameter h.

Since u−1,L(x) is bounded for negative x the estimate on the last is

sup
L
|A4(x)| = O(h2) sup

L
|v|. (3.26)

For the same reason

sup
L
|A3(x)| = O(h)

∣∣∣ ∫ 0

−∞
Ũ2(0, s)v(s)dt

∣∣∣ (3.27)

and∫ 0

−∞
Ũ2(0, s)v(s)dt =

∫ x2(E)

−∞
Ũ2(0, s)v(s)dt+

∫ 0

x2(E)

Ũ2(0, s)v(s)dt. (3.28)

The first one is ∫ x2(E)

−∞
Ũ2(0, s)v(s)dt = O(h2/3) sup

L
|v| (3.29)

Looking at the functions in Ũ2(x, t) we note that u±2,L(x) are oscillating in
[b, 0], that is inside the well of V2 and so, from their definition,

|u±2,L(s)|+ |h∂su±2,L(s)| = O(h1/6|s− b(E)|−1/4), (3.30)

that is ∫ 0

x2(E)

Ũ2(0, s)v(s)dt = O(h1/3) sup
L
|v| (3.31)

which dominates over the first integral leading to an estimate

sup
L
|A3(x)| = O(h)O(h1/3) sup

L
|v| = O(h4/3) sup

L
|v|. (3.32)

Now we are going to estimate A2(x). u+2,L(0) is bounded but in particular

is O(h1/6) one has

sup
L
|A2(x)| = O(h7/6)

∣∣∣ ∫ 0

−∞
Ũ1(x, t)u

−
2,L(t)dt

∣∣∣ sup
L
|v| (3.33)

In order to estimate this integral we need the following

Lemma 3.1.2. ∫ 0

−∞
Ũ1(x, t)u

−
2,L(t)dt = O(h1/3).
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Proof of lemma 3.1.2. Since Ũ1(x, t) = O(1) on (−∞, x3(E)]2 because,
as it is defined, the parts with u−1,L compensate the exponentially big parts

with u+1,L and ∀δ > 0 ∃α > 0 constant such that

• u−2,L(t) = O(h1/6e−α|t|/h) on (−∞, x2(E)− δ], that is outside the well of
V2;

• u−2,L(t) = O(h1/6|x2(E) − t|−1/4e−α|x2(E)−t|3/2/h) on [x2(E) − δ, x2(E) −
h2/3] because we have to take into account the behaviour near the
inversion point;

• u−2,L(t) = O(1) on (−∞, x3(E)]

one obtains ∫ x2(E)

−∞
Ũ1(x, t)u

−
2,L(t)dt = O(h2/3) (3.34)

Otherwise, when t ∈ [x2(E), 0] one has Ũ1(x, t) = O(h1/6) and u−2,L(t) =

O(h1/6|t− x2(E)|−1/4) because obviously the sine function is bounded. That
implies ∫ 0

x2(E)

Ũ1(x, t)u
−
2,L(t)dt = O(h1/3) (3.35)

that brings to∫ 0

−∞
Ũ1(x, t)u

−
2,L(t)dt = O(h2/3) +O(h1/3) = O(h1/3). (3.36)

End of proof of lemma 3.1.2

Inserting this result into (3.33) we obtain

sup
L
|A2(x)| = O(h3/2) sup

L
|v| (3.37)

The only estimate missing in (3.21) is the one for

A1(x) =

∫ 0

−∞

∫ 0

−∞
Ũ1(x, t)Ũ2(t, s)v(s) ds dt. (3.38)

In order to do so we observe that the set (−∞, 0]×(−∞, 0] can be decomposed
into four set by dividing the interval (−∞, 0] into the union of (−∞, x2(E)]
and [x2(E), 0].
For the first term, the estimate is∫ x2(E)

−∞

∫ x2(E)

−∞
Ũ1(x, t)Ũ2(t, s)v(s) ds dt = O(h4/3) sup

L
|v| (3.39)
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as can be seen in [FMW1], Section 3.1, eq. (3.15) and in equation (5.46) of
this thesis.
The other three quantities to be evaluated are

A1,1(x) =

∫ 0

x2(E)

∫ 0

x2(E)

Ũ1(x, t)Ũ2(t, s)v(s) ds dt, (3.40)

A1,2(x) =

∫ x2(E)

−∞

∫ 0

x2(E)

Ũ1(x, t)Ũ2(t, s)v(s) ds dt, (3.41)

A1,3(x) =

∫ 0

x2(E)

∫ x2(E)

−∞
Ũ1(x, t)Ũ2(t, s)v(s) ds dt. (3.42)

In A1,2(x), since t ≤ s, from the definition of Ũ2 we can rewrite, separating
the integrals

A1,2(x) =

∫ x2(E)

−∞
Ũ1(x, t)u

−
2,L(t)dt

∫ 0

x2(E)

(
W2u

+
2,L

)
(s)ds (3.43)

and, since on [x2(E), 0],(
W2u

+
2,L

)
(s) = O

(
h1/6|s− x2(E)|−1/4

)
, (3.44)

it becomes

A1,2(x) = O(h1/6) sup
L
|v|
∫ x2(E)

−∞
Ũ1(x, t)u

−
2,L(t)dt. (3.45)

As above, Ũ1(x, t) is exponentially decading for t ∈ (−∞, x2(E)], that is
∀δ > 0 ∃α(δ) > 0 such that∫ x2(E)−δ

−∞
Ũ1(x, t)u

−
2,L(t)dt = O(e−α/h)

and otherwise, when t ∈ [x2(E)− δ, x2(E)],

Ũ1(x, t) = O(h1/6)

from the features of the functions involved inside the well of V1 and

u−2,L(t) = O(h1/6|t− x2(E)|−1/4e−β(x2−t)3/2/h)

for some constant β > 0 and then,∫ x2(E)

x2(E)−δ
Ũ1(x, t)u

−
2,L(t)dt =O(h1/3)

∫ δ

−δ
t−1/4e−βt

3/2/hdt =
y=th−2/3

=O(h1/3)

∫ δh2/3

−δh−2/3

h−1/6y−1/4e−βy
3/2

h2/3dt =

=O(h5/6)

(3.46)
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from which,

sup
L
|A1,2| = O(h1/6)

(
O(h5/6) +O(e−α/h)

)
sup
L
|v| = O(h) sup

L
|v|. (3.47)

About A1,3(x), like A1,2(x), it can be rewritten as

A1,3(x) =

∫ 0

x2(E)

Ũ1(x, t)u
+
2,L(t)dt

∫ x2(E)

−∞

(
W2u

−
2,L

)
(s)ds. (3.48)

From [FMW1], Section 3.1, equation (3.11) the second integral has the value∫ x2(E)

−∞

(
W2u

−
2,L

)
(s)ds = O(h2/3) (3.49)

leading to

A1,3(x) = O(h2/3) sup
L
|v|
∫ 0

b(E)

Ũ1(x, t)u
+
2,L(t)dt (3.50)

and for t ∈ [0, x2(E)], the integrand function isO(h1/3|t−x2(E)|−1/4) bringing
to the final estimate

sup
L
|A1,3(x)| = O(h) sup

L
|v| (3.51)

The estimation on the part A1,1(x) in (3.40) makes use of several auxiliary
lemmas. First of all we split

A1,1(x) = A+
1,1(x) + A−1,1(x) (3.52)

having set

A±1,1(x) =

∫ 0

x2(E)

Ũ1(x, t)u
±
2,L(t)w±(t)dt (3.53)

w+(t) =

∫ t

x2(E)

(
W2u

−
2,L

)
(s)v(s)ds (3.54)

w−(t) =

∫ 0

t

(
W2u

+
2,L

)
(s)v(s)ds (3.55)

Since |u±2,L| + |W2u
±
2,L| = O(h1/6|E − V2|−1/4) on [0, b(E)] because both the

sine and the cosine are trivially bounded and there
(
E − V2(s)

)−1/4 ∼ s1/4

which is integrable we obtain

w±(t) = O(h1/6) sup
L
|v| (3.56)
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and
w′±(t) =

(
W2u

∓
2,L

)
(t)v(t) = O(sup

L
|v|). (3.57)

Now we can fix λ ≥ 1 so we can write

A±1,1(x) =

∫ b(E)+λh2/3

b(E)

Ũ1(x, t)u
±
2,L(t)w±(t)dt+

∫ 0

b(E)+λh2/3
Ũ1(x, t)u

±
2,L(t)w±(t)dt

(3.58)
Using the last estimates on w±, Ũ1(x, t) = O(h1/6) and u±2,L(t) = O(h1/6|t−
b(E)|−1/4) when t ∈ [b(E), b(E) + λh2/3], the first integral becomes

b(E)+λh2/3∫
b(E)

O(h1/2)|t− b(E)|−1/4 sup
L
|v|dt =

= O(h1/2) sup
L
|v|
[
|t− b(E)|3/4

]b(E)+λh2/3

b(E)
= O(h) sup

L
|v|.

(3.59)

Assuming x ≤ b(E), hence x ≤ t, we have

A±1,1(x) =

∫ 0

b(E)+λh2/3
Ũ1(x, t)u

±
2,L(t)w±(t)dt+O(h) sup

L
|v| =

=

∫ 0

b(E)+λh2/3
W1(x, t)u

+
1,L(t)u±2,L(t)w±(t) dt u−1,L(x) +O(h) sup

L
|v|

(3.60)

from the definition of Ũ1(x, t) and rename

C(v) =

∫ 0

b(E)+λh2/3
W1u

+
1,L(t)u±2,L(t)w±(t) dt (3.61)

Since the auxiliary function ξ2(E) used in the first chapter for scalar solutions
behaves like |t− b(E)| in the interval [b(E) + λh2/3, 0] we can write

C(v) = C+(v) + C−(v) +R(v) (3.62)

where

C±(v) =

0∫
b(E)+λh2/3

h1/3
a±(t) exp

(
± iν1(t)/h

)(
t− b(E)

)1/4 sin
(2ξ2(t)

3/2

3h
+
π

4

)
w±(t) dt

(3.63)
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and

R(v) =

0∫
b(E)+λh2/3

(
O(h

7
6
+ 1

6 )

(t− b(E))1/4
+

O(h
1
6
+ 7

6 )

(t− b(E))
1
4
+ 3

2

+O(h7/6)

)
|w±(t)| dt

(3.64)

where a±(t) is a smooth function and ν1(t) =
∫ t
a(E)

(
E − V1(s)

)1/2
ds. The

estimate on R(v) is

R(v) =
(
O(h3/2)

[
|t− b(E)|3/4

]0
b(E)+λh2/3

+O(h3/2)
[
|t− b(E)|−3/4

]0
b(E)+λh2/3

+

+O(h4/3)
[
t
]0
b(E)+λh2/3

)
sup
L
|v| =

=O
(
h2 + h+ h4/3

)
sup
L
|v| = O(h) sup

L
|v|

(3.65)

Posing

ν2(t) =

∫ t

b(E)

(
E − V2(s)

)1/2
ds (3.66)

we see that C+(v) and C−(v) are sums of terms of the type

B+(v) =

0∫
b(E)+λh2/3

h1/3
a±(t) exp

(
± i(ν1(t) + ν2(t))/h

)
(t− b)1/4

w±(t) dt (3.67)

or

B−(v) =

0∫
b(E)+λh2/3

h1/3
a±(t) exp

(
± i(ν1(t)− ν2(t))/h

)
(t− b)1/4

w±(t) dt (3.68)

where a±(t) is the same as the definition of C± and the signs in the exponent
are not related to the signs in w±.
When t ∈ [b(E) + λh2/3, 0], that is strictly inside both the wells, one has

•
ν ′1(t) + ν ′2(t) =

√
E − V1(t) +

√
E − V2(t) ≥

1

C
(3.69)

for some C ∈ R+.

•
ν ′1(t)− ν ′2(t) =

√
E − V1(t)−

√
E − V2(t) (3.70)

is null only for t = 0, which is the only point where V1(t) = V2(t) by
construction.
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•

|ν ′′1 (t)− ν ′′2 (t)| =
∣∣∣− V ′1(t)

2
√
E − V1(t)

+
V ′2(t)

2
√
E − V2(t)

∣∣∣ ≥ 1

C
(3.71)

for some C ∈ R+.

We observe that

e±i(ν1(t)+ν2(t))/h =
±h

i(ν1(t) + ν2(t))

d

dt
e±i(ν1(t)+ν2(t))/h (3.72)

and integrating by parts on B+(v) and using the notation ϕ(t) := ±(ν1(t) +
ν2(t)):

B+(v) =
[
± h4/3 a±(t)

(t− b)1/4iϕ′(t)
exp

(
iϕ(t)/h

)
w±(t)

]0
b(E)+λh2/3

+

−
0∫

b(E)+λh2/3

d

dt

(
± h4/3 a±(t)

(t− b)1/4iϕ′(t)
w±(t)

)
exp

(
iϕ(t)/h

)
dt =

=O(h4/3)
(
O(1) +O(h−1/6)

)
sup
L
|w±|+

+ ih4/3
0∫

b(E)+λh2/3

eiϕ(t)/h
d

dt

( a±(t)w±(t)

(t− b(E))1/4ϕ′(t)

)
dt =

=O(h4/3) sup
L
|v|+O(h4/3)

0∫
b(E)+λh2/3

|eiϕ(t)/h|O
(
|w′±|+ (t− b(E))−5/4|w±|

)
dt

=O(h4/3) sup
L
|v|+O(h4/3) sup

L
|v|+O(h

4
3
+ 1

6
− 1

6 ) sup
L
|v| =

=O(h4/3) sup
L
|v|.

(3.73)

where we have used that |w′±| = O(sup |v|) near b(E) and |w±| = O(h1/6 sup |v|).
For the term B−(v) we are using the stationary phase method and two aux-
iliary lemmas.
Let χ ∈ C∞0 ([b(E), 0]) be a cut-off function which is χ = 1 in a neighbourhood
of 0; we can hence write B−(v) = B−,1(v) +B−,2(v) with

B−,1(v) =

0∫
b(E)+λh2/3

h1/3
(
1− χ(t)

)a(t) exp
(
± i(ν1(t)− ν2(t))/h

)
(t− b)1/4

w±(t) dt

(3.74)
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and

B−,2(v) =

0∫
b(E)+λh2/3

h1/3χ(t)
a(t) exp

(
± i(ν1(t)− ν2(t))/h

)
(t− b)1/4

w±(t) dt. (3.75)

The estimate on B−,1 is identical to the one for B+ giving

B−,1(v) = O(h4/3) sup
L
|v| (3.76)

As said slightly above we are using a lemma related to the stationary phase
theorem.

Lemma 3.1.3. Let χ0 ∈ C∞0 (R, [0, 1]), χ0 = 1 near 0, ψ ∈ C∞(R) admitting
0 as the unique stationary point in Suppχ0 with ψ′′(0) 6= 0. Then, denoting
by K the convex hull of Suppχ0 one has, for f ∈ C2(R),∫

eiψ(t)/hχ0(t)f(t) dt = f(0)ei
π
4
sgnψ′′(0)

√
2πh

|φ′′(0)|
+O(h) sup

K

(
|f ′|+ |f ′′|

)
.

(3.77)
uniformly with respect to h > 0 small enough.

Proof of Lemma 3.1.3. We can make a smooth change of variables for ψ
setting

ψ = ±µt2/2

with µ > 0 constant, since ψ has only one stationary point. Then we can
write f as

f(t) = f(0) + tg(t),

with

g(t) :=

∫ 1

0

f ′(θt) dθ

obtaining thus∫
eiψ(t)/hχ0(t)f(t) dt =

= f(0)

∫
e±iµt

2/2hχ0(t) dt±
h

iµ

∫
d

dt
(e±iµt

2/2h)χ0(t)g(t) dt.

(3.78)

From the stationary-phase theorem (in [Ma], Theorem 2.6.1) we have∫
e±iµt

2/2hχ0(t) dt = µ−1/2e±i
π
4

√
2πh+O(h∞) (3.79)
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and from an integration by parts:∫
eiψ(t)/hχ0(t)f(t) dt =f(0)

(
µ−1/2e±i

π
4

√
2πh+O(h∞)

)
+

± ih

µ

∫
e±iµt

2/2h d

dt

(
χ0(t)g(t)

)
dt

(3.80)

Taking into account that supSuppχ0
(|g| + |g′|) ≤ supK(|f | + |f ′|) the thesis

follows.
End of proof of lemma 3.1.3.

From this lemma another result descends:

Lemma 3.1.4. Let I ⊂ R an open interval containig 0 and ψ ∈ C∞(R)
admitting 0 as a unique stationary point in Ī with ψ′′(0) 6= 0. Then, for
u ∈ C1

0(I), ∫
eiψ(t)/hu(t) dt = O(h1/2) sup(|u|+ |u′|) (3.81)

uniformly with respect to h > 0 small enough.

Proof of lemma 3.1.4. Setting

f(t) =
1√
2πh

∫
e−(t−s)

2/2hu(s) ds

we can write

f(t)− u(t) =
1√
2πh

∫
e−(t−s)

2/2h
(
u(s)− u(t)

)
ds

From the continuity of u, u(s) − u(t) ≤ |s − t| sup |u′| and
∫
e−(s−t)

2/2h|s −
t| ds = 2h, so we have

|f(t)− u(t)| =
√

2h

π
sup |u′|.

Fixing χ0 ∈ C∞0 (R, [0, 1]) with χ0 = 1 on I, such that χu = u, we obtain∣∣∣ ∫ eiψ(t)/hu(t) dt−
∫
eiψ(t)/hχ0(t)f(t) dt

∣∣∣ = |I|
√

2h

π
sup |u′|.

Applying lemma 3.1.3 to f ,∫
eiψ(t)/hχ0(t)f(t) dt = f(0)

√
2πh

|ψ′′(0)|
+O(h) sup

(
|f ′|+ |f ′′|

)
(3.82)
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Now we calculate the derivatives of f :

f(t) =
y=s−t

1√
2πh

∫
e−y

2/2hu(y + t) dy =⇒

f ′(t) =
1√
2πh

∫
e−y

2/2h d

dt
u(y+t) dy =

1√
2πh

∫
e−(t−s)

2/2h d

ds
u(s) ds (3.83)

and

f ′′(t) = − 1

h
√

2πh

∫
e−(t−s)

2/2h(t− s)u′(s) ds (3.84)

It gives

|f ′(t)| = O(1) sup |u′| (3.85)

making the change of variables z = (t− s)/
√

2h in the integral and

|f ′(t)| = O(h−1/2) sup |u′| (3.86)

again with the same change.
Since f(0) = O(sup |u|), substituting in (3.82) we obtain the thesis.
End of proof of lemma 3.1.4.

Remark 4. This lemma remains valid when the integration is restricted to a
half line R+ or R−.

If we apply the previous lemma to the functions

ψ(t) = ±(ν1(t)− ν2(t)), u(t) = h1/3
a(t)

(t− b(E))1/4
w±(t) (3.87)

we obtain the estimate on B−,2(v):

B−,2 = O(h5/6) sup
Suppχ

(|w±|+ |w′±|)

because from the definition (3.75) and the lemma:

B−,2(v) = h1/3O(h1/2) sup
Suppχ

(|w±|+ |w′±|)

but, from (3.56) and w′± = O(h1/6) supL |v|:

B−,2(v) = O(h) sup
L
|v| (3.88)
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We are now concluding the estimate on A±1,1(t) using (3.60), (3.62), (3.65),
(3.73), (3.76) and (3.88):

sup
L
|A±1,1| = O(h) sup

L
|v|. (3.89)

Here is a recap of the various functions and estimates we have used:

|A±1,1| =C(v)u−1,L(x) +O(h) sup
L
|v| =

=
(
C+(v) + C−(v) +R(v)

)
u−1,L(x) +O(h) sup

L
|v| =

=
(
B+(v) +B−(v) +R(v)

)
u−1,L(x) +O(h) sup

L
|v| =

=
(
B+(v) +B−,1(v) +B−,2(v) +R(v)

)
u−1,L(x) +O(h) sup

L
|v| =

=
(
O(h4/3) +O(h4/3) +O(h) +O(h)

)
sup
L
|v|O(1) +O(h) sup

L
|v| =

=O(h) sup
L
|v|.

(3.90)

Please note that right before (3.60) we have assumed x ≤ b(E). Now,
when x ∈ [b(E), 0], A±1,1 must be written as

A±1,1(x) =u+1,L(x)

∫ x

b(E)

(
W1u

−
1,L

)
(t)u±2,L(t)w±(t) dt+

+ u−1,L(x)

∫ 0

x

(
W1u

+
1,L

)
(t)u±2,L(t)w±(t) dt

(3.91)

in consequence of the definition of Ũ1(x, t). The proof remains essentially
similar as long as x is away from the point 0 critical for ν1 − ν2. Before, x
was less or equal b(E) and we have taken χ to be 1 in a neighbourhood of
the origin. This time, whenever x 6= 0, it suffices to choose χ such that its
support does not contain x.
In the case x ≈ 0, in the proof of lemma 3.1.3, when integrating by parts in
eq. (3.80) the boundary term

∓ih
µ
e±iµx̃

2/2h

appears, because χ is not vanishing anymore. x̃ is the transformed of x after
the change of variables. This term is O(h) because trivially all parts other
from h are bounded.
The other difference is the integral∫

±t≥±x̃
e±iµt

2/2hχ0(t) dt (3.92)
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to be added in the right-hand side of (3.79) and to be estimated. In order to
do so we prove

Lemma 3.1.5. For any µ > 0 independent from h and for any a ∈ R (which
may depend from h), and χ0 as in lemma 3.1.3, one has,∫

±t≥±a
e±iµt

2/2hχ0(t) dt = O(h1/2),

uniformily with respect to h small enough.

Proof of lemma 3.1.5. We are assuming t ≥ a and a ∈ Suppχ.
If a ≥ −h1/2, we have,∫
t≥a

e±iµt
2/2hχ0(t) dt =

∫ a+2h1/2

a

e±iµt
2/2hχ0(t) dt+

∫
t≥a+2h1/2

e±iµt
2/2hχ0(t) dt =

=O(h1/2)± h

iµ

∫
t≥a+2h1/2

d

dt

(
e±iµt

2/2h
)χ0(t)

t
dt =

=O(h1/2 + h1/2)± ih

µ

∫
t≥a+2h1/2

e±iµt
2/2h d

dt

(χ0(t)

t

)
dt =

=O(h1/2) +O(h)

∫
t≥a+2h1/2

dt

t2
= O(h1/2).

(3.93)

If a ≤ −h1/2∫
t≥a

e±iµt
2/2hχ0(t) dt =

∫ −h1/2
a

e±iµt
2/2hχ0(t) dt+

∫
t≥−h1/2

e±iµt
2/2hχ0(t) dt =

=

∫ −h1/2
a

e±iµt
2/2hχ0(t) dt+O(h1/2 + h1/2) =

=± h

iµ

∫ −h1/2
a

d

dt

(
e±iµt

2/2h
)χ0(t)

t
dt+O(h1/2) =

=O(h1/2)

(3.94)

from an integration by parts on the last step.
End of proof of lemma 3.1.5

Thus, the estimate of |A1,1(x)| is the same as for x ≤ b(E) giving

sup
L
|A1,1| = O(h) sup

L
|v| (3.95)
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The estimate of the operator h2K1,LWK2,LW
∗ comes from (3.20), (3.21),

(3.26), (3.32), (3.37), (3.38), (3.47), (3.51), (3.95):∣∣∣∣h2K1,LWK2,LW
∗∣∣∣∣
L(C0

b (L))
=

= O(h−2/3)
(
|A1,1|+ |A1,2|+ |A1,3|+O(h4/3) + |A2|+ |A3|+ |A4|

)
sup
L
|v| =

= O(h−2/3)
(
O(h) +O(h) +O(h) +O(h4/3)+

+O(h3/2) +O(h4/3) +O(h2)
)

sup
L
|v| =

= O(h1/3) sup
L
|v|.

(3.96)

The estimate on h2K2,LW
∗K1,LW is made in the same way and it proves the

first estimate in Theorem 3.1.1.

For the estimate of hK2,LW
∗v(0), we observe

hK2,LW
∗v(0) = O(h−1/3)

∫ 0

−∞
Ũ2(0, t)v(t) dt+O(h2/3)r1(0)u−2,L(0)u+2,L(0)v(0)

(3.97)
and using that u±2,L = O(h1/6),

hK2,LW
∗v(0) =O(h−1/3)

∫ 0

−∞
Ũ2(0, t)v(t) dt+O(h) sup

L
|v| =

=O(h−1/6)

∫ 0

−∞
W2u

−
2,L(t)v(t) dt+O(h) sup

L
|v| =

=O(sup
L
|v|).

(3.98)

The estimate of hK1,LWv(0) is the same and Theorem 3.1.1 follows.

3.2 Fundamental operators on R

Concerning to the interval R = [0,+∞), there is not any difference from
the interval L. We only have to consider the two integral operators

Kj,R : C0
b (R)→ C2

b (R),

Kj,R(v)(x) :=

=
u−j,R(x)

h2W(u−j,R, u
+
j,R)

∫ x

0

u+j,R(t)v(t)dt+
u+j,R(x)

h2W(u−j,R, u
+
j,R)

∫ +∞

x

u−j,R(t)v(t)dt.

(3.99)
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In the same way as Theorem 3.1.1 we can prove

Theorem 3.2.1. Given the previous operators, one has∣∣∣∣h2K2,RW
∗K1,RW

∣∣∣∣
L(C0

b (R))
+
∣∣∣∣h2K1,RWK2,RW

∗∣∣∣∣
L(C0

b (R))
= O(h1/3),

(3.100)∣∣hK1,RWv(0)
∣∣+
∣∣hK2,RW

∗v(0)
∣∣ = O(sup

R
|v|). (3.101)

3.3 Solutions of the system on L and R and

quantization condition.

We are renaming the operators in Theorems 3.1.1 and 3.2.1

ML = h2K1,LWK2,LW
∗, M̃L = h2K2,LW

∗K1,LW

MR = h2K2,RW
∗K1,RW, M̃R = h2K1,RWK2,RW

∗

where the index ”L” and ”R” trivially refers to the interval in which they
are defined. They permit us to define the solutions of the system (3.2)

w1,L =

( ∑
j≥0M

j
Lu
−
1,L

−hK2,LW
∗∑

j≥0M
j
Lu
−
1,L

)

w2,L =

(
−hK1,LW

∑
j≥0 M̃

j
Lu
−
2,L∑

j≥0 M̃
j
Lu
−
2,L

)
on the interval L and

w1,R =

( ∑
j≥0 M̃

j
Ru
−
1,R

−hK2,RW
∗∑

j≥0 M̃
j
Ru
−
1,R

)

w2,R =

(
−hK1,RW

∑
j≥0M

j
Ru
−
2,R∑

j≥0M
j
Ru
−
2,R

)
on the interval R.
As for the solutions in the previous chapter each couple {w1,L, w2,L} and
{w1,R, w2,R} is a basis for the space of solutions in its own interval and using
that in 0 {w1,L, w2,L} are linearly dependent from {w1,R, w2,R} and viceversa,
we can extend all these four functions to R. That brings to the condition on
their Wronskian

W(w1,L, w2,L, w1,R, w2,R) = 0 (3.102)
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in order to have solutions in L2(R)⊕ L2(R).
We are calculating the Wronskian in 0 since is constant with respect to the
point x for Abel’s identity. In order to do so we are using the values of
the solutions and their derivative in 0, setting S = L or R (see [FMW3],
Proposition 4.1):

w1,S(0) =

(
u−1,S(0)

0

)
+O(h1/3); w′1,S(0) =

(
(u−1,S)′(0)

0

)
+O(h−2/3);

w2,S(0) =

(
0

u−2,S(0)

)
+O(h1/3); w′2,S(0) =

(
0

(u−2,S)′(0)

)
+O(h−2/3).

The wronskian is, from [FMW3], Proposition 4.3 and, with the same calcu-
lation as (2.138) using these functions above

W(E) =
16

π2
h−4/3 cos(h−1φ1(E)) cos(h−1φ2(E)) +O(h−7/6). (3.103)

Imposing it to be null we have the equation

cos(h−1φ1(E)) cos(h−1φ2(E)) = O(h1/6). (3.104)

and following the resolution on Section 2.8, when φ1(E) 6= φ2(E) the condi-
tions are

φ1(E) = π
(1

2
+ n
)
h+O(h7/6) (3.105)

for n ∈ Z or

φ2(E) = π
(1

2
+m

)
h+O(h7/6) (3.106)

with m ∈ Z, while when φ1(E) ≈ φ2(E):

φ1(E) = π
(1

2
+ n
)
h+O(h13/12) (3.107)

or

φ2(E) = π
(1

2
+m

)
h+O(h13/12). (3.108)
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Chapter 4

Non intersecting potential
functions

We are dividing again R into four interval having a point in common that
can be either one of the inversion point for V2(x) or 0. In this way we are
able to use construction already studied in other chapters and refer to them.

E0

V1(x)

V2(x)

x1

x2 x3
x4

0

L I J R

4.1 Fundamental operators on L and R

On the intervals L := (−∞, x2] and R := [x3,+∞) the integral operators
are the same as in the fifth chapter since again the interval ends on an
inversion point for a potential and the other potential goes from negative
values to positive ones.
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For L they are:
Kj,L : C0

b (L)→ C2
b (L)

Kj,L[v](x) =

=
u+j,L(x)

h2W(u−j,L, u
+
j,L)

∫ x

−∞
u−j,L(t)v(t)dt+

u−j,L(x)

h2W(u−j,L, u
+
j,L)

∫ x2

x

u+j,L(t)v(t)dt.

(4.1)

and in R
Kj,R : C0

b (R)→ C2
b (R)

Kj,R[v](x) =

=
u−j,R(x)

h2W(u−j,R, u
+
j,R)

∫ x

x2

u+j,R(t)v(t)dt+
u+j,R(x)

h2W(u−j,R, u
+
j,R)

∫ +∞

x

u−j,R(t)v(t)dt.

(4.2)

and for them the relations

(Pj − E)Kj,L = Id, (Pj − E)Kj,R = Id (4.3)

hold (see 5.1.1 in Chapter 5 for the proof).
The estimates on the norms of these operators are, from Theorem 5.1.2, The-
orem 5.2.1, [FMW1], Prop. 3.1 and Prop. 3.2.

Theorem 4.1.1.
||hK2,LW

∗||L(C0
b )

= O(h1/3); (4.4)

||h2K1,LWK2,LW
∗||L(C0

b )
= O(h2/3); (4.5)

||hK1,RW ||L(C0
b (R) = O(h1/3); (4.6)

||h2K2,RW
∗K1,RW ||L(C0

b (R) = O(h2/3). (4.7)

4.2 Fundamental operators on I and J.

For what it concerns the operators to use in the intervals I := [x2, 0] and
J := [0, x3] we use the ones in Section 3.1 and 3.2 with −∞ in the integral
of Kj,L replaced by x2 and +∞ in the integral of Kj,R replaced by x3. One
extreme of the interval is an inversion point for one potential and the other
potential is below the energy through all the interval I or J considered.
The operators are

Kj,I : C0
b (I)→ C2

b (I)
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Kj,I [v](x) =

=
u+j,L(x)

h2W(u−j,L, u
+
j,L)

∫ x

x2

u−j,L(t)v(t)dt+
u−j,L(x)

h2W(u−j,L, u
+
j,L)

∫ 0

x

u+j,L(t)v(t)dt,

(4.8)

and

Kj,J : C0
b (J)→ C2

b (J)

Kj,J(v)(x) :=

=
u−j,R(x)

h2W(u−j,R, u
+
j,R)

∫ x

0

u+j,R(t)v(t)dt+
u+j,R(x)

h2W(u−j,R, u
+
j,R)

∫ x3

x

u−j,R(t)v(t)dt.

(4.9)

The estimate on the norms of the compositions of these operators are the
same of Theorem 3.1.1 and Theorem 3.2.1 in Sections 3.1 and 3.2.

Theorem 4.2.1. Given the previous operators, one has∣∣∣∣h2K1,IWK2,IW
∗∣∣∣∣
L(C0

b (I))
+
∣∣∣∣h2K2,IW

∗K1,IW
∣∣∣∣
L(C0

b (I))
= O(h1/3); (4.10)

∣∣hK2,IW
∗v(0)

∣∣+
∣∣hK1,IWv(0)

∣∣ = O(sup
I
|v|); (4.11)∣∣∣∣h2K2,JW

∗K1,JW
∣∣∣∣
L(C0

b (J))
+
∣∣∣∣h2K1,JWK2,JW

∗∣∣∣∣
L(C0

b (J))
= O(h1/3); (4.12)∣∣hK1,JWv(0)

∣∣+
∣∣hK2,JW

∗v(0)
∣∣ = O(sup

J
|v|). (4.13)

Proof. The proof is identical to the proof of Theorem 3.1.1 and we are not
repeating it. The only difference is that, now, neither ν1 + ν2 nor ν1 − ν2
have a stationary point. For this reason B+ and B− can be estimated in the
same way and we obtain

B+(v) +B−(v) = O(h4/3) sup
I
|v|. (4.14)

Inserting the last estimate into (3.90) we observe that the estimate for A1,1

is again O(h) supI |v| and continuing the proof the result follows.

4.3 Quantization condition

We are now giving solutions of the system in each interval, using for L
and R the ones in Sections 5.1 and 5.2, while in I and J the ones already
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defined in Section 3.3. Namely, after having defined the new operators

ML = h2K1,LWK2,LW
∗, MR = h2K2,RW

∗K1,LW, (4.15)

MI = h2K1,IWK2,IW
∗, M̃I = h2K2,IW

∗K1,IW, (4.16)

MJ = h2K2,JW
∗K1,JW, M̃J = h2K1,JWK2,JW

∗, (4.17)

they are

w1,L =

( ∑
j≥0M

j
Lu
−
1,L

−hK2,LW
∗∑

j≥0M
j
Lu
−
1,L

)
;

w2,L =

(
−
∑

j≥0M
j
L(hK1,LWu−2,L)

u−2,L + hK2,LW
∗∑

j≥0M
j
L(hK1,LWu−2,L)

)
;

w1,R :=

(
u−1,R + hK1,RW

∑
j≥0M

j
R(hK2,RW

∗u−1,R)

−
∑

j≥0M
j
R(hK2,RW

∗u−1,R)

)

w2,R :=

(
−hK1,RW

∑
j≥0M

j
Ru
−
2,R∑

j≥0M
j
Ru
−
2,R

)
;

w1,I =

( ∑
j≥0M

j
Iu
−
1,L

−hK2,IW
∗∑

j≥0M
j
Iu
−
1,L

)
; w2,I =

(
−hK1,IW

∑
j≥0 M̃

j
Iu
−
2,L∑

j≥0 M̃
j
Iu
−
2,L

)
;

w1,J =

( ∑
j≥0 M̃

j
Ju
−
1,R

−hK2,JW
∗∑

j≥0 M̃
j
Ju
−
1,R

)
; w2,J =

(
−hK1,JW

∑
j≥0M

j
Ju
−
2,R∑

j≥0M
j
Ju
−
2,R

)
.

As in Sections 2.7 and 2.8 we can extend wj,L and wj,R to R and come to the
condition on the Wronskian

W(w1,L, w2,L, w1,R, w2,R) = 0 (4.18)

which leads to the equation

cos
(
h−1φ1(E)

)
cos
(
h−1φ2(E)

)
= O(h−1/3) (4.19)

solved, for φ1(E)−φ2(E)
h

6= 0, π mod 2π with the condition on E

φ1(E) = π
(1

2
+ n
)
h+O(h2/3) (4.20)

for n ∈ Z or

φ2(E) = π
(1

2
+m

)
h+O(h2/3) (4.21)
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with m ∈ Z and, when φ1(E)−φ2(E)
h

≈ 0, π mod 2π the conditions become

φ1(E) = π
(1

2
+ n
)
h+O(h5/6) (4.22)

for n ∈ Z or

φ2(E) = π
(1

2
+m

)
h+O(h5/6) (4.23)

for m ∈ Z.
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Chapter 5

Intersection of potential
functions at energy level

This Chapter follows the works [FMW1] and [FMW2].
In the last case the potentials V1(x) and V2(x) have a point of intersection
x2 where V1(x2) = V2(x2) = E0. We are considering possible values of the
energy E in the interval [E0 − C0h

2/3, E0 + C0h
2/3] for some fixed constant

C0 arbitrarily large. Since the point x2 does not depend by E we will assume
x2 = 0.

E0

V1(x) V2(x)

x1 x3x2

0

We are treating the problem separately in the two intervals (−∞, 0] and
[0,+∞).

5.1 Solutions on (−∞, 0].
For what it concerns L := (−∞, 0] we observe that in the first chapter

we have built a couple of solutions u±j,L(x) related to the potential Vj(x) so

73
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we have globally four linearly independent solutions.
In particular the Wronskians are

W(u−j,L, u
+
j,L) =

−2

πh2/3
(
1 +O(h)

)
. (5.1)

Defining the space of functions as in the previous chapter

Ck
b

(
(−∞, 0]

)
=
{
u : (−∞, 0]→ R;

k∑
j=0

sup
x≤0
|u(j)(x)|

}
(5.2)

equipped with the norm

||u||Ckb =
k∑
j=0

sup
x≤0
|u(j)(x)|, (5.3)

we can set an operator

Kj,L : C0
b

(
(−∞, 0]

)
→ C2

b

(
(−∞, 0]

)
(5.4)

acting on v ∈ C0
b

(
(−∞, 0]

)
as

Kj,L[v](x) =
u+j,L(x)

h2W(u−j,L, u
+
j,L)

∫ x

−∞
u−j,L(t)v(t)dt+

+
u−j,L(x)

h2W(u−j,L, u
+
j,L)

∫ 0

x

u+j,L(t)v(t)dt.

(5.5)

Lemma 5.1.1. Kj,L is a fundamental solution for Pj − E, that is

(Pj − E)Kj,Lf(x) = f(x) ∀f ∈ C0
b

(
(−∞, 0]

)
. (5.6)

Proof. Writing explicitly (Pj − E)Kj,Lf(x) one has

(
h2

d2

dx2
+ Vj(x)− E

)( u+j,L(x)

h2W(u−j,L, u
+
j,L)

∫ x

−∞
u−j,L(t)f(t)dt+

+
u−j,L(x)

h2W(u−j,L, u
+
j,L)

∫ 0

x

u+j,L(t)f(t)dt
)

=

(5.7)
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=h2
d2

dx2

( u+j,L(x)

h2W(u−j,L, u
+
j,L)

)∫ x

−∞
u−j,L(t)f(t)dt+

+
(
Vj(x)− E

) u+j,L(x)

h2W(u−j,L, u
+
j,L)

∫ x

−∞
u−j,L(t)f(t)dt+

+ 2h2
d

dx

( u+j,L(x)

h2W(u−j,L, u
+
j,L)

)
u−j,L(x)f(x)+

+ h2
u+j,L(x)

h2W(u−j,L, u
+
j,L)

( d
dx
u−j,L(x)f(x) + u−j,L(x)f ′(x)

)
+

+ h2
d2

dx2

( u−j,L(x)

h2W(u−j,L, u
+
j,L)

)∫ 0

x

u+j,L(t)f(t)dt+

+
(
Vj(x)− E

) u−j,L(x)

h2W(u−j,L, u
+
j,L)

∫ 0

x

u+j,L(t)f(t)dt+

− 2h2
d

dx

( u−j,L(x)

h2W(u−j,L, u
+
j,L)

)
u+j,L(x)f(x)+

+ h2
u−j,L(x)

h2W(u−j,L, u
+
j,L)

(
− d

dx
u+j,L(x)f(x)− u+j,L(x)f ′(x)

)
=

=
2

W(u−j,L, u
+
j,L)

d

dx
u+j,L(x)u−j,L(x)f(x)+

+
1

W(u−j,L, u
+
j,L)

u+j,L(x)
d

dx
u−j,L(x)f(x)+

− 2

W(u−j,L, u
+
j,L)

d

dx
u−j,L(x)u+j,L(x)f(x)+

− 1

W(u−j,L, u
+
j,L)

u−j,L(x)
d

dx
u+j,L(x)f(x) =

=f(x)
1

W(u−j,L, u
+
j,L)

( d
dx
u−j,L(x)u+j,L(x)− u−j,L(x)

d

dx
u+j,L(x)

)
= f(x).

having used that u±j,L(x) are solutions of Pju = Eu.

Moreover we can give a characterization of the operators Kj,LW and
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Kj,LW
∗ by an integration by parts obtaining

Kj,LW [v](x) =
u+j,L(x)

h2W(u−j,L, u
+
j,L)

∫ x

−∞
u−j,L(t)

(
r0(t) + hr1(t)∂t

)
v(t)dt+

+
u−j,L(x)

h2W(u−j,L, u
+
j,L)

∫ 0

x

u+j,L(t)
(
r0(t) + hr1(t)∂t

)
v(t)dt =

=
u+j,L(x)

h2W(u−j,L, u
+
j,L)

∫ x

−∞
u−j,L(t)r0(t)v(t)dt+

+
u+j,L(x)

hW(u−j,L, u
+
j,L)

u−j,L(x)r1(x)v(x)+

−
u+j,L(x)

hW(u−j,L, u
+
j,L)

∫ x

−∞
∂t
(
u−j,L(t)r1(t)

)
v(t)dt+

+
u−j,L(x)

h2W(u−j,L, u
+
j,L)

∫ 0

x

u+j,L(t)r0(t)v(t)dt+

−
u−j,L(x)

hW(u−j,L, u
+
j,L)

u+j,L(x)r1(x)v(x)+

+
u−j,L(x)

hW(u−j,L, u
+
j,L)

u+j,L(x2)r1(x2)v(x2)+

−
u−j,L(x)

hW(u−j,L, u
+
j,L)

∫ 0

x

∂t
(
u+j,L(t)r1(t)

)
v(t)dt,

(5.8)

that is
Kj,LW, Kj,LW

∗ : C0
b → C0

b (5.9)

since the integrals converge and the multiplication u+j,L(x)u−j,L(x) is bounded
on (−∞, 0].

Proposition 5.1.2. (See [FMW1], Prop. 3.1).
The following estimates hold:

||hK2,LW
∗||L(C0

b )
= O(h1/3) (5.10)

||h2K1,LWK2,LW
∗||L(C0

b )
= O(h2/3) (5.11)

Proof. Let us define the new functions

Uj(x, t) := |u+j,L(x)u−j,L(t)|1{t<x} + |u−j,L(x)u+j,L(t)|1{t>x} = Uj(t, x) (5.12)

U ′j(x, t) := |u+j,L(x)h∂tu
−
j,L(t)|1{t<x} + |u−j,L(x)h∂tu

+
j,L(t)|1{t>x} (5.13)

Ũj(x, t) = Uj(x, t) + U ′j(x, t). (5.14)
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Integrating by parts one obtains

|hK1,LWv(x)| =
∣∣∣ u+1,L(x)

hW(u−j,L, u
+
j,L)

∫ x

−∞
u−1,L(t)

(
r0(t) + hr1(t)∂t

)
v(t)dt+

+
u−1,L(x)

hW(u−j,L, u
+
j,L)

∫ 0

x

u+1,L(t)
(
r0(t) + hr1(t)∂t

)
v(t)dt

∣∣∣ =

=O(h−1/3)
∣∣∣ ∫ x

−∞
u+1,L(x)u−1,L(t)v(t) dt+

−
∫ x

−∞
u+1,L(x)h∂t

(
u−1,L(t)

)
v(t) dt+ hu+1,L(x)u−1,L(x)v(x)+

+

∫ 0

x

u−1,L(x)u+1,L(t)v(t) dt+

−
∫ 0

x

u−1,L(x)h∂t
(
u+1,L(t)

)
v(t) dt− hu−1,L(x)u+1,L(x)v(x)+

+ hu−1,L(x)u+1,L(0)v(0)
∣∣∣ =

=O(h−1/3)
(∫ 0

−∞
Ũ1(x, t)|v(t)| dt+ hU1(x, 0)|v(0)|

)
(5.15)

and the same calculations yields also

|hK2,LW
∗v(x)| = O(h−1/3)

(∫ 0

−∞
Ũ2(x, t)|v(t)| dt+ hU2(x, 0)|v(0)|

)
(5.16)

from which, in particular,

||hK2,LW
∗v(x)||L(C0

b )
= O(h−1/3) sup

x≤0

∫ 0

−∞
Ũ2(x, t) dt+O(h2/3) sup

x≤0
U2(x, 0).

(5.17)
Remembering the asymptotics of u±2,L(x) and h∂xu

±
2,L(x) when h → 0+ al-

ready treated in the previous chapter

u±2,L(x) =
h1/6√
π

(
V2(x)− E

)−1/4
exp

(
∓ h−1

∫ x

0

√
V2(t)− E dt

)(
1 +O(h)

)
,

(5.18)

h∂xu
±
2,L(x) = exp

(
∓ h−1

∫ x

0

√
V2(t)− E dt

)
·

·
(
∓
(
V2(x)− E

)1/4h1/6√
π

+O(h7/6)
)(

1 +O(h)
) (5.19)
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we are going to study the different asymptotics of Ũ2(x, t) depending on the
values of x and t.
Fixing a constant C1 > 0:

• If x, t ≤ −C1h
2/3:

Ũ2(x, t) = O(h1/3)|V2(t)−E|
1
4

exp
(
− h−1|

∫ x
t

√
V2(s)− E ds|

)
|V2(x)− E| 14

(5.20)

because the part h∂tu
±
2,L(t)u∓2,L(x) dominates over u±2,L(t)u∓2,L(x).

• If t ≤ −C1h
2/3 ≤ x ≤ 0:

Ũ2(x, t) = O(h1/6)|V2(t)− E|1/4 exp
(
− h−1

∣∣∣ ∫ x

0

√
V2(s)− E ds

∣∣∣)
(5.21)

because u±2,L(x) is bounded in [−C1h
2/3, 0]. The same holds simmetri-

cally exchanging x and t.

• If x, t ∈ [−C1h
2/3, 0]

Ũ2(x, t) = O(1) (5.22)

because all the functions involved are O(1).

We can observe that actually in all these three cases Ũ2(x, t) = O(1) and we
can give estimates of the integral of Ũ2(x, t) in (5.17) considering the position
of x with respect to −δ, with δ constant and δ > C1h

2/3 > 0.

When x ≤ −δ there exists a constant α > 0 such that∫ 0

−∞
Ũ2(x, t) dt = O(h1/3)

∫ −δ/2
−∞

e−α|x−t|/h dt+O(e−α/h) = O(h4/3) (5.23)

noting that ∫ −δ/2
−∞

e−α|x−t|/h dt = O(h). (5.24)
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When x ∈ [−δ,−C1h
2/3]:∫ 0

−∞
Ũ2(x, t) dt =

∫ 0

−C1h2/3
Ũ2(x, t) dt+

∫ −C1h2/3

−2δ
Ũ2(x, t) dt+

+

∫ −2δ
−∞

Ũ2(x, t) dt =

=O(h
2
3 ) +O(h

1
3 |x|−

1
4 )

∫ −C1h2/3

−2δ
t
1
4 exp

(
− α

h

∣∣|t| 32 − |x| 32 ∣∣) dt+
+O(h

4
3 )

(5.25)

because in a neighbourhood of 0, V2(x) ∼ x and ξ2(x) ∼ x (see first chapter

for details). Now setting t = (hs)
2
3 the integral becomes

O(h5/6|x|−1/4)
∫ C′′

h

C′

exp
(
− α

∣∣s− h−1|x|3/2∣∣)
s1/2

ds+O(h2/3) (5.26)

where C ′ = C
3/2
1 and C ′′ = (2δ)3/2 and, since this last integral converges,∫ 0

−∞
Ũ2(x, t) dt = O(h2/3). (5.27)

The last case missing is when x ∈ [−C1h
2/3, 0]:∫ 0

−∞
Ũ2(x, t) dt =

∫ 0

−C1h2/3
Ũ2(x, t) dt+

∫ −C1h2/3

−δ
Ũ2(x, t) dt+

+

∫ −δ
−∞

Ũ2(x, t) dt =

=O(h2/3) +O(h1/6)

∫ −C1h2/3

−δ
|t|1/4e−α|t|3/2/h dt+O(h7/6) =

=O(h2/3)

(5.28)

since the last integral can be estimated with the change of variables t 7→ h2/3t:∫ −C1

−δh−2/3

h1/6t1/4eαt
3/2

h2/3 dt = O(h5/6). (5.29)
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Finally we have treated all the possibilities when x ≤ 0 concluding

sup
x≤0

∫ 0

−∞
Ũ2(x, t) dt = O(h2/3). (5.30)

Now, since U2(x, t) = O(h1/3)|V (x) − E|−1/4|V (t) − E|−1/4 = O(h1/3), the
estimate on (5.10) is, from (5.17),

||hK2,LW
∗||L(C0

b )
= O(h−1/3)O(h2/3) +O(h2/3)O(h1/3) = O(h1/3). (5.31)

We are now treating the norm of the operator ML := h2K1,LWK2,LW
∗.

Taking into account (5.15) and (5.16) we have

|MLv(x)| =O(h−2/3)

∫ 0

−∞

∫ 0

−∞
Ũ1(x, t)Ũ2(t, s)|v(s)|dsdt+

+O(h1/3)

∫ 0

−∞
Ũ1(x, t)U2(t, 0)|v(0)|dt+

+O(h1/3)U1(x, 0)

∫ 0

−∞
Ũ2(0, t)|v(t)|dt+

+O(h4/3)U1(x, 0)U2(0, 0)|v(0)|.

(5.32)

The last three terms can be automatically estimated as O(h) supx≤0 |v| from
(5.30) and from the fact that Uj(x, t) = O(1).
Similarly to the estimate of the previous operator we can give estimates of
Ũ1(x, t) depending on x, t: chosen δ > 0 exists α > 0 such that

• When x, t ≤ x1 − δ:

Ũ1(x, t) = O(h1/3) exp
(
− α|t− x|/h

)
. (5.33)

• When t ≤ x1 − 2δ and x1 − δ ≤ x ≤ 0

Ũ1(x, t) = O(h1/6e−α/h) (5.34)

because u+1,L(x) = O(1) in a neighbourhood of the well.

• When x ∈ [x1 − 4δ, 0] and t ∈ [−δ,−C1h
2/3]:

Ũ1(x, t) = O(h1/6|t|−1/4) (5.35)

because, like above, u±1,L(x) are bounded near the well.
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• When x ∈ [x1 − 4δ, 0] and t ∈ [−C1h
2/3, 0] ∪ [x1 − 4δ,−δ]:

Ũ1(x, t) = O(1). (5.36)

Please note that the role of x and t can be exchanged.
From the definition of Ũ2(x, t) every part of its integral with |t− s| ≥ δ > 0,
with δ constant is exponentially small.
In order to give an estimate of the first integral appearing in (5.32) we split
[−∞, 0] into the union of (−∞, x1 − 2δ] and [x1 − 2δ, 0] having chosen a
constant δ > 0.

For what it concerns x ∈ (−∞, x1 − 2δ] the integral is

0∫
−∞

0∫
−∞

Ũ1(x, t)Ũ2(t, s)dsdt =O(h2/3)

x1−δ∫
−∞

x1−δ/2∫
−∞

exp
(
− α

h

(
|t− x|+ |s− t|

))
ds dt+

+O(e−α/h) =

=O(h8/3)

(5.37)

thanks to the estimates (5.33) for Ũ1(x, t) and (5.23) for Ũ2(t, s) and to the
fact that every integration of that exponential function yields O(h).

Instead, for x ∈ [x1 − 2δ, 0] the calculation is more involved:

0∫
−∞

0∫
−∞

Ũ1(x, t)Ũ2(t, s)dsdt =

0∫
x1−3δ

0∫
x1−4δ

Ũ1(x, t)Ũ2(t, s) ds dt+O(e−α/h)

(5.38)
because on the left of the well for V1(x) both Ũ1(x, t) and Ũ2(t, s) are expo-
nentially decaying.
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This last integral can be decomposed into the sum of many parts:

0∫
−∞

0∫
−∞

Ũ1(x, t)Ũ2(t, s)dsdt =O(h1/3)

−δ∫
x1−3δ

−δ/2∫
x1−4δ

e−α|t−s|/h ds dt+O(e−α/h)+

+O(h1/2)

−C1h2/3∫
−δ

−C1h2/3∫
−2δ

|s|1/4e−α
∣∣|t| 32−|s| 32 ∣∣/h
|t|1/2

ds dt+

+O(h1/6)

−C1h2/3∫
−δ

0∫
−C1h2/3

e−α|t|
3
2 /h

|t|1/4
ds dt+

+O(h1/6)

0∫
−C1h2/3

−C1h2/3∫
−δ

|s|1/4e−α|s|
3
2 /h ds dt+

+O(h4/3).

(5.39)

and we are going to discuss them one by one.
For the first integral just note that Ũ1(x, t) = O(1) if x, t are in a neighbour-
hood of the well and Ũ2(t, s) is exponentially decaying outside the well of
V2(x). It is O(h7/3) because each integration of the exponential gives O(h).
In the second integral Ũ1(x, t) behaves like (5.20) and Ũ2(t, s) ∼ h1/6|t|−1/4.
In the third one consider Ũ2(t, s) = O(1) near the well of V2(x) and Ũ1(x, t) ∼
O(1)u±1,L(t) since x is in a bounded interval. It can be estimated further as

O(h5/6)

−C1h2/3∫
−δ

e−α|t|
3
2 /h

|t|1/4
dt (5.40)

since

0∫
−C1h2/3

ds = O(h2/3) (5.41)

For the last integral again Ũ1(x, t) = O(1) and Ũ2(x, t) has estimate (5.20).
The last remaining O(h4/3) comes from (5.23).
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All these observations give the estimate

0∫
−∞

0∫
−∞

Ũ1(x, t)Ũ2(t, s)dsdt =O(h1/2)

−C1h2/3∫
−δ

−C1h2/3∫
−2δ

|s|1/4e−α
∣∣|t| 32−|s| 32 ∣∣/h
|t|1/2

ds dt+

+O(h5/6)

−C1h2/3∫
−δ

e−α|t|
3
2 /h

|t|1/4
dt+O(h4/3).

(5.42)

In the first integral we can make the change of variables (t, s) 7→ (t
2
3 , s

2
3 ) such

that it becomes

O(h1/2)

∫ −C2h

−δ′

∫ −C2h

−δ′′

e−α
∣∣|t|−|s|∣∣/h

|t|1/2|s|1/6
ds dt (5.43)

and supposing t ≤ s it is equal to

O(h1/2)

∫ −δ′
−C2h

eαt/h

t
5
6

dt

∫ −δ′′
t

e−αs/h ds = O(h1/2)O(h1/6)O(h) = O(h5/3).

(5.44)

The second integral of (5.42) can be calculated setting y := t3/4h−1/2 so that
it becomes

O(h5/6)O(h1/2)

∫ O(h−1/2)

C′
e−αy

2

dy = O(h4/3). (5.45)

Inserting these last estimates (5.44) and (5.45) into (5.42) gives

0∫
−∞

0∫
−∞

Ũ1(x, t)Ũ2(t, s)dsdt = O(h4/3) (5.46)

and going back to (5.32) we have

||ML||L(C0
b )

= ||h2K1,LWK2,LW
∗||L(C0

b )
= O(h2/3). (5.47)

Let us recap what we have done until this point: referring only on the
interval (−∞, 0] we have the fundamental solution Kj,L for the operator Pj−
E and the new operators hK2,LW

∗ and h2K1,LWK2,LW
∗ have a vanishing



84 5. Intersection of potential functions at energy level

norm when h→ 0.

Our purpose is to build solutions u :=

(
u1
u2

)
of the 2× 2 system (2.2)

{
(P1 − E)u1 = −hWu2

(P2 − E)u2 = −hW ∗u1
(5.48)

which tends to

w0
1,L :=

(
u−1,L

0

)
, w0

2,L :=

(
0
u−2,L

)
(5.49)

as h→ 0+.
The second equation can be written as

u2 = (P2 − E)−1(−hW ∗u1) = −hK2,LW
∗u1 (5.50)

thanks to Lemma (5.1.1) so that the first equation becomes

(P1 − E)u1 = h2WK2,LW
∗u1 (5.51)

which has solutions of the type

u1 = u−1,L + h2K1,LWK2,LW
∗u1 (5.52)

since u−1,L(x) is a solution of the homogeneous equation (P1−E)u1 = 0 built
in the previous chapter and h2K1,LWK2,LW

∗u1 is a particular solution again
from Lemma (5.1.1). Please note that these operators involved are the ones
we estimated in the previous theorem.
The new vector-valued function

w1,L =

( ∑
j≥0M

j
Lu
−
1,L

−hK2,LW
∗∑

j≥0M
j
Lu
−
1,L

)
∈ C0

b

(
(−∞, 0]

)2
(5.53)

is a solution of the system because, posing u1 =
∑

j≥0M
j
Lu
−
1,L it satisfies

(5.52) since∑
j≥0

M j
Lu
−
1,L = u−1,L +ML

∑
j≥0

M j
Lu
−
1,L = M0

Lu
−
1,L +

∑
j≥1

M j
Lu
−
1,L, (5.54)

and tends to (5.49) because, using Prop. (5.1.2) its components are

w1,L =

(
u−1,L +O(h2/3u−1,L)

O(h1/3u−1,L)

)
h→0−→ w0

1,L =

(
u−1,L

0

)
. (5.55)
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The space of solutions of the system is bidimensional and the function

w2,L =

(
−
∑

j≥0M
j
L(hK1,LWu−2,L)

u−2,L + hK2,LW
∗∑

j≥0M
j
L(hK1,LWu−2,L)

)
∈ C0

b

(
(−∞, 0]

)2
(5.56)

is a solution linearly independent from w1,L.
It is a solution because, similarly as before, the first equation in equivalent
to

u1 = −hK1,LWu2 (5.57)

so that the second equation becomes

(P2 − E)u2 = h2W ∗K1,LWu2 (5.58)

having solutions

u2 = u−2,L + h2K2,LW
∗K1,LWu2 = u−2,L + h2K2,LW

∗u1 (5.59)

and, renaming u1 the first component in w2,L, the second component u2 is
exactly

u−2,L + h2K2,LW
∗u1. (5.60)

In particular again w2,L is close to

(
0
u−2,L

)
when h→ 0+ because it is

(
O(h1/3u−2,L)

u−2,L +O(h2/3u−2,L)

)
. (5.61)

Please note that neither w0
1,L nor w0

2,L are solution to the system due to the
presence of the perturbative terms hW and hW ∗.

5.2 Solutions on [0,+∞).

In the interval R := [0,+∞) the operator to start with in our method are

Kj,R[v](x) =
u−j,R(x)

h2W(u−j,R, u
+
j,R)

∫ x

0

u+j,R(t)v(t)dt+

+
u+j,R(x)

h2W(u−j,R, u
+
j,R)

∫ +∞

x

u−j,R(t)v(t)dt.

(5.62)

. Similarly as the previous section for (−∞, 0] there hold the estimates:
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Proposition 5.2.1.

||hK1,RW ||L(C0
b (R) = O(h1/3) (5.63)

||h2K2,RW
∗K1,RW ||L(C0

b (R) = O(h2/3) (5.64)

From these operators we build

MR = h2K2,RW
∗K1,RW

and we can so define solutions u :=

(
u1
u2

)
of the 2× 2 system (2.2)

{
(P1 − E)u1 = −hWu2

(P2 − E)u2 = −hW ∗u1
(5.65)

which tends to

w0
1,R :=

(
u−1,R

0

)
, w0

2,R; =

(
0
u−2,R

)
(5.66)

as h→ 0+.

The new vector-valued functions

w1,R :=

(
u−1,R + hK1,RW

∑
j≥0M

j
R(hK2,RW

∗u−1,R)

−
∑

j≥0M
j
R(hK2,RW

∗u−1,R)

)
(5.67)

and

w2,R :=

(
−hK1,RW

∑
j≥0M

j
Ru
−
2,R∑

j≥0M
j
Ru
−
2,R

)
(5.68)

using the same argument as the previous section are both solutions of the
system when x ≥ 0.
Moreover they respectively tend to w0

1,R and to w0
2,R as h → 0 using the

norms of the operators calculated in the last theorem.

5.3 Quantization condition

Like we have done in previous chapters, using that in 0 both the couples
{w1,L, w2,L} and {w1,R, w2,R} are a basis for the vector space of solutions we
can extend all these functions to the whole real line exploiting the coefficients
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of their dependence (see section 2.7 for details).
Once again this means that the Wronskian of this two solution must be

W(w1,L, w2,L, w1,R, w2,R) =W(w1,L, w2,L)W(w1,R, w2,R) +O(h−5/3) = 0
(5.69)

leading to the conditions Bohr-Sommerfeld condition on the energy

cos
(
h−1φ1(E)

)
cos
(
h−1φ2(E)

)
= O(h−1/3). (5.70)

This conditions implies, when φ1(E)−φ2(E) 6= 0, π mod 2π as explained in
Section 2.8, E to be such that

φ1(E) = π
(1

2
+ n
)
h+O(h2/3) (5.71)

for n ∈ Z or

φ2(E) = π
(1

2
+m

)
h+O(h2/3) (5.72)

with m ∈ Z.
In the case φ1(E) − φ2(E) ≈ 0, π mod 2π the conditions remains the same
except for the bigger error term being

φ1(E) = π
(1

2
+ n
)
h+O(h5/6) (5.73)

for n ∈ Z or

φ2(E) = π
(1

2
+m

)
h+O(h5/6) (5.74)

with m ∈ Z.
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rienze che non potrò mai dimenticare e che mi hanno fatto crescere in un
modo che non pensavo fosse possibile.
Un pensiero speciale va anche ai miei amici storici che anche da lontano non
hanno mai smesso di farmi sentire il loro sostegno.
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