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Introduction

The goal of this work is to use the Bellman functions to prove theorems about

inequalities over dyadic trees.

Bellman functions come from the theory of stochastic optimal control: they

are solutions to the problem of maximizing the earned average payoff of a controlled

stochastic process. Bellman functions are also solutions of the well known Hamilton-

Bellman-Jacobi (HJB) equation, and a converse of this fact holds too, i.e. a smooth

function that satisfies the HJB equation with proper boundary conditions is also a

solution of the problem of optimal stochastic control associated to the HJB equation.

In the middle of the 90’s F. Nazarov, S. Treil and A. Volberg, working over

problems connected with harmonic analysis, developed a method to prove theorems

about inequalities over dyadic trees which is connected to the theory of the Bellman

functions. In principle they provide a unified approach to a vast class of integral

inequalities. The restriction to trees is not so restrictive, since many inequalities in

harmonic analysis and potential theories can be reduced to their dyadic counterparts.

The method consists of finding a mapping Φ from the data (d1, d2, . . . , dm) of

the theorem that we want to prove to a domain of points D ⊆ Rn and then find a

function g : D → R such that g is bounded and g satisfies a proper inequality, which

we will refer to as main inequality. This strategy will allow us to compute the value

of the composition of the function g and the mapping Φ and use the main inequality

that g satisfies to gain the needed information to solve the problem.

The reason why this method is connected with the theory of the Bellman func-

tions in stochastic optimal control is the fact that the main inequality that g satisfies

represents an inequality of supersolution (or subsolution depending on the problem)

for the HJB equation, so the function g that we are looking for to solve the problem

is a supersolution of the HJB equation and, if we are lucky, the function g may even

be a solution of the HJB equation, and this way we would find an expression for the

solution of the stochastic optimal control problem associated to the HJB equation.

The first chapter of this work includes notions of stochastic analysis needed

for the understanding of the theory behind the Bellman functions. The notations,

definitions and theorems listed in this chapter are all thoroughly explained in the

text [3] from B. Øksendal, in the chapters 1,2,3,4,5,7 and 9. The theory of the

Bellman functions requires the notions of stochastic analysis necessary to define the

Itô integral, which is used to define a Bellman function v as

v(x) = sup
{ut}t≥0

Ex
[ ∫ T̂

s
F (r,Xr, ur)dr +K(T̂ ,X

T̂
)χ
T̂<+∞dBr

]
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where Xt is a stochastic process solution of the stochastic differential equation

Xh = Xx
h = x+

∫ h

s
b(r,Xr, ur)dr +

∫ h

s
σ(r,Xr, ur)dBr; h ≥ s

of coefficients b and σ, {Bt}≥0 is a Brownian motion, T̂ is a proper stopping time

and {ut}t ≥ 0 is an admissible control process. Here F is a profit density and K is

a ”bequest” function (gain at the moment of retirement). So a Bellman function v

is the solution of a stochastic optimal control problem that consists of finding the

maximum average gain over a trajectory of a controlled process {Xt}t≥0.

This chapter also includes the notions needed to prove the theorem about the

Bellman function being a solution of the HJB equation, and its converse, i.e. it

contains the definitions and theorems about the strong Markov property, infinites-

imal generator of a stochastic process, Dynkin’s formula and the Dirichlet-Poisson

problem.

The second chapter in this work will present the theory of the Bellman functions

in stochastic control. It will include the statement of the problem of stochastic op-

timization and the definition of Bellman function, followed by the proof of theorem

about the Bellman function being a solution of the HJB equation, and its converse.

The topics of this chapter come from chapter 11 of the text [3] from B. Øksendal.

The third chapter in this work shows an example of a problem that can be solved

using the Bellman function’s method and explains how to use the method, and will

also show some of the connections between the analytical and the stochastic aspects

of the problem. Our notations for this chapter will be the same notations as the

ones in the article [2], which analized this problem as well. and The chosen problem

is an inequality over the dyadic tree about A∞ weights, that is related to the char-

acterizations of Carlseson measures, for more details over this topic see [6] and [7].

The problem will be solved step by step using the Bellman function method as

an example about how the method works in a general case. The problem will be

solved with a function g that is a solution of the HJB equation associated to the

problem, we will also show with a heuristic argument that the function g found and

used to solve the problem is actually the Bellman function associated to the problem.

The fourth chapter uses the Bellman function’s method to prove Hardy’s inequal-

ity for the dyadic tree in the general Lp case with 1 < p < +∞. This problem was

already analyzed in the specific case where p = 2 by the paper [1] from N. Arcozzi,

I. Holmes, P. Mozolyako and A. Volberg, and solved with the Bellman function

method, so this work extends the previous proof to the general case. Hardy’s in-

equality comes from Complex analysis and it is useful to characterize Carleson m

easures.

The problem will be solved considering the function

B(F, f,A, v) = F − fp

(A+ v)p−1

defined over a proper convex domain. We will prove that the function B is a concave,
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bounded function that satisfies a proper main inequality, and we will show that this

function with these properties allows us to prove Hardy’s inequality.
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Chapter 1

Preliminary notions of

stochastic analysis

1.1 Notations and definitions

We will need the definitions of random variable and stochastic process, and we

will use in most cases the same notations as the text [3] from B. Øksendal. We

recommend to check a text of probability and measure theory for the basic notions

of probability needed in this work.

Definition 1.1.1. We denote with B(Rd) the σ-algebra over the set Rd generated

by the Borel subsets of Rd.
Given a probability space (Ω,F , P ), where Ω is a set, F is a σ-algebra over Ω and

P : F → R is a probability measure over Ω, a random variable

Z : (Ω,F , P ) −→ (Rd,B(Rd))

is an application

Z : Ω −→ Rd

measurable with respect to the σ-algebras F and B(Rd).
Given two measurable spaces (Ω1,F1), (Ω2,F2) an application

Z : Ω1 −→ Ω2

is measurable if, for all A ∈ F2, Z−1(A) ∈ F1.

Definition 1.1.2. Given a probability space (Ω,F , P ), given a set of times I, given

for each t ∈ I a random variable

Xt : (Ω,F , P ) −→ (Rd,B(Rd)) (1.1)

we define as a stochastic process in Rn over the probability space (Ω,F , P ) the

collection of random variables {Xt}t∈I .

9
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Notation 1.1. Given a probability space (Ω,F , P ) and a set of times I, given a

stochastic process {Xt}t∈I

Xt : (Ω,F , P ) −→ (Rd,B(Rd))

we will use the following notations to refer to {Xt}t∈I :

1. {Xt}t∈I is the application X that to each time t ∈ I associates the random

variable Xt, i.e. for each t ∈ I

X : I −→ (Rd)Ω (1.2)

X(t)(ω) := Xt(ω) ∀ω ∈ Ω

2. {Xt}t∈I is the application X that to each ω ∈ Ω associates the trajectory

t 7→ Xt(ω), i.e. for each ω ∈ Ω

X : Ω −→ (Rd)I (1.3)

X(ω)(t) := Xt(ω) ∀t ∈ I

3. {Xt}t∈I is the application X defined by

X : I × Ω −→ Rd (1.4)

X(t, ω) := Xt(ω) ∀(t, ω) ∈ I × Ω

The notations in (1.1), (1.2), (1.3) and (1.4) are equivalent to each other, so we will

use each one of them indiscriminately.

We will also denote a value Xt(ω) ∈ Rd by

Xt(ω) = X(ω)(t) = X(t, ω) = X(t)(ω) ∀ω ∈ Ω, ∀t ∈ I

We are going to enunciate the notions needed to define a Brownian motion. We

recommend to check chapter 2 from [3] for a more detailed exposition.

The definition of finite-dimensional distributions is the core part in the construction

of many stochastic processes, one example being the Brownian motion.

Definition 1.1.3. Given a stochastic process X={Xt}t∈T in Rn

Xt : (Ω,F , P ) −→ (Rd,B(Rd))

where T = [0,+∞), we define as finite-dimensional distributions of the proccess X

the measures µt1,...,tk defined over the Borel σ-algebra B(Rnk), for K = 1, 2, . . . , by

µt1,...,tk(F1 × F2 × · · · × Fk) = P [Xt1 ∈ F1, . . . , Xtk ∈ Fk]; ti ∈ T

We recall the definition of expected value and conditional expectation from the

basics of the theory of probability.
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Definition 1.1.4. Given a random variable

X : (Ω,F , P ) −→ (Rd,B(Rd))

we denote as expected value of X with respect to P the real number

E(X) =

∫
Ω
X(ω)dP (ω)

Let G be a σ-algebra, G ⊆ F . Suppose that E(|X|) < +∞. We denote as a

realization of the conditional expectation of X given G (with respect to P ) a random

variable

Z : (Ω,F , P ) −→ (Rd,B(Rd))

such that

1. Z is G -measurable

2. ∫
G
Z(ω)dP (ω) =

∫
G
X(ω)dP (ω) for all G ∈ G

We will write Z = E[X|G ] to denote that Z is a realization of the conditional ex-

pectation of X given G . For all Z1, Z2 realizations of the conditional expectation

of X given G , then Z1 = Z2 almost surely with respect to P , so we will sometimes

just write E[X|G ] in expressions to denote a realization Z of the conditional expec-

tation when the expression is true for every possible choice of Z realization of the

conditional expectation. We recommend to check appendix B from Øksendal [3] or

a text of probability for an exposition over the conditional expectation.

The definition of filtration is needed for the theory of stochastic processes, and

it represents the amount of ”information” we know at each time t about the con-

figuration of the stochastic process. The concept or martingale is a key element in

the theory of stochastic processes, and it is also needed for the definition of the Itô

integral. It represents a stochastic process {Xt}t≥0 such that Xt can be estimated

at a time s < t by considering Xs.

Definition 1.1.5. Given a measurable space (Ω,F ), a filtration of said space is a

family M = {Mt}t≥0 of σ-algebras Mt ⊆ F such that

0 ≤ s < t =⇒Ms ⊆Mt

A n-dimensional stochastic process {Mt}t≥0 on a probability space (Ω,F , P ) is

called a martingale with respect to a filtration {Mt}t≥0 (and with respect to P ) if

(i) Mt is Mt-measurable for all t

(ii) E[|Mt|] < +∞ for all t

(iii) E[Ms | Mt] = Mt for all s ≥ t

Stopping times are a key element in the theory of stochastic processes. They are

random times with good properties that make them usable to replace deterministic

times in most of the theorems about stochastic analysis.
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Definition 1.1.6. Let (Ω,F , P ) be a probability space, let {Nt}t≥0 be a filtration.

A function

τ : Ω −→ [0,+∞]

is called a (strict) stopping time with respect to {Nt}t≥0 if

{ω ∈ Ω | τ(ω) ≤ t} ∈ Nt for all t ≥ 0

Let N∞ be the smallest σ-algebra containing Nt for all t ≥ 0. Then we define by

Nτ the σ-algebra of all sets N ∈ N∞ such that

N ∩ {τ ≤ t} ∈ Nt for all t ≤ 0

A stochastic process {Xt}t≥0 over (Ω,F , P )

Xt : (Ω,F , P ) −→ (Rn,B(Rn))

is called adapted to the fitration {Nt}t≥0 if Xt is Nt-measurable for all t ≥ 0.

We define Xτ as the random variable

Xτ : (Ω,Nτ , P ) −→ (Rn,B(Rn))

Xτ (ω) =

Xτ(ω)(ω) if τ(ω) < +∞

0 if τ(ω) = +∞

Infact it can be proved that Xτ defined in this way is measurable with respect to

Nτ and B(Rn).

The Brownian motion is the starting point for the theory of Itô processes. It

is the most important stochastic process for this work, we recommend to check a

textbook about stochastic processes to get a thorough explanation of this topic,

Øksendal explains this topic on chapter 2 from [3].

Definition 1.1.7 (Brownian motion). Let x ∈ Rn, s ∈ R be a fixed point and a

fixed time. Define

p(t1, y1, t2, y2) = (2π(t2 − t1))−
n
2 · exp(−|y2 − y1|2

2(t2 − t1)
) for y ∈ Rn, t > 0

For k = 1, 2, . . . , for 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk define a measure νt1,...,tk on B(Rnk) by

νt1,...,tk(F1 × · · · × Fk) = (1.5)

=

∫
F1×···×Fk

p(s, x, t1, x1)p(t1, x1, t2, x2) . . . p(tk−1, xk−1, tk, xk)dx1 . . . dxk

where we use the convention that p(t, y, t, z)dz = dδy(z), the Dirac delta measure

centered at y.

We define a (version of) n-dimensional Brownian motion starting from x at the time

s as a stochastic process B = {Bt}t≥s on a probability space (Ω,F , P x)

Bt : (Ω,F , P x) −→ (Rn,B(Rn))
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such that the finite-dimensional of B are given by (1.5), i.e.

P x(Bt1 ∈ F1, . . . , Btk ∈ Fk) =

=

∫
F1×···×Fk

p(s, x, t1, x1)p(t1, x1, t2, x2) . . . p(tk−1, xk−1, tk, xk)dx1 . . . dxk

for all k ∈ N, t1, . . . , tk ∈ [s,+∞), for all F1, . . . , Fk Borel subsets of Rn.

The existence of a process with such properties is guaranteed by Kolmogorov’s ex-

tension Theorem 1.2.1.

A Brownian motion B = {Bt}t≥0 satisfies the condition (1.13) in Kolmogorov’s con-

tinuity Theorem 1.2.2 with α = 4, β = 1, D = n(n+ 2), so the Theorem guarantees

that there exists a continuous modification of B.

The concept of modification of a stochastic process is needed to understand

Kolmogorov’s continuity Theorem that proves that the Brownian motion can be

considered a continuous process.

Definition 1.1.8. Let X = {Xt}t∈I , Y = {Yt}t∈I be stochastic processes on the

same probability space (Ω,F , P ). We say that X is a version (or a modification) of

Y if, for all t ∈ I
P ({ω ∈ Ω | Xt(ω) = Yt(ω)}) = 1

We need a notation for the σ-algebra generated by a Brownian motion at a time

t for many propositions, expecially for the important Markov property.

Definition 1.1.9. Let {Bt}t≥0 be a n-dimensional Brownian motion. We define

Ft = F (n)
t to be the σ-algebra generated by the collection of random variables

{Bs | 0 ≤ s ≤ t}

We are going to enunciate the definitions and theorems needed to define the

Itô integral. We recommend to check a textbook about stochastic analysis for a

thorough explanation of the topic. The notations and definitions are taken from

chapter 3 of [3] from Øksendal.

The construction of the Itô integral begins with the construction of the Itô integral

over elementary processes as a Riemann-Stieltjes integral and then it extends the

definition to a bigger class V of processes. We begin with the 1-dimensional case for

the Itô integral.

Definition 1.1.10. Let (Ω,F , P ) be a probability space, let 0 ≤ S < T , let V =

V(S, T ) be the class of functions

f : [0,+∞)× Ω→ R

such that

(i) (t, ω) 7→ f(t, ω) is B([0,+∞))×F -measurable

(ii) (t, ω) 7→ f(t, ω) is Ft-adapted

(iii) E[
∫ T
S f(t, ω)2dt] < +∞
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Definition 1.1.11. A function φ ∈ V is called elementary if it has the form

φ(t, ω) =
∑
j

ej(ω) · χ[tj ,tj+1)(t) (1.6)

Here ej are functions

ej : Ω −→ R

that must be Ftj -measurable since φ ∈ V.

Let B = {Bt}t≥0 be a 1-dimensional Brownian motion over Ω, we define the Itô

integral (with respect to B) for an elementary function φ, with the form written in

(1.6), by ∫ T

S
φ(t, ω)dBt(ω) =

∑
j≥0

ej(ω)[Bt̃j+1
−Bt̃j ](ω) (1.7)

where t̃j are the points

t̃j =


tj if S ≤ tj ≤ T

S if tj < S

T if tj > t

Definition 1.1.12. (The Itô integral) Let (Ω,F , P ) be a probability space. Let

0 ≤ S < T . Let f ∈ V(S, T ). Let B = {Bt}t≥0 be a 1-dimensional Brownian motion

over Ω. Then the Itô integral of f from S to T (with respect to B) is defined by∫ T

S
f(t, ω)dBt(ω) = lim

t→+∞

∫ T

S
φn(t, ω)dBt(ω) (limit in L2(P )) (1.8)

where {φn}n∈N is a sequence of elemntary functions such that

E

[ ∫ T

S
(f(t, ω)− φn(t, ω))2dt

]
→ 0 as n→ +∞ (1.9)

here the right hand side of (1.8) is defined by (1.7).

Such a sequence {φn}n∈N exists because of Lemma (1.2.4).

We are going to enunciate the definitions needed to define the Itô integral in the

n-dimensional case.

Definition 1.1.13 (The n-dimensional Itô integral). Let (Ω,F , P ) be a probability

space, let {Bt}t≥0 = B = (B1, B2, . . . , Bn) be a n-dimensional Brownian motion of

components

Bk
t : (Ω,F , P ) −→ (R,B(R)) for k = 1, 2, . . . , n

Then we denote by Vm×nH (S, T ) the set of matrices v = [vi,j(t, ω)]i,j=1,...,n where each

entry

vi,j : [0,+∞)× Ω −→ R

(t, ω) 7−→ vi,j(t, ω)

satisfies conditions (i) and (iii) in definition (1.1.10) and satisfies the condition

(ii)’ There exists an increasing family of σ-algebras {Ht}t≥0 such that
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a) {Bt} is a martingale with respect to {Ht}

b) {vi,j}t≥0 is {Ht}-adapted

It is possible to construct the Itô integral for the functions f ∈ Vm×nH (S, T ) in the

same way as it is done in (1.1.12).

If v ∈ Vm×nH (S, T ) we define, using matrix notation

∫ T

S
vdB =

∫ T

S


v1,1 · · · v1,n

...
...

vn,1 · · · vn,n



dB1

...

dBn


to be the m× 1 matrix whose i-th component is the following sum

n∑
j=i

∫ T

S
vi,j(s, ω)dBj(s, ω)

Definition 1.1.14. Under the same notations as the previous definition, WH(S, T )

denotes the class of processes

f : [0,+∞) −→ R

satisfying the conditions (i), (ii)’ and condition

(iii)’ P

[
T∫
S

f(s, ω)2ds < +∞
]

= 1

We also define WH =
⋂
T>0

WH(0, T )

The Itô process is the basic example of solution of a stochastic differential equa-

tion and is the key element in the definition of the Bellman function.

Definition 1.1.15. Let Bt be a m-dimensional Brownian motion on (Ω,F , P ). A

Itô process (or stochastic integral) is a stochastic process {Xt}t≥0 on (Ω,F , P ) of

the form

Xt = X0 +

∫ t

0
u(s, ω)ds+

∫ t

0
v(s, ω)dBs (1.10)

here the coefficients

u : [0,+∞)× Ω −→ Rn; v : [0,+∞)× Ω −→ Rn×m

have good properties to guarantee that the object (1.10) is well defined, i.e. v ∈ WH,

so that

P

[ ∫ t

0
v(s, ω)2ds < +∞ for all t ≥ 0

]
= 1

We also assume that u is Ht-adapted and

P

[ ∫ t

0
|u(s, ω)|ds < +∞ for all t ≥ 0

]
= 1

If {Xt}t≥0 is a Itô process of the form (1.10), the equation (1.10) can be denoted by

the differential expression

dXt = udt+ vdBt
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The Itô diffusion is an example of Itô process where the coefficients of the as-

sociated stochastic differential equation don’t depend on the time variable. This

processes are very important for the proofs in this work because for a process of this

kind the Markov property holds.

Definition 1.1.16 (Itô diffusion). A (time-homogeneous) Itô diffusion is a stochas-

tic process

X : [0,+∞[×Ω −→ Rn

(t, ω) 7−→ Xt(ω)

satisfying a stochastic differential equation of the form

dXt = b(Xt)dt+ σ(Xt)dBt, t ≥ s; Xs = x (1.11)

where {Bt}t≥0 is a m-dimensional Brownian motion and the coefficients

b : Rn −→ Rn; σ : Rn −→ Rn×m

satisfy the conditions in Theorem (1.2.6), which in this case simplify to

|b(x)− b(y)|+ |σ(x)− σ(y)| ≤ D|x− y| for some D ∈ R, ∀x, y ∈ Rn

We denote the unique solution of (1.11) by Xt = Xs,x
t ; t ≥ s. If s = 0 we write Xx

t

for X0,s
t .

We need a notation to denote the expected value of a Ito diffusion {Xt}t∈I at

the time t for the theorems about Itô diffusions, like the Markov property.

Definition 1.1.17. Given a Itô diffusion {Xt}t≥0 = {Xy
t }t≥0, for y ∈ Rn, over the

probability space (Ω,F , P ), solution of the equation

dXt = b(Xt)dt+ σ(Xt)dBt; X0 = y

we denote with M∞ the σ-algebra (of subsets of Ω) generated by the collection of

random variables

{ω 7→ Xy
t (ω) | t > 0, y ∈ Rn}

For each x ∈ Rn we define a measure Qx over the members of M∞ by

Qx[Xt1 ∈ E1, . . . , Xtk ∈ Ek] = P [Xx
t1 ∈ E1, . . . , X

x
tk
∈ Ek]

where Ei ⊆ Rn are Borel sets; k ∈ N.

Qx are the probability laws of {Xt}t≥0 for x ∈ Rn. Qx gives the distribution of

{Xt}t≥0 assuming that X0 = x.

We denote by Ex[Xt] the ”expected value of Xt with respect to the measure Qx”,

i.e. the expected value the random variable ω 7→ Xx
t (ω) with respect to the measure

P , similarly we denote by Ex[Xt | G ] the conditional expectation of ω 7→ Xx
t (ω)

with respect to the measure P given a σ-algebra G ⊆M∞.

The infinitesimal generator is a key element to connect the theory of stochas-

tic analysis with the theory of differential problems, allowing for example to solve

problems like Dirichlet’s problem using the tools from stochastic analysis.
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Definition 1.1.18. Let X = {Xt}t≥0 be an Itô diffusion in Rn. We denote by

DA(x) the set of functions f : Rn → R such that it exists the limit

lim
t↓0

Ex[f(Xt)]− f(x)

t
(1.12)

We define the infinitesimal generator of {Xt}t≥0 in x as the operator

A : DA(x)→ R

Af(x) = lim
t↓0

Ex[f(Xt)]− f(x)

t

We denote by DA the set of functions for which the limit (1.12) exists for all x ∈ Rn.

The exit time of a process {Xt}t∈I from a Borel set U is one of the most important

examples of exit times, and it is used in important theorems about solving differential

problems like the Dirichlet problem using the theory of stochastic analysis.

Definition 1.1.19. Let U ∈ Rn be a Borel set, let X = {Xt}t≥0 be a Itô diffusion

Xt : (Ω,F , P ) −→ (Rn,B(Rn)), t ≥ 0

We define the exit time for X from the set U as

τU : Ω −→ R

τU (ω) = inf{t > 0 | Xt(ω) 6∈ U}

The definition of regular point of the boundary of a domain D is a very important

definition in the theory about the Dirichlet problem, and there is the analogous

version for the theory about stochastic resolution of Dirichlet problems.

Definition 1.1.20. Under the same hypotheses as the previous definition, the point

y ∈ ∂U is called regular for X if

Qy[τU = 0] = 1

Otherwise the point y is called irregular.

The boundary set ∂U is called regular for X if all the points y ∈ ∂D are regular for

X.

The Dirichlet-Poisson problem is used to prove the important theorem about the

Bellman function being the solution of the HJB equation.

Definition 1.1.21. Let D ⊆ Rn be a domain, let L denote a semi-elliptic partial

differential operator on C2(Rn) of the form

L =

n∑
i=1

bi(x)
∂

∂xi
+

n∑
i,j=1

ai,j(x)
∂2

∂xi∂xj

where the functions bi and ai,j = aj,i are continuous functions.

Let φ ∈ C(∂D) and g ∈ C(D) be given functions. A function w ∈ C2(D) is called a

solution of the Dirichlet-Poisson problem (over D, associated to L, φ, g) if

(I) Lw = −g in D

(II) lim
x→y
x∈D

w(x) = φ(y) for all y ∈ ∂D
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1.2 Theorems

The proofs of these theorems can be found in [3] from Øksendal, in chapters

1,2,3,4,5,7 and 9. We will enunciate the theorems needed for the construction of the

Bellman function and to prove the theorem about the HJB equation.

Kolmogorov’s extension theorem is one of the fondamental results in the theory

of stochastic processes, and it allows to prove the existence of stochastic processes

having given finite-dimensional distributions, like the Brownian motion.

Theorem 1.2.1 (Kolmogorov’s extension theorem). Let T be a set of times. For

all k ∈ N, t1, . . . , tk ∈ T , let νt1,...,tk be probability measures on Rnk such that, for

all F1, . . . , Fk Borel subsets of Rn

νtσ(1),...,tσ(k)(F1 × · · · × Fk) = νt1,...,tk(Fσ−1(1) × · · · × Fσ−1(k))

for all permutations σ on {1, 2, . . . , k} and

νt1,...,tk(F1 × · · · × Fk) = νt1,...,tk,tk+1
(F1 × · · · × Fk × Rn)

Then there exists a complete probability space (Ω,F , P ) and a stochastic process

{Xt}t∈T
Xt : (Ω,F , P ) −→ (Rn,B(Rn))

such that

νt1,...,tk(F1,×, Fk) = P [Xt1 ∈ F1, . . . , Xtk ∈ Fk]

for all ti ∈ T , k ∈ N, and for all Fi Borel subsets of Rn.

Kolmogorov’s continuity theorem is another fondamental result in the theory

of stochastic processes, and it is used to prove that the Brownian motion can be

considered a continuous process.

Theorem 1.2.2 (Kolmogorov’s continuity theorem). Let X = {Xt}t≥0 be a stochas-

tic process such that for all T > 0 there exist positive constants α, β,D such that

E[|Xt −Xs|α] ≤ D · |t− s|1+β; for 0 ≤ s, t ≤ T (1.13)

Then there exists a continuous version of X.

The Itô isometry is one of the most important results in the theory of stochastic

differential equations and it’s one of the key elements used in the construction of

the Itô integral. The Itô isometry for elementary functions is used to define the Itô

integral, and then using the Itô integral we can extend the Itô isometry to all the

Itô integrable processes.

Lemma 1.2.3 (Itô isometry for elementary functions). Let (Ω,F , P ) be a probability

space. If

φ : [0,+∞)× Ω→ Rn

φ(t, ω) =
∑
j

ej(ω) · χ[tj ,tj+1)(t)
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is a bounded elementary function, then

E

[(∫ T

S
φ(t, ω)dBt(ω)

)2]
= E

[ ∫ T

S
φ(t, ω)2dt

]
(1.14)

where ∫ T

S
φ(t, ω)dBt(ω) =

∑
j≥0

ej(ω)[Btj+1 −Btj ](ω)

This Lemma proves the three statements needed in the construction of the Itô

integral.

Lemma 1.2.4. The following three statements hold true:

1. Let g ∈ V be a bounded and such that t 7→ g(t, ω) is continuous for each ω ∈ Ω.

Then there exist a sequence of elementary functions φn ∈ V such that

E

[ ∫ T

S
(g − φn)2dt

]
→ 0 for n→ +∞

2. Let h ∈ V be bounded. Then there exist a sequence of bounded functions gn ∈ V
such that t 7→ gn(t, ω) is continuous for all ω ∈ Ω and for all n, and

E

[ ∫ T

S
(h− gn)2dt

]
→ 0 for n→ +∞

3. Let f ∈ V. Then there exist a sequence of functions hn ∈ V such that hn is

bounded for each n and

E

[ ∫ T

S
(f − hn)2dt

]
→ 0 for n→ +∞

Theorem 1.2.5 (Itô isometry).

E

[(∫ T

S
f(t, ω)dBt(ω)

)2]
= E

[ ∫ T

S
f(t, ω)2dt

]
for all f ∈ V(S, T ) (1.15)

The following theorem allows us to prove the existence and uniqueness of so-

lutions for stochastic differential equations, which is needed to guarantee that the

Bellman function is well defined.

Theorem 1.2.6 (Existence and uniqueness theorem for solutions of stochastic dif-

ferential equations). Given T > 0, let

b : [0, T ]× Rn −→ Rn

σ : [0, T ]× Rn −→ Rn×m

be measurable functions. Suppose that it exists a constant C > 0 such that

|b(t, x)|+ |σ(t, x)| ≤ C(1 + |x|); ∀x ∈ Rn, ∀t ∈ [0, T ]

Suppose that it exists a constant D > 0 such that

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ D|x− y|; ∀x, y ∈ Rn, ∀t ∈ [0, T ]
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Let {Bt}t≥0 be a m-dimensional Brownian motion, let Z be a random variable wich

is independent of the σ-algebra F (m)
∞ generated by the collection of random variables

{Bs(·) | s ≥ 0}, and such that

E[|Z|2] < +∞

Then the stochastic differential equation

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, 0 ≤ t ≤ T, X0 = Z (1.16)

has a unique t-continuous solution {Xt}0≤t≤T with the property that:

1. {Xt}0≤t≤T is adapted to the filtration {FZt }0≤t≤T , where FZt is the σ-algebra

generated by the collection of random variables {Z,Bs(·) | 0 ≤ s ≤ t}.

2.

E

[ ∫ T

0
|Xt|2dt

]
< +∞

The strong Markov property is the most important result for the theory of the

Bellman functions and it allows to prove important propositions like the Bellman

principle and the theorem about the HJB equation. The Markov property basically

states that what happens to an Itô diffusion {Xt}t∈I after a time t only depends on

Xt and doesn’t depend on Xs for s < t.

Theorem 1.2.7 (The strong Markov property for Itô diffusions). Let {Xt}t≥0 be

a Itô diffusion in Rn. Let f be a bounded Borel function f : Rn → R, let {Bt}t≥0

be a m-dimensional Brownian motion, let τ be a stopping time with respect to the

σ-algebra F (m)
t generated by {Bt}t≥0, suppose τ < +∞ almost surely. Then

Ex[f(Xτ+h) | F (m)
τ ] = EXτ [f(Xh)] ∀h ≥ 0

The following theorem is very important for the work and for the general theory.

It characterizes the infinitesimal generator of an Itô diffusion

Theorem 1.2.8. Let Xt be the Itô diffusion

dXt = b(Xt)dt+ σ(Xt)dBt

If f ∈ C2
0 (Rn) then f ∈ DA and

Af(x) =
∑
i

bi(x)
∂f

∂xi
+

1

2

∑
i,j

(σσT )i,j(x)
∂2f

∂xi∂xj
(1.17)

The following lemma is used to prove Dynkin’s formula, a result which is a very

important result to understand the evolution of the composition between a smooth

function and a stochastic process.

Lemma 1.2.9. Let {Xt}t≥0 = {Xx
t }t≥0 be an Itô diffusion in Rn of the form

Xx
t (ω) = x+

∫ t

0
u(s, ω)ds+

∫ t

0
v(s, ω)dBs(ω)

where {B}t≥0 is a m-dimentional Brownian motion. Let f ∈ C2
0 (Rn), let τ be a

stopping time with respect to the filtration {F (m)
t }, and assume that Ex[τ ] < +∞.
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Assume that u(t, ω) and v(t, ω) are bounded on the set of (t, ω) such that X(t, ω)

belongs to the support of f .Then

E[f(Xt)] = f(x)+Ex
[ τ∫

0

(∑
i

ui(s, ω)
∂f

∂xi
(Xs)+

1

2

∑
i,j

(vvT )i,j(s, ω)
∂2f

∂xi∂xj
(Xs)

)
ds

]

Theorem 1.2.10 (Dynkin’s formula). Under the same assumptions of Lemma

(1.2.9) it follows that

Ex[f(Xτ )] = f(x) + Ex
[ ∫ τ

0
Af(Xs)dx

]
(1.18)

The following lemma is used in the proof of the theorem about the HJB equation

and it allows to calculate the time shift of a process stopped on an exit time from a

Borel set.

Lemma 1.2.11. Let H ⊆ Rn be measurable, let X = {Xt}t≥0 be a Itô diffusion in

Rn

Xt : (Ω,F , P ) −→ (Rn,B(Rn))

Let τH be the first exit time from H for X. Let α be another stopping time, g be a

bounded continuous function on Rn. Let θt be the shift operator

θt : H −→ H

defined by, given ν = g1(Xt1) . . . gk(Xtk), the expression

θtν = g1(Xt1+t) . . . gk(Xtk+t)

extended over all functions in H by taking limits of sums of such functions.

Consider

η = g(Xτ
H

) · χ{τ
H
<+∞}

τα
H

(ω) = inf{t > α | Xt(ω) 6∈ H}, ω ∈ Ω

then

θαη · χ{α<+∞} = g(Xτα
H

) · χ{τα
H
<+∞}

where

(θαη)(s, ω) = η(s+ α, ω)

The Dirichlet-Poisson problem is used in the theorem about the HJB equation

to prove that the Bellman function is solution of the HJB equation with boundary

values equal to the value of the bequest function.

Theorem 1.2.12. Let D ⊆ Rn be a domain. Let X = {Xt}t≥0 be a Itô diffusion in

Rn. Let A be the infinitesimal generator of X. Let Qx be the probability law of X

starting at X0 = x, for x ∈ Rn. Let τD be the stopping time

τ : Ω −→ R

τ(ω) = inf{t > 0 | Xt(ω) 6∈ D}
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Suppose that τD < +∞ almost surely with respect to Qx for all x ∈ D. Let φ ∈
C(∂D) be bounded and let g ∈ C(D) satisfy

Ex
[ ∫ τD

0
|g(Xs)|ds

]
< +∞ for all x ∈ D (1.19)

Define

w(x) = Ex[φ(Xτ
D

)] + Ex
[ ∫ τ

D

0
g(Xs)ds

]
, x ∈ D (1.20)

Then the following two statements hold true

a)

Aw = −g in D (1.21)

and

lim
t↑τ

D

w(Xt) = φ(Xτ
D

) (1.22)

almost surely with respect to Qx, for all x ∈ D

b) If there exists a function w1 ∈ C2(D) and a constant C such that

|w1(x)| < C

(
1 + Ex

[ ∫ τ
D

0
|g(Xs)|ds

])
, x ∈ D (1.23)

and w1 satisfies (1.21) and (1.22), then w1 = w.



Chapter 2

Bellman functions in stochastic

control

2.1 Bellman functions

Let {Xt}t≥0 be an Itô process described by the stochastic differential equation

dXt = dXu
t = b(t,Xt, ut)dt+ σ(t,Xt, ut)dBt (2.1)

where Xt(ω) ∈ Rn, and the coefficients b and σ are

b : R× Rn × U → Rn, σ : R× Rn × U → Rn×m

and Bt is an m-dimensional Brownian motion. Let. Here U is a given Borel set

U ⊆ Rk and {ut}t≥0 is the control, i.e. a stochastic process whose values are

ut(ω) ∈ U that is adapted to the σ-algebra F (m)
t , i.e. for all t ≥ 0 the random

variable ut is measurable with respect to the σ-algebra F (m)
t .

Let {Xs,x
h }h≥s the solution of (2.1) such that Xs,x

s = x, i.e.

Xs,x
h = x+

∫ h

s
b(r,Xs,x

r , ur)dr +

∫ h

s
σ(r,Xs,x

r , ur)dBr; h ≥ s (2.2)

Let the probability law of Xt starting at x for t = s be denoted by Qs,x, i.e.

Qs,x[Xt1 ∈ F1, . . . , Xtk ∈ Fk] = P [Xs,x
t1
∈ F1, . . . , X

s,x
tk
∈ Fk] (2.3)

for all s ≤ ti, Fi measurable subset of Rn; for all 1 ≤ i ≤ k, k = 1, 2, . . .

Let F and K be two continuos functions

F : R× Rn × U −→ R, K : R× Rn −→ R

here F is the ”utility rate” function, and K is the ”bequest” function.

Let G be a fixed domain in R × Rn and let T̂ be the first exit time after s from G

for the process {Xs,x
r }r≥s, i.e.

T̂ = T̂ s,x(ω) = inf{r > s | (r,Xs,x
r (ω)) ∈ G} ≤ +∞ (2.4)

23
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Let F u(r, z) = F (r, z, u). Suppose that

Es,x
[ ∫ T̂

s
|F ur(r,Xr)|dr + |K(T̂ ,X

T̂
)| · χ{T̂<+∞}

]
< +∞ for all s, x, u (2.5)

We define the performance function Ju(s, x) by

Ju(s, x) = Es,x
[ ∫ T̂

s
F ur(r,Xr)dr +K(T̂ ,X

T̂
) · χ{T̂<+∞}

]
(2.6)

In order to get a simpler notation we define

Yt = (s+ t,Xs.x
s+t) ∈ Rn+1 for t ≥ 0, Y0 = (s, x) (2.7)

and we substitute Yt in (2.1) to get the equation

dYt = dY u
t = b(Yt.ut)dt+ σ(Yt, ut)dBt (2.8)

We denote by Qs,x = Qy the probability of Yt starting at y = (s, x) for t = 0.

We observe that∫ T̂

s
F ur(r,Xr)dr =

∫ T̂−s

0
F us+t(s+ t,Xs+t)dt =

∫ T

s
F us+t(Yt)dt

where

T := inf{t > 0 | Yt 6∈ G} = T̂ − s (2.9)

We also observe that

K(T̂ ,X
T̂

) = K(Y
T̂−s) = K(YT )

so the performance function may be written in terms of Y as follows, with y=(s,x),

Ju(y) = Ey
[ ∫ T

0
F ut(Yt)dt+K(YT ) · χ{T<+∞}

]
(2.10)

here ut is a time shift of the ut in (2.8).

Definition 2.1.1. Given a Borel set U ⊆ Rn+1, given two continuous functions

F : R× Rn × U −→ R, K : R× Rn −→ R

and given the stochastic differential equation (2.1)

dXt = dXu
t = b(t,Xt, ut)dt+ σ(t,Xt, ut)dBt

associated to the coefficients

b : R× Rn × U → Rn, σ : R× Rn × U → Rn×m

we denote with Bellman function associated to the equation (2.1), to the functions

F and K, over a set of admissible controls C, a function

B : U −→ R

B(y) = sup
{ut}t≥0∈C

Ju(y)



2.2. THE HAMILTON-JACOBI-BELLMAN EQUATION 25

here Ju is the performance function defined in (2.10), and the supremum is taken

over the set C of admissible controls. Here C is a set of controls {ut}t≥0 that are

F (m)
t -adapted, whose values are ut(ω) ∈ U .

If a control {u∗t }t≥0 such that

B(y) = sup
{ut}t≥0∈C

Ju(y) = Ju
∗
(y)

exists then {u∗t }t≥0 is called optimal control.

We may take into consideration different types of control functions. The set of

control functions that we will look into is the set of Markov controls, which is the

set C defined by the set of the processes

C :=

{
u(t, ω) = u0(t,Xt(ω)) | for u0 : Rn+1 → U, u0 measurable

}
(2.11)

2.2 The Hamilton-Jacobi-Bellman Equation

According to the definitions in the previous section, we consider the set C of

Markov controls

u(t, ω) = u0(t,Xt(ω))

defined in (2.11), and, after introducing Yt = (s+ t,Xs+t) as explained in (2.7), the

system equation becomes

dYt = b(Yt, u0(Yt))dt+ σ(Yt, u0(Yt))dBt (2.12)

For every v ∈ U and f ∈ C2
0 (R× Rn) we define the operator

(Lvf)(y) =
∂f

∂s
(y) +

n∑
i=1

bi(y, v)
∂f

∂xi
(y) +

n∑
i,j=1

ai,j(y, v)
∂2f

∂xi∂xj
(y), ∀y ∈ R× Rn

(2.13)

here ai,j = 1
2(σσT )i,j , y = (s, x) and x = (x1, . . . , xn). Then, by Theorem (1.2.8),

for each choice of the function u0 (that defines the control u), the solution Yt = Y u
t

is an Itô diffusion with infinitesimal generator A given by

(Af)(y) = (Lu0(y)f)(y) for f ∈ C2
0 (R× Rn), y ∈ G

For every v ∈ U define F v(y) = F (y, v). The first fondamental result in stochastic

control theory is the following:

Theorem 2.2.1 (The Hamilton-Jacobi-Bellman (HJB) equation (I)). Under the

notations of the previous section, consider the Bellman function

B(y) = sup{Ju(y) | u = u0(Y ) Markov control }

Suppose that B satisfies

Ey
[
|B(Yα)|+

∫ α

0
|LvB(Yt)|dt

]
< +∞

for all bounded stopping times α < T , for all y ∈ G and for all v ∈ U . Suppose that

the stopping time T is T < +∞ almost surely with respect to Qy for all y ∈ G, and
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suppose that a optimal Markov control u∗ = u∗0(Y ) exists. Suppose ∂G is regular for

Y u∗. Then

sup
v∈U
{F v(y) + (LvB)(y)} = 0 for all y ∈ G (2.14)

and

B(y) = K(y) for all y ∈ ∂G (2.15)

The supremum in (2.14) is obtained if v = u∗0(y), where u∗ = u∗0(Yt) is an optimal

control. In other words

F (y, u∗0(y)) + (Lu
∗
0(y)B)(y) = 0 for all y ∈ G (2.16)

Proof. We will begin the proof by proving the statements (2.15) and (2.16). Since

u∗ is optimal we have

B(y) = Ju
∗
(y) = Ey

[ ∫ T

0
F (Ys, u

∗(Ys))ds+K(Yt)

]
If y ∈ ∂G then T = 0 almost surely with respect to Qy (since ∂G is regular) and

(2.15) follows. By Theorem (1.2.12) the solution of the Dirichlet-Poisson problem

we get

(Lu
∗
(y)B)(y) = −F (y, u∗(y)) for all y ∈ G

which is (2.16). Now we will prove (2.14).

Choose U open, y = (s, x) ∈ U , U ⊂⊂ G. Define

η =

∫ τ
G

0
g(Ys)ds

and τ = τU .

Now, since the stopping time T is actually the exit time τG , apply Lemma (1.2.11)

to η to get

θτη =

∫ τ
G

τ
g(Xs)ds (2.17)

almost surely with respect to Qy because T < +∞ almost surely with respect to Qy

for hypothesis.

Fix y = (s, x) ∈ G and choose a Markov control u = u0(Y ). Let α ≤ T be a stopping

time. Since

Ju(y) = Ey
[ ∫ T

0
F u(Yr)dr +K(Yt)

]
we get by the strong Markov property, combined with Lemma (1.2.11), that

Ey[Ju(Yα)] =Ey
[
EYα

[ ∫ T

0
F u(Yr)dr +K(YT )

]]
=

=Ey
[
Ey
[
θα

(∫ T

0
F u(Yr)dr +K(YT )

) ∣∣∣∣ Fα]] =

=Ey
[
Ey
[ ∫ T

α
F u(Yr)dr +K(YT )

∣∣∣∣ Fα]] =

=Ey
[ ∫ T

0
F u(Yr)dr +K(YT )−

∫ α

0
F u(Yr)dr

]
=

=Ju(y)− Ey
[ ∫ α

0
F u(Yr)dr

]
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So we get

Ju(y) = Ey
[ ∫ α

0
F u(Yr)dr

]
+ Ey[Ju(Yα)] (2.18)

Now let W ⊆ Q be of the form W = {(r, z) ∈ G | r < t1}, where s < t1. Put

α = inf{t ≥ 0 | Yt 6∈ W}. Suppose an optimal control u∗(y) = u∗(r, z) exists and

choose

u(r, z) =

v if (r, z) ∈W

u∗(r, z)if (r, z) 6∈W

where v ∈ U is chosen arbitrarily. Then

B(Yα) = Ju
∗
(Yα) = Ju(Yα) (2.19)

So, by combining (2.18) and (2.19) we get

B(y) ≥ Ju(y) = Ey
[ ∫ α

0
F v(Yr)dr

]
+ Ey[B(Yα)] (2.20)

Since B ∈ C2(G) we get by Dynkin’s formula

Ey[B(Yα)] = B(y) + Ey
[ ∫ α

0
(LuB)(Yr)dr

]
which substituted in (2.20) gives

B(y) ≥ Ey
[ ∫ α

0
F v(Yr)dr

]
+ B(y) + Ey

[ ∫ α

0
(LuB)(Yr)dr

]
that is equivalent to

Ey
[ ∫ α

0
(F v(Yr) + (LvB)(Yr))dr

]
≤ 0 for all such W

So, by letting t1 ↓ s we obtain, since F v(·) and (LvB)(·) are continuous at y, that

F v(y) + (LvB)(y) ≤ 0, which combined with (2.16) gives (2.14).

Theorem 2.2.2 (A converse of the HJB equation (I)). Let φ be a function in

C2(G) ∩ C(G) such that, for all v ∈ U ,

F v(y) + (Lvφ)(y) ≤ 0; y ∈ G (2.21)

with boundary values

lim
t→T

φ(Yt) = K(YT ) · χ{T<+∞} (2.22)

almost surely with respect to Qy and such that

{φ(Yτ )}τ≤T } is uniformly Qy-integrable (2.23)

for all Markov controls u and all y ∈ G. Then

φ(y) ≥ Ju(y) for all Markov controls u and all y ∈ G. (2.24)

Moreover, if for each y ∈ G we have found u∗0(y) such that

F u
∗
0(y)(y) + (Lu

∗
0(y)φ)(y) = 0 (2.25)

then u0 = u∗0(Y ) is a Markov control such that

φ(y) = Ju0(y)

and hence u0 must be a optimal control and φ(y) = B(y).
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Proof. Let φ ∈ C2(G) ∩ C(G) such that it satisfies (2.21) and (2.22). Let u be a

Markov control. Since Luφ ≤ −F u in G we have by Dynkin’s formula

Ey[φ(TTR)] =φ(y) + Ey
[ ∫ TR

0
(Luφ)(Yr)dr

]
≤ φ(y)− Ey

[ ∫ TR

0
F u(Yr)dr

]
where

TR = min{R, T, inf{t > 0 | |Yt| ≥ R}} (2.26)

for all R < +∞. This gives, by (2.1), (2.21) and (2.22)

φ(y) ≥ Ey
[ ∫ TR

0
F u(Yr)dr + φ(YTR)

]
→ Ey

[ ∫ TR

0
F u(Yr)dr +K(YT ) · χ{T<+∞}

]
= Ju(y)

as R → +∞, which proves (2.24). If u0 is such that (2.24) holds, then the calcula-

tions above give equality, completing the proof.

The last result that we are going to mention is that, under suitable conditions

on b, σ, F, ∂G and assuming that the set of control values is compact, it is possible

to show that is exists a smooth function φ such that

sup
v
{F v(y) + (Lvφ)(y)} = 0 for y ∈ G

and

φ(y) = K(y) y ∈ ∂G

Moreover, by a measurable selection theorem one can find a measurable function u0

that defines a Markov control u∗t (ω) = u0(Xt(ω)) such that

F u0(y)(y) + (Lu0(y)φ)(y) = 0

for almost all y ∈ G with respect to Lebesgue measure in Rn+1, and that the solution

Xt = Xu∗
t exists. For details see Øksendal [3, pg. 241].

Moreover, it is always possible to get as good as a performance with Markov con-

trols as with arbitrary F (m)
t -adapted controls as long as some extra conditions are

satisfied, as stated in the next theorem.

Theorem 2.2.3. Let

ΦM (y) = sup{Ju(y) | u = u0(Y ) Markov control}

and

Φa(y) = sup{Ju(y) | u = u(t, ω) F (m)
t -adapted control}

Suppose there exists an optimal Markov control u∗ = u0(Y ) for the Markov control

problem

ΦM (y) = Ju0(y) for all y ∈ G
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such that all the boundary points of G are regular with respect to Y u∗
t and that ΦM

is a function in C2(G) ∩ C(G) satisfying

Ey
[
|ΦM (Yα)|+

∫ α

0
|LuΦM (Yt)|dt

]
< +∞

for all bounded stopping times α ≤ T , all adapted controls u and all y ∈ G. Then

Φ(M)(y) = Φa(y) for all y ∈ G

For the proof of this theorem see Øksendal [3, pg. 232-233].

So we will use both the general F (m)
t -adapted controls and the Markov controls to

solve the problems in the next chapter.
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Chapter 3

Bellman function’s method

We will state again the Bellman function problem in this chapter to adapt it to a

simpler case (where there are no restriction over the time values) and we will use an

example to illustrate the Bellman function’s method to prove theorems over dyadic

trees.

3.1 Bellman equation for stochastic optimal control

3.1.1 Bellman function

Let X = {Xt}t≥0 be a stochastic process in Rd satisfying the following integral

equation

Xt = x+

∫ t

0
σ(αs, Xs)dWs +

∫ t

0
b(αs, Xs)ds (3.1)

where x ∈ Rd is the starting point, t ∈ [0,+∞[ is the time, W = {Wt}t≥0 is a

d1-dimensional Brownian motion

Wt : (Ω,F ) −→ (Rd1 ,B(Rd1))

α = {αt}t≥0 is a d-dimentional stochastic process

αt : (Ω,F )→ (Rd,B(Rd))

σ is a measurable function that runs its values in the matrix space Rd × Rd1

σ : (Rd × Rd,B(Rd × Rd)) −→ (Rd × Rd1 ,B(Rd × Rd1))

b is a measurable function that runs its values in the vector space Rd

b : (Rd × Rd,B(Rd × Rd)) −→ (Rd,B(Rd))

The process α is supposed to be a control of our choice. We denote by A ⊆ Rd the

set of admissible values, which is the set where the vector of control parameters α

is allowed to run. We denote by admissible control a control α such as αt(ω) ∈ A
for all t ∈ [0,+∞], for all ω ∈ Ω and such that αt is measurable with respect to

the σ-algebra generated by the random variables xs for 0 ≤ s ≤ t. Since αt is

measurable with respect to the variables xs for 0 ≤ s ≤ t, we will also denote α by

31



32 CHAPTER 3. BELLMAN FUNCTION’S METHOD

α = {αt(X[0,t])}t≥0.

We also denote by profit density function associated to α a measurable function f

f : (A× Rd,B(Rd × Rd)) −→ (R,B(R))

(a, x) 7−→ f(a, x) =: fa(x)

and the bonus function as a measurable function F

F : (Rd,B(Rd)) −→ (R,B(R))

Here f represents the density function of the profit gain over a trajectory, while F

represents a bonus function that expresses the profit gain at retirement. Given a

trajectory

γ : [0, t] −→ Rd

s 7−→ Xs

we define the profit on the trajectory γ as the random variable

Ω 3 ω 7−→
∫ t

0
fαs(ω)(Xs(ω))ds ∈ R (3.2)

here X is the stochastic process satisfying (1).

The goal of the problem is to choose the control α = {αs(X[0,t])}t≥0 to maximize

the average profit

vα(x) = Ex
∫ +∞

0
fαt(Xt)dt+ lim

t→+∞
Ex(F (Xt)) (3.3)

here vα(x) is the average profit gain over the random trajectory t 7→ Xt starting

from the point x ∈ Rd.
We define the Bellman function for stochastic control as a function

v : Rn −→ R

x 7−→ sup
α
vα(x)

here the supremum is taken over all admissible controls α.

3.1.2 Bellman’s principle and Bellman’s equation

A Bellman function satisfies an equation known as Bellman’s principle. The

Bellman’s principle states that

v(x) = sup
α
Ex
[ ∫ t

0
fαs(Xs)ds+ v(Xt)

]
(3.4)

for each t > 0. Here the supremum is taken over all admissible control processes α.

Proof. To prove this let α be a Markov admissible control chosen arbitrarily. We have

mentioned that it is sufficient to choose Markov controls to get the same Bellman

function you would get by choosing any admissible control. Let t > 0 be a fixed

time. We denote with Xy where y ∈ Rd a stochastic process satisfying the equation

Xy
t = y +

∫ t

0
σ(αs, X

y
s )dWs +

∫ t

0
b(αs, X

y
s )ds
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Let F (m)
t be the σ-algebra generated by the variables {Ws | 0 ≤ s ≤ t}.

We will use a more precise notation to allow us to manage properly all the aleatory

variables in the following equations. We denote by Eω
[
g(ω)

]
the expected value of

the aleatory variable ω −→ g(ω). For example, the thesis of the Bellman principle

can be rewritten (using this new notation) as

v(x) = sup
α

Eω1

[ ∫ t

0
fαs(Xx

s (ω1))ds+ v(Xx
t )

]
The following equations prove the theorem:

v(x) = sup
α

{
Eω1

[ ∫ +∞

0
fα(Xx

s (ω1))ds

]
+ lim
s→+∞

Eω3(F (Xx
s (ω3)))

}
=

additivity of integrals on integral and expectation

= sup
α

{
Eω1

[ ∫ t

0
fα(Xx

s (ω1))ds

]
+

+ Eω1

[ ∫ +∞

t
fα(Xx

s (ω1))ds

]
+ lim
s→+∞

Eω3(F (Xx
s (ω3)))

}
=

last addend isn’t aleatory

= sup
α

{
Eω1

[ ∫ t

0
fα(Xx

s (ω1))ds

]
+

+ Eω1

[ ∫ +∞

t
fα(Xx

s (ω1))ds+ lim
s→+∞

Eω3(F (Xx
s (ω3)))

]}
=

total probability formula

= sup
α

{
Eω1

[ ∫ t

0
fα(Xx

s (ω1))ds

]
+

+ Eω1

[
Eω2

[ ∫ +∞

t
fα(Xx

s (ω2))ds+ lim
s→+∞

Eω3(F (Xx
s (ω3)))

∣∣∣∣F (m)
t

]
(ω1)

]}
=

time shift change of variables

= sup
α

{
Eω1

[ ∫ t

0
fα(Xx

s (ω1))ds

]
+

+ Eω1

[
Eω2

[ ∫ +∞

0
fα(Xx

s+t(ω2))ds+ lim
s→+∞

Eω3(F (Xx
s+t(ω3)))

∣∣∣∣F (m)
t

]
(ω1)

]}

Now we apply the strong Markov property (we are allowed to use it because the

control α is a Markov control, so the process Xy is an Itô diffusion) so we get

v(x) = sup
α

{
Eω1

[ ∫ t

0
fα(Xx

s (ω1))ds

]
+ Eω1

[
Eω2

[ ∫ +∞

0
fα(X̃

Xx
t (ω1)

s (ω2))ds

]
+

+ lim
s→+∞

Eω3(F (X̃
Xx
t (ω1)

s (ω3)))

]}

Here the notation used for the process X̃ = {X̃Xx
t (ω1)

s }s≥0 means that X̃ is the

process solution of the equation

X̃s = y +

∫ s

0
σ(βr, X̃r)dWr +

∫ s

0
b(βr, X̃r)dr
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where we set y = Xx
t (ω1)

We observe that technically speaking the process {X̃Xx
t (ω1)

s }s≥0 depends on a time

shifted version of the control α.

Now it is possible to choose controls such that they optimize independently the supre-

mum of the last two addends (conditioned to the aleatory starting point Xx
t (ω1))

and the supremum of the first addend (see Krylov [4]) and we get

v(x) = sup
α

{
Eω1

[ ∫ t

0
fα(Xx

s (ω1))ds

]
+ Eω1

[
sup
β

{
Eω2

[ ∫ +∞

0
fβ(X̃

Xx
t (ω1)

s (ω2))ds

]
+

+ lim
s→+∞

Eω3(F (X̃
Xx
t (ω1)

s (ω3)))

}]}

Now we observe that the second expectation value is exactly the definition of the

Bellman function of aleatory starting point Xx
t (ω1).

v(Xx
t (ω1)) = sup

β
vβ(Xx

t (ω1))

So the expression that we get is

v(x) = sup
α

{
Eω1

[ ∫ t

0
fα(Xx

s (ω1))ds

]
+ Eω1

[
v(Xx

t (ω1))

]}

Which is exactly the Bellman principle.

We recall from Chapter 2 that the Bellman function v is solution of the Hamilton-

Jacobi-Bellman equation. Given the operator

La(x) =
n∑
i=1

bi(x, a)
∂

∂xi
(x) +

n∑
i,j=1

1

2
(σσT )i,j(x, a)

∂2

∂xi∂xj
(x), ∀x ∈ Rd (3.5)

then by Theorem (1.2.8), as long as we assume that α is a Markov control α(t, ω) =

α0(Xt(ω)), then the process {Xt}t≥0 is an Itô diffusion with infinitesimal generator

given by the operator

A(x) = Lα0(x)(x)

so we can use Theorem (2.2.1), with notations adapted for this specific case, to prove

that the equation (2.14) holds, which means that

sup
a∈A
{fa(x) + (Lav)(x)} = 0 for all x ∈ Rn (3.6)

For the applications to the Harmonic Analysis we will be interested in supersolutions

of the HJB equation (3.6), i.e. functions V that sastify the inequality

sup
a∈A

[La(x)V (x) + fa(x)] ≤ 0 (3.7)

Observation 3.1.1. If the bequest function F is identically equal to 0 and the profit

density f is non negative, then the Bellman function v is trivially non negative.

Moreover, a function V : Rd → R such that V ≥ 0 and such that it has continuous
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derivatives up to the second order and such that V satisfies the inequality (3.7)

majorates v, where v is the Bellman function associated to the problem, i.e.

V (x) ≥ v(x) = sup
{αt}t≥0

vα(x)

Proof. To prove this result all we need to do is to apply Dynkin’s formula (1.18) to

the function V and the process {Xt}t≥0 and to a deterministic time t, so we get

V (x) = Ex[V (Xt)]− Ex
∫ t

0
(Lαs(Xs)V )(Xs)ds

The inequality (3.7) implies that −La(x)V (x) ≥ fa(x), and V ≥ 0 so we get

V (x) ≥ Ex
∫ t

0
fαs(Xs)ds

So by taking the limit for t→ +∞ and the supremum over all controls α we get

V (x) ≥ sup
α
Ex
∫ +∞

0
fαs(Xs)ds = v(x)

3.2 An example of the Bellman function’s method

3.2.1 A∞ weights and their associated Carleson measures

We will now take into consideration a theorem about an inequality over a dyadic

tree as an example of a theorem that can be proved using the Bellman’s function

method. This theorem comes from complex analysis and it’s useful to study the

characterization of Carleson measures in Hardy spaces. Details about these topics

can be found in [5].

Definition 3.2.1. A function

ω : R −→ R+

is called an A∞ weight (we will write ω ∈ A∞) if

〈ω〉J ≤ c1 e
〈logω〉J , ∀J ∈ D (3.8)

where

〈f〉J =
1

|J |

∫
J

f(x)dx

The Bellman function’s method allows us to prove the following theorem

Theorem 3.2.1. Let ω ∈ A∞. Then

1

|I|
∑
l⊆I

(〈ω〉l+ − 〈ω〉l−
〈ω〉l

)2

|l| ≤ c2, ∀I ∈ D (3.9)

where c2 is a real constant depending only on c1 in (3.8).
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3.2.2 The Bellman function method

In order to prove the theorem 3.2.1 we will start by showing a way to approach the

problem with ”common sense” and gather information about the Bellman function

needed to solve this problem.

We need to find a domain D ⊆ Rn for some appropriate n ∈ N, a map

Φ : (ω, I) 7−→ (x1, x2, . . . , xn) ∈ D

where ω ∈ A∞ and I ∈ D are the variables in the problem (3.2.1), and a function

(which will be a supersolution of the bellman equation, or eventually it could even

be the Bellman function associated with this problem)

g : D −→ R (3.10)

such that g satisfies a property that allows us to prove the thesis of the theorem 3.2.1

when we compute g(Φ(ω, I)). This property will usually be satisfying an inequality,

which will be named principal inequality.

For this problem we observe that the inequality (3.9) is rescaling invariant, so the

function g computed in Φ(ω, I) will not depend on the choice of the interval I.

We also observe that, for all ω ∈ A∞, the inequality (3.9) and the A∞ condition

depend on 〈ω〉J and 〈logω〉J for J ∈ D and on |I|.
Based on these observation, we assume that the map Φ(ω, I) will only need to keep

track of 〈ω〉I , 〈logω〉I and |I|. So we define

Φ : (ω, I) 7−→ (u,w, |I|) := (〈logω〉I , 〈ω〉I , |I|) ∈ R3 (3.11)

Now that we found a candidate for the map Φ, we can use a simple approach to find

a candidate for the Bellman function g.

We will now define an ”ausiliary” function B : D → R with a standard procedure

that will allow us to find the main inequality associated to the problem. Since we

have to prove the inequality (3.9), we will take into consideration the function B
defined as the supremum of the possible values that the left hand side of the thesis

(3.9), so in order to prove the thesis it will be sufficient to prove that the function

B is bounded.

We define

B : D −→ R

B(u,w, |I|) = BI(u,w) := sup
ω

1

|I|
∑
J⊆I

(
〈ω〉J+ − 〈ω〉J−

〈ω〉J

)2

|J | (3.12)

here the supremum is taken over all the A∞ weights ω such that 〈logω〉I = u and

〈ω〉I = w.

We define this function over the domain D ⊆ R× R+ × R+ defined by

D = {Φ(ω, I) = (〈logω〉I , 〈ω〉I , |I|) ∈ R3 | ω ∈ A∞, I ∈ D}

We observe that the function B does not depend on the third variable because, if we

consider two intervals I1, I2 ∈ D, then for all u, v ∈ R × R+ and for each function

ω1 ∈ A∞ such that 〈logω1〉I1 = u, 〈ω1〉I1 = w then it exists a function ω2 ∈ A∞
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such that 〈logω2〉I2 = u, 〈ω2〉I2 = w obtained by rescaling the function ω1|I1 over

the interval I2, so we will actually treat the function B as a function of two variables

and we will just write

Φ : A∞ ×D −→ D ⊆ R2

Φ(ω, I) = (u,w) := (〈logω〉I , 〈ω〉I)

where D is the domain

D = {(u,w) ∈ R× R+ | ∃ω ∈ A∞, ∃I ∈ D such that 〈logω1〉I = u, 〈ω1〉I = w}

and

B : D −→ R

B(u, v) = sup
ω,I

1

|I|
∑
J⊆I

(
〈ω〉J+ − 〈ω〉J−

〈ω〉J

)2

|J |

here the supremum is taken over all ω ∈ A∞ and I ∈ D such that 〈logω1〉I = u,

〈ω1〉I = w.

Now, in order to properly approach this problem and find a function g with a usable

expression as mentioned earlier, we will first study the properties of the domain D

and the properties of B.

1. It is important to understand how big the domain is. We observe that, for

all ω, the condition ω ∈ A∞ tells us that 〈ω〉I ≤ c1 e
〈logω〉I , but the domain

D is defined as the set of points (u,w) such that it exists ω ∈ A∞ such that

〈logω1〉I1 = u, 〈ω1〉I1 = w, so this entails that w ≤ c1 e
u. Moreover, we recall

that the logarithmic function is concave, so by Jensen’s inequality we get that

〈logω〉I ≤ log〈ω〉I , which means e〈logω〉I ≤ 〈ω〉I , so we get eu ≤ w.

We have proved that D ⊆ {(u,w) ∈ R × R+ | eu ≤ w ≤ c1 e
w}. It is possible

to prove that D = {(u,w) ∈ R× R+ | eu ≤ w ≤ c1 e
w}, but it’s not necessary

to find out the exact minimal domain of the function B as long as we can find

a function g : D → R with a good expression that satisfies the main inequality.

2. It is important to understand the boundaries of the function B. We observe

that

B(u, v) = sup
ω,I

1

|I|
∑
J⊆I

(
〈ω〉J+ − 〈ω〉J−

〈ω〉J

)2

|J | ≥ 0

because it is the supremum of a collection of non negative values. On the other

hand, in order to prove the thesys (3.9), since we defined the function B as the

supremum of the left hand side of the thesis, it is necessary that B(u, v) ≤ c2.

So we proved that, in order to prove the theorem, our function g must be such

that 0 ≤ g(u,w) ≤ c2 for all (u,w) ∈ D.

3. The function B satisfies a main inequality. To find this inequality the proce-

dure is to take into consideration (u,w) ∈ D, ω ∈ A∞ and I ∈ D such that
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〈logω〉I = u, 〈ω〉I = w. We also define

w+ = 〈ω〉I+ =
1

|I+|

∫
I+

u(x)dx, w− = 〈ω〉I− =
1

|I−|

∫
I−

u(x)dx

u+ = 〈logω〉I+ =
1

|I+|

∫
I+

log u(x)dx, u− = 〈logω〉I− =
1

|I−|

∫
I−

log u(x)dx

We observe that it follows from these definitions that

w =
1

2
[w+ + w−], u =

1

2
[u+ + u−]

Now we take into consideration the following sum

S(ω, I) =
1

|I|
∑
J⊆I

(
〈ω〉J+ − 〈ω〉J−

〈ω〉J

)2

|J |

we write this sum as

S(ω, I) =
1

|I|

(
〈ω〉I+ − 〈ω〉I−

〈ω〉I

)2

|I|+ 1

|I|
∑
J⊆I+

(
〈ω〉J+ − 〈ω〉J−

〈ω〉J

)2

|J |+

+
1

|I|
∑
J⊆I−

(
〈ω〉J+ − 〈ω〉J−

〈ω〉J

)2

|J | =

=

(
〈ω〉I+ − 〈ω〉I−

〈ω〉I

)2

+
1

2
· 1

|I+|
∑
J⊆I+

(
〈ω〉J+ − 〈ω〉J−

〈ω〉J

)2

|J |+

+
1

2
· 1

|I−|
∑
J⊆I−

(
〈ω〉J+ − 〈ω〉J−

〈ω〉J

)2

|J | =

=

(
w+ − w−

w

)2

+
1

2

[
S(ω, I+) + S(ω, I−)

]
Now we take the supremum of S(ω, I) over all the possible ω ∈ A∞ and I ∈ D
taken into consideration and, using the definition of B and the fact that it does

not depend on the choice of I, we get

sup
ω,I

S(ω, I) = B(u,w) = sup
ω
S(ω, I)

so this entails that

B(u,w) ≥ S(ω, I) =

(
w+ − w−

w

)2

+
1

2

[
S(ω, I+) + S(ω, I−)

]
we notice that ω and I+ are such that w+ = 〈ω〉I+ and u+ = 〈logω〉I+ , and on

the other hand ω and I− are such that w− = 〈ω〉I− and u− = 〈logω〉I− . Since

we can define independently a function ω over I+ and I− such that w+ = 〈ω〉I+ ,

u+ = 〈logω〉I+ , w− = 〈ω〉I− , u− = 〈logω〉I− for all choices of w+, u+, w−, u−,

such that

w =
1

2
[w+ + w−], u =

1

2
[u+ + u−]

we can consider the supremum over all possible ω and get

B(u,w) ≥
(
w+ − w−

w

)2

+
1

2

[
sup
ω

[S(ω, I+)] + S(ω, I−)

]
=

=

(
w+ − w−

w

)2

+
1

2

[
B(u+, v+) + S(ω, I−)

]
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using the same argument over S(ω, I−) we finally get the main inequality

B(u,w) ≥
(
w+ − w−

w

)2

+
1

2

[
B(u+, v+) + B(u−, v−)

]
(3.13)

for all choices of (u,w), (u+, w+), (u−, w−) ∈ D such that

w =
1

2
[w+ + w−], u =

1

2
[u+ + u−]

The main inequality is the tool that allows us to solve the problem. Infact, given a

function g : D → R, 0 ≤ g ≤ c2, that satisfies the main inequality (3.13), i.e.

g(Φ(ω, I)) ≥
(
〈ω〉I+ − 〈ω〉I−

〈ω〉I

)2

+
1

2

[
g(Φ(ω, I+)) + g(Φ(ω, I−))

]
we can compute for all ω ∈ A∞ and for all I ∈ D

|I| · g(Φ(ω, I)) ≥ |I| ·
(
〈ω〉I+ − 〈ω〉I−

〈ω〉I

)2

+
1

2
|I| · [g(Φ(ω, I+)) + g(Φ(ω, I−))]

We observe that 1
2 |I| = |I+| = |I−| so we get that

|I| · g(Φ(ω, I)) ≥ |I| ·
(
〈ω〉I+ − 〈ω〉I−

〈ω〉I

)2

+ |I+| · g(Φ(ω, I+)) + |I−| · g(Φ(ω, I−))

(3.14)

so we compute the main inequality (3.13) for g(φ(ω, I+)) and g(φ(ω, I−)) and sub-

stitute it in (3.14) and iterate the procedure an infinite amount of times and, using

the fact that (
〈ω〉J+ − 〈ω〉J−

〈ω〉J

)2

≥ 0 ∀J ∈ D

and the fact that g ≥ 0 it follows that

|I| · g(Φ(ω, I)) ≥
∑
J⊆I

(
〈ω〉J+ − 〈ω〉J−

〈ω〉J

)2

|J |

so by using the fact that g ≤ c2 it follows that

c2 ≥ g(Φ(ω, I)) ≥ 1

|I|
∑
J⊆I

(
〈ω〉J+ − 〈ω〉J−

〈ω〉J

)2

|J |

which is exactly the thesis (3.9) that we wanted to prove.

So in order to solve the problem all we need to do is to find a function

g : D −→ R

defined over the domain

D = {(u,w) = (〈logω〉I , 〈ω〉I) = Φ(ω, I) | ω ∈ A∞, I ∈ D}

such that 0 ≤ g ≤ c2 and such that it satisfies the inequality

g(u,w) ≥
(
w+ − w−

w

)2

+
1

2

[
g(u+, v+) + g(u−, v−)

]
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for all (u,w), (u+, w+), (u−, w−) ∈ D such that

w =
1

2
[w+ + w−], u =

1

2
[u+ + u−]

We also observed that D ⊆ {(u,w) ∈ R2 | eu ≤ w ≤ c1 e
u}, so we will just try to

find a function g with the mentioned properties over the set {(u,w) ∈ R2 | eu ≤ w ≤
c1 e

u} (although we mentioned earlier that this step is necessary because it can be

proved that D = {(u,w) ∈ R2 | eu ≤ w ≤ c1 e
u}, but we do not need to prove it as

long as we prove that D is a subset of the domain of definition of g).

Now it is time to find a candidate function g

g : D = {(u,w) ∈ R2 | eu ≤ w ≤ c1 e
u} −→ R

with the mentioned properties.

There is no formula to immediatly find a function g with such properties, so we have

to use our information about the function to make an educated guess. The domain

of the function can suggest us some natural guesses for the function g. It may be

interesting to see a wrong guess first. We observe that, since eu ≤ w ≤ c1 e
u, then

the function

g1 : D −→ R

g1(u,w) = c̃[w − eu]

where c̃ ∈ R is a constant, is such that, for (u,w) ∈ D, it follows that 0 ≤
g1(u,w), however this function can’t be a good candidate because we also notice

that g1(u,w) ≤ c̃(c1 − 1)eu, moreover, as long as we choose w = c1 e
u − ε for ε > 0

a small real number, we get that g1(u,w) = c̃[(c1 − 1)eu − ε], so g1(u, v) can be ar-

bitrarily big as long as we chose a big enough u, so it is not true that g1(u,w) ≤ c2.

We can also observe that, from the definition of D, for all (u,w) ∈ D it follows

that u ≤ logw and logw ≤ u+ log c2, so we can make another educated guess and

consider the function

g2 : D −→ R

g2(u,w) = c̃[log(w)− u] (3.15)

We observe that, for all (u,w) ∈ D, then g2(u,w) = c̃[logw − u] ≥ c̃[u − u] = 0

and g2(u,w) ≤ c̃[log(c1 eu) − u] = c̃ c1. So, after considering c2 = c̃ c1, we get

0 ≤ g2(u,w) ≤ c2, which is the first property we needed. We will prove that g2 is

actually the function we are looking for with c̃ = 8, moreover we will also show with

a heuristic proof that it actually is the Bellman function associated to this problem.

Before doing that wee may get another hint that g2 could be the right guess by using

the (discrete) main inequality (3.13) to get a continuous version of the inequality for

the Bellman function.

3.2.3 Continuous version of the main inequality

Let x = (u,w) be a point of the interior of the domain D, let α = (α1, α2) ∈ R2 be

a fixed point such that the segment of points {(u+α1t, w+α2t) ∈ R2 | −1 ≤ t ≤ 1}
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is a subset of the domain D. Let x+ = (u+ α1, w + α2), x− = (u− α1, w − α2).

Consider the functions φ, ψ defined by

φ(t) = B(x+ αt); −1 ≤ t ≤ 1

ψ(t) = B(x)− 1

2

(
B(x+ αt) + B(x− αt)

)
−
(

2α2t

w

)2

; −1 ≤ t ≤ 1

If the function B is C2-smooth then we get

lim
t→0

φ(t) + φ(−t)− 2φ(0)

t2
= φ′′(0) =

2∑
j,k=1

∂2B(x)

∂xj∂xk
αjαk (3.16)

Since x, x+ and x− are points of the domain D, then by the main inequality (3.13)

we get that ψ(t) = 0 ∀t ∈ [−1, 1].

So we may consider the inequality ψ(t)/t2 ≥ 0 and take the limit for t → 0 and,

taking into account (3.16), we get

0 ≤ lim
t→0

ψ(t)

t2
= lim

t→0

[
− B(x+ αt) + B(x− αt)− 2B(x)

2t2
−
(

2α2t

wt

)2]
=

= lim
t→0

[
− 1

2

φ(t) + φ(−t)− 2φ(0)

t2

]
−
(

2α2

w

)2

=

=− 1

2
φ′′(0)−

(
2α2

w

)2

=

=− 1

2

2∑
j,k=1

∂2B(x)

∂xj∂xk
αjαk −

(
2α2

w

)2

So the inequality we got is

− 1

2

2∑
j,k=1

∂2B(x)

∂xj∂xk
αjαk ≥ 4

(
α2

w

)2

(3.17)

Since the inequality (3.17) is homogeneous of degree 2, then it holds for all choices

of x, x+, x− in the domain D. This is the continuous version of the main inequality

(3.13).

We observe now that, if we consider a controlled process {Xt}t≥0 defined by

Xt = x+

∫ t

0
αs dWs; xs = (xs,1, xs,2), αs = (αs,1, αs,2)

where {Ws}s≥0 is a Brownian motion, then this process is solution of the equation

(3.1) where b(a, x) = 0 and σ(a, x) = a. So, if we consider the profit density f and

the bequest function F defined by

fα(x) = 4

(
α2

x2

)2

, F (x) = 0

Then we can consider the Hamilton-Jacobi-Bellman equation associated to the Bell-

man function v defined by

v(x) = sup
α
Ex
[ ∫ +∞

0
fαt(Xt)dt

]
(3.18)
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which is, by using (3.6) and (3.5), the equation

sup
α∈A

{
1

2

2∑
j,k=1

∂2v(x)

∂xj∂xk
αjαk + 4

(
α2

x2

)2}
= 0 (3.19)

We observe that earlier we proved that the function B satisfies the inequality

1

2

2∑
j,k=1

∂2B(x)

∂xj∂xk
αjαk + 4

(
α2

x2

)2

≤ 0

so this proves that the function B is a supersolution of the HJB equation (3.19).

By observation 3.1.1 we know that, since the bequest function is F = 0 and the profit

density is fα(x) = 4(α2/x2)2 ≥ 0, then it follows that B ≥ v, moreover it follows

that any smooth function g that satisfies the main inequality (3.13) majorates the

Bellman function v.

We mentioned earlier that the function g2 defined in (3.15) is the function we are

looking for (with c̃ = 8). Another way to get a hint about this fact is to observe

that g2(u,w) = c̃[log(w) − u] is a solution of the HJB equation (3.19) when c̃ = 8.

Infact we compute the HJB equation for the function g2 and, for α = (α1, α2) ∈ A
and c̃ = 8, we get

fα(u,w)+(Lαg2)(u,w) =
1

2

2∑
j,k=1

∂2g2(u,w)

∂xj∂xk
αjαk + 4

(
α2

w

)2

=

=
1

2

[
∂2g2(u,w)

∂u2
α2

1 +
∂2g2(u,w)

∂w2
α2

2 + 2
∂2g2(u,w)

∂u∂w
α1α2

]
+ 4

(
α2

w

)2

=

=
1

2

[
0− c̃ 1

w2
α2

2 + 2 · 0
]

+ 4

(
α2

w

)2

=

=− 1

2
· 8 ·

(
α2

w

)2

+ 4

(
α2

w

)2

= 0

So by taking the supremum over all α ∈ A we get

sup
α∈A

{
1

2

2∑
j,k=1

∂2g2(u,w)

∂xj∂xk
αjαk + 4

(
α2

w

)2}
= 0 ∀(u,w) ∈ D

which means that g2(u,w) = 8[logw − u] is a solution of the HJB equation (3.19).

3.2.4 Solution of the problem

We mentioned earlier that the function g2(u,w) = 8[logw − u] is the function

we are looking for in subsection 3.2.2, now we will prove it. We already proved that

0 ≤ g2(u,w) ≤ c2 where c2 = 8 · c1, so we only need to prove that g2 satisfies the

main inequality (3.13), so we need to prove that

g2(u,w)− 1

2

[
g2(u+, v+) + g2(u−, v−)

]
≥
(
w+ − w−

w

)2

for all choices of (u,w), (u+, w+), (u−, w−) ∈ D such that

w =
1

2
[w+ + w−], u =

1

2
[u+ + u−]
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We denote (u+, w+) = (u+ α1, w + α2) and (u−, w−) = (u− α1, w − α2). Then

g2(u,w)− 1

2

[
g2(u+, w+) + g2(u−, w−)

]
=

= 8

[
logw − u− 1

2
(log(w + α2)− u− α1 + log(w − α2)− u+ α1)

]
=

= 8

[
logw − 1

2
log

(
(w + α2)(w − α2)

)]
=

= 8

[
logw − 1

2

(
log(w2) + log

(
1−

(
α2

w

)2))]
=

= −4 log

(
1−

(
α2

w

)2)
Since we chose (u,w), (u+, w+), (u−, w−) ∈ D, then we have w − α2 ≥ eu > 0, so

we have 0 ≤ (α2/w)2 < 1. Now it is easy to prove that, for all 0 ≤ x < 1, then

log(1 − x) ≤ −x, which is equivalent to − log(1 − x) ≥ x, which means that, when

x = (α2/w)2, we get

g2(u,w)− 1

2

[
g2(u+, w+) + g2(u−, w−)

]
≥
(

2α2

w

)2

which is exactly the main inequality

g2(u,w)− 1

2

[
g2(u+, w+) + g2(u−, w−)

]
≥
(
w+ − w−

w

)2

This completes the proof of theorem 3.2.1 as we observed earlier in subsection 3.2.2.

To conclude this analysis over the problem 3.2.1 we will show a heuristic proof of

the fact that the function g2 is actually the Bellman function.

To show this we will use discrete stochastic processes. Let us consider the process

{ζn}n∈N = {
∑n

k=0 ξk}n∈N, where ξk for k ∈ N are independent random variables

taking values 1 and −1 with probabilities 1/2. This process is the discrete analogous

to the Brownian motion. We consider a control {αk}k∈N, αk = (αk,1, αk,2) ∈ R2.

We define a process

Xn+1 = Xn + αnξn, X0 = (u,w) ∈ R2

This is the discrete version of the equation (3.1), it can be interpreted as

Xn = X0 +

∫ n

0
αk dζk

Whith this procedure it is possible to find a correspondence between A∞ weights

and processes X = {(uk, wk)}k∈N controlled by α = {αk}k∈N. The way to get this

correspondence is by starting from the interval I and going down the dyadic tree to

its subintervals in the following way: at the time n we are on a subinterval J of length

2−n|I| and the position is determined by the sequence of coin tosses ξk, i.e. we move

from a interval K to a interval K+ if ξk = 1, and we move to K− if ξk = −1. This

way for every ω ∈ A∞ we get that a process Xn = (un, wn) is the vector of averages

over an appropriate interval J , starting from the initial state X0 = (〈logω〉I , 〈ω〉I)
and it is controlled by a control α = {αk}k∈N defined by αn = (Xn+1 −Xn)/ξn, i.e.

αn,1 =
1

2

(
〈logω〉J+ − 〈logω〉J−

)
, αn,2 =

1

2

(
〈ω〉J+ − 〈ω〉J−

)
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This is the way to associate a weight ω to a control α.

On the other hand if we have a process X = {Xk}k∈N defined by an initial state

(u,w) and a control α such that

lim
n→+∞

eun = lim
n→+∞

wn

with probability 1, then this process defines a unique A∞ weight. The values of X

are vectors of averages

Xk = (〈logω〉J , 〈ω〉J) = (uk, wk)

for a proper interval J determined by the sequence of the coin tosses. So we just

define

ω = lim
n→+∞

∑
J⊆I

|J|=2−n|I|

wJχJ

for every n ∈ N the element of the succession∑
J⊆I

|J|=2−n|I|

wJχJ

is an A∞ weight, so the limit of this succession will also satisfy the A∞ condition,

so ω is the weight we were looking for.

Now, given ε > 0, we will construct a control α (that corresponds to a weight ω ∈ A∞
based on the last argument) such that

Ex
[ +∞∑
n=0

4

(
αn,2
wn

)2]
≥ (1− ε)g2(x) (3.20)

This will be enough to prove that g2 = v, where v is the Bellman function defined

in (3.18). This follows because

v(x) = sup
α
vα(x) = sup

α
Ex
[ ∫ +∞

0
fαt(Xt)dt

]
and, when we consider our case with a discrete set of times t ∈ N, the expression of

the payoff becomes

vα(x) = Ex
[ +∞∑
n=0

fαn(Xn)

]
and since the profit density is

f (α1,α2)(x1, x2) = 4

(
α2

x2

)2

then, if (3.20) holds, we get

v(x) ≥ vα(x) = Ex
[ +∞∑
n=0

4

(
αn,2
wn

)2]
≥ (1− ε)g2(x)

for all ε > 0, so v(x) ≥ g2(x), but we already proved that v(x) ≤ g2(x) earlier at

the end of section 3.1, so this would mean that v = g2 completing the heuristic

argument.
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To construct this process α let us fix a line segment L = [A,B] in the domain D

such that x ∈ L and the endpoints A and B are on the lower bound of the domain

{(u,w) | w = eu}. Our process will be a discrete random walk on the line L with

small steps. Let δ > 0 be a fixed number we will choose later. Let l be a unit vector

parallel to L. We define

αn = min{δ, dist(xn−1, {A,B})} · l

this means that when we consider the process

Xn = x+

∫ n

0
αk dζk

then Xn+1 will be equal to Xn + δ · l if the n− th coin toss is heads (i.e. ξn = 1), or

will be equal to Xn− δ · l if it is tails instead (ξn = 1), unless Xn is very close to the

boundary, in that case the point will either land on the boundary point (A or B)

or it will move on the other direction of the distance between Xn and the boundary

point. A consequence of this fact is that if the point Xn lands on the boundary

points in {A,B} then the process will never move from there, and Xm = Xn for all

m > n.

Using the properties of the random walk it is easy to see that all trajectories hit the

boundary with probability 1. So, applying Taylor’s formula and using the compact-

ness of L we can choose a small enough δ such that

g2(x) ≤ 1

2

(
g2(x+ α) + g2(x− α)

)
+ (1 + ε) · 4 ·

(
α2

w

)2

(3.21)

Now we iterate the inequality (3.21) by computing the same inequality for g2(x+α)

and g2(x − α) and substitute it in the right hand side of (3.21) and we repeat the

procedure N times, and then we compute the limit for N → +∞. After iterating

the procedure N times we get

g2(x) ≤ (1 + ε)
N+1∑
n=1

2n∑
i=1

4

(
α

(i)
n,2

w
(i)
n

)2 1

2n
+

2N+1∑
i=1

1

2N+1
g2(X

(i)
N+1) (3.22)

Where. given a process {Zt}, Z(i)
t for i = 1, 2, . . . ,M is a notation to enumerate the

M possible values of Zt.

Now we observe that, because each trajectory up to the time n has probability 1/2n

to happen for the definition of the process Xn = (un, wn), then

2n∑
i=1

4

(
α

(i)
n,2

w
(i)
n

)2 1

2n
= Ex

[
4

(
αn,2
wn

)2]
2N∑
i=1

1

2N
g2(X

(i)
N ) = Ex

[
g2(XN )

]
Now we observe that

lim
N→+∞

Ex
[
g2(XN )

]
= 0

because XN ∈ {A,B} almost surely for N → +∞ and g2(x) = 0 when x ∈ {A,B}
and g2 is bounded in his domain, so it is bounded on the trajectories that don’t end
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on the boundary points {A,B}.
So we can compute the limit for N → +∞ of (3.22) and we get

Ex
[ +∞∑
n=0

4

(
αn,2
wn

)2]
≥ 1

1 + ε
g2(x) ≥ (1− ε)g2(x)

which is exactly (3.20), completing the heuristic argument.



Chapter 4

A new Bellman function on a

tree

In this chapter we will prove Hardy’s inequality using the Bellman’s function

method. Hardy’s inequality comes from harmonic analysis and it allows to char-

acterize Carleson measures for Besov spaces. For more details we suggest to check

[8] and [9] for a proof that Hardy’s inequality allows us to characterize Carleson

measures.

4.1 Bellman function on a tree

Let p ∈ R, 1 < p < +∞. We consider the function

B(F, f,A, v) = F − fp

(A+ v)p−1
(4.1)

defined over the domain

D :=

{
(F, f,A, v) ∈ R4

∣∣ F ≥ 0, f ≥ 0, A > 0, v > 0, v ≥ A, fp ≤ Fvp−1

}
This function is the function used in the article [1, pg. 3], in the general case p 6= 2.

Observation 4.1.1. The function B has the following properties:

1) B is a concave function defined over a convex domain

2) F ≥ B(F, f,A, v) ≥ 0

Proof. 1) We write the domain D as

D = {v ≥ A} ∩ A

here A is the set

A = {(F, f,A, v) ∈ R4 | F ≥ 0, f ≥ 0, v > 0, fp ≤ Fvp−1}

To prove that the domain is convex we just need to prove that it is a intersection of

convex sets.

47
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The set {v ≥ A} is trivially convex because it is a half-plane. Since 1
p + 1

q = 1 and
p−1
p = 1

q , the set A can be written as

A = S ∩ {f ≥ 0}

here {f ≥ 0} is another half-plane (a convex set), while S is the set

S = {(F, f,A, v) ∈ R4 | F ≥ 0, v > 0, f ≤ F
1
p v

1
q }

The set S is the subgraph of the function

h : R+
0 × R× R+ −→ R+

0

(F,A, v) 7−→ F
1
p v

1
q

To prove that S is convex, all we need to do is to prove that h is a concave function

(since h is defined over a convex domain).

Since h does not depend on the variable A, we will treat it as a function over the

other two variables only:

h : R+
0 × R+ −→ R+

0

(F, v) 7−→ F
1
p v

1
q

We compute the Hessian matrix of the function h: for all F > 0, v > 0

∂h

∂F
(F, v) =

1

p
F

1
p
−1
v

1
q ,

∂h

∂v
(F, v) =

1

q
F

1
p v

1
q
−1

∂2h

∂F 2
(F, v) =

1− p
p2

F
1−2p
p v

1
q ,

∂2h

∂v∂F
(F, v) =

1

pq
F

1−p
p v

q−1
q

∂2h

∂F∂v
(F, v) =

1

pq
F

1−p
p v

q−1
q ,

∂2h

∂v2
(F, v) =

1− q
q2

F
1
p v

1−2q
q

Hh(F, v) =


1−p
p2
F

1
p
−2
v

1
q 1

pqF
1
p
−1
v

1
q
−1

1
pqF

1
p
−1
v

1
q
−1 1−q

q2
F

1
p v

1
q
−2

 (4.2)

So as long as the Hessian matrix of h has non positive eigenvalues then the function

h is concave.

Now we compute the eigenvalues of the Hessian matrix (4.2):

det(Hh(F, v)− λI) = det


1−p
p2
F

1
p
−2
v

1
q − λ 1

pqF
1
p
−1
v

1
q
−1

1
pqF

1
p
−1
v

1
q
−1 1−q

q2
F

1
p v

1
q
−2 − λ

 =

=
(1− p)(1− q)

(pq)2
F

1
p

+ 1
p
−2
v

1
q

+ 1
q
−2 − 1

(pq)2
F

2( 1
p
−1)

v
2( 1
q
−1)

− λ
[

1− p
p2

F
1
p
−2
v

1
q +

1− q
q2

F
1
p v

1
q
−2
]

+ λ2
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Now we recall that pq = p+q, so (1−p)(1−q) = 1−p−q+pq = 1−p−q+p+q = 1,

so we get that

det(Hh(F, v)− λI) = λ2 − λ
[

1− p
p2

F
1
p
−2
v

1
q +

1− q
q2

F
1
p v

1
q
−2
]

The eigenvalues of Hh(F, v) are the solutions of the equation of variable λ

det(Hh(F, v)− λI) = 0

that are the two values

λ1 = 0, λ2 =
1− p
p2

F
1
p
−2
v

1
q +

1− q
q2

F
1
p v

1
q
−2

Now we observe that 1−p < 0, 1−q < 0 and F > 0, v > 0, so the second eigenvalue

is λ2 < 0, so the Hessian matrix Hh(F, v) is negative semi-definite for all F > 0 and

v > 0 and, since h is continuos up to the boundary of its domain, this entails that

h is concave and the subgraph S is a convex set. So the domain D of the function

B in (4.1) is a convex set since it’s a intersection of convex sets.

Now we need to prove that the function B is concave.

We observe that the function B is the sum of the functions (F, f,A, v) 7→ F and

g : (F, f,A, v) 7→ − fp

(A+v)p−1 , and the first function is linear (so it is concave) so we

only need to prove that the function g is concave. We also observe that g(F, f,A, v) =

−h(f,A+ v) = −h̃(f,A, v), here h is the function

h : R+
0 × R+ −→ R

(f, Z) 7−→ fp

Zp−1

and h̃ is the function

h : R+
0 × R+ × R+ −→ R

(f,A, v) 7−→ fp

(A+ v)p−1

So, in order to prove that g is concave, all we need to do is to prove that h̃ is convex.

Now we observe that if h is convex then h̃ : (f,A, v) 7→ h(f,A+v) is convex. Infact,

if h is convex, for all t ∈ [0, 1], for all f1, f2 ∈ R+
0 , A1, A2 ∈ R+, v1, v2 ∈ R+we get

h̃(tf1 + (1− t)f2, tA1 + (1− t)A2, tv1 + (1− t)v2) =

= h(tf1 + (1− t)f2, (tA1 + (1− t)A2) + (tv1 + (1− t)v2)) =

= h(tf1 + (1− t)f2, t(A1 + v1) + (1− t)(A2 + V2)) ≤

≤ th(f1, A1 + v1) + (1− t)h(f2, A2 + v2) =

= th̃(f1, A1, v1) + (1− t)h̃(f2, A2, v2)

So if h is convex then h̃ is convex, proving that the subgraph S is a convex set,

finishing the proof. All that is left to do is to prove that h is convex.
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We compute the Hessian matrix of h. For all f ∈ R+, Z ∈ R+

∂h

∂f
(f, Z) = p

fp−1

Zp−1
,

∂h

∂Z
(f, Z) = −(p− 1)

fp

Zp

∂2h

∂f2
(f, Z) = p(p− 1)

fp−2

Zp−1
,

∂2h

∂Z∂f
(f, Z) = −p(p− 1)

fp−1

Zp

∂2h

∂f∂Z
(f, Z) = −p(p− 1)

fp−1

Zp
,

∂2h

∂Z2
(f,A) = p(p− 1)

fp

Zp+1

Hh(f, Z) =

 p(p− 1) f
p−2

Zp−1 −p(p− 1)f
p−1

Zp

−p(p− 1)f
p−1

Zp p(p− 1) fp

Zp+1

 (4.3)

Now we compute the eigenvalues of the Hessian matrix (4.3):

det(Hh(f, Z)− λI) = det

p(p− 1) f
p−2

Zp−1 − λ −p(p− 1)f
p−1

Zp

−p(p− 1)f
p−1

Zp p(p− 1) fp

Zp+1 − λ

 =

=p2(p− 1)2 f
2p−2

Z2p
− p2(p− 1)2 f

2p−2

Z2p

− λ
[
p(p− 1)

fp−2

Zp−1
+ p(p− 1)

fp

Zp+1

]
+ λ2 =

=λ2 − λ
[
p(p− 1)

fp−2

Zp−1
+ p(p− 1)

fp

Zp+1

]
So the eigenvalues of the function h are λ1 = 0 and λ2 = p(p−1) f

p−2

Zp−1 +p(p−1) fp

Zp+1 .

Since p > 1, f > 0, Z > 0, the eigenvalue λ2 is greater than 0. So the Hessian matrix

Hh(f, Z) is positive semi-definite for every f > 0, Z > 0. h is continuous up to the

boundary of its domain, so h is a convex function, completing the proof that B is

concave.

2) This is trivially true because of the conditions over the domain of the function.

Since p > 1, F ≥ 0, f ≥ 0, A > 0, v ≥ A and fp ≤ Fvp−1, then

B(F, f,A, v) = F − fp

(A+ v)p−1
≥ F − fp

(2v)p−1
≥ F − Fvp−1

(2v)p−1
≥ F − F

2p−1
≥ 0

and

B(F, f,A, v) = F − fp

(A+ v)p−1
≤ F

Lemma 4.1.1. The function B satisfies

B(F, f,A, v)− 1

2

[
B(F−, f−, A−, v−) + B(F+, f+, A+, v+)

]
≥
(
p− 1

2p

)
fp

vp
c

where the inequality holds for all

F = F̃ + bp, f = f̃ + ab

v = ṽ + aq, A = Ã+ c



4.1. BELLMAN FUNCTION ON A TREE 51

and

F̃ =
1

2
(F− + F+), f̃ =

1

2
(f− + f+)

ṽ =
1

2
(v− + v+), Ã =

1

2
(A− +A+)

for every choice of a ≥ 0, b ≥ 0, c ≥ 0. Here q is the real number such as 1
p + 1

q = 1.

Proof. We start by considering the telescopic sum

B(F, f,A, v)− B(F̃ , f̃ , A− c, ṽ) = B(F, f,A, v)− B(F, f,A− c, v) + (4.4)

+B(F, f,A− c, v)− B(F̃ , f̃ , A− c, ṽ)

Since the function B is concave and differentiable over a convex domain, we recall

that a concave differentiable function’s values are lower or equal to the values of any

of its tangent hyperplanes. This entails that, for every g concave and differentiable,

for every choice of x, x∗ in the domain of the function g:

g(x)− g(x∗) ≤
4∑
i=1

∂g(x∗)

dxi
(xi − x∗i ) (4.5)

by changing the sign of (4.5) we get

g(x∗)− g(x) ≥
4∑
i=1

∂g(x∗)

dxi
(x∗i − xi) (4.6)

So when g = B, x = (F, f,A, v), x∗ = (F, f, Ã, v) = (F, f,A − c, v), the inequality

(4.6) becomes

B(F, f,A, v)− B(F, f,A− c, v) ≥ (p− 1)
fp

(A+ v)p
c

now, since v ≥ A by definition of the domain of B, then

B(F, f,A, v)− B(F, f,A− c, v) ≥ p− 1

2p
fp

vp
c (4.7)

By combining (4.7) with (4.4) we get

B(F, f,A, v)−B(F̃ , f̃ , A−c, ṽ) ≥ B(F, f,A−c, v)−B(F̃ , f̃ , A−c, ṽ)+
p− 1

2p
fp

vp
c (4.8)

Now we consider g = B, x = (F̃ , f̃ , A − c, ṽ), x∗ = (F, f,A − c, v), the inequality

(4.6) becomes

B(F, f,A−c, v)−B(F̃ , f̃ , A−c, ṽ) ≥ bp−p
(

f

A+ v − c

)p−1

ab+(p−1)

(
f

A+ v − c

)p
aq

Now let y ∈ R be

y =
f

A+ v − c
we observe that y ≥ 0 because f ≥ 0, v > 0, A− c > 0 by definition of the domain

of B. So the last inequality can be rewritten as

B(F, f,A− c, v)− B(F̃ , f̃ , A− c, ṽ) ≥ bp − pyp−1ab+ (p− 1)ypaq = φ(y)
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Now we prove that φ(y) ≥ 0 for all y ≥ 0.

We observe that φ(y) = bp ≥ 0 trivially when a = 0, so we assume a > 0.

We compute the first derivative of the function φ:

φ′(y) =p(p− 1)aqyp−1 − p(p− 1)ab yp−2

=p(p− 1)yp−2
(
aqy − ab

)
So the derivative φ′(y) is φ′(y) ≤ 0 for 0 ≤ y ≤ b

aq−1 and φ′(y) ≥ 0 for y ≥ b
aq−1 , so

ỹ = b
aq−1 is a point of absolute minimum, so as long as φ(ỹ) ≥ 0 the inequality holds

for all y ≥ 0.

φ(ỹ) =bp − pỹp−1ab+ (p− 1)ỹpaq =

=bp − p
(

b

aq−1

)p−1

ab+ (p− 1)

(
b

aq−1

)p
aq =

=bp − p bp−1

a(q−1)(p−1)
ab+ (p− 1)

bp

ap(q−1)
aq =

=bp − p bp

a(pq−p−q) + (p− 1)
bp

a(pq−p−q)

now we recall that
1

p
+

1

q
= 1

pq = p+ q

so we get

φ(ỹ) =bp − p b
p

a0
+ (p− 1)

bp

a0
=

= bp(1− p+ (p− 1)) = 0

So the inequality φ(y) ≥ 0 holds for all y ≥ 0, for every choice a ≥ 0, b ≥ 0, therefore

the inequality (4.8) becomes

B(F, f,A, v)− B(F̃ , f̃ , A− c, ṽ) ≥ p− 1

2p
fp

vp
c (4.9)

now (F̃ , f̃ , A − c, ṽ) = (F̃ , f̃ , Ã, ṽ) = 1
2((F+, f+, A+, v+) + (F−, f−, A−, v−)), so for

the last step we use the fact that B is concave

B(F, f,A, v)− 1

2

[
B(F+, f+, A+, v+) + B(F−, f−, A−, v−)

]
≥ p− 1

2p
fp

vp
c

4.2 Hardy’s inequality

Let D(I0) be the dyadic tree over I0 = [0, 1], let Λ be a positively valued measure

over the dyadic tree defined as follows: for each node I ∈ D(I0)

D(I0) 3 I 7−→ λI ∈ R+
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now we define the following objects as follows:

Λ(I) =
∑
K⊆I

λK

(Λ)I =
1

|I|
∑
K⊆I

λK =
1

|I|
Λ(I)∫

I
φ dΛ =

∑
K⊆I

φ(K)λK

(φΛ)I =
1

|I|
∑
K⊆I

φ(K)λK =
1

|I|

∫
I
φ dΛ

Now we are going to prove the theorem (1.3) in the article [1, pg. 4] in the general

case p 6= 2.

Theorem 4.2.1 (Hardy’s inequality). Let D(I0) be the dyadic tree originating at

I0 with notations as above, let {αI}I⊆I0 be a sequance of positive numbers. Let

Λ : D(I0)→ R+ be a positive measure over the dyadic tree. Let φ : D(I0)→ R+
0 be a

non-negative function. Let p be a real number 1 < p < +∞. Then if the inequality

1

|I|
∑
K⊆I

αK(Λ)pK ≤ (Λ)I ∀I ∈ D(I0) (4.10)

is satisfied, then
1

|I0|
∑
I⊆I0

αI(φΛ
1
q )pI ≤ C(p)(φp)I0 (4.11)

Here 1
p + 1

q = 1, C(p) = 2p

p−1 is a constant depending only on p, and

(φΛ
1
q )I =

1

|I|
∑
K⊆I

φ(K)λ
1
q

K , (Λp)I0 =
1

|I0|
∑
I⊆I0

λpI

Before proving the theorem we are going to mention the reason why Hardy’s

inequality is useful to study Carleson measures on Besov spaces.

Let D = {z ∈ C | |z| ≤ 1} be the unitary disk in the set of complex numbers C. Let

1 < q < +∞ be a real number. Then we define the Besov space Dq as the set

Dq = {f : D −→ C | f is holomorphic, ||f ||Dq < +∞}

where the norm || · ||Dq is defined by

||f ||qDq = |f(0)|q +

∫
D
|(1− |z|2)f ′(x)|q · 1

(1− |z|2)2
dz

We define the Carleson measures over D in the following way

Definition 4.2.1. A Carleson measure over (D,B(D)) is a measure µ : B(D)→ R+
0

such that ∫
D
|f |qdµ ≤ C(µ) · ||f ||qDq for all f ∈ Dq

where C(µ) is a real constant depending only on µ.
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Carleson measures can be characterized using a discretization theorem in the

following way: let

Qn,j = {r · eit ∈ D | 2−n−1 < 1− r ≤ 2n, 2π
j − 1

2n
≤ t < 2π

j

2n
}

for n = 0, 1, 2, . . . and j = 1, 2, . . . , 2n. The sets Qn,j allow to build a tree structure

in this way: Q0,1 is the root of the tree, Q1,1 is the first son of Q0,1 while Q1,2 is the

second son of Q0,1, Q2,1 is the first son of Q1,1, Q2,2 is the second son of Q1,1, Q2,3

is the first son of Q1,2 and so on, increasing the index n increases the generation of

the node Qn,j . We will denote this dyadic tree by T.

Given a measure µ on D we may now define a measure on T by

µ̃ : T −→ R+
0

µ̃(Qn,j) =

∫
Qn,j

dµ

The following discretization theorem holds true:

Theorem 4.2.2. Let µ be a measure on D. Let I be the Hardy operator defined by,

given φ : T→ R+
0 :

Iφ : T −→ R+
0

Iφ(Q) =
∑
R⊇Q

φ(R)

Then the following two statemens are equivalent:

1) ∫
D
|f |qdµ ≤ C(µ) · ||f ||qDq for all f ∈ Dq

2) ∑
Q∈T

Iφ(Q)qµ̃(Q) ≤ C ′(µ) · ||φ||qlq(T) for all φ ∈ lq(T)

where C ′(µ) is a constant depending only on µ.

It can also be proved that the statement 2) is equivalent to its dual version 3),

i.e. 2) is equivalent to

3) ∑
R⊆Q

( ∑
P⊆R

µ̃(P )

)p
≤ C ′′(µ)

∑
R⊆Q

µ̃(R) ∀Q ∈ T

where C ′′(µ) is a constant depending only on µ, and 1
p + 1

q = 1.

Details about these topics can be found in [8] and [9].

We observe that Hardy’s inequality (4.11) entails the statement 3), because you can

prove 3) by considering αI = |I|p in (4.11).

This is why Hardy’s inequality is useful to study the characterization of Carleson

measures for Besov spaces.

Now we will prove theorem 4.2.1 using the Bellman function’s method.
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Proof. Let I ∈ D(I0), we denote with I− ∈ D(I0) and I+ ∈ D(I0) the two children

of the node I.

For every I ∈ D(I0) we define

I 7−→ vI ∈ R+

I 7−→ FI ∈ R+
0

I 7−→ fI ∈ R+
0

I 7−→ AI ∈ R+

as follows

vI :=(Λ)I =
1

|I|
λI +

1

2
(VI− + VI+) =

=aqI + ṽI , where aI :=

(
λI
|I|

) 1
q

FI :=(φp)I =
1

|I|
φ(I)p +

1

2
(FI− + FI+) =

=bpI + F̃I , where bI :=
φ(I)

|I|
1
p

fI :=(φΛ
1
q )I =

φ(I)λ
1
q

I

|I|
+

1

2
(fI− + fI+) = aIbI + f̃I

AI :=
1

|I|
∑
K⊆I

αK(Λ)pK =
αI(Λ)pI
|I|

+
1

2
(AI− +AI+) =

=cI + ÃI , where cI :=
αI(Λ)pI
|I|

This mapping is the mapping Φ mentioned in subsection 3.2.2.

We observe that the hypothesis (4.10) is exactly AI ≤ vI , and we also observe that,

by applying Hölder’s inequality to fI , we get

fI =
1

|I|
∑
K⊆I

φIλ
1
q

Y ≤

≤ 1

|I|
1
p

(∑
K⊆I

φpI

) 1
p 1

|I|
1
q

(∑
K⊆I

λI

) 1
q

=

= (φp)
1
p

I (Λ)
1
q

I = F
1
p

I v
1
q

I

So, for all choices of φ : D(I0)→ R+
0 , α : D(I0)→ R+, Λ : D(I0)→ R+, I ∈ D(I0),

the vectors

xI := (FI , fI , AI , vI), xI− := (FI− , fI− , AI− , vI−), xI+ := (FI+ , fI+ , AI+ , vI+)

are elements of the domain of the function B defined in (4.1). So we can compute

the value of the function B over xI , xI− , xI+ for all I ∈ D(I0). We observe that

B(FI , fI , AI , vI) = B(F̃I + bpI , f̃I + aIbI , ÃI + cI , ṽI + aqI)
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where

F̃ =
1

2
(F− + F+), f̃ =

1

2
(f− + f+)

ṽ =
1

2
(v− + v+), Ã =

1

2
(A− +A+)

so we can apply Lemma 4.1.1 to get

|I|(p− 1)

2p
fpI
vpI
cI ≤|I|

(
B(xI)−

1

2
(B(xI−) + B(xI+)

)
|I|(p− 1)

2p
fpI

(λ)pI

αI(λ)pI
|I|

≤|I|B(xI)− |I−|B(xI−)− |I+|B(xI+)

(p− 1)

2p
αIf

p
I ≤|I|B(xI)− |I−|B(xI−)− |I+|B(xI+)

Summing over all I ∈ D(I0) and using the telescopic nature of the sum we get

(p− 1)

2p

∑
I⊆I0

αIf
p
I ≤ |I0|B(FI0 , fI0 , AI0 , vI0) ≤ |I0|FI0 (4.12)

Infact, after ordering the nodes of the dyadic tree in the following way: I0 ≡ I0,

I1 := (I0)−, I2 := (I0)+, I3 := ((I0)−)−, I4 := ((I0)−)+, I5 := ((I0)+)−, I6 :=

((I0)+)+, I7 := (((I0)−)−)− and so on, we observe that

0 ≤ (p− 1)

2p
αIf

p
I ≤ |I|B(xI)− |I−|B(xI−)− |I+|B(xI+)

so the sums
(p− 1)

2p

+∞∑
j=0

αIjf
p
Ij

+∞∑
j=0

(
|Ij |B(xIj )− |(Ij)−|B(x(Ij)−)− |(Ij)+|B(x(Ij)+)

)
converge to a limit in R+

0 ∪ {+∞} and this limit does not depend of the order of

the addends in the sum because all the addends are greater or equal to 0. So, by

considering a partial sum of the first N + 1 addends

(p− 1)

2p

N∑
j=0

αIjf
p
Ij
≤

N∑
j=0

(
|Ij |B(xIj )− |(Ij)−|B(x(Ij)−)− |(Ij)+|B(x(Ij)+)

)
we observe that the last summing is telescopic, and for each j > 0 the term |Ij |B(xIj )

addend |Ij |B(xIj ) − |(Ij)−|B(x(Ij)−) − |(Ij)+|B(x(Ij)+) is simplified with one of the

negative terms in the previous addends, so the sum can be written as

(p− 1)

2p

N∑
j=0

αIjf
p
Ij
≤ |I0|B(xI0)−

∑
j∈L
|Ij |B(xIj )

where L ⊂ N is the (finite) set of the indexes of the negative terms that are not

simplified in the partial sum. However we recall that F ≥ B(F, f,A, v) ≥ 0, so the

inequality becomes

(p− 1)

2p

N∑
j=0

αIjf
p
Ij
≤ |I0|B(xI0)−

∑
j∈L
|Ij |B(xIj ) ≤ |I0|B(xI0) ≤ |I0|FI0
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By letting N → +∞ we get the inequality (4.12). Now we recall that FI0 = (φp)I0
and fI = (φΛ

1
q )I , so we get

1

|I0|
∑
I⊆I0

αI(φΛ
1
q )pI ≤

2p

(p− 1)
(φp)I0

which is exactly (4.11) , where C(p) = 2p

(p−1) , ending the proof.
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