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Abstract

Osservando il recente interesse per le reti dinamiche temporali e l’ampio numero di campi
di applicazione, questa tesi ha due principali propositi: primo, di analizzare alcuni modelli
teorici di reti temporali, specialmente lo stochastic blockmodel dinamico, al fine di descrivere
la dinamica di sistemi reali e fare previsioni. Il secondo proposito della tesi é quello di creare
due nuovi modelli teorici, basati sulla teoria dei processi autoregressivi, dai quali inferire nuovi
parametri dalle reti temporali, come la matrice di evoluzione di stato e una migliore stima della
varianza del rumore del processo di evoluzione temporale. Infine, tutti i modelli sono testati
su un data set interbancario: questi rivelano la presenza di un evento atteso che divide la rete
temporale in due periodi distinti con differenti configurazioni e parametri.

Observing the recent interest for dynamic temporal networks and a large number of areas
where they could be applied, this thesis has two major purposes: first to analyze existing
theoretical temporal models, especially the dynamic stochastic block model, with the purpose
to infer the underlying structure of the network and to predict its evolution. The second purpose
is to propose two new theoretical models, based on the theory of auto-regressive processes, by
which infer new parameters from temporal networks, such as the state evolution matrix and
a better estimate of the variance of the process noise. Finally, all the models are applied to
interbank data set: they reveal the presence of an expected event that divides the temporal
networks into two different time-lapses with different configurations and parameters.
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Chapter 1

Introduction

Nowadays the amount of data we can produce and collect is growing faster than what we could
only imagine a few years ago: World Wide Web is always expanding, social networks collect
data from increasing numbers of users and from their interactions, databases of proteins or
amino-acids are daily enlarged, numerical simulations run with millions of interacting parti-
cles. We give an idea of this enormous growth: the data traffic that will be produced in 2022 is
estimated to be comparable with traffic produced between 1984 and 2016. We’re talking about
4.8 ZettaBytes of data [36]. Focusing on Cern (European Organization for Nuclear Research),
where is set the largest particles accelerator on Earth, all the experiments have generated more
or less 49 PetaBytes of data in 2016 [8]. This number became 72 PetaBytes in 2017 [9]. This
growth is related to the sensors’ cost, which decreases in the past decade, implying a large
diffusion of them in all the electronic devices we use.
Meanwhile, the processing power has grown to handle these data, even in daily devices: all
the common laptops now work with multicore processors and frequently they have multicore
threading GPU.

From a scientific point of view, this enormous amount of data has made it possible to study
and to investigate new research areas. Several new analytical models describe the observed
system’s dynamic in these newfields and the same is for the related numerical algorithms. Graph
theory is one of those that has grown most in last decades. This growth is due to the large
progress in the computing power, which allows today to study very large systems. By this, many
different study fields have started to employ graph theory’s models and properties to analyze
their research area: physics, biology, math, econometrics, computer science. Meanwhile, graph
theory has been enriched by the analytical models used in all these fields, especially from the
physical and mathematical models. In the following section, we will deepen this aspect.
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1. Introduction

1.1 Graph theory and physics
The interconnection between physics and graph theory is evident in many different fields of
research of the physics: statistical physics, condensed matter physics, applied physics, to name
a few. There are many systems of interest to scientists that are composed of individual parts
or components linked together. The strength of graph theory lies in the possibility to describe
these objects as nodes and links: examples include spin chains, vehicles traffic, aminoacids in
proteins, the Internet, a collection of computers linked by data connections, and human societies.

The history of the graph theory is quite recent: in fact, the great majority of the notions
and models have been formulated in the last 70 years. In the previous centuries, we can recall
two main problems of the graph theory: the Euler’s paper "The seven bridges of Konigsberg",
written in 1736, describes the first mathematical problem solved with the graph theory. The
problem could be stated as: "Does exist a path which crosses all the seven Konigsberg bridges
only once?". Euler demonstrated that a similar path does not exist by creating a graph using
the geographical chart of the city. He transformed every connected place in a node and every
bridge in a link.

Figure 1.1: The Koningsberg bridges: on the left we observe the map of the city, on
the right its graph representation

The second main problem is the famous four color problem, stated in 1852: is it possible
to color any map using only four colors in such a way that adjacent regions are colored with
different colors? The adjacent regions are those sharing a common boundary segment. The
graph representation of this problem is the following one: each region is substituted with a
node and each boundary between regions is replaced with a link between the respective nodes.
Many demonstrations were proposed through the years, but the final and correct one arrived
only in 1977. This demonstration is quite peculiar since the solution has not an analytical
form: Kenneth Appel e Wolfgang Haken, the mathematicians who found the solution, used a
computer algorithm to try all the possible combinations of colors on each possible topology of
graph.
By these two problems, we observe that the solutions are obtained by transforming the studied
systems into their network counterparts. This fact is well summarize by Newman: a network
is a simplified representation that reduces a system to an abstract structure capturing only the
basics of connection patterns and little else [31].
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1. Introduction

In the recent years, graph theory and physics become more and more intercorrelated:
probably, statistical physics is the field more strictly connected with graph theory respect to the
others. We review some examples by starting from the joining milestone, the Ising model. The
Ising model, which is a benchmark for all the lattice models, is one of the statistical models
used to describe the microscopical interaction in the matter. The Ising model considers the
interactions between spins on a d-dimensional lattice. Its Hamiltonian is written as follows:

H = −J
∑

i j

σiσj − H
N∑

i=1
σi (1.1)

where σ represents the spin and it assumes the values ±1, J is the interaction term and H
represents the external field. The interaction is considered only for nearest-neighbor spins. The
analogy with the graph theory is self-evident: each spin in the Ising model could be replaced
with a node, while the interactions between them are the network’s links. In literature several
graph analytical formulations exist to describe the Ising model [14] [16].
Continuing our analysis, one of the generalizations of the Ising model, the Potts model, is
connected to the Max κ-cut problem, largely studied in the graph theory. Firstly we define the
Potts model. This model is described by a lattice of spins and each of them can assume q
different values or states. Thus, the Hamiltonian of the system could be written as follows:

H =
∑

i j

Ji j(1 − δ(σiσj)) (1.2)

where δ is the Kronecker delta function. Now we can focus on the Max κ-cut problem. This
problem could be stated as follows: for any graph G = (V ; E), the problem tries to split the
nodes V into κ parts such that the number of links between different parts is maximized [27].
TheMax κ-cut problem could be applied to each family of random graphs. In the case of sparse,
inhomogeneous stochastic networks and in the large degree limit, the asymptotic behavior of
the leading term of the Max κ-cut is a variational problem involving the ground state of a
constrained inhomogeneous Potts spin glass [27] [18] [17].
The connection between the Potts model and graph theory could be extended to problems of
the optimal inference of the group assignment. In the following example, we review a specific
application of the stochastic block model, which falls in the class of the random networks
originated by the Erdos-Renyi Model, whose particularity is to relation the probabilities of
linking between nodes and the structure of the communities in the network through the affinity
matrix, which entries are the probabilities of linking between different groups. This model
is the benchmark for thesis and ti will be further detailed in the followings. The analysis
of the stochastic block model (SBM) made by Decelle et al. [13] considers the probability
P(G, {qi}|θ) that the SBM generates a graph G, with N nodes, adjacency matrix W with group
assignment {qi}, conditioned on the parameters of the model θ. Employing the Bayes’ rule,
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1. Introduction

Decelle et al. explicit the probability distribution over the group assignments by knowing the
graph G and the parameters θ:

P({qi}|G, θ) =
P(G, {qi}|θ)∑
ti P(G, {ti}|θ)

(1.3)

They notice that this distribution is the Boltzmann distribution of the generalized Potts model
with Hamiltonian:

H({qi}|G, θ) = −
∑

i

log nqi −
∑
i, j

[
Wi j log cqi,qj + (1 −Wi j) log

(
1 −

cqi,qj

N

)]
(1.4)

where nqi is the number of nodes in the group qi and the cqi,qj are the entries of rescaled affinity
matrix. The analogy is between the labels qi and the spins and between the number of nodes
in the groups nqi and the local magnetic fields [13].

By a few examples, we explicited the close connection between physics and graph theory.
In the following sections, we analyze the aim of this thesis and we summarize its contents.

1.2 The topic of the thesis
In the previous section, we have analyzed different applications of graph theory, especially
by connecting them to physics. In this section, we want to explicit the aim of our study
developed through the thesis. We can start this operation by considering the thesis title:
"modeling temporal networks with dynamic stochastic block models". By reading this title,
we immediately have to answer a question: what is it a temporal network? Temporal networks
are all those systems that evolve and are composed of entities that have some kinds of relations
between themselves. The most important fact is that the relations between the entities evolve
over time. Anyway, this definition remains quite general, thus we also explain what is a
temporal network using some examples. Probably, the easiest one concerns social relations.
We consider to imagine all the people we know: some of them are strongly bound to us (like
our best friends, or our parents), others are people we see every day and we know them because
we share something (like our classmates, or our colleagues), others are simply acquaintances.
We imagine tying all the couples of people that have some kind of relationship among these
people we know. The result we obtain is the network of the social relations among the people
of our life, where the people are the nodes and the relations are links that join them. If we
would have repeated the same process a few years ago, probably some of them were not still
in our life, others should still have known each other. Hence, the network we would have built
a few years ago is not the network we build today, which is not the network we will build
in a few years. If we put together all these networks, we obtain the temporal network which
describes all the relations between all the people we have known in all our life. This process is
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1. Introduction

similar to the chronological collection of all the snapshots of the relations we acquired through
each period of our life. But examples of temporal networks exist in any field: if we consider
the pattern of the hyperlinking in the WWW, it evolves constantly every second: some sites
are deleted, others are created, others are joined with a hyperlink. Thus, we have obtained a
solid idea of what a temporal network is, but this definition remains purely qualitative. When
modeling a temporal network, we have to make important choices to represent them. Through
the previous example, we explicit this problem: are the relations between the people all equals
or some of them are more important than the others? If some people share more relations
between themselves respect to the others, should we consider them as a group? How many
groups are in the networks? With these questions, we have pointed out some problems when
modeling temporal networks. Not all the relations have the same weight (a weighted network
is a network where different values are associated with the edges to give different relevances
to the studied relations, i.e. a weight for each of relation) : this fact can be considered as not
when modeling a temporal network. Furthermore, what is a group in a network? Do the groups
evolve and how they evolve? How the dynamic of the relations between different groups evolve
through time? These are non-trivial problems to solve since we aim to solve them by knowing
only the patterns of the relations between the entities in the temporal network and nothing
more: this information is called the temporal adjacency matrix of the temporal network. How
to do you this? Employing the second parts of the title of our thesis, the dynamic stochastic
block models. This class of network models has recently become a benchmark for the analysis
of temporal networks, thanks to its easy parametrizations. Furthermore, the parametrization
of stochastic block models in general (both static and dynamic) give us important information
about the network, like which is the relations between entities of the same groups and which is
the relations between different groups. One of the key properties of the stochastic block models
is that it does not assume a pre-established structure between the groups of the network: this
allows the model to infer the information of the network not for what we expect it would be
like other models do. Concluding, we aim to study the modelization of temporal networks and
to understand how the different groups interact between themselves through the time in the
network using the dynamic stochastic block model.

1.3 Review of the contents
The thesis is organized in 7 chapters, the first of which is this one. It possible to divide the
thesis into two main parts by grouping the chapters: Chapter 2, Chapter 3, and part of the
fourth one form the theoretical background of the thesis. In these chapters, we discuss mainly
two subjects: time series analysis and the stochastic block model, both the static and dynamic
models. We review a particular dynamic stochastic block model proposed by Xu and Hero
[40] and we analyze their model using numerical simulations. The other chapters describe
our original work and results: we propose two new dynamic stochastic block models based
on autoregressive models discussed in Chapter 2. Hence, we show the results of numerical
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1. Introduction

simulations related to the newly proposed models. Finally, we test Xu and Hero model and our
new models on a real network, i.e. the interbank market. Deepening the analysis chapter by
chapter:

• In Chapter 2, we discuss some elements of time series theory. The chapter is divided into
two main approaches in the time series field: the autoregressive model theory and the
filters’ theory. The analytical models we review are the autoregressive model (AR), the
vector autoregressive model (VAR), the Kalman filter, and the extended Kalman filter
(EKF). The AR model and the VAR model will be employed in Chapter 5, where we
propose two new dynamic stochastic block models based on them. The EKF will be
employed in Chapter 4 in the Xu and Hero model. This chapter is based in part on the
book Analysis of Financial Time Series [38], in part on Time Series Analysis by State
Space Methods [15].

• In Chapter 3 we discuss the stochastic block model (SBM) in its simplest version [11]
[10]. Since the chapter is based on graph theory, we expose briefly what is a network
and the main concepts of graph theory [31]. Thus, we explore both the generative model
and the inference process of the stochastic block model. We conclude by reviewing the
detectability problem following the paper of Decelle et al. [13].

• In Chapter 4 we examine the dynamic stochastic block models proposed by Xu and
Hero [40] and we focus on the algorithm proposed for the inference process on dynamic
networks. Thus, we show the results of the numerical simulations obtained using this
algorithm: we explore the limit of this model by setting the model’s parameters out of
range used by the model authors. By this, we point out some drawbacks of the Xu and
Hero model. All the numerical results obtained in this chapter are original.

• In Chapter 5 we propose two new dynamic stochastic block models, the AR-SBMmodel
and the VAR-SBM model, based on the AR process and on the VAR process. These
models are thought to solve the problems found in Xu and Hero model in Chapter 4.
Hence, we focus on the hyperparameters required by thesemodels in the inference process
on dynamic networks. We conclude by showing the results of the numerical simulations
for the inference process obtained from both the models. The simulations are set to
compare the performances of the new models with the Xu and Hero model. All the
results obtained in this chapter are original.

• In Chapter 6 we test our models on a real network, the interbank market. We discuss
the features of the interbank market [26] [12] [7] [5] [20] and we focus on the e-MID
[5], which is one the interbank market, and the one we employ to generate the dynamic
network. The analysis of the e-MID network is based on the paper of Barucca and
Lillo [5], where they study the community structure of the banks in the e-MID market
in the period 2010-2014. They focus their attention on the effect of the LTROs on the
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1. Introduction

e-MID, analyzing if these measures used by the European Central Bank affected the
behaviors in the market of the banks. Thus, we show our results obtained from the
numerical simulations of the Xu and Hero model and of the VAR-SBM model on the
e-MID network. We observe a bipartite structure of the network in the whole studied
period. We also notice a change in the behavior of the banks due to the LTROs. At
the end, we compare the results obtained with the different models and we discuss the
literature results [5] [20].
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Chapter 2

Time Series

This chapter describes one of the two theoretical backgrounds of our work. The analysis
of time series includes a lot of models and is widely employed in physics as much as in
financial econometrics. Time series analysis is a fundamental tool when the evolution of the
state of the system under investigation can be described by a time series. When we assume
linear dependence between the current state and the past states of the system, we can describe
the system dynamics by means of an autoregressive process. In this chapter, we review the
autoregressive model of order one for both univariate and multivariate time series, in particular
we study the main properties and the conditions for stationarity. Sometimes, we do not have
access to the state of the system with infinite precision, but any measurement is associated with
some observation noise. In this case, Kalman filter helps in estimating the state of the system
as well as its linear dynamics. Moreover, this estimation method can be further extended to the
case of non-linear dependences, a method known as extended Kalman filter. We review both
statistical filtering methods, which represent one building block of our research presented in
the next chapters. The following analysis is based in part on the book Analysis of Financial
Time Series [38], in part on Time Series Analysis by State Space Methods [15].

2.1 Autoregressive Model
Time-series modeling, analysis, and forecasting have fundamental importance in many research
fields. Any time the state of a system can be described by a given set of data points, its dynamical
evolution is represented by a time series. Hence, models and analysis of time series are of
fundamental importance to extract information from observed data. Autoregressive models
are probably the most popular and adopted models of time series. An autoregressive model
is a discrete-time random process where the output variable is a linear combination of the
previous observations (up to a given time lag) and depends also on a stochastic term. Thus, an
autoregressive model is to all effects a stochastic difference equation. A generic autoregressive
process can be characterized by its stationarity condition and both the autocorrelation and
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2. Time Series

cross-correlation function (the last one in the case of a vector autoregressive process where
more than one output variable is present).

2.1.1 Stationarity
A time-series {rt} is said to be strictly stationary if the joint distribution of (rt1, . . . , rtk )

is identical to that of (rt1+t, . . . , rtk+t) for all t, where k is an arbitrary positive integer and
(t1, . . . , tk) is a collection of k positive integers. Hence, this is equivalent to say that the joint
distribution of (rt1, . . . , rtk ) is invariant under time shift. This a very strong condition that is
hard to verify empirically. A weaker version of stationarity can be considered and it is called
weakly stationarity. A time-series {rt} is weakly stationary if both the mean of rt and the
covariance between rt and rt−l are time-invariant, where l is an arbitrary integer. Thus, a time
series {rt} is weakly stationary if E(rt) = µ and Cov(rt, rt−l) = γl∀t, given l ∈ Z.
In the condition of weak stationarity, we assume implicitly that the first two moments of rt are
finite.

2.1.2 Correlation
The correlation coefficient between two random variables X and Y is defined as:

ρx,y =
Cov(X,Y )√

Var(X)Var(Y )
=

E[(X − µx)(Y − µy)]√
E(X − µx)

2E(Y − µy)2
(2.1)

where µx and µy are the mean of X and Y , respectively, and it is assumed that the variances
exist. This coefficient measures the linear dependence between X and Y . It is −1 ≤ ρ ≤ 1 and
ρx,y = ρy,x . If two random variables are uncorrelated ρx,y = 0.

When two random variables X and Y are described by two time series {xt}t=1,...,T and
{yt}t=1,...,T , the correlation can be estimated by:

ρ̂x,y =

∑T
t=1(xt − x̄)(yt − ȳ)√∑T

t=1(xt − x̄)2
∑T

t=1(yt − ȳ)2
(2.2)

where x̄ = 1
T
∑T

t=1 xi and ȳ = 1
T
∑T

t=1 yi are the sample mean of the two time series, respectively.

2.1.3 Autocorrelation function
To analyze the linear dependence between rt and its past values rt−`, the concept of correlation
is generalized to autocorrelation. The correlation coefficient between rt and rt−` is called lag−`
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2. Time Series

autocorrelation of rt and is denoted by ρ`. Specifically, we define:

ρ` =
Cov(rt, rt−`)√

Var(rt)Var(rt−`)
=

Cov(rt, rt−`)

Var(rt)
=
γ`
γ0

(2.3)

where Var(rt) = Var(rt−`) for the assumption of weakly stationarity. From the definition,
we have ρ0 = 1, ρ` = ρ−`, and −1 ≤ ρ` ≤ 1. For a given sample of {rt}

T
t=1, the lag − ` sample

autocorrelation of rt is:

ρ̂` =

∑T
t=`+1(rt − r̄)(rt−` − r̄)∑T

t=1(rt − r̄)2
(2.4)

2.1.4 AR(1)
The autoregressive process of order one is called AR(1). The AR(1) process describes a
random variable having Markov property and linear dependence from its previous value, and
an innovation term given by a white noise, thus resulting in a sequence of independent and
identically distributed random variables with zero mean and finite variance. Once defined the
white noise, we can describe the AR(1) process:

rt = φ0 + φ1rt−1 + at (2.5)

where {at} is assumed to be a white noise series with mean zero and variance σ2
a . at is usually

called innovation or shock of the time series. The AR(1) model ha several properties, like:

E[(rt |rt−1)] = φ0 + φ1rt−1 Var[(rt |rt−1)] = Var[(at)] = σ
2
a (2.6)

That is, given the past term of the series rt−1, the current term is centered around φ0 + φ1rt−1
with variance σ2

a . This is the Markov property meaning that conditional on rt−1, the term rt is
independent of rt−` for ` > 1.

Properties of AR(1) Model

Assuming that the series isweakly stationary, we haveE(rt) = µ,Var(rt) = γ0 andCov(rt, rt−l) =

γl . We can easily obtain the mean, variance, and autocorrelation of the process as follows.
Taking the expectation of Eq. 2.5, and because E(at) = 0, we obtain:

E(rt) = φ0 + φ1E(rt−1) (2.7)

Under the stationarity condition, E(rt) = E(rt−1) = µ, so:

µ = φ0 + φ1µ =⇒ µ =
φ0

1 − φ1
(2.8)
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This result has two implications for rt . First, the mean of rt exists if φ1 , 1. Second, the mean
of rt is zero if and only if φ0 = 0. Thus, for a stationary AR(1) process, the constant term φ0 is
related to the mean of rt via φ0 = (1 − φ1)µ.
To compute the variance of the process, we can subtract the mean out. The model centered
around the zero is:

rt − µ = φ1(rt−1 − µ) + at (2.9)

Because of the independence of the time series {at}, it is E[(rt−1 − µ)at] = 0. Hence, by taking
the square of Eq. 2.9, and considering the expectation of the square, it is trivially:

Var(rt) = φ
2
1Var(rt−1) + σ

2
a (2.10)

where σ2
a is the variance of at . Under the stationarity assumption, Var(rt) = Var(rt−1). It

follows:
Var(rt) =

σ2
a

1 − φ2
1

(2.11)

provided that φ2
1 < 1. The requirement of φ2

1 < 1 results from the fact that the variance of a
random variable is bounded and non-negative [38].

In conclusion, the AR(1) model describes a state variable with Markov properties of order
one (i.e. it depends linearly from its previous state at time lag 1) and having a stationary
regime when some conditions (described above) for parameters are fulfilled. In the following,
we describe the evolution of link probability between and inside communities of a dynamic
network using an autoregressive process AR(1) to study its persistence pattern. Hence, as will
be clear below, Eq. 2.5 and 2.11 will be used in the inference of model parameters.

2.2 Vector Autoregressive Model
The Vector Autoregressive Model (VAR), which is an extension of the Autoregressive Model
2.1, is probably one of the most known model for multivariate time series. Similarly to the
AR(1) process, the VAR(1) model is a discrete-time random process, but for multivariate time
series.

We can define a multivariate time series of dimension k > 1, named as r t , a VAR(1) process
if the equation that describes the process is:

r t = φ0 +Φr t−1 + at (2.12)

Where:

• φ0 is a k-dimensional vector;

13
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• Φ is a k × k matrix;

• {at} is a vector of serially uncorrelated random vectors, with mean equal to zero and
covariance matrix Σ;

To explicit an example of the model, we can consider a bivariate case, where k = 2. In this
case, the Eq. 2.12 becomes:{

r1t = φ10 + Φ11r1,t−1 + Φ12r2,t−1 + a1t

r2t = φ20 + Φ21r1,t−1 + Φ22r2,t−1 + a2t
(2.13)

This couple of equations shows that each series has a conditional effect on the other. This effect
depends on the anti diagonal entries of the matrix Φ, named as Φ12 and Φ21. If we set both to
zero, the two series r1t and r2t are not coupled anymore.

2.2.1 Properties: stationarity and moments
Let us assume the model described by Eq. 2.12 is weakly stationary. We can study the
properties of the VAR(1) Model with similar considerations we used for AR(1) model. Since
the expected value of at is zero, it follows:

E(r t) = φ0 +ΦE(r t−1) (2.14)

By assuming stationarity, E(rt) results as time-invariant, thus:

µ = (I −Φ)−1φ0 (2.15)

Where I is the k-dimensional identity matrix.
By applying a detrending procedure to the time series in Eq. 2.12, we obtain:

r̃ t = Φr̃ t−1 + at (2.16)

By iterating Eq. 2.16, the same equations reads as:

r̃ t = at +Φat−1 +Φ
2at−2 +Φ

3at−3 + . . . (2.17)

Analyzing this equation, we can observe that, in VAR(1) Model, Cov(at, at−1) = 0, since
at is serially uncorrelated. Furthermore, we can notice:

Cov(r t, at) = Σ (2.18)

where Σ is the covariance matrix. This result can be obtained by multiplying Eq. 2.17 by the
transpose of at and taking its expectation.
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We can also calculate the lag-l cross-covariance of r t :
r̃ t = Φr̃ t−1 + at

r̃ t r̃
′
t−l = Φr̃ t−1 r̃

′
t−l + at r̃

′
t−l

E(r̃ t r̃
′
t−l) = E(Φr̃ t−1 r̃

′
t−l) + E(at r̃

′
t−l)

Γl = ΦΓl−1

Where Γl = E(r̃ t r̃
′
t−l) is the lag-l cross-covariance. We use the result E(at r̃

′
t−l) =

Cov(at, r t−l = 0) = for l > 0.

2.3 Kalman Filter
In many systems, the state variables are not known exactly but their measurements contain
some statistical noise. In this case, Kalman filtering is an algorithm that uses a more than one
measurement observed over time and it can be applied to produce estimates of the unknown
state variables that tend to be more accurate than those based on a single measurement alone.
In the following, we describe how it works.

2.3.1 Local trend model
Let us consider the univariate time series yt satisfying:

yt = µt + zt zt ∼ N(0, σ2
z ) (2.19)

µt+1 = µt + vt vt ∼ N(0, σ2
v ) (2.20)

where {zt} and {vt} are two independent Gaussian white noise series and t = 1, . . . ,T .
Specifically, zt represents the statistical noise associated with measurements whereas vt rep-
resents the innovation of the process. The initial value µ1 is either given or follows a known
distribution, and it is independent of {zt} and {vt} for t > 0. Here µt is a pure random walk
with initial value µ1 and yt is an observed version of µt with added noise zt . Here µt is not
directly observable, and yt is the observed data with observation noise vt .

The model in Eq. 2.19 and 2.20 is a special linear Gaussian state-space model. The
variable µt is called the state of the system at time t and is not directly observed. Eq. 2.19
provides the link between the data yt and the state µt and is called the observation equation
with measurement noise zt . Eq. 2.20 governs the time evolution of the state variable and is the
state equation or state transition equation with innovation vt .

The Kalman filter procedure aims to infer properties of the state µt for the data {yt |t =
1, . . . ,T} and the model. The type of inference we are interested in is filtering, i.e. how
to estimate the state variable µt given the measurements up to time t Ft = {y1, . . . , yt} or,
equivalently, how to remove the measurement errors from the observations.
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2.3.2 The Kalman filter equations
The goal of the Kalman filter is to update the knowledge of the state variable recursively when
a new data point becomes available. That is, knowing the conditional distribution of µt , Ft−1
and the new data yt , we would like to obtain the conditional distribution of µt given Ft .

To describe the inference more precisely, we introduce the following notation. Let µt | j =

E(µt |Fj) and Σt | j = Var(µt |Fj) be, respectively, the conditional mean and variance of µt given
Fj . Similarly, yt | j denotes the conditional mean of yt given Fj . Furthermore, let vt = yt − yt |t−1
and Vt = Var(vt |Ft−1) be the 1-step-ahead forecast error and its variance of yt given Ft−1. Note
that the forecast error vt is independent of Ft−1 so that the conditional variance is the same as
the unconditional variance; that is, Var(vt |Ft−1) = Var(vt). From Eq. 2.19,

yt |t−1 = E(yt |Ft−1) = E(µt + et |Ft−1) = E(µt |Ft−1) = µt |t−1 (2.21)

Consequently:
vt = yt − yt |t−1 = yt − µt |t−1 (2.22)

and

Vt = Var(yt − µt |t−1 |Ft−1)

= Var(µt + et − µt |t−1 |Ft−1)

= Var(µt − µt |t−1 |Ft−1) + Var(et |Ft−1)

= Σt |t−1 + σ
2
e

(2.23)

It is also easy to see that

E(vt) = E[E(vt |Ft−1)] = E[E(yt − yt |t−1 |Ft−1)] = E[yt |t−1 − yt |t−1] = 0 (2.24)

Cov(vt, y j) = E(vt y j) = E[E(vt y j |Ft−1)] = E[y j E(vt |Ft−1)] = 0 j < t (2.25)

Thus, as expected, the 1-step-ahead forecast error is uncorrelated with yt for j < t.

The conditional distribution of vt given Ft−1 is normal with mean zero and variance given
by Eq. 2.23, and that of µt given Ft−1 is also normal with mean µt |t−1 and variance Σt |t−1.
Furthermore, the joint distribution of (µt, vt)

′ given Ft−1 is also normal. Thus, what remains to
be solved is the conditional covariance between µt and vt given Ft−1. From the definition,

Cov(µt, vt |Ft−1) = E(µtvt |Ft−1) = E[µt(yt − µt |t−1)|Ft−1]

= E[µt(µt + et − µt |t−1)|Ft−1]

= E[µt(µt − µt |t−1 |Ft−1] + E[µtet |Ft−1]

= E[(µt − µt |t−1)
2 |Ft−1] = Var(µt |Ft−1) = Σt |t−1
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Putting the results together, we have:[
µt
vt

]
Ft−1

∼ N
( [
µt |t−1

0

]
,

[
Σt |t−1 Σt |t−1
Σt |t−1 Vt

] )
(2.26)

The conditional distribution of µt given Ft is normal with mean and variance:

µt |t = µt |t−1 +
Σt |t−1vt

Vt
= µt |t−1 + Ktvt (2.27)

Σt |t = Σt |t−1 −
Σ2

t |t−1

Vt
= Σt |t−1(1 − Kt) (2.28)

where Kt is referred to as the Kalman gain, which is the regression coefficient of µt |t on vt .

We can make use of the knowledge of µt given Ft to predict µt+1:

µt+1|t = E(µt + ηt |Ft) = E(µt |Ft) = µt |t (2.29)

Σt+1|t = Var(µt+1 |Ft) = Var(µt |Ft) + Var(ηt) = Σt |t + σ
2
η (2.30)

Once the new data yt+1 is observed, one can repeat the above procedure to update knowledge
of µt+1. This is the Kalman filter algorithm proposed by Kalman in 1960. [28]

In summary, putting the equations together and conditioning on the initial assumption that
µ1 is distributed as N(µ1|0, Σ1|0), the Kalman filter for the local trend model is as follows [38]:

vt = yt − µt |t−1 (2.31)

Vt = Σt |t−1 + σ
2
e (2.32)

Kt =
Σt |t−1

Vt
(2.33)

µt+1|t = µt |t−1 + Ktvt (2.34)

Σt+1|t = Σt |t−1(1 − Kt) + σ
2
η (2.35)

The Kalman filter is useful for linear problems, but when the underlying dynamics for the
state variable is non linear, or the observation itself depends non linearly from the state variable,
we need to generalize the filtering procedure. Thus we need a non-linear filter to solve this
problem: one solution is the Extended Kalman Filter.
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2.4 Extended Kalman Filter
The extendedKalman filter is based on the idea of linearising the observation and state equations
and then applying the Kalman filter to the resulting linearised model. The model equations are:

yt = h(µt) + zt (2.36)

µt = Ft(µt−1) + vt (2.37)
for t = 1, . . . ,T , where Ft(µt) and h(µt) are differentiable functions of µt and where the random
noises zt and vt are serially and mutually uncorrelated with mean zero and variance σz and σv,
respectively.
The initial state is a random vector with mean µ1 and covariance matrix Γ1 and is uncorrelated
with all the disturbances.
Due to the non-linearity of h(µt), we apply the extended Kalman filter (EKF), which linearises
the dynamics of the predicted state and provides a near-optimal estimate of µt .
The EKF equations are specified by Eq. 2.36 and 2.37. The predicted state estimate is:

µt |t−1 = Ft(µt−1|t−1) (2.38)

and the predicted covariance estimate Rt is:

Rt |t−1 = Ft Rt−1|t−1(Ft)
T + σv (2.39)

Thus, we define:

Ht =
∂h(µt)

∂µt

����
µt=µt |t−1

(2.40)

We note that Ht is evaluated at time t−1, since µt |t−1 is a function of y1, . . . , yt−1. Hence, using
the linearization of the function h(µt) with the first term of the Taylor expansion, we can write
the near-optimal Kalman gain:

Kt = Rt |t−1(Ht)
T [Ht Rt |t−1(Ht)

T + σz]
−1 (2.41)

from which the updated state estimate:

µt |t = µt |t−1 + Kt[yt − h(µt |t−1)] (2.42)

and the updated covariance estimate:

Rt |t = (I − Kt Ht)Rt |t−1 (2.43)

In the following, we study the problem of inferring both the community structure and the
link probability among groups of dynamic networks whose evolution is described by a dynamic
generalization of the stochastic block model [40]. The inference of this model is characterized
by two aspects: first, the presence of measurement noise for the link probabilities among
groups, and second, the nonlinear mapping between link probability and the corresponding
state variable, that is a real variable whereas the probability is defined within the unit interval.
Hence, EKF is used for inferring the stochastic block model and, as a consequence, it represents
one of the building blocks of the estimation method.
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Chapter 3

Stochastic Block Model

The stochastic blockmodel (SBM) is one of the most used models if we want to generate blocks,
communities, or groups in networks. This model falls in the class of the random networks,
originated by the Erdos-Renyi Model. It was first studied in mathematical sociology by Hol-
land, Laskey, and Leinhardt and by Wang and Wong in 1983 − 1987 [22] [39]. This model is
widely employed as a generative model: in fact, it allows us to generate a very large number of
different block structures. This versatility, combined with analytical tractability, has made the
blockmodel a popular tool in several contexts [29].
Many generalizations were proposed through the years, like the labeled SBM [21], the Degree-
corrected SBM [29], or the overlapping SBM [2].

Our purpose is to study the original SBM: we analyze the versatility of the model as a
generative model and we briefly review the methods used for the inference process. Among
these methods, we focus on the spectral clustering. Finally, following the analysis of Decelle
et al. [13], we discuss the problem of the detectability, which is the condition to extract
informations on the network communities by studying only the structure of links of the graph.
This chapter is divided into four parts: in the first part we review the main concepts of the graph
theory, the second one is model definition (bases on the lessons of prof. Clauset [10] [11]), the
third one is the analysis of the generative model [10] and the fourth one is the analysis of the
inference process [11] [13].

3.1 Networks
The aim of this section is to introduce the main concepts of network theory we will employ
through the thesis.

The first element to introduce is the definition of graph, also referred as network: a graph
is a collection of vertices joined by edges[31]. The vertices and edges are also called nodes or
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links (these are the terms will use in the following chapters). The connection between nodes can
be realized with a single link or with many links: the latter case is calledmultiedges connection.
In some cases, a nodes is connected to itself with a link: this link is called self-loop. In the
following we will analyze only simple network, i.e. graph without self-loops or multiedges.
Another important notion in graph theory is the concept of communities, also called clusters,
modules or groups. Communities «groups of vertices which probably share common properties
and/or play similar roles within the graph»[18].

Now we have defined the concept of nodes, link, and groups, we deepen the foundation of
the graph theory.

Adjacency Matrix

Given a network with N nodes, the matrix used to represent the connections between them is
called adjacency matrix W , which is a N × N matrix. We label the N nodes with integers from
1 to N , thus we follow this rule to fill its entries:

Wi j =

{
1 If a link exists between node i and node j
0 Otherwise

(3.1)

This the simplest way to construct an adjacency matrix. In case more complex networks, like
weighted network, where the links have different weights or different relevance, the Eq. 3.2
becomes:

Wi j =

{
k If a link with weight k exists between node i and node j
0 Otherwise

(3.2)

In the case of multiedges networks, the value k could be considered as the sum of weighted or
unweighted links between the node i and the node j.

In many different networks, we observe symmetric relations between the elements: thus,
the link between two nodes represents a bidirectional relation. This fact is easily represented
in the adjacency matrix, since it is related to a symmetric adjacency matrix. Thus, we observe
that W = WT . This kind of networks are called undirected networks.

Figure 3.1: Example of undirected network
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In the case of non symmetric relations, the adjacencymatrix is not symmetric, i.e. W , WT .
These netowrks are called directed networks and the links are draws with an arrow to explicit
the direction of the connection.

Figure 3.2: Example of directed network

Degree

The degree ki of a node i is the sum of the edges connected to it. In the case of directed
network, we define an in-degree and an out-degree as follows:

kin
i =

N∑
j=1

Wi j kout
j =

N∑
i=1

Wi j (3.3)

In the case of undirected network, the degree in unique and defined as:

ki =

N∑
j=1

Wi j (3.4)

In undirected graphs, we observe that every link has two ends. Hence, in a graph with m egdes,
we have 2m edges ends. But this number is equal to the sum of the degree of all the network,
thus:

2m =
N∑

i=1
ki =⇒ m =

1
2

N∑
i=1

ki (3.5)

The mean degree c of the nodes of an undirected network is:

c =
1
N

N∑
i=1

ki (3.6)

By using Eq. 3.5 we obtain:
c =

2m
n

(3.7)

21



3. Stochastic Block Model

This result is useful to calculate the density ρ of the network. The density is the ratio between
the existing links in the network and the number of the possible links:

ρ =
m(N
2
) = 2m

N(N − 1)
=

c
N − 1

(3.8)

This definition allow us to define dense networks and sparse networks. A network called dense
if, while N →∞, ρ tends to a constant. On the contrary, a sparse network is defined by ρ→ 0
while N →∞.

Community

The concept of community is strictly related to real networks: if we observe their distribution
of edges, we note that it is inhomogeneous, both globally and locally, with high concentrations
of edges within special groups of vertices, and low concentrations between these groups [18].
This feature is called community structure. The analysis of community structures and their
partition has been going on for years: the easiest operation to detect groups in a network
consists of partitioning the vertices of a graph into clusters that are more densely connected [1].
In general, we note also that « community structures may also refer to groups of vertices that
connect similarly to the rest of the graphs without having necessarily a higher inner density,
such as disassortative communities that have higher external connectivity»[1].

In literature does not exist a definition of communities universally accepted: in fact, it is
defined in the analyzed system case by case. Fortunato [18] analyzes different definitions of
communities: local definitions (based on different criterion, like reachability or vertex degree,
or by counting the internal number of edges between the nodes of the group respect to the rest
of the network,), global definitions (all based on the idea the network is different from a random
network defined as an Erdos-Renyi graph), and definition based on vertex similarity.

The most classical methods employed in communities clustering are graph partitioning,
hierarchical clustering, partitional clustering, and spectral clustering. The last one will be
further employed in our analysis. In general, many models consider a pre-establish structure
in the network (like bipartite, assortative, or core-periphery), thus they define a cost function
that is maximized or minimized to obtain the groups which best agree that structure. As we
will study in the following, another approach is to define a network model that infer several
properties from the network and thus to obtain the communities which best agree with these
properties (like for the stochastic block model).

3.2 Model Definition
In this section, we define the stochastic block model, which belongs to the class of the random
network. The base model for the random networks is the Erdos-Renyi model, which is defined
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only with the probability p: this parameter expresses the probability to create an edge between
each couple of nodes in the network. Hence, the probability of linking between all the nodes
is the same, independently from the communities’ structure. The stochastic block model
generalizes the Erdos-Renyi model since the probability of linking two nodes depends on the
group membership of each couple of nodes. The simplest version of the stochastic block model
is described by:

• The scalar n, which is the number of vertices or nodes of the network;

• The scalar k, which is the number of communities or groups in the network;

• The vector c, which relates the membership of each node to its group and we denote by
ci the group to which vertex i belongs;

• The affinity matrix Θ, which is a k × k matrix;

The affinity matrix entries describe the probability of connection between vertices, i.e. the
probability to create an link between them:

Θ =

©«
θ11 θ12 · · · θ1k
θ21 θ22 · · · θ2k
...

...
. . .

...
θk1 θk2 · · · θkk

ª®®®®¬
(3.9)

Thus, the entries of θ, θcicj , are the independent probabilities to create an link between
vertices i and j. We notice that the probability of connection depends only on the group
memberships of the vertices.

3.3 Generative Model
In this section, we explore the stochastic block model as a generative model. First, we explain
the terms "generative" and "inference". The stochastic block model defines a probability distri-
bution over networks Pr(G |Φ). Φ is the set of parameters of the model and they are related to
the probability of link creation. Knowing the values of Φ, by flipping a coin with biased (link)
probability, we generate the network.
The other term refers to the reverse process: given a network G, we aim to obtain an estimate
of the set of parametersΦwhich give the highest probability to generate a network like G. This
process is called inference.
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Figure 3.3: Generative model and inference process
Now we discuss the different kinds of network which this model can generate. The simple

stochastic blockmodel is defined by a k × k matrix θ = [θab], where k is the number of vertex
classes in the network and θab is the probability of creating an link between a node of the class
a and a node of class b. The last vector of parameters is the vector c, which is the vector of the
class membership of the nodes. Thus, in the undirected case, we have to set the labeling of all
the nodes and then specify the

(k
2
)
values in θ. To show some examples, we set the number of

groups k = 4 and we fix the number of nodes, then we use different choices of θ. The easiest
choice of θ is θab = θ, ∀a, b ∈ k.

Figure 3.4: Erdos-Renyi network generated using the stochastic block model
In this case, the stochastic block model generates a pure random network. The model

that describes a complete random network is the Erdos-Renyi model, and Fig. 3.4 shows an
example of that kind of network.
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A second choice of θ is the following:

Θ =

©«
k1 k2 k2 k2
k2 k1 k2 k2
k2 k2 k1 k2
k2 k2 k2 k1

ª®®®¬ (3.10)

where 0 < k1 < 1 and 0 < k2 < 1. A similar choice of θ can generate two kinds of network:

• for k2 < k1, we have more links between nodes of the same group: the structure of the
generated network is called assortative;

• for k1 < k2, each node tends to be linked more with nodes of other groups: this kind of
network structure is called dissortative;

An example of these two networks is shown in Fig. 3.5.

Figure 3.5: Example of assortative (on the left) and dissortative (on the right) network, generated
by the exchange of k1 and k2

We can generate other two structures by changing entries in θ:

• We can consider a model where each node has a high probability of link creation
between itself and the nodes of its same group or the nodes of the adjacent groups (we
can numerically explicit the adjacent groups by numbering all the groups and consider
adjacent a group if the difference between the group numbers is one). In this case, the
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structure of Θ is:

Θ =

©«
k1 k2 k3 k4
k2 k1 k2 k3
k3 k2 k1 k2
k4 k3 k2 k1

ª®®®¬ (3.11)

where 0 < k3 ≤ k2 ≤ k1 < 1. The structure of this generated network is called ordered
(see Fig. 3.6, left).

• We can consider a network where each group is more linked with its left-adjacent respect
is right-adjacent (where left and right are considered respect the to ordinals) and each
group has always less inner links respect its left-adjacent. An example of Θ for this
network is:

Θ =

©«
k1 k2 k4 k6
k2 k3 k4 k6
k4 k4 k5 k6
k6 k6 k6 k7

ª®®®¬ (3.12)

Where ki+1 < ki < ki−1. This structure is called core-periphery (see Fig. 3.6, right).

Figure 3.6: Example of ordered (on the left) and Core-Periphery (on the right) networks

By means of these simple examples, we have illustrated why the stochastic block model, in
its simpler form, can be used to generate a large variety of networks with different community
structures. Now we analysis the inference process.
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3.4 Inference Process
Given an observed network G, the inference process gives an estimate of the parameters which
describes the SBM with the highest probability to generate that observed network.
The inference process involving the stochastic block model assumes a given number of groups
k. In order to infer the most likely k, different methods have been proposed, including Bayes
factors, minimum description length approaches, Bayesian marginalization. [11]
Given the number of groups k, we can use different methods to estimate the best choice of the
other parameters θ and c, but one of the most employed is the maximum likelihood criteria
[11] [40].

Let us consider an observed network G, and we identify withW its adjacency matrix. SBM
is parameterized by a k × k matrix θ = [θab], where θab denotes the probability of forming an
link between a node in class a and a node in class b. SBM decomposes the adjacency matrix
into k2 blocks, where each block is associated with relations between nodes in classes a and b.
Each block (a, b) corresponds to a submatrix W[a][b] of the adjacency matrix W . Thus, given
the class membership vector c, each entry of W is an independent realization of a Bernoulli
random variable with a block-dependent parameter, i.e., wi j ∼ Bernoulli(θcicj ).
Since each entry of W is independent, the likelihood for the parameters Φ of the SBM is given
by

P(W ;Φ) =
∏
i, j

(
θcicj

)wi j
(
1 − θcicj

)1−wi j (3.13)

The likelihood can be rewritten as:

P(W ;Φ) = exp
{ k∑

a=1

k∑
b=1
[mab log θab + (nab − mab) log (1 − θab)]

}
(3.14)

where mab =
∑

i∈a
∑

j∈b wi j denotes the number of observed links in block (a, b), and

nab =

{
|a| |b| a , b
|a|(|a| − 1) a = b

(3.15)

where |a| denotes the number of nodes in the group a and nab denotes the number of possible
links in block (a, b).
Based on the knowledge we have of G, the inference process can be named a priori if we know
the labels c and we have to estimate only θ, or it can be called a posteriori if Φ = {θ, c}.

In the a priori setting, a sufficient statistic for estimating θ is the matrix Y of the block
densities corresponding to ratios of observed links relative to possible links within each block,
which has entries

yab =
mab

nab
(3.16)
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The matrix Y is the maximum-likelihood estimate of θ.

Parameter estimation in the a posteriori setting is more involved, and many methods have
been proposed, including Gibbs sampling [32], label-switching [29] [41], and spectral clus-
tering [34] [37]. The label-switching methods use a heuristic for solving the combinatorial
optimization problem of maximizing the likelihood over the set of possible class memberships,
which is too large for an exhaustive search to be tractable. The spectral clustering methods
utilize the eigenvectors of the adjacency matrix W to estimate the class memberships.

3.4.1 The spectral clustering method
Following the analysis of Sussman at al. [37], we briefly analyze this clustering method. The
spectral clustering method is one of the possible algorithms to assign nodes to their correct
blocks. The main steps of the algorithm are:

• We calculate the singular value decomposition of the adjacency matrix W = Ũ′Σ̃′Ṽ ′T .
Let Σ̃′ have decreasing entries on its main diagonal;

• We define Ũ and Ṽ as the first d columns of Ũ′ and Ṽ ′, and Σ̃ will be the sub-matrix of
Σ̃′ given by the first d columns and rows;

• Z ← [ŨΣ̃1/2, Ṽ Σ̃1/2], which is the concatenation of the coordinate-scaled singular vector
matrices;

• We compute c using the k-means clustering on rows of Z;

This algorithm computes the singular value decomposition of W , reducing the dimension.
We replace the last instruction of the algorithm with the one used by Xu and Hero. The original
one is:

• We define (ψ̂, τ̂) = argminψ,τ
∑n

u=1 | | Z̃u − ψτ(u) | |
2
2 the function which give the centroids

and the block assignments, where Z̃u is the uth row of Z̃ , ψ̂ ∈ <K×d are the centroids
and τ̂ is a function from c to [k], where [k] is a vector and its entries are the numbering
of the groups in the network;

In fact, « this procedure it’s a mathematically convenient stand-in for what might be used in
practice» [37]. K-means represents the empirical evaluation of that mathematical expression
to minimize the square error.
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3.4.2 The detectability problem
Now we are introducing one of the problems in SBM, called the detectability-undetectability
problem. We have to introduce the planted partition model to proceed in our analysis, since is
the model used by Decelle et al. [13] to study the detectability-undetectability problem. The
planted partition model is a particular parametrization of the stochastic block model where the
affinity matrix is filled with only two different values: cout and cin. The structure of the affinity
matrix can be both assortative and disassortative. This parametrization is a benchmark for the
stochastic block model[13][30] and it is employed to study the groups’ partitioning problem.
Let us now consider a network G generated as explained in Section 3.3 and let Na be the number
of nodes in the group a. Since Na is binomially distributed, in the limit N → ∞, each Na is
concentrated around its mean gaN , where ga is the expected fraction of nodes in the group a.
The average number of links from the group a to group b is then mab = pabNaNb, or maa =

paaNa(Na − 1) if a = b. If we consider a sparse graph, where pab = O(1/N), it is useful to
work with the rescaled affinity matrix cab = Npab. In the limit of large N, the average degree
is then:

c =
∑
a,b

cabgagb (3.17)

In the undirected case Wi j, pab, and cab are symmetric and the average degree is:

c =
∑
a<b

cabgagb +
∑

a

caa
g2

a

2
(3.18)

Since we have defined c, we can also define the parameter ε , which is a common parameter for
the planted partition model:

ε =
cout

cin
(3.19)

This parameter is defined to be:

ε =

{
1 Erdos-Renyi random graph
0 Groups which are completely separated

(3.20)

We can define a measure of correct inference of the group assignment, called agreement:

A({ti}, {qi}) = maxπ
1
N

∑
i

δti,π(qi) (3.21)

where ti and qi are the original assignment of the nodes of the generated network G and its
estimate, respectively, and π ranges over the permutations on q elements. Decelle et al [13].
define a normalized agreement, called overlap:

Q({ti}, {qi}) = maxπ
1
N

∑
i δti,π(qi) − maxaga

1 − maxaga
(3.22)
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This measure is defined so that if we find the exact labeling of the nodes, then Q = 1 and zero
if labeling is random.

We have defined ε and overlap in order to analyze the results obtained Decelle et al in
this paper [13]: in fact, in Fig. 3.7 [13], we observe the relation between the overlap and the
parameter ε both for large graphs and both for graphs with a small number of nodes: on the left
the simulated graphs are divided into 2 groups, on the right the graphs are divided into 4 groups.

Figure 3.7: Overlap for network with 2 and 4 groups varying the parameter ε∗[13] The graph
compares the belief propagation results (red line) to MCMC (Monte Carlo Markov Chain)
simulations (data point): on the left we observe data from simulations for large graphs, while
on the right the graphs contain a small number of nodes

Decelle et al. [13] generate many networks by varying the value of ε and they try to
recover the network’s structures through an algorithm which combines the cavity equation with
the believe propagation (BP), by maximization of the likelihood of the model. Decelle et al.
observe that, both for large graphs and for small graphs, if the parameter ε is greater than a
certain threshold, the structure of the graphs is undetectable: they demonstrates that [13], « for
N →∞ and ε > εc = (c−

√
c)/[c+

√
c(k −1)] it is impossible to find an assignment correlated

with the original one based purely on the structure of the graph».
Thus, we observe that, independently from the algorithm chosen to infer the network structure,
it is not always possible to recover the exact labeling of the nodes in a network using only its
structure.

3.5 Conclusion
The stochastic blockmodel is nowadays one of the benchmarkmodels to generate networks with
a community structure and to infer the parameters of an observed network to learn information
of real-world systems. As we observed in this chapter, SBM could be employed to generate
networks with very different structures simply modifying the entries of the affinity matrix Θ.
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Furthermore, we have many algorithms and methods to infer the structure of an observed graph
and they are based on the SBM and its generalizations. However, the model studied in this
chapter is useful only for non time-dependent graphs, also referred as static networks.
In the following, we analyze a specific dynamic generalization of the SBM, proposed by Xu
and Hero in 2013 [40]. Then, in the subsequent chapter, we implement our version of the
estimation method proposed by the authors, for a comparative analysis: we point out some
critical elements, thus proposing novel models and a generalized estimation method to overtake
some drawbacks for applications.
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Chapter 4

Dynamic Stochastic Block Model:
Analysis and Numerical Simulations

In the previous chapter, we analyzed the stochastic block model and how this model could
be employed to generate networks or inferring data from graphs. This model is used for non
time-evolving networks and for this reason, is also called static stochastic block model.
In this chapter, we analyze one of themanymodels which describe time-evolving networks, also
referred as dynamic networks. Our analysis is mainly based on the dynamic stochastic block
model proposed by Xu and Hero [40], which is the baseline model for some generalization
proposed in the following.
This chapter is divided into three sections:

• Analysis of the authors’ model;

• Numerical simulations’ settings;

• Analysis of the numerical simulations’ results, under different model specifications;

The first section is divided into two subsections, where we review the authors’ generative model
and the inference process. The notation will be the same as in the previous chapter, we add an
apex "t" to denote the time step we are analyzing. This section is mainly based on the article
[40].
The second and third sections are original. The second section specifies the code used in
the numerical simulations and the settings of the model’s parameters. In the third section we
study the results of the numerical simulations of the model. We divide this section into four
subsections:

1. Study of the generative model for long-time simulations;

2. Low-density regime: analysis of the inference process depending on the number of nodes,
keeping fixed the number of groups;
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3. Low-density regime: analysis of the inference process depending on the number of
groups, keeping fixed the number of nodes;

4. Analysis of the inference process depending on the fraction of nodes that change classes
between time steps;

Regarding the simulations of the Xu and Hero model, we consider the same metrics adopted
in [40] for a fair comparison between the results of the paper and the ones obtained by our
implementation of the method. In particular, we point out that it is crucial considering the
presence of the observation noise, thus using an estimation method based on the extended
Kalman filter, for networks which are both small (in the number of nodes) and sparse (in the
number of links).

4.1 Xu and Hero Dynamic SBM
In this section, we examine the dynamic stochastic block model proposed by Xu and Hero. The
authors propose a vectorization of the parameter of the SBM: the columns of the affinity matrix
Θ will be stacked on top of each other, and the same for the other parameters. In the inference
process, we study both the analytical model and the pseudo-code proposed by the authors. The
latter is the benchmark for the code used in our numerical simulations.

4.1.1 Generative model
The generative model for the dynamic network is more complex than a static network gen-
erative model: for SSBM (static stochastic block model), we just need to flip a biased coin
for each couple of nodes to create the adjacency matrix. For a dynamic network, we want a
time-dependence between a snapshot and the next one.

Xu and Hero propose the following process to describe the evolution of the affinity matrix
determining the link probability between groups or within the same group:

ψt = F tψt−1 + vt (4.1)

where:

• ψt is the vector representation of the matrix Ψt , defined as:

Ψ
t = [log θt

ab − log (1 − θt
ab)] ∈ <

k×k (4.2)

• F t is the state transition matrix applied to the previous state and set equal to the Identity
matrix by the authors;
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• vt is a random vector of zero-mean Gaussian entries with covariance matrix Γt .

The random vector vt is also called the process noise.
Once obtained the values of ψt , by applying the logistic function to ψt , we obtain the values of
θt

ab, the affinity matrix at the time step t. We need another parameter to generate the network
at time t: the group memberships of the nodes c. There exist many ways to describe how the
community structure of a network changes over time. We follow the choice by Xu and Hero of
reassigning a fixed percentage of nodes to other groups at each time step.

4.1.2 Inference process
The inference process is based on some assumption on the network Gt :

• The entries of W t
[a][b] are independent and identically distributed Bernoulli random

variables (θt
ab). That means the sample mean yt

ab, defined in Eq. 3.16, follows a
rescaled binomial distribution. Thus, yt

ab is approximately Gaussian by the Central Limit
Theorem with mean θt

ab and variance:

(σt
ab)

2 = θt
ab(1 − θ

t
ab)/n

t
ab (4.3)

where nt
ab is defined in equation 3.15.

• We assume that yt
ab is Gaussian for all (a, b);

• The initial state is Gaussian distributed: ψ0 = N(µ0, Γ0)

Thus, Xu and Hero propose this linear observation model:

Y t = Θt + Z t (4.4)

where Z t is a zero-mean independent Gaussian noise matrix with variance (σt
ab)

2 for the
(a, b)th entry. Y t and Θt are defined in Chapter 3 in Eq. 3.9 and Eq. 3.16. The authors propose
a model where the observations of the network to be inferred is the complete set of the ad-
jacencymatrices, i.e. the observations would be given by the setY (t), whereY (t) = {Y1, . . . ,Y t}.

If we consider the generative model in Subsection 4.1.1, the observation model can be
written in terms of ψt as:

yt = h(ψt) + zt (4.5)

where the function h(x) is the logistic function applied to each entry of ψt . We also denote the
covariance matrix of zt by Σt , which is a diagonal matrix with entries (σt

ab)
2.

The inference process of the parameters of the network Gt is done using only the data from
time t and earlier. We assume that {ψ0, v1, . . . , vt, z1, . . . , zt} are mutually independent.
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Since the observation process 4.5 is not linear, we apply the Extended Kalman Filter (see
Chapter 2) to linearize the dynamics. This choice gives us the «near-optimal estimate of ψt»
[40]. The predicted state estimate is:

ψ̂
t |t−1
= F tψ̂

t−1|t−1 (4.6)

and the predicted covariance estimate is:

R̂t |t−1 = F t R̂t−1|t−1(F t)T + Γt (4.7)

The Kalman gain is given by:

K t = R̂t |t−1(Ht)T
[
Ht R̂t |t−1(Ht)T + Σt

]−1
(4.8)

where Ht is a diagonal matrix and its entries are the derivative of the logistic function applied
to ψt |t−1. The update state estimate is:

ψ̂
t |t
= ψ̂

t |t−1
+ K t [yt − h(ψ̂

t |t−1
)
]

(4.9)

and the updated covariance estimate:

Rt |t = (I − K t Ht)Rt |t−1 (4.10)

In the case of a posteriori inference process, the vector ct is not known and must be
estimated along with Ψt . Xu and Hero maximize the posterior state density given the entire
sequence of observations W (t): this is obtained by alternating between label-switching and
applying the EKF to obtain a maximum a posteriori probability (MAP).
The posterior state density is given by:

f (ψt |W (t)) ∝ f (W (t) |ψtW (t−1))f (ψt |W (t−1)) (4.11)

Thanks to the conditional independence of current and past observations given the current state
W (t−1), we drops out the first multiplicative factor on the right side 4.11. This factor can thus
be obtained simply substituting h(Ψt) for Θt in Eq. 3.14. We approximate the second term in
Eq. 4.11 with f (ψt |y(t−1)) using the estimated class memberships at all previous time steps. By
applying the Kalman filter to the linearized temporal model, it is f (ψt |y(t−1)) ∼ N( ˆψt |t−1, Rt |t−1).
Thus, the logarithm of the posterior density is given by:

pt = log f (W (t) |ψt) + log f (ψt |y(t−1)) (4.12)

where:

log f (W (t) |ψt) =

k∑
a=1

k∑
b=1

{
mt

ab log h(ψt
ab) + (n

t
ab − mt

ab) log [1 − h(ψt
ab)]

}
(4.13)
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log f (ψt |y(t−1)) = −
1
2
(
ψt − ψt |t−1)T (

Rt |t−1)−1 (
ψt − ψt |t−1) (4.14)

We use the log-posterior as the objective function in the label-switching method.
To infer the correct labels of the nodes, we use a simple local search algorithm (hill-climbing)
initialized using the estimated class memberships at the previous time step. This assumption
can work only if the number of nodes that change groups between time steps is a small fraction
of the total number.

The pseudo-code used to infer the parameters of the model of network is:

1. ĉt ← ĉt−1, which initializes the class membership

2. Compute block densities Y t using W t and ĉt

3. Compute ψt using the EKF equations

4. Compute the log-posterior pt by substituting ψt |t for ψt in 4.12

5. while (iter < max) do:

6. p̄t ← −∞

7. c̃t ← ĉt

8. for i = 1 to |V t | do:

9. for j = 1 to k such that ĉi
t , j do:

10. c̃i
t ← j, so we change the class of a single node

11. Compute block densities Ỹ t using W t and c̃t

12. Compute ψ̃t using the EKF equations

13. Compute the log-posterior p̃t by substituting ψt |t for ψt in 4.12

14. if p̃t > p̂t then

15. [p̄t, ψ̄
t
, c̄t] ← [p̃t, ψ̃

t
, c̃t]

16. c̃i
t ← ĉi

t

17. if p̄t > pt then:

18. [pt, ψ̂
t |t
, ĉt] ← [p̄t, ψ̄

t
, c̄t]

19. else break
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20. return [ψ̂t |t
, ĉt]

where the procedures from 9 to 18 explicit the combination of label-switching (procedures
9-10) and log- posterior maximization (procedure 13-14-15-16-17). The idea behind the label
switching algorithm is to change the label for a node in the network and then recalculate the
log-posterior in that configuration. If we obtain better result respect to the previous one, the la-
bel of the nodes is changed. These few instructions are repeated for each node at each time step.

The inference procedure algorithm depends on four hyperparameters:

• The mean µ1 of the initial state ψ1;

• The covariance matrix Γ1 of the initial state ψ1;

• The covariance matrix Σt of the observation noise z t ;

• The covariance matrix Γt of the process noise vt .

The first two hyperparameters are related to the initial state. In the absence of prior
information about the network, specifically the matrix Θ1 of link probabilities, we let the
variances of the initial states approach zero.
The third hyperparameter Σt denotes the covariance matrix of the observation noise. In many
applications of state-space models, it is assumed to be time-invariant and estimated jointly with
Γt . In the dynamic SBM setting, Σt is assumed to be time-varying and it is related to the current
state ψt through Eq. 4.3 and the logistic function. Thus, we use a plug-in estimator for Σt by
substituting h(ψt |t−1) in Eq. 4.3.
The final hyperparameter Γt denotes the covariance matrix of the process noise vt . Unlike Σt ,
we assume Γt to be time-invariant. Furthermore, it is not necessarily diagonal because of states
could evolve in a correlated manner. For example, if ψt

ab increases from time t − 1 to time t, it
may be a result of some action by nodes in class a, which could also affect the other entries in
a row a of Ψt . Although Γt is not necessarily diagonal, it is desirable to impose some structure
on Γt to reduce its dimensionality. Hence, Xu and Hero assume the following generalization
for Γt :

γt
i j =


sdiag, i = j
snb, i, j are neighboring cells in Ψt

0, otherwise
(4.15)

where i, j being neighboring cells means that the matrix indices (ai, bi) corresponding to i
in Ψt are in the same row or column as matrix indices (a j, b j).

4.1.3 Model analysis
The dynamic stochastic block model described by Xu and Hero is one of the possible models
to infer and generate dynamic networks. We summarize here its main features:
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• The evolution model described in Eq. 4.1 is mathematically easy to handle because it
depends on two hyperparameters: the state evolution matrix F t and covariance matrix Γt

which generates the process noise vt ;

• The assignments of the nodes between time steps have only one limitation: the fraction
of nodes that change group must be small.

Furthermore, Xu and Hero impose that the evolution matrix F t is fixed in time and it is equal
to the identity matrix: thus, the evolution model becomes:

ψt = ψt−1 + vt (4.16)

This equation describes a random walk of the logistic function of the affinity matrix entries.
Hence, each entry of ψt tends to large values for long time generations, if the multiplication
of the time for the process variance is large enough. This fact implies that, by considering the
logistic function which relates ψt to θ t , the affinity matrix entries are likely to approach zero
or one. This means that some groups in the network are completely linked and others have not
a single link between them. We can say that this generative model creates absorbing states if
the generation process is repeated for enough time.

4.2 Numerical Simulations’ Settings
In this section, we examine the code used to generate dynamic networks and to infer their
parameters. We can divide this section into three parts:

• Analysis of the code;

• Settings of the code to generate networks and to infer the parameters;

• Definition of the measures (ARI, MSE, MSPE) used to test the goodness of the inference
process;

4.2.1 Analysis of the code
The code employed in this thesis is original and it combines the functions of standard
Python libraries (random, numpy, math, time, matplotlib.pyplot, networkx, sklearn.metrics
and sklearn.cluster with an original Python class called Rete. The class contains a list of
functions and members that we can group into:

• Constructors;

• Matrices or vectors generators or populators;
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• Functions which make evolve the network through the time;

• Specific algorithm (EKF, Spectral Clustering, posterior likelihood estimation...)

These members can be mixed to create both a generative model and an inference process.

A generic simulation is so structured:

1. Network definition: in this part, we define the number of nodes N in the network, the
number of groups k, how the nodes are divided among the groups, the simulation time T ,
the initial condition of the Eq. 4.1, and the fraction of nodes that change classes between
time steps;

2. Network generation: in this part, we create the dynamic network by making evolve the
network created at time t = 0; here we define the matrix Γt and we construct vt ;

3. Estimate of the model’s hyperparameters;

4. Estimate of network’s parameters: in this part, we convert the pseudo-code proposed
by Xu and Hero 4.1.2 into real code;

5. Plot generation and comparison.

The code is written to use a single-core, but it could be parallelized to speed up the execution
of the process.

4.2.2 Parameters setting
We first set the parameters used in Xu and Hero [40] to simulate the network.
We set the number of nodes equal to 128, divided in 4 groups. The affinity matrix of the initial
state is the one of a planted partition model, specifically:

θ0 =
©«
0.2580 0.0836 0.0836 0.0836
0.0836 0.2580 0.0836 0.0836
0.0836 0.0836 0.2580 0.0836
0.0836 0.0836 0.0836 0.2580

ª®®®¬
The initial state ψ0 is generated with a normal distribution whose mean is θ0 and the covariance
matrix is Γ0 = 0.04I. ψ0 represents the state at time 0 and it is used to generate the state at
time 1, i.e. ψ1, through Eq. 5.1.
The covariance matrix of the process noise, Γt , is static and, according to the parametrization
in Eq. 4.15, it is: {

sdiag = 0.01
snb = 0.0025

(4.17)
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The labels of the nodes change through time. in this case, every time step 10% of nodes
randomly is moved from a group to another. Given the node labels and the state variables, the
network W1 is generated.
To test the algorithm, 10-time steps are generated.

4.2.3 Inference process and the metrics
In simulation studies, once a sample of networks is produced according to an underlying model,
the problem is to infer the model parameters starting from the simulated data and the goodness
of fit of the adopted inference method. Regarding the Xu and Hero model, the goal is the
inference of the four hyperparameters, as described in Chapter 4. Here, we assume to know
the initial mean and covariance of the state 0. At time t = 1, in absence of prior information
about the network, we employ a diffuse prior [15]; that is, we let the variances of the initial
states to be equal to zero. This can be implemented by simply taking ψ1|1 = g(y1) and
R1|1 = G1Σ1(G1)T , where gi(x) = h−1

i (x) = log(xi) − log(1 − xi) is the logit of the th entry of
x, and G1 is the Jacobian of g evaluated at y1, which is a diagonal matrix with entries given
by g′i (y1) = 1/y1

i + 1/(1 − y1
i ). Thus, the initial state mean and covariance are given by the

transformed initial observation and its covariance. The third hyperparameter Σt denotes the
covariance matrix of the observation noise zt . In the dynamic SBM setting, however, Σt is
estimated to be time-varying, in fact, it is related to the current state Ψt through the logistic
function h(x). We use a plug-in estimator for Σt by substituting h(ψ̂t |t1) in the second equation
of 5.1. The final hyperparameter Γt is the covariance matrix of the process noise vt and it is
estimated by exploring the domain and minimizing the Mean Square Prediction Error (MSPE).

To test the quality of this model, we use two metrics: the Mean Square Error (MSE) and
the Adjusted Rand Index (ARI). The MSE is calculated as the Mean Square Tracking Error
| |ψt |t − ψt | |22 over the 10-time steps.
The Adjusted Rand Index in statistics is a measure of the similarity between two data clustering
[33].
Given a set S of n elements, and two groupings or partitions of these elements, namely
X = {X1, X2, . . . , Xr} andY = {Y1,Y2, . . . ,Ys}, the overlap between X and Y can be summarized
in a contingency table

[
ni j

]
, where each entry ni j denotes the number of objects in common

between Xi and Yj : ni j = |Xi ∩ Yj |.
The ARI is defined as:

ARI =

∑
i j

(ni j
2
)
− [

∑
i
(ai

2
) ∑

j
(bj

2
)
]/

(n
2
)

1
2 [

∑
i
(ai

2
)
+

∑
j
(bj

2
)
] − [

∑
i
(ai

2
)
+

∑
j
(bj

2
)
]/

(n
2
) (4.18)

where a, b, ni j are:
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X�
Y Y1 Y2 . . . Ys Sums

X1 n11 n12 . . . n1s a1
X2 n21 n22 . . . n2s a2
...

...
...

. . .
...

...
Xr nr1 nr2 . . . nrs ar

Sums b1 b2 . . . bs

Thus, the MSE is used to measure the distance between the predicted ψt |t and the true ψt ,
while ARI is used to measure the number of correctly inferred labels.

4.3 Analysis of the Numerical Results under DifferentModel
Specifications

The Xu and Hero model, using the parameters specified by the authors, obtains an excellent
score in both the metrics we used (and also the authors used to validate their model) [40].
In this section we will change these parameters to investigate deeply the model:

1. We use the Xu and Hero model as a generative model for a temporal network and we
analyze its behavior when the model generates a network with a large number of time
steps;

2. We fix the number of groups of nodes in the network and we vary the density of nodes
per group (i.e. the number of nodes in each group) by varying the number of nodes in
the network;

3. We fix the number of nodes in the network and we vary the density of nodes per group
by varying the number of group in the network;

4. We vary the fraction of nodes that change classes between time steps in a large range.

4.3.1 Generative model: long-time simulations and absorbing states
The number of time steps used by Xu and Hero is 10. However many temporal series collect
hundreds of time steps. So it could be interesting to investigate what happens if we generate a
temporal network with the Xu and Hero model with a larger number of time steps.
The main result is that the evolution of the network is largely determined by the parameter Γt .
We know that the coefficients of the affinity matrix θt are related to ψt through the equation:

θt
i, j =

1

1 + e−ψ
t
i, j

(4.19)
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Figure 4.1: Logistic Function of ψ and its Taylor expansion
From Eq. 4.1, we know that ψt performs a random walk and the random walk depends on the
vector vt . Now we explore what happens to the affinity matrix Θt by varying the matrix Γt ,
which is used to generate the vector vt , in a generated network with 1000 time steps.
First, we analyze the relation between θt and ψt . For ψt in range [−1, 1], the fluctuations are
linearly dependent on the entries of θt in the range [0.27 − 0.73]. In fact, the Taylor expansion
of the logistic function in Eq. 4.19:

θt
i, j =

1
2
+
ψt

i, j

4
−
(ψt

i, j)
3

48
+O((ψt

i, j)
4) (4.20)

as a consequence, the Taylor expansion of θt results linear in ψt in range [−1, 1], as we can
see in Fig. 4.1. Also in the range [−4,−1] ∨ [1, 4], the variation in θt is still appreciable but,
for ψt in the range [−∞,−4] ∨ [4,∞], the variation in θt is very small and its value becomes
really close to 0 or 1. Thus, the affinity matrix is quite constant in time and it is really close to
a matrix of 0 and 1.
We set the values ±4 as threshold values in simulations, because for those values of ψt :

θt
i j =

1
1 + e−4 = 0.018

θt
i j =

1
1 + e4 = 0.982

In the following Fig. 4.2, 4.3, 4.4 and 4.5, we can observe the effect on the affinity matrix θ,
while increasing the entries of the covariance matrix Γt :
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Figure 4.2: Evolution in time of ψ and θ, sdiag = 0.001 and ssnb = 0.00025
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Figure 4.3: Evolution in time of ψ and θ, sdiag = 0.01 and ssnb = 0.0025
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Figure 4.4: Evolution in time of ψ and θ, sdiag = 0.1 and ssnb = 0.025
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Figure 4.5: Evolution in time of ψ and θ, sdiag = 1 and ssnb = 0.25
when ψt crosses the range [−4, 4], the coefficients of the affinity matrix are locked to the
"absorbing states", 0 or 1. Concluding, this model is easy to simulate and useful for short time
simulations but, is not a goodmodel for long time simulations. This is also true when the entries
of Γt have large values. In general, this phenomenon depends on the variance parameter which
captures the diffusion behavior of the underlying process, thus determining the probability of
being in one ‘absorbing state’ after given time steps.

4.3.2 Groups fixed and a varying number of nodes
In the simulation study presented in Xu and Hero [40], the authors focus on the case of affinity
matrix of order O(1), i.e. dense networks. As a consequence, the goodness of fit is really
robust, in particular, the performance of the proposed inference method does not crucially
depend on the estimation of Γt in the limit of dense networks. In the Xu and Hero model, the
robustness of the estimation method to different values of Γt is related to the Extended Kalman
Filter.

The robustness of the estimation and the EKF

In this subsubsection, we study the robustness of inference process proposed by Xu and Hero:
in fact, the parameter estimation (θ and the labeling of the nodes) is weakly sensitive to a wrong
estimate of Γt . To prove this statement, we study in detail the EKF algorithm and the term K t .
The equation of Kalman gain K t in the Xu and Hero model is:

K t = Rt |t−1(Ht)T [Ht Rt |t−1(Ht)T + Σt]−1 (4.21)

where Ht is a diagonal matrix with entries equal to the derivative of the logistic function in Eq.
4.19, Σt is a diagonal matrix with entries equal to the variance of the observation noise zt .
Rt |t−1 is:

Rt |t−1 = F t Rt−1|t−1(F t)T + Γt (4.22)
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where F t = I is the state transition matrix, while the entries of Σt are:

(σ2)tab =
h
(
ψ

t |t−1
ab

) (
1 − h

(
ψ

t |t−1
ab

) )
nab

(4.23)

where nab is the number of possible links between the group a and group b.
If we consider a diagonal Γt for simplicity, all the matrices are diagonal and we can explicit the
value of each component. Therefore the Eq. 4.21 becomes, for each diagonal entry:

k t
diag =

(r + sdiag)
e−ψ

(1+e−ψ)2( e−ψ
(1+e−ψ)2

)2
(r + sdiag) +

1
n

1
1+e−ψ

(
1 − 1

1+e−ψ
) (4.24)

=
(r + sdiag)

e−ψ
(1+e−ψ)2( e−ψ

(1+e−ψ)2
)2
(r + sdiag) +

1
n

e−ψ
(1+e−ψ)2

=
(r + sdiag)

e−ψ
(1+e−ψ)2 (r + sdiag) +

1
n

=
n(r + sdiag)(1 + e−ψ)2

ne−ψ(r + sdiag) + (1 + e−ψ)2

=
(1 + e−ψ)2

e−ψ + (1+e−ψ)2
n(r+sdiag)

where r and sdiag are the diagonal components of Rt−1|t−1 and Γt , while ψ is ψt |t−1. In the net-
works simulated byXu andHero, the number of nodes for each group is 32, so n = 32∗31 = 992,
r ' 0.004 and sdiag = 0.01. Since Xu and Hero impose sdiag = 0.01, we will refer to this value
as a reference value for our analysis.

Using the result obtain in Eq. 4.24, we can study the dependence of k t on sdiag, by varying
the value of ψt . This analysis is summarized in Fig. 4.6 and 4.7: the first one shows the value
of k t for 5 different values of sdiag for −4 ≤ ψ ≤ 4, while the second one shows the ratio:

Ratio =
k t

other

k t
0.01

(4.25)

where k t
0.01 refers to the value of k t calculate for sdiag = 0.01. In Fig. 4.6 and 4.7, we observe

the the relation between k t and ψ and we show the Ratio for a network with 32 nodes for each
group, which is the same value used by Xu and Hero [40].

45



4. Dynamic Stochastic Block Model: Analysis and Numerical Simulations

4 3 2 1 0 1 2 3 40

10

20

30

40

50

K

Kalman Gain K, for < N > = 32 and r = 0.004
sdiag=0
sdiag=0.001
sdiag=0.01
sdiag=0.1
sdiag=1

Figure 4.6: Kalman gain for 〈N〉 = 32, r = 0.004
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Figure 4.7: Ratio between Kalman gains for different sdiag, 〈N〉 = 32, r = 0.004
As shown in Fig. 4.7, the ratio between the reference value of sdiag = 0.01 and the other

values is included in range [0.3 − 5] if ψ = ±4 but, for −2 ≤ ψ ≤ 2, the range is smaller
(̃[0.5− 2]). This proves why it is so difficult to estimate the entries of Γt , since a large variation
in Γt does not affect strongly the estimate of k t . In addition, a small error in the estimate of k t

is followed by a small error in the estimate of ψt , which is used to calculate the estimate of θ.
Thus, a wrong initial estimate of Γt does not affect strongly the estimate of the parameter of
the model, as also Xu and Hero show in their paper [40].
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We can deepen this analysis,by generating a network with more nodes and imposing that the
mean for each group is 〈N〉 = 100: we observe that the distance between the ratios is reduced
significantly, as we can observe in Fig. 4.8, 4.9:
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Figure 4.8: Kalman gain for 〈N〉 = 100, r = 0.004
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Figure 4.9: Ratio between Kalman gain for different sdiag, 〈N〉 = 100, r = 0.004
Hence for any value of sdiag, the value of Kalman gain is similar for a large part of the range

of ψ.
Thus, the inference of ψ dipends little on sdiag if the number of nodes in the network is large
enough. Xu and Hero use a non diagonal matrix for Γt but, as we explain in Appendix A, the
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results are not affected by this choice.

On the contrary, considering the case of sparse networks, the results suggest that the infer-
ence process is strongly dependent on the variation of sdiag, see Fig. 4.10, 4.11, 4.12, and 4.13.
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Figure 4.10: Kalman gain for 〈N〉 = 10, r = 0.004
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Figure 4.11: Ratio between Kalman gain for different sdiag, 〈N〉 = 10, r = 0.004
For 〈N〉 = 10, the values of K t start to be very different and the ratio grows faster for

multiples of sdiag.
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Figure 4.12: Kalman gain for 〈N〉 = 5, r = 0.004
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Figure 4.13: Ratio between Kalman gain for different sdiag, 〈N〉 = 5, r = 0.004
For 〈N〉 = 5 the value of sdiag is important to obtain the correct prediction since all the

gains K t are different.

In this subsection we focus on the relevance of hyperparameter Γt and why it is difficult to
have a good estimate of it. In the following we study the effect on the metrics (MSE, ARI, and
MSPE) for different Γt while varying the number of nodes for each group.
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Mean Square Error

The mean square error is one of the metrics we used to test the model and it measures the mean
squared difference between the estimated affinity matrix Θ̃t and the affinity matrix adoped to
generate the network Θt . We simulate a temporal network with 10-time steps and we calculate
the mean of the MSE obtained at each step. This is the value of the MSE associated to that
simulation.
We consider 50 simulations, then we reduce the number of nodes in the network by 10 until we
reach the value of 20 nodes in the network: the goal is to analyze if the MSE depends on the
number of nodes in the network while keeping the number of groups in the network fixed. We
repeat the simulations three times, using three different values of Γt in the estimation process:
the original Γt used to generate the network that has to be inferred, which is the same as used
by Xu and Hero defined in Eq.4.17, and two other choices Γt , respectively 10Γt

Xu and 1
10Γ

t
Xu .

The first set of simulations is obtained with a network with 130 nodes and 2 groups. With 50
simulations we can obtain a good estimate of the mean and variance of the metric we are testing.

For a number of nodes N > 60 (Fig. 4.14), the value of MSE is of the same order of
magnitude for all the number of nodes we use to generate the networks, even if it is slowly
decreasing, as we can observe in Fig. 4.14. Furthermore, the value of MSE obtained is quite
similar for the three different Γt . This result confirms the previous analysis on the Kalman gain
K t for a large number of nodes.
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Figure 4.14: MSE for 2 groups and different Γt values.
For a number of nodes 40 < N < 60, we observe a change for the three Γt . The correct

value of Γt (the orange one) produces the best performance. For N < 40 we observe that:
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• the MSE’s grows faster if compared to networks with a larger number of nodes;

• The MSE for the three Γt is quite similar due to the small difference of the Kalman gain
K t for that density of nodes for each group 4.15;

This means that the use of the correct value of Γ does not compensate the estimation error
due to a network which contains a small number of nodes.
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Figure 4.15: MSE for 2 groups and different Γt values, focus on the range 20 < N < 50

Adjusted Rand Index

The analysis of the ARI is quite similar to the previous one. For all the number of nodes, its
value is very similar for the three Γt (see Fig. 4.16) and only for N = 20 we can observe some
discrepancy between different conditions, as shown in Fig. 4.17.
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Figure 4.16: ARI for 2 groups and different Γt values
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Figure 4.17: ARI for 2 groups and different Γt values, focus on the range 20 < N < 50

Mean Square Predictor Error

We can observe in Fig. 4.18 that the estimation method gives the best results for submultiple of
Γt , because of a lower value of the MSPE. The correct matrix Γt obtain the best score respect
to the other Γt only for N = 20, as expected from the study of the Kalman gain.
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Figure 4.18: MSPE for 2 groups and different Γt values

4.3.3 Simulation study with varying number of groups
In this subsection, we analyze the case of keeping constant the number of nodes and progres-
sively increasing the number of groups (both the cases have the same aim, that is reducing the
density of nodes for each group).
This simulation study is computationally hard because of the performances of the label switch-
ing algorithm for increasing number of groups. Every time the number of groups is raised
by one, the algorithm has to calculate the log posterior probability for a larger number of
groups. This means that, for each node, we have a set of instructions that is repeated once
more. Furthermore, this holds for all the time steps. For instance, if for two groups are required
30 seconds for each simulation, for 6 groups the time raises to 10 minutes. For this reason, we
fix the value of six as the maximum number of groups in this simulation study.

Mean Square Error and Adjusted Rand Index

We can observe in Fig. 4.19 and 4.20 that, for both MSE and ARI, the correct value of Γt (the
green one) has a better score if compared to the other values. If we compare the values of MSE
and obtained for the different matrix Γt :

• For ARI, the scores obtained are very similar and almost independent from the matrix Γt

used in the simulations;
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• For MSE, the values obtained in the different simulation depends on the matrix Γt used
to infer the network.
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Figure 4.19: MSE for 128 nodes and different Γt values
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Figure 4.20: ARI for 128 nodes and different Γt values

Mean Square Predictor Error

In this case we note that the correct matrix Γt does not obtains the best scores, unlike what we
observed before. This fact could be explained studying the number of nodes for each group. In

54



4. Dynamic Stochastic Block Model: Analysis and Numerical Simulations

fact, when the network contains six groups, everyone of them is composed by 21 nodes. In Fig.
4.18, we can observe that the Mean Square Predictor Error of the correct value of Γt obtains
the best score only for a density equal to 10 nodes for each group. To obtain the same density,
we should consider 13 groups, but this analysis would require a very long computational time.
Hence, we decide to limit the study with 6 groups, which was the reachable limit for our
instruments.
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Figure 4.21: MSPE for 128 nodes and different Γt values

4.3.4 Memory effect
The algorithm for the label inference uses the previously estimated assignments to predict the
next ones. We know that at each time step a certain percentage of nodes leaves their community
to be reallocated in another one, so the label switching algorithm is based on the fact that the
majority of the population of the nodes remains in their class between time steps. This is
a memory effect. When the percentage of leaving nodes equal to 10%, the label switching
algorithm has good performances as in Xu and Hero. We want to investigate what happens
if we raise this percentage. The analysis uses a network with 3 groups and 33 nodes for each
group.

ARI

We decide to analyze the ARI for a percentage that varies in the range [0.02− 0.29]. When the
percentage is higher, e.g. 50%, some problems of group identifiabilitymay occur, independently
from the adopted algorithm. We use the spectral clustering as a benchmark since this algorithm
does not depend on the communities of the previous time step, thus its performance does not
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change if we vary the percentage. For each network generated, we use both Xu and Hero model
and SSBM spectral clustering to infer the parameter of the network. We generate 30 networks
for each percentage of nodes leaving their group between time steps, to obtain a good estimate
of the mean ARI and its related variance. In Fig. 4.22, we can observe the difference between
SSBM spectral clustering and Xu and Hero algorithm: the Pearson coefficient ρXY for SSBM is
clearly null as expected, while for Xu and Hero model the coefficient shows a weakly negative
linear correlation.
So the memory effect is slowly decreasing for a raising percentage of nodes that leave their
class. This means that the higher the percentage, the more the algorithm’s result is similar to
the static observation.

0.05 0.10 0.15 0.20 0.25 0.30
Percentage (%)

0.75

0.80

0.85

0.90

0.95

1.00

AR
I

Adjust Rand Index for different percentage of Nodes leaving the groups

EKF Pearson XY: 0.43
SSBM Pearson XY: 0.10
EKF Data
SSBM Data

Figure 4.22: ARI evolution varying the percentage of leaving nodes

MSE

Investigating MSE, the results of the comparison in Fig. 4.23 are similar to the previous one:
SSBM results are not correlated, while Xu and Hero’s results are weakly correlated. This
means that the difference between the predicted ψt and the real one grows slowly.
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Figure 4.23: MSE evolution varying the percentage of leaving nodes

4.4 Conclusion
In this chapter, we have pointed out some drawbacks of the Xu and Hero model. We group
them into two different categories:

• Analytical model problems: the Xu and Hero generative model, shown in Eq. 4.1,
exhibits the absorbing state phenomenon, as we demonstrate in section 4.3.1. This fact
exclude the use of this model for long time simulations. Furthermore, the authors impose
several constraints to the hyperparameters (F t = I, fixed structure for the matrix Γt).

• Simulations problems: the results depend little on thematrix Γt employed in the inference
process. This fact implies a low possibility to infer the correct value of Γt . Furhtermore,
we observe in section 4.3.4 a memory effect of the algorithm used in the inference
process.

In the following chapter, we propose two generalizations of the model to overcome these
criticalities, with a particular focus to applications. We combine Xu and Hero model with the
two-time series models we analyzed in Chapter 2, the AR(1) model and the VAR(1) model:

• Both AR(1) and VAR(1) models are mean-reverting, thus the network dynamics does
not display ‘absorbing states’ for the link probabilities;

• We can employ the properties of these two models to collect more informations of the
graph while inferring its parameters: in Xu and Hero model, we have to impose some
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constraints to the structure of Γt and the matrix F t must be known a priori; viceversa, for
the generalizations, we do not need to impose these constraints.
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Chapter 5

Generalization of Xu and Hero Model to
Auto-Regressive Processes

In this chapter, we propose two novel dynamic stochastic block models which overcome the
issues highlighted for the model of Xu and Hero [40]. In particular, in the first section and
the second section we exploit the framework introduced by Xu and Hero, but describing the
evolution of the affinity matrix with an autoregressive process, either AR(1) or VAR(1). We
also introduce a novel inference algorithm for model estimation. In the third section and in
the fourth section, we study the results obtained in the numerical simulations, similarly to the
analysis presented in the previous chapter. The simulation study presented in this chapter is to
assess the performances of the estimation methods of the novel algorithms. In the last section,
we compare the results obtained for the two new models. All the results presented in this
chapter are original.

5.1 AR-SBMModel
We have analyzed Auto-Regressive processes in Chapter 2. Our purpose is to generalize the
equations describing the evolution of the affinity matrix in Xu and Hero model with an AR(1)
process.
Xu and Hero propose this system of equations for the evolution of ψ, i.e. the logit of the
vectorized affinity matrix θ: {

ψt = F tψt−1 + vt

Y t = h(ψ t) + zt (5.1)

where F t is the identity matrix, v t is the noise process, h(x) is the logistic function and z t the
observation noise. Focusing only on the process equation, each component evolves like:

ψt
ab = ψ

t−1
ab + v

t
ab (5.2)
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Hence, Xu and Hero model assumes a random walk for ψab, which is not a stationary process,
thus the probability of each component of ψ becoming larger and larger as time goes on is very
high. The results of this are that θ, the affinity matrix, becomes a matrix of values really close
to 1 and 0. In real world networks, it is very unlikely to observe this behavior.
As a generalization, we consider the affinities evolving as an AR(1) model:

ψt = a + bψt−1 + vt (5.3)

The process is stationary when |b| < 1. We assume that the matrix B and the array A are
time-independent:

Bt = B At = A

The covariance matrix Γ is also time-independent as in the Xu and Hero model. The process
mean µ is:

µ(ψt) =
a

1 − b
(5.4)

When we consider each ψt
ab evolving independently from each other ones, then the evolution

of ψt is described by:
ψt = A + Bψt−1 + vt (5.5)

With

B =
©«
b1,1 0 · · · 0
0 b2,2 · · · 0
...

...
. . .

...
0 0 · · · bn,n

ª®®®®¬
and Γ, i.e. the covariance matrix of the process noise vt :

Γ =

©«
Γ1,1 0 · · · 0
0 Γ2,2 · · · 0
...

...
. . .

...
0 0 · · · Γn,n

ª®®®®¬
Here, differently, from Xu and Hero, the noise components are uncorrelated.

5.1.1 Model’s hyperparameters
The hyperparameters in this generalized model are:

1. The mean µ1 of the initial state ψ1;

2. The covariance matrix Γ1 of the initial state ψ1;
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3. The covariance matrix Σt of the observation noise zt ;

4. The covariance matrix Γt of the process noise vt ;

5. The state evolution matrix B;

6. The vector of parameters A.

Indeed, the model is more flexible if compared with the Xu and Hero model. To infer these
two new hyperparameters, we use an Expectation-Maximization algorithm:

1. Using SSBM spectral clustering initialization we obtain initial estimate ct , the class
memberships at time t for all time steps;

2. Compute all block densities Y t using W t and ct ;

3. Compute all ψt using block densities Y t ;

4. Estimate the AR(1) process, thus obtaining an estimate of āi, b̄i,i and Γ̄i,i, by conditioning
on Ψi = {ψ

0
i , ψ

1
i , · · · , ψ

t
i };

5. while (true):

6. Compute all ψ̂;

7. Estimate the AR(1) process, thus obtaining an estimate of âi, b̂i,i and Γ̂i,i by condi-
tioning on Ψ̂i = {ψ̂

1
i , ψ̂

2
i , · · · , ψ̂

t
i };

8. if | | Â − Ā| |2 < threshold and | |b̂i,i − b̄i,i | |2 < threshold→ break;

9. else: [āi, b̄i,i] ← [âi, b̂i,i].

While repeating the instruction from 6 to 9, we can observe that the fit of âi, b̂i,i and Γ̂i,i is made
removing the initial estimate ψ0

i . This is done because ψ0
i is the result of spectral clustering

algorithm also for Xu and Hero model used in instruction 6.
Therefore, the initial point of the estimation process is fixed at the initial step of the inference
process, thus it is not considered in the estimation of âi and b̂i,i in order to reduce the estimation
error.

The estimate of âi, b̂i,i and Γ̂i,i are obtained by solving the Eq. 2.8 and Eq. 2.11.
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5.2 VAR-SBM model
The VAR(1) model is a generalization of the AR(1) model. In AR(1) model, each component
of ψt is independent from the others. Thus, if the network is divided into k groups, the model
dynamics is described by a set k2 independent equations.
Within this model, we aim to describe the dependence structure between the components of
ψt . Formally, the state equation is the same as before, i.e.

ψt = At + Bt · ψt−1 + vt (5.6)

where Bt is a generic matrix of dimension k2 × k2, if k is the number of group of the system.
The VAR process is not always stationary.
Furthermore, these matrices and At are time-independent, i.e.:

At = A Bt = B Γ
t = Γ (5.7)

In this model, we impose that the matrix Bt is constructed using the same criteria proposed
by Xu and Hero to construct the covariance matrix Γt , which correlates the components of the
affinity matrix that share the same row or column. Thus, the matrices Bt and Γt share the same
structure.

5.2.1 Model’s hyperparameters
For this model, the hyperparameters are:

1. The mean µ1 of the initial state ψ1;

2. The covariance matrix Γ1 of the initial state ψ1;

3. The covariance matrix Σt of the observation noise zt ;

4. The covariance matrix Γt of the process noise vt ;

5. The static array A;

6. The static matrix B.

The hyperparameters from 1 to 3 are inferred as described before. The estimate of A, B and Γ
are as follows.
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Estimate of A and B

Using the properties that eachψt depends only on the previous state, we can write the equations:

E[ψ̄t
ψ̄

t−1
] = B · E[ψ̄t−1

ψ̄
t−1
] + E[vtψ̄

t−1
] (5.8)

where ψ̄ is ψ̄ = ψ − µ(ψ).
Let us define E[ψ̄ t ¯ψ t−1] = β1 and E[ ¯ψ t−1 ¯ψ t−1] = β0 and because of v t and ¯ψ t−1 are uncorre-
lated, it is E[v t ¯ψ t−1] = 0. Thus, Eq. 5.8 becomes:

β1 = B · β0 (5.9)

And the matrix B is:
B = β1 · (β0)−1 (5.10)

Now, if we take the square of Eq. 5.8 and we take expectation:

E[ψ̄ tψ̄ tT ] = E[(B · ¯ψ t−1 + v t)((B · ¯ψ t−1 + v t)T ] (5.11)

Using the previous notation and the properties of VAR model:

β0 = B · β0 · BT + Γt (5.12)

Where Γt is the covariance matrix vt . It is

Γt = β
0 − B · β0 · BT (5.13)

To estimate the vector of parameters A, we take the expectation of ψ as described by the
state equation:

E(ψt) = A + B · E(ψt−1) + E(vt) (5.14)

By using the property of the stationary processes, i.e. E(ψt) = E(ψt−1) = µ, and knowing that
E(vt) = 0 for Gaussian noise, the Eq. 5.14 becomes:

µ = A + B · µ (5.15)

Thus, A is:
A = µ − B · µ (5.16)

We can see that the estimate of A, B and Γt depends only on β0, β1, and Γ. We can β0, β1 as:

β0 =

©«
1

T−1
∑T

t=1 ψ
t
1ψ

t
1

1
T−1

∑T
t=1 ψ

t
1ψ

t
2 · · · 1

T−1
∑T

t=1 ψ
t
1ψ

t
k2

1
T−1

∑T
t=1 ψ

t
2ψ

t
1

1
T−1

∑T
t=1 ψ

t
2ψ

t
2 · · · 1

T−1
∑T

t=1 ψ
t
2ψ

t
k2

...
...

. . .
...

1
T−1

∑T
t=1 ψ

t
k2ψ

t
1

1
T−1

∑T
t=1 ψ

t
k2ψ

t
2 · · ·

1
T−1

∑T
t=1 ψ

t
k2ψ

t
k2

ª®®®®®¬
(5.17)
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β1 =

©«
1

T−1
∑T

t=1 ψ
t
1ψ

t−1
1

1
T−1

∑T
t=1 ψ

t
1ψ

t−1
2 · · · 1

T−1
∑T

t=1 ψ
t
1ψ

t−1
k2

1
T−1

∑T
t=1 ψ

t
2ψ

t−1
1

1
T−1

∑T
t=1 ψ

t
2ψ

t−1
2 · · · 1

T−1
∑T

t=1 ψ
t
2ψ

t−1
k2

...
...

. . .
...

1
T−1

∑T
t=1 ψ

t
k2ψ

t−1
1

1
T−1

∑T
t=1 ψ

t
k2ψ

t−1
2 · · · 1

T−1
∑T

t=1 ψ
t
k2ψ

t−1
k2

ª®®®®®¬
(5.18)

where ψi is the i − th component of ψt .

The algorithm used to infer all the hyperparameters is the same as before, by implementing
the estimation of the 3 hyperparameters A, B and Γt with the Eq. 5.10, 5.13, and 5.16.

5.3 AR-SBMModel Results
In this section, we analyze the numerical results of the AR-SBM model. We first employ this
model as a generative model for temporal networks, then we analyze how the model could be
used to infer the hyperparameters of a temporal network under different conditions. Let us
notice that the estimation performance depends strongly on the number of time steps, differently
from the model proposed by Xu and Hero.

5.3.1 Network creation
To compare the results obtained in Xu and Hero model with the results obtained in AR-SBM
model, we set the initial affinity matrix equal to the one used in Xu and Hero. The main
difference between the two models is the evolution of ψt in time: in Xu and Hero ψt performs
a random walk. In AR-SBM model, the dynamic is autoregressive characterized by mean
reversion. The smaller each entry of Γt , the closer the evolution of ψt will be to the process
mean.
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Figure 5.1: Evolution of ψt and θt in time, for sdiag = 0.001
The hyperparameters we have to set are 3 for each component of ψ: Ai, Bi,i and Γi,i = sdiag.

Using Eq. 5.3, we decide to set the mean process of each entry of the affinity matrix equal to
the same value employed by Xu and Hero. Since we can use many combinations of Ai and Bi,i
to obtain these values, we choose the following:{

Ai = −0.2112 Bi,i = 0.8 =⇒ µ(ψt
i ) = −1

Ai = −0.4780 Bi,i = 0.8 =⇒ µ(ψt
i ) = −2.4

(5.19)

The first equation is used for the diagonal entries of the affinity matrix, while the second the
off-diagonal entries.

The value of sdiag is set equal to a set of powers of ten, from 104 to 100. As we observe in
Fig. 5.1, for sdiag = 0.001 = sXu

diag/10, ψt fluctuates in a small range around the process mean.
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Figure 5.2: Evolution of ψt and θt in time, for sdiag = 0.01
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Figure 5.3: Evolution of ψt and θt in time, for sdiag = 0.1
If we increase the value of sdiag, the fluctuations around the process mean are more prou-

nunced, as we can observe in Fig. 5.2 and Fig. 5.3.

66



5. Generalization of Xu and Hero Model to Auto-Regressive Processes

0 20 40 60 80 100
Time (A.U.)

6

4

2

0

2

4

6 (t) for 2 groups and 80 nodes
0, 0

0, 1

1, 0

1, 1

0 20 40 60 80 100
Time (A.U.)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(t) for 2 groups and 80 nodes
0, 0

0, 1

1, 0

1, 1

Figure 5.4: Evolution of ψt and θt in time, for sdiag = 1
The most important property of this generative model is the stationarity, which allows to

simulate an indefinitely long time dynamic network.

5.3.2 Inference of the model’s hyperparameters
In this subsection we analyze the inference of the hyperparameters of the AR-SBM model
while varying the number of time steps. The data are acquired for 5 different numbers of time
steps, from 20 to 100, and for each number of time steps, we collect 30 simulations. Thus,
for each couple composed by number of time steps and number of nodes, the 30 generated
networks are very similar, since they are generated with the evolution model described in Eq.
5.2, which describes an AR process, and by using the same affinity matrix. Hence, the inferred
hyperparameters are very similar between the different simulation: for this reason, both the
estimation errors for ψt and for the value of the metrics (ARI and MSE) are small.

ARI

The first metric we analyze is the ARI. As we observe in Fig. 5.5, the difference of ARI between
the simulation with 80 nodes and 120 nodes is very small. Also for 40 nodes, the score is very
high and only for 20 nodes ARI decreases significantly.
If we compare the results by varying the number of time steps available to estimate the model,
we observe a slightly decreasing trend of ARI for a lower number of time steps. The variation
between 100-time steps and 20-time steps is small, suggesting that this metric depends more
on the label switching algorithm than the EM algorithm used to infer A and B.
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Figure 5.5: Evolution of ARI for different numbers of nodes

MSE of ψt

The analysis of the MSE of ψt is similar to the previous one for ARI: the metric depends more
on the number of nodes rather than on the number time steps used to infer the hyperparameters
of the simulation.
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Figure 5.6: Evolution of MSE of ψt for different numbers of nodes
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MSE of A, B, and Γ

As we observe in Fig. 5.7 and 5.8, the MSE associated with A and B depends on the number of
time steps used to infer the model. This fact is not observed in Fig. 5.5 and Fig. 5.6. For 120
and 80 nodes, the MSE increases significantly when the number of time steps is lower than 60-
time steps. For 40 and 20 nodes there is a growth of the MSE, but it is smaller when compared
with 80 and 120 nodes. This behavior is observed because the estimate of hyperparameters
depends more on the number of nodes respect to the number of time steps, and the MSE for 40
and 20 nodes for 100 time steps is larger respect to the MSE for 120 and 80 nodes.
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Figure 5.7: Evolution of MSE of A for different numbers of nodes
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Figure 5.8: Evolution of MSE of B for different numbers of nodes
For Γt , we do not observe some specific patterns in the results of the model estimation. We

can also observe that MSE for 20 and 40 nodes decreases: this shows that the model is not able
to infer the hyperparameters in these configurations, as also suggested by the high values of
MSE of A and B obtained for 20 and 40 nodes.
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Figure 5.9: Evolution of MSE of Γ for different numbers of nodes
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5.4 VAR-SBMModel Results
The VAR-SBM model generalizes further the AR-SBM model by capturing the dependence
structure among the state variables of the network dynamics. Thus, we can compare the results
obtained in AR-SBM Model with the results obtained with this model. Since this model is a
generalization of the AR-SBMmodel, we can generate a network with the AR-SBM generative
model and try to infer its parameters with the VAR-SBM model: we expect, in this case, that
the estimated off-diagonal entries of B and Γt are very close to zero, since in AR-SBM model
these parameters are null.
The model conserves the properties of stationarity, so the generative model is quite similar to
the AR-SBM model.

5.4.1 Generative model
Since we build this model to compare its performance with the Xu and Hero model, we analyze
only the VAR-SBMmodel with a hyperparameters structure similar to the Xu and Hero model.
The matrices B and Γ are generated correlating the entries of θ that share the same row or
column. So, for 2 groups, the matrices are like:

B =
©«
Bdiag Bsnb Bsnb 0
Bsnb Bdiag 0 Bsnb
Bsnb 0 Bdiag Bsnb

0 Bsnb Bsnb Bdiag

ª®®®¬
Γ =

©«
Γdiag Γsnb Γsnb 0
Γsnb Γdiag 0 Γsnb
Γsnb 0 Γdiag Γsnb

0 Γsnb Γsnb Γdiag

ª®®®¬
We have already observed what happens when we vary the entries of Γ, because its effect

is the same as in AR-SBM Model. The main difference is in the coefficients of the matrix B.
Here we consider A = 0.

In Fig. 5.10, we observe the evolution of ψt and θ for sdiag = 0.80 and ssnb = 0.05.
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Figure 5.10: Evolution of ψt for 2 groups and 80 nodes in VAR-SBMModel, sdiag = 0.80 and
ssnb = 0.05
If sdiag = 0.50 and ssnb = 0.05, the components of ψt tend to zero with a shorter transient

phase, as we can see in Fig. 5.11.
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Figure 5.11: Evolution of ψt for 2 groups and 80 nodes in VAR-SBMModel, sdiag = 0.50 and
ssnb = 0.05
For sdiag = 0.20 and ssnb = 0.05 (Fig. 5.12) and for sdiag = 0 and ssnb = 0.05 (Fig. 5.13),

the components only fluctuate around the mean with a large variance.
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Figure 5.12: Evolution of ψt for 2 groups and 80 nodes in VAR-SBMModel, sdiag = 0.20 and
ssnb = 0.05
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Figure 5.13: Evolution of ψt for 2 groups and 80 nodes in VAR-SBM Model, sdiag = 0 and
ssnb = 0.05

5.4.2 Inference of model’s hyperparameters
Similarly to the case of the AR-SBMmodel, we investigate the inference of the hyperparameters
of the VAR-SBM model. Also in this model, we collect 30 simulations, as done for the AR-
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SBM model. To compare the three models, we use ARI, MSE e MSPE as metrics.
We immediately find out that VAR-SBMmodel depends on a large number of hyperparameters.
In fact, for an AR-SBMmodel with k groups of nodes, we have to infer the only k Ai terms and
k entries of the matrices B and Γ. In VAR-SBM model, if we have k groups of nodes, we have
k Ai terms and k2 entries of B and Γ. Hence, the model requires long time series to obtain a
good estimate of the hyperparameters.

ARI

As for the AR-SBMmodel, we do not observe empirically variations of the ARI as a function of
the number of time steps. On the contrary, it depends on the number of nodes used to simulate
the network.
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Figure 5.14: Evolution of ARI for different numbers of nodes in VAR-SBM model
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MSE of ψt

Fig. 5.15 shows the dependence of MSE from the number of time steps. Some data have a
large error bar, because, within the 30 simulations, one or two of them completely miss the
inference of the hyperparameters. This output is observed at least once every 30 simulations,
especially if we simulate a network with few nodes.
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Figure 5.15: Evolution of MSE of ψt for different numbers of nodes in VAR-SBM model

MSE of A, B, and Γ

As shown in Fig. 5.16 and 5.17, A and B are dependent on the number of time steps used to
infer the hyperparameters: the MSE decreases for a larger number of time steps. This fact is
verified for every number of nodes used to configure the network. The dependence is not much
evident for Γ, which depends more on the number of nodes.
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Figure 5.16: Evolution of MSE of A for different numbers of nodes in VAR-SBM model
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Figure 5.17: Evolution of MSE of B for different numbers of nodes in VAR-SBM model
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Figure 5.18: Evolution of MSE of Γ for different numbers of nodes in VAR-SBM model

5.5 Comparison between AR-SBM and VAR-SBMModel
Since the VAR-SBM model is a generalization of the AR-SBM model, we can compare the
results obtained by the latter with those obtained by the VAR-SBM model. If we employ the
two models on a network with k groups, the two models have a different number of parameters
to infer: AR-SBM has to infer 3k parameters for A, B, and Γ, while VAR-SBM has to infer
k + 2k2 parameters.

Here we simulate a network with the parameters used in Eq. 5.19, varying the number of
time steps in the range 40 ≤ N ≤ 100. For each number of time steps, we simulate 30 networks.

We aim to investigate what is the dependence structure for the state variables we measure
according to the VAR-SBM model, when the network is generated according to the AR-SBM
model, where no dependence structure is considered. In other words, how much the misspeci-
fication of the model affects the estimation results.

ARI and MSE of ψt

As we observe in Fig. 5.19 and 5.20, the two models obtain the same scores using both the
metrics, even if the VAR-SBM model performs a little better than AR-SBM model.

77



5. Generalization of Xu and Hero Model to Auto-Regressive Processes

40 50 60 70 80 90 100
Time steps available to fit the model (A.U.)

0.9775

0.9800

0.9825

0.9850

0.9875

0.9900

0.9925

0.9950

AR
I

ARI comparison between AR(1) model and VAR(p) model

AR(1) 80 Nodes
AR(1) 120 Nodes
VAR 80 Nodes
VAR 120 Nodes

1 1

Figure 5.19: Evolution ofARI for different numbers of nodes inAR-SBMmodel andVAR-SBM
model
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Figure 5.20: Evolution of MSE of ψt for different numbers of nodes in AR-SBM model and
VAR-SBM model

5.5.1 MSE of A, B, and Γ
The analysis for MSE of A, B and Γ gives different results. The VAR-SBM model performs
always worse than the AR-SBM model, even if we compare the results for different numbers
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of nodes, as we can see in Fig. 5.21. Vice versa, VAR-SBM model is more efficient in the
inference of B and both the simulations for 120 and 80 nodes obtain the same score obtained by
AR-SBMmodel for 120 nodes. In conclusion, the inference of Γ (generated with the AR-SBM
model) is better with the VAR-SBM model than with the AR-SBM model. This results is
quite surprising and it probably related to a finite-size effect due to the more flexibility of the
VAR-SBM model respect to the AR-SBM model.
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Figure 5.21: Evolution of MSE of A for different numbers of nodes in AR-SBM model and
VAR-SBM model
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Figure 5.22: Evolution of MSE of B for different numbers of nodes in AR-SBM model and
VAR-SBM model
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Figure 5.23: Evolution of MSE of Γ for different numbers of nodes in AR-SBM model and
VAR-SBM model
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5.6 Conclusion
Both the models AR-SBM andVAR-SBM are generalizations of the Xu and Heromodel. These
generalizations solve the issues related to non stationarity in the Xu and Hero model:

• The AR-SBMModel solves the problem of the absorbing states and introduces the mean
reversion, but its state variables are uncorrelated;

• The VAR-SBM Model introduces a dependence structure for the state variables, which
is used also in Xu and Hero model;

However, these two models required a large number of time steps to infer the hyperparameters
of a network, while Xu and Hero model depends only on the previous step: this means that
AR-SBM and VAR-SBM are not competitive for short temporal networks and their inference
is associated with larger estimation error under these conditions.
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Chapter 6

Application to Interbank Network

In this chapter, we apply the Xu and Hero model and the VAR-SBM model to a real dynamic
network to filter the underlying structure of the graph. The dynamic network is generated using
a dataset which describes the e-MID transactions in the period 2009-2015. For this reason,
we first review the literature of the interbank market and of the e-MID to have an suitable
background to compare the results obtained.
The chapter is divided into three sections:

1. The first part concerns the study of the interbank market. We discuss the main features
of the interbank network analyzed over the years and we focus on the e-MID network,
which the basis of our numerical simulations;

2. In the second part, we clarify the rules and criteria used to create the dynamic network
from the dataset andwe expose whichmeasures are used to validate the inference process;

3. The third part concerns the results of the inference process on the dynamic network. Our
analysis will focus on the inferred structure of the network and on the comparison of our
results with Barucca and Lillo [5].

The first section and part of the second one are based on several scientific works which
describe the structure of the interbank market and of the e-MID network. All the numerical
results presented in this chapter are original, except for the analysis of the e-MID in Section
6.2, based on the paper of Barucca and Lillo [5].

6.1 Interbank Network and the e-MID
The interbank market is the global network utilized by banks to lend funds each other. The
recent financial crisis has brought a lot of attention on the interbank market. In fact, many
mathematical models were proposed through these years with two main aims: first to describe
the structure of the interbank market and to predict further changes in the network, second
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to have several tools «to develop early warning indicators of systemic risk» [24]. G. Iori
describes the strict relation between the interbank market and the network analysis:"the global
financial crisis of 2008 has stressed the importance of market interconnectedness on financial
stability and highlighted the need to analyse financial markets as a system of individually
complex institutions that are connected to one another in a complex network of counterparty
exposures" [24]. One of first analysis of the interbank market is "The network topology of the
interbank market" [7] developed for the Oesterreichische Nationalbank in 2003. Starting from
this milestone work, other scientific papers have focused on the study of the network structure
of the interbank market, in particular:

• "Fractal network derived from banking trasaction - an analysis of network structures
formed by financial institutions" [23], developed for the Central bank of Japan;

• "The topology of Interbank Payment Flows, Federal Reserve Bank of New York - Staff
Reports" [3], developed in the Fed;

• "The network topology of CHAPS Sterling" [6], developer for the Bank of England;

• "The topology of Danish InterbankMoney Flows" [35], develop by the Finance Research
Unit of the Department of Economics of the Copenhagen University.

Different studies have pointed out that the interbank network displays some regularities: very
low connectivity, an heterogeneous degree distribution, low average distance between nodes,
disassortative mixing, small clustering, and an heterogeneous level of reciprocity [7] [26] [20]
[12]. Furthermore, the interbank market is a multilayer network where several kind of credit
relations are present concurrently [4]. Usually, when analyzing a single layer of the interbank
market, the most frequent inferred structure is the core-periphery, as shown in literature [20]
[19] [25] [26].
In the next subsection we study the e-MID by analyzing its community structure by means of
the dynamic stochastic block models previously introduced.

6.1.1 The e-MID network
The e-MID is the Italian electronic market for the interbank deposit. It «is a screen-based
platform for trading of unsecured money-market deposits operating in Milan» [5]. We aim to
investigate the structure of this network using the stochastic block models we introduced in the
previous chapters. To achieve this goal, we decide to study and to expose the context and the
main events concerning the e-MID in the period which cover our analyzed time window (2009-
2015). This time window includes with the Eurozone sovereign debt crisis. The European
Central Bank (ECB) decided to apply exceptional measures as reaction to the crisis, one of the
most important being the LTROs (Long Term Refinancing Operations), which took place on
the 22nd of December 2011 and on the 29th of February 2012. These measures represent in
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our analysis the expected event in the time series builds with the transaction in the e-MID in the
investigated period. The LTROs are so important because the ECB employed 1.03 trillion of
Euro and the Italian banks took 110 billion Euro [5]. Thus, the e-MID banks started to receive
funds from an external institution, instead of only exchange money between themselves. For
this reason, our study aims to investigate if the LTROs had an effect on the e-MID network
and its structure and, if any, to infer the change in the network’s structure. Other important
measures were applied in the studied period:

• the Securities Market Program (SMP) on May 10, 2010 and on August 2, 2011;

• the Outright Monetary Transactions (OMT) on August 2, 2012;

• In the second week of July of 2012, the ECB lowered significantly the interest rates.

In the following section, we review the features of the e-MID network, in particular by
focusing on the work of Barucca and Lillo [5]. In Section 6.3 we expose the results of our
numerical simulations.

6.2 Dataset
The dataset contains the e-MID transactions from July 2009 to February 2015 and we focus on
the overnight exposures. Our analysis focuses on the Italian banks, which constitute 68% of
the banks in the whole dataset and 84% of the total volume in trading in this period [5].
The dataset contains five different information for each transaction:

1. Two codes which identify the borrower and the lender in the transaction;

2. The starting date and the ending date of the transaction;

3. The amount of the transaction in Euro.

Following the results obtain by Barucca and Lillo [5], we analyze the macro-information
of the dataset. In Fig. 6.1, we observe the evolution of the number of banks in time and the
corresponding trading volume. A key variable employed in the analysis is the time scale of
aggregation of the transaction [5]. In fact, the dataset contains data for each day of the studied
time window, but the inferred structure of the network could change for different time scales
of aggregation. In the case of long time scales, it is possible to identify long run tendencies
in the structure of the bank’s credit relations [5]. The data in the Fig. 6.1 and Fig. 6.2 are
grouped by week. The first remark is that the LTROs strongly affected the number of banks
in the e-MID and the same for the traded volume, since both the numbers collapses drastically
after the LTROs. The foreign banks start decreasing in number during the second half of 2011,
and, after the first LTRO, their number becomes a small part of the observed banks.
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Figure 6.1: Weekly number of banks (left) and weekly traded volume inMillion of Euros (right)
traded ate-MID from June 2009 to December 2014. The blue line refers to all the banks while
the green line refers only to Italian banks. Vertical red lines indicate the two LTRO measures
by ECB on Dec. 22, 2011 and Feb. 29, 2012 [5]

The structure of the network, on the other hand, is not necessarily affected by the LTROs.
Barucca and Lillo [5] observe that « the density of the network (Fig.6.2, left panel), does not
display a similar transition.» The fact implies that the remaining banks in the e-MID did not
create new links with banks they were not connected to. Barucca and Lillo suggest two possible
explanations for this phenomenon:

• Creation of new opportunities outside the e-MID;

• Increasing in the traded amount in the e-MIDwith the banks they were still trading before
the LTROs.

The right panel in Fig. 6.2 shows the time series of the average amount exchanged per
link, while the left panel shows the density of the network, which is the number of observed
links over the number of possible links in the network. The right panel in Fig. 6.2 does not
clarify which alternative is the correct one, since «the time series does not show a significant
increase around the time of the LTROs, indicating that remaining banks did not increase the
volume of trading with the remaining banks, but either trade less in the interbank market or
trade outside e-MID» [5]. Thus, is it not possible, with this dataset, to distinguish between the
two alternatives.
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Figure 6.2: Left. Weekly density (i.e. the number of links divided by the total number of
possible links) of e-MID from June 2009 to December 2014. Right. Weekly volume per link
(i.e. total volume in Million of Euros divided by the number of links. The blue line refers to
all the banks while the green line refers only to Italian banks. Vertical red lines indicate the
two LTRO measures by ECB on Dec. 22, 2011 and Feb. 29, 2012 [5]

6.2.1 Criteria applied to the dataset
In our analysis, we define several criteria to generate the dynamic network from the dataset we
have. We list them one by one:

1. Time scale: we decide to aggregate all the transactions to a weekly time scale. This
means to sum all the transactions which start and end in each time window equivalent
to the time scale. In Barucca and Lillo [5] three different choices for the time scale are
explored (daily, weekly and monthly): we limit our analysis to the weekly time scale.
The case of monthly time scale is not considered for reasons of low dimensionality of the
time series of network snapshots. The analyzed period covers more or less 5 years, which
correspond to 81 months and 320 weeks (each month corresponds to 20 working days
and each week to 5 working days). Since we have imposed the stationarity condition on
our models, and since we expect the LTROs could correspond to a change in the structure
of the dynamic network, we decide to employ the two models on two different choices
of periods: the Xu and Hero model is applied to the whole studied period (2009-2015),
while for the VAR-SBMmodel we decide to split the dataset in two distinct periods. The
first period is the one pre-LTROs (July 2009-December 2011) and the second period the
one after the LTROs (January 2012-June 2015). A daily time scale is not considered
since it requires a long computational time and it is out of our scope.

2. Bank selection: the dataset contains 166 different bank identity codes, but most of them
have few relations (links) at each time step with other banks. This implies that the
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adjacency matrices, both weighted and unweighted, would be filled with zero entries for
rows and columns related to these banks. For this reason, restrict our analysis to the
banks which have operated in the market at least 2000 transactions in the considered time
period. Thus, the number of studied banks is reduced to 68, instead of 162. All the 68
banks are Italian.

3. Weighted or unweighted network: in order to study the community structure of the e-
MID network by means of the previously described stochastic block models, we built
an unweighted dynamic network. In a possible further analysis, we could generalize the
algorithms to the weighted version and observe the difference with the unweighted one.
The unweighted network is created following the criteria defined in Barucca e Lillo [5]:
if in the considered time scale the amount exchanged between the two banks is greater
than zero, we fill the adjacency matrix entry with the value "1", otherwise the value is
zero.

4. Directed or undirected network: we decide to follow the same assertion used in Barucca
and Lillo [5]: « passing from a directed to an undirected network, information about the
structure is lost and structure identification may be strongly influenced by total degree».
Thus, we create directed network that links the lender to the borrower. Further analysis
could be the comparison between the directed and undirected network.

5. The number of groups: in our analysis, we consider only the case of two groups, since
we do not any comparison result in literature to justify a different choice.

The result of these criteria is an unweighted, directed dynamic network. We decide also to
exclude the AR-SBM model from the analysis of the dataset and only the VAR-SBM model
is employed to infer the structure of the dynamic network. This choice is supported by the
comparative analysis between the two models shown in Section 5.5, which shows that the
VAR-SBM model obtains better performance respect to the other model. Furthermore, the
VAR process is able to describe a large variety of time series which the AR process cannot.
Hence, the VAR-SBM model is more general respect to the AR-SBM model.

6.2.2 Inference Validation
We need to validate the numerical results obtained by the inference process. We use two
metrics to do this: the Mean Square Error (MSE) and the Cosine Similarity. Since we do
not have a real measure of hyperparameters of the network, we must use some assumption to
compare our inferred hyperparameters with the observed data. The basis of the validation is the
observed number of links at each time step. This data depends only criteria used to construct
the dynamic network and it does not depends on the inference process. For this reason, we
decide to compare the predicted numbers of links in the network with the observed numbers
of links in the adjacency matrix. On the other hand, we have to group the observed number of
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links using the population of the two groups at each time step, which is not an information given
or observable, but it can only be the result of the inference process. Anyway, by considering
the analysis of the numerical simulations of both the models we employ (see section 4.3.2 and
5.4.2), we observe that both the models obtain excellent performance in community inference.
Thus, we assume that the inferred groups are correct: this choice allow us to group the observed
number of links in a non-observed manner and to consider this still correct.

MSE

We adopt the following algorithm to assess what is the expected number of links in each group:

1. For a Random Walk process (as the Xu and Hero model), the best-predicted state is the
previous state, so: ψ̂t+1|t

= ψt |t

2. Using the logistic function, we obtain the estimated affinity matrix Θ̂t+1|t

3. Using the label switching method, we infer the label ĉt+1

4. Combining Θ̂t+1|t and ĉt+1, we calculate the predicted number of links for each group
k̂

t+1 in the adjacency matrix W t+1 at time t + 1

5. Using ĉt+1, we group the links in the adjacency matrix W t+1 to obtain observed the
number of observed links for each group k t+1

6. Finally, MSE = 1
Nk

√
| |k t+1 − k̂

t+1
| |2

Where Nk is the number of components of k t+1, equal to 4 in the case of 2 groups.

Cosine Similarity

The cosine similarity is another kind of metric, that is defined as follows:

cos θ =
A · B

‖A‖‖B‖
(6.1)

where A and B are vectors. In our case, the entries of the vectors are the number of links for
each component of the affinity matrix. The first vector is for the observed number of links and
the second one is for the predicted number of links.
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6.3 Result
In this section, we analyze the results obtained in the numerical simulations. This section is
divided into three subsections:

• Xu and Hero model and results’ validation;

• VAR-SBM model and results’ validation;

• Comparison between the models.

Each subsection is split into multiple parts to focus on different aspects of the inference results:
structure of the network and the affinity matrix, the evolution of the community structure of
the banking network, analysis of the MSE, and cosine similarity.

6.3.1 Xu and Hero model
Structure of the network

The first aspect we consider is the structure of the dynamic network. We observe a bipartite
structure of the network during the whole period covered by the dataset. As we see in Fig. 6.3,
the relation between the entries of the affinity matrix is:

θ0,1 > θ0,0 > θ1,1 > θ1,0 (6.2)
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Figure 6.3: Entries of the inferred affinity matrix Θt
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Since we identify the lender with the group number "0" and the borrower with group number
"1", the previous equation could be rewritten:

θL,B > θL,L > θB,B > θB,L (6.3)

This result is in line with the analysis obtained in Barucca e Lillo in [5] with a static model.
Exploring deeply the entries of the affinity matrix Θt , we can observe that (see Fig. 6.4 and
Fig. 6.5):

1. The entry θL,B decreases significantly after the LTROs: before the LTROs, we observe
that 0.25 < θL,B < 0.30 for most of the weeks. After them, we observe that the observe
entry has a lower value, especially in 2013, where θL,B and θL,L have very close values.
This implies that the observed bipartite structure after the LTROs is still evident, but
weaker.

2. The time series relative to θL,L is not affected by the LTROs. This probably implies
that the lenders that remain in the e-MID after the LTROs continue to have transactions
between them as they did before.

3. It is quite interesting to observe that θB,B, in the period 2010-2012, has a mean value
slightly different from zero, while after the LTROs, its value is more or less constant and
almost close to zero. We can deduce that the few borrowers decided to start transactions
between themselves in 2010-2012, and the LTROs completely modify their behavior.
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Figure 6.4: Entries of the inferred affinity matrix Θt

90



6. Application to Interbank Network

2010 2011 2012 2013 2014 2015
Time (Years)

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

i,j

Xu and Hero model:  entries, group 1
1, 0

1, 1

Figure 6.5: Entries of the inferred affinity matrix Θt

Evolution of the bank’s behavior

We observe that the number of lenders and borrowers changes through time and we can divide
the analysis into three different behaviors of the banks in the e-MID market (Fig. 6.6).

• The period Jun.2009-Oct.2010 and the period May.2014-Jun.2015 are characterized by a
stable number of lenders and borrowers, composed of 27±6 and 41±6 banks respectively.
These periods overlap those described in table 1 in Barucca e Lillo [5] where the bipartite
structure is more likely to be observed, i.e. the periods corresponding to 2010-2011 and
to 2014. Also the numbers of banks that belong to the group of lenders and borrowers
overlap with their estimates: in fact, Barucca and Lillo [5] infer the number of 45 ± 9
banks in the group of borrowers and 30 ± 8 banks in the group of lenders.

• In the period Oct.2010-Dec.2011, the difference between the number of borrowers and
lenders becomes very small. In this period we observe also that the number of lenders
becomes slightly larger than the number of borrowers for a few weeks.

• In the period Jan.2012-Apr.2014 we observe a change in strategy for most of the banks:
in fact, the number of borrowers becomes very large (we observe 54 banks in this group
in Dec.2013).
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Figure 6.6: Number of banks in each group: the green line refers to the borrowers and the blue
line refers to the lenders
We deduce that the LTROs had a strong impact on the banks’ behavior, because many banks

decided to change their strategy in e-MID and they started to borrow again.

Results’ validation

As we describe in Subsection 6.2.2, we use two different metrics to validate our numerical
results. Firstly we study MSE. In Fig. 6.7 we observe two data series: the first one is the
number of the observed links in the network at each time step (orange line), the other one is
the calculated MSE of the observed number of links, computed with the predicted number of
links (blue line). In Fig. 6.8, we observe that the ratio point by point between the time series
described in Fig. 6.7. We observe that the ratio oscillates in the range 0.02 − 0.10 for most
of the time steps (Fig. 6.8). In Fig. 6.8, we observe that the time step associated with the
highest ratio is set in the middle of the LTROs, and it reaches the value of 0.22. We also note a
time step with a high ratio at the end of the time series, but it corresponds to a week with very
few observed links (' 100). Thus, this value is more probably related to a lack of data with
respect to a large estimation error. Hence, the estimate of the hyperparameters of the interbank
network could be considered acceptable because the ratio is almost under 0.10.
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Figure 6.7: Analysis of the MSE: in orange the number of observed links in the network, in
blue its MSE value at each time step.
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Figure 6.8: Analysis of the MSE: the ratio between the blue and the orange lines in figure 6.7
If we split the previous analysis for each entry of the affinity matrix Θt (Fig. 6.9), we can

explore more details: we observe that, for the entries θ0,0, θ0,1, and θ1,1, the punctual difference
between the prediction and the observation is not wide. For these three entries, we observe
a good agreement between the predicted and the observed time series. The entry θ1,0 is not
statistically interesting (we note that the maximum of the observed links for that component is
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equal to 20 links). Even if the comparison is not completely satisfactory, we can say that the
observed time series is always comparable with the predicted one, except for θ1,0.
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Figure 6.9: Evolution of the observed and predicted groups of links for each compo-
nent of Θ
Concluding, in Fig. 6.10, we observe that cos θ > 0.94 for most of the time steps. Excluding

the first time step, we note low scores in the second part of the time steps: this fact probably
depends on the small difference between θ0,1 and θ1,1 in the investigated period, as we see in
Fig.6.3.
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Figure 6.10: Cosine similarity for Xu and Hero model
We decide also to include in the inference validation the analysis of the fraction of banks
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that change the group between each time step. This analysis is related to the hypothesis of Xu
and Hero in [40]. They affirm that the algorithm works for dynamic networks with a small
fraction of nodes that change group between time steps and, in their simulations, they use a
percentage equal to 10%. In Fig. 6.11, we observe that the percentage inferred oscillates in the
range [2%−21%], which is a reasonable range for the algorithm, as we also proved numerically
in our analysis in Chapter 4.
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Figure 6.11: Fraction of banks that leaves their groups at each time step in Xu and Hero model

6.3.2 VAR-SBMModel
In this Section, we consider the case of the VAR-SBM model. We restrict our analysis only
to this case because the VAR-SBM model generalizes the AR-SBM model by including the
description of the dependence structure of the state variables.

The dataset is the same used for the Xu and Hero model and we analyze the same banks
to compare the results. Since the VAR-SBM model is a stationary model, we cannot use this
model to analyze the whole dataset at the same time, because we have supposed that the LTROs
have an effect on the interbank network, making it non-stationary during the considered period.
Hence, we split the dataset into two parts:

• A first period (June 2009-December 2011), that considers the period before the LTROs

• A second period (January 2012- June 2015), that considers the period after the LTROs

This division is due to the LTROs, which have occurred on Dec. 22, 2011 and Feb. 29,
2012.
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The first remark is that the new model infer the same information of the Xu and Hero model,
but as we will see in the following figures, the stationarity property mediates the dynamic of
the time series, i.e. the local variations of the time series of the affinity matrix entries, observed
mostly in the period after the LTROs for the Xu and Hero model (see subsection 6.3.1), are
now flattened around the mean of the inferred process.

Structure of the network

In Fig. 6.12, 6.13, and 6.14 we observe the evolution of the entries of the affinity matrix Θ for
the VAR-SBM model.
The first note is that the difference between θL,B and θL,L is constant in the two periods, even if
it is reduced after the LTROs. Furthermore, we observe in Fig.6.14 that θB,B is now different
from zero in the whole period pre-LTROs, while in the Xu and Hero inference process it is
almost zero in the period Jun.2009-Oct.2010. This is the effect of the stationarity of the VAR
process we have described before. The Eq. 6.3 between the entries of the affinity matrix we
found for the Xu and Hero model still holds. This implies that the VAR-SBM model infers a
bipartite structure as observed in the Xu and Hero model.
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Figure 6.12: Entries of the inferred affinity matrix Θt : in the left panel we observe the inferred
parameters in the period pre-LTROs, in the right panel the inferred parameters after the LTROs
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Figure 6.13: Entries of the inferred affinity matrix Θt : in the left panel we observe the inferred
parameters in the period pre-LTROs, in the right panel the inferred parameters after the LTROs
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Figure 6.14: Entries of the inferred affinity matrix Θt : in the left panel we observe the inferred
parameters in the period pre-LTROs, in the right panel the inferred parameters after the LTROs

Evolution of the bank’s behavior

In this Subsection, we analyze the evolution of the number of banks in each group. In the left
panel of Fig. 6.15 we observe that the group of borrowers decreases in number during 2010
and the number of lenders and borrowers becomes is quite similar for a few weeks. We observe
the same trend in the Xu and Hero model. In the period after the LTROs, the number of banks
is very different and stationary, and the group of borrowers is bigger than the group of lenders.
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Figure 6.15: Evolution of the number of banks in the two groups. Blueline refers to the group
of lenders and greenline refers to the group of borrowers. On the left panel, we see the period
pre-LTROs, on the right panel the period post-LTROs

Results’ validation

We employ the same metrics used for Xu and Hero model to validate the VAR-SBM model’s
inference. Since its evolution equation (Eq. 5.6) is different from the Xu and Hero one (Eq.
4.1, we adapt the computation of the predicted state in the algorithm 6.2.2 to Eq. 5.6. Hence,
we obtain:

ψ̂
t+1|t
= Â + B̂ · ψ̂

t |t (6.4)

where Â is the inferred static vector of the process and B̂ the inferred state evolution matrix.

MSE, Cosine Similarity, and Observed-Predicted Nodes

The analysis of the MSE is very similar to the previous one shown for the Xu and Hero model,
where the metric obtain high scores. The following figures are all divided in two panel: one
the left we analyze the first period, while on the right panel we observe the second period. In
Fig. 6.16 we observe the observed number of links and the associated MSE at each time step.
In Fig. 6.17 we observe the ratio between the MSE and the observed number of links. We
observe that the VAR-SBM performs better in the first period respect to second period, where
the ratio between MSE and the observed number of links reaches more time high percentages
(17% at the 5th time step, 19% at the 50th time step, and 25% at the 150th time steps). This
results is in line with the Xu and Hero model’s results, where we observe the same trend.
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Figure 6.16: Analysis of the MSE: in orange the number of observed links in the network, in
blue its MSE value at each time step
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Figure 6.17: Analysis of the MSE: ratio between the blue and the orange lines in figure 6.16

In Fig. 6.18 we observe the cosine similarity for the VAR-SBM model. Also in this case
we observe that the model performs better in first time window, where the minimum reached
is 0.94, while for the second period we observe many values under 0.95.
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Figure 6.18: Cosine similarity between the predicted and the observed number of links for the
VAR-SBM model

Concluding, we analyze the difference between the observed number of links and the
predicted one for each entry of the affinity matrix Θt in Fig. 6.19 and 6.20. Unlike Xu and
Hero model, we observe a large difference between the predicted values and the observed ones:
this fact depends on the greater variability of the VAR-SBM model, since it depends on more
hyperparameters respect to the other one.
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Figure 6.19: Number of observed and predicted links in VAR-SBM Model before the LTROs.
The orange line refers to the observed links and blue line to the predicted links
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Figure 6.20: Number of observed and predicted links in VAR-SBM Model after the LTROs.
The orange line refers to the observed links and blue line to the predicted links
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6.3.3 Model comparison and conclusion
We summarize here the comparison of the two models employed on the e-MID network:

• Both models infer the same community structure, i.e. the bipartite structure, and the
results are in line with Barucca and Lillo [5]. On the other hand, the affinity matrix Θt ,
inferred with Xu and Hero model, seems to describe better the dynamic of the network
respect to the VAR-SBM model. This fact is supported by the analysis of the difference
between the predicted and the observed number of links for each entry of Θt in the
Subsections 6.3.1 and 6.3.2.

• The existence of an unexpected event (the LTROs) has strongly influenced the applica-
bility of the VAR-SBMmodel: this fact has led to the split of the dataset into two distinct
periods to analyze the periods like they describe a quasi-stationary process. This opera-
tion has two problems if applied in a generic case: firstly, in the case of an unexpected
event, we have no idea if we have to split the dataset into many periods and where to do
this choice, secondly, the creation of different time windows implies to generate many
dynamic networks which describe the same dataset, and each of them has a lower number
of time steps respect to the dynamic network generated with the complete dataset. As
we studied in Section 5.4, the inference performance of the VAR-SBM model strongly
depends on the number of time steps. On the contrary, the Xu and Hero model does not
depend absolutely on the number of time steps and it could be used in the case of an
unexpected event.

• The comparison of the analysis of the results’ validation in section 6.3.1 and section 6.3.2
shows that the Xu and Hero perform better respect to the VAR-SBM model, especially
in the analysis of the observed vs predicted number of links for each component of the
affinity matrix. In fact, if we compare the results in Fig. 6.7 and 6.8 with Fig. 6.16
and 6.17, where we discuss the relation between the total observed number of links
with its MSE (which is calculated respect to the total predicted number of links), we
do not observe large difference between the two different models. On the contrary, the
comparison of Fig. 6.9 respect to Fig. 6.19 and 6.20, we observe that difference between
the predicted and the observed number of links for each entry of the affinity matrix in the
Xu and Hero is lower respect to the VAR-SBM. Furthermore, the Xu and Hero model
shows a more precise inference, by considering each time step.

Concluding, we observe that our results are consistent with the Barucca and Lillo’s results
in [5]. This means that three different algorithms (Xu and Hero model, VAR-SBM model, and
MCMC) give the same results on the dataset using similar criteria of the study, strengthening
the result in Barucca and Lillo [5]. Furthermore, the analysis of the structure of the network
in Subsection 6.3.1 agree with the results shown in table 1 in [5]. Probably, a further analysis
of the e-MID with different criteria (different number of groups, weighted network, undirected
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network) could give more information on the structure of the e-MID network, but this is out of
the scope of this thesis, and it is left for future research.
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Chapter 7

Conclusion

Dynamic stochastic block models are useful to generate networks with very different structures
and studying several networked systems, in many different research areas (physics, economy,
sociology, math, and many others). Stochastic block models can be further generalized to the
dynamic case by describing the time evolution of the state variables, then applying several tools
of time series analysis.

In particular, the models we study (Xu and Hero model and the generalizations we have
proposed in Chapter 5, namely AR-SBMmodel and VAR-SBMmodel) show are able to capture
the main features of the networks, like the affinity matrix Θ and the labels of the nodes c. The
main differences between the Xu and Hero model and the other two models are the different
networks’ features they describe, like the dependency between the entries of the affinity matrix.

Comparing the models, we observe that:
• The Xu and Hero model could be applied to all dynamic networks independently form
the length of the time series, since its model evolves according to Eq. 4.1, which relates
the time steps only with the previous one. This represents one of the strengths of the Xu
and Hero model. However, the Xu and Hero model displays some limitations: we must
know a priori the evolution state matrix F t and we also impose a structure to Γt to reduce
the computational time. Furthermore, if the initial state is unknown or we can not make
assumptions on it, the model must use an algorithm of the static stochastic blockmodel,
which could be limited by the detectability problem (Chapter 3).

• The AR-SBM model and the VAR-SBM model require long time series of networks to
infer the correct affinity matrices Θt and all the hyperparameters (Chapter 5). Thus, for a
long time series, these models are more flexible to the Xu and Hero model. On the other
hand, we must assume that the time series is stationary during its evolution.

As future outlooks, the AR-SBM model and the VAR-SBM model may be generalized to
AR(p) and VAR(p) processes. These generalizations may infer more information respect to the
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actual models.

Another area of study may be a detailed analysis of the sparse graphs. In fact, we studied
the AR-SBM model and the VAR-SBM model with an affinity matrix with large probabilities
of forming edges between nodes and with an assortative structure. Since we know that the
performances of these models depend on the length of the time series, we may study which
features should have the affinity matrix to be impossible to be inferred, independently of the
length of the time series.
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Appendix A

Computation of Kalman gain for
non-diagonal matrix

The explicit result of the Kalman Gain K t is not possible for a non-diagonal matrix Γt . This
is due to the impossibility to invert explicitly a non-diagonal matrix of a two groups network,
because it depends on 14 parameters (4 components of the vector ψt |t−1, 4 component of the
matrix Rt |t−1, 4 component of the matrix Σt |t−1 and the two different values sdiag and snb of the
matrix Γt). The number of parameters depends on the squared number of the groups.
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Figure A.1: Kalman Gain for 〈N〉 = 50, r = 0.004
Anyway we simulate the Extended Kalman Filter with the non-diagonal Γt and we plot the

results to show that our hypothesis in Chapter 5 is correct. We use the same parameters, so
R1|0

ii = 0.004. The network is divided into two groups and we progressively reduce the mean
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number of nodes for each group.
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Kalman gain K for different non diagonal matrices, N=60
sdiag= 0.001, snb= 0.00025
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sdiag= 1.0, snb= 0.25
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Figure A.2: Kalman Gain for 〈N〉 = 30, r = 0.004
As we observe in Fig. A.1 and A.2, the Kalman Gain shows very similar values in the

range [−2, 2] as we have noticed in Chapters 5. Hence, for a non-diagonal matrix Γt , any value
of sdiag and snb can be used, because the value of Kalman gain is similar for large part of the
range of ψ, if the density of nodes for each group is high.
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sdiag= 0.1, snb= 0.025
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Figure A.3: Kalman Gain for 〈N〉 = 15, r = 0.004
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sdiag= 0.001, snb= 0.00025
sdiag= 0.01, snb= 0.0025
sdiag= 0.1, snb= 0.025
sdiag= 1.0, snb= 0.25
sdiag= 10.0, snb= 2.5

Figure A.4: Kalman Gain for 〈N〉 = 5, r = 0.004
For the lower density of nodes for each group (Fig. A.3 A.4), the Kalman gain has different

values for different Γt , as we observe in Chapter 5 for the diagonal Γt . This results supports
our hypothesis of work in Chapter 5.
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