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Abstract

In this work, starting from the classical Type IIB Superstring in AdS5× S5 background
theory, written as a 2d-Sigma model on PSU(2, 2|4) coset, we show its equivalence to
SSSSG theory through the Pohlmeyer Reduction Procedure ([13],[9]). We explicitly con-
struct a classical soliton solution for the generalized semi-symmetric space sine-Gorgon
theory (SSSSG) in AdS5× S5 background ([11]) including 2 Grassmann odd parameters.
Alongside this, we present the purely bosonic case based on S5 symmetric space.
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Introduction

The AdS/CFT correspondence relates the quantum physics of strongly correlated many-
body systems to the classical dynamics of gravity in one higher dimension[17]. In its
original formulation [13] , the correspondence related a four-dimensional Conformal Field
Theory (CFT) to the geometry of an anti-de Sitter(AdS) space in five dimensions. In
the study of collective phenomena in condensed matter physics it is quite common that
when a system is strongly coupled it reorganizes itself in such a way that new weakly
coupled degrees of freedom emerge dynamically and the system can be better described
in terms of fields representing the emergent excitations. The holographic duality is a new
example of this paradigm. The new feature is that the emergent Fields live in a space
with one extra dimension and that the dual theory is a gravity theory.The gauge/gravity
duality was discovered in the context of string theory, However, the study of the cor-
respondence has been extended to include very different domains, such as the analysis
of the strong coupling dynamics of QCD and the electro-weak theories, the physics of
black holes and quantum gravity, relativistic hydrodynamics or different applications in
condensed matter physics. Although understanding in detail the interpolation between
weak and strong coupling remains an outstanding problem it offers the unique possibility
to investigate a four dimensional interacting gauge theory beyond perturbation theory.
At strong coupling, string theory becomes tractable in the semi-classical limit where one
can study the energies of the corresponding classical string configurations.

Then the concept of integrability is fundamental in both side of correspondence in
order to find exact solutions and study its excitation. In this work we will present the
dressing method,a particular type of ”inverse scattering method” also called Backlünd
transformation elaborated to find non trivial solitonic solutions by transforming the
vacuum solution of an non linear PDE. So, will be computed the dressing transformation
called ”dressing factor” which as we will see leads directly to one soliton solutions both
of SSSG(Symmetric space sine-Gordon theory) and SSSSG(Semi-Symmetric sine-Gordon
theory). A remarkable feature of SSSG and SSSSG theories, is the possibility to establish
an equivalence to sting world sheet theories. In this specific case, respectively to world
sheet theories on S5 and AdS5 ×S5 background. In this work we will show the equivalence
of both 2d sigma model on S5 symmetric space and 2d Sigma Model on AdS5 ×S5 Semi-
Symmetric space respectively to generalized sine-Gordon models SSSG and SSSSG using
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the so called ”Pohlmeyer reduction”, a method which provide a map between equations of
motions of different models, fixing the gauge equivalence arises, in the present case, from
the definition of the sigma model as a coset. Then, the soliton solutions are computing
through the dressing method for SSSG and SSSSG, which can be mapped to solitons
respectively of 2d sigma model on S5 and 2d sigma model on AdS5×S5.

First chapter We present the string action as a 2d sigma model on S5 Symmetryc
space and the 2d Sigma model on AdS5×S5 Semi-symmetryc space as a coset.

Second chapter We reduce these two models by Pohlmeyer reduction to SSSG and
SSSSG thoeries respectively.

Third chapter We review how to construct the single-soliton solutions in the case of
SSSG theory. Finally we construct the soliton solution for SSSSG theory adding 2
fermionic fields.

We start with a brief introduction to AdS/CFT correspondence and to solitons in
general.

0.1 Integrability of Classical Fields Theories

In this section we study the concept of integrability of classical field theories and their
features:

• Infinite Tower of conserved charges

• Solitonic solutions

We will restrict ourselves to two-dimensional (non-linear) 1 + 1 field theories g(x, t).
The phase space of field theories is infinite-dimensional and, thus, integrability requires
infinitely many integrals of motion in involution. A starting point to define an integrable
field theory is the concept of ”Lax Pair”. Suppose that we can find two matrices L, M
such that the equations of motion can be written as:

∂L

∂t
− ∂M

∂x
= [M,L] (1)

or equivalently, as the ” zero curvature” condition

[∂t − At, ∂x − Ax] = F0,1 = 0 (2)

where Ax = L and At = M . Then, we will call such field theories classically inte-
grable, and the pair of matrices (L,M) = (Ax, At) is the Lax connection.
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The first peculiar fact about integrable field theory is the existence of an infinite
tower of conserved charges. The zero-curvature condition allows one to construct an
infinite number of conserved quantities as follows. The zero-curvature condition (2) is
the compatibility condition of the associated linear problem:

[∂µ − Aµ(λ)]ψ = 0 (3)

Which determines the ”wave function” ψ = ψ(x, t;λ) up to a multiplication on the
right by a constant matrix, which we can fix by requiring, for instance, ψ(0, 0;λ) = 1.
Choosing a path Γ between (0; 0) and (x; t), the wave function can be written in terms
of the Lax connection as:

ψ(x, t;λ) = P exp[

∫
Γ

Aµdx
µψ(0, 0;λ)] (4)

where ”P exp” denotes the Wilson line. Then the zero-curvature condition Fµν = 0
ensures that ψ(x, r;λ)ψ−1(0, 0;λ) does not depend on the choice of Γ. Now in order
to define the monodromy matrix, we have to specify the boundary conditions: Aµ(x +
L, t;λ) = Aµ(x, t;λ), in other words we are considering a two-dimensional field theory
on a cylinder. Then, the monodromy matrix is defined by:

T (t;λ) = ψ(L, t;λ)ψ−1(0, t;λ) = P exp[

∫ L

0

Ax(x, t;λ)dx] (5)

which satisfies

∂tT (t, λ) = A0(L, t;λ)T (t;λ)− T (t;λ)A0(0, t;λ) (6)

Since A0(L, t;λ) = A0(0, t;λ), this becomes:

∂tT (t;λ) = [A0(0, t;λ), T (t;λ)] (7)

which is a Lax equation. Therefore, the trace of T (t;λ)

t(λ) = Tr[T (t;λ)], (8)

called the ”transfer matrix”, is conserved for all values of the spectral parameter λ. By
expanding in λ, one obtains an infinite number of conserved quantities which are the
coefficients of the expansion. For instance, if t(λ) is analytic around λ = 0 one gets

t(λ) =
∑
n>=0

λnQn, ∂tQn = 0. (9)

it is useful to think that wilson’s line independence of the path Γ (which is guaranteed by
the zero-curvature condition) is due to the geometrical origin of the conserved quantities.
For closed paths this implies that:

P exp[

∮
Γ

Aµdx
µ] = 1 (10)

consider the following closed path on the cylinder:
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1. circle t = t0 (σ, t0), 0 < σ < L

2. vertical line x− L: (L, τ), t0 < τ < t

3. circle t = t : (L− σ, t), 0 < σ < L

4. vertical line x = 0 : (0, t0 + t− τ), t0 < τ < t

Then, the eq.(10) becomes:

T (t;λ) = P exp[

∫ L

0

Ax(x, t;λ)dx] = V (L, t, t0;λ)Pexp[

∫ L

0

Ax(x, t0;λ)dx]V −1(0, t, t0;λ),

V (x, t, t0;λ) = Pexp[

∫ t

t0

At(x, τ ;λ)dτ ]

(11)
Assuming periodic boundary conditions, V (L, t, t0; Λ) = V (0, t, t0;λ) this exhibits that
the trace of the monodromy matrix is constant. Then we see that the existance of a
Lax pair or equivalently a ”zero-curvature condition” ,synonymous of integrability of a
classical field theory, guarantee the existence of a tower of conserved charges.

0.2 Solitons

Solitons are very special physical phenomena discovered in 1834 by Johnn Scott Russel
that observed the motion of some ”solitary waves” generated by the motion of a boat. In
particular he observed a surprising wave going in the opposite direction of the current of
the Union Canal without loss of energy and without changing shape. Then he reproduced
the phenomenon in a wave tank and called it the ”Wave of Translation”. His experiments
led to establish qualitatively properties of those waves:

• The waves are stable, and can travel over very large distances despite the normal
waves that would tend to either flatten out.

• The speed depends on the size of the wave, and its width on the depth of water

• Unlike normal waves they will never merge so a small wave is overtaken by a large
one, rather than the two combining.

• If a wave is too big for the depth of water, it splits into two, one big and one small.

Clearly this is an informal description. His observations could not be reproduced using
the current wave theories of Newton and Bernoulli so Russells observations were not
welcomed by the whole scientific community. We have to wait until 1989 for a more
precise classification of the properties of the solitons by Drazin & Johnson:
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• They are of permanent form

• They are localized within a region.

• They can interact with other solitons, and emerge from the collision unchanged,
except for a phase shift.

These is the minimum set of properties that a wave should have to be a soliton. But,
how can we explain the very existence of these waves?

By the mathematical point of view a soliton is an exact solution of the equations of
motion that is localized in space and preserves its shape over time. These field equations
are non-linear PDE and, therefore, the properties of this type of solutions rely on a
delicate balance between their linear (and thus dispersive) and non-linear terms. The
first discovered model which exhibits soliton solutions is the Korteweg-de Vries equation:

ut + uxxx + uux = 0 (12)

We can see it has two components, one dispersive and another non linear.

• Dispersive term
ut + uxxx = 0 (13)

• Non linear term:
ut + uux = 0 (14)

When both the dispersive and the nonlinear term are present in the equation the two
effects can neutralize each other. If the wave has a special shape, the effects are exactly
counterbalanced and the wave rolls along undistorted. The soliton shape can be found
by direct integration of the KdV equation.

A characteristic feature of many integrable Field theories is that they admit soliton
solutions. If the theory is integrable, the existence of an infinite tower of local conserved
charges constraints the interactions among solitons so much that they preserve their
number and shape even after a collision process. All this suggests that we can interpret
this solutions as particles that collide and scatter in a completely elastic way. Moreover, it
turns out that the scattering of more than two solitons occurs in a sequence of pairwise
interactions, and that it is independent of the sequence in which they scatter. This
important feature is called ”factorized scattering”.

This expectation turns out to be true and, thus, knowledge of the classical soli-
ton solutions provides information about quantum particle states in a systematic semi-
classical expansion. Moreover, in general this information is non-perturbative since the
corresponding classical solutions are usually themselves non-perturbative (they become
singular when the non-linear coupling tends to zero).
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The particle-like features of soliton solutions makes us naturally expect that they
have something to do with particles in the corresponding quantum field theory.

We can see some properties of solitons considering a scalar field theory in two dimen-
sional Minkowsky. As in ordinary QFT, the classical solutions will be the vacuum for
which we quantize our theory. Thus understanding the classical solutions is instrumen-
tal in understanding the full quantum theory. To this end we study the Euler-Lagrange
equations of motion,

∂µ
∂L

∂(∂µφ)
=
∂L

∂φ
(15)

We see solutions with finite energy:

E =

∫
dxε = (x, t) (16)

where, ε = T 0
0 . Furthermore, we want vacuum states which are stable over time, This

condition can be written as,
lim
x→∞

maxxε(x, t) 6= 0 (17)

That conditions defining the solitons solutions, another formulation involve a requirement
that the superposition of two solitons remain a soliton.

We can start the discussion considering the λφ4theory:

L =
1

2
∂µφ∂

µφ− 1

4
λφ4 (18)

that leads to the following equation of motion:

�φ+ λφ3 = 0 (19)

the energy of given solution is:

E[φ] =

∫ +∞

−∞
dx

(
1

2
φ2 +

1

2
φ′2 +

λ

4
φ4

)
(20)
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since is definite positive, it is zero only if φ = 0 that is the only configuration at finite
energy, then in this case we do not have non trivial solutions because we have only one
vacua. In order to find non trivial solutions, we have to consider a theory with,at least
two vacua, given a potential of the form:

V (φ) =
1

2
∂µφ∂

µφ+
1

2
φ2 − λ

4
φ4 (21)

The energy in this case is:

E[φ] =

∫ +∞

−∞
dx

1

2
φ2 +

1

2
φ′2 − 1

2
φ2 +

λ

4
φ4 (22)

the minima occur at φ± = 1√
λ
. The condition to have finite energy solutions explicitly

is:
lim

x→±∞
φ→ φ± (23)

now we can see that the behaviour of this model is more rich so much that it is possible
to find non trivial solutions. Considering a potential more general:

L =
1

2
(∂µφ)2 − U(φ) (24)

With U(φ) an arbitrary function. Denoting the minima with φi, then there are many
possible pasitions where the potencial is vanishing. The equation of motion is given by:

ẍ− φ′′ = ∂U

∂φ
(25)

The energy density is given by,

E(φ) =

∫ +∞

−∞
dx

1

2
φ2 +

1

2
φ′2 + U(φ) (26)

we have E[φ] = 0 for φ = φi. Then E[φ] <∞ implies that,
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lim
x→+∞

φ = φi lim
x→−∞

φ = φj (27)

Then, The finite energy solutions interpolate between two of the zeroin the potential.
Now we can discuss the particle like property of solitons by considering an explicit solu-
tion of the equation of motion:

1

2
φ′2 = U(φ) (28)

separating variables:

x− x0 = ±
∫ φ(x)

φ0

dφ̃
1√

2U(φ̃)
(29)

considering the ”kink solution” with the potential:

U(φ) =
λ

4
(φ2 − m2

λ
)2 (30)

the vacua are at:

φ0 = ±
√
m2

λ
(31)

Plugging in (29) and integrating, we obtain:

φ(x) = ± m√
λ

tanh

[
m√

2
(x− x0)

]
(32)

That is the explicit soliton solution, centered in φ0 = φ(0) = 0. Our aim is emphasize
the particle-like behaviour of this solutions but we can see that this field configuration
it isn’t! in fact its only the energy density that needs to be localized, this determines if
one can have a particle-like behavior or not. In this case the energy density is,

ε(x) =
1

2
φ′2 + U(φ) (33)

substituing the value of φ′:

ε(x) =
m4

2λ cosh4

[
m√

2
(x− x0)

] (34)

This is indeed localized as desired. We can also assign a mass by computation of the
total energy:

M = E =

∫ +∞

−∞
dxε(x) =

2
√

2

3

m3

λ
(35)
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note that the mass, have a dependence as 1
λ
, a thing that never occur in perturbation

theory. Clearly, the last solution is ”static” then in order to find a solution for all times,
we can boost the field:

φ→ ± m√
λ

tanh

[
γm√

2
(x− x0 − vt)

]
(36)

and we obtain an energy density:

ε =
γm4

2λ
sech4

[
γm√

2
(x− x0 − vt)

]
(37)

and the total energy is:
E = γM (38)

As final example we can recall the concepts described above throughout the study
of the sine-Gordon model. The sine-Gordon model is integrable and admits soliton
solutions. The sine Gordon model has the following lagrangian formulation:

L =
1

2
∂µϕ∂

µϕ+
µ2

β2
(cos(βϕ− 1)) =

1

2
∂µϕ∂

µϕ− µ2

2
ϕ2 +

µ2β2

4!
φ4 + . . . (39)

where µ is a mass scale and β is a coupling costant. In order to verify the integrability
of this model we have to find the lax connection. It is convenient to switch to light-cone
variables:

∂± =
1

2
(∂t ± ∂x)→ e±θ∂± (40)

and the sine-Gordon equation becomes:

∂+∂−ϕ+
µ2

4β
sin(βφ) = 0 (41)

Now we can write the equation of motion as a zero-curvature condition in terms of the
Lax pair. The lax pair is defined as the following:

A+ =
1

4
µλΛ− γ−1∂+γ, A− =

1

4
µλ−1γ−1Λγ (42)

with:

γ =

[
e
iβϕ
2 0

0 −iβϕ
2

]
∈ SU(2), Λ = i

[
0 1
1 0

]
∈ su(2) (43)

now, after having verified that the sine-Gordon model is integrable we can construct the
soliton solutions. It is sufficient to perform a boost on a static solution ϕ(x, t) = ϕ̃(x).

x→ x− vt√
1− v2

= xcoshθ − tsenhθ =
1

2
(e−θx+ − eθx−) (44)
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such that:

ϕ̃(x)→ ϕ̃

(
x− vt√
1− v2

)
= ϕ(x, t) (45)

This type of solution will clearly keep its shape at any time. Thus, we are looking
for solutions of the kind:

ϕ̃′′ =
µ2

β
sin βϕ (46)

Subject to the boundary conditions:

βϕ(±∞, t) ∈ 2πZ (47)

The result is:

ϕ̃±(x) =
4

β
arctan(e±µ(x−x0)) (48)

this is a single soliton solution of the integrable sine-Gordon model. This conclude that
brief introduction to theory of solitons.

0.3 Introduction to Strings and AdS/CFT correspon-

dence

As with any physical system, it is of great interest to determine any solitonic solutions
of the theory, and consider them as the fundamental excitations which one can then use
to build the other states of the theory. In the present work we are interested to solitonic
solutions in the context of semi/classical analysis of string theory interesting possibly
to investigate the AdS/CFT correspondence. The solitonic properties of these solutions
were discussed through a reduction of AdS5×S5 world sheet theory to the SSSG field
theory using the so called Pohlmeyer map.

In a low energy limit, the oscillations of these strings will look like localized excitations
- different oscillation modes correspond to the different kinds of particles, including gauge
fields. From this perspective, gauge fields appear as non-fundamental objects which are
excitations of the fundamental strings. A better understanding of non-perturbative string
theory and D-branes has shed light into another interpretation of gauge fields: it has
been seen that string theory in certain space-time backgrounds has a dual description as
a gauge field theory, thus putting gauge fields and strings as fundamental objects in the
respective theories. This gauge/string duality, also known as Anti-de-Sitter/Conformal
Field Theory (AdS/CFT) correspondence, was first proposed by Maldacena [13], and
identified string theory on an AdSd+1×Xd background with a conformal field theory liv-
ing on the boundary of this AdSd + 1space (d-dimensional) Gauge/string duality relate
two seemingly different quantum physical descriptions, one being a gauge field theory in
a number of space-time dimensions, and the other a string theory on a two-dimensional
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conformal world-sheet. The most studied of these dualities is the AdS5/CFT4 corre-
spondence [13], which relates type IIB superstring theory on the AdS5× S5. background
and N = 4 supersymmetric Yang-Mills (SYM) gauge theory in four dimensions. For
these reason in this section we present a brief introduction to string theory containing
the minimal ingredients to understand the origin of the AdS/CFT duality. to the main
concepts of AdS/CFT correspondance. Historically, string theory was introduced in the
sixties as an attempt to describe the hadronic resonances of high spin observed in the
experiments. Experimentally, the mass square of these particles is linearly related to its
spin J :

M2 ∼ J (49)

It is then said that the hadrons are distributed along Regge trajectoriesString theory
was introduced to reproduce this behavior. Actually, it is not difficult to verify qualita-
tively that the rotational degree of freedom of the relativistic string gives rise to Regge
trajectories like that.

Indeed, let us suppose that we have an open string with length L and tension T which
is rotating around its center of mass. The mass of this object would be M ∼ TL,
whereas its angular momentum J would be J ∼ PL, with P being its linear momentum.
In a relativistic theory P ∼ M , which implies that J ∼ PL ∼ ML ∼ T−1M2 or,
equivalently, M2 ∼ TJ . Thus, we reproduce the Regge behavior in (49) with the slope
being proportional to the string tension T .

The basic object of string theory is an object extended along some characteristic
distance ls. Therefore, the theory is non-local. It becomes local in the point-like limit in
which the size ls → 0. The rotation degree of freedom of the string gives rise to Regge
trajectories similar to those observed experimentally. In modern language one can regard
a meson as a quark-antiquark pair joined by a string. The energy of such a configuration
grows linearly with the length, and this constitutes a model of confinement.

Let us consider a relativistic point particle of mass m moving in a at spacetime with
Minkowski metric ηµν . As it moves the particle describes a curve in space-time (the
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so-called ”Worldline”), which can be represented by a function of the type:

xµ = xµ(τ) (50)

where xµ is the coordinate in the space in which the point particle is moving (the target
space) and τ parameterizes the path of the particle.The action of the particle is pro-
portional to the integral of the line element along the trajectory in space-time, with the
coeficient being given by the mass m of the particle:

S = −m
∫
ds = −m

∫ τ1

τ0

dτ
√
−ηµν ẋµẋν (51)

Now we can consider a relativistic string. This once we have a one dimensional object
that describe a surface(the world-sheet).Let dA be the area element of the world-sheet
hence, the analogue of the action of a relativistic point particle for a string is the so-called
Nambu-Goto action:

SNG = −T
∫
dA (52)

where T is the tension of the string, given by:

T =
1

2πα′
(53)

α′ is called Regge slope. The string length and mass are defined as:

ls =
√
α′ =

1

Ms

(54)

Then we have that tension, mass and string lenght are related each other:

T =
1

2πl2s
=
M2

s

2π
(55)

Now we write the Nambu-Goto action in a more explicit manner. We will take two co-
ordinates ξα(α = 0, 1) to parameterize the world-sheet Σ[(ξ0, ξ1) = (τ, σ)] and assuming
that the string moves in a target space M with a metric Gµν we have that embedding
of Σ in the space-time M is characterized by a map Σ → M with ξα → Xµ(ξα). The
induced metric on Σ is:

Ĝαβ =µν ∂αX
µ∂βX

ν (56)

Thus, the Nambu-Goto action of the string is:

SNG = −T
∫ √

−detĜαβd
2ξ (57)
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The action (57) depends non-linearly on the embedding functions Xµ(τ ;σ). The classical
equations of motion derived from (57) are partial differential equations which, remark-
ably, can be solved for a at target space-time with Gµν = ηµν Actually, the functions
Xµ(τ ;σ) can be represented in a Fourier expansion as an infinite superposition of os-
cillation modes, much as in the string of a violin. The quantization of the string can
be carried out simply by canonical quantization, considering that the Xµ are operators
and by imposing canonical commutation relations between coordinates and momenta.
As a result one finds that the different oscillation modes can be interpreted as particles
and that the spectrum of the string contains an infinite tower of particles with growing
masses and spins that are organized in Regge trajectories, with 1

ls
being the mass gap.

Quantizing the string we can encounter some peculiar feature:

• The mass spectrum contain tachions Quantizing the string we find in the mass
spectrum particles with m2 < 0, witch is a signal of instability, in order to avoid
this problem one must consider a string which has also fermionic coordinates and
require that the system is supersymmetric. In other word it is necessary generalise
to superstrings.

• Number of dimensions fixed to D=10 The quantization process generate con-
straints. To ensure the consistency of the theory, the number of dimensions D
of the space where the strings is moving is fixed. In particular for superstring
D = 10. This does not mean that the extra dimensions have the same meaning
as the ordinary ones of the four-dimensional Minkowski spacetime. Actually, the
extra dimensions should be regarded as defining a configuration space. We will see
below that this is precisely the interpretation that they have in the context of the
AdS/CFT correspondence.

• The spectrum contain massless particles with spin 2 Analyzing the spec-
trum of the particles we see that massive particles have a mass multiple of 1

ls
then
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they became undetectable in the low-energy limit ls → 0. Then, after eliminating
the tachyons by using supersymmetry, the massless particles are the low-lying ex-
citations of the spectrum. Now distinguishing the case of open and closed string,
we can see that the spectrum of the first contain massless particles of spin one with
the couplings needed to have gauge symmetry. These particles can be naturally
identified with gauge bosons (photons, gluons,...). Instead seeing the spectrum of
opens strings, since it contains a particle of spin two and zero mass which can only
be interpreted as the graviton (the quantum of gravity). After this brief introduc-
tion to strings we can discuss in witch sense the Ads theory have a correspondence
with conformal Quantum field theory.

Although the gauge/gravity duality was discovered in the context of string theory, where
it is quite natural to realize (gauge) field theories on hypersurfaces embedded in a higher
dimensional space, in a theory containing gravity,however, the study of the correspon-
dence has been extended to include very different domains, such as the analysis of the
strong coupling dynamics of QCD and the electroweak theories, the physics of black
holes and quantum gravity, relativistic hydrodynamics or different applications in con-
densed matter physics. We can start by motivating the duality from the Kadano-Wilson
renormalization group approach to the analysis of lattice systems. Let us consider a
non-gravitational system in a lattice with lattice spacing a and hamiltonian given by:

H =
∑
x,i

Ji(x, a)Oi(x), (58)

where x denotes the different lattice sites and i labels the different operators Oi. The
Ji(x, a) are the coupling constants (or sources) of the operators at the point x of the
lattice. Notice that we have included a second argument in Ji, to make clear they
correspond to a lattice spacing a. In the renormalization group approach we increasing
the lattice spacing and replacing multiple sites by a single site with the average value
of the lattice variables. In In this process the hamiltonian retains its form (58) but
different operators are weighed differently. Accordingly, the couplings Ji(x; a) change in
each step. Suppose that we double the lattice spacing in each step. Then, we would have
a succession of couplings of the type:

Ji(x, a)→ Ji(x, 2a)→ Ji(x, 4a)→ . . . (59)

Therefore, the couplings acquire in this process a dependence on the scale (the lattice
spacing) and we can write them as Ji(x;u), where u = (a; 2a; 4a; . . . ) is the length scale at
which we probe the system. The evolution of the couplings with the scale is determined
by of equations of the form:

u
∂

∂u
Ji(x, u) = β(Jj(x, u), u), (60)
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where βi is the so-called β-function of the ith coupling constant. At weak coupling
the βi’s can be determined in perturbation theory. At strong coupling the AdS/CFT
proposal is to consider u as an extra dimension. In this picture the succession of lattices at
different values of u are considered as layers of a new higher-dimensional space. Moreover,
the sources Ji(x;u) are regarded as fields in a space with one extra dimension and,
accordingly we will simply write:

Ji(x, u) = φi(x, u). (61)

The dynamics of the sources φ′s will be governed by some action. Actually, in the
AdS/CFT duality the dynamics of the φ′s is determined by some gravity theory.Therefore,
one can consider the holographic duality as a geometrization of the quantum dynamics
encoded by the renormalization group. The microscopic couplings of the field theory
in the UV can be identified with the values of the bulk fields at the boundary of the
extra-dimensional space. Thus, one can say that the field theory lives on the boundary of
the higher-dimensional space(immagine). The sources φi of the dual gravity theory must
have the same tensor structure of the corresponding dual operator Oi of field theory,
in such a way that the product φiOi is a scalar. Therefore, a scalar field will be dual
to a scalar operator, a vector field Aµ will be dual to a current Jµ, whereas a spin-two
field gµν will be dual to a symmetric second-order tensor Tµν which can be naturally
identified with the energy-momentum tensor Tµν of the field theory. Now in order to
find the relation between the coupling constants in both sides of the correspondence,
we have to perform a counting of degrees of freedom. Firstly we consider a QFT in a
d-dimensional space-time. The number of degrees of freedom of a system is measured by
the entropy. On the QFT side the entropy is an extensive quantity. Therefore, if Rd−1 is
(d− 1)-dimensional spatial region, at constant time, its entropy should be proportional
to its volume in (d− 1) dimensions:

SQFT ∝ V ol(Rd−1) (62)

On the gravity side the theory lives in a (d+1)-dimensional space-time. We want explain
how it is possible that such higher dimensional theory can contain the same information
as its lower dimensional dual. The crucial point to answer this question is the fact that
the entropy in quantum gravity is sub-extensive. Indeed, in a gravitational theory the
entropy in a volume is bounded by the entropy of a black hole that its inside the volume
and, according to the so-called holographic principle, the entropy is proportional to the
surface of the black hole horizon. More concretely, the black hole entropy is given by the
Bekenstein-Hawking formula:

SBH =
1

4Gn

AH (63)

where AH is the area of the event horizon and GN is the Newton constant. In order to
apply (63) for our purposes, let Rd be a spatial region in the (d + 1)-dimension space-
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time where the gravity theory lives and let us assume that Rd is bounded by a (d− 1)-
dimensional manifold Rd−1(Rd−1 = ∂Rd) Then, according to (63), the gravitational
entropy associated to Rd scales as:

SGR(Rd) ∝ Area(∂Rd) ∝ V ol(Rd−1), (64)

which agrees with the QFT behavior (62). setting out the geometrical structure of AdS
we can find a more precise matching between degrees of freedom of both theories and
find the relation between the coupling constants. If we consider a theory at a fixed point
of the renormalization group flow, then it has conformal invariance. Let us a QFT in
(d)-space-time dimensions.The most general metric in (d + 1)-dimensions with Poincar
invariance in (d)-dimensions is:

ds2 = Ω2(z)(−dt2 + dx2 + dz2) (65)

z is the coordinate of the extra dimension, x = (x1, . . . , xd−1) and Ω(z) are to determined.
If z rapresents a length scale,since the theory is conformal invariant, then AdS2 must be
invariant under the transformation:

(t, x)→ λ(t, x), z → λz (66)

Imposing the invariance of the metric under dilatation transformation, Ω(z) must trans-
form as:

Ω(z)→ λ−1Ω(z) (67)

witch fixes Ω(z) to be:

Ω(z) =
L

z
(68)

where L is a constant. Eventually the metric have the following form:

ds2 =
L2

z2
(−dt2 + dx2 + dz2) (69)

which is the element of the Ads space in (d + 1)-dimensions, denoted AdSd+1. L is a
constant called ”Anti-de Sitter radius”. The boundary of AdS is located in z = 0. Notice
that in z = 0 the metric is singular, then if one want define a quantity on the boundary
of AdS must introduce a regularization procedure. Now we count explicitly the degrees
of freedom, Let us consider first the QFT side. To regulate the theory we put both a
UV and IR regulator. We place the system in a spatial box of size R (which serves
as an IR cutoff) and we introduce a lattice spacing ε that acts as a UV regulator. In

(d)-space-time dimensions the system has Rd−1

εd−1 .Let cQFT be the number of degrees of
freedom per lattice site, which we will refer to as the central charge. Then, the total
number of degrees of freedom of the QFT is:

NQFT
dof =

R

ε

d−1

cQFT (70)
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The central charge is one of the main quantities that characterize a CFT. Let us now
compute the number of degrees of freedom of the AdSd+1 solution. According to the
holographic principle and to the Bekenstein-Hawking formula (63), the number of degrees
of freedom contained in a certain region is equal to the maximum entropy, given by

NAds
dof =

A∂
4GN

(71)

with A∂ being the area of the region at boundary z → 0 of AdSd+1. Let us evaluate A∂
by integrating the volume element corresponding to the metricat slice z = ε→ 0

A∂ =

∫
Rd−1 z=ε

dd−1x
√
g = (

L

ε
)d−1

∫
Rd−1

dd−1x (72)

The last integral is the volume of Rd−1, witch is infinite. Then we regulate it by
putting the system in a box of size R:∫

Rd−1

dd−1x = Rd−1 (73)

Thus, the area of the Aθ is given by:

Aθ =

(
RL

ε

)d−1

(74)

Let us next introduce the Planck length lP and the Planck mass MP for a gravity theory
in (d+ 1) dimensions as:

GN = (lP )d−1 =
1

(MP )d−1
(75)

Then the number of degrees of freedom of the AdSd+1 space is:

NAds
dof =

1

4

(
R

ε

)d−1(
L

lp

)d−1

(76)

By comparing NQFT
dof and NAds

dof we conclude that they scale in the same way with the IR
and UV cutoff is R and ε and we can identify:

1

4

(
L

lP

)d−1

= cQFT (77)

This gives the matching condition between gravity and QFT that we were looking for.
Notice that a theory is (semi)classical when the coefficient multiplying its action is large.
In this case the path integral is dominated by a saddle point. The action of our gravity
theory in the AdSd+1 space of radius L contains a factor Ld−1

GN
. Thus, taking into account
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the definition of the Planck length in (75), we conclude that the classical gravity theory
is reliable if:

Classical Gravity in AdS→
(
L

lP

d−1)
>> 1 (78)

which happens when the AdS radius is large in Planck units. Since the scalar curvature
goes like 1 = L2, the curvature is small in Planck units. Thus, a QFT has a classical
gravity dual when cQFT is large, or equivalently if there is a large number of degrees of
freedom per unit volume or a large number of species (which corresponds to large N for
SU(N) gauge theories).

0.4 AdS Space and Its Conformal Structures

In this section we want describe the Anti-de-Sitter Space and its conformal structure
following[16]. So, in order to describe that aspects of AdS space, it is convenient to
use the Penrose diagram. In fact, if we want discuss the conformal nature of a given
space, we have to perform a compactification through Weyl transformation, the Penrose
diagram is a diagram of the latter. Weyl transformations preserves the signature and the
angles, then the Penrose diagram describe correctly the casual structure of space-time.
Anti-de-Sitter is a solution of Einstein equations with negative cosmological constant
arise from the action:

S =
1

16πGN

∫
dd+1x

√
g(R + γ) (79)

Where γ > 0. the equations of motions are:

Rµν −
R

2
gµν =

Γ

2
gµν → R = − d

d− 2
Γ (80)
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We can describe AdSd+1 by embedding an hyperboloid into Rd,2:

−X2
−1 −X2

0 +X2
1 + · · ·+X2

d = −R2 in Rd,2 (81)

both the ambient space and the equation have SO(d, 2) isometry, thus the resulting space
has that isometry too. The metric is induced by:

ds2 = −dX2
−1 − dX2

0 + dX2
1 + · · ·+ dX2

d (82)

we can solve the equation by:

X−1 = Rcosh(ρ) sin(τ),

X0 = R cosh(ρ) cos(τ),

Xi = R sinh(ρ)Ωi

with
∑

Ω2
i = 1

(83)

so the induced metric is:

ds2 = R2[− cosh2(ρ)dτ 2 + dρ+ sinh2(ρ)d(Ω2
d−1)] (84)

To draw the Penrose θ ∈ [0, π
2
):

ds2 =
R2

cos2 θ
(−dτ 2 + dθ2 + sin2 θdΩ2

d−1) (85)

After removing the denominator, we have the ball Bd×R, this space has a boundary
Sd−1 ×R.

Notice that the boundary of conformally compactified AdSd−1 is equal to conformal
compactification of Rd−1,1.

A space-time is asymptotically AdS if it has the same boundary structure as AdS after
conformal compactification
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Another useful parametrization of Adsd+1 is the so called ”Poincar parametrization”:

Xµ=0....,d−1 =
R

z
xµ, X−1 =

R

2z
(1 + x2 + z2), Xd =

R

2z
(1−Xµ

2 − z2) (86)

in these coordinaties the metric is:

ds2 = R2dz
2 + dx2

z2
(87)

wherex = x0, xi. Notice that Poincar coordinates cover only a portion of AdS and that
the boundary of the Poincar patch is Rd−1,1. The isometry of AdSd+1 is SO(2) but is
not manifest in the metric description. In fact:

• In the Global coordinates the manifest isometry is SO(d)× SO(2)

• In the poincar patch the manifest isometry is SO(d−1, 1)×SO(1, 1) where the firs
one is the Lorentz group of the boundary, while SO(1,1) is the dilatation realized
as Xµ → λxµ, z → λz
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Chapter 1

Sigma Model

A sigma-model is a field theory wherein fields take values in a curved manifold M . In
other words, a field configuration is a map:

XM(σ) : Σ→M (1.1)

a vast area of applications of sigma-models is string theory, where they govern string
propagation in curved backgrounds. Now, we want introduce string sigma-models rele-
vant for holographic duality whose key feature is complete integrability. For Example,
The sigma model on AdS5 × S5 is integrable. Given local coordinates XM on M , the
most general two-derivative Lagrangian of a sigma-model is

L =
1

2

√
γγabGMN(X)∂aX

MXM∂bX
NεabBMN(X)∂aX

M∂bX
N) (1.2)

Transformations that leave the metric and B-field invariant translate into global symme-
tries of the sigma-model. Symmetries are neither necessary nor sufficient for integrability,
but they allow one to build a large class of integrable models.

The sigma-models arising in the holographic duality are precisely of this type. For
this reason we concentrate on the cases when the target space M admits an action of a
(simple) Lie group (or supergroup) G. Now we need to introduce some geometrical facts
aimed to define the sigma models with a certain background before with the definition for
Symmetric spaces and after for Semi- symmetric spaces that is the our case of interest.

1.1 Homogeneous spaces

A map
Tf (x) : F ×M →M (1.3)

defines left (right) action of group F on manifold M , if:

TfTh = Tfg TfTh = Tgf (1.4)
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the stability group of a point x ∈ M s defined as the set of all elements in F that
leave x intact:

Gx = {f ∈ F |Tf (x) = x}. (1.5)

Definition 1. M is a left (right) homogeneous space of group F , if the action of F
on M is transitive, namely if:

∀x, y ∈M∃f ∈ F : Tf (x) = y (1.6)

given the definition of homogeneous space, it is possible let the definition of coset space
as follow:

Definition 2. Given a subgroup G ⊂ F , one can define a (right) coset F/G as a
set of equivalence classes with respect to right multiplication by G:

F/G = {f ∼ fg|f ∈ F, g ∈ G} (1.7)

A set fG, obtained by multiplying all elements of G by f ,constitutes one point in F
∼ G . One can show that for a closed Lie subgroup G ⊂ F , the coset space F ∼ G is a
smooth manifold. The left coset G/F is defined in a similar way. the coset F/G is a left
homogeneous space of F , with the group action defined by left multiplication:

Tk(fG) = kfG (1.8)

he converse is also true, in virtue of the following theorem: Homogeneous space M is
isomorphic to the coset of its symmetry group F by the stability group Gx0 of any point
x0 ∈ M : M = F/Gx0 then we can construct homogeneous spaces as a cosets of groups
by they subgroups. A very useful way for our applications in holography.

Example 1. The case of AdS homogeneous space: The (d + 1)-dimensional Anti-
de-Sitter space has coordinates(xµ, z) and the line element:

ds2 =
dxµdx

µ + dz2

z2
(1.9)

where µ = 0 . . . d − 1and the indices are contracted with the − + · · ·+ Minkowsky
metric or Euclidean metric respectively for AdSd+1 or EAdSd+1
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1.1.1 Principal Chiral Field

The principal chiral field is a non-linear field that takes values in a group manifold:

f(x) : Σ→ F (1.10)

We can construct the lagrangian for this field defining a Lie-algebra valued current

L = −Tr(jaj
a) = −Tr(j ∧ ∗j) (1.11)

with:
ja = f−1∂af ∈ f (1.12)

and ”Tr” is an invariant quadratic form. The Lagrangian is invariant under global
FL × FR transformations:

f(x)→ fLf(x), f(x)→ f(x)fR (1.13)

The current is left-invariant and transforms in the adjoint under right multiplications:
ja → f−1

R jagR deriving from the invariance of the quadratic form ”Tr”.
The equations of motion of the principal chiral field follow from an infinitesimal

variation:
δf = fξ, ξ ∈ f (1.14)

the variation of the current is:
δja = ∂aξ + [ja, ξ] (1.15)

The commutator term does not contribute to the variation of the Lagrangian, because
of the invariance of the quadratic form under the adjoint action of the Lie algebra. Then
we obtain:

δS = 2
∑

d2xTr(ξ∂aj
a) (1.16)

The equations of motion are:

∂aj
a = 0 (1.17)

ja is the Nöether current of the right group multiplication.

1.2 Classical integrability of Sigma model

If we write explicitly ja in terms of f(x) and writing the boundary conditions:

f(x0,±∞) (1.18)

the equations of motion became a well defined Cauchy problem. We would like to treat
the current itself like a dynamical variable. To this purpose we have to recognize that

24



the equations (1.12) defines a pure-gauge potential, a flat connection, whose curvature
is equal to zero.

∂ajb − ∂bja + [ja, jb] = 0 (1.19)

Once the current is known, f(x) can be reconstructed from (1.18) after imposing the
boundary conditions (2.18). the equations of motion now became:

d ∗ j = 0

dj + j ∧ j = 0
(1.20)

Now for to proof the itegrability of this class of models we want to find a Lax represen-
tation of our equations of motions. To this and, we have to collect this two equation into
one. Letz a complex variable, we can multiply the first equation with it and summing
the second one obtain:

d(j + z ∗ j) + j ∧ j = 0. (1.21)

redefining the current j + z ∗ j, using the identities

∗ a ∧ b = −a ∧ ∗b ∗2 = 1 (1.22)

valid for one forms in two dimensions, up to a rescaling factor we have:

(j + z ∗ j) ∧ (j + z ∗ j) = (1− z2)j ∧ j. (1.23)

if we choose the rescaling factor like:

L =
j + z ∗ j
1− z2

(1.24)

the current is flat:
dL+ L ∧ L = 0. (1.25)

The current L is the Lax connection that we want to find. explicitly:

La =
ja + zεabj

b

1− z2
(1.26)

then the equations of motion for the principal chiral field are equivalent to the condition
that the Lax connection is flat:

∂aL : b− ∂bLa+ [La, Lb] = 0 ∀z (1.27)

The zero curvature, or Lax representation of the equations of motion is a hallmark of
integrability.
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1.3 Sigma Model on Symmetric Space

In this section we want to construct the action of world sheet theory on S5 symmetric
space. The action of a Sigma model can be always written in an explicit coordinate
system, but for homogeneous space exist a vary convenient construction based on coset
representation. A construction that permit to discuss the integrability and the exact
solutions in an elegant algebraic way. After we give the definition of Symmetric space:

Let F be a connected Lie group. Then a symmetric space for F is a homogeneous
spaceM = F/G where G is the isotropy group (or little group) of a typical pointp0 ∈M;
namely, G = g ∈ F : gp0 = p0.the stabilizer G of a typical point is an open subgroup of
p0 set of a Z2 involution Ω in Aut(F ).

Thus Ω is an automorphism of F with Ω2 = idF and G is an open subgroup of the
set

FΩ = f ∈ F : Ω(f) = f (1.28)

As an automorphism of F , Ω fixes the identity element, and hence, by differentiating
at the identity, it induces an automorphism of the Lie algebra f of F, also denoted by
Ω, whose square is the identity. It follows that the eigenvalues of Ω are ±1. The +1
eigenspace is the Lie algebra g of G (since this is the Lie algebra of FΩ), and the 1
eigenspace will be denoted p. Since Ω is an automorphism of f, this gives a direct sum
decomposition

f = g⊕ p (1.29)

where the element of that algebra composition satisfies the follow commutation relations:

[g, g] ⊂ g (1.30)

[g, p] ⊂ p (1.31)

[p, p] ⊂ g (1.32)

the first one implies that the constraints structure is pggp=0, cause the antisymmetry
of quadratic form also the fgpg=0. For [p, p] we have that since pppg are related to
pgpp, they are different from zero. the structure constants pppp are not restricted by any
principle but an interesting special case arises if they also vanish. Then

[p, p] ⊂ g (1.33)

Now we are ready to introduce the S5 world sheet theory as a sigma model on a
symmetric coset.

We will restrict ourselves to symmetric spaces with F semi-simple. Moreover, we will
always consider explicit realizations in terms of matrix representations of F , and we will
assume that the corresponding trace form provides a non-degenerate,invariant, bilinear
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form on f such that the decomposition (1.29) is orthogonal. In the case of S5 we have
the following space:

M =
SO(6)

SO(5)
(1.34)

That is symmetric, compact and F = SO(6) is semi-simple.
Let f = f(τ, x) be a dimensional field taking values on a faithful matrix representa-

tion of F . To formulate the sigma model with target-space M = F/G, we introduce a
gauge field Bµ on g and define a covariant derivative Dµf = ∂µf−fBµ with the property
that

f → fg−1, Bµ → g(Bµ + ∂µ)g−1 ⇒ Dµf → (Dµf)g−1 (1.35)

for any g = g(τ, x) taking values on G. It is also useful to introduce the f -valued
current

Jµ = f−1Dµf = f−1∂µf −Bµ (1.36)

that is covariant under gauge transformations,

Jµ → gJµg
−1 (1.37)

Then, if the Lie group F is simple, the nonlinear sigma model is defined by the La-
grangian:

L = − 1

2k
Tr(JµJ

µ) (1.38)

Where k is an overall normalization constant that plays no role in the classical equa-
tions of motion.

That Lagrangian have two symmetry:

• G-Symmetry that is the gauge symmetry defined in (1.35)

• F -Symmetry that is a global symmetry:

f → f0f ∀f0 ∈ F

The equation of motion for this lagrangian are:

• For the field f :
DµJ

µ = ∂µJ
µ + [Bµ, J

µ] = 0 (1.39)

that using the identity [∂µ + f−1∂µf, ∂µ + f−1∂νf ] became:

DµJν −DνJµ + [Jµ, Jν ] + Fµν ] = 0 (1.40)

where: Fµν = ∂µBν − ∂νBµ + [Bµ, Bν ].
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• For the field Bµ:
Jµ = 0 on g (1.41)

remembering the commutation relation defining the symmetric space, we have that
Jµ must take values in p.

Using the light-cone variables x± = 1
2
(τ ± x) and ∂± = ∂r ± ∂x the equations

(1.40-1.41) splits into:

D±J∓ = ∂±J∓ + [B±, J∓] = 0 in p

[J+, J−] + F± = 0 in g
(1.42)

The first equation implies that:
∂±Tr(J

n
∓) = 0 (1.43)

which provides a set of local chiral densities that display the two-dimensional conformal
invariance of the sigma model. For n = 2 we recover the non-vanishing components of
the stress-energy tensor:

T++ = − 1

2k
Tr(J2

+) and T−− = − 1

2k
Tr(J2

−) (1.44)

1.4 Sigma model on Semi-simmetryc spaces

Semi-symmetric spaces are defined generalizing the cosets symmetric spaces in super-
cosets.

That generalization is based on an automorphism Ω : f → f that squares to the
fermion parity:

Ω2 = (−1)F (1.45)

Such automorphism has order four: Ω4 = id, and the superalgebra has a Z4 grading:

f = f0 ⊕ f1 ⊕ f2 ⊕ f3 (1.46)

where:
Ω(fn) = i4fn (1.47)

The Z4 decomposition is consistent with the Grassmann parity: f0⊕ f2 form the bosonic
subalgebra of g and all the supercharges belong to f1⊕f3 If G0 is the subgroup of F whose
Lie algebra f0 is Z4-invariant, the coset F/G0 is called semi-symmetric superspace. Then:
The current now decomposes into four components according to their Z4 grading:

j = j0 + j1 + j2 + j3. (1.48)
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The current components j0, j2 expand in bosonic generators of the superalgebra, while
the components j1, j3 are fermionic they are linear combinations of supercharges with
Grassmann-odd coefficients. The action of the Z4 coset sigma-model is:

S =

∫
d2xStr(

√
−hhabj0aj2a + εabj1aj3b) (1.49)

The first term is the usual Sigma-model Lagrangian, while the second term descends
from the WZ action, which for super-cosets is not topological and can be written in a
manifestly 2d form.
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Chapter 2

Pohlmeyer Reduction

In this chapter we want reduce both the sigma model on S5 and the bosonic part of
sigma model in Ads5 × S5 showing the equivalence to the generalized SSSG and SSSSG
theories respectively. In particular we will see that leads to the same action then at the
same equations of motion.

To this purpose is needed a procedure called ”Pohlmeyer Reduction”. The Pohlmeyer
reduction was first introduced in 1976 showing the relationship between the O(3) sigma
model and sine-Gordon theory Pohlmeyer reduction provides a map between the equa-
tions of motion of two-dimensional sigma models and a class of multi-component in-
tegrable generalizations of the sine-Gordon equation. Following [9],[7], It relies on the
classical conformal invariance of sigma models that can be exploited to choose coordi-
nates such that the components of the stress-energy tensor are constant; namely,

T++ = T−− = µ2 (2.1)

together with: T+−. From the point of view of the original sigma model degrees of
freedom, Pohlmeyer reduction amounts to a non-local transformation of variables that
breaks conformal invariance while preserving integrability and two-dimensional Lorentz
invariance and gives rise to a mass scale, related to the mass parameter in the sine-Gordon
equation.

2.1 Pohlmeyer reduction of classical strings on sym-

metric coset spaces

In this section we discuss the formulation of the Pohlmeyer reduction for strings on
symmetric coset spaces. In particular we are interested to the case of S5 space. We start
by considering strings moving on a target space F/G.Where F is a compact group. We
name the algebras associated to the group F and G as f ⊕ g. We define therefore p as
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the orthogonal complement of g in f as:

f = g⊕ p Tr(gp) = 0 (2.2)

the condition thatF/G is a symmetric coset space, imposing the following commutation
relation:

[g, g] ∈ g, [g, p] ∈ p, [pp] ∈ g (2.3)

For the purposes of the Pohlmeyer reduction we require the algebra f to have additional
properties. The maximal abelian subalgebra of p, which we denote a, should be one-
dimensional. Defining h as the centralizer of p in p, that is [p, p] = 0, we further assume
the following conditions on the structure of these algebras:

f = p⊕ g, p = a⊕ n, g = h⊕m (2.4)

[a, a] = 0, [a, h] = 0 [a,m] ∈ n, [a, n] ∈ m, (2.5)

[n, n] ∈ h, [n,m] ∈ a [m,m] ∈ h, (2.6)

[h,m] ∈ m, [h, n] ∈ n, [h, h] ∈ h (2.7)

Where h is a superalgebra of g. m and n are the orthogonal complements of h/a in g/p.

2.1.1 Reduction of Sigma model on S5 background to SSSG
theory

In this section we reduce the Sigma model with target space a symmetric space to a
generalized sin-Gordon theory, following the scheme proposed in[]We start with general
reduction for Sn to SSSG theory. The n-spheres Sn defined by:

Sn = (x1, ..., xn+1) : x2 + ...+ x2
n+1 = 1 =

SO(n+ 1)

SO(n)
(2.8)

is a compact symmetric space of definite signature. In this case the solutions of the
condition:

∂±Tr(J
n
∓) = 0 (2.9)

can be found by using the so-called ”polar coordinate decomposition”: Let a be a max-
imal abelian subsapce

p. Then, for any k ∈ p there exists g ∈ G such that g−1kg ∈ a. A more explicit
proof specific for Sn = SO(n + 1)/SO(n) is given in appendix B of []. The dimension
of the maximal abelian subspaces a ⊂ p defines the rank of the symmetric space. For
symmetric spaces(F

G
) we have the following relation for the ranks:

rank(F )− rank(G) ≤ rank

(
F

G

)
≤ rank(F ) (2.10)

In the case of S5 = SO(6)
SO(5)

:
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• rank
(
SO(6)
SO(5)

)
= 1

• rank(SO(6) = 3

• rank (SO(5)) = 2

Now we consider the decomposition p = a + n then we have:

[a, a] = 0 [g, a] ⊂ n (2.11)

Using the equations of motions for the field Bµ we can write the currents J±:

J± = ĝ±c±ĝ
−1
± (2.12)

where ĝ and c± are function that take values in G and in a respectively. Then now we
can rewrite the first equation (1.42):

∂±c∓ = [∂±ĝ
−1
∓ ĝ∓ − ĝ−1

∓ B±ĝ∓, c∓] (2.13)

which, taking (2.11) in account, imply that c+ and c− are chiral,

c+ = c+(x+) c− = c−(x−) (2.14)

then we can write the chiral densities:

Tr(Jn∓) = Tr(cn±) (2.15)

Which shows that their value is fixed by the value of the components of c+ and c−.
Then, constraining all the chiral densities Tr(Jn±) to take constant values is equiva-
lent to constraining the chiral functions c+ and c− to be constant. In the present case
rank(SO(6)

SO(5)
) = 1) and dim(a) = 1. We can write:

c+ = µ+(x+)Λ and c−(µ−(x−)Λ (2.16)

where µ+ and µ− are real(numeric) functions, Λ a constant generator of a and, the
components of stress-energy tensor became:

T++ = − 1

2k
µ2

+(x+)Tr(Λ2) and T−− = − 1

2k
µ2
−(x−)Tr(Λ2) (2.17)

where the value of k = ±1 is chosen so that T++ and T−− are always positive. Therefore,
the components of the stress-energy tensor are constant if, and only if, µ+ and µ−are
constant, which is obviously equivalent to the claim that c+ and c− are constant elements
of a. a. Since all the maximal abelian subspaces in p are conjugated under the adjoint
action of G, in this case the reduction procedure gives rise to only one set of SSSG
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equations, which are indeed equivalent to the equations of motion of the original sigma
model up to a (classical) conformal transformation.

In the following, we will need the centralisers of in G, which are the Lie group:

H = g ∈ G : g−1Λg = Λ (2.18)

with Lie algebras:
h = Ker(AdΛ ∩ g) (2.19)

The explicit formulation of the reduced model is obtained by imposing a particular
gauge-fixing condition to the equations of motion of the sigma model subjected to the
constraints(2.16). Now implementing the so-colled ”partial reduction” gauge condition:

J+ = µ+Λ and J− = µ−γ
−1Λγ (2.20)

where γ = ĝ−1
− ĝ+ takes values in G. Then, the first two equations in (1.42), D±J∓ = 0

became:

[B−,Λ] = 0 (2.21)

[B+ − γ−1∂+γ, γ
−1Λγ] = 0 (2.22)

The condition (2.20) does not fix the gauge condition (1.35) completely, and the
residual gauge transformations correspond to γ → γh−1 with h ∈ H. All these gauge
transformations can be summarised as follows:

γ → hγh−1

A
(R)
− → h(A

(R)
− + ∂−)h−1

+ ,

A
(L)
+ → h(A

(L)
+ + ∂+)h−1

(2.23)

the third equation in (1.42) can be written as a 2d-Lorentz invariant zero-curvature
condition for γ:

[∂+ + γ−1∂+γ + γ−1AL+γ + zµ+Λ, ∂− + γ−1∂−γ + γ−1AR−γ + z−1µ−Λ] = 0 (2.24)

where z is a spectral parameter. This equation, subjected to the gauge symmetry (2.23),
provides the most general form of the SSSG equations specified by (F

G
,Λ). These euqa-

tions derive by the following action:

S = SgWZW [γ,Aµ]− k

π

∫
d2xTr(Λγ−1Λγ) (2.25)

here, SgWZW [γ,Aµ] is the WZW action for G
H

:

SgWZW [γ,Aµ] = − k

2π

∫
d2xTr[γ−1∂+γγ

−1∂−γ + 2A+∂−γγ
−1 − 2A−γ

−1∂+γ − 2γ−1A+γA− + 2A+A−]

+
k

12π

∫
d3xεabcTr[γ−1∂aγγ

−1∂bγγ
−1∂cγ]

(2.26)
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Actually, it is the integrability condition required to reconstruct the field f = f(τ, x)
corresponding to the currents and the gauge fields .

Namely, using (1.36), f is the solution to the auxiliary linear problem:

∂+f
−1 = −(γ−1∂+γ + γ−1AL+γ + µ+Λ)f−1

∂−f
−1 = −(γ−1∂−γ + γ−1AR+γ + µ−Λ)f−1

(2.27)

It has a unique solution once the initial condition f0 = f(τ0, x0) is fixed.

2.2 Polhmeyer Reduction of classical AdS5×S5 su-

perstring

In this section we want reduce the AdS5× S5 model to SSSSG theory. In the last section
we have showed that the sigma model on S5 symmetric space is equivalent to SSSG thoery
fixing the chirality dansities to have a constant value or in other words, by fixing the
gauge. In the case of semi-symetryc spaces we have also to fix the so called ”k-Symmetry,
a symmetry involving the worldsheet fermion of the theory. The resulting reduced system
will be still invariant under a residual k-symmetry which can be fixed by an additional
gauge condition. That will finally make the number of the fermionic degrees of freedom
the same as the number of the physical bosonic degrees of freedom.It will turn out that
the resulting system of reduced equations of motion (that originate in particular from
the Maurer-Cartan equations and thus are first order in derivatives) will follow from a
local Lagrangian containing only first derivatives of the fermionic fields. The bosonic
part of the reduced Lagrangian will coincide with the gauged WZW Lagrangian with the
same potential as in the bosonic model discussed in the section 1.

In the chapter 1 we have discussed the action of Sigma model on Semi-symmetric
space as a coset. In what follows we shall assume the” conformal gauge” condition
γab = eφηab so the action became:

LGS = Str[J
(2)
+ J

(2)
− +

1

2
(J1+

+ J3−
− − J1−

− J3+
+ )] (2.28)

Having fixed conformal gauge, the Virasoro constraint

STr(J±J±) = 0 (2.29)

need to be imposed, in addition to the variational equations coming from the ac-
tion(2.28). The action and the Virasoro constrains are invariant under the G-gauge
symmetry:

f → fg ⇒ j → g−1Jg + g−1dg (2.30)
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Wihich imply:

g : J (0) → g−1J (0)g + g−1dg (2.31)

f̂1 : J (1) → g−1J (1)g (2.32)

p : J (2) → g−1J (2)g (2.33)

f̂3 : J (3) → g−1J (3)g (2.34)

Varyng f(x; t) in the action we obtain the following equation of motion:

D+J
(2)
− +D−J (2)

+ + [J
(1)
− , J1

+] + [J
(3)
+ , J

(3)
− ] = 0 (2.35)

[J2
+, J

(1)
− ] = 0,[J2

−J
(3)
+ ] = 0 (2.36)

supplementes by the flatness condition for the Maurer-Cartan one-form J

∂+J− − ∂−J+ + [J+, J−] = 0 (2.37)

that can be decomposed under the Z4 grading as:

p : D−J (2)
+ −D+J

(2)
− + [J

(1)
− , J

(1)
+ ] + [J

(3)
− , J

(3)
+ ] = 0 (2.38)

f̂1 : D−J (1)
+ +D+J

(1)
− + [J

(2)
− , J

(3)
+ ]− [J

(2)
+ , J

(3)
− ] = 0 (2.39)

f̂3 : D−, J (3)
+ −D+J

(3)
− + [J

(2)
− , J

(1)
+ ]− [J

(2)
+ , J

(1)
− ] = 0 (2.40)

g : D−, J (0)
+ −D+J

(0)
− + [J

(0)
− , J

(0)
+ ] + [J

(1)
− , J

(3)
+ ] + [J

(2)
− , J

(2)
+ ] + [J

(3)
− , J

(1)
+ ] = 0 (2.41)

Combining the equation of motion for J (2) and the flatness condition projected on f̂2 we
can obtain the eqautions for J

(2)
+ and J

(2)
− :

D+J
(2)
− + [J

(3)
+ , J

(3)
− ] = 0, D−J (2)

+ + [J
(1)
− , J

(1)
+ ] = 0 (2.42)

the first stage of pohlmeyer reduction of the AdS5×S5 superstring thoery is to fix the
gauge on J

(2)
+ :

J
(2)
+ = p1+Λ1 + p2+Λ2 (2.43)

where we have choosed the following basis for the maximal abelian subalgebra a of p:

Λ1 =
i

2
diag(1, 1,−1,−1, 0, 0, 0, 0) (2.44)

Λ2 =
i

2
diag(0, 0, 0, 0, 1, 1,−1,−1) (2.45)

and write J
(2)
− as:

J
(2)
− = p1−Λ1γ + p2−γ

−1Λ2γ (2.46)
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where γ is an element of G and p1± , p2± are functions of the world-sheet coordinates.
Now substituing these expressions into the Virasoro constraints implies that p1+ = p2+ =
p1− = p2− thus:

J
(2)
+ = p+Λ, J

(2)
− = p−γ

−1Λγ (2.47)

Where Λ is defined as:
Λ = Λ1 + Λ2 (2.48)

The algebra h is defined to be the centralizer of Λ in g and the corresponding group is
denoted H. The matrix element of Λ defines a sub-algebra of f̂ denoted f̂⊥ which is the
centralizer of Λ in f̂ . The last stage involve the fixing of the so called k-symmetry. This
fixing eliminate 16 of 32 fermionis degrees of freedom in the subalgebra psu(2, 2|4). This
is foundamental to obtain just the physical degrees of freedom in the reduced theory.
This is achieved by projecting the fermionic courrents onto f̂

‖
1 and f̂

‖
3 :

J (1) = J (1)‖ (2.49)

γJ (3)γ−1 = (γJ (3)γ−1)‖ (2.50)

substituing in the equation (2.40), the resulting equations imply:

J
(1)
− = J

(3)
+ = 0 (2.51)

then the eqautions (2.45) became:

D+J
(2)
− = 0 D−J (2)

+ = 0 (2.52)

that equations are solved by taking:

J
(0)
+ = γ−1∂+γ + γ−1A+γ J

(0)
− = A−, A± ∈ h (2.53)

we make the following redefinitions of the fermionc courrents:

ψR =
1
√
µ

(J
(1)
+ )‖, ψL =

1
√
µ

(γJ
(3)
−
‖γ−1) (2.54)

Then the equation are solved by the redefinition of the courrent in terms of the new fields
γ,A±, ψR, ψL. Substituing in the remaining equations we obtain the complete reduced
equations of motion for the reduced thoery:

∂−(γ−1∂+γ + γ−1A+γ)− ∂+A− + [A,γ
−1∂+γ + γ−1A+γ]− [ψ+, γ

−1ψ−γ]− [Λ, γ−1Λγ] = 0

D∓ψ± + [Λ, γ∓1ψ∓γ
±1 = 0
(2.55)

the new fermionic fields transforms down the enhanced (HL ×HR)-gauge symmetry as:

ψR → h−1
R ψRhR, ψL → h−1

L ψLhL (2.56)
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Where the HR-gauge symmetry arises as a subgroup of the original G-gauge symmetry
in the world-sheet sigma model When The HL-gauge symmetry arises in defining the
reduced-theory field, g. Both of these gauge freedoms exist because h is the centralizer
of Λ in g. To writing the right Lagrangian which that generate these equations of motion,
that gauge symmetry need to be partialy fixed to an H-symmetry. This is performed by
setting:

τ(A+) = (γ−1∂+γ + γ−1A+γ −
1

2
[[Λ, ψR], ψR)|h] (2.57)

τ(A−) = (γ−1∂+γ + γ−1A−γ −
1

2
[[Λ, ψL], ψL)|h] (2.58)

where τ is an automorphism of the algebra h. Fixed this gauge symmetry the transfor-
mations rules for the fermionic field are:

ψR → τ̂(h)−1ψRτ(h), ψL → h−1ψLh (2.59)

The e.o.m. (2.25) follow from the Lagrangian of the Pohlmeyer reduced AdS5× S 5

superstring:

S = SgWZW [γ,Aµ]−k
π

∫
d2xSTr

(
γ−1Λγ

)
+
k

2π

∫
d2xSTr

(
ψ+[Λ, D−ψ+]−ψ−[Λ, D+ψ−]−2ψ+γ

−1ψ−γ
)

(2.60)
Where SgWZW is the conventional (bosonic) gauged WZW model for G/H, but involv-
ing the supertrace defined as:

STrM = −Trm+ Trn = 0 (2.61)

The reduced theory is thus a G/H gauged WZW model with a gauge-invariant integrable
potential and fermionic extension. For the our case G = Sp(2, 2) × Sp(4) and H =
[SU(2)]4.

The integrability of these models are guaranted by the existence of the following Lax
connection:

L+(z) = ∂+ + γ−1∂+γ + γ−1A+γ + zψ+ − z2Λ (2.62)

L− = ∂− + A− + z−1γ−1ψ−γ − z−2γ−1Λγ (2.63)

where, again, γ ∈ G, ψ± are fields taking values in f1,3, respectively, and hence are
fermionic. Lax connection exhibits that the Lorentz transformation:

x± → λ±x± (2.64)

is equivalent to the rescaling of the spectral parameter:

z → λ2z (2.65)

where γ ∈ G,ψ± are fields taking values in f1,3,
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Chapter 3

The Dressing Method

Integrability provides different methods to generate soliton solutions. The most impor-
tant one is the Inverse Scattering Method (ISM), which allows one to construct the
general solution of integrable field equations making use of an associated linear prob-
lem. The ISM can be regarded as a generalisation of the Fourier transform to non-linear
problems. Other well known techniques to construct soliton solutions are the Backlünd
transformations, the dressing transformations, the Hirota method, etc. In this work we
want find soliton solutions by dressing method following [1],[11]. The inverse spectral
(or scattering) transform (IST) method serves as the mathematical background for the
soliton theory. The modern version of IST is based on the dressing method proposed by
Zakharov and Shabat, first in terms of the factorization of integral operators on a line
into a product of two Volterra integral operators and then using the RiemannHilbert
(RH) problem . The most powerful version of the dressing method incorporates the ∂−

problem formalism. The ∂− problem was put forward by Beals and Coifman as a gener-
alization of the RH problem and was applied to the study of first-order one-dimensional
spectral problems. Generally, the term dressing implies a construction that contains a
transformation from a simpler (bare, seed) state of a system to a more advanced, dressed
state. In particular cases, dressing transformations, as the purely algebraic construction,
are realized in terms of the Backlünd transformations which act in the space of solutions
of the nonlinear equation, or the Darboux transformations (DTs) acting in the space of
solutions of the associated linear problem. In the present case we want use the ”dressing
method” to following linear problem:

Lµ(z)Υ(z) = 0 (3.1)

where: Υ(z) is an element of the loop group associated to f and so it must satisfy
the reality condition lifted to the loop group:

HΥ(z∗)−1†H = Υ(z) (3.2)
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it must have the following behaviour under the automorphism:

K−1Υ(z)−1†K = Υ(iz) (3.3)

and the action of fermionic parity is:

βΥ(z)−1†β = Υ(−z) (3.4)

Soliton solutions are special solutions for which g+ = g = 1 in the Riemann-Hilbert
problem:

Υ0(z)g−g
−1
+ Υ−1

0 (z) = χ(z)−1γχ(z) (3.5)

Υ0(x; z) = exp[(z2x+ + z−2x−)Λ] (3.6)

the in the solution of the linear problem can be written in two equivalent ways:

Υ(x; z) = χ(x; z)Υ0(x; z) = γ−1χ(x; z)Υ0(x; z) (3.7)

where (γ = 1, ψ± = 0, Aµ = 0). is the vacuum solution of the linear problem. In
the context of solitons, χ(z) := χ(x; z) is known as the dressing transformation for the
obvious reason that it generates the soliton solutions from the vacuum. The method
then proceeds by taking an ansatz for the dressing factor which takes the form of a sum
over a finite set of simple poles

χ(z) = 1 +
Qi

z − εi
χ(z)−1 = 1 +

Ri

z − µi
(3.8)

Then the our linear problem in the gauge A± = 0 gives rise to the two equations:

∂+χ(z)χ(z)−1 + z2χ(z)Λχ(z)−1 = −γ−1∂+γ − zψ+ + z2Λ

∂−χ(z)χ(z)−1 + z2χ(z)Λχ(z)−1 = −z−1γ−1ψ− + z−2γ−1Λγ
(3.9)

To obtain the fields,it is sufficient expand χ(z) around z = 0 and z =∞:

χ(z) = 1 + z−1W−1 + z2(W−2 +
1

2
W 2
−1) +O(z−3 (3.10)

= γ−1(1 + zW1 + z2(W2 +
1

2
W 2

1 ) +O(z3) (3.11)

Then we obtain:
γ = χ(0)−1 (3.12)
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Now, since the dependence on z of the right-hand-side of is explicit, the residues of the
left-hand-side at z = εi and µi must vanish, giving

(ξ∓2
i ∂±Qi +QiΛ)

(
1 +

Rj

εi − µj

)
= 0(

1 +
Qj

µi − ξj

)
(µ∓2

i ∂±Ri +RiΛ) = 0

(3.13)

The key to solving them is to propose that the residues have rank one

Qi = XiF
†
i Ri = HiK

†
i (3.14)

where 8-vectors are written in boldface. The point is that in order to preserve the
fermionic grading, the vectors must have the structure

v =

(
v1

v2

)
(3.15)

where either of the 4-vectors v1, or v2, must be Grassmann odd. We shall fix the
choice by realizing that there are a known consistent bosonic solitons solutions for the
S5= SU(4)/Sp(4). This solutions would be obtained by taking a dressing ansatz where
all the vectors have v1 = 0. In other words, the sub 4-vector v1 must be Grassmann odd
and the sub 4-vector v2 must be Grassmann even. The solution of (3.13) is

Fi = (Υ0(ξi)
†)−1$i Hi = Υ0(µi)πi (3.16)

for constant complex graded 8-vectors $i and pii along with

XiΓij = Hj Ki(Γ
†)ij = −Fj (3.17)

where the matrix

Γij =
F∗i ·Hj

ξi − µj
(3.18)

This is a solution very general, we need to implement some conditions. First of all, the
reality condition:

H(HiK
†
i )H

z − µ∗i
=

XjFj

z − ξj
(3.19)

which is solved by taking

µi = ξ∗i , Ki = HXi Hi = HFi (3.20)

and so:
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Γij =
F∗i ·HFj

ξi − ξ∗j
= −Γ∗ij (3.21)

Now the condition (3.3)

K−1(HiK
†
i )

stK
z − ξ∗i

=
XjF

†
j

iz − ξj
(3.22)

which means that as a set ξ∗i = −iξi.Consequently, we define the operator η with:

ξ∗i = −iξη(i), Fi = εiHKF∗η(i) Xi = iεiβHKX∗η(i) (3.23)

where εi = ±1. We can notice that η2(i) = i:

ξη2(i) = iξ∗η(i) = i(iξ∗i )
∗ = ξi (3.24)

where we have used that K2 = −1. Therefore, we have the constraint

εiεη(i) = −1 (3.25)

and we shall choose
ε1 = ε3 = −1, ε2 = ε4 = 1 (3.26)

Finally, the condition of the action of fermionic parity gives:

β(XiF
†
i )β

z − ξi
= −

XjF
†
j

z + ξj
(3.27)

therefore, as a set ξi = −ξi, and

ξi = −ξρ(i) → Xi = −βXρ(i), Fi = βFρ(i) (3.28)

with ρ2(i) = i. Taken together, these conditions require the dressing data to have
four poles. Choosing the ordering

ξi = {ξ, iξ∗,−ξ,−iξ∗} (3.29)

we have η(1, 2, 3, 4)=(2,1,4,3) and ρ(1, 2, 3, 4) = (3, 4, 1, 2) and

Fi = {F,KHF∗, βF,KHF∗} (3.30)

which means that the constant (4|4) vectors are:

$i = {$,KH, $∗, β$,KH$∗} (3.31)

Fineally the ” dressing factor” is:

χ(x; z) = 1 +
HFΓ−1

ij F

z − σ(ξ)
(3.32)

Where σ are operators σi, i = 1, 2, 3, 4, such that σi(ξ) = ξi and σ($) = $i, with
σ1(ξ) := ξ and σ($) = $.
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3.1 Soliton of SSSG on S5

In this section we can see how work the dressing method finding explicitly the dressing
factor for the pure bosonic Sigma Model as coset. As we have seen in the last section,
the collective coordinaties of the soliton consist in a (4|4) constant vector. The first 4
components of the vector are Grassmann odd while the second 4 components are ordinary
c-numbers.This means that the soliton solution for the group fields and wave function
has the structural form:

γ =

(
fermionic2 fermionic
fermionic bosonic

)
(3.33)

So the part of the solution in the AdS part of the geometry is a bosonic quantity that
is a composite at least quadraticof the Grassmann collective coordinates. In this section
we are interested to purely bosonic solutions. They lie entirely in the subgroup SU(4) ⊂
PSU(2, 2|4) associated to the S5 part of the geometry. In SU(4) subspace, the solitons
have collective coordinate on the form of a constant 4-vector$. Using global symmetries
we can bring $ into the form,

$ = (1, 0, 1, 0) (3.34)

We then define the following Z2 action on the soliton data:

ξi = {ξ,−ξ∗} $i = ($, K̂$∗) (3.35)

where:

K̂ =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 (3.36)

Then we define Fi = Υ0(
√
ξ∗i )$ where the latter is the vacuum solution in the SU(4)

subspace:
Fi = ψ(

√
ξ∗i )$ = exp[(ξ2x+ + ξ−2x−)Λ]$ (3.37)

for S5 case the expression of Λ is explicitly:

Λ =
i

2


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 (3.38)

explicitly for the Fi we have:
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F1 =


e−X∗

0
eX∗

0



F2 =


0
e−X

0
eX



F∗1 =


e−X

0
eX

0



F∗2 =


0

e−X∗

0
eX∗


(3.39)

where we have defined:

X :=
1

2
(ξx+ + ξ−1x−) (3.40)

now we have to compute Γ−1
ij :

The tensorial products results are:

F1 ⊗ F∗1 =


e−X

−X∗ 0 eX−X
∗

0 0 0 0
e−X+X∗

0 eX+X∗
0

0 0 0 0

 (3.41)

F1 ⊗ F∗2 =


0 e−2X∗ 0 1
0 0 0 0
0 1 0 e2X∗

0 0 0 0

 (3.42)

F2 ⊗ F∗1 =


0 e−2X 0 1
0 0 0 0
0 1 0 e2X

0 0 0 0

 (3.43)

F2 ⊗ F∗2 =


0 0 0 0

e−X
−X∗ 0 e−X+X∗

0
0 0 0 0

eX−X
∗

0 eX+X∗
0

 (3.44)

The inverse of Γij is simply:(
ξ−ξ∗

e(−X−X∗)+e(X+X∗) 0

0 −ξ+ξ∗
e(−X−X∗)+e(X+X∗)

)
(3.45)
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Finally we have the expression for the dressing factor:

Θ(x; z) = 1 +
ξ − ξ∗

e(−X−X∗) + e(X+X∗)


e−X−X∗

z2−ξ 0 eX−X∗

z2−ξ 0

0 e−X−X∗

z2+ξ∗
0 e−X+X∗

z2+ξ∗

e−X+X∗

z2−ξ 0 eX+X∗

z2−ξ 0

0 eX−X∗

z2+ξ∗
0 eX+X∗

z2+ξ∗

 (3.46)

giving the dressing factor, we can simply compute the expressions of the group valued
field in for SSSG theory by the following relations:

γ(x) = Θ(x; 0)−1 (3.47)

For the SSSG field we have:

γ =



1− ξ∗2−ξ2

ξ∗2(e2(X+X∗)+1)
0 − (ξ∗2−ξ2)eX−X∗

sech(X+X∗)

2ξ∗2 0

0 1− ξ2−ξ∗2

ξ2(e2(X+X∗)+1)
0

(ξ∗2−ξ2)eX
∗−Xsech(X+X∗)

2ξ2

− (ξ∗2−ξ2)eX−X∗
sech(X+X∗)

2ξ∗2 0 1− (ξ∗2−ξ2)(tanh(X+X∗)+1)

2ξ∗2 0

0
(ξ∗2−ξ2)eX−X∗

sech(X+X∗)

2ξ2 0
(ξ∗2−ξ2)(tanh(X+X∗)+1)

2ξ2 + 1


(3.48)

Notice that, giving the dressing factor it is possible obtain also the soliton for the 2d
sigma model:

f(x) = exp(2tΛ)Θ(x, 1)−1 (3.49)

3.2 Soliton Solution for SSSSG on AdS5×S5 Includ-

ing Fermionic Variables

Now we want to introduce two fermionic variabiles into the collective coordinates vector
. Starting from:

$ =
(
0, 0, 0, 0, 0, 0, 1, 1

)
(3.50)

Using the global symmetry we can transform $:

$ → U$ (3.51)

where:

U = ef , f ∈ PSU(2, 2|4) (3.52)

With:
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f=

[
0 Grass1

Grass2 0

]

Grass1 =


0 0 α1 + iα2 0
0 0 0 α1 − iα2

0 0 0 0
0 0 0 0

Grass2 =


0 0 0 0
0 0 0 0

iα1 + α2 0 0 0
0 iα1 − α2 0 0

 (3.53)

Expanding in series the exponential matrix:

ef = 1 + f +
f 2

2
(3.54)

we can see that is truncated at the second order because all the terms quadratic in α1

and α2 get 0. Finally the transformed $ vector is:

$′ =
(
0, α1 + iα2, 0, 0, 1− iα1α2, 0, 1, 0

)
(3.55)

the dressing factor have the form:

χ = 1 +
∑
ij

HFiΓ
−1
ij F

†
j

z − ξj
, Γij =

F ∗i Fj
ξi − ξj

(3.56)

the poles are:
ξi = {ξ, iξ∗,−ξ,−iξ∗} (3.57)

And the Fi:

Fi = {F,FHF∗, βF, KHβF∗} (3.58)

where:

H =


12 0 0 0
0 −12 0 0
0 0 12 0
0 0 0 12

 β =


−12 0 0 0

0 −12 0 0
0 0 12 0
0 0 0 12

 (3.59)

when F is:

F = exp it cos(q) + x sin(q)v+ + exp(it cos(q)− x sin(q))v− (3.60)

but we can define X := it cos(q) + x sin(q) so that we can write F in a more compact
way.

F =
(
0, (α1 + iα2)e−X

∗
, 0, 0, (1− iα1α2)e−X

∗
, 0 eX

∗
, 0

)
(3.61)
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Now, in order to compute the projector Γij we have to compute all the 8 vectors Fi. The
result is:

F1 =
[
0, (α1 + iα2)e−X

∗
, 0, 0, (1− iα1α2)e−X

∗
, 0, eX

∗
, 0

]
(3.62)

F∗1 =
[
0, (α1 − iα2)e−X , 0, 0, (1− iα1α2)e−X , 0, eX , 0

]
(3.63)

F2 =
[
(−α1 + iα2)e−X , 0, 0, 0, 0, (1− iα1α2)e−X , 0, eX

]
(3.64)

F∗2 =
[
(−α1 − iα2)e−X

∗
, 0, 0, 0, 0, (1− iα1α2)e−X

∗
, 0, eX

∗]
(3.65)

F3 =
[
0, (−α1 − ıα2)e−X

∗
, 0, 0, (1− iα1α2)e−X

∗
, 0, eX

∗
, 0

]
(3.66)

F∗3 =
[
0, (−α1 + iα2)e−X , 0, 0, (1− iα1α2)e−X , 0, eX , 0

]
(3.67)

F4 =
[
(α1 − iα2)e−X , 0, 0, 0, 0, (1− iα1α2)e−X , 0, eX

]
(3.68)

F∗4 =
[
(α1 + iα2)e−X

∗
, 0, 0, 0, 0, (1− iα1α2)e−X

∗
, 0, eX

∗]
(3.69)

then we can obtain The value of gamma:

Γij =


e−X−X∗

+eX+X∗

ξ−ξ∗ 0 (1−4iα1α2)e−X−X∗
+eX+X∗

(ξ+ξ∗)
0

0 (1−4iα1α2)e−X−X∗
+eX+X∗

iξ+iξ∗
0 e−X−X∗

+eX+X∗

−iξ+iξ∗
(1−4iα1α2)e−X−X∗

+eX+X∗

−ξ−ξ∗ 0 (1−4iα1α2)e−X−X∗
+exX+xXc

−ξ+ξ∗ 0

0 e−X−X∗
+eX+X∗

iξ−iξ∗ 0 e−X−X∗
+eX+X∗

−iξ−iξ∗


(3.70)

To compute Γ−1
ij it is useful decompose it as a polynomial in α1, α2:

Γ = Γ0 + α1Γ1 + α2Γ + α1 + α2Γ (3.71)

Using this decomposition, the expression for the inverse can be computed all in terms of
Γ−1

0 , it reads:

Γ−1 = Γ−1
0 (Γ0 − α1Γ1 − α2Γ2 − α1α2(Γ3 + Γ2Γ−1

0 Γ1 − Γ1Γ−1
0 Γ2))Γ−1

0 (3.72)

Insertig all the data in the expression for the dressing factor() we obtain an 8× 8 matrix
that we present as 16 (2× 2)-blocks:

a1 a2 b1 b2

a3 a4 a3 b4

c1 c2 d1 d2

c3 c4 d3 d4

 (3.73)

where:

a1 =

[
− 2iα1α2ξ∗(ξ2−ξ2∗)

ξ(ξ∗2+z2)(e2(X+X∗)+1)
0

0 2iα1α2ξ(ξ2−ξ2∗)

ξ∗(ξ2−z2)(e2(X+X∗)+1)

]
(3.74)
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a2, a3, a4 are null matrices.

b1 =

[
0 − (α2+iα1)z(ξ2−ξ2∗)

ξ(ξ∗2+z2)(e2(X+X∗)+1)

− (α1+iα2)z(ξ2−ξ2∗)

ξ∗(ξ2−z2)(e2(X+X∗)+1)
0

]
(3.75)

b2 =

 0 − (α2+iα1)z(ξ2−ξ2∗)eX
∗−X(X+X∗)

2ξ(ξ∗2+z2)

− (α1+iα2)z(ξ2−ξ2∗)eX−X∗
(X+X∗)

2ξ∗(ξ2−z2)
0

 (3.76)

b3 and b4 are null matrices.

c1 =

[
0 − (α1+iα2)z(ξ2−ξ2∗)

ξ(ξ2−z2)(e2(X+X∗)+1)
(iα1+α2+)z(ξ2−ξ2∗)

ξ∗(ξ∗2+z2)(e2(X+X∗)+1)
0

]
(3.77)

c3 =

 0 (−α1+iα2)z(ξ2−ξ2∗)eX
∗−X(X+X∗)

2ξ(ξ2−z2)

(α2+iα1)z(ξ2−ξ2∗)eX−X∗
(X+X∗)

2ξ∗(ξ∗2+z2)
0

 (3.78)

c2 and c4 are null matrices.The last four terms are:
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d1 =

 ξ∗2−ξ2
(ξ2−z2)(e2(X+X∗)+1)

+ 2iα1α2(ξ2−ξ∗2)(ξe2(X+X∗)+ξ∗)

ξ(ξ2−z2)(e2(X+X∗)+1)2
0

0 ξ2−ξ∗2
(ξ∗2+z2)(e2(X+X∗)+1)

− 2iα1α2(ξ2−ξ∗2)(ξ+ξ∗e2(X+X∗))

ξ∗(ξ∗2+z2)(e2(X+X∗)+1)2


d2 =

− (ξ2−ξ∗2)eX−X∗
sech(X+X∗)

2(ξ2−z2)
+ iα1α2(ξ2−ξ∗2)eX−X∗

sech(X+X∗)[(ξ−ξ∗) tanh(X+X∗)+ξ∗]
2ξ(ξ2−z2)

0

0 (ξ2−ξ∗2)eX−X∗
sech(X+X∗)

2(ξ∗2+z2)
+ iα1α2(ξ2−ξ∗2)eX−X∗

sech(X+X∗)[(ξ−ξ∗ tanh(X+X∗)−ξ]
2ξ∗(ξ∗2+z2)


d3 =

− (ξ2−ξ∗2)eX−X∗
sech(X+X∗)

2(ξ2−z2)
+ iα1α2(ξ2−ξ∗2)eX−X∗

sech(X+X∗)[(ξ−ξ∗) tanh(X+X∗)+ξ∗]
2ξ(ξ2−z2)

0

0 (ξ2−ξ∗2)eX−X∗
sech(X+X∗)

2(ξ∗2+z2)
+ iα1α2(ξ2−ξ∗2)eX−X∗

sech(X+X∗)[(ξ−ξ∗) tanh(X+X∗)−ξ]
2ξ∗(ξ∗2+z2)

0


d4 =

− (ξ2−ξ∗2)eX+X∗
sech(X+X∗)

2(ξ2−z2)
+ iα1α2(ξ−ξ∗)2(ξ+ξ∗)eX+X∗

[tanh(X+X∗)−1]sech(X+X∗)
2ξ(ξ2−z2)

0

0 (ξ2−ξ∗2)eX+X∗
sech(X+X∗)

2(ξ∗2+z2)
+ iα1α2(ξ+ξ∗)(ξ−ξ∗)2eX+X∗

[tanh(X+X∗)−1]sech(X+X∗)
2ξ∗(ξ∗2+z2)


(3.79)
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Giving the expression for the dressing factor we can compute explicitly the field
valued expression for the SSSSG theory:

γ = χ(0)−1 (3.80)

To obtain the inverse of the dressing factor one can consider the following reality
condition:

χ(z)−1 = Hχ(z∗)†H (3.81)

as for the dressing factor,we present the result as 16 (2 × 2)-blocks matrices, the
only non zero blocks are:

a1 =

[
−2iα1α2(ξ+ξ∗)(ξ∗2−ξ2)

ξξ∗(e2(X+X∗)+1)
0

0 2iα1α2(ξ∗2−ξ2)

ξξ∗(e2(X+X∗)+1)

]
(3.82)
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d1 =

 ξ2−ξ∗2
ξ∗2(e2(X+X∗)+1)

+ 2iα1α2(ξ∗2−ξ2)(ξ+ξ∗e2(X+X∗))

ξ∗3(e2(X+X∗)+1)2
0

0 ξ∗2−ξ2
ξ2(e2(X+X∗)+1)

− 2iα1α2(ξ∗2−ξ2)(ξe2(X+X∗)+ξ∗)

ξ3(e2(X+X∗)+1)2


d2 =

[
− (ξ∗2−ξ2)eX−X∗

sech(X+X∗)
2ξ∗2

+ iα1α2(ξ∗2−ξ2)eX−X∗
sech(X+X∗)[(ξ∗−ξ) tanh(X+X∗)+ξ]

2ξ∗3
0

0 (ξ∗2−ξ2)eX−X∗
sech(X+X∗)

2ξ2
+ iα1α2(ξ∗2−ξ2)eX−X∗

sech(X+X∗)[(ξ∗−ξ) tanh(X+X∗)−ξ∗]
2ξ3

]

d3 =

[
− (ξ∗2−ξ2)eX−X∗

sech(X+X∗)
2ξ∗2

+ iα1α2(ξ∗2−ξ2)eX−X∗
sech(X+X∗)[(ξ∗−ξ) tanh(X+X∗)+ξ]

2ξ∗3
0

0 (ξ∗2−ξ2)eX−X∗
sech(X+X∗)

2ξ2
+ iα1α2(ξ∗2−ξ2)e(X−X∗)sech(X+X∗)[(ξ∗−ξ) tanh(X+X∗)−ξ∗]

2ξ3

]

d4 =

[
− (ξ∗2−ξ2)eX+X∗

sech(X+X∗)
2ξ∗2

+ iα1α2(ξ∗−ξ)2(ξ+ξ∗)eX+X∗
[tanh(X+X∗)−1]sech(X+X∗)

2ξ∗3
0

0 (ξ∗2−ξ2)eX+X∗
sech(X+X∗)

2ξ2
+ iα1α2(ξ+ξ∗−ξ2)(ξ∗−ξ)2eX+X∗

[tanh(X+X∗)−1]sech(X+X∗)
2ξ3

]
(3.83)50



notice that if we turn to 0 the grassmann variables we obtain the purely bosonic
soliton solution showed in the case of SSSG theory. Giving the dressing factor it’s also
possible to compute the solution for the 2d-sigma model:

f = Υ0(1)−1χ(1)−1 (3.84)

51



Chapter 4

Conclusions

This work moves from the AdS/CFT correspondence, a duality which enstablish the
equivalance between a string theory and a conformal field theory. This conjecture re-
ceived much attention due to its potential application to the study of strong-coupled
gauge theories relative to the standard model. The most important and well understood
case of correspondence is the one which connects the Type IIB superstring theory on
Ads5×S5 to N = 4 super Yang-Mills theory in four dimensions. Among the many as-
pects of this duality, a very interesting one concerns the non-perturbative scheme in the
AdS side. The classical integrability of Type IIB superstring theory on Ads5×S5 plays
a prominent role in studying non-perturbative objects as solitons: parcticle-like exact
solutions of non-linear PDEs. This work really focused on computing the explicit soliton
solution for generalized sine-Gordon theories connected to superstring theory through
the so called ”Pohlmeyer reduction” procedure. In the first chapter, we presented the
string world sheet theory as a 2d sigma model on S5 symmetric space which is a coset
based on SO(6)/SO(5) and its generalization to semi-simmetryc space AdS5×S5 based
on PSU(2, 2|4) super-group (as we have previously seen, the last one is a generalization
which involves fermionic fields). In the second chapter, we described how to apply the
Pholmeyer reduction for both cases of interest. The procedure leads to equations of mo-
tion written in terms of new currents which involve only physical degrees of freedom, in
particular, we understood that the 2d sigma model on S5 and Ads5× S5 is equivalent to
a sine-gordon like theory perturbed by a potential term, respectively in a symmetric and
semi-symmetric space background. In the last chapter we explicitly constructed the soli-
ton solutions using the dressing method. We retraced the steps of this tecnique for SSSG
on S5 background, then, exploiting the invariance of the dressing data we could choose
an appropriate one to explicitly construct a soliton solution for the case of Ads5×S5[11]
with two Grassmann odd variables.The result is a generalization of the purely bosonic
case, that exhibits the right structure and well verifies all the properties provided by the
algebra structure and by the dressing method.
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Appendix A

Conformal Trnasformations in D=2

This chapter provide some basics concept on 2d CFT field theory. Compared to ordinary
quantum field theories in four dimensions, conformal field theories in two dimensions
can be defined in a rather abstract way via operator algebras and their representation
theory. In fact, there are many examples of CFTs where the usual description in terms of
a Lagrangian action with resulting perturbative expansion is not even known. Instead,
following a so-called boot-strap approach, one can define these theories without making
reference to an action and sometimes one can even solve them exactly. Such a procedure is
possible because the algebra of infinitesimal conformal transformations in two dimensions
is infinite dimensional and therefore highly constraining. The main feature of a conformal
field theory is the invariance under conformal transformations. In other word these are
transformations leaving angles invariant and a particular example is the scaling x →
ax of a point x by some constant a. A field theory exhibiting such a symmetry has
no preferred scale and one can only expect a physical system to have this property,
if there are no dimensionful scales involved. Although the mathematical property of
CFT in lower dimension, this type of theories posses a vast area of applications like the
description of critical fenomena and second order phase transitions. Here, the CFT arises
as a two-dimensional field theory living on the world-volume of a string which moves in
some background spacetime.The dynamics of this string is governed by a so-called non-
linear sigma model. Then, physical systems with a conformal symmetry are thus more
common than one would have naively expected. We can start by instroducing conformal
transformations and determing the condition for conformal invariance. Let us consider
differantiable maps φ: U → V,where U⊂ M and V ⊂ M ′ are open subsets. A map φ
is called Conformal Transformation if the metric tensor satisfies φ ∗ g′ = Λg. Denoting
x′ = φ(x) with x ∈ U we can express this condition in the following way:

g′ρσ(x′)
∂x′ρ

∂xµ
x′σ

xν
= Λ(x)gµν(x) (A.1)
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where the positive function Λ(x) is called ”scale factor”. In the case of interest, g =
g′ and the metric is of the form ηµν = diag(−1, ... + 1, ...).In this case the conformal
transformation became:

ηρσ
∂x′ρ

∂xµ
∂x′σ

∂xν
= Λ(x)ηµν (A.2)

For = 0 we recover simply the poincar group. Now consider an infinitesimal coordi-
nate transformation:

x′ρ = xρ + ερ(x) +O(ε2) (A.3)

we want find a restriction so that this transofmations it’s conformal. Transforming the
first member of (A.2) we have:

ηρσ
∂x′ρ

∂xµ
∂x′σ

∂xν
= ηµν +

∂εµ
∂xν

+
∂εν
∂xµ

+O(ε2) (A.4)

Then, the condition is:
∂µεν + ∂νεµ = K(x)ηµν (A.5)

where K(x) is a function which we can determine tracing the eqaution above with ηµν :

ηµν(∂µεν + ∂νεµ) = K(x)ηµνηµν2∂
µεµ = K(x)d (A.6)

Solving for K(x)d we have the following restriction of (A.3) to be conformal:

∂µν + ∂νεµ =
2

d
(∂ε̇)ηµν (A.7)

Obteined that restriction to the infinitesimal transformation of coordinate, we can define
the conformal group and conformal algebra in the case of D = 2. The condition A.6 for
invariance under infinitesimal conformal transformations in two dimensions is:

0ε0 = +∂1ε1 ∂0ε1 = −∂1ε0 (A.8)

we see that this equations are the familiar Cauchy-Riemann equations which specifies,
in an open set, how they should be the real and imaginary part of a complex function to
do holomorphic. Turning to complex variables in the following way:

z = x0 +ix1 ε = ε0 +iε1 ∂z =
1

2
(∂0−i∂1), z = x0−ix1 ε = ε0−iε1 ∂z =

1

2
(∂0 +i∂1),

(A.9)
Since ε(z) is holopmorphic, so is f(z) = z + ε(z) from which we conclude that:

A holomorphic function f(z) = z + ε(z) gives rise to an infinitesimal two-dimensional
conformal transformation z → f(z)
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remembering that ε(z) has to be holomorphic, we can expand it in laurent series:

z′ = z + ε(z) = z +
∑
n∈Z

εn(−zn+1), z′ = z + ε(z) = z +
∑
n∈Z

εn(−z(n+1), (A.10)

The generators are:
ln = −zn+1∂z ln = −zn+1∂z (A.11)

So, the number of indipendento infinitesimal transformations is infinite. Compute the
commutator between that generators we have:

[lm, ln] = (m− n)lm+n (A.12)

[lm, ln] = (m− n)lm+n (A.13)

[lm, ln] = 0 (A.14)

then we can say that:

The algebra of infinitesimal conformal transformations in an Euclidean
two-dimensional space is infinite dimensional

This is a very important property of two dimension conformal transformations, be-
cause is crucial for proving the integrability of conformal field theory. Note that, consid-
ering the algebra generated by ln, the generators are not defined everywhere in R2 = C
In particular we have the z = 0 point and the point inf which are ambiguous. To re-
solve this ambiguity we have to consider not R2 but his conformal compactification S2.
Analyzing the expression of the generators in z = 0, z =∞:

• z=0:
ln = −zn+1∂z, (A.15)

non singular at z=0 only for n ≥ −1

• z =∞, performing the change of variablesz = − 1
w

and study for w → 0

ln = −(− 1

w
)n−1∂w (A.16)

non singular at w = 0 only for n ≤ +1

So we can conclude that:

Globally defined conformal transformations on the Riemann sphere S2 = C ∪∞ are
generated by {l−1, l0, l+1} .

After having determined the operators generating global conformal transformations we
wll now determine the conformal group. We have:
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• l−1 generates the translations z → z + b

• l0 generates transformations of the type:z → az with a ∈ C.

• The operator l+1 corresponds to Special Conformal Transformations.

In summary, we have that the operators{l−1, l0, l+1} generate trasformations of the form:

z → az + b

cz + d
a, b, c, d ∈ C (A.17)

The conformal group of the Riemann sphere S2 = C ∪∞ is the mobius group
SL(2, C)/Z2

Usually, a Field Theory is defined in terms of a Lagrangian action from which one can
derive various objects and properties of the theory.Since the algebra of infinitesimal
conformal transformations in two dimensions is infinite dimensional, there are strong
constraints on a conformal field theory. In particular, it turns out to be possible to
study such a theory without knowing the explicit form of the action. The only infor-
mation needed is the behaviour under conformal transformations which is encoded in
the energymomentum tensor. Then we concluding this brefly review with the following
remarkable property of conformal field theories:

In a conformal field theory, the energymomentum tensor Tµν is traceless, that is, T µµ

This result leads directly from the study of energy-momentum tensor under conformal
transformations. In two dimensional theories, in particular have:

The two non-vanishing components of the energymomentum tensor are a chiral and an
anti-chiral field

Tzz(z, z) =: T (z), Tzz(z, z) =: T (z) (A.18)
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Appendix B

PSU(2, 2|4) realization

In this appendix we provide a particular matrix rapresentation of psu(2, 2|4) used ex-
plicitly in the chapter 3.

The generic element of the algebra psu(2, 2|4) can be written as follows:

f̂ =

[
m θ
η n

]
, Tr(m) = Tr(n) = 0 (B.1)

The non compact real form psu(2, 2|4) is picked out Imposing the reality condition:

f̂ = −Hf̂ †H, (B.2)

where:

H =

[
Σ 0
0 I4

]
Σ =

[
I2 0
0 I2

]
(B.3)

m,n are 4×4 matrices whose elements are Grassmann even and θ, η are Grassmann odd.
The algebra psu(2, 2|4) admits a Z4 automorphism defined:

f̂ → σ−(f̂) = KM stK−1 (B.4)

where:

K =

[
J 0
0 J

]
J =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 (B.5)

And the st denotes the super-transposition defined as:

f̂ st =

[
mt −ηt
θt nt

]
(B.6)
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We can decompose f̂ throught a Z4 automorphism as follows:

f̂ = f̂0 ⊕ f̂1 ⊕ f̂2 ⊕ f̂3 σ−(f(j)) = ijf(j) (B.7)

the bosonic subspaces f0, f2 are rapresented by matrices of the form:

f =

(
m 0
0 n

)
Σm†Σ = −m, n† = −n, (B.8)

in particular, the subspace f0 is formed by matrices satisfying also:

− Σmt
0Σ = m0, Σnt0Σ = n0, (B.9)

Furthermore we have these conditions on f2 subspace

Kmt
(2)K = mt

(2) Knt(2)K = nt(2) (B.10)

Now we want explicit the fermionic sector f1 ⊕ f3. The form of matrices in f1 is:(
0 θ
η 0

)
KηtK = iθ, iΣη† = θ (B.11)

Since Σ = K gives η†+ = −ηtK.
The reality condition for the subspace f3 is:

iθ(3) = Kηt(3)K (B.12)

The subspaces of this decomposition fulfil the following commutation relation:

[f̂m, f̂n] ⊂ f̂
mod(4)
m+n (B.13)

identifyng f̂0 = g and f̂2 = p then g forms a subalgebra. It is possible to perform a Z2

decomposition allowing to define the group H in the G/H gauged WZW model. If we

identify h = f̂⊥0 ,m = f̂
‖
0 ,a = f̂⊥2 , n = f̂

‖
2 . h is thus a subalgebra and the corresponding

subgroup is then identified as the group H in the G/H gauged WZW model. It is possible
to show that h has the following form:

su(2) 0 0 0
0 su(2) 0 0
0 0 su(2) 0
0 0 0 su(2)

 (B.14)

The physical fields of the Pohlmeyer-reduced theory, X, ψR and ψL , take values in
f̂
‖
0 ,f̂
‖
1 and f̂

‖
3 respectively. Here we explcitly write out the basis of these subspaces. An
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arbitrary element of bosonic subspace f̂
‖
0 is:

0 0 x1 + ix2 −x3 − ix4 0 0 0 0
0 0 −x3 + ix4 −x1 + ix2 0 0 0 0

x1 − ix2 −x3 − ix4 0 0 0 0 0 0
−x3 + ix4 −x1 − ix2 0 0 0 0 0 0

0 0 0 0 0 0 x5 + ix6 x7 + ix8

0 0 0 0 0 0 −x7 + ix8 x5 − ix6

0 0 0 0 −x5 + ix6 x7 + ix8 0 0
0 0 0 0 −x7 + ix8 −x5 − ix6 0 0


(B.15)

where xi are commuting variables. An arbitrary element of fermionic subspace f̂
‖
1 is:

0 0 0 0 0 0 α1 + iα2 α3 + iα4

0 0 0 0 0 0 −α3 + iα4 α1 − iα2

0 0 0 0 α5 − iα6 −α7 − iα8 0 0
0 0 0 0 α7 + iα8 α5 − iα6 0 0
0 0 iα5 + α6 iα7α8 0 0 0 0 0
0 0 iα7 + α8 iα5 + α6 0 0 0 0

iα1 + α2 iα3 + α4 0 0 0 0 0 0
iα3 + α4 iα1 − α2 0 0 0 0 0 0


(B.16)

where αi are anticommuting variables. The arbitrary element of the fermionic subspace
f̂
‖
3 can be written in terms of f

‖
1 (αi) as :

f
‖
3 (αi) = 2Λf

‖
1 (αi) (B.17)
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