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Abstract

In this thesis we study the anomalies of a chiral fermion in a gauge background, using a different

regularization from those already present in literature. The aim is to study all the anomalies involving

the stress tensor. The final motivation is to eventually focus on the trace anomaly, which has been

of some interest recently.

Thus, after a brief introduction to the issue of anomalies in QFT, we proceed by studying the

symmetries of a massless left-handed Weyl fermion coupled to an abelian gauge background and

gravity as well (used as an external source for the stress tensor). The regularization of the corre-

sponding QFT is then implemented through Pauli-Villars (PV) fields having a Dirac mass. Particular

emphasis is put on the unusual mass term used at this stage, consisting of a customary Dirac mass

multiplied by the vierbein determinant e raised to the generic power α.

After devoting a chapter to the mathematical tool of the heat kernel, we restrict ourselves to flat

space, present the regulators of the model, the “jacobians” associated to each of its symmetries, and

all the useful heat kernel coefficients needed for the anomaly calculations.

Finally, we evaluate all the anomalies of our model: the usual chiral anomaly and the anomalies

in the stress tensor, namely the trace anomaly and the anomalies in the symmetry of the stress

tensor and in its conservation (i.e. local Lorentz and gravitational anomalies). The latter is the most

demanding task, as it requires the use of particular heat kernel coefficients which have been rarely

treated in the literature.

The computation of these anomalies is the leading task accomplished in this thesis. Of course,

one does not expect all of these anomalies to be genuine, as some are expected to be canceled by

the variation of local counterterms, leaving at the end only the chiral and trace anomalies with their

known expressions. That this is the case is left for future research.



Abstract

Nel corso della presente tesi, studiamo le anomalie di un fermione chirale posto in un background

di gauge, usando una regolarizzazione differente da quelle finora usate in letteratura. Il nostro

obbiettivo consiste nello studio di tutte le anomalie coinvolgenti il tensore energia impulso. Tuttavia,

le motivazioni ultime sono da ricercare, eventualmente, nell’approfondimento dell’anomalia di traccia,

che recentemente è stata oggetto di grande interesse.

Quindi, dopo una breve introduzione al problema delle anomalie in QFT, procediamo a studiare

le simmetrie di un fermione sinstrorso di Weyl, privo di massa, accoppiato ad un background di

gauge abeliano ed alla gravità (usata come sorgente del tensore energia impulso). Si implementa poi

la regolarizzazione della corrispondente teoria quantistica tramite campi di Pauli-Villars dotati di

massa di Dirac. Enfasi particolare è posta sull’insolito termine di massa utilizzato, che consiste in

un’usuale massa di Dirac moltiplicata per l’α−esima potenza del determinante del vierbein e.

Dopo un intero capitolo dedicato allo strumento matematico dell’heat kernel, restringendoci su

uno spazio-tempo piatto, presentiamo i regolatori del modello, gli “jacobiani” associati ad ogni sua

simmetria, e tutti i principali coefficienti di heat kernel, necessari al calcolo delle anomalie.

Infine valutiamo tutte le anomalie del nostro modello, tra cui l’anomalia chirale e quelle che afflig-

gono il tensore energia impulso, ovvero l’anomalia di traccia e quelle nella simmetria e conservazione

del tensore energia impulso (anomalia di Lorentz locale e anomalia gravitazionale). L’ anomalia

gravitazionale rappresenta il compito più arduo, poiché richiede l’uso di coefficienti di heat kernel

raramente trattati in letteratura.

Il computo di tali anomalie è dunque la principale conquista portata a termine nel corso dell’elaborato.

Naturalmente, ci si aspetta che, tramite la variazione di opportuni controtermini locali, soltanto le

anomalie di traccia e chirale, con le loro solite espressioni, sopravvivano. Che questo sia o meno il

caso è però lasciato a ricerche future.



Contents

1 Introducing the anomalies 4

1.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Fujikawa’s method and consistent regulators . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Fujikawa’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 Consistent regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Symmetries and the Dirac mass 15

2.1 Pauli-Villars fields with Dirac mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Regulators and jacobians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Heat kernel 26

3.1 Seeley-DeWitt coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 G(x) contains a differential operator: gravitational anomaly . . . . . . . . . . . . . . 28

3.2.1 Generalized heat kernel expansion in the gravitational anomaly case . . . . . . 29

4 Heat kernel coefficients 32

4.1 λ−sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 λc−sector and c−prescription . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 ρ−sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4 ρc−sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5 ba,2(x,R)−computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Anomalies 41

5.1 Trace anomaly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Chiral anomaly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3 Lorentz anomaly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.4 Gravitational anomaly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 Conclusions 50

A Spinor conventions 53

B Gamma matrices: conventions and formulae 55

2



C Complete and explicit calculations 67

C.1 Integration by parts of eq. (3.26) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

C.2 Computations of chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

C.2.1 WaW
a and ZaZ

a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

C.2.2 ∇aV and ∇aU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

C.2.3 ∇a∇aV and ∇a∇aU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

C.2.4 Fab and Eab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

C.2.5 FabFab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

C.2.6 EabEab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

C.2.7 a2(x,Rλ) and a2(x,Rρ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

D Right−sector pseudo prescription 83

E Null traces of section 4.5 86

F Traces involving heat kernel coefficients 89

F.1 Trace and chiral anomaly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

F.2 Lorentz anomaly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

F.3 Gravitational anomaly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

G Demonstration: from (B.28) to (B.29) 103

3



Chapter 1

Introducing the anomalies

Quantum Field Theories (QFTs) constitute the main tool to study the fundamental interactions, in

particular when applied to gauge theories and gravity. One particular aspect of QFTs deals with the

implementation of symmetries and their preservation at the quantum level. It is well-known that the

quantization procedure, which often requires the introduction of a regularization scheme, brings in

a conflict between different symmetries, so that they cannot be maintained all together (at least if

certain cancellation criteria are not met). For instance, it may happen that the regulators employed to

cure the divergencies in the Feynman diagrams, such as the ones encountered in 1-loop processes, do

not respect the original classical symmetries, causing their breaking at the quantum level. Likewise,

the functional measure that arises in a path integral quantization often does not exhibit the same

invariance properties of the classical action, so that some symmetries can get lost. In plain words,

not all the symmetries survive the second quantization: in these cases, as it is customary to say, we

are in the presence of a quantum anomaly.

The first anomaly was discovered in the late ’60s, the so-called chiral (or Adler-Bell-Jackiw)

anomaly [1, 2], and falls within the category of the global anomalies. It describes the non-conservation

of the axial symmetry

ψ −→ ψ′ = eiγ5θψ (1.1)

present in massless QED, and is expressed through the following non zero expectation value

∂µ〈Jµ5 〉 =
e2

16π2
εµνλσFµνFλσ.

Indeed, one of the ways we have to infer whether an anomaly is present is in verifying the quantum

non-conservation of a Noether current. Phenomenologically this chiral anomaly has been very im-

portant. If the quantized theory were invariant under (1.1), with ψ considered now as the field of a

quark, the decay of a (massless) neutral pion into two photons (see fig. 1.1) would be forbidden. In

fact, the amplitude describing the transition would vanish classically because of the Ward identity

associated to the chiral symmetry, not allowing the pion at rest to undergo this decay. In the quan-

tum world, though, the width associated with this process is no longer negligible (as the anomaly

itself can now balance the Ward identity), and the phenomenon can therefore be observed in actual

experiments.

Of course, there can be anomalies ensuing from local symmetries as well, like the ones associated

to gauge theories. In these cases, since chiral gauge symmetries are at the cornerstones of the

4



Figure 1.1: π0 → γγ

electroweak sector of the Standard Model with gauge group

GEW = SU(2)× U(1),

disastrous consequences may come out fatal for the overall consistency of the theory, and one must

check that these potential anomalies are canceled by the field content of the Standard Model [3].

The four conditions listed below

Tr [{τa, τb}τc] = 0,

Tr [τaY Y ] = 0,

Tr [{τa, τb}Y ] = 0,

Tr [Y Y Y ] = 0,

(1.2)

where τa (a = 1, 2, 3) and Y are the generators of SU(2) and U(1) respectively, have to be fulfilled

for the standard model to be anomaly-free. Similar anomalies appear in theories coupled to gravity,

and the corresponding gravitational anomalies have been instrumental to construct consistent string

theories and their effective actions.

Among the anomalies, also the so-called trace anomalies [4] have been found to be of paramount

importance. They appear in conformal theories, renowned for their scale invariance, which often have

classically a traceless stress tensor. Nevertheless, at the quantum level, an anomaly may appear,

especially if the theory is coupled to suitable backgrounds, e.g. by putting it in a curved space. In

this respect, there have been recent claims that a particular CP-violating contribution [5, 6, 7, 8],

proportional through an imaginary coupling to the Pontryagin density

P =
1

2
εabcdRabmnRcd

mn, (1.3)

appears in the trace of the stress tensor of chiral theories coupled to gravity:

〈T aa〉 =
1

180(4π)2

(11

4
E − 9

2
W2 − i15

4
P
)
, (1.4)

where W2 is the Weyl density

W2 = RabcdR
abcd − 2RabR

ab +
1

3
R2
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and E the Euler one

E = RabcdR
abcd − 4RabR

ab +R2

(with Rabcd, Rab and R standing for the Riemann tensor, Ricci tensor and scalar curvature respec-

tively). By any means, because of its accordance with the Sakharov conditions, (1.4) might provide

a so far unexplored and new mechanism for baryogenesis. Furthermore, this imaginary contribution,

being potentially fatal for unitarity, could be used as a new requirement for anomaly cancellation,

introducing an additional consistency criterion for a theory [6]. However, these assertions have not

found confirmation by other groups [9, 10], which instead finds for a chiral fermion just half the trace

anomaly of a Dirac spinor, i.e.

〈T aa〉 =
1

180(4π)2

(11

2
E − 9W2

)
(1.5)

with no appearence of the Pontryagin density.

A similar situation arises also in the coupling of a chiral fermion to background gauge fields. Also

in this case a conjectured contribution to a topological density, now depending on the background

gauge fields, has been put forward [5]. However, explict calculations again have not found its presence

[11, 12]. The method used there consisted in employing a Pauli-Villars (PV) regularization with PV

fields with Majorana mass. The calculation is then recasted as a standard Fujikawa “jacobian”

calculation, as shown in [13], which is then implemented with heat kernel techinques.

Given this state of affairs, we wish to study again the case of a chiral fermion coupled to an abelian

background gauge field, but regulating it with PV fields with a Dirac mass term. This mass term is

much more difficult to treat, as it ruins also general coordinate and local Lorentz invariance once the

model is put in curved space. Thus more anomalies are expected, though one expects that variation

of local counterterms should relate them to those obtained with the PV Majorana mass, getting in

particular a vanishing contribution of the Chern-Pontryagin topological density to the trace anomaly.

In this thesis we aim to compute the anomalies with the PV Dirac mass regularization, leaving the

issue of possible counterterms to future work.

1.1 The model

We consider a chiral (left-handed) spinor λ coupled to an abelian gauge field Aa, whose lagrangian

takes the form

LW = −λγa(∂a − iAa)λ = −λγaDa(A)λ = −λD/ (A)λ (1.6)

(see notations in appendix A and B). Analogously to the coupling to gravity, also this abelian gauge

coupling may give rise to a trace anomaly with an imaginary contribution proportional to the odd-

parity Chern-Pontryagin topological density FF̃ , as suggested in [5]. Since the Chern-Pontryagin

density FF̃ satisfies the consistency conditions [14] for trace anomalies, this is indeed not exclued.

On the other hand its trace anomaly has been computed only recently in [11], through a Pauli-

Villars regularization involving Pauli-Villars field with Majorana mass. The calculation reproduced

the usual gauge U(1) anomaly on top of an explicit gauge invariant form of the trace anomaly, in

contrast to the conjectures made in [5] about the existence of FF̃ in the structure of the latter. In

this paper, we wish to check again the results of [11] using Pauli-Villars fields with Dirac mass as
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alternative regulators. The Dirac mass breaks additional symmetries with respect to the Majorana

mass, so it may induce anomalies in the conservation of the stress tensor (gravitational anomalies)

and on its antisymmetric part (local Lorentz anomalies), in addition to the expected trace and

chiral anomalies. We shall compute all these anomalies, which is a necessary step before studying

eventual counterterms whose symmetry variation should reinstate both conservation and symmetry

of the stress tensor. In the present case calculations are more demanding then those of ref. [11],

since the gravitational anomaly requires more general heat kernel formulae. As a matter of fact,

the computation of the gravitational anomaly constitutes the main technical task carried out in this

paper. Moreover, for the occasion we improved the notebook that was developed in [15] so that,

after every calculus, we could check the ensuing result.

In any case, before starting our analyses of the anomalies, we first need to review the general

setup we are going to use, which includes the Fujikawa’s method and the scheme of ref. [13] for

extracting consistent regulators.

1.2 Fujikawa’s method and consistent regulators

The setup we are going to review was devised to insure that the anomalies indeed satisfy the integra-

bility conditions reported in [14]. It relates the calculation of the anomalies done with the Fujikawa’s

method to that of some Feynman graphs regulated via Pauli-Villars fields.

1.2.1 Fujikawa’s method

Fujikawa [16, 17] approached the problem of the anomalies by considering the path integral

Z =

∫
Dυ eiS[υ] (1.7)

and recognizing that the functional measure Dυ can be regarded as responsible for their appearance.

In fact, its lack of invariance under a certain symmetry of the classical action S[υ] causes the full

path integral Z to be non invariant. For instance, let us suppose the aforementioned symmetry is a

Lie symmetry that depends on a constant parameter θ, acting on the field υ and the coordinates x

through the following laws

xν −→ x′ν = qν(x, θ) (1.8)

υ(x) −→ υ′(x′) = Q(x, υ(x), ∂νυ(x), θ) , (1.9)

which restrict to the identity transformations whenever θ = 0. This suggests that the infinitesimal

form of (1.9), valid if θ � 1, can be stated as

δθυ(x) = υ′(x)− υ(x) = θ I(x, υ(x), ∂νυ(x)) , (1.10)

where I is a generic function descending directly from Q and q.

Now, we bestow a space-time dependence upon θ, so that it gets promoted from constant to real

valued function θ(x), and (1.10) becomes

δθ(x)υ(x) = θ(x) I(x, υ(x), ∂νυ(x)) . (1.11)
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Even though in the very beginning, by definition of symmetry, we had

δθS[υ] = 0 ,

as soon as (1.11) is involved, the status of symmetry is generally lost and the new variation of the

action has to be necessarily expressed as

δθ(x)S[υ] =

∫
dnx ∂ν

(
θ(x)

)
Cν(x) , (1.12)

which guarantees the restoring of the symmetry, δθ(x)S[υ] = 0, every time that θ(x) = const. As

concerns Cν(x), it represents the classically conserved Noether current of the model: if (1.12) is eval-

uated on-shell, then not only the least action principle ensures a null result, but since an integration

by parts produces

δθ(x)S[υ] = −
∫
dnx θ(x)∂ν

(
Cν(x)

)
= 0 , (1.13)

the continuity equation

∂ν
(
Cν(x)

)
= 0

follows as expected.

Anyway, getting back to the problem at hand, we subject (1.7) to a series of algebraic manipu-

lations: first, we rename the dummy integration variable∫
Dυ eiS[υ] =

∫
Dυ′ eiS[υ′] , (1.14)

and, by identifying υ′ with the old variable υ increased by the infinitesimal space-time-depending

variation (1.11), we execute the following change of the functional integration variable in the RHS

of (1.14)

υ′ = υ + δθ(x)υ . (1.15)

Thus, in doing so, we have to recall that the measure changes according to

Dυ′ = Dυ Det

∣∣∣∣∂υ′∂υ

∣∣∣∣ =

= Dυ Det

∣∣∣∣∣∂υ∂υ +
∂
(
δθ(x)υ

)
∂υ

∣∣∣∣∣ =

= Dυ Det

∣∣∣∣∣1 +
∂
(
δθ(x)υ

)
∂υ

∣∣∣∣∣ =

≈ Dυ

(
1 + Tr

[
∂
(
δθ(x)υ

)
∂υ

])
,
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where we were able to exploit the fact that Det|1 +A| ≈ 1 + Tr[A], if A� 1. Meanwhile, the action

undergoes to

S[υ′] =S[υ + δθ(x)υ]︸ ︷︷ ︸
functional Taylor expand

=

≈ S[υ] +
δθ(x)S[υ]

δθ(x)υ
δθ(x)υ =

= S[υ] + δθ(x)S[υ] ,

causing its exponential to be Taylor expanded as

eiS[υ′] = eiS[υ+δθ(x)υ] =

≈ eiS[υ]+iδθ(x)S[υ] =

≈ eiS[υ] (1 + iδθ(x)S[υ]) .

Therefore, putting all together in (1.14), we recognize (at first order)∫
Dυ eiS[υ] =

∫
Dυ′ eiS[υ′] =

≈
∫
Dυ

(
1 + Tr

[
∂
(
δθ(x)υ

)
∂υ

])
eiS[υ] (1 + iδθ(x)S[υ])︸ ︷︷ ︸

keep the 1st order

=

≈
∫
Dυ eiS[υ] +

∫
Dυ Tr

[
∂
(
δθ(x)υ

)
∂υ

]
eiS[υ] + i

∫
Dυ δθ(x)S[υ] eiS[υ] ,

which in turn could be inverted to find that∫
Dυ Tr

[
∂
(
δθ(x)υ

)
∂υ

]
eiS[υ] + i

∫
Dυ δθ(x)S[υ] eiS[υ] = 0 . (1.16)

For the sake of convenience, we then proceed by relabeling the infinitesimal part of the jacobian1 as

J =
∂
(
δθ(x)υ

)
∂υ

,

1Albeit not reported, the jacobian itself carries a space-time dependence that, when made explicit, should read as

∂
(
δθ(x)υ

)
∂υ

≡
δ
(
δθ(x)υ(x)

)
δυ(y)

.

Of course, this calls for an expression of its trace of the form

Tr

[
∂δθ(x)υ

∂υ

]
=

∫
d4x d4y

δ
(
δθ(x)υ(x)

)
δυ(y)

δ4(x− y) ,

where the Dirac distribution is needed to ensure locality.
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after which we divide (1.16) by the original path integral Z. Operating in this way, we can provide

a legitimate expression for the quantum anomaly in terms of normalized correlation functions

1

Z

∫
Dυ Tr [J ] eiS[υ] +

i

Z

∫
Dυ δθ(x)S[υ] eiS[υ] =

≡ 〈Tr[J ] 〉+ i〈 δθ(x)S[υ] 〉 =

= Tr[J ] + i〈 δθ(x)S[υ] 〉 = 0 ,

which presumed Tr[J ] to be independent of any quantum field. In the very end, this last equation

gets tidied in

i〈 δθ(x)S[υ] 〉 = −Tr[J ] , (1.17)

and further developed in

i〈δθ(x)S[υ]︸ ︷︷ ︸
(1.13)

〉 = −i
∫
dnx θ(x)∂ν〈Cν(x) 〉 = −Tr[J ] ,

revealing us that the true origin of the anomaly is to be found in the non-triviality

J 6= 0 (1.18)

of the jacobian we employed in the change of variable. In addition, we see that the Noether current

Cν(x) cannot be quantum preserved,

∂ν〈Cν(x) 〉 6= 0 ,

as long as condition (1.18) on J is met.

We’re almost there. In fact, a well-defined prescription on how to compute the trace in (1.17),

without incurring in any infinity, is the only thing missing. Fujikawa managed to figure out how

to do that. Using a suitable negative-definite2 operator R, the so-called regulator, weighted by the

inverse of a squared mass, M2, he first put the exponential of the ratio − R
M2 in the above-mentioned

trace, alongside with J , and then took the infinite mass limit, thus obtaining the one-loop regulated

anomaly

i〈 δθ(x)S[υ] 〉 = − lim
M→∞

Tr[J e−
R
M2 ] (1.19)

with eventual divergent terms (for M → ∞) in the expression assumed to be canceled by renor-

malization. Despite this achieves a fair regularization, one should bear in mind that an anomaly is

eventually recognized as such only if it cannot be erased by the variation of a local counterterm. In

this set-up, the main problem is how to identify those regulators that indeed produce the consistent

anomalies, i.e. those that arise from the symmetry variation of an effective action.

The next section will help us to clarify how the extraction of an adequate regulator may be

obtained.

2More correctly, Fujikawa envisaged R to be negative-definite only after a Wick rotation.
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1.2.2 Consistent regulators

A procedure for identifying consistent regulators, i.e. those regulators that indeed produce consistent

anomalies in the Fujikawa scheme, has been put forward in [13], by considering a Pauli-Villars

regularization of the quantum theory.

Being mostly interested in describing the physics of a massless field or set of fields, collectively

denoted by ϕ, we rewrite the lagrangian of the corresponding model as

L =
1

2
ϕTTOϕ , (1.20)

to maintain the same notation of [13]. Moreover, we are going to assume that (1.20) is invariant

under the linear transformation

δϕ = Kϕ . (1.21)

To keep the argument as general as possible, one assumes that the kinetic operator TO might depend

on some background fields as well.

Furthermore, since we intend to cancel all the divergences that this theory possesses at one-loop,

we must introduce a Pauli-Villars (PV) field, say φ, endowed with a mass M . This comes along with

a lagrangian density of the following kind

LPV =
1

2
φTTOφ+

1

2
MφTTφ , (1.22)

here written in the same way as (1.20), and again T is allowed to depend on the eventual background

fields. After that, we subtract the massive PV one-loop to the original one, and, as is the custom

with this type of regularization, we implement the limit M →∞, which should decouple the massive

PV fields from the theory. To this end, the symmetry (1.21) has to be extended to the kinetic part

of (1.22), too,

δφ = Kφ,

meaning that the symmetry can be broken solely by the massive part of LPV , i.e. that marked by

the matrix T , assumed to be invertible. In that case, we have

δLPV =
1

2
M(φTKTTφ+ φT δTφ+ φTTKφ) =

=
1

2
MφT (KTT + δT + TK)φ .

(1.23)

It is worth to notice that if we could spot a PV field such that δLPV = 0, then no quantum anomaly

would show at all, and the ensuing theory would be anomaly free. In view of the intended use of the

mechanism we are developing, from now on φ and φT will be considered as spinor. This implies that,

by dropping the hypercondensed notation3 quietly adopted until now, it would be easy to see that

only the antisymmetric part of TO and T will contribute in (1.22). Said differently, TO and T are

3In a hypercondensed notation all the indices outlining the multi-component structure of the fields (together with

any space-time dependence) are omitted.

11



antisymmetric matrices (i.e. operators). This fact is used to manipulate the implicit index structure

of (1.23) into

δLPV =
1

2
MφT (δT + 2TK)φ . (1.24)

At this stage, the regularization procedure can at last be implemented. This is easily accomplished

by modifying the path integral defining the one-loop effective action Γ, that is

Z = eiΓ =

∫
Dϕ eiS[ϕ] , (1.25)

by adding the PV action SPV [φ] to the one already displayed in (1.25). This entails that the infinite

mass limit and the further functional integration upon φ have to be evaluated:

Zreg = eiΓreg =

∫
DφDϕ eiSreg [ϕ,φ] ≡ lim

M→∞

∫
DφDϕ ei(S[ϕ]+SPV [φ]) . (1.26)

Now, it is the variation of (1.26) with respect to the extended version of (1.21) that allows for the

anomaly to emerge. Moving in this direction, we get that

i δΓreg e
iΓreg =

∫
DφDϕ (i δSreg) e

iSreg [ϕ,φ] = lim
M→∞

∫
DφDϕ (i δSPV )ei(S[ϕ]+SPV [φ]) , (1.27)

where, based on the above, only the variation of SPV , or rather its massive part, will be present in

(1.27). Now, reintroducing indices and space-time dependence, we have

δSPV =

∫
d4x d4y δLPV (x, y) =

=
M

2

∫
d4x d4y φTi (x)

(
δT ij(x, y) + 2

(
TK

)ij
(x, y)

)
φj(y) .

(1.28)

Thus, the quotient of (1.27) by (1.26) brings in the new equation

i δΓreg =
1

Zreg

∫
DφDϕ (i δSreg) e

iSreg [ϕ,φ]︸ ︷︷ ︸
i〈δSreg〉

=
1

Zreg
lim
M→∞

∫
DφDϕ (i δSPV︸ ︷︷ ︸

(1.28)

)ei(S[ϕ]+SPV [φ])

⇓

i δΓreg = i〈δSreg〉 =
i

Zreg
lim
M→∞

∫
DφDϕ

M

2

∫
d4x d4y φTi (x)X ij(x, y)φj(y)ei(S[ϕ]+SPV [φ]) , (1.29)

where we identified

X ij(x, y) =
((
δT ij(x, y) + 2

(
TK

)ij
(x, y)

)
. 4 (1.30)

4We cannot help but notice that in writing (1.28) down we employed two different event dependences for φ and its

transposed φT . Despite being the most general course of action, this is clearly contrary to the requirement of locality.

This implies that X ij(x, y) and the matrices contained therein should be accordingly amended, if necessary, to include

at least a delta distribution δ4(x− y).
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We manipulate the outer RHS of (1.29), by taking the reciprocal of the regulated path integral Zreg
inside the limit and reversing the order of space-time and functional integrations. In so doing, we

are allowed to write

i δΓreg = i〈δSreg〉 =
i

2
lim
M→∞

M

∫
d4x d4y X ij(x, y)

1

Zreg

∫
DφDϕ φTi (x)φj(y)ei(S[ϕ]+SPV [φ])︸ ︷︷ ︸

〈φ(y)φT (x)〉ji

=

=
i

2
lim
M→∞

M

∫
d4x d4y X ij(x, y) 〈φ(y)φT (x)〉ji =

=
i

2
lim
M→∞

M

∫
d4x d4y X ij(x, y)

( i

TO + TM

)
ji

(y, x) =

= −1

2
lim
M→∞

M

∫
d4x d4y X ij(x, y)

(
TO + TM

)−1
ji(y, x) , (1.31)

in which the exact definition of the 2-point Green’s function

〈φ(xa)φ
T (xb)〉mn = − 1

Zreg

∫
DφDϕ φm(xa)φn(xb)e

i(S[ϕ]+SPV [φ]) ,

with the opposite sign due to the Pauli-Villars nature of φ, and the corresponding fermionic propa-

gator5

〈φφT 〉 =
( i

TO + TM

)
have been used.

Finally, the ultimate form of (1.31) can be now explored. All it takes is for us to acknowledge that

the complete index contraction and the two space-time integrals there performed might be equally

expressed as the trace of the operator product they affect: X(TO + TM)−1. In fact, we have:

i〈δSreg〉 = −1

2
lim
M→∞

M

∫
d4x d4y X ij(x, y)

(
TO + TM

)−1
ji(y, x) =

= −1

2
lim
M→∞

M Tr
[
X︸︷︷︸

(1.30)

(
TO + TM

)−1]
=

= −1

2
lim
M→∞

M Tr
[(
δT + 2TK

)(
TO + TM

)−1]
=

= −1

2
lim
M→∞

M Tr
[(
δT + 2TK

)(O
M

+ 1
)−1(

TM
)−1
]

=

(B.16)
= − lim

M→∞
Tr
[(1

2
T−1δT +K

)(O
M

+ 1
)−1]

=

= − lim
M→∞

Tr
[(1

2
T−1δT +K

)(
1− O

M

)(
1− O

M

)−1

︸ ︷︷ ︸
1

(O
M

+ 1
)−1]

=

= − lim
M→∞

Tr
[(1

2
T−1δT +K +

δO
2M

)(
1− O

2

M2

)−1]
. (1.32)

5As usual, the fermionic propagator is deduced from the inverse of the operator specified in the PV lagrangian

(1.22).
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The last equality follows from a result derived in [18], where the well-known invariance of (1.20)

under (1.21)

δL =
1

2
ϕT (δTO + TδO + 2TOK)ϕ = 0

has been employed. Next, by approximating(
1− O

2

M2

)−1

≈ e
O2

M2 ,

eq. (1.32) becomes

i〈δSreg〉 = − lim
M→∞

Tr
[(
K +

1

2
T−1δT +

δO
2M

)
e
O2

M2

]
, (1.33)

whose comparison with (1.19) results in a precise and consistent expression for the infinitesimal

jacobian

J =
(
K +

1

2
T−1δT +

δO
2M

)
, (1.34)

and regulator

R = −O2 , (1.35)

formerly discussed in section 1.2.1 (we are implicitly requesting for the operator −O2 to be negative-

definite after a Wick rotation).

In conclusion, this improved Fujikawa method permits one to regulate the jacobian that produces

the consistent anomaly by cutting off all the ultraviolet frequencies, because of the mass M , and

recognize the anomaly as the finite mass-independent terms in (1.33) (as possible diverging terms

are canceled by renormalization).
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Chapter 2

Symmetries and the Dirac mass

To study our model, and in particular the structure of its stress tensor, it is useful to couple it to

background gravity, so that one can use the vierbein as a source of the stress tensor. After insertion

of one stress tensor into correlation functions, we restrict ourselves to flat space, as we are interested

in the contribution to the anomalies of the U(1) gauge field only.

The coupling to gravity of the lagrangian in (1.6) reads

LW = −e λγµ∇µλ = −e λ∇/ λ (2.1)

where γµ = eµaγ
a are the gamma matrices with curved indices1, eµa is the inverse of the vierbein

eµ
a, and ∇µ is the covariant derivative

∇µ = ∂µ − iAµ + 1
4
ωµab(e)γ

aγb , (2.2)

containing the U(1) gauge potential Aµ and the spin connection ωµab(eµ
a), which is another function

of the vierbein. The action SW =
∫
d4xLW is gauge invariant and invariant under general coordinate,

local Lorentz, and Weyl transformations. The energy-momentum tensor, or stress tensor, is defined

by

T µa(x) =
1

e

δSW
δeµa(x)

(2.3)

where e is the determinant of the vierbein. It is covariantly conserved (up to some classical breaking

term), symmetric, and traceless on-shell, as consequence of diffeomorphisms, local Lorentz invariance,

and Weyl symmetry, respectively. In flat space, and simplified with the equations of motion, it reads

Tab = 1
4
λ
(
γa
↔
Db + γb

↔
Da

)
λ , (2.4)

with
↔
Da = Da −

←
Da, and the conservation law it satisfies has the form

DaT
ab = −iλγaλF ab (2.5)

1Tensors portrayed with greek, “curved” (or “coordinate”) indices correspond to those that are being described by

observers living in a general Einstein reference frame. Here an index gets lowered or raised by the generic curved metric

gµν and its inverse. On the contrary, latin, “flat” (or “frame”) indices characterize tensor quantities as they appear

in the eyes of an observer residing in a locally flat Lorentz frame, where the metric is seen to be the Minkowskian one

(gab ≡ ηab).
The vierbein eµ

a acts on curved indices by making them flat; its inverse does the opposite.
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being

Fab = ∂aAb − ∂bAa (2.6)

the usual U(1) field strenght.

For later purposes, it is useful to report the infinitesimal form of the background local symmetries

in curved space. They take the form

δeµ
a = ξν∂νeµ

a + (∂µξ
ν)eν

a + ωabeµ
b + σeµ

a

δAµ = ξν∂νAµ + (∂µξ
ν)Aν

δλ = ξµ∂µλ+ 1
4
ωabγ

abλ− 3
2
σλ

δρ = 0

(2.7)

where ξµ, ωab, and σ are the infinitesimal local parameters of the Einstein, Lorentz, and Weyl sym-

metries, respectively. We have included a right handed PV field ρ which remains inert under these

symmetries, as it is uncoupled to the curved background. In addition, there is the U(1) gauge

symmetry that acts non-trivially only on λ and Aµ with infinitesimal local parameter ζ

δAµ = ∂µζ

δλ = iζλ .
(2.8)

Let us also review for completeness how the background invariance of the action produces the

described properties of the stress tensor. Under the chiral and Weyl symmetry, with local parameter

ζ(x) and σ(x) respectively, using the invariance of the action one finds

δζ(x)S =

∫
d4x

(
δS

δeµa(x)
δζ(x)eµ

a(x) +
δS

δAµ(x)
δζ(x)Aµ(x) +

δRS

δλ(x)
δζ(x)λ(x) + δζ(x)λ(x)

δLS

δλ(x)

)
=

= i

∫
d4xe λ(x)γµλ(x)

(
δζ(x)Aµ(x)

)
= i

∫
d4xe λ(x)γµλ(x) ∂µ

(
ζ(x)

)
︸ ︷︷ ︸

integrate by parts

=

= −
∫
d4xe ∂µ

(
iλ(x)γµλ(x)

)
ζ(x) = 0

(2.9)

and

δσ(x)S =

∫
d4x

(
δS

δeµa(x)
δσ(x)eµ

a(x) +
δRS

δλ(x)
δσ(x)λ(x) + δσ(x)λ(x)

δLS

δλ(x)

)
=

=

∫
d4xe T µa(x)δσ(x)eµ

a(x) =

∫
d4xe T µa(x)σ(x)eµ

a(x) =

=

∫
d4xe T aa(x)σ(x) = 0 ,

(2.10)

where the equations of motion of the spinor field have been implemented (we used left and right

derivatives for the Grassmann valued fields), and the fact that the inert fields under a given transfor-

mation do not contribute to the corresponding variation has been used. Because of the arbitrariness

of both ζ(x) and σ(x), we end up with the on-shell preservation of the U(1) current

∂µ
(
iλ(x)γµλ(x)

)
= 0 , (2.11)
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and the tracelessness (always on-shell) of the stress tensor

T aa(x) = 0 . (2.12)

Similarly, the Lorentz symmetry with local parameters ωab(x) implies

δω(x)S =

∫
d4x

(
δS

δeµa(x)
δω(x)eµ

a(x) +
δRS

δλ(x)
δω(x)λ(x) + δω(x)λ(x)

δLS

δλ(x)

)
=

=

∫
d4xe T µa(x)δω(x)eµ

a(x) =

∫
d4xe T µa(x)ωab(x)eµ

b(x) =

=

∫
d4xe T ba(x)ωab(x) = 0

(2.13)

and constrains the antisymmetric part of the stress tensor to vanish on-shell. Again, the U(1) gauge

field is inert under a local Lorentz transformation and does not contribute to the variation of the

action. Thus

T ab(x) = T ba(x) . (2.14)

Finally, a conservation law for the stress tensor arises as a consequence of infinitesimal diffeomor-

phism invariance and takes the following form

δξ(x)S =

∫
d4x

(
δS

δeµa(x)
δξ(x)eµ

a(x) +
δS

δAµ(x)
δξ(x)Aµ(x) +

δRS

δλ(x)
δξ(x)λ(x) + δξ(x)λ(x)

δLS

δλ(x)

)
=

=

∫
d4xe

(
T µa(x)Lξ(x)eµa(x)︸ ︷︷ ︸

ξν∂νeµa+∂µξνeνa

+
1

e

δS

δAµ(x)
Lξ(x)Aµ(x)

)
=

=

∫
d4xe

(
T µa(x)∇µξ

a(x) + iλγµλξν(x)Fνµ
)

=

=

∫
d4xe ξa(x)

(
−∇µT

µa(x) + iλγbλF
ab(x)

)
= 0 .

(2.15)

An explanation is in order: in the second line we used the fermion equation of motions, while in the

third, after replacing the Lie derivative of the vierbein, we employed the property

∇νeµ
a = ∂νeµ

a − Γνµ
λeλ

a + ων
a
beµ

b = 0

to write

∂νeµ
a = Γνµ

λeλ
a − ωνabeµb . (2.16)

We then added for free a spin connection term

ξνων
a
beµ

b ,

as it drops out once the stress tensor is symmetric, recognized the covariant derivative ∇µξ
a(x) and

integrated by parts.
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2.1 Pauli-Villars fields with Dirac mass

To regulate the quantum theory we consider massive Pauli-Villars (PV) fields, whose mass must be

sent to infinity. In particular, we consider a left handed PV field with the same coupling of the

original chiral fermion, plus a free right handed PV field which is needed to write down a Dirac

mass term. We name λ and ρ these PV fields (calling λ one of the PV field should not cause any

confusion in the following). Besides, since we are free to choose any arbitrary mass term, we adopt

the one acquired from a customary Dirac mass term M(λρ+ ρλ) by attaching to it a generic power

of the vierbein determinant eα. Therefore, the Pauli-Villars lagrangian we are going to employ in

the regularization procedure is

LPV = −eλ∇/ λ− ρ∂/ρ−M(λρ+ ρλ)eα . (2.17)

A few remarks about this choice are now in order: i) the massless part of the PV field λ should

have precisely the same couplings to the gauge field and gravity as the original chiral spinor that

we want to regulate, ii) the massless part of the PV field ρ should have no couplings at all, not to

spoil the regularization, iii) the Dirac mass term is arbitrary, in the sense that it could contain also

coupling to the background fields, possibly chosen in order to manifestly preserve some symmetries.

By inspection one recognizes that no symmetry can be manifestly preserved, so we have decided

to be as general as possible by introducing a coupling to gravity even in the mass term. In fact,

we expect that such an arbitrariness should allow one to scan a one parameter family of distinct

regularizations, and eventually check the independence of the final anomalies from the regularization

scheme adopted. Nevertheless, we will not explore this captivating chance, as it lies outside our

purpose, leaving the analysis for future debates.

As anticipated, being not symmetric, this mass term may produce anomalies on all possible

symmetries (gauge, Einstein, local Lorentz and Weyl), which we are going to compute. Again, one

expects that only a trace anomaly (on top of the chiral one) will survive at the end, as already

obtained with the Majorana mass in [11], though we will not face here this issue that requires the

study of counterterms.

2.2 Regulators and jacobians

As explained in sec. 1.2.2, the PV lagrangian presented earlier can be cast in the form (1.22)

LPV =
1

2
φTTOφ+

1

2
MφTTφ ,

where φ is now a 16−dimensional column vector made up of 4 PV spinors

φ =


λ

λc
ρ

ρc

 . (2.18)

Hence, we rewrite (2.17) solely in terms of the the charge conjugate fields λc and ρc, rather then

making use of the Dirac conjugates λ and ρ. In fact, since the above lagrangian and the one that
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encodes the dynamics of the corresponding antiparticle should both lead to the exact same physics,

we are allowed to write

LPV = −eλ∇/ λ− ρ∂/ρ−M(λρ+ ρλ)eα =

=
e

2

(
λTc C∇/ (A)λ+ λTC∇/ (−A)λc

)
+

1

2

(
ρTc C∂/ρ+ ρTC∂/ρc

)
+

+
M

2
eα
(
λTc Cρ+ λTCρc + ρTc Cλ+ ρTCλc

)
,

where (see appendix A and B)

λc = C−1λ
T

= −CλT ,

ρ = C−1ρT = −CρT ,

∇/ (A) = γµ(∂µ − iAµ +
1

4
ωµabγ

aγb),

∇/ (−A) = γµ(∂µ + iAµ +
1

4
ωµabγ

aγb).

This allows to recognize the matrix T and the regulator O2 to be used later on:

TO =


0

0

eC∇/ (A)PL

0

0

0

0

eC∇/ (−A)PR

C∂/PR

0

0

0

0

C∂/PL

0

0
 (2.19)

T =


0 0 0 eαCPL
0 0 eαCPR 0

0 eαCPR 0 0

eαCPL 0 0 0

 (2.20)

O =


0

e1−α∇/ (A)PL

0

0

e1−α∇/ (−A)PR

0

0

0

0

0

0

e−α∂/PR

0

0

e−α∂/PL

0
 (2.21)

O2 =


0

0

0

e(1−2α)∂/∇/ (A)PL

0

0

e(1−2α)∂/∇/ (−A)PR

0

0

e(1−2α)∇/ (A)∂/PR

0

0

e(1−2α)∇/ (−A)∂/PL

0

0

0
 . (2.22)

Note that the projectors

PL =
1 + γ5

2
and PR =

1− γ5

2
(2.23)

appear because λ and ρ are chiral spinors.
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Now, to apply the general scheme of refs. [13, 18] to compute the anomalies, we saw from (1.34)

and (1.35) that the infinitesimal jacobian and regulator taking part in the Fujikawa set-up, read (in

the same notation as [11])

J = K +
1

2
T−1δT +

1

2

δO
M

, R = −O2 .

While it’s true that δO is off-diagonal and won’t contribute to Tr[J ], as long as we consider the

gravity covariant extension of the PV lagrangian (2.17), it’s possible that the term 1
2
T−1δT may

actually bring some contributions. Hence, we are forced to ascertain whether it vanishes or not,

when restricting ourselves to flat space. In particular, from (2.20) it’s easy to verify that

T−1 = e−α


0 0 0 C−1PL
0 0 C−1PR 0

0 C−1PR 0 0

C−1PL 0 0 0

 , (2.24)

δT = αeα−1δe


0 0 0 CPL
0 0 CPR 0

0 CPR 0 0

CPL 0 0 0

 . (2.25)

Moreover, we notice that by taking the variation of both sides of the following identity

ln (detB) = tr(lnB) −→ δ(detB)

detB
= tr

(
B−1δB

)
we can assert that a valid expression for the vierbein determinant variation is

δe = eeµaδeµa. (2.26)

Then, after replacing (2.26) in (2.25), we are permitted to inspect the subsequent three cases.

• Local chiral transformation: eµa(x)→ e′µa(x) = eµa(x). As the vierbein remains untouched

δeµa = 0 , (2.27)

δe also vanishes

δe = 0.

The same fate is suffered by the mass matrix variation (2.25), and thus

1

2
T−1δT = 0 (2.28)

is seen to hold.
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• Weyl transformation: eµa(x)→ e′µa(x) = eσ(x)eµa(x). Its infinitesimal form

eµa(x)→ e′µa(x) = (1 + σ(x))eµa(x) ,

showing up when σ(x) << 1, allows us to write

δeµa(x) = σ(x)eµa(x) (2.29)

and

δe(x) = e(x)eµa(x) δeµa(x) = e(x)eµa(x)σ(x)eµa(x) = 4e(x)σ(x).

Under these circumstances, it should be pretty straightforward to show that

1

2
T−1δT = 2ασ(x)


PL 0 0 0

0 PR 0 0

0 0 PR 0

0 0 0 PL

 . (2.30)

• Local Lorentz transformation: eµa(x)→ e′µa(x) = Λa
b(x)eµb(x). As a consequence to this law,

we get the ensuing infinitesimal one

eµa(x)→ e′µa(x) = (δa
b + ωa

b(x))eµb(x),

where ωab, with |ωab| << 1, is the antisymmetric matrix that gathers all the infenitesimal

parameters of the Lorentz Lie group. Thus, we have

δeµa(x) = ωa
b(x)eµb(x) , (2.31)

δe(x) = e(x)eµa(x) δeµa(x) = e(x)eµa(x)ωa
b(x)eµb(x) = e(x)ωa

a(x) = 0

and more importantly:
1

2
T−1δT = 0 (2.32)

• General Einstein transformation: eµa(x) → e′µa(x
′) =

∂xν

∂x′µ
eνa(x). For a small change in the

coordinates

xµ → x′µ = xµ − ξµ,
with |ξµ| << 1, it’s a simple matter for us to exhibit that

δeµa = e′µa(x
′)− eµa(x′) =

∂xν

∂x′µ
eνa(x)− eµa(x− ξ(x)) =

=
(
δµ
ν + ∂µ(ξν(x))

)
eνa(x)− eµa(x) + ξν∂ν(eµa(x)) =

= ∂µ(ξν(x))eνa(x) + ξν(x)∂ν(eµa(x)) (2.33)

and

δe = eeµaδ(eµa) = eeµa [∂µ(ξν)eνa + ∂ν(eµa)ξ
ν ] =

= eδµν∂µ(ξν) + eeµa∂ν(eµa)ξ
ν =

= e∂ν(ξ
ν) + ∂ν(e)ξ

ν = ∂ν (eξν) ,
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from which it follows:

1

2
T−1δT =

α

2e
∂ν(eξ

ν)


PL 0 0 0

0 PR 0 0

0 0 PR 0

0 0 0 PL

 . (2.34)

As for the K operator, we know it is defined by the relation

δφ = Kφ, (2.35)

establishing the infinitesimal transformation rules of the Pauli-Villars fields under the mappings

under scrutiny. Its expression can therefore be easily inferred by probing the local variation endured

by λ, λc, ρ and ρc respectively under

• local chiral transformation: 
λ(x) → λ′(x) = eiζ(x)λ(x)

λc(x) → λ′c(x) = e−iζ(x)λc(x)

ρ(x) → ρ′(x) = ρ(x)

ρc(x) → ρ′c(x) = ρc(x)

that, from an infinitesimal point of view, should look as

δλ = iζ(x)λ

δλc = −iζ(x)λc

δρ = δρc = 0 .

(2.36)

Accordingly, if we used the (2.36) to build the K matrix defined in (2.35), we would realize

that

KC = iζ(x)


PL 0 0 0

0 −PR 0 0

0 0 0 0

0 0 0 0

 ; (2.37)

• Weyl transformation: 
λ(x) → λ′(x) = e−

3
2
σ(x)λ(x)

λc(x) → λ′c(x) = e−
3
2
σ(x)λc(x)

ρ(x) → ρ′(x) = ρ(x)

ρc(x) → ρ′c(x) = ρc(x)

from which it clearly emerges that

δλ = −3

2
σ(x)λ

δλc = −3

2
σ(x)λc

δρ = δρc = 0 ,

(2.38)

22



and, through a comparison between (2.38) and (2.35),

KW = −3

2
σ(x)


PL 0 0 0

0 PR 0 0

0 0 0 0

0 0 0 0

 (2.39)

immediatly follows;

• local Lorentz transformation:
λ(x) → λ′(x) = e

i
2
ωef (x)Σefλ(x)

λc(x) → λ′c(x) = e
i
2
ωef (x)Σefλc(x)

ρ(x) → ρ′(x) = ρ(x)

ρc(x) → ρ′c(x) = ρc(x)

where the Lorentz infinitesimal generators Σef in the spinorial (1
2
, 0)⊕ (0, 1

2
) representation are,

as usual,

Σef = − i
4

[
γe, γf

]
≡ − i

2
γef .

Hence, the PV fields suffer a local variation of the form

δλ =
1

4
ωef (x)γefλ

δλc =
1

4
ωef (x)γefλc

δρ = δρc = 0 ,

(2.40)

resulting in

KL =
1

4
ωef (x)γef


PL 0 0 0

0 PR 0 0

0 0 0 0

0 0 0 0

 ; (2.41)

• general Einstein transformation (xµ → x′µ = xµ − ξµ)
λ(x) → λ′(x′) = λ(x)

λc(x) → λ′c(x
′) = λc(x)

ρ(x) → ρ′(x) = ρ(x)

ρc(x) → ρ′c(x) = ρc(x)

locally affecting the fields through

δλ = ξν(x)∂ν(λ)

δλc = ξν(x)∂ν(λc)

δρ = δρc = 0

(2.42)
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and therefore

KE = ξν(x)∂ν


PL 0 0 0

0 PR 0 0

0 0 0 0

0 0 0 0

 . (2.43)

We point out that the trivial right-fields transformation laws have been imposed to ensure that their

massless free lagrangian is invariant under the four simmetries above, which in turn provides null ρ−
and ρc−contributions to the physical Noether currents.

Finally, the time has come for us to restrict ourselves to flat space. This choice is dictated by the

fact that, whenever an anomaly is present in the model, it already reveals itself on a manifold having

null curvature. Thus, for the sake of simplicity, we merely replace every occurrence of the einbein

determinant e with 1

e→ 1, (2.44)

and the gravity-gauge covariant derivative ∇(A) with the simpler gauge covariant one D(A)

∇(A)→ D(A). (2.45)

Against this background, the combination of (2.37), (2.39), (2.41) and (2.43) all together translates

into2

K = [is±ζ(x) + ξµ(x)∂µ +
1

4
ωab(x)γab − 3

2
σ(x)]


PL 0 0 0

0 PR 0 0

0 0 0 0

0 0 0 0

 . (2.46)

Accordingly, the jacobian which we end up with is the following

J =


[C(x) +D(x)]PL 0 0 0

0 [C(x) +D(x)]PR 0 0

0 0 D(x)PR 0

0 0 0 D(x)PL

 , (2.47)

where

C(x) = is±ζ(x) + ξµ(x)∂µ +
1

4
ωab(x)γab − 3

2
σ(x)

and

D(x) =
α

2
∂ν (ξν(x)) + 2ασ(x).

So, even though K vanishes in the (ρ, ρc) sector, we can’t simply restrict to the (λ, λc) one. Indeed,

as a consequence of the non vanishing contributions coming from 1
2
T−1δT , the regulator we are to

use is

−R = O2 =


0

0

0

∂/D/ (A)PL

0

0

∂/D/ (−A)PR

0

0

D/ (A)∂/PR

0

0

D/ (−A)∂/PL

0

0

0
 . (2.48)

2s± is a sector-depending factor, whose value coincides with +1 as long as it acts on the λ−section of the theory,

while it is −1 otherwise.
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To summarize we have to compute

i〈δS〉 = − lim
M→∞

Tr[Je−
R
M2 ] , (2.49)

which we will do separately for the various symmetries and using heat kernel expansion. However,

while the calculation behind is somewhat standard when J is a matrix function, the corresponding

heat kernel fomulae become far too complicated whenever the infinitesimal jacobian does contain a

first order differential operator, as the ξµ(x)∂µ term due to the gravitational anomalies3. Chapter 3

will entirely be devoted to deepening this subject.

3See ref. [19] for the two dimensional case, and [20] for the four dimensional one.
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Chapter 3

Heat kernel

The heat kernel originates from the heat equation

− ∂

∂β
ψ = Hψ , (3.1)

the fundamental solution of which is precisely designed to be its definition. When represented in

operatorial form, (3.1) gets solved by the following transition amplitude

ψ(x, y; β) = 〈y| e−βH |x〉 , (3.2)

which in turn undergoes, for small β (i.e. for small propagation times), a perturbative expansion. In

order to see this, we’ll have to consider at most a second order differential operator H, that will be

taken in the form of

H = −∇2 + V. (3.3)

Here V is allowed to be a matrix potential, while ∇2 = ∇a∇a is the d’Alembertian built from the

gauge covariant derivative of our model

∇a = ∂a +Wa . (3.4)

Depending on the circumstances, there’s no guarantee that Wa is abelian, so that ∇a might not

commute with itself; namely

[∇a,∇b] = ∂aWb − ∂bWa + [Wa,Wb] ≡ Fab (3.5)

is likely to play an active part in all the computations we are about to undertake. However, the well

known free solution is seen to emerge by simply using path integral methods with V = 0, and, in a

flat D−dimensional space time, it appears to be

ψ0(x, y; β) =
1

(4πβ)
D
2

e−
(x−y)2

4β .
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3.1 Seeley-DeWitt coefficients

If we had included an arbitrary potential V 6= 0, things would have gotten far more complicated,

but luckily for us, as we stated before, it should still be possible to treat the overall problem in

perturbation theory, when β << 1. Of course, what will result from the current discussion is

something like the following

ψV (x, y; β) =
1

(4πβ)
D
2

e−
(x−y)2

4β

[
∞∑
n=0

an(x, y,H)βn

]
, (3.6)

in which the heat kernel coefficients an(x, y,H), also known as Seeley-DeWitt coefficients1, have

been introduced. As we’ll see shortly, of particular importance is the case in which x = y. For such

situations, the coefficients’ values can be inferred from [20]:

a0(x, x,H) = 1;

a1(x, x,H) = −V ;

a2(x, x,H) =
1

2
V 2 − 1

6
∇2V +

1

12
FabFab.

(3.7)

As a matter of fact, these terms show up when dealing with the trace of certain operators, like the

one reported here under

Tr[Ge−βH ] =

∫
dDx tr[G(x) 〈x| e−βH |x〉] =

=

∫
dDx i tr[G(x) 〈x| e−itH |x〉︸ ︷︷ ︸

(3.6)

] =

=

∫
dDx

i

(4πit)D/2

∞∑
n=0

tr[G(x)an(x, x,H)](it)n .

(3.8)

In the previous equality, a Wick rotation β → it allowed us to go from the first to the second line,

while the symbol “tr”, instead, is designed to extract the trace of the discrete matrix structure that

G(x) 〈x| e−itH |x〉 is endowed with. Moreover, it is important to specify that this scheme shall only

apply when G(x) is a generic matrix-valued function of the coordinate x not involving any differential

operator (this case will be treated in some detail during the very next section).

Hence, by comparing (3.8) with the trace needed in the Fujikawa approach (2.49), a proper

expression for the anomaly can now be inferred. First and foremost, we identify

J(x) ≡ G(x),

R = −O2 ≡ H,

1

M2
≡ it,

(3.9)

1Generally, the Seeley-DeWitt coefficients an(x, y,H) are matrix valued objects depending on two position eigen-

states, |x〉 and |y〉.
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and then we’re allowed to rewrite (2.49) in the following form

i〈δS〉 = − lim
M→∞

Tr[Je−
R
M2 ] = − lim

M→∞

∫
dDx

iMD

(4π)D/2

∞∑
n=0

tr[J(x)an(x,R)](
1

M2
)n,

in which, for the sake of notation, we set

an(x, x,R) ≡ an(x,R).

It’s easy to see that the previous limit pulls out of the trace only the mass indipendent term, as

negative powers of M of course vanish, and the positive ones can always be erased by adding new

PV fields. Therefore we end up with an anomaly that, in D = 4 space-time dimensions, would read

as follows

i〈δS〉 = − lim
M→∞

Tr[Je−
R
M2 ] = −

∫
d4x

i

(4π)2
tr[J(x)a2(x,R)] , (3.10)

thus reducing the anomaly issue to that of determining J(x) and the second Seeley-DeWitt coefficient

a2(x,R), an argument that will be addressed in the forthcoming chapter.

3.2 G(x) contains a differential operator: gravitational anomaly

Despite the level of technical refinement reached by Seeley and DeWitt, who originally proposed

(3.10), their work does not cover all the possible cases. Among all, the one where G(x) comprises

a differential operator, although being of the utmost importance for the gravitational anomaly’s

derivation (dealt with in section 5.4), still remains not addressed. It is precisely for this reason that

we must depend on the paper by Branson, Gilkey and Vassilevich [20], that provides us with a recipe

to follow along in order to obtain the previous trace (3.10) when a second order differential operator

takes the place of J . Actually, the formula they developed applies only to those operators, from now

on denoted as Q, that possess the following features:

1. Q must consist of a purely second (Q2), first (Q1) and zero order (Q0) differential operator,

and thus be expressible through their sum

Q = Q2 +Q1 +Q0 ; (3.11)

2. while Q0 is not constrained by any limitation at all, Q2 and Q1 are endowed with a specific

operator form, that is

Q2(•) = rij∇i∇j(•) +
1

2

(
2∇j(r

ij)−∇i(rjj)
)
∇i(•) , (3.12)

Q1(•) = −2qi∇i(•)−∇i(qi)(•) , (3.13)

where rij is a symmetric 2−tensor and qi is an endomorphism valued 1−tensor.

However, since the gravitational anomaly, which arises from the quantization of the diffeomorphism

invariance possessed by (2.1), presents itself such an operator form, we decided to describe the

expansion procedure devised in [20] by its direct application to this particular case.
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3.2.1 Generalized heat kernel expansion in the gravitational anomaly

case

As we shall see in 5.4, the anomaly under scrutiny requires for something like

Tr[ξi(x)∂ie
−βH ] (3.14)

to be evaluated, so, first things first, we have to make sure that (3.14) does conform to (3.11)-(3.13).

Through a comparison, it’s quite instant for us to come up with the ensuing identifications

Q = (1)ξi∂i (3.15)

with



rij = 0

qi = − ξi
2

(1)

Q2 = 0

Q1 = ξi(1)∇i + 1
2
∇i
(
ξi
)
(1)

Q0 = −1
2
∇i
(
ξi
)
(1)− ξiwi

, (3.16)

where 1 is the spinor identity matrix, omitted from now on for the sake of simplicity (unless strictly

necessary), and wi represents the covariant derivative’s total connection

∇i = ∂i + wi . (3.17)

Thus, not only can we surmise that (3.14) meets the demanded requirements, but, as we are interested

in the flat space-time case, (3.17) retains just the same gauge connection of (3.4)

wi = Wi ,

in turn projecting (3.16) onto a new set of equalities

rij = 0

qi = − ξi
2

Q2 = 0

Q1 = ξi(∂i +Wi) + 1
2
∇i
(
ξi
)

= ξi(∂i +Wi) + 1
2
∂i
(
ξi
)

+ 1
2

[W i, ξi(1)]︸ ︷︷ ︸
0

= ξi(∂i +Wi) + 1
2
∂i
(
ξi
)

Q0 = −1
2
∇i
(
ξi
)
− ξiWi = −1

2
∂i
(
ξi
)
− 1

2
[W i, ξi(1)]︸ ︷︷ ︸

0

−ξiWi = −1
2
∂i
(
ξi
)
− ξiWi

.

(3.18)

We observe that, in drawing (3.18) up, we made use of the matrix covariant differentiation rule

∇a(ξb) = ∂a(ξb) + [Wa, ξb(1)] ,

together with the fact that ξa(x) is a simple abelian vector field

[Wa, ξb(1)] = 0.
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In essence, the trace we are interested in is

Tr[Qe−βH ] = Tr[(Q1 +Q0)e−βH ] = Tr[Q1e
−βH ] + Tr[Q0e

−βH ] , (3.19)

and even though we’ll always need the Seeley-DeWitt coefficients (3.7) to deal with the part of (3.19)

that comes from Q0, i.e.

Tr[Q0e
−βH ],

if we are now able to solve the remaining portion, that is

Tr[Q1e
−βH ], (3.20)

we owe it to [20]. There, generalizing the model to a D−dimensional flat space-time, we are taught

that the insertion of the first order differential operator

Q1 = ξi(∂i +Wi) +
1

2
∂i(ξ

i)

causes (3.20) to take the form

Tr
[
Q1e

−βH] =

∫
dDx tr

[
Q1(x)〈x|e−βH |x〉

]
=

β→it
=

∫
dDx

i

(4π)
D
2

∞∑
n=0

tr[bn(x,H)](it)n−
D
2 =

=

∫
dDx

i

(4πit)
D
2

tr [b0(x,H) + b1(x,H)it+ b2(x,H)(it)2 + ...)]

(3.21)

where, after introducing the tensor

Gij ≡ ∇iqj −∇jqi = −1

2
(∂iξj − ∂jξi)(1) , (3.22)

the first few generalizations of the heat kernel coefficients, as they can be extracted from [20], are

b0(x,H) = 0;

b1(x,H) = −1

6
FijGij;

b2(x,H) =
1

45
∇k(Fij)∇k(Gij)− 1

90
∇j(Fij)∇k(G

ik) +
1

6
V FijGij.

(3.23)

Before we continue, we have to adjust our notation to the one used in Fujikawa’s method, imposing

the following equalities

R = −O2 ≡ H,

1

M2
≡ it.

(3.24)
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Moreover, for reasons that will be clear only in section 5.4, it’s far more convenient to rewrite (3.21)

by collecting ξa outside of the trace

Tr
[
Q1e

− R
M2

]
=

∫
dDx

iMD

(4π)
D
2

tr [b0(x,H) + b1(x,H)
1

M2
+ b2(x,H)

( 1

M2

)2

+ ...)] =

=

∫
dDx

iMD

(4π)
D
2

ξa(x) tr [ba,0(x,H) + ba,1(x,H)
1

M2
+ ba,2(x,H)

( 1

M2

)2

+ ...)].

(3.25)

This leads to a redefinition of the whole set of coefficients (3.23), achieved by repeatedly resorting

to integrations by parts (performed in detail in section C.1):

b0(x,H) = 0 = ξa(x)ba,0(x,H) ,

b1(x,H) = −1

6
ξa(x)∇iFia(x) = ξa(x)ba,1(x,H) ,

b2(x,H) = ξa(x)
(
− 1

45
∇i∇k∇k

(
Fia(x)

)
+

1

180
∇i∇a∇j

(
Fij(x)

)
+

− 1

180
∇k∇k∇j

(
Faj(x)

)
+

1

6
∇i
(
V (x)Fia(x)

))
=

= ξa(x)ba,2(x,H) . (3.26)

from which we perceive that

ba,0(x,H) = 0 ;

ba,1(x,H) = −1

6
∇iFia ;

ba,2(x,H) = − 1

45
∇i∇k∇k

(
Fia(x)

)
+

1

180
∇i∇a∇j

(
Fij(x)

)
− 1

180
∇k∇k∇j

(
Faj(x)

)
+

+
1

6
∇i
(
V (x)Fia(x)

)
. (3.27)

Actually, because of the actual expression we’ll deduce for the involved fields (Wi(x), V (x), Fij(x)),

it will be possible for us to show that the (3.27) are subject to a remarkable simplification. In fact,

as we will soon confirm in section 4.5, the majority of terms surfacing from the covariant derivatives

in (3.27) will vanish when the trace operation within equation (3.25) is carried out.

In the end, since the method conceived by Fujikawa requests the limit procedure (2.49) to be

attached to (3.19), we are allowed to complete the current section by presenting the ultimate form of

an anomaly, like the gravitational one, which happens to be equipped with the differential operator

(3.15) in a D = 4−dimensional flat space-time:

i〈δS〉 = − lim
M→∞

Tr[Q(x)e−
R
M2 ] =

= − lim
M→∞

Tr[Q1(x)e−
R
M2 ]− lim

M→∞
Tr[Q0(x)e−

R
M2 ]︸ ︷︷ ︸

(3.10)

=

= −
(∫

d4x
i

(4π)2
ξa(x)tr[ba,2(x,R)] +

∫
d4x

i

(4π)2
tr[Q0(x)a2(x,R)]

)
.

(3.28)
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Chapter 4

Heat kernel coefficients

In order to implement the expansions of chapter 3, some sort of relation have to be first established

between the hamiltonian H (3.3) and the regularizator R (2.48) of the model. To this end, we write

down the components of R separately, i.e.

Rλ = −∂/D/ (A)PL (4.1)

Rλc = −∂/D/ (−A)PR (4.2)

Rρ = −D/ (A)∂/PR (4.3)

Rρc = −D/ (−A)∂/PL . (4.4)

Moreover, at this stage we’ll neglect the two projectors PL and PR, serving mostly as a reminder of

which sector the regulators act on. However, it’s important to reinsert them while dealing with the

actual trace computations of chapter 5, where a2(x,R) and ba,2(x,R) are in the matrix form

a2(x,R) =


0

0

0

a2(x,Rλ)PL

0

0

a2(x,Rλc)PR

0

0

a2(x,Rρ)PR

0

0

a2(x,Rρc)PL

0

0

0
 , (4.5)

ba,2(x,R) =


0

0

0

ba,2(x,Rλ)PL

0

0

ba,2(x,Rλc)PR

0

0

ba,2(x,Rρ)PR

0

0

ba,2(x,Rρc)PL

0

0

0
 , (4.6)

in which every sector-restriceted coefficient, a2(x,Ri) or ba,2(x,Ri), appears alongside the proper

projector.

Then, by expanding the hamiltonian (3.3) into

H = −∇2 + V = −(∂a +Wa)(∂
a +W a) + V =

= −∂a∂a − ∂a(W a)− 2Wa∂
a −W aWa + V ,

(4.7)

and comparing it with the (4.1)−(4.4), the whole set of heat kernel coefficients can be seen to emerge.

We’ll start with the evaluation of the a2(x,Ri), saving the ba,2(x,Ri) for last.
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4.1 λ−sector

Hence, let’s focus on the λ−sector for the time being, in which we get for (4.1)

Rλ = −∂/D/ (A) = − γaγb︸︷︷︸
(B.8)

∂a(∂b − iAb) =

= −
(
gab + γab

)
(∂a∂b − i∂aAb − iAb∂a) =

= −∂a∂a − γab∂a∂b︸ ︷︷ ︸
0

+i∂aAa + iAa∂a + iγab∂aAb︸︷︷︸
only its antisymmetric part will contribute

+ iγabAb∂a =

= −∂a∂a + i∂a(Aa) +
i

2
γabFab + (iAa + iγabAb)∂a ,

(4.8)

where we used the decomposition (B.8) and the vanishing of the full contraction of an antisymmetric

tensor with a symmetric one (γab∂a∂b = 0). We also adopted the customary field strenght tensor’s

definition (2.6). Now, by comparing (4.8) with (4.7), it’s pretty straightforward to infer that

W a = − i
2
Aa − i

2
γabAb , (4.9)

from whose divergence

∂aW
a = − i

2
∂aA

a − i

2
γab ∂aAb︸︷︷︸

only its antisym. part will contribute

=

= − i
2
∂aA

a − i

4
γabFab

and square contraction

W aWa
(C.2)
=

1

2
AaAa

we notice that, by adding and subtracting 1
2
AaAa to (4.8), V follows:

V =
i

2
∂aA

a +
i

4
γabFab +

1

2
AaAa . (4.10)

Now, in order to get the coefficient a2(x,Rλ)’s value, we simply have to follow the recipe provided

in (3.7):

a2(x,Rλ) =
1

2
V 2 − 1

6
∇2V +

1

12
FabFab.

Let’s start by determining what form V 2 does have:

V 2 =

(
i

2
∂aA

a +
i

4
γabFab +

1

2
AaAa

)(
i

2
∂cA

c +
i

4
γcdFcd +

1

2
AcAc

)
=

= −1

4
(∂aA

a)2 − 1

4
γab∂c(A

c)Fab +
i

2
A2∂c(A

c) +
i

4
γabA2Fab −

1

16
γabγcdFabFcd +

1

4
A4 .

(4.11)

33



Later, we need the covariant d’Alembertian of the potential, ∇2V , but we must be careful. In fact,

since V happens to be a matrix, its gauge covariant derivative is ∇aV = ∂aV + [Wa, V ], as its nature

demands. Therefore we have

∇aV = ∂aV + [Wa, V ] =

(C.3)
=

i

2
∂a(∂sA

s) +
i

4
γcd∂a(Fcd) +

1

2
∂a(A

2) +
1

2
γbcA

bF c
a +

1

2
γcaAdF

cd , (4.12)

and, by taking one further covariant derivative, we find:

∇a∇aV = ∂a
(
∇aV

)
+
[
W a,∇aV

]
=

(C.5)
=

i

2
�(∂sA

s) +
i

4
γcd�(Fcd) +

1

2
�(A2) +

1

2
γca∂b(Ac)Fab + γbcAb∂

a(Fca)+

+
1

2
γca∂a(A

d)Fcd − γacAd∂a(Fcd) +
i

2
γacA2Fac . (4.13)

What is left to compute is Fab, as well as its complete contraction with itself FabFab. Let’s

proceed by degrees. By definition (3.5), we have

Fab = ∂a(Wb)− ∂b(Wa) +
[
Wa,Wb

]
=

(C.7)
= − i

2
Fab −

i

2
γbc∂a(A

c) +
i

2
γac∂b(A

c)− 1

2
γacAbA

c +
1

2
γbcAaA

c +
1

2
γabA

cAc , (4.14)

from which the evaluation of FabFab is just a matter of algebra

FabFab =
(
− i

2
Fab −

i

2
γbc∂a(A

c) +
i

2
γac∂b(A

c)− 1

2
γacAbA

c +
1

2
γbcAaA

c +
1

2
γabA

2
)
·

·
(
− i

2
F ab − i

2
γbd∂a(Ad) +

i

2
γad∂b(Ad)−

1

2
γadAbAd +

1

2
γbdAaAd +

1

2
γabA2

)
=

= −1

4
FabF

ab + γac∂b(Ac)Fab + iγcbAaAcFab −
i

2
γabA2Fab +

3

2
∂b(Ac)∂

b(Ac)+

+
1

2
γbcγad

[
∂a(Ac)∂b(Ad) + iAaAc∂b(Ad) + iAbAd∂a(Ac)

]
− 3

2
A4+

− 3i
[
A2∂d(Ad)− AaAd∂a(Ad)

]
(4.15)

(see section C.2.5 of appendix C for the detailed calculation). Ultimately, from (3.7) we infer the

precise structure of the second Seeley-DeWitt coefficient, that is

a2(x,Rλ) =
1

2
V 2 − 1

6
∇2V +

1

12
FabFab =

(C.11)
= −1

8
(∂aA

a)2 − 1

8
γab∂c(A

c)Fab −
1

32
γabγcdFabFcd −

i

12
�(∂sA

s)− i

24
γcd�(Fcd)+

− 1

12
�(A2) +

1

6
γac∂b(Ac)Fab −

1

6
γbcAb∂

a(Fca)−
1

12
γca∂a(A

d)Fcd+

+
1

6
γacAd∂a(Fcd)−

1

48
FabF

ab +
i

12
γcbAaAcFab +

1

8
∂b(Ac)∂

b(Ac)+

+
1

24
γbcγad

[
∂a(Ac)∂b(Ad) + iAaAc∂b(Ad) + iAbAd∂a(Ac)

]
+
i

4
AaAd∂

a(Ad) . (4.16)
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4.2 λc−sector and c−prescription

Unfortunately, as we saw, the anomalies we are striving for require the knowledge of the coefficient

a2(x,Rλc), too, whose expression still follows (3.7):

a2(x,Rλc) =
1

2
Ṽ 2 − 1

6
∇2Ṽ +

1

12
F̃abF̃ab.

Nevertheless, Ṽ 2, ∇2Ṽ and F̃abF̃ab can now be deduced from formulae (4.11), (4.13) and (4.15)

determined beforehand, instead of being computed through. This is made possible by stating what

we’ll refer to as the “c−prescription”, namely a rule concerning the porting of a well defined quantity

on the λ−sector to the λc−one. All it takes is for us to notice that the only difference occurring in

the definition of these two sectors’ regulators is the charge conjugation process, easily accomplished

by mapping the gauge vector Aa into its opposite

Aa −→ −Aa . (4.17)

Clearly, we are now allowed to achieve every λc−sector operator by acting on the corresponding

λ−one with (4.17). For instance, it is quite immediate to ascertain that

W a = − i
2
Aa − i

2
γabAb

⇓

W̃ a =
i

2
Aa +

i

2
γabAb , (4.18)

or similarly that

V =
i

2
∂aA

a +
i

4
γabFab +

1

2
AaAa

⇓

Ṽ = − i
2
∂aA

a − i

4
γabFab +

1

2
AaAa , (4.19)

where (4.17) has been further extended to include the transformation law for Fab = ∂aAb − ∂bAa

Fab −→ −Fab . (4.20)

Therefore, we could get everything we need just by acting via (4.17) and (4.20) upon (4.11), (4.13),

(4.14), (4.15) and (4.16):

Ṽ 2 = −1

4
(∂aA

a)2 − 1

4
γab∂c(A

c)Fab −
i

2
A2∂c(A

c)− i

4
γabA2Fab −

1

16
γabγcdFabFcd +

1

4
A4 , (4.21)

∇2Ṽ = − i
2
�(∂sA

s)− i

4
γcd�(Fcd) +

1

2
�(A2) +

1

2
γca∂b(Ac)Fab + γbcAb∂

a(Fca)+

+
1

2
γca∂a(A

d)Fcd − γacAd∂a(Fcd)−
i

2
γacA2Fac ,

(4.22)
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F̃ab =
i

2
Fab +

i

2
γbc∂a(A

c)− i

2
γac∂b(A

c)− 1

2
γacAbA

c +
1

2
γbcAaA

c +
1

2
γabA

cAc (4.23)

F̃abF̃ab = −1

4
FabF

ab + γac∂b(Ac)Fab − iγcbAaAcFab +
i

2
γabA2Fab +

3

2
∂b(Ac)∂

b(Ac)+

+
1

2
γbcγad

[
∂a(Ac)∂b(Ad)− iAaAc∂b(Ad)− iAbAd∂a(Ac)

]
− 3

2
A4+

+ 3i
[
A2∂d(Ad)− AaAd∂a(Ad)

]
(4.24)

and finally

a2(x,Rλc) = −1

8
(∂aA

a)2 − 1

8
γab∂c(A

c)Fab −
1

32
γabγcdFabFcd +

i

12
�(∂sA

s) +
i

24
γcd�(Fcd)+

− 1

12
�(A2) +

1

6
γac∂b(Ac)Fab −

1

6
γbcAb∂

a(Fca)−
1

12
γca∂a(A

d)Fcd+

+
1

6
γacAd∂a(Fcd)−

1

48
FabF

ab − i

12
γcbAaAcFab +

1

8
∂b(Ac)∂

b(Ac)+

+
1

24
γbcγad

[
∂a(Ac)∂b(Ad)− iAaAc∂b(Ad)− iAbAd∂a(Ac)

]
− i

4
AaAd∂

a(Ad) . (4.25)

4.3 ρ−sector

Even though we gained access to the overall left sector of the theory, we haven’t acquired the right

Seeley-DeWitt coefficients, a2(x,Rρ) and a2(x,Rρc), yet. Actually, a real prescription that grants

us to know, for instance, every ρ−quantity starting from the λ−ones does not exist this time, and

we are thus forced to repeat once again the whole procedure we followed for the λ−sector. Hence,

starting with

Rρ = −D/ (A)∂/ = −γaγb(∂a − iAa)∂b =

= −∂a∂a + (iAa − iγabAb)∂a , (4.26)

we’ll get

Za = − i
2
Aa +

i

2
γabAb , (4.27)

from which

∂aZ
a = − i

2
∂aA

a +
i

4
γabFab,

ZaZ
a =

1

2
AaAa

and of course

U = − i
2
∂aA

a +
i

4
γabFab +

1

2
AaAa (4.28)
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will ensue. Here in the right sectors, we choose Za and U to play the role of W a and V respectively.

In the same way as before, we go ahead with the appraisal of U2

U2 =

(
− i

2
∂aA

a +
i

4
γabFab +

1

2
AaAa

)(
− i

2
∂cA

c +
i

4
γcdFcd +

1

2
AcAc

)
=

= −1

4
(∂aA

a)2 +
1

4
γab∂c(A

c)Fab −
i

2
A2∂c(A

c) +
i

4
γabA2Fab −

1

16
γabγcdFabFcd +

1

4
A4 ,

(4.29)

and then of ∇aU

∇aU = ∂aU + [Za, U ] =

(C.4)
= − i

2
∂a(∂sA

s) +
i

4
γcd∂a(Fcd) +

1

2
∂a(A

2)− 1

2
γbcA

bF c
a −

1

2
γcaAdF

cd , (4.30)

from which ∇2U can be easily extracted

∇a∇aU = ∂a
(
∇aU

)
+
[
Za,∇aU

]
=

(C.6)
= − i

2
�(∂sA

s) +
i

4
γcd�(Fcd) +

1

2
�(A2)− 1

2
γca∂b(Ac)Fab − γbcAb∂a(Fca)+

− 1

2
γca∂a(A

d)Fcd + γacAd∂a(Fcd) +
i

2
γacA2Fac . (4.31)

Lastly, it’s compulsory for us to work Eab out, defined to be the right analogous of Fab

Eab = ∂a(Zb)− ∂b(Za) +
[
Za, Zb

]
=

(C.8)
= − i

2
Fab +

i

2
γbc∂a(A

c)− i

2
γac∂b(A

c)− 1

2
γacAbA

c +
1

2
γbcAaA

c +
1

2
γabA

cAc ; (4.32)

then it’s the turn of its full contraction EabEab as well, to whose computation we devoted section

C.2.6 of appendix C, getting

EabEab =
(
− i

2
Fab +

i

2
γbc∂a(A

c)− i

2
γac∂b(A

c)− 1

2
γacAbA

c +
1

2
γbcAaA

c +
1

2
γabA

2
)
·

·
(
− i

2
F ab +

i

2
γbd∂a(Ad)−

i

2
γad∂b(Ad)−

1

2
γadAbAd +

1

2
γbdAaAd +

1

2
γabA2

)
=

= −1
4
(1)FabF

ab − γac∂b(Ac)Fab + iγcbAaAcFab − i
2
γabA2Fab + 3

2
(1)∂b(Ac)∂

b(Ac)+

+ 1
2
γbcγad

[
∂a(Ac)∂b(Ad)− iAaAc∂b(Ad)− iAbAd∂a(Ac)

]
− 3

2
(1)A4+

+ 3i
[
A2∂d(Ad)− AaAd∂a(Ad)

]
. (4.33)

Finally, the ρ−sector second Seeley-DeWitt coefficient, which complies once again with (3.7), can
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be written as

a2(x,Rρ) =
1

2
U2 − 1

6
∇2U +

1

12
EabEab =

(C.12)
= −1

8
(∂aA

a)2 +
1

8
γab∂c(A

c)Fab −
1

32
γabγcdFabFcd +

i

12
�(∂sA

s)− i

24
γcd�(Fcd)+

− 1

12
�(A2)− 1

6
γac∂b(Ac)Fab +

1

6
γbcAb∂

a(Fca) +
1

12
γca∂a(A

d)Fcd+

− 1

6
γacAd∂a(Fcd)−

1

48
FabF

ab +
i

12
γcbAaAcFab +

1

8
∂b(Ac)∂

b(Ac)+

+
1

24
γbcγad

[
∂a(Ac)∂b(Ad)− iAaAc∂b(Ad)− iAbAd∂a(Ac)

]
− i

4
AaAd∂

a(Ad). (4.34)

In appendix D we decided to report the mechanism we devised to quickly ascertain the validity of

our λ− and ρ−results.

4.4 ρc−sector

The last quantities left to compute are those defined in the ρc−section of our theory. They are easily

obtained from the corresponding ρ−operators by means of the c−prescription (the same we exploited

to move from the λ−sector to the λc−one), as the difference in the regulators

Rρ = −D/ (A)∂/ and Rρc = −D/ (−A)∂/

clearly suggests. That’s how we arrive at

Z̃a = +
i

2
Aa − i

2
γabAb (4.35)

Ũ = +
i

2
∂aA

a − i

4
γabFab +

1

2
AaAa (4.36)

Ũ2 = −1

4
(∂aA

a)2 +
1

4
γab∂c(A

c)Fab +
i

2
A2∂c(A

c)− i

4
γabA2Fab −

1

16
γabγcdFabFcd +

1

4
A4 , (4.37)

∇2Ũ =
i

2
�(∂sA

s)− i

4
γcd�(Fcd) +

1

2
�(A2)− 1

2
γca∂b(Ac)Fab − γbcAb∂a(Fca)+

− 1

2
γca∂a(A

d)Fcd + γacAd∂a(Fcd)−
i

2
γacA2Fac ,

(4.38)

Ẽab =
i

2
Fab −

i

2
γbc∂a(A

c) +
i

2
γac∂b(A

c)− 1

2
γacAbA

c +
1

2
γbcAaA

c +
1

2
γabA

cAc , (4.39)

ẼabẼab = −1

4
FabF

ab − γac∂b(Ac)Fab − iγcbAaAcFab +
i

2
γabA2Fab +

3

2
∂b(Ac)∂

b(Ac)+

+
1

2
γbcγad

[
∂a(Ac)∂b(Ad) + iAaAc∂b(Ad) + iAbAd∂a(Ac)

]
− 3

2
A4+

− 3i
[
A2∂d(Ad)− AaAd∂a(Ad)

]
,

(4.40)
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a2(x,Rρc) = −1

8
(∂aA

a)2 +
1

8
γab∂c(A

c)Fab −
1

32
γabγcdFabFcd −

i

12
�(∂sA

s) +
i

24
γcd�(Fcd)+

− 1

12
�(A2)− 1

6
γac∂b(Ac)Fab +

1

6
γbcAb∂

a(Fca) +
1

12
γca∂a(A

d)Fcd+

− 1

6
γacAd∂a(Fcd)−

1

48
FabF

ab − i

12
γcbAaAcFab +

1

8
∂b(Ac)∂

b(Ac)+

+
1

24
γbcγad

[
∂a(Ac)∂b(Ad) + iAaAc∂b(Ad) + iAbAd∂a(Ac)

]
+
i

4
AaAd∂

a(Ad) . (4.41)

Nota bene: all the quantities we’ve obtained so far must be understood as operators acting on the

spinors inhabiting the sector of interest. Thus, each one of their term not displaying at least one

matrix object (such as γa or γab, etc.) should be thought of as being endowed with a spinor identity

matrix (1). Strictly speaking, for example, the above W̃a (4.18) should be written as

W̃ a =
i

2
(1)Aa +

i

2
γabAb ,

Ṽ as

Ṽ = − i
2

(1)∂aA
a − i

4
γabFab +

1

2
(1)AaAa ,

and so forth. The same logic applies to the entire ongoing discussion.

4.5 ba,2(x,R)−computation

At this juncture, having available all the fields we need, we can finally undertake the proper calcula-

tion of ba,2(x,R). We make it clear from the very beginning that the jacobian obtained by inserting

(2.34) and (2.43) into (2.49), scilicet the one we’ll use to treat the gravitational anomaly, does not

provide for any differential operator acting on the right sectors, i.e.

ba,2(x,Rρ) = ba,2(x,Rρc) = 0 , (4.42)

permitting us to restrict our computations to the λ− and λc−sector only. That means, in turn, we

can focus on ba,2(x,Rλ) alone, and then utilize (4.17) to extract ba,2(x,Rλc).

As anticipated in section 3.2, the (3.27) will suffer a noteworthy improvement, as most of the traces

acting upon them result to be zero (for a more accurate discussion see appendix E). In particular,

this process simplifies ba,2(x,Rλ) into

ba,2(x,Rλ) = − 1

60
�∂iFia +

1

6
∂i(V Fia) , (4.43)

defining the simplified heat kernel coefficient we were looking for. Finally, if we go ahead and

substitute (4.14) and (4.10), we’ll get

ba,2(x,Rλ) = − 1

60
�∂i

(
− i

2
Fia −

i

2
γac∂i(A

c) +
i

2
γic∂a(A

c)− 1

2
γicAaA

c +
1

2
γacAiA

c +
1

2
γiaA

2
)

+
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+
1

6
∂i
[( i

2
∂bA

b +
i

4
γdbFdb +

1

2
A2
)
·

·
(
− i

2
Fia −

i

2
γac∂i(A

c) +
i

2
γic∂a(A

c)− 1

2
γicAaA

c +
1

2
γacAiA

c +
1

2
γiaA

2
)]

=

= − 1

60
�∂i

(
− i

2
Fia −

i

2
γac∂i(A

c) +
i

2
γic∂a(A

c)− 1

2
γicAaA

c +
1

2
γacAiA

c +
1

2
γiaA

2
)

+

+
1

6
∂i
(1

4
∂b(A

b)Fia +
1

4
γac∂b(A

b)∂i(A
c)− 1

4
γic∂b(A

b)∂a(A
c)− i

4
γic∂b(A

b)AaA
c+

+
i

4
γac∂b(A

b)AiA
c +

i

4
γiaA

2∂b(A
b) +

1

8
γdbF

dbFia +
1

8
γdbγac∂i(A

c)F db+

− 1

8
γdbγic∂a(A

c)F db − i

8
γdbγicAaA

cF db +
i

8
γdbγacAiA

cF db +
i

8
γdbγiaA

2F db+

− i

4
A2Fia −

i

4
γacA

2∂i(A
c) +

i

4
γicA

2∂a(A
c)− 1

4
γicAaA

cA2 +
1

4
γacAiA

cA2 +
1

4
γiaA

4
)
.

(4.44)

As we could notice, we decided to leave all the partial derivatives unexpanded: this makes its trace

easier to calculate (see sec. F.3 of appendix F). As usual, we can trust the c−prescription to precisely

produce the λc−analogous of (4.44):

ba,2(x,Rλc) = − 1

60
�∂i

( i
2
Fia +

i

2
γac∂i(A

c)− i

2
γic∂a(A

c)− 1

2
γicAaA

c +
1

2
γacAiA

c +
1

2
γiaA

2
)

+

+
1

6
∂i
(1

4
∂b(A

b)Fia +
1

4
γac∂b(A

b)∂i(A
c)− 1

4
γic∂b(A

b)∂a(A
c) +

i

4
γic∂b(A

b)AaA
c+

− i

4
γac∂b(A

b)AiA
c − i

4
γiaA

2∂b(A
b) +

1

8
γdbF

dbFia +
1

8
γdbγac∂i(A

c)F db+

− 1

8
γdbγic∂a(A

c)F db +
i

8
γdbγicAaA

cF db − i

8
γdbγacAiA

cF db − i

8
γdbγiaA

2F db+

+
i

4
A2Fia +

i

4
γacA

2∂i(A
c)− i

4
γicA

2∂a(A
c)− 1

4
γicAaA

cA2 +
1

4
γacAiA

cA2 +
1

4
γiaA

4
)
.

(4.45)

In the next section we’ll finally focus on the sheer determination of the quantum anomalies affecting

the model, an aim we’ll pursue through all the means acquired so far.
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Chapter 5

Anomalies

Now possessing all the basic building blocks, we can start with the actual calculus of the anomalies

connected to the transformations pondered in chapter 2, under which the lagrangian (2.1) revealed

to be invariant. The gravitational anomaly will be addressed for last. The explicit evaluation of the

anomalous vacuum expectation values can be found in appendix F.

5.1 Trace anomaly

As we illustrated in chapter 1, our starting point consists in considering Fujikawa’s standard expres-

sion (2.49), i.e.

i〈δS〉 = − lim
M→∞

Tr[Je−
R
M2 ].

From here we proceed by simultaneously developing both the left and right hand side: in the former

we replace the flat space restriction (e → 1) of the action variation (2.10) with respect to the Weyl

map

i〈δσ(x)S〉 = i

∫
d4x 〈T aa(x)〉σ(x) , (5.1)

while in the latter we take advantage of the heat kernel formula (3.10), rewritten right here under

− lim
M→∞

Tr[Je−
R
M2 ] = −

∫
d4x

i

(4π)2
tr[J(x)a2(x,R)] .

Then we make use of the two non vanishing contributions, (2.39) and (2.30), participating in the

Weyl-form of the infinitesimal jacobian (1.34),

JW (x) = −3

2
σ(x)


PL 0 0 0

0 PR 0 0

0 0 0 0

0 0 0 0

+ 2ασ(x)


PL 0 0 0

0 PR 0 0

0 0 PR 0

0 0 0 PL

 ,

together with the matrix form (4.5) valid for a2(x,R). Hence, we get that
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JW (x)a2(x,R) =


−3+4α

2
σ(x)PL 0 0 0

0 −3+4α
2

σ(x)PR 0 0

0 0 2ασ(x)PR 0

0 0 0 2ασ(x)PL

 ·

·


0

0

0

a2(x,Rλ)PL

0

0

a2(x,Rλc)PR

0

0

a2(x,Rρ)PR

0

0

a2(x,Rρc)PL

0

0

0


⇓

tr[JW (x)a2(x,R)] =
−3 + 4α

2
σ(x) tr[a2(x,Rλ)PL] +

−3 + 4α

2
σ(x) tr[a2(x,Rλc)PR]+

+ 2ασ(x) tr[a2(x,Rρ)PR] + 2ασ(x) tr[a2(x,Rρc)PL] ,

which, when substituted in (3.10), will cause the equality

− lim
M→∞

Tr[JW e
− R
M2 ]

(3.10)
= i

∫
d4x

{3− 4α

2(4π)2

(
tr[a2(x,Rλ)PL] + tr[a2(x,Rλc)PR]

)
+

− 2α

(4π)2

(
tr[a2(x,Rρ)PR] + tr[a2(x,Rρc)PL]

)}
σ(x)

(5.2)

to hold true. Eventually, by inserting (5.2) and (5.1) in (2.49), we would forthwith attain

i

∫
d4x 〈T aa(x)〉σ(x) = i

∫
d4x

{3− 4α

2(4π)2

(
tr[a2(x,Rλ)PL] + tr[a2(x,Rλc)PR]

)
+

− 2α

(4π)2

(
tr[a2(x,Rρ)PR] + tr[a2(x,Rρc)PL]

)}
σ(x) ,

also realizing that a proper expression for the vacuum expectation value of the stress-energy tensor

trace would be

〈T aa〉 =
{3− 4α

2(4π)2

(
tr[a2(x,Rλ)PL] + tr[a2(x,Rλc)PR]

)
+

− 2α

(4π)2

(
tr[a2(x,Rρ)PR] + tr[a2(x,Rρc)PL]

)}
=

(F.6)
=

3− 8α

6(4π)2

(
−(∂aA

a)2 +
1

2
FabF

ab −�(A)2 + (∂aAb)(∂
aAb)

)
. (5.3)

This is the trace anomaly obtained with the Dirac mass PV regularization. Of course, we expect that

most of the terms in (5.3) could be erased by varying appropriate local counterterms to be added to

the effective action of the model.
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5.2 Chiral anomaly

Repeating the same procedure we abided by right above, except for the fact that this time we’ll be

using the flat limit of the variation (2.9), we’ll get that it’s

i〈δζ(x)S〉 = −i
∫
d4x 〈 ∂µ

(
iλ(x)γµλ(x)

)
〉ζ(x) (5.4)

that has to be equaled to the trace expansion (3.10). In this respect, the combination of (2.28) and

(2.37) now leads us to an infinitesimal jacobian (1.34)

JC(x) = iζ(x)


PL 0 0 0

0 −PR 0 0

0 0 0 0

0 0 0 0

 ,

whose product with a2(x,R) reads as

JC(x)a2(x,R) = iζ(x)


PL 0 0 0

0 −PR 0 0

0 0 0 0

0 0 0 0

 ·

·


0

0

0

a2(x,Rλ)PL

0

0

a2(x,Rλc)PR

0

0

a2(x,Rρ)PR

0

0

a2(x,Rρc)PL

0

0

0


⇓
tr[JC(x)a2(x,R)] = iζ(x) tr[a2(x,Rλ)PL]− iζ(x) tr[a2(x,Rλc)PR] .

Then, the heat kernel formula (3.10) tells us that

− lim
M→∞

Tr[JCe
− R
M2 ]

(3.10)
= −i

∫
d4x

iζ(x)

(4π)2

(
tr[a2(x,Rλ)PL]− tr[a2(x,Rλc)PR]

)
, (5.5)

making it clear that (2.49) should now look as

− i
∫
d4x 〈 ∂µ

(
iλ(x)γµλ(x)

)
〉ζ(x) = −i

∫
d4x

iζ(x)

(4π)2

(
tr[a2(x,Rλ)PL]− tr[a2(x,Rλc)PR]

)
, (5.6)

from which the chiral anomaly itself

〈 ∂µ
(
iλγµλ

)
〉 =

i

(4π)2

(
tr[a2(x,Rλ)PL]− tr[a2(x,Rλc)PR]

)
=

(F.7)
=

1

3(4π)2

(
�(∂sA

s)− ∂a(A2Aa) +
1

2
εabcdFabFcd

)
(5.7)

emerges. This is the correct chiral anomaly for the Weyl fermion, as it is well-known that countert-

erms can remove the even-parity terms.

43



5.3 Lorentz anomaly

In a similar way to what was done before, we can now move on to the Lorentz anomaly. So, given

equation (2.49), we begin by replacing its LHS with the flat space limit (e → 1) of the legitimate

Lorentz variation we carried out on the action in (2.13):

i〈δω(x)S〉 = i

∫
d4x 〈T fe(x)︸ ︷︷ ︸

only its antisym. part will contrib.

〉ωef (x) =
i

2

∫
d4x 〈T fe(x)− T ef (x)〉ωef (x). (5.8)

Thereafter, we firstly rely on (3.10), so that we can manipulate the RHS of (2.49) in accordance to

the heat kernel expansion we worked out in chapter 3: in this case the two pieces which comprise

Fujikawa’s jacobian are (2.32) and (2.41), thus getting

JL(x) =
1

4
ωef (x)γef


PL 0 0 0

0 PR 0 0

0 0 0 0

0 0 0 0

 . (5.9)

Its matrix multiplication with (4.5)

JL(x)a2(x,R) =


1
4
ωef (x)γefPL 0 0 0

0 1
4
ωef (x)γefPR 0 0

0 0 0 0

0 0 0 0

 ·

·


0

0

0

a2(x,Rλ)PL

0

0

a2(x,Rλc)PR

0

0

a2(x,Rρ)PR

0

0

a2(x,Rρc)PL

0

0

0
 =

⇓

tr[JL(x)a2(x,R)] =
1

4
ωef (x) tr[γefa2(x,Rλ)PL] +

1

4
ωef (x) tr[γefa2(x,Rλc)PR]

then leads us to

− lim
M→∞

Tr[JLe
− R
M2 ]

(3.10)
= −

∫
d4x

i

(4π)2
tr[JL(x)a2(x,R)] =

= − i

4(4π)2

∫
d4x ωef (x)

(
tr[γefa2(x,Rλ)PL] + tr[γefa2(x,Rλc)PR]

)
.

(5.10)

In the end, complying with (2.49), we do manage to learn what expression describes the anomalous

expectation value of the stress-energy tensor’s antisymmetric part:

i

2

∫
d4x 〈T fe(x)− T ef (x)〉ωef (x) =

= − i

4(4π)2

∫
d4x ωef (x)

(
tr[γefa2(x,Rλ)PL] + tr[γefa2(x,Rλc)PR]

)
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⇓
1

2
〈T ef (x)− T fe(x)〉 =

1

4(4π)2

(
tr[γefa2(x,Rλ)PL] + tr[γefa2(x,Rλc)PR]

)
=

(F.10)
=

1

2
(4π)2

(1

2
∂c(A

c)F ef +
1

3
∂b(AeF f

b)−
1

3
∂b(AfF e

b)−
1

6
∂e(AdF f

d)+

− 1

6
Ad∂e(F f

d) +
1

6
∂f (AdF e

d) +
1

6
Ad∂f (F e

d)+

+
1

12
εcdef�(Fcd)−

1

6
εcbefAaAcFab

)
. (5.11)

Thus, a local Lorentz anomaly indeed emerges. Presumably it can be canceled by adding local

counterterms to the effective action.

5.4 Gravitational anomaly

Finally, we can focus on the only anomaly still missing: the gravitational one. As usual, we proceed

by entering the flat action variation (2.15) in the LHS of (2.49), producing

i〈δξS〉 = −i
∫
d4x ξe(x)〈∂b Tbe(x) + iλγbλFbe(x)〉 , (5.12)

whereas, as regards its RHS, we must be a little more cautious than before. This time, in fact, we

can’t simply make use of one of the heat kernel expansions of chapter 3: after putting (2.34) and

(2.43) together to compose the general flat Einstein jacobian

JE(x) = ξe(x)∂e


PL 0 0 0

0 PR 0 0

0 0 0 0

0 0 0 0

+
α

2
∂e
(
ξe(x)

)
PL 0 0 0

0 PR 0 0

0 0 PR 0

0 0 0 PL

 , (5.13)

we are obliged to single out its differential part,

J1(x) = ξe(x)∂e


PL 0 0 0

0 PR 0 0

0 0 0 0

0 0 0 0

 , (5.14)

from the standard one,

J2(x) =
α

2
∂e
(
ξe(x)

)
PL 0 0 0

0 PR 0 0

0 0 PR 0

0 0 0 PL

 . (5.15)
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Hence, when we replace (5.13) in the regular Fujikawa’s limit of equation (2.49), we get

− lim
M→∞

Tr[JEe
− R
M2 ] = − lim

M→∞
Tr[J1e

− R
M2 ]︸ ︷︷ ︸

(3.28)

− lim
M→∞

Tr[J2e
− R
M2 ]︸ ︷︷ ︸

(3.10)

=

= −
∫
d4x

i

(4π)2
ξe(x)tr[be,2(x,R)]

⌋
Rρ=Rρc=0

+

−
∫
d4x

i

(4π)2
tr[Q0(x)a2(x,R)]

⌋
Rρ=Rρc=0

+

−
∫
d4x

i

(4π)2
tr[J2(x)a2(x,R)] ,

(5.16)

where, as (5.14) dictates, the use of (3.28) has been restricted to the left sectors only, since no

differential operator is found to affect the right ones. Moreover, we have that

Q0(x) = −1

2
∂e
(
ξe(x)

)
PL 0 0 0

0 PR 0 0

0 0 PR 0

0 0 0 PL

−ξe(x)


We(x)PL 0 0 0

0 W̃e(x)PR 0 0

0 0 Ze(x)PR 0

0 0 0 Z̃e(x)PL

 ,

(5.17)

as one could verify from(3.18). The reckoning of

Q0(x)a2(x,R) = −1

2
∂e
(
ξe(x)

)
PL 0 0 0

0 PR 0 0

0 0 PR 0

0 0 0 PL

 ·

·


0

0

0

a2(x,Rλ)PL

0

0

a2(x,Rλc)PR

0

0

a2(x,Rρ)PR

0

0

a2(x,Rρc)PL

0

0

0
+

− ξe(x)


We(x)PL 0 0 0

0 W̃e(x)PR 0 0

0 0 Ze(x)PR 0

0 0 0 Z̃e(x)PL

 ·

·


0

0

0

a2(x,Rλ)PL

0

0

a2(x,Rλc)PR

0

0

a2(x,Rρ)PR

0

0

a2(x,Rρc)PL

0

0

0


⇓

tr[Q0(x)a2(x,R)]
⌋
Rρ=Rρc=0

= −1

2
∂e
(
ξe(x)

)
tr[a2(x,Rλ)PL]− 1

2
∂e
(
ξe(x)

)
tr[a2(x,Rλc)PR]+

− ξe(x) tr[We(x)︸ ︷︷ ︸
(4.9)

a2(x,Rλ)PL]− ξe(x) tr[W̃e(x)︸ ︷︷ ︸
(4.18)

a2(x,Rλc)PR] =
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= −1

2
∂e
(
ξe(x)

)
tr[a2(x,Rλ)PL]− 1

2
∂e
(
ξe(x)

)
tr[a2(x,Rλc)PR]+

+
i

2
ξe(x)Ae(x) tr[a2(x,Rλ)PL] +

i

2
ξe(x)Af (x) tr[γefa2(x,Rλ)PL]+

− i

2
ξe(x)Ae(x) tr[a2(x,Rλc)PR]− i

2
ξe(x)Af (x) tr[γefa2(x,Rλc)PR] ,

and then

J2(x)a2(x,R) =
α

2
∂e
(
ξe(x)

)
PL 0 0 0

0 PR 0 0

0 0 PR 0

0 0 0 PL

 ·

·


0

0

0

a2(x,Rλ)PL

0

0

a2(x,Rλc)PR

0

0

a2(x,Rρ)PR

0

0

a2(x,Rρc)PL

0

0

0


⇓

tr[J2(x)a2(x,R)] =
α

2
∂e
(
ξe(x)

)
tr[a2(x,Rλ)PL] +

α

2
∂e
(
ξe(x)

)
tr[a2(x,Rλc)PR]+

+
α

2
∂e
(
ξe(x)

)
tr[a2(x,Rρ)PR] +

α

2
∂e
(
ξe(x)

)
tr[a2(x,Rρc)PL] ,

allows (5.16) to be expanded as

− lim
M→∞

Tr[JEe
− R
M2 ] = −

∫
d4x

i

(4π)2

(
ξe(x)tr[be,2(x,Rλ)PL] + ξe(x)tr[be,2(x,Rλc)PR]+

− 1

2
∂e
(
ξe(x)

)
tr[a2(x,Rλ)PL]− 1

2
∂e
(
ξe(x)

)
tr[a2(x,Rλc)PR]+

+
i

2
ξe(x)Ae(x) tr[a2(x,Rλ)PL] +

i

2
ξe(x)Af (x) tr[γefa2(x,Rλ)PL]+

− i

2
ξe(x)Ae(x) tr[a2(x,Rλc)PR]− i

2
ξe(x)Af (x) tr[γefa2(x,Rλc)PR]+

+
α

2
∂e
(
ξe(x)

)
tr[a2(x,Rλ)PL] +

α

2
∂e
(
ξe(x)

)
tr[a2(x,Rλc)PR]+

+
α

2
∂e
(
ξe(x)

)
tr[a2(x,Rρ)PR] +

α

2
∂e
(
ξe(x)

)
tr[a2(x,Rρc)PL]

)
=

=̇−
∫
d4x

i

(4π)2
ξe(x)

(
tr[be,2(x,Rλ)PL] + tr[be,2(x,Rλc)PR]+

+
1

2
∂e
(
tr[a2(x,Rλ)PL]

)
+

1

2
∂e
(
tr[a2(x,Rλc)PR]

)
+

+
i

2
Ae(x) tr[a2(x,Rλ)PL] +

i

2
Af (x) tr[γefa2(x,Rλ)PL]+

− i

2
Ae(x) tr[a2(x,Rλc)PR]− i

2
Af (x) tr[γefa2(x,Rλc)PR]+

− α

2
∂e
(
tr[a2(x,Rλ)PL]

)
− α

2
∂e
(
tr[a2(x,Rλc)PR]

)
+
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− α

2
∂e
(
tr[a2(x,Rρ)PR]

)
− α

2
∂e
(
tr[a2(x,Rρc)PL]

))
. (5.18)

Thus, by piecing together the two expanded sides of (2.49), or rather, (5.12) and (5.18), we realize

that the Fujikawa’s approach brings about

−i
∫
d4x ξe(x)〈∂b Tbe(x) + iλγbλFbe(x)〉 = (5.19)

= −
∫
d4x

i

(4π)2
ξe(x)

(
tr[be,2(x,Rλ)PL] + tr[be,2(x,Rλc)PR]+

+
1

2
∂e
(
tr[a2(x,Rλ)PL]

)
+

1

2
∂e
(
tr[a2(x,Rλc)PR]

)
+

+
i

2
Ae(x) tr[a2(x,Rλ)PL] +

i

2
Af (x) tr[γefa2(x,Rλ)PL]+

− i

2
Ae(x) tr[a2(x,Rλc)PR]− i

2
Af (x) tr[γefa2(x,Rλc)PR]+

− α

2
∂e
(
tr[a2(x,Rλ)PL]

)
− α

2
∂e
(
tr[a2(x,Rλc)PR]

)
+

− α

2
∂e
(
tr[a2(x,Rρ)PR]

)
− α

2
∂e
(
tr[a2(x,Rρc)PL]

))
(5.20)

to be valid, whence the gravitational anomaly finally follows:

〈∂b Tbe(x) + iλγbλFbe(x)〉 =
1

(4π)2

(
tr[be,2(x,Rλ)PL] + tr[be,2(x,Rλc)PR]+

+
1

2
∂e
(
tr[a2(x,Rλ)PL]

)
+

1

2
∂e
(
tr[a2(x,Rλc)PR]

)
+

+
i

2
Ae(x) tr[a2(x,Rλ)PL] +

i

2
Af (x) tr[γefa2(x,Rλ)PL]+

− i

2
Ae(x) tr[a2(x,Rλc)PR]− i

2
Af (x) tr[γefa2(x,Rλc)PR]+

− α

2
∂e
(
tr[a2(x,Rλ)PL]

)
− α

2
∂e
(
tr[a2(x,Rλc)PR]

)
+

− α

2
∂e
(
tr[a2(x,Rρ)PR]

)
− α

2
∂e
(
tr[a2(x,Rρc)PL]

))
=

(F.13)
=

1

(4π)2

[1

6

(
∂i
(
∂b(A

b)Fie
)
− ∂i

(
∂i(A

c)Fec
)

+ ∂i
(
∂e(A

c)Fic
)
+

+
1

2
εdbic∂

i
(
AeA

cF db
)
− 1

2
εdbec∂

i
(
AiA

cF db
)
− 1

2
εdbie∂

i
(
A2F db

))
+

+
1

6
∂e

(
−(∂aA

a)2 +
1

2
FabF

ab −�(A2) + ∂b(Ac)∂
b(Ac)

)
+

− 1

6
Ae

(
−�(∂sA

s) + ∂a(A
2Aa)− 1

2
εabcdFabFcd

)
+

− Af
(1

6
�(Fef ) +

1

6
AaAfFae −

1

6
AaAeFaf −

1

4
εabef∂c(A

c)F ab+

+
1

3
εacef∂b(A

cF ab) +
1

6
εacef∂

a(AdF
cd) +

1

6
εacefAd∂

a(F cd)
)

+

− α

3
∂e

(
−(∂aA

a)2 +
1

2
FabF

ab −�(A2) + ∂b(Ac)∂
b(Ac)

)]
. (5.21)
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Hence, the expression of the gravitational anomaly has been deduced, too.

5.5 Discussion

We have calculated all the anomalies of a Weyl fermion in an abelian gauge background, using PV

fields with a Dirac mass and casting the calculation in a typical Fujikawa’s fashion. The various

computations have then been verified through the software of ref. [15].

In the end, the chiral anomaly is seen to coincide with the expected results, see also [11]. As for

the anomalies of the stress tensor, all of them appear as a consequence of the non invariance of the

Dirac mass term adopted. However, one expects that local counterterms may reproduce the trace

anomaly as computed in [11], without the topological odd-parity contribution, reinstating at the

same time the local Lorentz and general coordinate symmetries. The structure of these counterterms

will not be analyzed here, as the lack of the symmetries makes this task far from being obvious, and

is left for future work. In any case, we can consider ourselves satisfied with the achievement of the

gravitational anomaly’s formula, whose computation in 4 dimensions through heat kernel methods

had never been pursued until now.
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Chapter 6

Conclusions

In summary, during the first chapter we introduced the anomaly’s issue, thoroughly depicting the

schemes we used to approach it: we illustrated the Fujikawa’s method improved by the procedure

described in [13, 18]. Then, we devoted chapter 2 to explore all the symmetry transformations

marking out the Weyl spinor model, evaluating the variation of its action under those mappings. We

also built an unusual Pauli-Villars lagrangian to be used in the regularization process, equipping it

with a Dirac mass term proportional to the αth−power of the vierbein

M(λρ+ ρλ)eα.

The chapter ended with the computation of the pieces composing the infinitesimal Fujikawa’s jaco-

bians.

In 3 we discussed how to implement the heat kernel expansion to express the traces that are

responsible for the anomalous quantum expectation values. Thus, we presented the Seeley-DeWitt

coefficients and their differential generalization, i.e. the Branson-Gilkey-Vassilevich coefficients, leav-

ing their actual calculation to chapter 4.

Finally, in chap. 5, we tracked down the exact anomalies connected to the main symmetries of

the action, though, to be fair, we didn’t check for the existence of local counterterms which either

prevent those to survive or simplify their expressions. Every result of this chapter has been then

tested using a software developed in wolfram language [15, 21, 22], enhanced with several functions

we wrote to better handle the data flow arising from trace computations.

Providing the reader with anomalies acquired in this new setup, we aimed the current thesis to

pave the way for future projects: for example, thanks to the α parameter escorting our mass term,

one could try to verify that, irrespective of the regulator’s class adopted, only the chiral and trace

anomalies survive and take the expected form.
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[21] Mart́ın-Garćıa, J. M. et al. “xAct: Efficient tensor computer algebra for the WolframLanguage,”

(2002-2018) URL:http://xact.es/
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Appendix A

Spinor conventions

The following notation is the one we adopted throughout the paper.

As is well-known, a 4−dimensional Dirac spinor field ψ can be expressed by the direct sum of its

indipendent 2−dimensional Weyl components, l and r, as

ψ = l ⊕ r =

(
l

r

)
. (A.1)

Alternatively, one could insert the two previous chiral spinors into higher dimensional Dirac vectors,

λ =

(
l

0

)
(A.2)

and

ρ =

(
0

r

)
(A.3)

respectively, thus restating (A.1) via

ψ = λ+ ρ . (A.4)

At this stage, the projectors (2.23), namely

PL =
1 + γ5

2
and PR =

1− γ5

2

enable (A.2) and (A.3) to be rewritten in terms of ψ

λ = PLψ and ρ = PRψ ,

where γ5 and the other γ matrices are defined in appendix B.

Then, the conjugate Dirac spinor field ψ descends from the customary definition that sees β = iγ0

involved

ψ = ψ†β,

which in turn leads to the charge conjugated spinor ψc

ψc = C−1ψ
T
. (A.5)
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In the last line, the charge conjugation operator C appeared: it acts on γj by binding it to its

transposed

CγjC−1 = −γj T , (A.6)

and satisfies the ensuing chain of equality

C = −CT = −C−1 = −C† = C∗ . (A.7)

The only operator fulfilling both (A.6) and (A.7) is the one determined by a particular product of γ

matrices, scilicet

C = γ2β . (A.8)

This completes appendix A.
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Appendix B

Gamma matrices: conventions and

formulae

We devote this appendix to the main results and properties holding true for gamma marices and

their product. Before we start, let’s recall the Clifford algebra’s definition{
γa, γb

}
= 2gab(1), (B.1)

and, for a matter of completeness, we likewise introduce the antisymmetric tensor γab[
γa, γb

]
= 2γab, (B.2)

as well as the fifth gamma matrix, obtained from the combination of all the others:

γ5 = −iγ0γ1γ2γ3 =
i

4!
εabcdγ

aγbγcγd, (B.3)

where εabcd is the complete antisymmetric Levi-Civita tensor, defined by the condition that

ε0123 = −1. (B.4)

γ5 satisfies two essential relations that will be largely employed in the following. First of all, by its

own definition (B.3), it anticommutes with any other gamma

γ5γa = −γaγ5 , (B.5)

and then its multiplication with itself gives

(γ5)2 = 1 . (B.6)

However, if we used the chiral representation to express the γs, they would read as follows

γ0 = −i
(

0 1
1 0

)
, γj = −i

(
0 σj

−σj 0

)
, γ5 =

(
1 0

0 −1

)
, (B.7)

where the σj are the usual Pauli matrices.

With that in mind, we have

• decomposition into symmetric and antisymmetric part:

γaγb =
{γa, γb}

2
+

[γa, γb]

2
= gab + γab ; (B.8)
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• simple contraction:

γaγa
(B.1)
= gaa(1) = 4(1) ; (B.9)

• contraction (with one gamma matrix in between):

γaγbγa
R:(B.1)

= 2gabγa − γb γaγa︸︷︷︸
(B.9)

= 2γb − 4γb = −2γb , (B.10)

where the symbol
R:(B.n)

= (with n ∈ N) introduces a rearrangement of the gamma matrices which

takes place according to the rules reported in equation (B.n). From now on its meaning will

be so understood;

• contraction (with two gamma matrices in between):

γaγbγcγa
R:(B.1)

= 2gabγcγa − γbγaγcγa
R:(B.1)

= 2gabγcγa − 2γbgacγa + γbγc γaγa︸︷︷︸
(B.9)

=

= 2γcγb − 2γbγc + 4γbγc
(B.1)
= 4gcb(1)− 2γbγc − 2γbγc + 4γbγc =

= 4gcb(1) ; (B.11)

• single antisymmetric contraction:

γabγa
c =

[
γaγb − γbγa

2

] [
γaγ

c − γcγa
2

]
=

=
1

4

[
γaγbγa︸ ︷︷ ︸

(B.10)

γc − γb γaγa︸︷︷︸
(B.9)

γc − γaγbγcγa︸ ︷︷ ︸
(B.11)

+γb γaγcγa︸ ︷︷ ︸
(B.10)

]
=

=
1

4

[
−2γbγc − 4γbγc − 4gcb(1)− 2γbγc

]
=

=
1

4

[
−8γbγc − 4gcb(1)

]
=

= −2 γbγc︸︷︷︸
(B.8)

−gcb(1) =

= −2γbc − 3gbc(1) ; (B.12)

• double antisymmetric contraction:

γabγab = gbc γ
abγa

c︸ ︷︷ ︸
(B.12)

= gbc
(
−2γbγc − gcb(1)

)
) =

= −2 γbγb︸︷︷︸
(B.9)

− gbb︸︷︷︸
4

(1) =

= −12(1) ; (B.13)
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• antisymmetric commutation:

[γab, γcd] =

(
γaγb − γbγa

2

)(
γcγd − γdγc

2

)
−
(
γcγd − γdγc

2

)(
γaγb − γbγa

2

)
=

=
1

4

(
γaγbγcγd − γaγbγdγc − γbγaγcγd + γbγaγdγc+

− γcγdγaγb + γcγdγbγa + γdγcγaγb − γdγcγbγa
)

=(
reordering the

last 4 terms

)
R:(B.1)

=
1

4

(
γaγbγcγd − γaγbγdγc − γbγaγcγd + γbγaγdγc+

− 2gadγcγb + 2gacγdγb − 2gbdγaγc + 2gbcγaγb − γaγbγcγd+
+ 2gbdγcγa − 2gbcγdγa + 2gadγbγc − 2gacγbγd + γbγaγcγd+

+ 2gacγdγb − 2gadγcγb + 2gbcγaγd − 2gbdγaγc + γaγbγdγc+

− 2gbcγdγa + 2gbdγcγa − 2gacγbγd + 2gadγbγc − γbγaγdγc
)

=

=
1

4

(
4gadγbγc − 4gadγcγb + 4gacγdγb − 4gacγbγd+

+ 4gbdγcγa − 4gbdγaγb + 4gbcγaγd − 4gbcγdγa
) (B.2)

=

= 2gadγbc − 2gacγbd − 2gbdγac + 2gbcγad ; (B.14)

• antisymmetric commutation with single contraction:

[γab, γ
a
d] = gac [γab, γcd]︸ ︷︷ ︸

(B.14)

=

= 2gcdγbc − 2 gcc︸︷︷︸
4

γbd − 2gbd γ
c
c︸︷︷︸

0

+2gbcγ
c
d =

= 2γbd − 8γbd + 2γbd =

= −4γbd ;

(B.15)

• cyclic property of the trace:

given any number of matrices A, B, C, · · · , it is well known that the trace of their product is

invariant under cyclic permutations:

tr[ABC · · · ] = tr[BC · · ·A] = tr[C · · ·AB] = · · · (B.16)

In a nutshell, this is due to the basic rules of the matrix multiplication process;

• trace of a single γ (γa):

tr[γa] = tr
[
γa
γbγb

gbb︸︷︷︸
(1)

]
R:(B.1)

= −tr
[γbγaγb

gbb

]
(B.16)

= −tr
[γbγb
gbb︸︷︷︸
(1)

γa
]

= −tr[γa] = 0 . (B.17)

An explanation is in order: inside the previous trace (first equality), we added the identity

operator (1), whose proper expression had been determined by inverting (B.1). Furthermore,
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we chose γb 6= γa so that we could be free to use their anticommutation relation, always encoded

in (B.1), and write γaγb = −γbγa (second equality). Anything else should be crystal-clear. The

same arguments hold for γ5, too:

tr[γ5] = 0 ; (B.18)

• trace of the product of two γs (γa, γb):

by reorganizing the two outermost sides of the equality chain

tr[γaγb]
R:(B.1)

= tr[2gab(1)− γbγa] = 2gab tr[(1)]︸ ︷︷ ︸
4

−tr[γbγa]
(B.16)

= 8gab − tr[γaγb] ,

it would be easy to see that the ensuing relation holds true

tr[γaγb] = 4gab ; (B.19)

• trace of the product of an odd number of γs (γa, γb, . . . ):

tr[γaγb . . . ] = tr[γ5γ5︸︷︷︸
(B.6)

γaγb . . . ]
R:(B.5)

= −tr[γ5γaγb . . . γ5]
(B.16)

= −tr[γ5γ5︸︷︷︸
(B.6)

γaγb . . . ] =

= −tr[γaγb . . . ] = 0 ;

(B.20)

• trace of the product of γ5 and an odd number of γs (γa, γb, . . . ):

tr[γ5γaγb . . . ]
(B.5)
= −tr[γaγb . . . γ5]

(B.16)
= −tr[γ5γaγb . . . ] = 0 ; (B.21)

• trace of the product of γ5 and two γs (γa, γb):

tr[γ5γaγb] = tr
[
γ5γaγb

γcγc

gcc︸︷︷︸
(1)

]
R:(B.1)

= tr
[
γ5γcγaγb

γc

gcc

]
R:(B.5)

= −tr
[
γcγ5γaγb

γc

gcc

]
=

(B.16)
= −tr

[
γ5γaγb

γcγc

gcc︸︷︷︸
(1)

]
= 0 ,

(B.22)

where, similarly to what has been done in (B.17), γc must be different from γa and γb so that

we can take advantage of its anticommutation property. Anyway, as long as we consider less

than four gamma matrices, it’s always possible to select γc such that γc 6= γa and γc 6= γb;

• trace of a single antisymmetric γ (γab):

tr[γab] =
1

2

(
tr[γaγb−γbγa]

)
=

1

2

(
tr[γaγb]−tr[γbγa]

)
(B.16)

=
1

2

(
tr[γaγb]−tr[γaγb]

)
= 0 ; (B.23)

• trace of the product of γ5 and a single antisymmetric γ (γab):

tr[γ5γab] =
1

2

(
tr[γ5γaγb−γ5γbγa]

)
R:(B.5)

=
1

2

(
tr[γ5γaγb+γbγ5γa]

)
(B.16)

= tr[γ5γaγb]︸ ︷︷ ︸
(B.22)

= 0 ; (B.24)
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• identity - product of three γs (γa, γb, γc):

we intend to derive an intriguing identity holding for Dirac matrices that will come in handy

during the evaluation of the traces of multiple γ−products. We begin by reporting every

relation we’ll make use of in the course of the present point. First of all, we recall that the flat

space-time metric gab and its inverse gab, by which we lower (γa = gabγ
b) and raise (γa = gabγb)

the tensor’s indices respectively, are defined to be

gab ≡ gab =

(
0

1

−13x3

0
)
. (B.25)

Hence, from (B.1) and (B.25), we can gather

(γ0)2 = −(γ1)2 = −(γ2)2 = −(γ3)2 = 1 , (B.26)

and

γ0 = γ0

γi = −γi, (i = 1, 2, 3)
(B.27)

as well.

Now, since we got everything settled, we can proceed by considering the unusual contraction

that will permit us to achieve our purpose, that is iεsabcγ
sγ5. In fact, if this object were

expanded, it would result in

iεsabcγ
sγ5 (B.3)

= εsabcγ
s︸ ︷︷ ︸

expand

γ0γ1γ2γ3 =

= ε0abcγ
0γ0γ1γ2γ3 + ε1abcγ

1γ0γ1γ2γ3 + ε2abcγ
2γ0γ1γ2γ3 + ε3abcγ

3γ0γ1γ2γ3 =

R:(B.1)
= ε0abcγ

0γ0γ1γ2γ3 − ε1abcγ0γ1γ1γ2γ3 + ε2abcγ
0γ1γ2γ2γ3 − ε3abcγ0γ1γ2γ3γ3 =

(B.26)
= ε0abcγ

1γ2γ3 + ε1abcγ
0γ2γ3 − ε2abcγ0γ1γ3 + ε3abcγ

0γ1γ2, (B.28)

which in turn, by testing every possible combination of the three indices a, b and c, would beget

iεsabcγ
sγ5 =

1

3!

(
γaγbγc − γaγcγb + γbγcγa − γbγaγc + γcγaγb − γcγbγa

)
(B.29)

(for its thorough derivation see appendix G). Anyway, the preceding equality can be further

processed by suitably reordering the three negative terms appearing in the RHS:

iεsabcγ
sγ5 =

1

3!

(
γaγbγc − γaγcγb + γbγcγa − γbγaγc + γcγaγb − γcγbγa

)
=(

reordering the

negative terms

)
R:(B.1)

=
1

6

(
γaγbγc + γbγcγa + γcγaγb+

− 2gacγb + 2gabγc − 2gbcγa + γbγcγa+

− 2gbaγc + 2gbcγa − 2gcaγb + γcγaγb+
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− 2gcbγa + 2gcaγb − 2gabγc + γaγbγc
)

=

=
1

6

(
2γaγbγc + 2γbγcγa + 2γcγaγb − 2gacγb − 2gbaγc − 2gcbγa

)
=(

reordering the

2nd and 3rd term

)
R:(B.1)

=
1

6

(
2γaγbγc+

+ 4gacγb − 4gabγc + 2γaγbγc+

+ 4gacγb − 4gbcγa + 2γaγbγc+

− 2gacγb − 2gbaγc − 2gcbγa
)

=

= γaγbγc + gacγb − gabγc − gbcγa ,

and then rearranged in the much-discussed identity

γaγbγc = gabγc − gacγb + gbcγa + iεsabcγ
sγ5 ; (B.30)

• trace of the product of four γs (γa, γb, γc, γd):

tr[γaγbγcγd]
(B.30)

= tr[(gabγc − gacγb + gbcγa + iεs
abcγsγ5)γd] =

= gab tr[γcγd]︸ ︷︷ ︸
(B.19)

−gac tr[γbγd]︸ ︷︷ ︸
(B.19)

+gbc tr[γaγd]︸ ︷︷ ︸
(B.19)

+iεs
abc tr[γsγ5γd]︸ ︷︷ ︸

(B.22)

=

= 4gabgcd − 4gacgbd + 4gbcgad

(B.31)

• trace of the product of γ5 and four γs (γa, γb, γc, γd):

tr[γ5γaγbγcγd]
(B.30)

= tr[γ5(gabγc − gacγb + gbcγa + iεs
abcγsγ5)γd] =

= gab tr[γ5γcγd]︸ ︷︷ ︸
(B.22)

−gac tr[γ5γbγd]︸ ︷︷ ︸
(B.22)

+gbc tr[γ5γaγd]︸ ︷︷ ︸
(B.22)

+iεs
abc tr[γ5γsγ5γd]︸ ︷︷ ︸

(B.5)

=

= −iεsabctr[γ5γ5︸︷︷︸
(B.6)

γsγd] = −iεsabc tr[γsγd]︸ ︷︷ ︸
(B.6)

= −4iεs
abcgsd = −4iεdabc =

= 4iεabcd

(B.32)

• trace of the product of two antisymmetric γs (γab, γcd):

tr[γabγcd] = tr
[(γaγb − γbγa

2

)(γcγd − γdγc
2

)]
=

=
1

4
tr[γaγbγcγd − γaγbγdγc − γbγaγcγd + γbγaγdγc] =

=
1

4
tr[γaγbγcγd]− 1

4
tr[γaγbγdγc]− 1

4
tr[γbγaγcγd] +

1

4
tr[γbγaγdγc] =

(B.31)
= gabgcd − gacgbd + gbcgad − gabgcd + gadgbc − gbdgac+

− gabgcd + gbcgad − gacgbd + gabgcd − gbdgac + gadgbc =

= 4gadgbc − 4gacgbd

(B.33)
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• trace of the product of γ5 and two antisymmetric γs (γab, γcd):

tr[γ5γabγcd] = tr
[
γ5
(γaγb − γbγa

2

)(γcγd − γdγc
2

)]
=

=
1

4
tr[γ5(γaγbγcγd − γaγbγdγc − γbγaγcγd + γbγaγdγc)] =

=
1

4
tr[γ5γaγbγcγd]− 1

4
tr[γ5γaγbγdγc]− 1

4
tr[γ5γbγaγcγd] +

1

4
tr[γ5γbγaγdγc] =

(B.32)
= iεabcd − iεabdc − iεbacd + iεbadc =

= 4iεabcd

(B.34)

• single contraction of two εs (εsdef , εsabc):

what we are now interested in is determining whether or not the contraction

εs
defεsabc = gdlgemgfn εslmnε

sabc︸ ︷︷ ︸
expand

=

= gdlgemgfn
(
ε0lmnε

0abc + ε1lmnε
1abc + ε2lmnε

2abc + ε3lmnε
3abc
)
, (B.35)

which will shortly be employed in (B.38), does possess some elegant formula in terms of the

sole metric. In this regard, we immediately notice that, in each of the four terms of the second

line of (B.35), the set of indices
{
a, b, c

}
is certainly forced to be chosen from the same pool

of values assumed by
{
l,m, n

}
. Therefore, starting from the situation where l = a, m = b and

n = c, which would correspond to

εs
defεsabc = gdlgemgfnεslmnε

sabc = gdlgemgfn
(
−δlaδmbδnc

)
(B.36)

if l = a ∧ m = b ∧ n = c,

(the minus sign is due to ε0123ε
0123 = −1), we realize that we can seize the complete solution

we were looking for by antisymmetrizing (B.36) with respect to one of the two sets of indices,{
a, b, c

}
or
{
l,m, n

}
. This would also allow for the possibility where

(
l = b, m = a, n = c

)
,(

l = a, m = c, n = b
)

and so forth, in addition to the one explored in (B.36). Thus, we end

up with

εs
defεsabc = gdlgemgfn

(
−δlaδmbδnc + δl

aδm
cδn

b − δlbδmcδna+
+ δl

bδm
aδn

c − δlcδmaδnb + δl
cδm

bδn
a
)

=

= −gdagebgfc + gdagecgfb − gdbgecgfa + gdbgeagfc − gdcgeagfb + gdcgebgfa ; (B.37)

• trace of the product of six γs (γa, γb, γc, γd, γe, γf):

tr[γaγbγcγdγeγf ]
(B.30)

= tr[(gabγc − gacγb + gbcγa + iεs
abc γsγ5︸︷︷︸

(B.5)

)γdγeγf ] =
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= gab tr[γcγdγeγf ]︸ ︷︷ ︸
(B.31)

−gac tr[γbγdγeγf ]︸ ︷︷ ︸
(B.31)

+

+ gbc tr[γaγdγeγf ]︸ ︷︷ ︸
(B.31)

−iεsabc tr[γ5γsγdγeγf ]︸ ︷︷ ︸
(B.32)

=

= 4gab(gcdgef − gcegdf + gcfgde)− 4gac(gbdgef − gbegdf + gbfgde)+

+ 4gbc(gadgef − gaegdf + gafgde) + 4 εs
abcεsdef︸ ︷︷ ︸
(B.37)

=

= 4
(
gabgcdgef − gabgcegdf + gabgcfgde+

− gacgbdgef + gacgbegdf − gacgbfgde+
+ gbcgadgef − gbcgaegdf + gbcgafgde+

− gadgbegcf + gadgcegbf − gbdgcegaf+
+ gbdgaegcf − gcdgaegbf + gcdgbegaf

)
; (B.38)

• trace of the product of γ5 and six γs (γa, γb, γc, γd, γe, γf):

tr[γ5γaγbγcγdγeγf ]
(B.30)

= tr[γ5(gabγc − gacγb + gbcγa + iεs
abc γsγ5︸︷︷︸

(B.5)

)γdγeγf ] =

= gab tr[γ5γcγdγeγf ]︸ ︷︷ ︸
(B.32)

−gac tr[γ5γbγdγeγf ]︸ ︷︷ ︸
(B.32)

+

+ gbc tr[γ5γaγdγeγf ]︸ ︷︷ ︸
(B.32)

−iεsabctr[γ5γ5︸︷︷︸
(B.6)

γsγdγeγf ] =

= 4igabεcdef − 4igacεbdef + 4igbcεadef − iεsabc tr[γsγdγeγf ]︸ ︷︷ ︸
(B.31)

=

= 4igabεcdef − 4igacεbdef + 4igbcεadef+

− iεsabc(4gsdgef − 4gsegdf + 4gsfgde) =

= 4igabεcdef − 4igacεbdef + 4igbcεadef+

+ 4igefεabcd − 4igdfεabce + 4igdeεabcf ; (B.39)

• trace of the product of two antisymmetric γs (γab, γcd) and two γs (γe, γf)

tr[γabγcdγeγf ] = tr
[(γaγb − γbγa

2

)(γcγd − γdγc
2

)
γeγf

]
=

=
1

4
tr[γaγbγcγdγeγf − γaγbγdγcγeγf − γbγaγcγdγeγf + γbγaγdγcγeγf ] =

=
1

4
tr[γaγbγcγdγeγf ]− 1

4
tr[γaγbγdγcγeγf ]+

− 1

4
tr[γbγaγcγdγeγf ] +

1

4
tr[γbγaγdγcγeγf ] =

(B.38)
= gabgcdgef − gabgcegdf + gabgcfgde+
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− gacgbdgef + gacgbegdf − gacgbfgde+
+ gbcgadgef − gbcgaegdf + gbcgafgde+

− gadgbegcf + gadgcegbf − gbdgcegaf+
+ gbdgaegcf−gcdgaegbf + gcdgbegaf+

−
(
gabgcdgef − gabgdegcf + gabgdfgce+

− gadgbcgef + gadgbegcf − gadgbfgce+
+ gbdgacgef − gbdgaegcf + gbdgafgce+

− gacgbegdf + gacgdegbf − gbcgdegaf+
+ gbcgaegdf−gcdgaegbf + gcdgbegaf

)
+

−
(
gabgcdgef − gabgcegdf + gabgcfgde+

− gbcgadgef + gbcgaegdf − gbcgafgde+
+ gacgbdgef − gacgbegdf + gacgbfgde+

− gbdgaegcf + gbdgcegaf − gadgcegbf+
+ gadgbegcf−gcdgbegaf + gcdgaegbf

)
+

+ gabgcdgef − gabgdegcf + gabgdfgce+

− gbdgacgef + gbdgaegcf − gbdgafgce+
+ gadgbcgef − gadgbegcf + gadgbfgce+

− gbcgaegdf + gbcgdegaf − gacgdegbf+
+ gacgbegdf−gcdgbegaf + gcdgaegbf =

= 4
(
−gacgbdgef + gacgbegdf − gacgbfgde + gbcgadgef − gbcgaegdf+

+ gbcgafgde − gadgbegcf + gadgcegbf − gbdgcegaf + gbdgaegcf
)

; (B.40)

• identity - sum of products of metric (g) and Levi-Civita (ε) tensors:

the cyclic property of the trace (B.16) and the anticommutation relation (B.5) satisfied by γ5

can be easily adopted to assert the validity of

− tr[γ5γdγcγaγbγeγf ] + tr[γ5γdγcγaγbγfγe] + tr[γ5γdγcγbγaγeγf ]− tr[γ5γdγcγbγaγfγe] =

= tr[γ5γfγdγcγaγbγe]− tr[γ5γeγdγcγaγbγf ]− tr[γ5γfγdγcγbγaγe] + tr[γ5γeγdγcγbγaγf ].

Since the two sides must coincide, we expand them both, term by term, through (B.39), at-

taining

− 4igdcεabef + 4igdaεcbef − 4igcaεdbef −XXXXX4igefεdcab + 4igbfεdcae − 4igbeεdcaf+

+ 4igdcεabfe − 4igdaεcbfe + 4igcaεdbfe +
XXXXX4igefεdcab − 4igbeεdcaf + 4igbfεdcae+

+ 4igdcεbaef − 4igdbεcaef + 4igcbεdaef +
XXXXX4igefεdcba − 4igafεdcbe + 4igaeεdcbf+

− 4igdcεbafe + 4igdbεcafe − 4igcbεdafe −XXXXX4igefεdcba + 4igaeεdcbf − 4igafεdcbe =

= 4igfdεcabe − 4igfcεdabe + 4igdcεfabe + 4igbeεfdca − 4igaeεfdcb + 4igabεfdce+

− 4igedεcabf + 4igecεdabf − 4igdcεeabf − 4igbfεedca + 4igafεedcb − 4igabεedcf+
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− 4igfdεcbae + 4igfcεdbae − 4igdcεfbae − 4igaeεfdcb + 4igbeεfdca − 4igabεfdce+

+ 4igedεcbaf − 4igecεdbaf + 4igdcεebaf + 4igafεedcb − 4igbfεedca + 4igabεedcf .

Just a little more algebra (we add up all the identical terms, dividing the left and right side by

8i) would help us simplify the prior equality:

− 2gdcεabef + gdaεcbef − gcaεdbef +���
�

gbfεdcae −XXXXgbeεdcaf+

− gdbεcaef + gcbεdaef −����
�:

gafεdcbe +���
�XXXXgaeεdcbf =

= 2gdcεfabe + gfdεcabe − gfcεdabe +
XXXXgbeεfdca −����XXXXgaeεfdcb+

− gedεcabf + gecεdabf −����gbfεedca +���
��:

gafεedcb

⇓

gdaεcbef − gcaεdbef − gdbεcaef + gcbεdaef = gfdεcabe − gfcεdabe − gedεcabf + gecεdabf ; (B.41)

• trace of the product of three antisymmetric γs (γab, γcd, γef):

tr[γabγcdγef ] = tr
[(γaγb − γbγa

2

)(γcγd − γdγc
2

)(γeγf − γfγe
2

)]
=

=
1

8
tr[γaγbγcγdγeγf − γaγbγdγcγeγf − γaγbγcγdγfγe + γaγbγdγcγfγe

− γbγaγcγdγeγf + γbγaγdγcγeγf + γbγaγcγdγfγe − γbγaγdγcγfγe] =

=
1

8
tr[γaγbγcγdγeγf ]− 1

8
tr[γaγbγdγcγeγf ]− 1

8
tr[γaγbγcγdγfγe]+

+
1

8
tr[γaγbγdγcγfγe]− 1

8
tr[γbγaγcγdγeγf ] +

1

8
tr[γbγaγdγcγeγf ]+

+
1

8
tr[γbγaγcγdγfγe]− 1

8
tr[γbγaγdγcγfγe] =

(B.38)
=

1

2

(
���

��gabgcdgef − gabgcegdf + gabgcfgde −XXXXXgacgbdgef + gacgbegdf − gacgbfgde+

+ gbcgadgef − gbcgaegdf + gbcgafgde − gadgbegcf + gadgcegbf − gbdgcegaf+
+ gbdgaegcf −����

�XXXXXgcdgaegbf +���
���:gcdgbegaf+

−����
�

gabgcdgef + gabgdegcf − gabgdfgce + gadgbcgef − gadgbegcf + gadgbfgce+

−XXXXXgbdgacgef + gbdgaegcf − gbdgafgce + gacgbegdf − gacgdegbf + gbcgdegaf+

− gbcgaegdf +���
��XXXXXgcdgaegbf −����

��:
gcdgbegaf

−����
�

gabgcdgef + gabgcfgde − gabgcegdf +
XXXXXgacgbdgef − gacgbfgde + gacgbegdf+

− gbcgadgef + gbcgafgde − gbcgaegdf + gadgbfgce − gadgcfgbe + gbdgcfgae+

− gbdgafgce +���
���:gcdgafgbe −����

�XXXXXgcdgbfgae+

+���
��gabgcdgef − gabgdfgce + gabgdegcf − gadgbcgef + gadgbfgce − gadgbegcf+

+
XXXXXgbdgacgef − gbdgafgce + gbdgaegcf − gacgbfgde + gacgdfgbe − gbcgdfgae+

+ gbcgafgde −����
��:

gcdgafgbe +���
��XXXXXgcdgbfgae+

−����
�

gabgcdgef + gabgcegdf − gabgcfgde + gbcgadgef − gbcgaegdf + gbcgafgde+
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−XXXXXgacgbdgef + gacgbegdf − gacgbfgde + gbdgaegcf − gbdgcegaf + gadgcegbf+

− gadgbegcf +���
���:gcdgbegaf −����

�XXXXXgcdgaegbf+

+���
��gabgcdgef − gabgdegcf + gabgdfgce −XXXXXgbdgacgef + gbdgaegcf − gbdgafgce+

+ gadgbcgef − gadgbegcf + gadgbfgce − gbcgaegdf + gbcgdegaf − gacgdegbf+
+ gacgbegdf −����

��:
gcdgbegaf +���

��XXXXXgcdgaegbf+

+���
��gabgcdgef − gabgcfgde + gabgcegdf − gbcgadgef + gbcgafgde − gbcgaegdf+

+
XXXXXgacgbdgef − gacgbfgde + gacgbegdf − gbdgafgce + gbdgcfgae − gadgcfgbe+

+ gadgbfgce −����
�XXXXXgcdgbfgae +���

���:gcdgafgbe+

−����
�

gabgcdgef + gabgdfgce − gabgdegcf +
XXXXXgbdgacgef − gbdgafgce + gbdgaegcf+

− gadgbcgef + gadgbfgce − gadgbegcf + gbcgafgde − gbcgdfgae + gacgdfgbe+

− gacgbfgde +���
��XXXXXgcdgbfgae −����

��:
gcdgafgbe

)
=

= −����
��

2gabgcegdf +
XXXXXX2gabgcfgde + 2gacgbegdf − 2gacgbfgde − 2gbcgaegdf+

+ 2gbcgafgde − 2gadgbegcf + 2gadgcegbf − 2gbdgcegaf + 2gbdgaegcf+

+���
���2gabgcegdf −XXXXXX2gabgcfgde − 2gbcgaegdf + 2gbcgafgde + 2gacgbegdf+

− 2gacgbfgde + 2gbdgaegcf − 2gbdgcegaf + 2gadgcegbf − 2gadgbegcf =

= +4gacgbegdf − 4gacgbfgde − 4gbcgaegdf + 4gbcgafgde+

− 4gadgbegcf + 4gadgcegbf − 4gbdgcegaf + 4gbdgaegcf ; (B.42)

• trace of the product of γ5 and three antisymmetric γs (γab, γcd, γef):

tr[γ5γabγcdγef ] = tr
[
γ5
(γaγb − γbγa

2

)(γcγd − γdγc
2

)(γeγf − γfγe
2

)]
=

=
1

8
tr[γ5(γaγbγcγdγeγf − γaγbγdγcγeγf − γaγbγcγdγfγe+

+ γaγbγdγcγfγe − γbγaγcγdγeγf + γbγaγdγcγeγf+

+ γbγaγcγdγfγe − γbγaγdγcγfγe)] =

=
1

8
tr[γ5γaγbγcγdγeγf ]− 1

8
tr[γ5γaγbγdγcγeγf ]− 1

8
tr[γ5γaγbγcγdγfγe]+

+
1

8
tr[γ5γaγbγdγcγfγe]− 1

8
tr[γ5γbγaγcγdγeγf ] +

1

8
tr[γ5γbγaγdγcγeγf ]+

+
1

8
tr[γ5γbγaγcγdγfγe]− 1

8
tr[γ5γbγaγdγcγfγe] =

(B.39)
=

i

2
(���

�
gabεcdef − gacεbdef + gbcεadef +

XXXXgefεabcd − gdfεabce + gdeεabcf+

−����gabεdcef + gadεbcef − gbdεacef −XXXXgefεabdc + gcfεabde − gceεabdf+
−����gabεcdfe + gacεbdfe − gbcεadfe −XXXXgefεabcd + gdeεabcf − gdfεabce+
+���

�
gabεdcfe − gadεbcfe + gbdεacfe +

XXXXgefεabdc − gceεabdf + gcfεabde+

−����gabεcdef + gbcεadef − gacεbdef −XXXXgefεbacd + gdfεbace − gdeεbacf+
+���

�
gabεdcef − gbdεacef + gadεbcef +

XXXXgefεbadc − gcfεbade + gceεbadf+
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+���
�

gabεcdfe − gbcεadfe + gacεbdfe +
XXXXgefεbacd − gdeεbacf + gdfεbace+

−����gabεdcfe + gbdεacfe − gadεbcfe −XXXXgefεbadc + gceεbadf − gcfεbade) =

= 2i(−gacεbdef + gbcεadef + gadεbcef − gbdεacef )+
− 2i (gdfεabce − gdeεabcf − gcfεabde + gceεabdf )︸ ︷︷ ︸

(B.41)

=

= 2i(−gacεbdef + gbcεadef + gadεbcef − gbdεacef )+
− 2i(gadεcbef − gacεdbef − gbdεcaef + gbcεdaef ) =

= −4i(gacεbdef − gbcεadef − gadεbcef + gbdεacef ) ; (B.43)

• projectors’ (PL, PR) commutation with an antisymmetric γ (γab):

[PL, γ
ab] = PLγ

ab︸ ︷︷ ︸
expand

−γabPL =
(1 + γ5

2

)(γaγb − γbγa
2

)
− γabPL =

=
1

4

(
γaγb − γbγa

)
+

1

4

(
γ5γaγb︸ ︷︷ ︸

(B.5)

− γ5γbγa︸ ︷︷ ︸
(B.5)

)
− γabPL =

=
1

4

(
γaγb − γbγa

)
+

1

4

(
γaγbγ5 − γbγaγ5

)
− γabPL =

=
(γaγb − γbγa

2

)1
2

+
(γaγb − γbγa

2

)γ5

2
− γabPL =

= γab
1
2

+ γab
γ5

2
− γabPL

= γabPL − γabPL
= 0 . (B.44)

A similar reasoning also applies to PR

[PR, γ
ab] = 0 ; (B.45)

• product C−1 − (antisymmetric γ transposed)− C:

C−1(γef )TC = C−1
(γeγf − γfγe

2

)T
C = C−1

((γf )T (γe)T − (γe)T (γf )T

2

)
C =

(A.6)
= C−1

((−CγfC−1)(−CγeC−1)− (−CγeC−1)(−CγfC−1)

2

)
C =

= −γef . (B.46)
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Appendix C

Complete and explicit calculations

We created this appendix in order to explicitly show the carrying out of the main calculations that

compose the body of the paper. In this way, the interested reader may check the validity of the

results in person.

C.1 Integration by parts of eq. (3.26)

Here below are reported the series of integrations by parts undergone by the Branson-Gilkey-

Vassilevich coefficients of section 3.2.1:

b0(x,H) = 0 = ξa(x)ba,0(x,H) ,

b1(x,H) = −1

6
Gij(x)︸ ︷︷ ︸

(3.22)

Fij(x) =
1

12

(
∂iξj(x)− ∂jξi(x)

)
(1)Fij(x)︸ ︷︷ ︸

antisym.

=

=
1

6
∂iξj(x)Fij(x) =̇ − 1

6
ξj(x)∇iFij(x)︸ ︷︷ ︸

j→a

=

= −1

6
ξa(x)∇iFia(x) = ξa(x)ba,1(x,H) ,

b2(x,H) =
1

45
∇k

(
Fij(x)

)
∇k
(
Gij(x)

)
− 1

90
∇j
(
Fij(x)

)
∇k

(
Gik(x)

)
+

1

6
V (x)Fij(x)Gij(x) =

=̇− 1

45
∇k∇k

(
Fij(x)

)
Gij(x)︸ ︷︷ ︸

(3.22)

+
1

90
∇k∇j

(
Fij(x)

)
Gik(x)︸ ︷︷ ︸

(3.22)

+
1

6
V (x)Fij(x)Gij(x)︸ ︷︷ ︸

(3.22)

=

=
1

90
∇k∇k

(
Fij(x)

)︸ ︷︷ ︸
antisym.

(
∂iξj(x)− ∂jξi(x)

)
− 1

180
∇k∇j

(
Fij(x)

)(
∂iξk(x)− ∂kξi(x)

)
+

− 1

12
V (x)Fij(x)︸ ︷︷ ︸

antisym.

(
∂iξj(x)− ∂jξi(x)

)
=

=
1

45
∇k∇k

(
Fij(x)

)
∂iξj(x)− 1

180
∇k∇j

(
Fij(x)

)
∂iξk(x)+
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+
1

180
∇k∇j

(
Fij(x)

)
∂kξi(x)− 1

6
V (x)Fij(x)∂iξj(x) =

=̇− 1

45
∇i∇k∇k

(
Fij(x)

)
ξj(x)︸ ︷︷ ︸

j→a

+
1

180
∇i∇k∇j

(
Fij(x)

)
ξk(x)︸ ︷︷ ︸

k→a

+

− 1

180
∇k∇k∇j

(
Fij(x)

)
ξi(x)︸ ︷︷ ︸

i→a

+
1

6
∇i
(
V (x)Fij(x)

)
ξj(x)︸ ︷︷ ︸

j→a

=

= ξa(x)
(
− 1

45
∇i∇k∇k

(
Fia(x)

)
+

1

180
∇i∇a∇j

(
Fij(x)

)
+

− 1

180
∇k∇k∇j

(
Faj(x)

)
+

1

6
∇i
(
V (x)Fia(x)

))
=

= ξa(x)ba,2(x,H) , (C.1)

where “=̇” denotes an equality that holds up to vanishing boundary terms.

C.2 Computations of chapter 4

C.2.1 WaW
a and ZaZ

a

Here is the contraction of the gauge connection Wa (4.9) with itself

W aWa =

(
− i

2
Aa − i

2
γabAb

)(
− i

2
Aa −

i

2
γacA

c

)
=

= −1

4
AaAa −

1

4
γacA

aAc︸ ︷︷ ︸
0

−1

4
γabAaAb︸ ︷︷ ︸

0

−1

4
γabγ c

a︸ ︷︷ ︸
(B.12)

AbAc =

= −1

4
AaAa +

1

4

[
2@@γ

bc + 3gbc
]
AbAc︸ ︷︷ ︸

sym. in bc

=

= −1

4
AaAa +

3

4
AbAb︸ ︷︷ ︸
(b→a)

=

=
1

2
AaAa . (C.2)

The square contraction of Za (4.27) is provided by a similar calculation.

C.2.2 ∇aV and ∇aU

Down below are reported the gauge covariant derivatives of V (4.10) and U (4.28)

∇aV = ∂aV + [Wa, V ] =

= ∂a

(
i

2
∂sA

s +
i

4
γcdFcd +

1

2
A2

)
+

[
Wa︸︷︷︸
(4.9)

,

(
i

2
∂sA

s +
i

4
γcdFcd +

1

2
A2

)]
=
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=
i

2
∂a(∂sA

s) +
i

4
γcd∂a(Fcd) +

1

2
∂a(A

2) +

[
− i

2
γabA

b,
i

4
γcdF

cd

]
︸ ︷︷ ︸

(B.14)

=

=
i

2
∂a(∂sA

s) +
i

4
γcd∂a(Fcd) +

1

2
∂a(A

2) +
1

8
AbF cd (2gadγbc − 2gacγbd − 2gbdγac + 2gbcγad) =

=
i

2
∂a(∂sA

s) +
i

4
γcd∂a(Fcd) +

1

2
∂a(A

2) +
1

4

(
γbcA

bF c
a − γbdAbFad︸ ︷︷ ︸

d→c

−γacAdF cd + γadAcF
cd︸ ︷︷ ︸

d→c; c→d

)
=

=
i

2
∂a(∂sA

s) +
i

4
γcd∂a(Fcd) +

1

2
∂a(A

2) +
1

2
γbcA

bF c
a +

1

2
γcaAdF

cd , (C.3)

where, in the third equality, only the non vanishing contribution to the commutator [Wa, V ] has been

written. Likewise, we have

∇aU = ∂aU + [Za, U ] =

= ∂a

(
− i

2
∂sA

s +
i

4
γcdFcd +

1

2
A2

)
+

[
Za︸︷︷︸

(4.27)

,

(
− i

2
∂sA

s +
i

4
γcdFcd +

1

2
A2

)]
=

= − i
2
∂a(∂sA

s) +
i

4
γcd∂a(Fcd) +

1

2
∂a(A

2) +

[
i

2
γabA

b,
i

4
γcdF

cd

]
︸ ︷︷ ︸

(B.14)

=

= − i
2
∂a(∂sA

s) +
i

4
γcd∂a(Fcd) +

1

2
∂a(A

2)− 1

8
AbF cd (2gadγbc − 2gacγbd − 2gbdγac + 2gbcγad) =

= − i
2
∂a(∂sA

s) +
i

4
γcd∂a(Fcd) +

1

2
∂a(A

2)− 1

4

(
γbcA

bF c
a − γbdAbFad︸ ︷︷ ︸

d→c

−γacAdF cd + γadAcF
cd︸ ︷︷ ︸

d→c; c→d

)
=

= − i
2
∂a(∂sA

s) +
i

4
γcd∂a(Fcd) +

1

2
∂a(A

2)− 1

2
γbcA

bF c
a −

1

2
γcaAdF

cd . (C.4)

C.2.3 ∇a∇aV and ∇a∇aU

We dedicate this section to the explicit calculus of the gauge covariant d’Alembertians of V (4.10)

and U (4.28)

∇a∇aV = ∂a
(
∇aV︸︷︷︸
(4.12)

)
+
[
W a︸︷︷︸
(4.9)

,∇aV︸︷︷︸
(4.12)

]
=

=
i

2
�(∂sA

s) +
i

4
γcd�(Fcd) +

1

2
�(A2) +

1

2
γbc∂

a(AbF c
a) +

1

2
γca∂

a(AdF
cd)+

+
[
− i

2
γalAl,

i

4
γcd∂a(Fcd)

]
︸ ︷︷ ︸

(B.14)

+
[
− i

2
γalAl,

1

2
γbcAbFca

]
︸ ︷︷ ︸

(B.14)

+
[
− i

2
γalAl,−

1

2
γa
cAdFc

d
]

︸ ︷︷ ︸
(B.15)

=

=
i

2
�(∂sA

s) +
i

4
γcd�(Fcd) +

1

2
�(A2) +

1

2
γbc∂

a(AbF c
a) +

1

2
γca∂

a(AdF
cd)+

+
1

8
Al∂a(Fcd)

(
2gadγlc − 2gacγld − 2gldγac + 2glcγad

)
+
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− i

4
AlAbFca

(
2gacγlb − 2gabγlc − 2glcγab + 2glbγac

)
+

+
i

4
AlAdFc

d
(
−4γlc

)
=

=
i

2
�(∂sA

s) +
i

4
γcd�(Fcd) +

1

2
�(A2) +

1

2
γbc ∂

a(AbF c
a)︸ ︷︷ ︸

expand

+
1

2
γca ∂

a(AdF
cd)︸ ︷︷ ︸

expand

+

+
1

4

(
γlcAl∂

d(Fcd)− γldAl∂a(Fad)︸ ︷︷ ︸
d→c; a→d

−γacAd∂a(Fcd) + γadAc∂a(Fcd)︸ ︷︷ ︸
c→d; d→c

)
+

− i

2

(
γlbAlAb︸ ︷︷ ︸

0

F a
a − γlcAlAaFca −γabAcAbFca︸ ︷︷ ︸

b→l; c→a; a→c

+γacAbAbFca

)
+

− iγlcAlAdFcd =

=
i

2
�(∂sA

s) +
i

4
γcd�(Fcd) +

1

2
�(A2) +

1

2
γbc∂a(Ab)Fca︸ ︷︷ ︸
a→b; b→c; c→a

+
1

2
γbcAb∂

a(Fca)+

+
1

2
γca∂a(A

d)Fcd +
1

2
γcaAd∂a(Fcd) +

1

2
γlcAl∂

d(Fcd)︸ ︷︷ ︸
l→b; d→a

−1

2
γacAd∂a(Fcd)+

+���
���

�
iγlcAaAlFca︸ ︷︷ ︸

a→d

+
i

2
γacA2Fac −����

���
iγlcAlAdFc

d =

=
i

2
�(∂sA

s) +
i

4
γcd�(Fcd) +

1

2
�(A2) +

1

2
γca∂b(Ac)Fab + γbcAb∂

a(Fca)+

+
1

2
γca∂a(A

d)Fcd − γacAd∂a(Fcd) +
i

2
γacA2Fac , (C.5)

where, in writing the second line, we reported all and only the non-zero terms arising from [W a,∇aV ].

Analogously, it is also true that

∇a∇aU = ∂a
(
∇aU︸︷︷︸
(4.30)

)
+
[
Za︸︷︷︸

(4.27)

,∇aU︸︷︷︸
(4.30)

]
=

= − i
2
�(∂sA

s) +
i

4
γcd�(Fcd) +

1

2
�(A2)− 1

2
γbc∂

a(AbF c
a)−

1

2
γca∂

a(AdF
cd)+

+
[ i

2
γalAl,

i

4
γcd∂a(Fcd)

]
︸ ︷︷ ︸

(B.14)

+
[ i

2
γalAl,−

1

2
γbcAbFca

]
︸ ︷︷ ︸

(B.14)

+
[ i

2
γalAl,

1

2
γa
cAdFc

d
]

︸ ︷︷ ︸
(B.15)

=

= − i
2
�(∂sA

s) +
i

4
γcd�(Fcd) +

1

2
�(A2)− 1

2
γbc∂

a(AbF c
a)−

1

2
γca∂

a(AdF
cd)+

− 1

8
Al∂a(Fcd)

(
2gadγlc − 2gacγld − 2gldγac + 2glcγad

)
+

− i

4
AlAbFca

(
2gacγlb − 2gabγlc − 2glcγab + 2glbγac

)
+

+
i

4
AlAdFc

d
(
−4γlc

)
=
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= − i
2
�(∂sA

s) +
i

4
γcd�(Fcd) +

1

2
�(A2)− 1

2
γbc ∂

a(AbF c
a)︸ ︷︷ ︸

expand

−1

2
γca ∂

a(AdF
cd)︸ ︷︷ ︸

expand

+

− 1

4

(
γlcAl∂

d(Fcd)− γldAl∂a(Fad)︸ ︷︷ ︸
d→c; a→d

−γacAd∂a(Fcd) + γadAc∂a(Fcd)︸ ︷︷ ︸
c→d; d→c

)
+

− i

2

(
γlbAlAb︸ ︷︷ ︸

0

F a
a − γlcAlAaFca −γabAcAbFca︸ ︷︷ ︸

b→l; c→a; a→c

+γacAbAbFca

)
+

− iγlcAlAdFcd =

= − i
2
�(∂sA

s) +
i

4
γcd�(Fcd) +

1

2
�(A2)− 1

2
γbc∂a(Ab)Fca︸ ︷︷ ︸
a→b; b→c; c→a

−1

2
γbcAb∂

a(Fca)+

− 1

2
γca∂a(A

d)Fcd −
1

2
γcaAd∂a(Fcd)−

1

2
γlcAl∂

d(Fcd)︸ ︷︷ ︸
l→b; d→a

+
1

2
γacAd∂a(Fcd)+

+���
��

��
iγlcAaAlFca︸ ︷︷ ︸

a→d

+
i

2
γacA2Fac −����

���
iγlcAlAdFc

d =

= − i
2
�(∂sA

s) +
i

4
γcd�(Fcd) +

1

2
�(A2)− 1

2
γca∂b(Ac)Fab − γbcAb∂a(Fca)+

− 1

2
γca∂a(A

d)Fcd + γacAd∂a(Fcd) +
i

2
γacA2Fac . (C.6)

C.2.4 Fab and Eab
Fab and Eab embody the gauge covariant derivative commutator, [∇a,∇b], in the λ− and ρ−sector

respectively. Their full expressions are

Fab = ∂a(Wb︸︷︷︸
(4.9)

)− ∂b(Wa︸︷︷︸
(4.9)

) +
[
Wa︸︷︷︸
(4.9)

, Wb︸︷︷︸
(4.9)

]
=

= − i
2
∂a(Ab)−

i

2
γbc∂a(A

c) +
i

2
∂b(Aa) +

i

2
γac∂b(A

c) +
[
− i

2
γacA

c,− i
2
γbdA

d
]

︸ ︷︷ ︸
(B.14)

=

= − i
2

(
∂a(Ab)− ∂b(Aa)︸ ︷︷ ︸

(2.6)

)
− i

2
γbc∂a(A

c) +
i

2
γac∂b(A

c)+

− 1

4
AcAd︸ ︷︷ ︸

sym. in cd

(
2gadγcb −����2gabγcd − 2gcdγab + 2gcbγad

)
=

= − i
2
Fab −

i

2
γbc∂a(A

c) +
i

2
γac∂b(A

c)− 1

2
γacAbA

c +
1

2
γbcAaA

c +
1

2
γabA

cAc , (C.7)

and

Eab = ∂a(Zb︸︷︷︸
(4.27)

)− ∂b(Za︸︷︷︸
(4.27)

) +
[
Za︸︷︷︸

(4.27)

, Zb︸︷︷︸
(4.27)

]
=
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= − i
2
∂a(Ab) +

i

2
γbc∂a(A

c) +
i

2
∂b(Aa)−

i

2
γac∂b(A

c) +
[ i

2
γacA

c,
i

2
γbdA

d
]

︸ ︷︷ ︸
(B.14)

=

= − i
2

(
∂a(Ab)− ∂b(Aa)︸ ︷︷ ︸

(2.6)

)
+
i

2
γbc∂a(A

c)− i

2
γac∂b(A

c)+

− 1

4
AcAd︸ ︷︷ ︸

sym. in cd

(
2gadγcb −����2gabγcd − 2gcdγab + 2gcbγad

)
=

= − i
2
Fab +

i

2
γbc∂a(A

c)− i

2
γac∂b(A

c)− 1

2
γacAbA

c +
1

2
γbcAaA

c +
1

2
γabA

cAc ; (C.8)

C.2.5 FabFab

Let’s expand the product defining the contraction

FabFab =
(
− i

2
(1)Fab −

i

2
γbc∂a(A

c) +
i

2
γac∂b(A

c)− 1

2
γacAbA

c +
1

2
γbcAaA

c +
1

2
γabA

2
)
·

·
(
− i

2
(1)F ab − i

2
γbd∂a(Ad) +

i

2
γad∂b(Ad)−

1

2
γadAbAd +

1

2
γbdAaAd +

1

2
γabA2

)
by writing all the thirty-six terms that arise from it, that is:

1
(
− i

2
(1)Fab

)
·
(
− i

2
(1)F ab

)
= −1

4
(1)FabF

ab

2
(
− i

2
γbc∂a(A

c)
)
·
(
− i

2
(1)F ab

)
= −1

4
γbc∂a(A

c)F ab︸ ︷︷ ︸
a→b; b→a

= 1
4
γac∂b(A

c)F ab

3
(

+ i
2
γac∂b(A

c)
)
·
(
− i

2
(1)F ab

)
= 1

4
γac∂b(A

c)F ab

4
(
−1

2
γacAbA

c
)
·
(
− i

2
(1)F ab

)
= i

4
γacAbA

cF ab︸ ︷︷ ︸
a→b; b→a

= i
4
γcbAaA

cF ab

5
(

+1
2
γbcAaA

c
)
·
(
− i

2
(1)F ab

)
= i

4
γcbAaA

cF ab

6
(

+1
2
γabA

2
)
·
(
− i

2
(1)F ab

)
= − i

4
γabA

2F ab

7
(
− i

2
(1)Fab

)
·
(
− i

2
γbd∂a(Ad)

)
= −1

4
γbd∂a(Ad)Fab︸ ︷︷ ︸
a→b; b→a; d→c

= 1
4
γac∂b(Ac)Fab
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8
(
− i

2
γbc∂a(A

c)
)
·
(
− i

2
γbd∂a(Ad)

)
= −1

4
γbcγb

d︸ ︷︷ ︸
(B.12)

∂a(Ac)∂
a(Ad) =

= −1
4

(
−2@@γ

cd − 3gcd(1)
)
∂a(Ac)∂

a(Ad)︸ ︷︷ ︸
sym. in cd

=

= 3
4
(1) ∂a(Ac)∂

a(Ac)︸ ︷︷ ︸
a→b

=

= 3
4
(1)∂b(Ac)∂

b(Ac)

9
(

+ i
2
γac∂b(A

c)
)
·
(
− i

2
γbd∂a(Ad)

)
= 1

4
γbdγac∂b(Ac)∂a(Ad)︸ ︷︷ ︸

d→c; c→d

= 1
4
γbcγad∂b(Ad)∂a(Ac)

10
(
−1

2
γacAbA

c
)
·
(
− i

2
γbd∂a(Ad)

)
= i

4
γacγbdAbAc∂a(Ad)︸ ︷︷ ︸

a→b; b→a

= i
4
γbcγadAaAc∂b(Ad)

11
(

+1
2
γbcAaA

c
)
·
(
− i

2
γbd∂a(Ad)

)
= − i

4
γb
cγbdAaAc∂

a(Ad)

12
(

+1
2
γabA

2
)
·
(
− i

2
γbd∂a(Ad)

)
= i

4
γb
aγbdA2∂a(Ad)︸ ︷︷ ︸

a→c

= i
4
γb
cγbdA2∂c(Ad)

13
(
− i

2
(1)Fab

)
·
(

+ i
2
γad∂b(Ad)

)
= 1

4
γad∂b(Ad)Fab︸ ︷︷ ︸

d→c

= 1
4
γac∂b(Ac)Fab

14
(
− i

2
γbc∂a(A

c)
)
·
(

+ i
2
γad∂b(Ad)

)
= 1

4
γbcγad∂a(Ac)∂b(Ad)

15
(

+ i
2
γac∂b(A

c)
)
·
(

+ i
2
γad∂b(Ad)

)
= −1

4
γacγa

d︸ ︷︷ ︸
(B.12)

∂b(Ac)∂
b(Ad) =

= −1
4

(
−2@@γ

cd − 3gcd(1)
)
∂b(Ac)∂

b(Ad)︸ ︷︷ ︸
sym. in cd

=

= 3
4
(1)∂b(Ac)∂

b(Ac)

16
(
−1

2
γacAbA

c
)
·
(

+ i
2
γad∂b(Ad)

)
= − i

4
γa
cγadAbAc∂

b(Ad)︸ ︷︷ ︸
a→b; b→a

= − i
4
γb
cγbdAaAc∂

a(Ad)

17
(

+1
2
γbcAaA

c
)
·
(

+ i
2
γad∂b(Ad)

)
= i

4
γbcγadAaAc∂b(Ad)

18
(

+1
2
γabA

2
)
·
(

+ i
2
γad∂b(Ad)

)
= i

4
γa
bγadA2∂b(Ad)︸ ︷︷ ︸
a→b; b→c

= i
4
γb
cγbdA2∂c(Ad)

19
(
− i

2
(1)Fab

)
·
(
−1

2
γadAbAd

)
= i

4
γadAbAdFab︸ ︷︷ ︸
a→b; b→a; d→c

= i
4
γcbAaAcFab
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20
(
− i

2
γbc∂a(A

c)
)
·
(
−1

2
γadAbAd

)
= i

4
γbcγadAbAd∂a(Ac)

21
(

+ i
2
γac∂b(A

c)
)
·
(
−1

2
γadAbAd

)
= − i

4
γa
cγadAbAd∂b(Ac)︸ ︷︷ ︸

a→b; b→a

= − i
4
γb
cγbdAaAd∂a(Ac)

22
(
−1

2
γacAbA

c
)
·
(
−1

2
γadAbAd

)
= 1

4
γacγa

d︸ ︷︷ ︸
(B.12)

AbAcA
bAd =

= 1
4

(
−2@@γ

cd − 3gcd(1)
)
AbAcA

bAd︸ ︷︷ ︸
sym. in cd

=

= −3
4
(1)A4

23
(

+1
2
γbcAaA

c
)
·
(
−1

2
γadAbAd

)
= −1

4
γbcγadAaAcAbAd︸ ︷︷ ︸

sym. in bc

= 0

24
(

+1
2
γabA

2
)
·
(
−1

2
γadAbAd

)
= −1

4
γabγa

d︸ ︷︷ ︸
(B.12)

AbAdA
2 =

= −1
4

(
−2@@γ

bd − 3gbd(1)
)
AbAdA

2︸ ︷︷ ︸
sym. in bd

=

= 3
4
(1)A4

25
(
− i

2
(1)Fab

)
·
(

+1
2
γbdAaAd

)
= − i

4
γbdAaAdFab︸ ︷︷ ︸

d→c

= i
4
γcbAaAcFab

26
(
− i

2
γbc∂a(A

c)
)
·
(

+1
2
γbdAaAd

)
= − i

4
γb
cγbdAaAd∂a(Ac)

27
(

+ i
2
γac∂b(A

c)
)
·
(

+1
2
γbdAaAd

)
= i

4
γacγbdAaAd∂b(Ac)︸ ︷︷ ︸

a→b; b→a

= i
4
γbcγadAbAd∂a(Ac)

28
(
−1

2
γacAbA

c
)
·
(

+1
2
γbdAaAd

)
= −1

4
γacγbdAbAcAaAd︸ ︷︷ ︸

sym. in ac

= 0

29
(

+1
2
γbcAaA

c
)
·
(

+1
2
γbdAaAd

)
= 1

4
γbcγb

d︸ ︷︷ ︸
(B.12)

AaAcA
aAd =

= 1
4

(
−2@@γ

cd − 3gcd(1)
)
AcAdA

2︸ ︷︷ ︸
sym. in cd

=

= −3
4
(1)A4
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30
(

+1
2
γabA

2
)
·
(

+1
2
γbdAaAd

)
= −1

4
γbaγb

d︸ ︷︷ ︸
(B.12)

AaAdA
2 =

= −1
4

(
−2ZZγ

ad − 3gad(1)
)
AaAdA

2︸ ︷︷ ︸
sym. in ad

=

= 3
4
(1)A4

31
(
− i

2
(1)Fab

)
·
(

+1
2
γabA2

)
= − i

4
γabA2Fab

32
(
− i

2
γbc∂a(A

c)
)
·
(

+1
2
γabA2

)
= i

4
γb
cγbaA2∂a(Ac)︸ ︷︷ ︸

a→d

= i
4
γb
cγbdA2∂d(Ac)

33
(

+ i
2
γac∂b(A

c)
)
·
(

+1
2
γabA2

)
= i

4
γa
cγabA2∂b(Ac)︸ ︷︷ ︸
a→b; b→d

= i
4
γb
cγbdA2∂d(Ac)

34
(
−1

2
γacAbA

c
)
·
(

+1
2
γabA2

)
= −1

4
γacγa

b︸ ︷︷ ︸
(B.12)

AbAcA
2 =

= −1
4

(
−2@@γ

cb − 3gcb(1)
)
AbAcA

2︸ ︷︷ ︸
sym. in cb

=

= 3
4
(1)A4

35
(

+1
2
γbcAaA

c
)
·
(

+1
2
γabA2

)
= −1

4
γbcγb

a︸ ︷︷ ︸
(B.12)

AaAcA
2 =

= −1
4

(
−2ZZγ

ca − 3gca(1)
)
AaAcA

2︸ ︷︷ ︸
sym. in ca

=

= 3
4
(1)A4

36
(

+1
2
γabA

2
)
·
(

+1
2
γabA2

)
= 1

4
γabγ

ab︸ ︷︷ ︸
(B.13)

A4 = −3(1)A4 .

We decided to keep the spinor identity matrix, where needed, in order to preserve the aesthetic rigour

of the calculus. By all means, we can now recognize the terms that sum up together by accurately

reviewing the ones above, i.e.:

• 1 = −1
4
(1)FabF

ab

• 2 + 3 + 7 + 13 = γac∂b(Ac)Fab

• 4 + 5 + 19 + 25 = iγcbAaAcFab

• 6 + 31 = − i
2
γabA2Fab
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• 8 + 15 = 3
2
(1)∂b(Ac)∂

b(Ac)

• 9 + 14 = 1
2
γbcγad∂a(Ac)∂b(Ad)

• 10 + 17 = i
2
γbcγadAaAc∂b(Ad)

• 11 + 16 = − i
2
γb
cγbdAaAc∂

a(Ad)

• 12 + 18 = i
2
γb
cγbdA2∂c(Ad)

• 20 + 27 = i
2
γbcγadAbAd∂a(Ac)

• 21 + 26 = − i
2
γb
cγbdAaAd∂a(Ac)

• 22 + 24 + 29 + 30 + 34 + 35 + 36 = −3
2
(1)A4

• 23 + 28 = 0

• 32 + 33 = i
2
γb
cγbdA2∂d(Ac).

Finally, altogether, it is possible to claim that

FabFab = −1
4
(1)FabF

ab + γac∂b(Ac)Fab + iγcbAaAcFab − i
2
γabA2Fab + 3

2
(1)∂b(Ac)∂

b(Ac)+

+ 1
2
γbcγad

[
∂a(Ac)∂b(Ad) + iAaAc∂b(Ad) + iAbAd∂a(Ac)

]
− 3

2
(1)A4+

+ i
2
γb
cγbd︸ ︷︷ ︸

(B.12)

[
A2∂c(Ad) + A2∂d(Ac)− AaAd∂a(Ac)− AaAc∂a(Ad)

]
=

= −1
4
(1)FabF

ab + γac∂b(Ac)Fab + iγcbAaAcFab − i
2
γabA2Fab + 3

2
(1)∂b(Ac)∂

b(Ac)+

+ 1
2
γbcγad

[
∂a(Ac)∂b(Ad) + iAaAc∂b(Ad) + iAbAd∂a(Ac)

]
− 3

2
(1)A4+

+ i
2

(
−2@@γ

cd − 3gcd(1)
) [
A2∂c(Ad) + A2∂d(Ac)− AaAd∂a(Ac)− AaAc∂a(Ad)

]
︸ ︷︷ ︸

sym. in cd

=

= −1
4
(1)FabF

ab + γac∂b(Ac)Fab + iγcbAaAcFab − i
2
γabA2Fab + 3

2
(1)∂b(Ac)∂

b(Ac)+

+ 1
2
γbcγad

[
∂a(Ac)∂b(Ad) + iAaAc∂b(Ad) + iAbAd∂a(Ac)

]
− 3

2
(1)A4+

− 3i
[
A2∂d(Ad)− AaAd∂a(Ad)

]
. (C.9)
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C.2.6 EabEab

What we previously did for FabFab should also be repeated with EabEab. In particular, the thirty-six

terms emerging from

EabEab =
(
− i

2
(1)Fab +

i

2
γbc∂a(A

c)− i

2
γac∂b(A

c)− 1

2
γacAbA

c +
1

2
γbcAaA

c +
1

2
γabA

2
)
·

·
(
− i

2
(1)F ab +

i

2
γbd∂a(Ad)−

i

2
γad∂b(Ad)−

1

2
γadAbAd +

1

2
γbdAaAd +

1

2
γabA2

)
are now:

1
(
− i

2
(1)Fab

)
·
(
− i

2
(1)F ab

)
= −1

4
(1)FabF

ab

2
(

+ i
2
γbc∂a(A

c)
)
·
(
− i

2
(1)F ab

)
= +1

4
γbc∂a(A

c)F ab︸ ︷︷ ︸
a→b; b→a

= −1
4
γac∂b(A

c)F ab

3
(
− i

2
γac∂b(A

c)
)
·
(
− i

2
(1)F ab

)
= −1

4
γac∂b(A

c)F ab

4
(
−1

2
γacAbA

c
)
·
(
− i

2
(1)F ab

)
= i

4
γacAbA

cF ab︸ ︷︷ ︸
a→b; b→a

= i
4
γcbAaA

cF ab

5
(

+1
2
γbcAaA

c
)
·
(
− i

2
(1)F ab

)
= i

4
γcbAaA

cF ab

6
(

+1
2
γabA

2
)
·
(
− i

2
(1)F ab

)
= − i

4
γabA

2F ab

7
(
− i

2
(1)Fab

)
·
(

+ i
2
γbd∂a(Ad)

)
= +1

4
γbd∂a(Ad)Fab︸ ︷︷ ︸
a→b; b→a; d→c

= −1
4
γac∂b(Ac)Fab

8
(

+ i
2
γbc∂a(A

c)
)
·
(

+ i
2
γbd∂a(Ad)

)
= −1

4
γbcγb

d︸ ︷︷ ︸
(B.12)

∂a(Ac)∂
a(Ad) =

= −1
4

(
−2@@γ

cd − 3gcd(1)
)
∂a(Ac)∂

a(Ad)︸ ︷︷ ︸
sym. in cd

=

= 3
4
(1) ∂a(Ac)∂

a(Ac)︸ ︷︷ ︸
a→b

=

= 3
4
(1)∂b(Ac)∂

b(Ac)

9
(
− i

2
γac∂b(A

c)
)
·
(

+ i
2
γbd∂a(Ad)

)
= 1

4
γbdγac∂b(Ac)∂a(Ad)︸ ︷︷ ︸

d→c; c→d

= 1
4
γbcγad∂b(Ad)∂a(Ac)

10
(
−1

2
γacAbA

c
)
·
(

+ i
2
γbd∂a(Ad)

)
= − i

4
γacγbdAbAc∂a(Ad)︸ ︷︷ ︸

a→b; b→a

= − i
4
γbcγadAaAc∂b(Ad)

11
(

+1
2
γbcAaA

c
)
·
(

+ i
2
γbd∂a(Ad)

)
= i

4
γb
cγbdAaAc∂

a(Ad)
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12
(

+1
2
γabA

2
)
·
(

+ i
2
γbd∂a(Ad)

)
= − i

4
γb
aγbdA2∂a(Ad)︸ ︷︷ ︸

a→c

= − i
4
γb
cγbdA2∂c(Ad)

13
(
− i

2
(1)Fab

)
·
(
− i

2
γad∂b(Ad)

)
= −1

4
γad∂b(Ad)Fab︸ ︷︷ ︸

d→c

= −1
4
γac∂b(Ac)Fab

14
(

+ i
2
γbc∂a(A

c)
)
·
(
− i

2
γad∂b(Ad)

)
= 1

4
γbcγad∂a(Ac)∂b(Ad)

15
(
− i

2
γac∂b(A

c)
)
·
(
− i

2
γad∂b(Ad)

)
= −1

4
γacγa

d︸ ︷︷ ︸
(B.12)

∂b(Ac)∂
b(Ad) =

= −1
4

(
−2@@γ

cd − 3gcd(1)
)
∂b(Ac)∂

b(Ad)︸ ︷︷ ︸
sym. in cd

=

= 3
4
(1)∂b(Ac)∂

b(Ac)

16
(
−1

2
γacAbA

c
)
·
(
− i

2
γad∂b(Ad)

)
= i

4
γa
cγadAbAc∂

b(Ad)︸ ︷︷ ︸
a→b; b→a

= i
4
γb
cγbdAaAc∂

a(Ad)

17
(

+1
2
γbcAaA

c
)
·
(
− i

2
γad∂b(Ad)

)
= − i

4
γbcγadAaAc∂b(Ad)

18
(

+1
2
γabA

2
)
·
(
− i

2
γad∂b(Ad)

)
= − i

4
γa
bγadA2∂b(Ad)︸ ︷︷ ︸
a→b; b→c

= − i
4
γb
cγbdA2∂c(Ad)

19
(
− i

2
(1)Fab

)
·
(
−1

2
γadAbAd

)
= i

4
γadAbAdFab︸ ︷︷ ︸
a→b; b→a; d→c

= i
4
γcbAaAcFab

20
(

+ i
2
γbc∂a(A

c)
)
·
(
−1

2
γadAbAd

)
= − i

4
γbcγadAbAd∂a(Ac)

21
(
− i

2
γac∂b(A

c)
)
·
(
−1

2
γadAbAd

)
= i

4
γa
cγadAbAd∂b(Ac)︸ ︷︷ ︸

a→b; b→a

= i
4
γb
cγbdAaAd∂a(Ac)

22
(
−1

2
γacAbA

c
)
·
(
−1

2
γadAbAd

)
= 1

4
γacγa

d︸ ︷︷ ︸
(B.12)

AbAcA
bAd =

= 1
4

(
−2@@γ

cd − 3gcd(1)
)
AbAcA

bAd︸ ︷︷ ︸
sym. in cd

=

= −3
4
(1)A4

23
(

+1
2
γbcAaA

c
)
·
(
−1

2
γadAbAd

)
= −1

4
γbcγadAaAcAbAd︸ ︷︷ ︸

sym. in bc

= 0
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24
(

+1
2
γabA

2
)
·
(
−1

2
γadAbAd

)
= −1

4
γabγa

d︸ ︷︷ ︸
(B.12)

AbAdA
2 =

= −1
4

(
−2@@γ

bd − 3gbd(1)
)
AbAdA

2︸ ︷︷ ︸
sym. in bd

=

= 3
4
(1)A4

25
(
− i

2
(1)Fab

)
·
(

+1
2
γbdAaAd

)
= − i

4
γbdAaAdFab︸ ︷︷ ︸

d→c

= i
4
γcbAaAcFab

26
(

+ i
2
γbc∂a(A

c)
)
·
(

+1
2
γbdAaAd

)
= i

4
γb
cγbdAaAd∂a(Ac)

27
(
− i

2
γac∂b(A

c)
)
·
(

+1
2
γbdAaAd

)
= − i

4
γacγbdAaAd∂b(Ac)︸ ︷︷ ︸

a→b; b→a

= − i
4
γbcγadAbAd∂a(Ac)

28
(
−1

2
γacAbA

c
)
·
(

+1
2
γbdAaAd

)
= −1

4
γacγbdAbAcAaAd︸ ︷︷ ︸

sym. in ac

= 0

29
(

+1
2
γbcAaA

c
)
·
(

+1
2
γbdAaAd

)
= 1

4
γbcγb

d︸ ︷︷ ︸
(B.12)

AaAcA
aAd =

= 1
4

(
−2@@γ

cd − 3gcd(1)
)
AcAdA

2︸ ︷︷ ︸
sym. in cd

=

= −3
4
(1)A4

30
(

+1
2
γabA

2
)
·
(

+1
2
γbdAaAd

)
= −1

4
γbaγb

d︸ ︷︷ ︸
(B.12)

AaAdA
2 =

= −1
4

(
−2ZZγ

ad − 3gad(1)
)
AaAdA

2︸ ︷︷ ︸
sym. in ad

=

= 3
4
(1)A4

31
(
− i

2
(1)Fab

)
·
(

+1
2
γabA2

)
= − i

4
γabA2Fab

32
(

+ i
2
γbc∂a(A

c)
)
·
(

+1
2
γabA2

)
= − i

4
γb
cγbaA2∂a(Ac)︸ ︷︷ ︸

a→d

= − i
4
γb
cγbdA2∂d(Ac)

33
(
− i

2
γac∂b(A

c)
)
·
(

+1
2
γabA2

)
= − i

4
γa
cγabA2∂b(Ac)︸ ︷︷ ︸
a→b; b→d

= − i
4
γb
cγbdA2∂d(Ac)
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34
(
−1

2
γacAbA

c
)
·
(

+1
2
γabA2

)
= −1

4
γacγa

b︸ ︷︷ ︸
(B.12)

AbAcA
2 =

= −1
4

(
−2@@γ

cb − 3gcb(1)
)
AbAcA

2︸ ︷︷ ︸
sym. in cb

=

= 3
4
(1)A4

35
(

+1
2
γbcAaA

c
)
·
(

+1
2
γabA2

)
= −1

4
γbcγb

a︸ ︷︷ ︸
(B.12)

AaAcA
2 =

= −1
4

(
−2ZZγ

ca − 3gca(1)
)
AaAcA

2︸ ︷︷ ︸
sym. in ca

=

= 3
4
(1)A4

36
(

+1
2
γabA

2
)
·
(

+1
2
γabA2

)
= 1

4
γabγ

ab︸ ︷︷ ︸
(B.13)

A4 = −3(1)A4 .

In the end, all these different operators, whose partial sums are listed right down here

• 1 = −1
4
(1)FabF

ab

• 2 + 3 + 7 + 13 = −γac∂b(Ac)Fab

• 4 + 5 + 19 + 25 = iγcbAaAcFab

• 6 + 31 = − i
2
γabA2Fab

• 8 + 15 = 3
2
(1)∂b(Ac)∂

b(Ac)

• 9 + 14 = 1
2
γbcγad∂a(Ac)∂b(Ad)

• 10 + 17 = − i
2
γbcγadAaAc∂b(Ad)

• 11 + 16 = i
2
γb
cγbdAaAc∂

a(Ad)

• 12 + 18 = − i
2
γb
cγbdA2∂c(Ad)

• 20 + 27 = − i
2
γbcγadAbAd∂a(Ac)

• 21 + 26 = i
2
γb
cγbdAaAd∂

a(Ac)

• 22 + 24 + 29 + 30 + 34 + 35 + 36 = −3
2
(1)A4
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• 23 + 28 = 0

• 32 + 33 = − i
2
γb
cγbdA2∂d(Ac) ,

add up to

EabEab = −1
4
(1)FabF

ab − γac∂b(Ac)Fab + iγcbAaAcFab − i
2
γabA2Fab + 3

2
(1)∂b(Ac)∂

b(Ac)+

+ 1
2
γbcγad

[
∂a(Ac)∂b(Ad)− iAaAc∂b(Ad)− iAbAd∂a(Ac)

]
− 3

2
(1)A4+

− i
2
γb
cγbd︸ ︷︷ ︸

(B.12)

[
A2∂c(Ad) + A2∂d(Ac)− AaAd∂a(Ac)− AaAc∂a(Ad)

]
=

= −1
4
(1)FabF

ab − γac∂b(Ac)Fab + iγcbAaAcFab − i
2
γabA2Fab + 3

2
(1)∂b(Ac)∂

b(Ac)+

+ 1
2
γbcγad

[
∂a(Ac)∂b(Ad)− iAaAc∂b(Ad)− iAbAd∂a(Ac)

]
− 3

2
(1)A4+

− i
2

(
−2@@γ

cd − 3gcd(1)
) [
A2∂c(Ad) + A2∂d(Ac)− AaAd∂a(Ac)− AaAc∂a(Ad)

]
︸ ︷︷ ︸

sym. in cd

=

= −1
4
(1)FabF

ab − γac∂b(Ac)Fab + iγcbAaAcFab − i
2
γabA2Fab + 3

2
(1)∂b(Ac)∂

b(Ac)+

+ 1
2
γbcγad

[
∂a(Ac)∂b(Ad)− iAaAc∂b(Ad)− iAbAd∂a(Ac)

]
− 3

2
(1)A4+

+ 3i
[
A2∂d(Ad)− AaAd∂a(Ad)

]
. (C.10)

C.2.7 a2(x,Rλ) and a2(x,Rρ)

In this last part we’ll carry out the derivation of the two Seeley-DeWitt coefficients, a2(x,Rλ) and

a2(x,Rρ). The first is

a2(x,Rλ) =
1

2
V 2 − 1

6
∇2V +

1

12
FabFab =

= −1

8
(∂aA

a)2 − 1

8
γab∂c(A

c)Fab +
��

��
��HHH
HHH

i

4
A2∂c(A

c) +
HHH

HHH

i

8
γabA2Fab −

1

32
γabγcdFabFcd +

�
�
�1

8
A4+

− i

12
�(∂sA

s)− i

24
γcd�(Fcd)−

1

12
�(A2) +

1

12
γac∂b(Ac)Fab −

1

6
γbcAb∂

a(Fca)+

− 1

12
γca∂a(A

d)Fcd +
1

6
γacAd∂a(Fcd)−

H
HHHH

HH

i

12
γacA2Fac︸ ︷︷ ︸
c→b

+

− 1

48
FabF

ab +
1

12
γac∂b(Ac)Fab +

i

12
γcbAaAcFab −

HHH
HHHH

i

24
γabA2Fab +

1

8
∂b(Ac)∂

b(Ac)+

+
1

24
γbcγad

[
∂a(Ac)∂b(Ad) + iAaAc∂b(Ad) + iAbAd∂a(Ac)

]
−
�
�
�1

8
A4+

−
��

��
��H

HHH
HH

i

4
A2∂d(Ad)︸ ︷︷ ︸

d→c

+
i

4
AaAd∂

a(Ad) =

= −1

8
(∂aA

a)2 − 1

8
γab∂c(A

c)Fab −
1

32
γabγcdFabFcd −

i

12
�(∂sA

s)− i

24
γcd�(Fcd)+
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− 1

12
�(A2) +

1

6
γac∂b(Ac)Fab −

1

6
γbcAb∂

a(Fca)−
1

12
γca∂a(A

d)Fcd+

+
1

6
γacAd∂a(Fcd)−

1

48
FabF

ab +
i

12
γcbAaAcFab +

1

8
∂b(Ac)∂

b(Ac)+

+
1

24
γbcγad

[
∂a(Ac)∂b(Ad) + iAaAc∂b(Ad) + iAbAd∂a(Ac)

]
+
i

4
AaAd∂

a(Ad) , (C.11)

while the other one is found to be

a2(x,Rρ) =
1

2
U2 − 1

6
∇2U +

1

12
EabEab =

= −1

8
(∂aA

a)2 +
1

8
γab∂c(A

c)Fab −
�
��

�
��H

HHH
HH

i

4
A2∂c(A

c) +
H
HHH

HH

i

8
γabA2Fab −

1

32
γabγcdFabFcd +

�
�
�1

8
A4+

+
i

12
�(∂sA

s)− i

24
γcd�(Fcd)−

1

12
�(A2)− 1

12
γac∂b(Ac)Fab +

1

6
γbcAb∂

a(Fca)+

+
1

12
γca∂a(A

d)Fcd −
1

6
γacAd∂a(Fcd)−

HH
HHH

HH

i

12
γacA2Fac︸ ︷︷ ︸
c→b

+

− 1

48
FabF

ab − 1

12
γac∂b(Ac)Fab +

i

12
γcbAaAcFab −

H
HHH

HHH

i

24
γabA2Fab +

1

8
∂b(Ac)∂

b(Ac)+

+
1

24
γbcγad

[
∂a(Ac)∂b(Ad)− iAaAc∂b(Ad)− iAbAd∂a(Ac)

]
−
�
�
�1

8
A4+

+
�
��

�
��HH

HHHH

i

4
A2∂d(Ad)︸ ︷︷ ︸

d→c

− i
4
AaAd∂

a(Ad) =

= −1

8
(∂aA

a)2 +
1

8
γab∂c(A

c)Fab −
1

32
γabγcdFabFcd +

i

12
�(∂sA

s)− i

24
γcd�(Fcd)+

− 1

12
�(A2)− 1

6
γac∂b(Ac)Fab +

1

6
γbcAb∂

a(Fca) +
1

12
γca∂a(A

d)Fcd+

− 1

6
γacAd∂a(Fcd)−

1

48
FabF

ab +
i

12
γcbAaAcFab +

1

8
∂b(Ac)∂

b(Ac)+

+
1

24
γbcγad

[
∂a(Ac)∂b(Ad)− iAaAc∂b(Ad)− iAbAd∂a(Ac)

]
− i

4
AaAd∂

a(Ad). (C.12)

This concludes appendix C.
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Appendix D

Right−sector pseudo prescription

In section 4.3 we pointed out that we do lack a proper rule allowing us to move from the left to the

right part of the model and vice versa. Even so, by studying the relative signs of operators having

the same role within the left and right part of our model (such as Wa and Za, or V and U), that

task could still be accomplished. Thus, let’s start working right away.

It’s clear that V (4.10) and U (4.28) only differ in the sign of the term containing the divergence

(∂aA
a), therefore if we evaluated U2 the result would be the same as V 2 (4.11), except that every

(∂aA
a)−term entails a change of sign:

V 2 = −1

4
(∂aA

a)2︸ ︷︷ ︸
(−1)2

−1

4
γab ∂c(A

c)︸ ︷︷ ︸
(−1)

Fab +
i

2
A2 ∂c(A

c)︸ ︷︷ ︸
(−1)

+
i

4
γabA2Fab −

1

16
γabγcdFabFcd +

1

4
A4

⇓

U2 = −1

4
(∂aA

a)2 +
1

4
γab∂c(A

c)Fab −
i

2
A2∂c(A

c) +
i

4
γabA2Fab −

1

16
γabγcdFabFcd +

1

4
A4 . (D.1)

Similar remarks may be made about the computation of ∇aU , ∇2U , Eab and EabEab, too. In these

cases, we also need to keep in mind the sign modification of the contracted term γabAb, that occurs

while going from Wa (4.9) to Za (4.27). This means that an expression for

∇aU = ∂aU + [Za, U ]

is straight out deduced from that of ∇aV (4.12), by jointly considering the changes of sign affecting

both, the terms including the usual divergence (∂aA
a) as well as those involving a gauge vector Aa

contracted to the matrix γab; this contraction might be direct, as in γabAb, or indirect through some

other tensors1, as it happens in γcaAdF
cd. All of this brings about

∇aV =
i

2
∂a(∂sA

s︸︷︷︸
(−1)

) +
i

4
γcd∂a(Fcd) +

1

2
∂a(A

2) +
1

2
γbcA

bF c
a︸ ︷︷ ︸

(−1)

+
1

2
γcaAdF

cd︸ ︷︷ ︸
(−1)

⇓

∇aU = − i
2
∂a(∂sA

s) +
i

4
γcd∂a(Fcd) +

1

2
∂a(A

2)− 1

2
γbcA

bF c
a −

1

2
γcaAdF

cd. (D.2)

1This is due to the commutator operation, that acts mixing the indices.
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Moreover, the exactly same rule also authorizes the extraction of ∇2U from ∇2V (4.13), so that

∇2U = − i
2
�(∂sA

s) +
i

4
γcd�(Fcd) +

1

2
�(A2)− 1

2
γca∂b(Ac)Fab − γbcAb∂a(Fca)+

− 1

2
γca∂a(A

d)Fcd + γacAd∂a(Fcd) +
i

2
γacA2Fac .

(D.3)

De facto, we could object that the kind of contraction mentioned just above shows up every time

something like

γabF
abOcd...

ef... or γabF
sbOcd...

ef... (etc.) (D.4)

appears, since the definition (2.6) of F ab engages the gauge four-potential Ab itself. But we must not

be mistaken! We recall that the “rule” we are adopting right here is neither a proper prescription

nor some sort of correspondence principle. We built it ad hoc, based on the sign inequalities existing

between the graphical expressions of λ− and ρ−quantities playing the same function. Therefore,

for our purposes, Fab and Aa are to be considered as two distinct basic tensors, completely indipen-

dent of each other. It’s in this context that the contractions in (D.4) are exempt from any sign

transmutations.

An entirely different case is the one regarding the determination of

Eab = ∂aZb − ∂bZa + [Za, Zb] (D.5)

and EabEab. In fact, despite the several appearances of Za (4.27) throughout its definition, Eab
doesn’t trivially descend from an overall sign change of every γabAb−term inside Fab (4.14), as we

could expect. Or rather, this does happen, but the commutator of Za with itself, satisfying

[Za, Zb] = [Wa,Wb],

suppresses any sign mutations except those involving γabAb−terms appearing inside the derivative

part of (D.5)2. In other words, this time the sign switches affect solely ∂c(γ
abAb)−kind terms,

producing

Fab = − i
2
Fab −

i

2
γbc∂a(A

c)︸ ︷︷ ︸
(−1)

+
i

2
γac∂b(A

c)︸ ︷︷ ︸
(−1)

−1

2
γacAbA

c +
1

2
γbcAaA

c +
1

2
γabA

cAc

⇓

Eab = − i
2
Fab +

i

2
γbc∂a(A

c)− i

2
γac∂b(A

c)− 1

2
γacAbA

c +
1

2
γbcAaA

c +
1

2
γabA

cAc . (D.6)

Of course, the same applies to EabEab as well, the only difference is that, in addressing its derivation

from FabFab (4.15), we must extend the sign inversion to all derivatives of Aa, as a result of the

2Those arising from ∂aZb − ∂bZa, just to be clear.
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complete contraction process:

FabFab = −1

4
FabF

ab + γac∂b(Ac)︸ ︷︷ ︸
(−1)

Fab + iγcbAaAcFab −
i

2
γabA2Fab +

3

2
∂b(Ac)∂

b(Ac)︸ ︷︷ ︸
(−1)2

+

+
1

2
γbcγad

[
∂a(Ac)∂b(Ad)︸ ︷︷ ︸

(−1)2

+iAaAc ∂b(Ad)︸ ︷︷ ︸
(−1)

+iAbAd ∂a(Ac)︸ ︷︷ ︸
(−1)

]
− 3

2
A4+

− 3i
[
A2 ∂d(Ad)︸ ︷︷ ︸

(−1)

−AaAd ∂a(Ad)︸ ︷︷ ︸
(−1)

]
⇓

EabEab = −1

4
FabF

ab − γac∂b(Ac)Fab + iγcbAaAcFab −
i

2
γabA2Fab +

3

2
∂b(Ac)∂

b(Ac)+

+
1

2
γbcγad

[
∂a(Ac)∂b(Ad)− iAaAc∂b(Ad)− iAbAd∂a(Ac)

]
− 3

2
A4+

+ 3i
[
A2∂d(Ad)− AaAd∂a(Ad)

]
. (D.7)

Our intended purposes may be deemed fulfilled.
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Appendix E

Null traces of section 4.5

The main objective of appendix E is to prove the validity of eq. (4.43). Of course, when tracing

ba,2(x,R), we are forced to rely upon its matrix structure (4.6), where the exact projector always

accompanies the coefficients defined in each sector. Therefore, we have

tr[ba,2(x,R)] = tr[ba,2(x,Rλ)PL] + tr[ba,2(x,Rλc)PR] + tr[ba,2(x,Rρ)PR] + tr[ba,2(x,Rρc)PL] , (E.1)

With that in mind, it’s easy for us to show that, given two operators A and B, the trace of the

product between their commutator ([A,B]) and some projector (P ) does vanish as long as

[A,P ] = 0 (E.2)

is respected, namely

tr
[
[A,B]P

]
= tr

[
ABP −BAP

]
= tr

[
ABP

]
− tr

[
B AP︸︷︷︸

(E.2)

]
=

= tr
[
ABP

]
− tr

[
BPA

]︸ ︷︷ ︸
(B.16)

=

= 0 .

(E.3)

Thus, if we explicitly wrote down all the four terms appearing in the last of (3.27)

ba,2(x,Rλ) = − 1

45
∇i∇k∇k

(
Fia(x)

)
+

1

180
∇i∇a∇j

(
Fij(x)

)
− 1

180
∇k∇k∇j

(
Faj(x)

)
+

+
1

6
∇i
(
V (x)Fia(x)

)
,

we would have:

− 1

45
∇i∇k∇k

(
Fia
)

= − 1

45
∇i∇k

(
∂kFia + [W k,Fia]

)
=

= − 1

45
∇i
(
�Fia + ∂k[W

k,Fia] + [Wk, ∂
kFia] +

[
Wk, [W

k,Fia]
])

=

= − 1

45

(
∂i�Fia + ∂i∂k[W

k,Fia]︸ ︷︷ ︸
null trace term

+ ∂i[Wk, ∂
kFia]︸ ︷︷ ︸

null trace term

+ ∂i
[
Wk, [W

k,Fia]︸ ︷︷ ︸
null trace term

]
+
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+ [W i,�Fia]︸ ︷︷ ︸
null trace term

+
[
W i, ∂k[W

k,Fia]
]︸ ︷︷ ︸

null trace term

+
[
W i, [Wk, ∂

kFia]
]︸ ︷︷ ︸

null trace term

+

+
[
W i,

[
Wk, [W

k,Fia]
]]

︸ ︷︷ ︸
null trace term

)
=

= − 1

45
∂i�Fia ; (E.4)

1

180
∇i∇a∇j

(
Fij
)

=
1

180
∇i∇a

(
∂jFij + [W j,Fij]

)
=

=
1

180
∇i
(
∂a∂

jFij + ∂a[W
j,Fij] + [Wa, ∂

jFij] +
[
Wa, [W

j,Fij]
])

=

=
1

180

(
∂i∂a∂

j︸ ︷︷ ︸
sym in ij

Fij + ∂i∂a[W
j,Fij]︸ ︷︷ ︸

null trace term

+ ∂i[Wa, ∂
jFij]︸ ︷︷ ︸

null trace term

+ ∂i
[
Wa, [W

j,Fij]︸ ︷︷ ︸
null trace term

]
+

+ [W i, ∂a∂
jFij]︸ ︷︷ ︸

null trace term

+
[
W i, ∂a[W

j,Fij]
]︸ ︷︷ ︸

null trace term

+
[
W i, [Wa, ∂

jFij]
]︸ ︷︷ ︸

null trace term

+

+
[
W i,

[
Wa, [W

j,Fij]
]]

︸ ︷︷ ︸
null trace term

)
=

= 0 ; (E.5)

− 1

180
∇k∇k∇j

(
Faj
)

= − 1

180
∇k∇k

(
∂jFaj + [W j,Faj]

)
=

= − 1

180
∇k
(
∂k∂

jFaj + ∂k[W
j,Faj] + [Wk, ∂

jFaj] +
[
Wk, [W

j,Faj]
])

=

= − 1

180

(
�∂jFaj︸ ︷︷ ︸

j→i

+�[W j,Faj]︸ ︷︷ ︸
null trace term

+ ∂k[Wk, ∂
jFaj]︸ ︷︷ ︸

null trace term

+ ∂k
[
Wk, [W

j,Faj]︸ ︷︷ ︸
null trace term

]
+

+ [W k, ∂k∂
jFaj]︸ ︷︷ ︸

null trace term

+
[
W k, ∂k[W

j,Faj]
]︸ ︷︷ ︸

null trace term

+
[
W k, [Wk, ∂

jFaj]
]︸ ︷︷ ︸

null trace term

+

+
[
W k,

[
Wk, [W

j,Faj]
]]

︸ ︷︷ ︸
null trace term

)
=

=
1

180
�∂iFia ; (E.6)

1

6
∇i
(
V Fia

)
=

1

6

(
∂i(V Fia) + [W i, V Fia]︸ ︷︷ ︸

null trace term

)
=

=
1

6
∂i(V Fia) ; (E.7)

since all over (E.4)-(E.7) the underbraced operators do adhere to (E.2), they don’t survive the trace

operation (E.1). In any case, the surviving ones sum up to

ba,2(x,Rλ) = − 1

60
�∂iFia +

1

6
∂i(V Fia) . (E.8)
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Nothing more need to be added.
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Appendix F

Traces involving heat kernel coefficients

Considering the importance of the SDW coefficients, especially their massive use throughout the

anomalous expectation values of chapter 5, we chose to gather in the present appendix the step

by step computation of those traces defining the anomalies themselves. They will be presented by

following the order of their appearance in chap. 5. In the following, as will be noted, we opted to

restore the spinor identity operator wherever needed: this should enhance the clarity and readability

of our work.

F.1 Trace and chiral anomaly

Therefore, let’s start with the first trace showing up in sections 5.1 and 5.2:

tr[a2(x,Rλ)PL]
(B.16)

= tr[PLa2(x,Rλ)] =

= tr
{[1 + γ5

2

][
−1

8
(1)(∂aA

a)2 − 1

8
γab∂c(A

c)Fab −
1

32
γabγcdFabFcd+

− i

12
(1)�(∂sA

s)− i

24
γcd�(Fcd)−

1

12
(1)�(A2) +

1

6
γac∂b(Ac)Fab+

− 1

6
γbcAb∂

a(Fca)−
1

12
γca∂a(A

d)Fcd +
1

6
γacAd∂a(Fcd)−

1

48
(1)FabF

ab+

+
i

12
γcbAaAcFab +

1

8
(1)∂b(Ac)∂

b(Ac) +
i

4
(1)AaAd∂

a(Ad)+

+
1

24
γbcγad

(
∂a(Ac)∂b(Ad) + iAaAc∂b(Ad) + iAbAd∂a(Ac)

)]}
=

we can use (B.18),

(B.23) and (B.24)

to neglect all

the null terms

 = − 1

16
tr[1]︸︷︷︸

4

(∂aA
a)2 − 1

64
tr[γabγcd]︸ ︷︷ ︸

(B.33)

FabFcd −
i

24
tr[1]︸︷︷︸

4

�(∂sA
s)− 1

24
tr[1]︸︷︷︸

4

�(A2)+

− 1

96
tr[1]︸︷︷︸

4

FabF
ab +

1

16
tr[1]︸︷︷︸

4

∂b(Ac)∂
b(Ac) +

i

8
tr[1]︸︷︷︸

4

AaAd∂
a(Ad)+

+
1

48
tr[γbcγad]︸ ︷︷ ︸

(B.33)

(
∂a(Ac)∂b(Ad) + iAaAc∂b(Ad) + iAbAd∂a(Ac)

)
+
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+
1

48
tr[γ5γbcγad]︸ ︷︷ ︸

(B.34)

(
∂a(Ac)∂b(Ad) + iAaAc∂b(Ad) + iAbAd∂a(Ac)

)
+

− 1

64
tr[γ5γabγcd]︸ ︷︷ ︸

(B.34)

FabFcd =

= −1

4
(∂aA

a)2 − 1

16
(gadgbc − gacgbd)FabFcd −

i

6
�(∂sA

s)− 1

6
�(A2)+

− 1

24
FabF

ab +
1

4
∂b(Ac)∂

b(Ac) +
i

2
AaAd∂

a(Ad)+

+
1

12
(gbdgac − gbagcd)

(
∂a(Ac)∂b(Ad) + iAaAc∂b(Ad) + iAbAd∂a(Ac)

)
+

+ i
12
εbcad︸︷︷︸

fully antisym.

(
∂a(Ac)∂b(Ad) + i���

���
�

AaAc∂b(Ad) + i���
���

�
AbAd∂a(Ac)

)
+

− i

16
εabcdFabFcd =

= −1

4
(∂aA

a)2 − 1

16
FabF

ba +
1

16
FabF

ab − i

6
�(∂sA

s)− 1

6
�(A2)+

− 1

24
FabF

ab +
1

4
∂b(Ac)∂

b(Ac) +
i

2
AaAd∂

a(Ad)+

+
1

12

(
∂aA

a
)2 − 1

12
∂b(Ac)∂

b(Ac) +
i

12
A2∂a(A

a)+

− i

12
AaAd∂

a(Ad) +
i

12
A2∂a(A

a)− i

12
AaAd∂

a(Ad)+

+
i

12
εbcad∂a(Ac)︸ ︷︷ ︸ ∂b(Ad)︸ ︷︷ ︸︸ ︷︷ ︸

only their antisym. part will contrib

− i

16
εabcdFabFcd =

= −1

6
(∂aA

a)2 +
1

12
FabF

ab − i

6
�(∂sA

s)− 1

6
�(A2) +

1

6
∂b(Ac)∂

b(Ac)+

+
i

3
AaAd∂

a(Ad) +
i

6
A2∂a(A

a)︸ ︷︷ ︸
Leibniz’s rule

+
i

48
εbcadFacFbd︸ ︷︷ ︸
c→b; b→c

− i

16
εabcdFabFcd =

=
1

6

(
−(∂aA

a)2 +
1

2
FabF

ab −�(A2) + ∂b(Ac)∂
b(Ac)

)
+

+
i

6

(
−�(∂sA

s) + ∂a(A
2Aa)− 1

2
εabcdFabFcd

)
. (F.1)

Then there is tr[a2(x,Rλc)PR], easily acquired from (F.1) by virtue of the combined action of the

customary c−prescription (4.17) and the projector transmutation

PL =
1 + γ5

2
−→ PR =

1− γ5

2
,

that basically acts by modifying the sign of each term coming from a trace involving the γ5 matrix,

namely by mapping the Levi-Civita tensor in its opposite

εabcd −→ −εabcd . (F.2)
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This enables us to write

tr[a2(x,Rλ)PL] =
1

6

(
− (∂aA

a)2︸ ︷︷ ︸
(−1)2

+
1

2
FabF

ab︸ ︷︷ ︸
(−1)2

−� (A2)︸︷︷︸
(−1)2

+ ∂b(Ac)∂
b(Ac)︸ ︷︷ ︸

(−1)2

)
+

+
i

6

(
−� (∂sA

s)︸ ︷︷ ︸
(−1)

+ ∂a(A
2Aa)︸ ︷︷ ︸

(−1)3

−1

2
εabcdFabFcd︸ ︷︷ ︸

(−1)3

)
⇓

tr[a2(x,Rλc)PR] =
1

6

(
−(∂aA

a)2 +
1

2
FabF

ab −�(A2) + ∂b(Ac)∂
b(Ac)

)
+

− i

6

(
−�(∂sA

s) + ∂a(A
2Aa)− 1

2
εabcdFabFcd

)
. (F.3)

Now it’s the turn of tr[a2(x,Rρ)PR], which must be computed from scratch. Fortunately, its

calculation doesn’t differ much from that of (F.1):

tr[a2(x,Rρ)PR]
(B.16)

= tr[PRa2(x,Rρ)] =

= tr
{[1− γ5

2

][
−1

8
(1)(∂aA

a)2 +
1

8
γab∂c(A

c)Fab −
1

32
γabγcdFabFcd+

+
i

12
(1)�(∂sA

s)− i

24
γcd�(Fcd)−

1

12
(1)�(A2)− 1

6
γac∂b(Ac)Fab+

+
1

6
γbcAb∂

a(Fca) +
1

12
γca∂a(A

d)Fcd −
1

6
γacAd∂a(Fcd)−

1

48
(1)FabF

ab+

+
i

12
γcbAaAcFab +

1

8
(1)∂b(Ac)∂

b(Ac)− i

4
(1)AaAd∂

a(Ad)+

+
1

24
γbcγad

(
∂a(Ac)∂b(Ad)− iAaAc∂b(Ad)− iAbAd∂a(Ac)

)]}
=

we can use (B.18),

(B.23) and (B.24)

to neglect all

the null terms

 = − 1

16
tr[1]︸︷︷︸

4

(∂aA
a)2 − 1

64
tr[γabγcd]︸ ︷︷ ︸

(B.33)

FabFcd +
i

24
tr[1]︸︷︷︸

4

�(∂sA
s)− 1

24
tr[1]︸︷︷︸

4

�(A2)+

− 1

96
tr[1]︸︷︷︸

4

FabF
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. (F.4)

Of course, for the last missing contribution to the trace anomaly, that is tr[a2(x,Rρc)PL], the rea-

soning is the same as before: we jointly apply the two maps (F.2) and (4.17) to (F.4), getting
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)
. (F.5)

The combination of the previous results is first used to infer the trace anomaly,

〈T aa〉 =
{3− 4α

2(4π)2

(
tr[a2(x,Rλ)PL]︸ ︷︷ ︸

(F.1)
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(F.3)

)
+
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and then the chiral one

〈 ∂µ
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)
, (F.7)

F.2 Lorentz anomaly

In this case there are only two trace terms that make a contribution to the Lorentz anomaly, as we

can see from its defining expression in section 5.3, that is tr[γefa2(x,Rλ)PL] and tr[γefa2(x,Rλc)PR].
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In particular, we have

tr[γefa2(x,Rλ)PL]
(B.16)
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(B.23) and (B.24)

to neglect all

the null terms

 = − 1

16
tr[γefγab]︸ ︷︷ ︸

(B.33)

∂c(A
c)Fab −

1

64
tr[γefγabγcd]︸ ︷︷ ︸

(B.42)

FabFcd+

− i

48
tr[γefγcd]︸ ︷︷ ︸

(B.33)

�(Fcd) +
1

12
tr[γefγac]︸ ︷︷ ︸

(B.33)

∂b(Ac)Fab+

− 1

12
tr[γefγbc]︸ ︷︷ ︸

(B.33)

Ab∂
a(Fca)−

1

24
tr[γefγca]︸ ︷︷ ︸

(B.33)

∂a(A
d)Fcd+

+
1

12
tr[γefγac]︸ ︷︷ ︸

(B.33)

Ad∂a(Fcd) +
i

24
tr[γefγcb]︸ ︷︷ ︸

(B.33)

AaAcFab+

+
1

48
tr[γefγbcγad]︸ ︷︷ ︸

(B.42)

(
∂a(Ac)∂b(Ad) + iAaAc∂b(Ad) + iAbAd∂a(Ac)

)
+

− 1

16
tr[γ5γefγab]︸ ︷︷ ︸

(B.34)

∂c(A
c)Fab −

1

64
tr[γ5γefγabγcd]︸ ︷︷ ︸

(B.43)

FabFcd+

− i

48
tr[γ5γefγcd]︸ ︷︷ ︸

(B.34)

�(Fcd) +
1

12
tr[γ5γefγac]︸ ︷︷ ︸

(B.34)

∂b(Ac)Fab+

− 1

12
tr[γ5γefγbc]︸ ︷︷ ︸

(B.34)

Ab∂
a(Fca)−

1

24
tr[γ5γefγca]︸ ︷︷ ︸

(B.34)

∂a(A
d)Fcd+

+
1

12
tr[γ5γefγac]︸ ︷︷ ︸

(B.34)

Ad∂a(Fcd) +
i

24
tr[γ5γefγcb]︸ ︷︷ ︸

(B.34)

AaAcFab+

+
1

48
tr[γ5γefγbcγad]︸ ︷︷ ︸

(B.43)

(
∂a(Ac)∂b(Ad) + iAaAc∂b(Ad) + iAbAd∂a(Ac)

)
=

= −1

4
(gebgfa − geagfb)∂c(Ac)Fab −

1

16
(gacgbegdf − gacgbfgde − gbcgaegdf+

+ gbcgafgde − gadgbegcf + gadgcegbf − gbdgcegaf + gbdgaegcf )FabFcd+

94



− i

12
(gedgfc − gecgfd)�(Fcd) +

1

3
(gecgfa − geagfc)∂b(Ac)Fab+

− 1

3
(gecgfb − gebgfc)Ab∂a(Fca)−

1

6
(geagfc − gecgfa)∂a(Ad)Fcd+

+
1

3
(gecgfa − geagfc)Ad∂a(Fcd) +

i

6
(gebgfc − gecgfb)AaAcFab+

+
1

12
(+gbagcegdf − gbagcfgde − gcagbegdf + gcagbfgde+

− gbdgcegaf + gbdgaegcf − gcdgaegbf + gcdgbegaf )·

·
(
∂a(Ac)∂b(Ad) + iAaAc∂b(Ad) + iAbAd∂a(Ac)

)
+

− i

4
εefab∂c(A

c)Fab +
i

16
(gacεbdef − gbcεadef − gadεbcef + gbdεacef )FabFcd+

+
1

12
εefcd�(Fcd) +

i

3
εefac∂b(Ac)Fab −

i

3
εefbcAb∂

a(Fca)+

− i

6
εefca∂a(A

d)Fcd +
i

3
εefacAd∂a(Fcd)−

1

6
εefcbAaAcFab+

− i

12
(gbaεcdef − gcaεbdef − gbdεcaef + gcdεbaef )·

·
(
∂a(Ac)∂b(Ad) + iAaAc∂b(Ad) + iAbAd∂a(Ac)

)
=

= −1

4
∂c(A

c)(F fe − F ef )− 1

16

(
���

�
F ceFc

f −����Fc
fF ce −����F ecFc

f+

+���
�

F f
cF

ce −XXXXF deF f
d +
XXXXFd

fF ed −XXXXF fdF e
d +
XXXXF e

dF
fd
)

+

− i

12
�(F fe − F ef ) +

1

3

(
∂b(Ae)F f

b − ∂b(Af )F e
b

)
+

− 1

3

(
Af∂a(F e

a)− Ae∂a(F f
a)︸ ︷︷ ︸

a→b

)
− 1

6

(
∂e(Ad)F f

d − ∂f (Ad)F e
d

)
+

+
1

3

(
Ad∂f (F e

d)− Ad∂e(F f
d)
)

+
i

6

(
AaAfFa

e − AaAeFaf
)
+

+
1

12

(
∂b(Ae)∂b(A

f )− ∂b(Af )∂b(Ae)︸ ︷︷ ︸
0

−
��

���
���:

∂a(A
a)∂e(Af ) +

��
���

���:
∂a(A

a)∂f (Ae)︸ ︷︷ ︸
a→b

+

−
���

���
��:

∂f (Ae)∂b(A
b) +

���
���

��:
∂e(Af )∂b(A

b)−∂e(Ad)∂f (Ad) + ∂f (Ad)∂e(Ad)︸ ︷︷ ︸
0

+

+
XXXXXXXiAbAe∂b(A

f )−
XXXXXXXiAbAf∂b(A

e)︸ ︷︷ ︸
b→a

−iA2∂e(Af ) + iA2∂f (Ae)︸ ︷︷ ︸
−����iA2F ef

+

−iAfAe∂b(Ab) + iAeAf∂b(A
b)︸ ︷︷ ︸

0

−iAeAd∂f (Ad) + iAfAd∂e(Ad)︸ ︷︷ ︸
d→c

+

+
XXXXXXXiAaAf∂a(A

e)−
XXXXXXXiAaAe∂a(A

f )−iAeAf∂a(Aa) + iAfAe∂a(A
a)︸ ︷︷ ︸

0

+

95



−iA2∂f (Ae) + iA2∂e(Af )︸ ︷︷ ︸
���

�
iA2F ef

−iAfAc∂e(Ac) + iAeAc∂f (Ac)
)

+

− i

4
εabef∂c(A

c)Fab +
i

16

(
εbdefF c

bFcd︸ ︷︷ ︸
sym. in bd

−εadefFacFcd︸ ︷︷ ︸
sym. in ad

−εbcefF d
bFcd︸ ︷︷ ︸

sym. in bc

+

+ εacefFa
dFcd︸ ︷︷ ︸

sym. in ac

)
+

1

12
εcdef�(Fcd) +

i

3
εacef∂b(Ac)Fab −

i

3
εbcefAb∂

a(Fca)︸ ︷︷ ︸
b→c; c→a; a→b

+

+
i

6
εacef∂a(A

d)Fcd +
i

3
εacefAd∂a(Fcd)−

1

6
εcbefAaAcFab+

− i

12

(
εcdef ∂b(Ac)∂b(Ad)︸ ︷︷ ︸

sym. in cd

−(((((
((((

(
εbdef∂a(A

a)∂b(Ad)−(((((
(((

((
εcaef∂a(Ac)∂b(A

b)︸ ︷︷ ︸
a→b; b→a; c→d

+

+ εbaef ∂a(Ac)∂b(A
c)︸ ︷︷ ︸

sym. in ab

+
���

���
���

�:

iεcdefAbAc∂b(Ad)−
hhhhhhhhiεbdefA2∂b(Ad)+

− iεcaef AaAc∂b(Ab)︸ ︷︷ ︸
sym. in ac

+iεbaefAaA
d∂b(Ad) +

���
���

���
�:

iεcdefAaAd∂a(Ac)︸ ︷︷ ︸
d→c; c→d; a→b

+

− iεbdef AbAd∂a(Aa)︸ ︷︷ ︸
sym. in bd

−
hhhhhhhhiεcaefA2∂a(Ac)︸ ︷︷ ︸

a→b; c→d

+ iεbaefAbA
c∂a(Ac)︸ ︷︷ ︸

a→b; b→a; c→d

)
=

=
1

2
∂c(A

c)F ef +
i

6
�(F ef ) +

1

3
∂b(Ae)F f

b +
1

3
Ae∂b(F f

b)︸ ︷︷ ︸
Leibniz’s rule

+

−1

3
∂b(Af )F e

b −
1

3
Af∂b(F e

b)︸ ︷︷ ︸
Leibniz’s rule

−1

6
∂e(Ad)F f

d −
1

3
Ad∂e(F f

d)︸ ︷︷ ︸
Leibniz’s rule

+

+
1

6
∂f (Ad)F e

d +
1

3
Ad∂f (F e

d)︸ ︷︷ ︸
Leibniz’s rule

+
i

6
AaAfFa

e − i

6
AaAeFa

f+

− i

4
εabef∂c(A

c)Fab +
1

12
εcdef�(Fcd)+

+
i

3
εacef∂b(Ac)Fab +

i

3
εacefAc∂

b(Fab)︸ ︷︷ ︸
Leibniz’s rule

+

+
i

6
εacef∂a(A

d)Fcd +
i

3
εacefAd∂a(Fcd)︸ ︷︷ ︸

Leibniz’s rule

−1

6
εcbefAaAcFab =

=
1

2
∂c(A

c)F ef +
1

3
∂b(AeF f

b)−
1

3
∂b(AfF e

b)−
1

6
∂e(AdF f

d)+

− 1

6
Ad∂e(F f

d) +
1

6
∂f (AdF e

d) +
1

6
Ad∂f (F e

d)+

+
1

12
εcdef�(Fcd)−

1

6
εcbefAaAcFab+

96



+ i
(1

6
�(F ef ) +

1

6
AaAfFa

e − 1

6
AaAeFa

f − 1

4
εabef∂c(A

c)Fab+

+
1

3
εacef∂b(AcFab) +

1

6
εacef∂a(A

dFcd) +
1

6
εacefAd∂a(Fcd)

)
. (F.8)

Starting from (F.8), as usual, we are allowed to gain knowledge about the other trace’s value by

exploiting the 2 transformations provided by (4.17) and (F.2):
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Finally, the Lorentz anomaly appears to be:
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That exhausts the Lorentz anomaly’s part of appendix F.

F.3 Gravitational anomaly

The last quantities needed in chapter 5 are the traces of the two vectorial generalization of the heat

kernel coefficients, ba,2(x,Rλ) and ba,2(x,Rλc), both weighted by the relative projector. Of course,

we’ll make use of their simplified expressions, i.e. those introduced in 4.5 through (4.44) and (4.45)

respectively. Thus, we have
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
we can use (B.18),

(B.23) and (B.24)

to neglect all

the null terms
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from which tr[ba,2(x,Rλc)PR] promptly follows through the implementation of (4.17) and (F.2):
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The gravitational anomaly then results in
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This puts an end to the current appendix.
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Appendix G

Demonstration: from (B.28) to (B.29)

The main purpose of this section is to provide the detailed proof of equation (B.29), that should be

attained by properly manipulating (B.28), i.e.

iεsabcγ
sγ5 = ε0abcγ

1γ2γ3 + ε1abcγ
0γ2γ3 − ε2abcγ0γ1γ3 + ε3abcγ

0γ1γ2,

as anticipated in appendix B. Indeed, if we entered each of the sixty-four available combinations of

the three indices a, b and c, we would observe that, whenever a, b and c differ from one another,

iεsabcγ
sγ5 correctly reproduces γaγbγc, while it vanishes otherwise. All this is summarized in

iεsabcγ
sγ5 =

{
γaγbγc if a 6= b ∧ a 6= c ∧ c 6= b

0 otherwise
, (G.1)

or, alternatively, through

iεsabcγ
sγ5 =

1

3!

(
γaγbγc − γaγcγb + γbγcγa − γbγaγc + γcγaγb − γcγbγa

)
.

Undoubtedly, the finest of the two expressions is the latter, which not only corresponds to (B.29),

but also gathers in itself both solutions of (G.1) by simply antisymmetrizing the upper non-vanishing

one. This ends the current discussion.
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