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Abstract

In this thesis we study the anomalies of a chiral fermion in a gauge background, using a different
regularization from those already present in literature. The aim is to study all the anomalies involving
the stress tensor. The final motivation is to eventually focus on the trace anomaly, which has been
of some interest recently.

Thus, after a brief introduction to the issue of anomalies in QFT, we proceed by studying the
symmetries of a massless left-handed Weyl fermion coupled to an abelian gauge background and
gravity as well (used as an external source for the stress tensor). The regularization of the corre-
sponding QFT is then implemented through Pauli-Villars (PV) fields having a Dirac mass. Particular
emphasis is put on the unusual mass term used at this stage, consisting of a customary Dirac mass
multiplied by the vierbein determinant e raised to the generic power «.

After devoting a chapter to the mathematical tool of the heat kernel, we restrict ourselves to flat
space, present the regulators of the model, the “jacobians” associated to each of its symmetries, and
all the useful heat kernel coefficients needed for the anomaly calculations.

Finally, we evaluate all the anomalies of our model: the usual chiral anomaly and the anomalies
in the stress tensor, namely the trace anomaly and the anomalies in the symmetry of the stress
tensor and in its conservation (i.e. local Lorentz and gravitational anomalies). The latter is the most
demanding task, as it requires the use of particular heat kernel coefficients which have been rarely
treated in the literature.

The computation of these anomalies is the leading task accomplished in this thesis. Of course,
one does not expect all of these anomalies to be genuine, as some are expected to be canceled by
the variation of local counterterms, leaving at the end only the chiral and trace anomalies with their
known expressions. That this is the case is left for future research.



Abstract

Nel corso della presente tesi, studiamo le anomalie di un fermione chirale posto in un background
di gauge, usando una regolarizzazione differente da quelle finora usate in letteratura. Il nostro
obbiettivo consiste nello studio di tutte le anomalie coinvolgenti il tensore energia impulso. Tuttavia,
le motivazioni ultime sono da ricercare, eventualmente, nell’approfondimento dell’anomalia di traccia,
che recentemente ¢ stata oggetto di grande interesse.

Quindi, dopo una breve introduzione al problema delle anomalie in QFT, procediamo a studiare
le simmetrie di un fermione sinstrorso di Weyl, privo di massa, accoppiato ad un background di
gauge abeliano ed alla gravita (usata come sorgente del tensore energia impulso). Si implementa poi
la regolarizzazione della corrispondente teoria quantistica tramite campi di Pauli-Villars dotati di
massa di Dirac. Enfasi particolare ¢ posta sull’insolito termine di massa utilizzato, che consiste in
un’usuale massa di Dirac moltiplicata per I’a—esima potenza del determinante del vierbein e.

Dopo un intero capitolo dedicato allo strumento matematico dell’heat kernel, restringendoci su
uno spazio-tempo piatto, presentiamo i regolatori del modello, gli “jacobiani” associati ad ogni sua
simmetria, e tutti i principali coefficienti di heat kernel, necessari al calcolo delle anomalie.

Infine valutiamo tutte le anomalie del nostro modello, tra cui I’anomalia chirale e quelle che afflig-
gono il tensore energia impulso, ovvero 'anomalia di traccia e quelle nella simmetria e conservazione
del tensore energia impulso (anomalia di Lorentz locale e anomalia gravitazionale). L’ anomalia
gravitazionale rappresenta il compito pit arduo, poiché richiede 1'uso di coefficienti di heat kernel
raramente trattati in letteratura.

Il computo di tali anomalie e dunque la principale conquista portata a termine nel corso dell’elaborato.
Naturalmente, ci si aspetta che, tramite la variazione di opportuni controtermini locali, soltanto le
anomalie di traccia e chirale, con le loro solite espressioni, sopravvivano. Che questo sia o meno il
caso e pero lasciato a ricerche future.
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Chapter 1

Introducing the anomalies

Quantum Field Theories (QFTs) constitute the main tool to study the fundamental interactions, in
particular when applied to gauge theories and gravity. One particular aspect of QFTs deals with the
implementation of symmetries and their preservation at the quantum level. It is well-known that the
quantization procedure, which often requires the introduction of a regularization scheme, brings in
a conflict between different symmetries, so that they cannot be maintained all together (at least if
certain cancellation criteria are not met). For instance, it may happen that the regulators employed to
cure the divergencies in the Feynman diagrams, such as the ones encountered in 1-loop processes, do
not respect the original classical symmetries, causing their breaking at the quantum level. Likewise,
the functional measure that arises in a path integral quantization often does not exhibit the same
invariance properties of the classical action, so that some symmetries can get lost. In plain words,
not all the symmetries survive the second quantization: in these cases, as it is customary to say, we
are in the presence of a quantum anomaly.

The first anomaly was discovered in the late ’60s, the so-called chiral (or Adler-Bell-Jackiw)
anomaly [I} 2], and falls within the category of the global anomalies. It describes the non-conservation
of the axial symmetry

b — ) = ey (1.1)
present in massless QED, and is expressed through the following non zero expectation value

2

€ VAo
8,u<‘]g> = 1671'26# A FHVF)\U.

Indeed, one of the ways we have to infer whether an anomaly is present is in verifying the quantum
non-conservation of a Noether current. Phenomenologically this chiral anomaly has been very im-
portant. If the quantized theory were invariant under (L.I)), with ¢ considered now as the field of a
quark, the decay of a (massless) neutral pion into two photons (see fig. would be forbidden. In
fact, the amplitude describing the transition would vanish classically because of the Ward identity

associated to the chiral symmetry, not allowing the pion at rest to undergo this decay. In the quan-
tum world, though, the width associated with this process is no longer negligible (as the anomaly
itself can now balance the Ward identity), and the phenomenon can therefore be observed in actual
experiments.

Of course, there can be anomalies ensuing from local symmetries as well, like the ones associated
to gauge theories. In these cases, since chiral gauge symmetries are at the cornerstones of the
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Figure 1.1: 7% — v

electroweak sector of the Standard Model with gauge group
GEW = SU(2) X U(l),

disastrous consequences may come out fatal for the overall consistency of the theory, and one must
check that these potential anomalies are canceled by the field content of the Standard Model [3].
The four conditions listed below

0

0, (1.2)
Tr [{7a, }Y] =0

Tr[YYY]=0
where 7, (a = 1,2,3) and Y are the generators of SU(2) and U(1) respectively, have to be fulfilled
for the standard model to be anomaly-free. Similar anomalies appear in theories coupled to gravity,
and the corresponding gravitational anomalies have been instrumental to construct consistent string
theories and their effective actions.

Among the anomalies, also the so-called trace anomalies [4] have been found to be of paramount
importance. They appear in conformal theories, renowned for their scale invariance, which often have
classically a traceless stress tensor. Nevertheless, at the quantum level, an anomaly may appear,
especially if the theory is coupled to suitable backgrounds, e.g. by putting it in a curved space. In
this respect, there have been recent claims that a particular CP-violating contribution [5] [6] [7, ],
proportional through an imaginary coupling to the Pontryagin density

1
P = §eabcdRabmchdm”, (1.3)
appears in the trace of the stress tensor of chiral theories coupled to gravity:
1 11 9 15
Taa — _<_E - = 2 _ _P>7 14
T) = e\ 7 F 2 — 1 (14)

where W? is the Weyl density

1
W2 — RabcdRade . 2RabRab + §R2



and E the Euler one
E = RabcdRade — 4RabRab + R?

(with Rgpeq, Rap and R standing for the Riemann tensor, Ricci tensor and scalar curvature respec-
tively). By any means, because of its accordance with the Sakharov conditions, might provide
a so far unexplored and new mechanism for baryogenesis. Furthermore, this imaginary contribution,
being potentially fatal for unitarity, could be used as a new requirement for anomaly cancellation,
introducing an additional consistency criterion for a theory [6]. However, these assertions have not
found confirmation by other groups [9, [10], which instead finds for a chiral fermion just half the trace
anomaly of a Dirac spinor, i.e.

" 1 11 9
(T%,) = W(7E — oW ) (1.5)
with no appearence of the Pontryagin density.

A similar situation arises also in the coupling of a chiral fermion to background gauge fields. Also
in this case a conjectured contribution to a topological density, now depending on the background
gauge fields, has been put forward [5]. However, explict calculations again have not found its presence
[T, 12]. The method used there consisted in employing a Pauli-Villars (PV) regularization with PV
fields with Majorana mass. The calculation is then recasted as a standard Fujikawa “jacobian”
calculation, as shown in [I3], which is then implemented with heat kernel techinques.

Given this state of affairs, we wish to study again the case of a chiral fermion coupled to an abelian
background gauge field, but regulating it with PV fields with a Dirac mass term. This mass term is
much more difficult to treat, as it ruins also general coordinate and local Lorentz invariance once the
model is put in curved space. Thus more anomalies are expected, though one expects that variation
of local counterterms should relate them to those obtained with the PV Majorana mass, getting in
particular a vanishing contribution of the Chern-Pontryagin topological density to the trace anomaly.
In this thesis we aim to compute the anomalies with the PV Dirac mass regularization, leaving the
issue of possible counterterms to future work.

1.1 The model

We consider a chiral (left-handed) spinor A coupled to an abelian gauge field A,, whose lagrangian
takes the form

Ly = —M"(0a — 1A)A = =AY Dy(A)N = —AP(A)N (1.6)

(see notations in appendix [A] and [B]). Analogously to the coupling to gravity, also this abelian gauge
coupling may give rise to a trace anomaly with an imaginary contribution proportional to the odd-
parity Chern-Pontryagin topological density F F , as suggested in [5]. Since the Chern-Pontryagin
density FF satisfies the consistency conditions [14] for trace anomalies, this is indeed not exclued.
On the other hand its trace anomaly has been computed only recently in [I1], through a Pauli-
Villars regularization involving Pauli-Villars field with Majorana mass. The calculation reproduced
the usual gauge U(1) anomaly on top of an explicit gauge invariant form of the trace anomaly, in
contrast to the conjectures made in [5] about the existence of F F in the structure of the latter. In
this paper, we wish to check again the results of [11] using Pauli-Villars fields with Dirac mass as
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alternative regulators. The Dirac mass breaks additional symmetries with respect to the Majorana
mass, so it may induce anomalies in the conservation of the stress tensor (gravitational anomalies)
and on its antisymmetric part (local Lorentz anomalies), in addition to the expected trace and
chiral anomalies. We shall compute all these anomalies, which is a necessary step before studying
eventual counterterms whose symmetry variation should reinstate both conservation and symmetry
of the stress tensor. In the present case calculations are more demanding then those of ref. [I1],
since the gravitational anomaly requires more general heat kernel formulae. As a matter of fact,
the computation of the gravitational anomaly constitutes the main technical task carried out in this
paper. Moreover, for the occasion we improved the notebook that was developed in [15] so that,
after every calculus, we could check the ensuing result.

In any case, before starting our analyses of the anomalies, we first need to review the general
setup we are going to use, which includes the Fujikawa’s method and the scheme of ref. [I3] for
extracting consistent regulators.

1.2 Fujikawa’s method and consistent regulators

The setup we are going to review was devised to insure that the anomalies indeed satisfy the integra-
bility conditions reported in [14]. It relates the calculation of the anomalies done with the Fujikawa’s
method to that of some Feynman graphs regulated via Pauli-Villars fields.

1.2.1 Fujikawa’s method

Fujikawa [16], [I7] approached the problem of the anomalies by considering the path integral
7 = /DU etol] (1.7)

and recognizing that the functional measure Duv can be regarded as responsible for their appearance.
In fact, its lack of invariance under a certain symmetry of the classical action S[v] causes the full
path integral Z to be non invariant. For instance, let us suppose the aforementioned symmetry is a
Lie symmetry that depends on a constant parameter #, acting on the field v and the coordinates x
through the following laws

¥ — 2" = ¢"(z,0) (1.8)
V'(2") = Q(x,v(x), d,v(x), ), (1.9)

which restrict to the identity transformations whenever 6 = 0. This suggests that the infinitesimal
form of (1.9), valid if § < 1, can be stated as

dov(x) = ' (x) —v(x) =6 I(x,v(x),d,v(x)) (1.10)

v(r) —

where [ is a generic function descending directly from @) and gq.
Now, we bestow a space-time dependence upon 6, so that it gets promoted from constant to real
valued function 6(z), and (1.10) becomes

doyV(z) = 0(x) I(z,v(x),0,v(x)) . (1.11)

7



Even though in the very beginning, by definition of symmetry, we had
595[1}] - O y

as soon as ([1.11)) is involved, the status of symmetry is generally lost and the new variation of the
action has to be necessarily expressed as

So)S[V] = /d”x 9, (0(x))C¥ () , (1.12)

which guarantees the restoring of the symmetry, dy.,)S[v] = 0, every time that 6(z) = const. As
concerns C(z), it represents the classically conserved Noether current of the model: if is eval-
uated on-shell, then not only the least action principle ensures a null result, but since an integration
by parts produces

5o S[v] = — / 'z 0(2)0, (C(x)) = 0, (1.13)
the continuity equation
9,(C*(x)) = 0

follows as expected.
Anyway, getting back to the problem at hand, we subject ([1.7)) to a series of algebraic manipu-
lations: first, we rename the dummy integration variable

/Dv et = /DU’ Sl (1.14)

and, by identifying v/ with the old variable v increased by the infinitesimal space-time-depending
variation ([1.11f), we execute the following change of the functional integration variable in the RHS

of (LT9)

V' =0+ v (1.15)

Thus, in doing so, we have to recall that the measure changes according to

Dv' = Dv Det 8_U =
v

B ov 8(59(1)1))

= DU Det % + T =
691

— Duv Det |1 + 0 (ocyv) =
ov
50m

~ Dv (l—l—Tr M]) ,
ov




where we were able to exploit the fact that Det|1 4+ A| ~ 14 Tr[4], if A < 1. Meanwhile, the action
undergoes to

functional Taylor expand

o S[U]
~ S[v] + (;zﬁ Bo(aV =

= S[v] 4 dpwyS[v] ,

causing its exponential to be Taylor expanded as

eiS[v’} _ eiS[v—i—(Se(z)v} _

iS[U]+i59<I> S[v] —

~ e

~ " (1 4 iy, S[V)) -

Therefore, putting all together in ((1.14]), we recognize (at first order)

/DU ¢Sl = /Dv’ ¢Sl =

~ / Dv <1 + Tr
keep the 15 order

; (s , .
~ /DU e + /DU Tr %1 Sl —I—i/Dv SoyS[v] €517
v

which in turn could be inverted to find that

/DU Tr —8(60(@1})

ov
For the sake of convenience, we then proceed by relabeling the infinitesimal part of the jacobianﬂ as
8((59(1)1))
ov 7
L Albeit not reported, the jacobian itself carries a space-time dependence that, when made explicit, should read as

8(5,9(,)1)) _ 5(59@)“(33)).

OOy U isly _
%]) ¢S (1 4 06y, S[v]) =

] St [ Dy Sp e <. (1.16)

J:

v v (y)

Of course, this calls for an expression of its trace of the form

9oy | _ i1 0(0emv(2)) o B
Tr{ D0 }/dzdy 50(1) (x—y),

where the Dirac distribution is needed to ensure locality.



after which we divide (1.16)) by the original path integral Z. Operating in this way, we can provide
a legitimate expression for the quantum anomaly in terms of normalized correlation functions

1 1S[v l iS|v
E/DvTr[J]eS[]+Z/Dvég<z>5[v]es[]:

= (Tr[J]) + i 6oy S[v] ) =
Te[J] + (60, S[v]) =0,

which presumed Tr[J] to be independent of any quantum field. In the very end, this last equation
gets tidied in
Dy Sv]) = —TalJ] (1.17)

and further developed in

(0o S[V]) = —z'/d":E 0(x)0,(C"(x)) = —Tr[J],
——

(1.13)

revealing us that the true origin of the anomaly is to be found in the non-triviality
J#0 (1.18)

of the jacobian we employed in the change of variable. In addition, we see that the Noether current
C”(x) cannot be quantum preserved,

9,(C"(x)) # 0,

as long as condition on J is met.

We’re almost there. In fact, a well-defined prescription on how to compute the trace in ((1.17)),
without incurring in any infinity, is the only thing missing. Fujikawa managed to figure out how
to do that. Using a suitable negative—deﬁniteﬂ operator R, the so-called regulator, weighted by the
inverse of a squared mass, M2, he first put the exponential of the ratio —% in the above-mentioned
trace, alongside with J, and then took the infinite mass limit, thus obtaining the one-loop regulated
anomaly

i( 6,0, S[v]) = — lim Tr[Je 37| (1.19)

M —o0

with eventual divergent terms (for M — oo) in the expression assumed to be canceled by renor-
malization. Despite this achieves a fair regularization, one should bear in mind that an anomaly is
eventually recognized as such only if it cannot be erased by the variation of a local counterterm. In
this set-up, the main problem is how to identify those regulators that indeed produce the consistent
anomalies, i.e. those that arise from the symmetry variation of an effective action.

The next section will help us to clarify how the extraction of an adequate regulator may be
obtained.

2More correctly, Fujikawa envisaged R to be negative-definite only after a Wick rotation.
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1.2.2 Consistent regulators

A procedure for identifying consistent regulators, i.e. those regulators that indeed produce consistent
anomalies in the Fujikawa scheme, has been put forward in [I3], by considering a Pauli-Villars
regularization of the quantum theory.

Being mostly interested in describing the physics of a massless field or set of fields, collectively
denoted by ¢, we rewrite the lagrangian of the corresponding model as

L 7
L= 3% TOyp (1.20)

to maintain the same notation of [I3]. Moreover, we are going to assume that ((1.20)) is invariant
under the linear transformation

o=Kop. (1.21)

To keep the argument as general as possible, one assumes that the kinetic operator T'O might depend
on some background fields as well.

Furthermore, since we intend to cancel all the divergences that this theory possesses at one-loop,
we must introduce a Pauli-Villars (PV) field, say ¢, endowed with a mass M. This comes along with
a lagrangian density of the following kind

Loy = %¢TTO¢ + %M¢TT¢ , (1.22)

here written in the same way as , and again T' is allowed to depend on the eventual background
fields. After that, we subtract the massive PV one-loop to the original one, and, as is the custom
with this type of regularization, we implement the limit M — oo, which should decouple the massive
PV fields from the theory. To this end, the symmetry has to be extended to the kinetic part

of (122), too,
56 = Ko,

meaning that the symmetry can be broken solely by the massive part of L, i.e. that marked by
the matrix 7', assumed to be invertible. In that case, we have
1
SLpy = §M(¢TKTT¢ +¢"T¢p + ¢"TK¢) =
(1.23)

= %M¢T(KTT + 6T +TK)¢ .

It is worth to notice that if we could spot a PV field such that 6L, = 0, then no quantum anomaly
would show at all, and the ensuing theory would be anomaly free. In view of the intended use of the
mechanism we are developing, from now on ¢ and ¢? will be considered as spinor. This implies that,
by dropping the hypercondensed notationﬂ quietly adopted until now, it would be easy to see that
only the antisymmetric part of 7O and T" will contribute in . Said differently, TO and T' are

3In a hypercondensed notation all the indices outlining the multi-component structure of the fields (together with
any space-time dependence) are omitted.

11



antisymmetric matrices (i.e. operators). This fact is used to manipulate the implicit index structure

of (1.23)) into
SLpy = %M¢T(5T +2TK)é . (1.24)

At this stage, the regularization procedure can at last be implemented. This is easily accomplished
by modifying the path integral defining the one-loop effective action I', that is

U= /Dgp eslel (1.25)

by adding the PV action Spy[¢] to the one already displayed in ([1.25)). This entails that the infinite
mass limit and the further functional integration upon ¢ have to be evaluated:

Zneg = €170 = / D¢Dyp 'reslerdl = Jim DDy e!lesrvieD (1.26)

Now, it is the variation of ((1.26) with respect to the extended version of ([1.21)) that allows for the
anomaly to emerge. Moving in this direction, we get that

i 0T og €170 = / DD (i 3Syeq) ¢ 5resledl = Jim [ DDy (105, ,)elSlel+Seviel) (1.27)

where, based on the above, only the variation of Sy, or rather its massive part, will be present in
(1.27). Now, reintroducing indices and space-time dependence, we have

0Spy = /d4x d'y 6 Loy (z,y) =
(1.28)

¥ / d'wd'y ¢! (2) (0T (x, ) + 2(TK) " (z.) ) &5(y)

Thus, the quotient of (1.27]) by (1.26]) brings in the new equation

. iSreglp,d] _ i(S[pl+Spv(e])
P00, eg = reg/Dd)Dgo (10Sreq) € v )

-~ 1 28)

1(0Sreg)
Y
M .
1005eq = i05,eg) = 7 | 5 / d'ed'y ] (x) XV (x,y) 6;(y)e" "IN (1.29)
—00
where we identified N
Xi(ay) = ((0T9(a,y) + 2(TK) (@.9) .[] (1.30)

4We cannot help but notice that in writing down we employed two different event dependences for ¢ and its
transposed ¢”. Despite being the most general course of action, this is clearly contrary to the requirement of locality.
This implies that X ¥/ (z,y) and the matrices contained therein should be accordingly amended, if necessary, to include
at least a delta distribution §*(x — y).

12



We manipulate the outer RHS of ((1.29)), by taking the reciprocal of the regulated path integral Z,.,
inside the limit and reversing the order of space-time and functional integrations. In so doing, we
are allowed to write

$6T ey = 1(5Se) = — lim M [ dhadty X ¥( T(x) ¢, (y) e SteITsrvioh —
2 M—oo
(¢ (y)¢T( ))ji
=2 lim M [ dwd'y X(z,y) (6@)6" (1)) =
2 M—o00
=L lim M [ dadly X7 <—) -
2 Mo dwdy (z,9) TO+TM ji(y’x>
1 g _
=—= lim M [ d'zd'y X9 (z,y) (TO+TM) lji(y,:c) , (1.31)
2 M—o00
in which the exact definition of the 2-point Green’s function
(6120) 6" (1)) = == [ DODY Gnlza) Gulan)e A7)
reg

with the opposite sign due to the Pauli-Villars nature of ¢, and the corresponding fermionic propa-

gatoxﬂ ‘
1
0" = (7o)
have been used.

Finally, the ultimate form of ((1.31)) can be now explored. All it takes is for us to acknowledge that
the complete index contraction and the two space-time integrals there performed might be equally
expressed as the trace of the operator product they affect: X(TO +TM)~!. In fact, we have:

M—o0

1 g _
i(0S,eg) = —5 Jim M dzd'y X (z,y) (TO+TM) ™" iy, z) =

1 . -1
:—iégmMTr[\X/(TO—%TM) ] =
(T.30)

=~ lim MTe[(6T + 2TK)(TO + TM) ] =

M—oo

— L MTr|(OT + 2TK) (thl)_l(TM)_l} _

M—oo

_A}iinooTrK%TléTJrK) %—Fl)_l} =

- g () (- 9)a- 9)" (G 1)) -

~~

1

=g (o ek ) (- 4 ) 132

5As usual, the fermionic propagator is deduced from the inverse of the operator specified in the PV lagrangian
(1.22).
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The last equality follows from a result derived in [I8], where the well-known invariance of ([1.20))

under ([1.21)
1
6L = 5ng((ST(’) + TS50 +2TOK)p =0

has been employed. Next, by approximating

eq. (1.32) becomes

i{0S¢q) = — lim_ Tr[(K + éT—léT + %)J} , (1.33)

whose comparison with (1.19)) results in a precise and consistent expression for the infinitesimal
jacobian

B 1.4 00
J=(K+5170T+ 0 (1.34)
and regulator

R=-07, (1.35)

formerly discussed in section m (we are implicitly requesting for the operator —O? to be negative-
definite after a Wick rotation).

In conclusion, this improved Fujikawa method permits one to regulate the jacobian that produces
the consistent anomaly by cutting off all the ultraviolet frequencies, because of the mass M, and
recognize the anomaly as the finite mass-independent terms in ([1.33)) (as possible diverging terms
are canceled by renormalization).
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Chapter 2

Symmetries and the Dirac mass

To study our model, and in particular the structure of its stress tensor, it is useful to couple it to
background gravity, so that one can use the vierbein as a source of the stress tensor. After insertion
of one stress tensor into correlation functions, we restrict ourselves to flat space, as we are interested
in the contribution to the anomalies of the U(1) gauge field only.

The coupling to gravity of the lagrangian in reads

Ly =—eM'V, A= —e AV (2.1)

where y* = e#,y* are the gamma matrices with curved indice{], et, is the inverse of the vierbein
e,”, and V, is the covariant derivative

Vﬂ - all - ZA/L + %wuab(e)’ya’yb ) (22)

containing the U(1) gauge potential A, and the spin connection wy(e,*), which is another function
of the vierbein. The action Sy, = [ d*z L, is gauge invariant and invariant under general coordinate,
local Lorentz, and Weyl transformations. The energy-momentum tensor, or stress tensor, is defined

by
1 Sw

(@) = e deya()

(2.3)

where e is the determinant of the vierbein. It is covariantly conserved (up to some classical breaking
term), symmetric, and traceless on-shell, as consequence of diffeomorphisms, local Lorentz invariance,
and Weyl symmetry, respectively. In flat space, and simplified with the equations of motion, it reads

1Y 4 <
Ty = 7A <%Db + ’YbDa> A, (2.4)

“ —
with D, = D, — D., and the conservation law it satisfies has the form

D T% = —i\y, A F (2.5)

!Tensors portrayed with greek, “curved” (or “coordinate”) indices correspond to those that are being described by
observers living in a general Einstein reference frame. Here an index gets lowered or raised by the generic curved metric
guv and its inverse. On the contrary, latin, “flat” (or “frame”) indices characterize tensor quantities as they appear
in the eyes of an observer residing in a locally flat Lorentz frame, where the metric is seen to be the Minkowskian one

(Yab = Nab)-
The vierbein e,* acts on curved indices by making them flat; its inverse does the opposite.

15



being
Fab - aaAb - al)14a (26)

the usual U(1) field strenght.
For later purposes, it is useful to report the infinitesimal form of the background local symmetries
in curved space. They take the form

e, = &0,e," + (0,")e," + whe,’ + oe,”
0A, =E£"0,A, + (0,£")A,

OA = E* O\ + 2wy A — S0 )

op=0

(2.7)

where ¥, w., and o are the infinitesimal local parameters of the Einstein, Lorentz, and Weyl sym-
metries, respectively. We have included a right handed PV field p which remains inert under these
symmetries, as it is uncoupled to the curved background. In addition, there is the U(1) gauge
symmetry that acts non-trivially only on A and A, with infinitesimal local parameter ¢

SA, = 0,¢

SN =i\ . (28)

Let us also review for completeness how the background invariance of the action produces the
described properties of the stress tensor. Under the chiral and Weyl symmetry, with local parameter
((z) and o(z) respectively, using the invariance of the action one finds

55 . 65 OrS_ Xa) 22

= i/d%eX(:v)’y“)\(x) (0cm Ap(z)) = i/d%eX(m)’y“A(x) 0 (l(z)) =

~
integrate by parts

= —/d4:ve O (iIA ()" A(x))¢(x) = 0

and

08 orS — . 0LS
. 4 a R L =
SoieyS = /d x (—5%& (@50@% () + 53 (x)é"(”))\(x) + 5"<”’A<x)5X(g;))

= /dﬂ‘xeT“a@)éameM“(z) = /d4xeT“a(x)a($)eM“(:B) = (2.10)

= /d4xe T (x)o(x) =0,

where the equations of motion of the spinor field have been implemented (we used left and right
derivatives for the Grassmann valued fields), and the fact that the inert fields under a given transfor-
mation do not contribute to the corresponding variation has been used. Because of the arbitrariness
of both ((z) and o(z), we end up with the on-shell preservation of the U(1) current

O (iIA(2)y"*A(z)) =0, (2.11)
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and the tracelessness (always on-shell) of the stress tensor
T (z)=0. (2.12)

Similarly, the Lorentz symmetry with local parameters wg,(z) implies

55 OrS ~ . 0LS
_ 4 a R L _
5w(%)S - /d Z ((56,[1(1") 5W(r)eu (17) + 5)\(1,) 5w($))‘($) + 6w(r)>\(x) 5X(£E))
= /d4:peT“a(:v)5w(z)eua(x) = /d%eT“a(x)wab(x)eub(x) = (2.13)

= / d*re T"(x)wa(r) =0

and constrains the antisymmetric part of the stress tensor to vanish on-shell. Again, the U(1) gauge
field is inert under a local Lorentz transformation and does not contribute to the variation of the
action. Thus

T%(z) = T*(x) . (2.14)

Finally, a conservation law for the stress tensor arises as a consequence of infinitesimal diffeomor-
phism invariance and takes the following form

0S 0S OrS — 0rS
SenyS = [ d*z | ——6.e,%(2) + ——— 0, A + — 0y A(T) + Oy A _—):
08 = [t (5l + s (o) + M)+ B ) 2
168
= /d4x€<TMa($)£5(x)€H (Jf)"—gmﬁg(w)fl“(l')) =

guayeuaJ’,augueua

= [ e (T @)V, @) + A @F) =

= /d4xe &a(2) (=V, T4 (2) + idpAF®(2)) = 0.

(2.15)
An explanation is in order: in the second line we used the fermion equation of motions, while in the
third, after replacing the Lie derivative of the vierbein, we employed the property

A b
Ve, =0e," =Ty ex +w, e, =0

to write
dve, =T, e\ — w, e, . (2.16)

We then added for free a spin connection term
gywuabeub )

as it drops out once the stress tensor is symmetric, recognized the covariant derivative V,£%(z) and
integrated by parts.
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2.1 Pauli-Villars fields with Dirac mass

To regulate the quantum theory we consider massive Pauli-Villars (PV) fields, whose mass must be
sent to infinity. In particular, we consider a left handed PV field with the same coupling of the
original chiral fermion, plus a free right handed PV field which is needed to write down a Dirac
mass term. We name A and p these PV fields (calling A one of the PV field should not cause any
confusion in the following). Besides, since we are free to choose any arbitrary mass term, we adopt
the one acquired from a customary Dirac mass term M (Ap + 7)) by attaching to it a generic power
of the vierbein determinant e®. Therefore, the Pauli-Villars lagrangian we are going to employ in
the regularization procedure is

Loy = —eAYA —pdp — M(Ap + pA)e® . (2.17)

A few remarks about this choice are now in order: i) the massless part of the PV field A should
have precisely the same couplings to the gauge field and gravity as the original chiral spinor that
we want to regulate, ii) the massless part of the PV field p should have no couplings at all, not to
spoil the regularization, iii) the Dirac mass term is arbitrary, in the sense that it could contain also
coupling to the background fields, possibly chosen in order to manifestly preserve some symmetries.
By inspection one recognizes that no symmetry can be manifestly preserved, so we have decided
to be as general as possible by introducing a coupling to gravity even in the mass term. In fact,
we expect that such an arbitrariness should allow one to scan a one parameter family of distinct
regularizations, and eventually check the independence of the final anomalies from the regularization
scheme adopted. Nevertheless, we will not explore this captivating chance, as it lies outside our
purpose, leaving the analysis for future debates.

As anticipated, being not symmetric, this mass term may produce anomalies on all possible
symmetries (gauge, Einstein, local Lorentz and Weyl), which we are going to compute. Again, one
expects that only a trace anomaly (on top of the chiral one) will survive at the end, as already
obtained with the Majorana mass in [I1], though we will not face here this issue that requires the
study of counterterms.

2.2 Regulators and jacobians

As explained in sec. the PV lagrangian presented earlier can be cast in the form (|1.22)

Lov = 36706+ SMSTT6

2
where ¢ is now a 16—dimensional column vector made up of 4 PV spinors
A
A
¢ — ¢ . 2.18
) (2.18)
Pe

Hence, we rewrite (2.17)) solely in terms of the the charge conjugate fields A. and p,., rather then
making use of the Dirac conjugates A and p. In fact, since the above lagrangian and the one that
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encodes the dynamics of the corresponding antiparticle should both lead to the exact same physics,
we are allowed to write

Lov = ~XVA = pp — M(%p + pNe" =
= £ (NTOT(AN+ XTOT (AN + 3 (o1 CPp + 07 CPpc) +

M
+ ?e"‘ ()\CTC'p + M Cp, + pLON + pTC')\C) ,

where (see appendix Al and
T -

A =C N = N,
p= O_lﬁT = _OﬁTv

o,
V(4) = 7(0, = iAu + 901",

. 1 a
V(-A) = 7%8/1 +iA, + Zwuaw Vb)'

This allows to recognize the matrix 7" and the regulator O? to be used later on:

0 eCY(—A)Pg 0 0
eCY(A)P 0 0 0
TO = Vé )PL 0 0 cop, (2.19)
0 0 CPPg 0
0 0 0 eCP,
B 0 0 eCPgp 0
= 0 eCPz 0 0 (2:20)
e*CP, 0 0 0
0 0 e *JPp 0
B 0 0 0 e QP
O=1 ceyap, 0 0 0 (221)
0 el (—A) Py 0 0
17209V (A) Py, 0 0 0
- 0 17209y (—A)Pg 0 0
o= 0 0 1-20)7( )Py 0 (2:22)
0 0 0 1720y (—A)JPy,
Note that the projectors
1 5 1 _AD
P = ;7 and Py = 27 (2.23)

appear because A and p are chiral spinors.
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Now, to apply the general scheme of refs. [13] [I8] to compute the anomalies, we saw from ([1.34])
and ([1.35)) that the infinitesimal jacobian and regulator taking part in the Fujikawa set-up, read (in
the same notation as [11])

1 100
J=K+-T'T+ -— R=-0".
* 2 * 2 M’
While it’s true that 6O is off-diagonal and won’t contribute to Tr[J], as long as we consider the
gravity covariant extension of the PV lagrangian (2.17]), it’s possible that the term %T_I(ST may
actually bring some contributions. Hence, we are forced to ascertain whether it vanishes or not,
when restricting ourselves to flat space. In particular, from ([2.20) it’s easy to verify that

0 0 0 c-p,
0 0 C_lpR 0
T'=e 2.24
‘ 0 C'Pp 0 0o | (2.24)
c-tpy, 0 0 0
0 0 0 CP
0 0 CP 0
— a—1 R
0T = ae“ “de 0 CPy 0 0 (2.25)
CP, 0 0 0
Moreover, we notice that by taking the variation of both sides of the following identity
d(det B) .
In (det B) = tr(In B ————= =tr(B B
n (det B) = tr(ln B) ot B r( )
we can assert that a valid expression for the vierbein determinant variation is
de = ee'0e,,. (2.26)

Then, after replacing ([2.26)) in (2.25]), we are permitted to inspect the subsequent three cases.

e Local chiral transformation: e,,(7) — €,,(z) = €,a(z). As the vierbein remains untouched
deue =0, (2.27)

de also vanishes
de = 0.

The same fate is suffered by the mass matrix variation (2.25)), and thus

1
5T—laT =0 (2.28)

is seen to hold.
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o Weyl transformation: e,4(z) — €),,(z) = e”@e,q(x). Its infinitesimal form

€ua(®) = €,4(7) = (14 0(2))eua() ,
showing up when o(z) << 1, allows us to write
deua(x) = o(2)eu () (2.29)
and

de(x) = e(x)el(z) deua(r) = e(x)e!(x)o(z)e,q(x) = de(z)o(z).

Under these circumstances, it should be pretty straightforward to show that

P, 0 0 O

1 0 P, 0 O

—T7 6T =2 2.

5 ) ao(x) 0 0 Pn 0 (2.30)
O 0 0 Pp

e Local Lorentz transformation: e,q(x) = €,,(x) = A.’(z)euw(z). As a consequence to this law,
we get the ensuing infinitesimal one

() > (@) = (5.0 + " (@)) (@),

where w®, with \w“b| << 1, is the antisymmetric matrix that gathers all the infenitesimal
parameters of the Lorentz Lie group. Thus, we have

deya(x) = wab(x)eub(x) , (2.31)
be(z) = e(x)e(x) deua(z) = e(z)e (v)w(z)ew(z) = e(z)w, (z) = 0

and more importantly:

1
5T*15T =0 (2.32)

ox”

e General Einstein transformation: e,.(r) — €,,(2") = ﬂeya(x). For a small change in the
x

coordinates
at — P =gt — &M

with [£#] << 1, it’s a simple matter for us to exhibit that

ox”
Sernl®) = el = §(2) =

= (5,7 + 0ulE"(2))) eva(2) — epal) + €0, (e1a(x)) =
= 0,(¢" (@) eva(r) + € (2)D, (eya(x)) (2.33)

0€ua = €,4(2") — epa(2’) =

and

de = ee'd(euq) = e [0,(E")eva + 0u(€eua)E”] =
= ed",0,(€") + ee"0,(€,a)€" =
=¢0,(£") + 0,(e)&” =0, (e£"),
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from which it follows:

P, 0 0 O
Lo e, « 5 0 P 0 O
§T ol = 26&,(6{ ) 0 0 Pp 0 (2.34)
0 0 0 P
As for the K operator, we know it is defined by the relation
0p = Ko, (2.35)

establishing the infinitesimal transformation rules of the Pauli-Villars fields under the mappings
under scrutiny. Its expression can therefore be easily inferred by probing the local variation endured
by A, Ae, p and p,. respectively under

e local chiral transformation:
- N(z) = @ \(2)
Ae(x) = A(z) = e‘iC(f"))\c(x)
— p'(z) = p(x)
pe(r) —  pux) = pe()

that, from an infinitesimal point of view, should look as

A =i(z)\
A = —iC(x) A, (2.36)
0p=20p.=0.
Accordingly, if we used the (2.36)) to build the K matrix defined in ([2.35)), we would realize
that
P, 0 00
. 0 —FPr 0 0 |
0 0 00
e Weyl transformation: ‘
ANz) = N(z)=e27@)\(z)
A(z) = N(z) = e 7@\ (2)
plz) — p'(x) = p(z)
pe(z) = pelz) = pe(w)
from which it clearly emerges that
5A = —ga(:c)A
3
e (2.38)



and, through a comparison between ([2.38)) and ({2.35),

P, 0 00
3 0 Pr 00

Ky = —50(1‘) 0 0 00 (2.39)
0O 0 0O

immediatly follows;

local Lorentz transformation:

Mz) = N(z) = er@37 ()
Mle) = M) = edser@= ) (g)
plx) — p'(x) = plx)
pe(r) — pe(t) = pe()
where the Lorentz infinitesimal generators ¢/ in the spinorial (3,0)@® (0, 5) representation are,
as usual, ‘ ‘
i i
sef = Ly A0 = —2ef
=5
Hence, the PV fields suffer a local variation of the form
1 of
o\ = Zwef(x)'y A
1
(5>\C — Zwef(x)’yefAc (240)
op=10p. =0,
resulting in
P, 0 00
1 0 Pr 0O
— ef R .
0O 0 00
general Einstein transformation (z# — 2'* = z# — &)
AMz) — N(@) = Az)
Ae(z) = A(2) = A(2)
ple) —  plz)=p()
pe(x) = pelz) = pelx)
locally affecting the fields through
OA = &"(x)0, ()
I =& ()0, (Ae) (2.42)



and therefore

P, 0 00
o 0 Pz 0 0
0O 0 00

We point out that the trivial right-fields transformation laws have been imposed to ensure that their
massless free lagrangian is invariant under the four simmetries above, which in turn provides null p—
and p.—contributions to the physical Noether currents.

Finally, the time has come for us to restrict ourselves to flat space. This choice is dictated by the
fact that, whenever an anomaly is present in the model, it already reveals itself on a manifold having
null curvature. Thus, for the sake of simplicity, we merely replace every occurrence of the einbein
determinant e with 1

e—1, (2.44)

and the gravity-gauge covariant derivative V(A) with the simpler gauge covariant one D(A)

V(A) = D(A). (2.45)

Against this background, the combination of (2.37), (2.39), (2.41) and (2.43) all together translates
into?]

P, 0 00
1 3 0 Pgp 0 O
B - - m - ab R
K =[is™¢(2) + &(@)0u + Jwan(@)y™ = So@)] | 5 5" o (2.46)
0 0 00
Accordingly, the jacobian which we end up with is the following
[C(z) + D(x)] Pr, 0 0 0
B 0 [C(z) + D(z)] Pr 0 0
/= 0 0 D@)Pr 0 : (247)
0 0 0 D(x) Py,
where
- 1 ab 3
Cla) = is™C(x) + (@) + Jwan(@)y™ — So(2)
and

D(x) = 59, (§"(2)) + 200(x).

So, even though K vanishes in the (p, p.) sector, we can’t simply restrict to the (A, \.) one. Indeed,
as a consequence of the non vanishing contributions coming from %T‘l(ST, the regulator we are to

use is
JD(A) P, 0 0 0
0 @P(=A)Pr 0 0
— = 2 —=
R=0 . 0 BP0 (2.48)
0 0 0 D(—=A)JP,
25 is a sector-depending factor, whose value coincides with +1 as long as it acts on the A—section of the theory,

while it is —1 otherwise.
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To summarize we have to compute

i(6S) = — lim Tr[Je 37, (2.49)
M—o0

which we will do separately for the various symmetries and using heat kernel expansion. However,

while the calculation behind is somewhat standard when J is a matrix function, the corresponding

heat kernel fomulae become far too complicated whenever the infinitesimal jacobian does contain a

first order differential operator, as the ()0, term due to the gravitational anomaliesﬁ. Chapter
will entirely be devoted to deepening this subject.

3See ref. [19] for the two dimensional case, and [20] for the four dimensional one.
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Chapter 3

Heat kernel

The heat kernel originates from the heat equation
0
op

the fundamental solution of which is precisely designed to be its definition. When represented in
operatorial form, (3.1)) gets solved by the following transition amplitude

Y =Hi, (3.1)

W(z,y; 8) = (yle "M a) | (3.2)

which in turn undergoes, for small 8 (i.e. for small propagation times), a perturbative expansion. In
order to see this, we’ll have to consider at most a second order differential operator H, that will be
taken in the form of

H=-V*+V. (3.3)

Here V is allowed to be a matrix potential, while V? = V,V¢ is the d’Alembertian built from the
gauge covariant derivative of our model

Ve =00+ W, . (3.4)

Depending on the circumstances, there’s no guarantee that W, is abelian, so that V, might not
commute with itself; namely

[Va, Vb] = o Wy — O W, + [Wa, Wb] =Fu (35)

is likely to play an active part in all the computations we are about to undertake. However, the well
known free solution is seen to emerge by simply using path integral methods with V' = 0, and, in a
flat D—dimensional space time, it appears to be

1 _(e—y)?
e EE

%(%fy;ﬁ) =
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3.1 Seeley-DeWitt coefficients

If we had included an arbitrary potential V' # 0, things would have gotten far more complicated,
but luckily for us, as we stated before, it should still be possible to treat the overall problem in
perturbation theory, when § << 1. Of course, what will result from the current discussion is
something like the following

(e, B) = — e H [Zan(x,y,H)B” , (3.6)
2 n=0

(4mf)

in which the heat kernel coefficients a,(x,y, H), also known as Seeley-DeWitt coefﬁcientsﬂ, have
been introduced. As we’ll see shortly, of particular importance is the case in which x = y. For such
situations, the coefficients’ values can be inferred from [20]:

aO(x7$7H) = 17
ar(z,z, H) = =V; (3.7)

1 1 1
w0y = Sv2 - Ly LE

As a matter of fact, these terms show up when dealing with the trace of certain operators, like the
one reported here under

Tr[Ge#H] = / Pz tr[G() (] e )] =

:/d i tr[G(x) <x|e |z)] = (3.8)

= [ i S ulG@en ., D))

In the previous equality, a Wick rotation § — it allowed us to go from the first to the second line,
while the symbol “tr”, instead, is designed to extract the trace of the discrete matrix structure that
G(z) (x| e |x) is endowed with. Moreover, it is important to specify that this scheme shall only
apply when G(z) is a generic matrix-valued function of the coordinate = not involving any differential
operator (this case will be treated in some detail during the very next section).

Hence, by comparing with the trace needed in the Fujikawa approach , a proper
expression for the anomaly can now be inferred. First and foremost, we identify

J(z) = G(x),
R = —02 = H, (39)
Ve =,

LGenerally, the Seeley-DeWitt coefficients a,,(x,y, H) are matrix valued objects depending on two position eigen-
states, |z) and |y).
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and then we're allowed to rewrite (2.49) in the following form

iMP & 1.,
nzzo“[‘](@“”(‘””’m](m) :

i(0S) = — lim Tr[Je_M%] =— lim [ d"z

1
M—o0 M—o0 (47‘(‘)[)/2

in which, for the sake of notation, we set
an(z,z, R) = a,(z, R).

It’s easy to see that the previous limit pulls out of the trace only the mass indipendent term, as
negative powers of M of course vanish, and the positive ones can always be erased by adding new
PV fields. Therefore we end up with an anomaly that, in D = 4 space-time dimensions, would read
as follows ‘

i
(4
thus reducing the anomaly issue to that of determining J(z) and the second Seeley-DeWitt coefficient
as(x, R), an argument that will be addressed in the forthcoming chapter.

i(0S) = — lim Tr[Je_VRQ] = —/d4x

M —oc0

tr[J(z)az(x, R)] , (3.10)

3.2 (G(x) contains a differential operator: gravitational anomaly

Despite the level of technical refinement reached by Seeley and DeWitt, who originally proposed
, their work does not cover all the possible cases. Among all, the one where G(z) comprises
a differential operator, although being of the utmost importance for the gravitational anomaly’s
derivation (dealt with in section , still remains not addressed. It is precisely for this reason that
we must depend on the paper by Branson, Gilkey and Vassilevich [20], that provides us with a recipe
to follow along in order to obtain the previous trace (3.10) when a second order differential operator
takes the place of J. Actually, the formula they developed applies only to those operators, from now
on denoted as @), that possess the following features:

1. @ must consist of a purely second (Q3), first (¢1) and zero order (@) differential operator,
and thus be expressible through their sum

Q=02+ Q1+ Qo; (3.11)

2. while (g is not constrained by any limitation at all, ()2 and (); are endowed with a specific
operator form, that is

Q2(e) =17V;V;(e) + 5(2Vj(7””) — V'(175))Vi(e) , (3.12)
Q1(e) = —2¢'V;i(e) — V'(q;)(e) , (3.13)
where r¥ is a symmetric 2—tensor and ¢ is an endomorphism valued 1—tensor.

However, since the gravitational anomaly, which arises from the quantization of the diffeomorphism
invariance possessed by (2.1]), presents itself such an operator form, we decided to describe the
expansion procedure devised in [20] by its direct application to this particular case.
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3.2.1 Generalized heat kernel expansion in the gravitational anomaly
case

As we shall see in[5.4] the anomaly under scrutiny requires for something like
Tr[¢! () 0;ePH] (3.14)

to be evaluated, so, first things first, we have to make sure that (3.14)) does conform to (3.11))-(3.13)).

Through a comparison, it’s quite instant for us to come up with the ensuing identifications

Q = (L)€, (3.15)
(1 =0
4G = —%(1)
with € Q; =0 ; (3.16)

Q =& MVi+3Vi(&)(1)

Qo = —%Vl(fi)(l) —&'w;

where 1 is the spinor identity matrix, omitted from now on for the sake of simplicity (unless strictly
necessary), and w; represents the covariant derivative’s total connection

Thus, not only can we surmise that (3.14)) meets the demanded requirements, but, as we are interested
in the flat space-time case, (3.17)) retains just the same gauge connection of (3.4

in turn projecting (3.16)) onto a new set of equalities

(

ri =0
Qi:_%
Q2=0

Q1 =E(0i+ W) +3Vi(&) = €0+ W) +30°(&) + 3 W' &(Q)] = (8 +Wi) +30'(&)
0
Qo= —3Vi(&) —&W; = —20'(&) — 5 W', &) =W, = —30°(&) — €W

\ 0

(3.18)
We observe that, in drawing (3.18)) up, we made use of the matrix covariant differentiation rule

V(&) = 0a(&) + [Wa, &(1)]

together with the fact that £(x) is a simple abelian vector field
[Wm gb(l)] =0.
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In essence, the trace we are interested in is
Tr[Qe ] = Tr[(Qy + Qo)e ] = Tr[Qre ] + Tr[Qoe "], (3.19)

and even though we’ll always need the Seeley-DeWitt coefficients (3.7 to deal with the part of (3.19))
that comes from @)y, i.e.
Tr[Qoe 1],

if we are now able to solve the remaining portion, that is
Tr[Qre "], (3.20)

we owe it to [20]. There, generalizing the model to a D—dimensional flat space-time, we are taught
that the insertion of the first order differential operator

Q=0+ W) + 50,(6)
causes to take the form
Tr [Qie?M] = /detr [Q1(z)(z|e P |z)] =

[ee]

it / Py MWLD S telbu (e, H))(it)" 5 = (3.21)

)2 n=0

:/d P ol H) o Ht+ bl H)0) )

where, after introducing the tensor
Gy = Vigy ~ Vi = 50 ~ 0,6)(1) (322)
the first few generalizations of the heat kernel coefficients, as they can be extracted from [20], are
bo(xz, H) = 0;
bi(x, H) = —éEjG“; (3.23)
by(x, H) = %vk(ﬂj)vk((w) — g—lovj(ﬂj)vk(c:“f) + évsziJ\

Before we continue, we have to adjust our notation to the one used in Fujikawa’s method, imposing
the following equalities

R=-0’=H,
1 _ (3.24)
M2

30



Moreover, for reasons that will be clear only in section [5.4] it’s far more convenient to rewrite (3.21])
by collecting £* outside of the trace

T [Qle‘%] _ /dD iMP — tr [bo(z, H) + by (z, H)W—l—bg(ac H)(j\;g)u...)] _
(4m)= (3.25)

:/dD (ZW)D () tr [bao(z, H) + ba(z, H)M2 ba2(, H)(]\;2>2—|—...)].

This leads to a redefinition of the whole set of coefficients (3.23)), achieved by repeatedly resorting
to integrations by parts (performed in detail in section |C.1):

bo(z, H) =0 = &*(x)bao(z, H) ,
b, H) = — 6 (0)V () = €2 )baa (2, H)

by(z, H) = ga(x)<——v VeV (Fial#)) + VIV (Fy () +

45 180
- mvkvkv (Fus@)) + gvi(V(Q;)Ea(m))> -
= EYx)bao(z, H) . (3.26)
from which we perceive that
ba70($7H) =0 ;
b, H) = — <V Foy
bao(z, H) = _EV ViVF (Fia(z)) +@v1v VI (Fij(z)) — mvkvkvf(]: () +
+ 1V"(V(:n)ﬁ-a(x)) : (3.27)

6

Actually, because of the actual expression we’ll deduce for the involved fields (W;(x), V(z), F;(x)),
it will be possible for us to show that the are subject to a remarkable simplification. In fact,
as we will soon confirm in section [£.5] the majority of terms surfacing from the covariant derivatives
in will vanish when the trace operation within equation ([3.25)) is carried out.

In the end, since the method conceived by Fujikawa requests the limit procedure to be
attached to , we are allowed to complete the current section by presenting the ultimate form of
an anomaly, like the gravitational one, which happens to be equipped with the differential operator

(3.15) in a D = 4—dimensional flat space-time:

i(65) = — lim Tr[Q(z)e w7] =
= — lim T[Q(x )e-;g]\_ Jim Tr[Qo(w)e 7] = .

(3.10)

:_(/ ot @ tbuae. B + /d4 (4') H{Qu(@)as(x, R))
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Chapter 4

Heat kernel coefficients

In order to implement the expansions of chapter [3 some sort of relation have to be first established
between the hamiltonian H (3.3)) and the regularizator R (2.48) of the model. To this end, we write
down the components of R separately, i.e.

Ry = —9P(A) P, (4.1)
Ry, = —@P(—A)Pr (4.2)
R, =—P(A)JPr (4.3)
Ry =—DP(=A)JP. . (4.4)

Moreover, at this stage we’ll neglect the two projectors Pr, and Pg, serving mostly as a reminder of
which sector the regulators act on. However, it’s important to reinsert them while dealing with the
actual trace computations of chapter 5] where as(z, R) and be(x, R) are in the matrix form

az(z, Rx)Pr 0 0 0
. 0 ag(x, RAC)PR 0 0
ag(l', R) = 0 0 GQ(ZE, Rp)PR 0 ) (45)
0 0 0 CLQ($, RpC)PL
bag(l’, R/\)PL 0 0 O
o 0 bmg(l', RAC)PR 0 0
baso(, R) = 0 0 bosl, R,)Pr 0 : (4.6)
0 0 0 ba2(x, Ry, )PL

in which every sector-restriceted coefficient, as(z, R;) or b,o(z, R;), appears alongside the proper

projector.
Then, by expanding the hamiltonian (3.3]) into

H=-V4+V=—(0,+W)(0"+ W) +V =

(4.7)
= —0,0" — 0,(W?) — 2W, 0" — WW, + V|,

and comparing it with the (4.1)—(4.4]), the whole set of heat kernel coefficients can be seen to emerge.
We'll start with the evaluation of the as(x, R;), saving the b, 2(z, R;) for last.
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4.1 M\—sector

Hence, let’s focus on the A—sector for the time being, in which we get for (4.1)

Ry = —9P(A) = =7 v’ 00 (B — iAy) =
1i
= — (9" + ™) (0.0 — 10, Ay — 140,) =
— _aaaa _ ,Yabaaab +,L~aaAa + iAaaa + ’L'v“b@aAb+i7“bAb8a — (48)
S—— S~~~

0 only its antisymmetric part will contribute

= 09, +i0%(A,) + %W“bFab +(IA® + iy™ A)0,

where we used the decomposition (B.8]) and the vanishing of the full contraction of an antisymmetric

tensor with a symmetric one (v%9,8, = 0). We also adopted the customary field strenght tensor’s
definition (2.6)). Now, by comparing (4.8) with (4.7]), it’s pretty straightforward to infer that

1 1
e — —Lge_Liwy 4
92 2’7 b ( 9)

from whose divergence

DW= — L9, A" — Ly 9, A, =
2 N

2
only its antisym part will contribute
— a ab
= ——8 A — 17 Fu

and square contraction
2) 1
wew, & Jaea,
we notice that, by adding and subtracting %A“Aa to (4.8]), V' follows:

i i 1
PN ROV By L 4.1

Now, in order to get the coefficient as(x, Ry)’s value, we simply have to follow the recipe provided
in (37
1 1 1
R)) = =V? = ZV?V + — Fu,F.
as(z, Ry) 5 GV + 12]—"5}"

Let’s start by determining what form V2 does have:

V2 ( A"+ “bFab + A“A ) ( 0.A° + Cchd + ACA )
4 ) (4.11)
- —Z(aaAa)2 LA Ey + SA%0,(A%) + Z’y“bAQFab — 7" FuFu+ A
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Later, we need the covariant d’Alembertian of the potential, V2V, but we must be careful. In fact,
since V' happens to be a matrix, its gauge covariant derivative is V,V = 9,V + [W,, V], as its nature
demands. Therefore we have

VoV =0V + (W, V] =

1 1
- L 0n(0.A%) + A0, (Fua) + a(A2)+ ATF S + S AdFY (4.12)

and, by taking one further covariant derivative, we find:
VOV = 04(VaV) + [W“ vV | =
1 1
€3 £0(0.4%) + 4’yCdD(ch) + 5047 + L g (4) Fup + 7 Ay0 (Fru)+
1

+ 57 0a(A) Fea = 7 A"00(Fea) + 27“‘2421?&0. (4.13)

What is left to compute is Fyp, as well as its complete contraction with itself F,, F?. Let’s
proceed by degrees. By definition (3.5)), we have

Far = 0a(Ws) = 04(Wa) + [ Wa, Wi =
Ca 1 i

7 1 1 1
— _5 ab — §7bcaa(AC) + §’Yacab(AC) - §7acAbAC + §7bcAaAc + §7abAcAc ’ (414)

from which the evaluation of JF,;,F% is just a matter of algebra

aw_ (_tp L ey b ey _ 1 e 1 ELVETAY
FuF = o= eBa(A) 4 590D = e Ao+ iAo + 5A?)

'_Zab_ibda L adap T 1 4iya 1o y2) _
( 2F 57 G(Ad)+27 9"(Aq) 27 AAd+27 AAd-i‘QW A)—

1 3
= _L_L abFab + 'Yac@b(Ac) ab + Z’YCbAaA Fab - Q/YabAQFab + §ab(AC)6b(AC)+
1 3
+ 27“’7“ [8 (Ac)Op(Ag) + 1AL A0(Ag) + ’iAbAdaa(Ac)] - §A4+

3 [AQad(Ad) — A A (AD) (4.15)

(see section of appendix [C| for the detailed calculation). Ultimately, from (3.7) we infer the

precise structure of the second Seeley-DeWitt coefficient, that is

1 1 1
as(z, Ry) = —V2 - 6v2v - —]—"ab}"“b =

- 1 1 i i
£ __(a AY)? — “ba (AS)Fy — 327“chdFachd — —D(@sAS) — ﬂycdD(ch)jL
1
- —IZI(AQ) - wc&b(A VFuy = 7" A0 (Fra) = 1 7 Da( A?) Fuat
1 ac Ad _i zzb Z chb ra - c
+ 67 A aa(ch> 48FbF 127 A AcFab + 8ab(Ac)a (A )+
) .
+ 577" [a (Ac)Oh(Ad) + A ADs(Ag) + i ApAada(Ac) +§AaAd0“(Ad)- (4.16)
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4.2 ).—sector and c—prescription

Unfortunately, as we saw, the anomalies we are striving for require the knowledge of the coefficient
as(z, Ry,), too, whose expression still follows ([3.7)):
1~ oy 1 ~ ~
Ry) = =V? = ZV*V + —Fu F™.
ax(t, Br) = 3V2 =gV IV A+ 3 Fw

Nevertheless, V2, V2V and F,F? can now be deduced from formulae [{.11)), [@.13) and (&.15)
determined beforehand, instead of being computed through. This is made possible by stating what
we’ll refer to as the “c—prescription”, namely a rule concerning the porting of a well defined quantity
on the A\—sector to the A\.—one. All it takes is for us to notice that the only difference occurring in
the definition of these two sectors’ regulators is the charge conjugation process, easily accomplished
by mapping the gauge vector A* into its opposite

At — — A% (4.17)

Clearly, we are now allowed to achieve every A\.—sector operator by acting on the corresponding
A—one with (4.17). For instance, it is quite immediate to ascertain that

Wa — —EAG o z,yabAb

2 2
4
e _ Yga b ab
W= —A 4 4?4, (4.18)
2 2
or similarly that
V = S0.A"+ 27" Fuy + %A"Aa
Y

V- _loa0— z’y“bFab + g4, (4.19)

2 4 2

where (4.17) has been further extended to include the transformation law for F,, = 9,4, — 0y A,
Fab — _Fab . (420)

Therefore, we could get everything we need just by acting via (4.17)) and (4.20)) upon (4.11)), (4.13]),
(4.14])), (4.15) and (4.16]):

~ 1 : : 1 1
V2= (9,472 — Zy“bac(AC)Fab _ %AQGC(AC) _ %yabAQFab L Aabyedp ZA“ L (4.21)

1
4 16

~ j ' 1 1
VAV = =300, = 0 O(Fu) + 50+ 5970 (AP + 740" (Frn)
{

1
+ E’Ycaaa(Ad)ch - ,yacAd@a(ch) - §7acA2Fac )

(4.22)
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- i i 1 1 1
-Fab = 5 ab + §7bcaa(Ac) - §7acab(Ac) - §/VacAbAc + §’chAaAc + §7abACAC (423)

~ = 1 3
«/T_-abfab — _Z abFab _i_,_)/acab( c) Ly — Z’}/CbAaA Fab + 2,.}/ab142 b+ 2@()( )ab(Ac)+

1
+ 5777 [a (A)0(Ad) — iAuADy(Ag) — iAbAdaa(Ac)] _ §A4+
+ 30 [A?@d(Ad) - AaAda“(Ad)] (4.24)

and finally

1 1 i

ag(x,RAC):——(&lA“)z— 7% 0,(A°) ab—327@bychachd+—D(asAS)+ YUO(Fg)+
1

— [O(A%) +
12 (4% + 6/

24
1
acab(A> b_g,ybcA aa( ca) caa (Ad) Lt
1 ac Ad . i ab i chb pa - c
+ 6"}/ A 8a(ch) 48FabF 12’)/ A AcFab + 88{,(146)8 (A )—|—
1 .
+ 57777 |0a(A)3(Aa) — iAdADh(Ad) — iAsAada(Ao) | — iAaAdﬁa(Ad) . (4.25)

4.3 p—sector

Even though we gained access to the overall left sector of the theory, we haven’t acquired the right
Seeley-DeWitt coefficients, as(x, R,) and as(x, R, ), yet. Actually, a real prescription that grants
us to know, for instance, every p—quantity starting from the A—ones does not exist this time, and
we are thus forced to repeat once again the whole procedure we followed for the A—sector. Hence,
starting with

R, =—D(A)P = —v"7" (0, — iA.)0, =

= —0%0, + (1A® — ify“bAb)ﬁa , (4.26)
we'll get . .
) 7
Z%= —— A%+ —~%4 4.2
9 + 27 by ( 7)
from which

7 7
0,2 = —Lo,A° + Ly,
5 + 47 b

VAR %A"Aa

and of course
= ——8 A* + “bFab + AaAa (4.28)
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will ensue. Here in the right sectors, we choose Z® and U to play the role of W® and V' respectively.
In the same way as before, we go ahead with the appraisal of U?

2 4 a i ab 1 a i c 4 cd 1 c
=(-=0,A —~v*F, —A%A ——0. A + —~“F, —A°A,. | =
U ( Qaa + 4'7 ab 9 a) ( 280 + 47 ed T 9 c)

4.29
= —}l(aaA“f + ivabac(Ac)Fab — %A28C(AC) + iv”’bAQFab - %yabVCdFachd + EA“ : .
and then of V,U
VU =0,U+1[Z,,U] =
—%8a(8SAS) + %»ycdaawcd) + %aaw) — %%CAcha - %%aAchd : (4.30)
from which V2U can be easily extracted
VOV, U = 0*(VaU) + [za, VQU} _
00,4 + 9 O(Fua) + 50(A7) — 510 (A Fay — 7 A (Fea) +
O Fut 4 A A, (Fut) - LA (131)
Lastly, it’s compulsory for us to work &, out, defined to be the right analogous of F,,
Euv = 0u(Zs) = OW(Z) + | Zus 2] =
D LRt g a4 — S7uBh(A%) S+ oA+ A (432)

then it’s the turn of its full contraction £, as well, to whose computation we devoted section

of appendix [C] getting

ab __ _E 1 c\ 1 cy 1 c 1 c 1 2.
gabg — < 2Fab + 27bcaa(A ) 2’yacab(A ) Q’YacAbA + Q/VbcAaA + Q’YabA )
1 1 1 1 1 1
X __Fab 2 bdaa AN — = ad b A — = adAbA - bdAaA - abAQ —
< 5 +27 9*(Aq) 57 9’(Aa) 57 d+27 d+27 )

= —LA)F P — 40" (A Fup + iy A A Fyy — 29" AP Fyy + 3(1)95(Ae) 0" (A%)+
+ Lybeyed [aa(AC)ab(Ad> AL A (Ag) — z’AbAd(i?a(Ac)] — 3(1)AM

+3i [A28d(Ad) — A, A0 (AY] (4.33)

Finally, the p—sector second Seeley-DeWitt coefficient, which complies once again with (3.7]), can
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be written as

1 1 1
&2($,R ) = EU — —V2U+ _gabgab =

7
_”YCdD(ch)"i‘

12 1 1 1 )
=" ——(0,A4")? + —7"0(A)Fop — ==V FupFreq + LD(aSAS) T o

8 8 32 12

1 1
_ED(A2) acab(A ) b+67bcA aa( ) caa (Ad) L+
_ 1 ac Ad o i ab L cb pa - b( Ac
6’7 A 6a(FCd) 48FabF —|— 12’)/ A AcFab —|— 88b(Ac)8 (A )—|—
1 . . i
+ 5 [a (A)0(Ag) — iAgAuOy(Ag) — zAbAdaa(Ac)] — TAAD(AY. (434)

In appendix [D] we decided to report the mechanism we devised to quickly ascertain the validity of
our A— and p—results.

4.4 p.—sector

The last quantities left to compute are those defined in the p.—section of our theory. They are easily
obtained from the corresponding p—operators by means of the c—prescription (the same we exploited
to move from the A—sector to the A\.—one), as the difference in the regulators

R, =—=P(A)J  and R, =-D(-A))

~ i i

7%= +-A% — —~A% 4 4.35

+2 27 b ( )

U= +loan— Lyabp, 4 L goy (4.36)
— 9 a 47 ab 2 a .

~ 1 1 i i 1 1
U? = =7(0aA") + 77" 0(A°) P + G AP0c(A) = 19" AP Fup = 157"y FupFea + AT, (4.37)

~ 7 7 1
V20 = T0(0,A%) — S O(Foa) + 5O(A%) — 270 (Ac) Fay — 7 A0 (Fo)+

. Z (4.38)
_ Q'Ycaaa<Ad>ch + ,.)/acAdaa( cd) . 5 aCA2FaC ’
Ey=1 LA + Laedh(A%) = Tyt 4 Loy A a0 1 Ly a0 4.39
ab — 9 ab — 271)0 a( ) 2’7@0 b( ) - 27{10 b 2’)/bc a + 27{1() c ( . )
5 = 1 3
gabgab — _Z abFab acab(Ac) b — Z’}/CbAaA Fab + 2'7abA2 o+ 2ab(Ac)ab(Ac)_|_
1

+ QV%MZ [8 (A)0y(Ag) + 1A, AOy(Ag) +z’AbAd8a(Ac)] — §A4+ (4.40)

—3i [A2(9d(Ad) — AaAdaa(Ad)] ,
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1 1 1 { {
az(z, Ry,) = —g(aaAa)Z + gVaba (A°) Fap — 3—27ab76dFachd — 100 A%) + ﬁWCdD(ch)ﬂL
1 1
— ED(A2) acab(AC) o+ 6,ybcA aa( ca) + 1 ,ycaa (Ad) L+
1 1 l
o acAd = Fab chaA F - A Ac
6 a ( cd) 48 ab 12’7 ct ab + 8617( c)a ( )+

) .
577040 (Ad) + A AD(Aq) + z’AbAdﬁa(Ac)] ¥ iAaAdaa(Ad) L (4.41)

Nota bene: all the quantities we’ve obtained so far must be understood as operators acting on the
spinors inhabiting the sector of interest. Thus, each one of their term not displaying at least one
matrix object (such as y* or v%, etc.) should be thought of as being endowed with a spinor identity
matrix (1). Strictly speaking, for example, the above W, should be written as

[ {
a_ Z(1)A% _abA

V as

. ; 1
V= 2( )0 A" — Z’VabFab +5(1)A%,,

and so forth. The same logic applies to the entire ongoing dlscussmn.

4.5 b,o(x, R)—computation

At this juncture, having available all the fields we need, we can finally undertake the proper calcula-
tion of b, 2(35 R) We make it clear from the very beginning that the jacobian obtained by inserting
and (| into ({ , scilicet the one we’ll use to treat the gravitational anomaly, does not
prov1de for any dlfferentlal operator acting on the right sectors, i.e.

ba,Q(xa Rp) = ba,Q(xa Rp,;) =0 ) (442>

permitting us to restrict our computations to the A— and A.—sector only. That means, in turn, we
can focus on b, s(x, Ry) alone, and then utilize to extract by o(z, R),).

As anticipated in section the will suffer a noteworthy improvement, as most of the traces
acting upon them result to be zero (for a more accurate discussion see appendix . In particular,
this process simplifies b, 2(z, R,) into

1 . 1.
ba,2<x> R/\) = _@Dalﬁa + éaz(v-;rm) s (443)

defining the simpliﬁed heat kernel coefficient we were looking for. Finally, if we go ahead and

substitute and (| -, we’ll get

i(_‘p o g (A — e 4 i Aae L g2
ba,2<xa R)\) — _@Da ( 2 - 2’7&(:81(14 ) + E’Ywaa(A ) 27chaA + Q/VacAzA + 2’710/4 >+
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l

3ot e 54)

4
1 ) /) 1 1 1
. __F’ia — ZVacYi A° = VicVa AC) — = icAaAc = acAiAC = iaA2>] -
( 5 5 1ac0i(A%) + 5%ic0a (A7) = 57 + 37 +357
- 15@1’( = (A + LpeDa(A%) — S A A + S A, A 4 - %)+
= 60 o tia 9 YacYi 9 YicOa 9 Yica 9 ’wa i 9 Yia

1../1 1 1
-0 (Zab(Ab)Fm + acDh(AN)D(A%) = 7700 (A")0u(A7) %%cab(Ab)AaAch
) ) 1 1
+ }l%cab(Ab)A@-Ac + }l%aA%b(Ab) + 1 F " Fua + Satacdh(A) P+
1 7 7 7
— ngb%caa(Ac)de - g%zb%cAaAchb + g%lb%cAiAchb + g%b%‘az‘ﬁde-i-
7 7 7 1 1 1
- _AQEa - acA2 7 AC - z'cA2 a Ac - icAaACA2 - ac14i140142 - iaA4 .
1 17 oi( )+4v 0a(A°) e + + 7 )
(4.44)

As we could notice, we decided to leave all the partial derivatives unexpanded: this makes its trace
easier to calculate (see sec. of appendix. As usual, we can trust the c—prescription to precisely

produce the \.—analogous of (|4.44)):
buole, Ba) = —o00 (£ Fuu - Suedh(A%) = 3iedul A) = T3 Aa A+ S A+ 270 d”) 4
a,2\ s ) = T A A 1lia a JacYi — 5 licVa — 5 Jica o Jactii 5 Via

2 A 60 9 2'7 2’7 27 27 2'7

1 ./1 1 1 )
+ <0 (AN Fa + 770c0h(A)OH(A%) = 7c0b(A")0u(A%) 4+ T70c0h(A") Ay A+

. . X ,
— et (A AAT = 230 AP0 A) 4 Sy F ™ Fla + Saacd) (AT P+

1 | . .
— 1AV + i AATF® — quac AAF® = Caic AP+

] ] ' 1 1 1
A F o TY0eAPO(A) = AP0 A) = A A + 0 A + T3 AY)

4 4 4 4 4 4

(4.45)

In the next section we’ll finally focus on the sheer determination of the quantum anomalies affecting
the model, an aim we’ll pursue through all the means acquired so far.
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Chapter 5

Anomalies

Now possessing all the basic building blocks, we can start with the actual calculus of the anomalies
connected to the transformations pondered in chapter [2 under which the lagrangian (2.1]) revealed
to be invariant. The gravitational anomaly will be addressed for last. The explicit evaluation of the
anomalous vacuum expectation values can be found in appendix [F]

5.1 Trace anomaly

As we illustrated in chapter [} our starting point consists in considering Fujikawa’s standard expres-

sion (2.49), i.e.
i(6S) = — lim Tr[Je ).

M—oo

From here we proceed by simultaneously developing both the left and right hand side: in the former
we replace the flat space restriction (e — 1) of the action variation ({2.10)) with respect to the Weyl
map

i(6.08) =1 [ d'a (Tu(@))ota) (5.1)
while in the latter we take advantage of the heat kernel formula (3.10)), rewritten right here under

(47)?

— lim Tr[Je_M%] = —/d4a: tr[J(z)az(x, R)] .

M— o0

Then we make use of the two non vanishing contributions, (2.39) and (2.30)), participating in the
Weyl-form of the infinitesimal jacobian (1.34)),

P, 0 00 P, 0 0 0
3 0 Pp 00 0 Py 0 0
Mwla)==30@ 4 g oo [ T2W] o o o0 |
0 0 00 0 0 0 P

together with the matrix form (4.5)) valid for as(x, R). Hence, we get that
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N tal) 0 0 0
0 =305 (7)) P 0 0
JW(x)a2($7R) = 0 0( ) f QO{U(x)PR 0
0 0 0 2a0(z) Py

az(z, Ry) Py 0 0 0
0 ag(.’ﬂ, R)\C)PR 0 0
0 0 as(z, R,)Pr 0

0 0 0 as(z, R, ) Pp,

4
=3 +4a -3 +4a
tr[Jw (x)as(z, R)] = Ta(x) trlag(z, R\)PL] + Ta(x) tr[ag(z, Ry, ) Pr|+

+ 200 () trlas(z, R,) Pr] + 200 (x) trlas(z, Ry, ) Pr] ,

which, when substituted in (3.10)), will cause the equality

M—o0

— lim Tr[Jw % 610, /d4 3 4a tr[ag(x R))Pr] + tr[as(x, Ry, )PR]>

2a (5.2)

- (4m)?

(tr[ag(x, R,)Pgr] + tr[as(z, RPC)PL]> }O'(ZE)

to hold true. Eventually, by inserting (5.2)) and (5.1)) in (2.49)), we would forthwith attain

i/d4x (T (x))o(x) = i/d% {2(;:)024 (tr[ag(x, R))Pp] +tr[a2(a:,R,\c)PR]>—l—

2«

e <tr[a2(x R,)Pg] + trjas(z, R, )PL])}g(x) 7

also realizing that a proper expression for the vacuum expectation value of the stress-energy tensor
trace would be

3—4a
2(4m)?

(T%,) = { <tr[a2(a: Ry) Py + trfas(z, Ry, )PR]>+

- (4270;2 (tr[az(:v, R,)Pg| + trlas(z, RPC)PLD } =
2( 45)@( (0aA")? + %FabF“b —0(A)? + (8aAb)(6“Ab)>. (5.3)

This is the trace anomaly obtained with the Dirac mass PV regularization. Of course, we expect that
most of the terms in (5.3]) could be erased by varying appropriate local counterterms to be added to
the effective action of the model.

42



5.2 Chiral anomaly

Repeating the same procedure we abided by right above, except for the fact that this time we’ll be
using the flat limit of the variation (2.9)), we’ll get that it’s

i(0,08) = =i [ 2 { 8, (0" A)) )¢ (a) (5:4)

that has to be equaled to the trace expansion (3.10]). In this respect, the combination of (2.28)) and
(2.37) now leads us to an infinitesimal jacobian ({1.34])

P, 0 00
B 0 —Pp 0 0
0 0 00
whose product with as(x, R) reads as
P, 0 00
0 —Pr 0 0
JC( )QQ(ZE,R) - ZC( ) 0 O 0 0
0 0 00

tr[Jo(z)ag(z, R)] = i((x) trlas(x, Ry)Pr] — i((z) trlas(x, Ry.)Pr] .
Then, the heat kernel formula (3.10)) tells us that

— hm Tr[Jee™ w2 - /d4

making it clear that (2.49)) should now look as

(2, R\)P1] — trlas(z, Ry, )PR]> , (5.5)

_ / dte (8, (INx) M) )C(x) = —i / iz Eﬁffji (tnlas(e, Ba)Pr] — trlan(e, Ra)Ps)) . (5.6)

from which the chiral anomaly itself
(0 (iIM"X) ) =

( ( [ag(q;,R,\)PL]—tr[ag(x,R,\c)PRD -

3(47r) ( (05A%) — 0a(AA") + 3 adeFachd) (5.7)

emerges. This is the correct chiral anomaly for the Weyl fermion, as it is well-known that countert-
erms can remove the even-parity terms.
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5.3 Lorentz anomaly

In a similar way to what was done before, we can now move on to the Lorentz anomaly. So, given
equation ([2.49)), we begin by replacing its LHS with the flat space limit (e — 1) of the legitimate
Lorentz variation we carried out on the action in ([2.13)):

i6.08) =i [ dla (T@s(a) = 5 [ Ao (@) = T @horg@). (58)
——
only its antisym. part will contrib.

Thereafter, we firstly rely on (3.10)), so that we can manipulate the RHS of (2.49) in accordance to
the heat kernel expansion we worked out in chapter [3} in this case the two pieces which comprise

Fujikawa’s jacobian are (2.32) and ([2.41]), thus getting

P, 0 0 0
1 0 Pr 00
_ = ef R
JL(‘I“) 4Wef($)’}/ 0 O 0 0 (59>
0O 0 0O
Its matrix multiplication with .
4Wef($)7€fPL 0 0 0
0 TWe (x)y'Pgr 0 0
Jp(x)as(x, R) 0 0 0 0
0 0 00
a2(37, R)\)PL 0 0 0
0 CLQ(I, RAC)PR 0 0 i
0 0 ag(l’, Rp)PR 0 N
0 0 0 az(x, Ry, ) Pr
N2
1 1
tr[Jp(z)as(z, R)] = Zwef(x) tr['yefag(x,R,\)PL] + leef< x) tr[y* (12(37 R),)Pg]
then leads us to
— dim Te[Jpe ] B0 [ gt (2)as(e, R)] =
7 . ’
= _W /d4x Wep(x) (trh fag(:v R))Pr] + tr[y° aQ(x R, )PR]>

In the end, complying with (2.49)), we do manage to learn what expression describes the anomalous
expectation value of the stress-energy tensor’s antisymmetric part:

: / dha (T () — T (@))wes (x) =

- _4(47T)2 /6143j wes () (tr[’YefGQ(CC, R\ Pp] + tr[y* ay(x, R/\C)PRD
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4

1 1
§<Tef(l‘) —T'(x)) = (A (trhef%(%Rx)PL] + tr[yTas(z, RAC)PRD =

Fi) 1 1 1 | |

e 5(4@?(530(,46)?]” + SO(AFT ) = SOATF) — <O (ATF o)+

1 1 1
— 6Ada'f(wd) - gaf (AFey) + gAdaf (Fq)+
i cdef _1 chef pa
+ 5D (Fu) = e A AcFab> . (5.11)

Thus, a local Lorentz anomaly indeed emerges. Presumably it can be canceled by adding local
counterterms to the effective action.

5.4 Gravitational anomaly

Finally, we can focus on the only anomaly still missing: the gravitational one. As usual, we proceed
by entering the flat action variation (2.15) in the LHS of (2.49)), producing

i(6.5) = —i / 443 €2 )0 Tho () + NP AF () | (5.12)
whereas, as regards its RHS, we must be a little more cautious than before. This time, in fact, we

can’t simply make use of one of the heat kernel expansions of chapter : after putting (2.34) and
(2.43) together to compose the general flat Einstein jacobian

P, 0 00 P, 0 0 O
e 0 PR 0O Q . 0 P 0 O
JE(:E) _g (x)ae 0 0 0 0 + 28€<€ (':L‘)) 0 0 PR 0 ) (513)
0 0 00 0O 0 0 P
we are obliged to single out its differential part,
P, 0 00
e 0 PR 0O
N@) =@ | o "0 o | (5.14)
0 0 00
from the standard one,
P, 0 0 O
e . 0 P 0 O
0O 0 0 P
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Hence, when we replace (5.13) in the regular Fujikawa’s limit of equation (2.49), we get

R R R
— lim Tr[Jge mZ]| = — lim Tr[Jie” %] — lim Tr[Jye” 2] =
M—o0 M—o0 l\/[—)oo )
1’ 1'
d*x tr|beo(x, R +
/ (4 ) ( ) [ 2( )]JRﬂ:RPCZO (516)
d i Q@ane R

— /d4x<4ﬁ)2tr[J2(:E)a2($,R)] 5

where, as (5.14]) dictates, the use of (3.28) has been restricted to the left sectors only, since no
differential operator is found to affect the right ones. Moreover, we have that

P, 0 0 0 We(x)Pyp, 0 0 0
o1 0 Pr 0 0 . 0  W.a)Px 0 0
Qole) = =308@) | g g py o |7EE 0 0 Z(x)Prx 0
0 0 0 P 0 0 0 Z.(x)Pp
(5.17)
as one could verify from(3.18)). The reckoning of
P, 0 0 O
1 0 Pr 0 0
Qo(z)as(z, R) = —588 (&°(2)) 0 0 Py 0
0O 0 0 P
a2($, R)\)PL 0 0 0
0 CLQ(SL’, RAC)PR 0 0 +
0 0 as(z, R,)Pr 0
O O 0 (12(23, RPC)PL
W,(z)P, 0 0 0
e 0 W.(x)Pr 0 0
§(@) 0 0  Z(x)Px 0
0 0 0 Ze(x) P
a2($, R)\)PL 0 0 0
0 CLQ(SL’, RAC)PR 0 0
0 0 as(z, R,)Pr 0
0 0 0 CLQ(QZ, RPC)PL
J
1 1
tr[Qo(x)az(x, R)]JR I —586 (§e(a;)) tr[as(z, R)\)Pr] — 586 (fe(x)) tr[as(z, Ry,)Pr|+

— &) tr[We(x) as(, Ra)Pp] — € (2) r[We(2) as(, Ry ) Pr] =
@9) (I8E)
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9, (€°(2)) trlas(x, Ra) Py — %ae (69(x)) trlas(a, R, ) Prl+
‘(@) A () trfaa(w, Ra)Pu] + 56° () AY () trlpas (o, Ba) P+

€ () Ac(e) tafon(, B ) Pr] — S6°(2) AY(2) teregas(, R, ) Pa]

_l_

N = DN . DN+
Iy

and then

P 0 0 0
@ e 0 PR 0 0
Jg(l‘)@g(l‘,R) - 285(5 (Z’)) 0 0 PR 0
o 0 0 P

(ZE R)\)PL 0 0 0

0 az(x, Ry, )Pr 0 0

0 0 as(z, R,)Pr 0

0 0 0 az (v, Ry, ) PL

e

tr[Ja(x)ag(z, R)| = %86 (fe(:v)) trlas(x, R\)Pr] + =0, (§€($)) trlas(x, Ry,) Pr]+

2
+ %ae (€°(2)) trfas(x, B,) P + %ae (€°(2)) trfas(z, R,.) Py

allows ([5.16]) to be expanded as

~ Jim Tr[Jpe ] = - / A s (€ (@)infbes (e, Ba) Pr] + €°(a)talbeale, R, ) Prl+

(4mr)?
— =0 (¢°(2)) tr[az(z, Ry)PL] — 5(96 (¢°(2)) trlas(z, Ry,) Prl+

1
2 )
+ 56 (@) Ao() trfan(er, R Pr] 4+ 56°(0) A (@) talyegas(a, Ba) Prl +
B %56@)14 (z) trlaz(w, Ry,) Pr] — Efe( )A f( ) tr[vesaz(x, Ry, ) Prl+
+ %E)e(fe T )tr as(x, Ry)PL] + = 8 (56( )) rlaz(x, Ry.) Prl+
+ 20,6 (@) tlaalir R)Pel + 20.(6() rlaa(o. R, )P =
== [ et

(x <tr[ oo(, R\)Pr] + tr[bes (@, Ry ) Prl+

8. (trfas(z, Ry)PL)) + -a (tr[as(z, Ry,) Pr])+

+ (x) trlag(z, R))PL] + Af( ) tr[Yeras(x, R)) P+

)
L1
3
;A
_ZA

e(z) trlag(z, Ry.) Pr] — éAf( z) tr[yeras(z, Ry,) Prl+

2
%ae(tr[c@(x, Ry\)PL)) — %ae@r[az(xa Ry.)Pr])+
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— gﬁe (trlas(z, R,)Pr]) — %86 (trlas(z, RPC)PL])> : (5.18)

Thus, by piecing together the two expanded sides of (| -, or rather, and ( -, we realize
that the Fujikawa’s approach brings about

i / 13 (@) (0 Ty (2) + 0P A By () = (5.19)
/ . (M) £°(x) (tr[ eo(2, R\)Pr) + tr[bes(@, Ry, ) Prl+
+ %a (tefaz(e, RA)Py]) + la (tefas(z, Ry, ) Pe]) +
+ ;A (x) trlag(z, R)) PL) + Af( ) tr[Yeraz(z, Ry)Prl+

- SAa) tilas(a, o ) Pr) = AT (2) tregaa(ar B Pal +

_ %ae (trlaz(z, Ry) Py)) — %6e(tr[a2(x, Ry.)Pr))+
- %ae (trlas(z, R,) Pr]) — %ae (trfas(z, RpC)PL])> (5.20)

to be valid, whence the gravitational anomaly finally follows:

(0" Ty () + iMYPAFye(2)) = <tr[be,2($, Ry)Pp] + tr[beo(x, Ry, ) Pr|+

1
(4mr)?
+ %86 (tr[ag(x, RA)PL]) + %86 (tr[ag(as, R,\C)PR])—J-

+ %Ae(x) trlas(z, Ry)Pr] + %Af(l’) tr[veraz(w, Ry) Prl+
— 2 A (2) tr]as(z, Ry, ) Pr] — %Af (z) trveras (@, Ry, ) Pr]+

— =0, (trlas(z, Ry)PL)) — %86 (traz(x, Ry.)Pr])+

— S0.(txlas(w, R,) Pr]) - gae(tr[aQ(x,RpC)PL])) =

D i[5 (@R - (a9E) + 0 (040 R)+

-+ %edbuﬁi (AeAchb) - %Edbecai (AiACde> — %edbieﬁi (AQde)> +

1 1
+ éae(—(a A2 4 S FuF™ - D(A2) T 0,(A)0(A) ) +

1
- A, (~0@.A) + 0u(424%) = 5 “deFachd>+
1
_ Af( O(F.) + - A“AfFae _ éAaAeFaf — Caneg (A P+
1

1 1
+ gﬁacefab(AcFab) + g‘facefaa(AdFCd) + géacefAdaa(FCd)>+

0 (~ (A7) + %FabF‘lb 04 + (A4 )] (5.21)
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Hence, the expression of the gravitational anomaly has been deduced, too.

5.5 Discussion

We have calculated all the anomalies of a Weyl fermion in an abelian gauge background, using PV
fields with a Dirac mass and casting the calculation in a typical Fujikawa’s fashion. The various
computations have then been verified through the software of ref. [15].

In the end, the chiral anomaly is seen to coincide with the expected results, see also [I1]. As for
the anomalies of the stress tensor, all of them appear as a consequence of the non invariance of the
Dirac mass term adopted. However, one expects that local counterterms may reproduce the trace
anomaly as computed in [II], without the topological odd-parity contribution, reinstating at the
same time the local Lorentz and general coordinate symmetries. The structure of these counterterms
will not be analyzed here, as the lack of the symmetries makes this task far from being obvious, and
is left for future work. In any case, we can consider ourselves satisfied with the achievement of the
gravitational anomaly’s formula, whose computation in 4 dimensions through heat kernel methods
had never been pursued until now.
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Chapter 6

Conclusions

In summary, during the first chapter we introduced the anomaly’s issue, thoroughly depicting the
schemes we used to approach it: we illustrated the Fujikawa’s method improved by the procedure
described in [13, [I§]. Then, we devoted chapter |2 to explore all the symmetry transformations
marking out the Weyl spinor model, evaluating the variation of its action under those mappings. We
also built an unusual Pauli-Villars lagrangian to be used in the regularization process, equipping it
with a Dirac mass term proportional to the o —power of the vierbein

M(Ap + pA)e.

The chapter ended with the computation of the pieces composing the infinitesimal Fujikawa’s jaco-
bians.

In |3] we discussed how to implement the heat kernel expansion to express the traces that are
responsible for the anomalous quantum expectation values. Thus, we presented the Seeley-DeWitt
coefficients and their differential generalization, i.e. the Branson-Gilkey-Vassilevich coefficients, leav-
ing their actual calculation to chapter [4

Finally, in chap. [f we tracked down the exact anomalies connected to the main symmetries of
the action, though, to be fair, we didn’t check for the existence of local counterterms which either
prevent those to survive or simplify their expressions. Every result of this chapter has been then
tested using a software developed in wolfram language [15, 2], 22], enhanced with several functions
we wrote to better handle the data flow arising from trace computations.

Providing the reader with anomalies acquired in this new setup, we aimed the current thesis to
pave the way for future projects: for example, thanks to the a parameter escorting our mass term,
one could try to verify that, irrespective of the regulator’s class adopted, only the chiral and trace
anomalies survive and take the expected form.
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Appendix A

Spinor conventions

The following notation is the one we adopted throughout the paper.
As is well-known, a 4—dimensional Dirac spinor field ) can be expressed by the direct sum of its
indipendent 2—dimensional Weyl components, [ and r, as

¢_l@r—(i>. (A.1)

Alternatively, one could insert the two previous chiral spinors into higher dimensional Dirac vectors,

A:(é) (A.2)
pz(ﬂ) (A3)

v=A+p. (A.4)
At this stage, the projectors (2.23), namely

and

respectively, thus restating (A.1)) via

1+7°
Py = 27 and Py = 5

enable (A.2) and (A.3)) to be rewritten in terms of ¢
)\:PLw and p:Pquba

where 7° and the other v matrices are defined in appendix [B]
Then, the conjugate Dirac spinor field 1) descends from the customary definition that sees § = iy
involved

0

¥ =178,

which in turn leads to the charge conjugated spinor .
Ye=CT9". (A.5)
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In the last line, the charge conjugation operator C' appeared: it acts on 4’/ by binding it to its

transposed
CyC 1t =47, (A.6)

and satisfies the ensuing chain of equality

C=-Cl=—C'l=-Cl=cC". (A7)

The only operator fulfilling both (A.6) and (A.7) is the one determined by a particular product of
matrices, scilicet

C =98 (A.8)

This completes appendix [A]
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Appendix B

Gamma matrices: conventions and
formulae

We devote this appendix to the main results and properties holding true for gamma marices and
their product. Before we start, let’s recall the Clifford algebra’s definition

{12} =29"(2), (B.1)
and, for a matter of completeness, we likewise introduce the antisymmetric tensor v
[v*,7°] = 29, (B.2)

as well as the fifth gamma matrix, obtained from the combination of all the others:

7 = =i’y = 4,edwd7“wﬁvﬂ7d> (B.3)
where €,p.q is the complete antisymmetric Levi-Civita tensor, defined by the condition that
€0123 = —1. (B4>

~° satisfies two essential relations that will be largely employed in the following. First of all, by its
own definition (B.3)), it anticommutes with any other gamma

Pyt = =%, (B.5)
and then its multiplication with itself gives
(") =1. (B.6)

However, if we used the chiral representation to express the ~s, they would read as follows

01 ; 0 o 1 0
0o_ Ji_ _; ‘ 5 _
/7 - Z(l 0) I /y Z(_O_] O ) I ’Y <O _1) ) (B7>

where the o7 are the usual Pauli matrices.
With that in mind, we have

e decomposition into symmetric and antisymmetric part:

{%,2%} N [%,2%] g+ Y (B.8)

YaVo =
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e simple contraction:
a (B.1) a
YV = 9 a(l) = 4(1) ; (Bg)

e contraction (with one gamma matrix in between):

a R:(B.1) a a

775 VB 29, — Py = 20— 4yt = 2, (B-10)
—~—
(B.9)

where the symbol G (with n € N) introduces a rearrangement of the gamma matrices which

takes place according to the rules reported in equation (B.n). From now on its meaning will
be so understood;

e contraction (with two gamma matrices in between):

b _ac b.c_.a

R(B.I) , ap ¢ R:(B.1)
,ya,yb,yc,ya - 29 b”}/ Ya 767a70’7a - 29ab,yc,ya 27 %Y Ve iy, =
[B.9)
(

C C C " Ci C C C
= 299" — 2" + 490y B 4g(1) — 2989 — 2Py + Py =
=49”(1); (B.11)

e single antisymmetric contraction:

by e [7 =] 1900 =]
¢ 2 2
_1 a b c__b.a ¢ __ e b.c b.a.c _
= 11076 = Y = Y e Y | =
—— ~—— —— ——
(B.10) (B.9) (B.11) (B.10)

1 C C C C
=1 [—29°7¢ — 49%y° — 4g™(1) — 29°9°] =
1
=[-8 —49(1)] =
= 27" —g"(1) =
—
_ oyt _3gh(1) (B.12)

e double antisymmetric contraction:

Y Yab = Goe YY" = goe (=297 — g*(1))) =
——

B2
= 27" — "% (1) =

~ —~~

By 4
— _12(1) ; (B.13)



e antisymmetric commutation:

—{ YaV — M Va YeYd — VdVe YeYd — YdVe YaYo — Vo Va \
[%zn %d] = 5 5 — 2 5 =

(’ya'bec'Yd — Ya Vb Yd Ve — Vo VaYeVd T Vo VaVd Vet

=] =

= VeVdVa Vb T VeVd Vo Va T VdVVa Vb — 7d70’7b7a) =

reordering the) r:@E1) 1
( last 4 terms ) T4 (Ya W ¥eVd = VaWoVaVe — WoVaVeVd + Vo VaYa Vet

= 29adVe Vo + 29acYa Vs — 296dYaVe T 296 Va Vo — Ya Vo Ve Ydt
+ 29baYeVa — 29bcVdVa  29ad Vo Ve — 29acVsVd T Vo Va VeVt
+ 29acVdVo — 29ad Ve Vo + 296 VaVd — 296dVa Ve + Vo VoV Vet
— 205 YdYa + 296aVeYa — 29acVsVa + 29adVVe — VoVaVaVe) =

1
= (4gad’Yb% — 49adVe Vs + 49acVa Vo — 4Gac VoVt

4
(B.2)
+ 4GsaVeYa — AgbaVa Ve + A9scVaVa — AGbcVdVa) =
- 2gad7bc - zgac/ybd - Qde%c + 2gbc7ad ) (B14>
e antisymmetric commutation with single contraction:
[’Vab;'}/ad] =g* [%b,%d] =
——
B-19)
= 20°aVbe — 2 9% Vod — 2Gbd Ve 2067 a =
B (B.15)
= 2%a — 8Vd + 2Va =
= —4%a ;
e cyclic property of the trace:
given any number of matrices A, B, C, --- , it is well known that the trace of their product is
invariant under cyclic permutations:
tr[ABC -] =tr[BC--- Al =tr[C'---AB] = - - - (B.16)

In a nutshell, this is due to the basic rules of the matrix multiplication process;

e trace of a single v (7%):

bab bajanb bab
a o V] Re(B1) 7Y (B.6) T a a
tr[y?] = tr[ e } = —tr[ p } = —tr [—gbb o ] = —tr[y*] =0. (B.17)
~—~— ——

1) 1)

An explanation is in order: inside the previous trace (first equality), we added the identity
operator (1), whose proper expression had been determined by inverting (B.1)). Furthermore,
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we chose 7v° # 72 so that we could be free to use their anticommutation relation, always encoded
in (B.1)), and write v%7® = —%y? (second equality). Anything else should be crystal-clear. The
same arguments hold for v°, too:

tr[y’] = 0 ; (B.18)

e trace of the product of two vs (12, 7%):
by reorganizing the two outermost sides of the equality chain
a R:(B.1) a a a a1 (B16) a a
trfyy'] B g (1) - '] = 20 ()] ~txyy] B 89—l
4

it would be easy to see that the ensuing relation holds true

tr[y*e] = 4¢* ; (B.19)

e trace of the product of an odd number of s (72, 7%, ...):

(B.16]

. u R:(B5) u ) a
trfy®y® .. ] = tr[y*y P ] TET <ty % = eyt =
(B.6) (B-6) (B.20)
= —tr[y*y"...] =0;

e trace of the product of 7° and an odd number of vys (12, 7%, ...):

a (B.5) a (B:16) a
tr[y’yq. .. = —tr[y*y’.. .40 = —tr[yPy*b . ] =0 ; (B.21)

e trace of the product of ~° and two ~s (77, Vb)i
5.a b] :tr|:f)/5 avbﬁ} RI tI‘|:’)/5 c.a b’y_ci| R: —tr|: e 5 a b,yci| _

tr[yy*y = 00 e B Yoyt =
g g g
(1)
Ca,C (B.22>
gCC
~—

@)

where, similarly to what has been done in (B.17), v¢ must be different from +* and ~° so that
we can take advantage of its anticommutation property. Anyway, as long as we consider less
than four gamma matrices, it’s always possible to select ¢ such that ¢ # v and ¢ # ~°;

e trace of a single antisymmetric v (y%):

tr[y®] = %(trh“vb—v”v“D = %(trh“vb] —trhbv“D %(trh“vb] —tr[vav”D =0; (B.23)

e trace of the product of 7° and a single antisymmetric v (7y%):

a 1 a a1) R:(B.5) 1 a a " a
tr[y° 7] = 5(“"[757 7P — Pty ]) E3 5(“"[757 v+ Py ]) = tr[y"7*7"] = 0; (B.24)

(B.22)
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e identity - product of three vs (74, 1, 7c):

we intend to derive an intriguing identity holding for Dirac matrices that will come in handy
during the evaluation of the traces of multiple y—products. We begin by reporting every
relation we’ll make use of in the course of the present point. First of all, we recall that the flat
space-time metric g, and its inverse g%, by which we lower (v, = g.7?) and raise (y* = g*)
the tensor’s indices respectively, are defined to be

. 1 0
gabEgb:< 0 ) . (B25)

Hence, from (B.1]) and (B.25)), we can gather

(V)2 =-(")?=-(*)? = -+ =1, (B.26)
and
0
o= | (B.27)
71 = _’717 (Z = 17273)
as well.

Now, since we got everything settled, we can proceed by considering the unusual contraction
that will permit us to achieve our purpose, that is i€ v*y®. In fact, if this object were
expanded, it would result in

s_ 5 (B.3) s 0.1.2 3

V€sabeY Y = €sabcY VY VY =
~——
expand
= €0abe Y’V Y2V + €1abe Y VYV + €2ase VYV VY + €30I =
R:(B) 0.0.1.2.3 0.1.1.2.3 0.1.2 2 3 0.1.2.3 3

= €abcY YV VYV T €1abeY VY YTV F €abeY VYTV T €3abeY Y VYT =
(B.26) .
=" €0abc7' V2> + €107V — €200V’ Y+ €3067°7 Y, (B.28)

which in turn, by testing every possible combination of the three indices a, b and ¢, would beget

L
i€sabey™)” = 57 (e = WYV + WITa = WlaVe T VeVaTo — VeWVa) (B.29)

(for its thorough derivation see appendix . Anyway, the preceding equality can be further
processed by suitably reordering the three negative terms appearing in the RHS:

iesabc’ys'y5 = 3_ (’7a’7b/yc = YV + VoV Va — Vo VaVe T Ve Va Vo — 70’%7&) -

< reordering the) R:(B)

negative terms

1
!

(Va6 Ve + WYVa + Ve Va Vo

- 2ga07b + 29ab70 - 2gb07a + ’}/bﬁ)/c’}/a—i_
- 29ba’yc + 291)07{1 - 296@7’) + %%%‘F

1
6
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- 290b’}/a + 29ca7b - 2gab76 + ’Ya’}/bf)/c) -

1
=5 (27077 + 279YeYa + 27Ya Vo — 29ac Vs — 29baYe — 29cbVa)

(27 Yet
+ 49acT — 49abVe + 27Ya Vet
+ 4GacVs — 490cVa T 2Va Vo Vet
— 2acVs — 29baVe — 29cbVa) =
= YaV6Ye T GacVb — GabVe — GbcVa

< reordering the ) R:(B1)

1
21 and 3' term 6

and then rearranged in the much-discussed identity

YoV Ye = GabVe — GacVo + GbeYa + 1€sabeV* Y ; (B.30)

e trace of the product of four vs (12, 7%, 7¢, v%):

a (& " a (6 ac C . Q - aoc . S
ey B2 (g — 97?4 g iy )y =
= g tr[yy?] =g tr[y"y ] +g" tr[yy Y] ety
—— —— —— ———
B1) (B.19) (B.19) B22)
— 4gabgcd - 4gacgbd + 4gbcgad

= (B.31)

e trace of the product of v° and four vs (72, 7%, ¢, v9):

a C " a C ac C . a . aoc . S
Sinbyind] BB 5 (gabne  gacad | gene 4 e abensa)ad)

tr[y

= " tr[y° v =g tr[y° 7 ] 97 tr[y Py Y] Hie ™ triyP vty =
~ ——

J/ J/

— ~~ ~
(B.22) [B:22) (B.5) (B.32)
— _Z'esabctr[,yE),yS ,ys,yd] — _Z'Esabc tr[’}/s")/d] — _4Z-€sabcgsd — _4i6dabc —
S~~~ ~——
B (B:9)

— 4Z~€abcd

e trace of the product of two antisymmetric vs (7%, y*4):

an~b baa cAd dac
ab,. ¢ Y =7 Y=Y
ey = | () (F )| -
a. b d_c b.a_.c. d badc]_

1 a C
Zztr[’wb’wd—vvvv — APyt 4 APy =

1 1 1 1
= "] = gty = gy 4 gt = (B33)
" a Ci ac C Q a Ci a C ac
B2 gabgod _ gocgha 4 gpegad _ gabged 4 gadghe _ b gac.

. gabgcd + gbcgad . gacgbd + gabgcd o gbdgac + gadgbc —
— 4gadgbc . 4gacgbd
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e trace of the product of 7/° and two antisymmetric vs (7%, y*4):

anb b cAd dac
ab_ c At Dt
ey = () ()| =

1 a C a C a_.c a C
= 7MY = = )] =

= S0Py ] = Sty — St

(B32) . , , ,
- ZEabcd _ ZEabdc _ ZEbacd + Z€badc _

tr[y?y "y ] =

— 4Z~€abcd
(B.34)

e single contraction of two es (e8%/, esab¢);
what we are now interested in is determining whether or not the contraction

def _sabc dl em _fn sabc
€s ! € =g49g gf Eslmn€ =
—

expand

dl _em _fn Oabc

= 9" 9" 9" (€otmne tobe

2abc 3abc)

+ €1lmn€ + €2lmn€ + €3lmn€ 3 (BSS)

which will shortly be employed in (B.38]), does possess some elegant formula in terms of the
sole metric. In this regard, we immediately notice that, in each of the four terms of the second

line of (B.35)), the set of indices {a, b, c} is certainly forced to be chosen from the same pool

of values assumed by {l ,m, n} Therefore, starting from the situation where [ = a, m = b and
n = ¢, which would correspond to
ESdefesabc — gdlgemgfngslmn€sabc — gdlgemgfn (_5la5mb(5nc) (B36)
if l=a N m=bANn=c,
0123 _

(the minus sign is due to €53€ —1), we realize that we can seize the complete solution
we were looking for by antisymmetrizing (B.36]) with respect to one of the two sets of indices,

{a, b, c} or {l, m, n} This would also allow for the possibility where (l =bm=a,n= c),
l=a,m=c n= b> and so forth, in addition to the one explored in (B.36)). Thus, we end
up with
6sdef€sabc — gdlgemgfn(_(slaémbénc + 5la5m05nb . 5lb5m05na+
+ 5lb5ma5nc o 5l05ma5nb + 5l05mb5na) —
— _gdagebgfc + gdagecgfb o gdbgecgfa + gdbgeagfc . gdcgeagfb + gdcgebgfa : (B37)

e trace of the product of six vs (72, 7°, 7%, 74, 7¢, 7/):

a C e " a C ac C . a . aoc S e
tr[y* Py iy ] = tr[(g®° — g% + g7 + e, 0 )iyl ] =
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= g™ trly*y*r°T] —g* e[y "y ] +
S—— ——

B30 B30
+ 9% trly "y y ] —ie "ty 'y ] =
—— —
(B.31) (B.32)

_ 4gab(gcdgef . gcegdf _'_gcfgde) . 4gac(gbdgef . gbegdf +gbfgde>+

+ 4gbc(gadgef . gaegdf + gafgde) + 4€Sabc€5def —
——
(B.37)

_ 4(gabgcdgef . gabgcegdf + gabgcfgde+

_ goeghigel 4 gaegbe gdf _ gac bl gde
F gtegrdgel — ghegeeqd 4 ghegal gdey
_ grdgbegef | gadgeeghl _ ghdgeegaf |
+ ghgregel — gedgaegbt +gcdgbegaf) ; (B.38)

e trace of the product of 7° and six vs (7%, 7%, 7%, 7%, 7¢, 7/):

a C e " a C ac C . Q N aoc S e
tr[y° 7 vy A ] == (g7 — g% + ¢y + e Y )y ] =
= g tr[y° "y =gty "y ] +
B35
+ g™ trly* "y ] —ie e[y vy ] =
————— S~
(B:32)
— 4,L~gab€cdef o 4Z~gac€bdef + 4igbc€adef o iesabc tr[’ys'}/d']/e’yf] —
———
(B.31)
— 4igab€cdef . 4Z-gac€bdef + 4Z~gbc€adef_'_
. ,iesabc(4gsdgef o 4gsegdf + 4gsfgde> —
— 42~gab€cdef o 4Z~gac€bdef + 4igbc€adef+
+ 4ig® eabed — 4jg¥ ebee 4 4qgdeeabel (B.39)

e trace of the product of two antisymmetric vs (7%, v*¢) and two vs (¢, 7/)

anb baa cAd dac
ab_cd e Yy =7 Y =0 e
R (e DI

1 a C e a Cc_e a_c e a C_ e
= 7YY = Y = A+ APty ] =

1 a C e 1 a C_ e
= YY) = gyt 1+

1 a.c e 1 a c.e
— 7y T+ gl ety ] =
§abjcdjef §ab§ce§d[ iabicf jde+
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. gacgbdgef + gacgbegdf . gacgbfgde+

+ gbcgadgef _ gbcgaegdf + gbcgafgde+
. gadgbegcf + gadgcegbf . gbdgcegaf+
+ gbdgaegcf de icLe ?b[ ?cd ?be 7a[+

_(abcde ab de ¢ ab .d ce y

. gadgbcgef + gadgbegcf . gadgbfgce+
+ gbdgacgef . gbdgaegcf + gbdgafgce+
o gacgbegdf + gacgdegbf o gbcgdegaf+

4 ghegee gl —gedgaegbi icd;be;a;f)_i_
_(abcde ab ce .d abgef gde |
_ ghegadgel 4 ghegaegdf _ gbegal gdey
§ gieghlgel — gacgbeqdf 4 gacght gde
_ ghgaegel  ghdgeegal _ gad gee bl |
1 gugbe gl _gedgbegal jcdjae;bf)_F

_|_abcde ab ,de .c ab ,d ce

o gbdgacgef + gbdgaegcf . gbdgafgce+

4 grdgbeget — gadghegef 4 gad bt gee |
_ gregreg¥ 4 ghegiegal — gacgdeghs 4
1 goegheg¥ _gedgbegal | qedoaegbi
_ 4(_gacgbdgef 4 gregbegdt — gacgtt gde 4 gbegadgel _ gbegae gdf |
4 ghegtd gde — grdgegel | gadgee gbf _ b gee paf +gbdgaegcf) . (B.40)

e identity - sum of products of metric (g) and Levi-Civita (¢) tensors:

the cyclic property of the trace (B.16]) and the anticommutation relation (B.5]) satisfied by ~°
can be easily adopted to assert the validity of

— [Py ] + e[V Y A + e[ Py Pyt ] — tr [Pyttt ) =

= tr[y° v Y P ye] — tr[y Py ] — e[ P Ay ] + [Pyt Py ).

Since the two sides must coincide, we expand them both, term by term, through , at-
taining
— 4iglechel 4 gigloches _ g;gc0dbel _ Trgeledeab o g;obf gdeae _ g bedeaf |
+ digiceabte _ gjglaceble | gggeacdvfe | Tyeldeab _ g, gbecdeaf | g; obf gdeae |
+ digieebaes _ ggfbecact | gigebedact | Tygeldeba _ g qaf gdebe | g pae debf |
_ giglechate 4 gjgecate _ gjghedafe _ Trgeledha 4 g qaedebf _ g af gdebe _
— digfdecabe _ gigfeedabe o gjde fabe | g becfdea _ g;ae fdch | g pab fdee |
_ 4igeleead] | ggeeedabf _ gigdeceabf _ gyt cedea g qaf gedeb _ gy cabedef |
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. 4,igfd€cbae + 4Z-gfc€dbae o 47;gdc€fbae . 4igae€fdcb + 4igbe€fdca o gl'iabftdce_i_
+ 4Z~ged€cbaf o 4Z~gec€dbaf + 4igdc€ebaf + 4z~gafeedcb o 4Z~gbfeedca + 4l-jab Eedc[ )

Just a little more algebra (we add up all the identical terms, dividing the left and right side by
8i) would help us simplify the prior equality:

_ ggtecabel | gdagchef _ geagdbef y (bf deaw  hepdcof |
_ gBecacs | gebedact _ paf debem Zee debf

— ggleelabe | ofdgcabe _ feodabe | hefdea _ pae Ldelr )

_ gedecab] | gecedabf _ bf eden | jaf edel”

\
gdaecbef _ gcaedbef o gdbecaef + gcbedaef — gfdecabe o gfcedabe o gedecabf + gecedabf : (B41)

e trace of the product of three antisymmetric vs (7%, y¢, v¢/):

a~b _ Ab~a cad _ ~dac e~f _ ~fAe
ab,. cd, e TV Y T e v e
uly ™y = el (F ) () ()] -

1 a C e a Cc_e a C e a C e
= St YA =YY =YY Yy

— Pyttt £ APttty APyt e — APty ) =

1 1 1
= gty "y ] = gl ) — sty )+

1 a C e 1 a C e 1 a Cc_e
+ 5ty Yoyt fye] — gtrhb’v Yoty ] + gtr[’vbv Yty 1+

1 a_. Cc e 1 a C e
+ g™ ] = sttty =
l) 1 a C a ce a C e e ac [ ac €
IS §(M—gbg g7 + " g7 g% — ggte + g g gV — g*g" g%+

+ ghegadgel _ ghegae gdf | gbepaf pde _ jad gbe pef | pad e b gpdee ol
+ gMg* g — TG + glg g Tt

gl y gobgde el _ ab df e | gadgbe el gad ghe gef y jad b pee
_gtgacged 4 ghdgee gef _ gbdgaf gee o qaeghe df _ gac e by b dejaf
— g"g"g" + grgegl — gl g

gl 4 qubged e _ gabce jdf | Tmerbd gel _ pac bf pde  gae be df |
_ jbc 3ad ?e[ + gbcgafgde _ gbcgaegdf + gadgbfgce _ gadgcfgbe =+ gbdgcfgae+
— gMg™ g + glgH gt — grtghlgT

+M_ gabgdfgce + gabgdegcf _ gad;bcjef + gadgbfgce . gadgbegcf+
L+ gtgcgel _ ghdgaf gee | b gac gef _ pacbf gde | pac odf pbe _ e jdf gae
+ g g g% — glg™ G+ g+

_ga/bggdgef+gabgcegdf o gabgcfgde + jbcjad?ef _gbcgaegdf +gbcgafgde+
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_Gregtlaes 4 greghegd _ gaeghf gle 4 ghdgae el _ b ee gaf | gad gee b
— g"g" gt + glgtegT — tgregtT +
L gebgedael _ gabgde gef | gabydf gee _ Tbdpacgef | gbdgac el _ gbd af gee
+ jad ?bcge[ - gadgbegcf + gadgbfgce o gbcgaegdf 4 gbcgdegaf . gacgdegbf+
+g*gg¥ — gle g T+ gt +
4 gPgelget _ gabgef gde o qabgce df _ ghegadgef | gbegaf gde _ gbeae jdf
L+ greghdged — goe bl gde | gacgbe gdi _ gbd gaf ee | bd e gae _ ad pef ghe |
4 grdghf gee _ righbar® | ged gakbeT
_ gPbgegel y qobgdf gee _ ab e pef | bdvac el _ b gaf gee 4 gbdgoe el |
_ gadghegel | gad b gee _ gad gbe el | gbe paf de _ ghe pdf pae | ac df jhe
— g"g" g% + GG — glg g7 =
= —29%g°g7 + 2g%gLg™ + 29" g" gV — 2g*¢" g% — 29" g* g +
4 2gtegH gle — agrdghegel 4 ogadgee b _ g gbdgeegal | g obd gae jef |
+ 29297 g7 — 25%gLg™ — 29" g g7 + 29" 9" g™ + 29" gV +
9gueghl gle 4 9ghdgae el _ ggbdgeeal o gad ce b o ad be el
— dgreghe gl _ ggueght gle _ ggbegaegdf | gghegol gde y
_ dgghegel 4 agedgeeght _ ggbigeegel 4 qghdgaegel (B.42)

e trace of the product of 7° and three antisymmetric s (v, v°¢, v¢/):

a b __ ~b~a cad __ ~dac e~f _ ~fAe
ab_cd, e i Y T i vy 7Y
) = ey () (P ) ()] -

1
= tr[y’ (Y oy = ity =ty

8
+ Ayt ol g — Pyttt Pyttt 4
+ Py A = Pty o) =

b,yc,yd,yf,ye_‘_

ST T
- g Y] = gl ey T

8
1 a C e 1 a C e 1 a C_ e
+ gtr[757 Pty l e — gtrhWW Yoyt t] + gtrhWW Yy ey +

1 a (& e
= Sl ]

1 a_..c e 1
+ 3"y ] - gl

<ga/b€cdejf'_ gacebdef + gbceadef +§w— gdfﬁabce + gdeeabcf+

_ga/b€d@ef’+ gadebcef o gbdeacef _M_i_ gcfeabde . gceeabdf+
_ga/bfc#e’_l_ gacebdfe _ gbceadfe _M_{_ gdeeabcf o gdfeabce+
+ga/b€dgf€_ gadEbcfe +gbd€acfe _'_M_ gceeabdf +gcf€abde+
_ga/bfcdef’_i_ gbceadef o gacebdef _M_’_gdfebace . gdeebacf+
+ga/b€déef’_ gbdeacef + gadebcef +M_ gcfebade + gceebadf+

Syt ye] =

l
2
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+ga/b€c#ﬁf bc adfe ac bdfe _i_\ew gdeebacf + gdfﬁbace_'_
g/f/dgfe’_{_ gbd acfe ad bcfe \&‘LE%_‘_QC@ badf gcfebade) —
— Qi(—gaCEbdef + gbceadef + gadebcef gdeacef)+
— 9 Egdfeabce o gdeeabcf . gcf abde + gce abdf)

v~

(B.41))
— 22( gac bde f + gbceadef + gad bee f gbdeacef)+
_ 2Z(gad€cbef gacedbef gdemef + gbc daef)

— _4Z~(gac€bdef . gbceadef . gadebcef + gbdeacef) : (B43)

e projectors’ (P, Pr) commutation with an antisymmetric v (7%):

1+ 5 a b _ Abaa
[PL’,Yab]:PL,yab_,yabPL:( v )(77 i >_,yabPL:

2 2
expand
1 a b b.a 1 5 a.b 5. b.a ab
:Z(’Y’Y—’YV)+4(’Y’Y’Y 777)—7 Py =
1 a a 1 a a al
=100 =) + (0 7b75 vbv V) =P, =
an~b b.a a a
7Y ="\ v =\ a
-(F ) (s )?_’YbPL:
a 1 a’y5 a
:7b§+7b5—7bPL
:,yabPL_,.yabPL
=0. (B.44)
A similar reasoning also applies to Pg
[Pr, ") =0; (B.45)

e product C~! — (antisymmetric v transposed) — C:

Cl (YO = ot ('Mf - ’yfve>TC _ ((’yf)T(ve)T - (ve)T(vf)T>C _

2
o (EOONEOY ) — Oy OOV IC Ty,

= (B.46)
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Appendix C

Complete and explicit calculations

We created this appendix in order to explicitly show the carrying out of the main calculations that
compose the body of the paper. In this way, the interested reader may check the validity of the
results in person.

C.1 Integration by parts of eq. (13.26

Here below are reported the series of integrations by parts undergone by the Branson-Gilkey-
Vassilevich coefficients of section .21k

bo(z, H) =0 = &"()bgo(z, H) ,

b, H) = —5 G(2) Fila) = 75(0€)(a) — 09€1(2) (1) Fiy ) =
(13.22) antisym.

L i (D For (1) = — L (VT () —
= 0 (@) Fyla) = 55( )V Fij(x) =

J

~
j—a

B _éf“(ﬂﬁ)viﬂa(ﬂf) = & (2)ban (@, H) ,

bo(a, H) = 5 V() V4G () = 55V (7o) V(G (0) + GV ()P (0) G () =

90 6
. . ij o wi(r ik 1 3 i () —
== 5V (Fij(x)) G (2) +55 ViV (Fij(x)) G () +5 V(@) Fi(2) GY(2) =
(13.22) (13.22) (3.22))
= ViV (@) (09 2) — 07€ (@) — 155 VeV (o) (€ () — 9 () +
w—/
- %V(fﬁ) Fij(x)(9°€ (2) — &€ (x)) =
antisym.

1 i g 1 j i ok
= 4—5Vkvk(}}j(:v))8£ () — @Vkv (Ej(x))af (z)+
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+ L (F ()€ () — 2V (@) By ()06 (x) =

180 6
1 _. : 1 . .
= VYA ()€ (0) 5 VIV (B () €4 ) +
j:a k:a
1 , , 1_. .
— 130V VeV (Fiy (@))€ () +2 V' (V@) Fiy () € () =
ira jxa
_ o) (v, vk (F 1 viv vi(r.
—¢ (x)( £V VYV (Fal@) + 155 VYV (Fig() +
1 , 1,
— 5 VIV (F (@) + SV (Vi) (x))) -
= ga(x)ba,Q(xa H) ) (C]')
where “=" denotes an equality that holds up to vanishing boundary terms.

C.2 Computations of chapter

C.2.1 W,W*and 2,72
Here is the contraction of the gauge connection W, (4.9) with itself

l

WeW, = (—%Aa - fyabAb) (——Aa - 3%CAC) -

2 2 2
1 1 1 1
— ——AaAa o _,yaCAaAc __,YabAaAb __Vab’YaCAbAc —
4 e — A — A~
0 0 B12)
— a4t 2 4+ 3¢% | A,A, =
4 a 4 b<1c
sym. in bc
1 3
= ——A%A,+ = A%A, =
4 M)
(b—a)
1
=S4, (C.2)

The square contraction of Z, (4.27)) is provided by a similar calculation.

c.2.2 V,Vand V,U
Down below are reported the gauge covariant derivatives of V' (4.10) and U (4.28)

V.V =0,V + W, V] =

- aa (385148 + ’YCchd + _AQ) + |:Wa 5 (188"48 + EIVCchd + _AQ):| -
2 2 ~~— \ 2 4 2

)
4
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1
__’YabA VchCd =

= 50u(0.AY) + 7 L0, (Fua) + a (A7) + |3
) B\.I4 ’
1 1 1
a ((9 AS) + 4P>/Cd8 ( Cd) + 28 (AQ) + 8AbFCd (zgad’ybc 29a07bd - 2gbd7ac + ngcﬁ)/ad) =
] ) 1 1
28 (@ As) + 47“@ ( Cd) + 28 (AQ) Z(’}/bcAcha - "}/bdAbFad —’yacAdFCd + ’yadACFCd) =
N—— |
d—c d—c; c—d
(C.3)

' 1
28 (0,A%) + ycda (Fog) + a (A?) + z%cAcha + 2%aAdFCd
where, in the third equality, only the non vanishing contribution to the commutator [W,, V] has been

written. Likewise, we have

()]

VU = 0,U + [Z,,U] =
=0, (——0 AS + Cchd+ AQ) + { Zo
o

Z’yabAb 3"YcolFCd

— AS cd A2 -
~50u0.A°) + 20 Fu) + 30040 + |
E0)

1 1 1

= _Eaa(asAs) + 4’70(18 ( cd) + 28 (AQ) 8AbFCd (2gad’7bc 2gacfybd - 29bd7ac + 2gbc’yad) —
1 1 1 1

- __aa(asAS) cda ( cd) + a (A ) - _(/chAcha - ’deAbFad _’YacAdFCd + VadAcFCd) -
2 4 2 4 —_———

d—c d—c; c—d
(C.4)

. . , )
0a(9,A%) + iycdaa(zrcd) + 50u(A%) = SeAF ) = SeaAaF

C.2.3 Vv,V and V*V,U
We dedicate this section to the explicit calculus of the gauge covariant d’Alembertians of V -

and U (£.28)

VOV = 94 (VaV) + e v v}
- @9 -
) 1 1
LO0,A4%) + Lyl ) + ST(A%) + S0 (APF70) + 57l (AaF )+
) 1

. 7
T2 4
b [ o A 0 Fua)] + [~ A, 5 AP [~ 7 A~ AR =
2 4 |71 2 2 |71 2 2 |
ST B E.15)

ED
1 1
YO(Fq) + D(A2)+ 708“(AbFC)+§%aaa(Achd)

(0, A%) +

(0.4 + 1y

1

+ gAlaa(ch) (29ad,ylc . 29ac,>/ld . led,yac + 2glc,yad)_|_
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1
— Ak v (297691 — 2g741¢ — 2g1qb 4 2g!by¢) 4

+ %AlAchd (—47") =

) 1 1 1
D, A%) + AT Fo) + ~0(A2) + = b0 9 (AP FC,) 4= Yen 9 (AgF) +
4 P g el M~ a) Tl M )

expand expand

1
4 Z(,ychlad(ch) - ,.)/ldAlaa(Fa ) acAda ( cd) + f}/adAca ( ))_'_
—r \—v—/

d—c; a—d c—d; d—c

— _( lelAb Fa o ,ychlAaFca 'YabAcAcha—i"}/acAbAcha)—i‘
2 \——— —_———
0 b—l; c—a; a—c

— i’ychlAdFCd =

2 4 2 2

a—b; b—c; c—a

) 1 1 1
= L0(80,A4%) + Ly 0(Frg) + 20(A%) + = 71209 Ap) Fog +=7" Ay (Fog) +
N———— 2

1 1 1 1
4 ,.)/caa (Ad) L 4 ,ycaAda ( cd) 4= ,.)/chlad( ) _,_)/acAdaa(ch)+
2 2 2 1 )
l—b; d—a
) lc i]a fl T +%,YacA2Fac — lc 7 Cd —

a—d
s 3 cd 1 2 ca b be a
0(054%) + 77D (Fea) + 5B(A%) + 5770 (Ae) Fap + 77 A0 (Fea) +

1
+ 575“8Q(Ad)ch 7% A%, (F, Cd) + QV“CAQ ac 5 (C.5)

where, in writing the second line, we reported all and only the non-zero terms arising from [, V,V].
Analogously, it is also true that

VeV = (V) + Z¥ U}

- €20 -

i 1 1 1
= —50(0:4%) + 47“1D(ch) 5D(A?) - 5%caa(Acha) — §%a8a(AdFCd)—|—
+|:’L alAcha( ):|+[£alA —leAF:|—|—[£alA1 CAFd_
\2 4 | \2’7 Iy 27 b ca/ \2")/ l727a dl'c J—

E.13) E.0) B.15)

' ' 1 1 1

= —S0OA") + 77"D(Fu) + 50(4%) = 530" (A"F70) = 57000 (AaF )+

1
. gAlaa(ch) (2gadﬁylc o 29ac,yld . 2gld,yac + 29lc,yad)_|_

{
— ZAlAcha (2gac,ylb 29ab,.ylc _ zglcﬁyab + leb’yac)—l—

+ T AAE! (—4") =
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' ' 1 1 1
= —SD(0:A%) + 7 D(Fua) + 50(A2) — S0 9 (ATF°,) =70 O (AaF™) +
2 4 2 N—— 2 N———

2
expand expand
1
_ Z(Vchlad(FCd) o ’}/ldA[aa(Fa ) acAda ( cd) + ,yadAca ( )>+
d—c; a—d c—d; d—c

_ 5( lelAb Fa o ,ychlAaFca ")/abACAcha+’YacAbAcha)+
0 b—l; c—a; a—c

- i”ychlAchd =

- —%D(&SAS) +

) 1 1 1
ZL’YCdD(ch> + §|:|(A2) - 5 rybcaa(Ab)Fca _évbcAbaa(Fca)'f_
—_——

a—b; b—c; c—a

1 1 1
caa (A ) cd_ caAda ( cd) o _f)/chlad( cd>+ ,yacAda ( )
\W_/

l—b; d—a

1
. lc pa ac A2 . lc d
+1 1 ca +§7 A Fac_Z dlc —

a—d

:_%D(ésAs)+3 cdD(ch)JrlD(fﬁ) 570 (A) Fap = 7" A40" (Fra)+

e
= 57 0u(A") ot 47" A'Du(Fua) + %W“CAQFQC . (C.6)

C.2.4 F, and &,

Fau and &, embody the gauge covariant derivative commutator, [V,, V], in the A— and p—sector
respectively. Their full expressions are

Fap = 0u(Wy) — 0p(W,) + [Wa , W } =
~~ I~~~

@.9)
_ i ol oy 4 b i oy L[l ge _L d}:
— Qaa(Ab) 271108(1(14 ) + 28b(Aa) + 27acab(A ) + 27acA ) 27bdA |

. _ . B

—f(a (Ay) — Dy(A )) o0 (A%) + yae0y(A°)+
9 Ja b g b a) 27bc a 2’7610 b
(2.6) 1
- Z,Ac".qd,(fgad’ﬁb —M— 2gcdeab + 290b7ad) -
sym. in c

= L0 (A) + LDy (A9) = S Ay A + Sy AuA° + e ACA (C.7)
- 9 ab 271;0 a 27{10 b 27ac b 2f>/bc a 27ab C .

and
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_ ! ! ey L ! oy [ Lo ae Loy ad] =
= —50u(A) + 52000 A°) + 30h(Aa) = 570 (A) + |570eA% 500"

2
7 1 7
= 5 () = 3W(A0)) + 5900 A) = S7uDh(A)+
29)
_ T Acpd . _ _
74 {1 ,(d?gad%b 29 Ved — 29edVab + 29chVad)
sym. in ¢
_ ! —l—i Oa(A°) ! Op(A°) L AAC—i-l AAC—I—l A°A. ; (C.8)
- 2 ab 271)0 a 27(10 b 2")/ac b 27170 a 2")/ab c .
C.2.5 ./—"ab./—"ab
Let’s expand the product defining the contraction
ab 4 i c v c 1 c 1 c 1 2
«’T_‘ab«r == (_5(1)Fab - §7bc8a(A ) + 57{10&)(‘4 ) - §7acAbA + §7bcAaA + §7abA >
' ’ ' 1 1 1
. (_%(1)Fab - %,}/bdaa(Ad> + %,Yadab(Ad) o §,YadAbAd 4 5’)/bdAaAd + 5,}/1113142)

by writing all the thirty-six terms that arise from it, that is:
@ (-40F) - (~3Q)F?) = ~3@) P
@ <_%7bcaa(AC)

“HLF®) =~ 90D A)F™ = 1y, 8,(A%)
a—b; b—a

@) (+47a:00(A)
@ (St

—%(1)F“b> _ i’Yacab(Ac)Fab

_%(1>Fab> = i’yacAbAcFab = i")/chaAcFab
N———’

M9 (AY)) = =40 (A Py = 0P (Ac) oy
N——

a—b; b—a; d—c



(—amea(49) - (570" (A0) ) = =570 40" (4s) =
(B12)

_ _;1<_2w— 3g0d(1)) 0u(Ac)0"(Aq) =

(1) 9a(Ac)0"(A%) =
—_—

a—b

= §(1)9(Ac)0"(A%)

>

_ %Wbd’yacﬁb(Ac)aa(Adl - %’Vbc’Yadab(Ad)aa(Ac)

~
d—c; c—d

N
+
MR

i)
8
=
N
N

_ 4217 ’deAbAa (Ad>_ z,ybc,yadA Aab(Ad)

a—>b b—a

a—cC
(13)  (—3@W)F) - (+39%0"(A0)) = § 70 (Aa) Fuy, = $72°0P(A,) Fuy
—
d—c
+;7adab(A ) = 17b67ad8a<AC)ab(Ad>

(B.12)

(—390e4°) - (4579909 (A0) ) = =5 79" 4 A0 (Ad) = — 1M A, A, D% (Ag)

~
a—b; b—a

a—>b b—c

(~5Fn) - (-3 ataa) = {3 A AuFy = (A AcF
—_—

a—b; b—a; d—c
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(—i90e0a(4%)) - (=3720A°Aq) = 4794, A40,(A.)
&

(#4704 - (—474%40) = =4 2 A A = =" 400,(4)

~
a—b; b—a

(22 (hredd) - (“AA) = 1yt 4 AA0A, =
= (=23 = 397(1)) 44 A"A =

sym. in cd

= -3’

2) (+amedadc) - (—3r 4" As) = —i'y! AuAcArAy = 0
———

sym. in be
(+%7ab142> : <—%7adAbAd> = —iVGb%d ApAgA® =
- —§<—2 ed _ 3gbd(1)> Ay AgA? =
sym. in bd
- 3

~
a—b; b—a

= _i,yac,ybd AbAcAaAd =0
———

sym. in ac

( )
( )
) - (+4971474,) = £ 979" A, Adh(A) = $777" 4 A (A.)
( )
)

) - (+4MA2 ) = 4o AuA AT A =

— (-2 - 397(1) ) AcAsA® =

sym. in cd

(1)A*

=~



(‘F%’YabA?) : <+%7bdf4a14d> = — 14"y ? 4, 4447 =
——
(B.12)

}1( 2yed _ 3404(1) )AAdA

sym. in ad

(1)A*

@ () () = ren

@ (_g%caamf:)) : <+§7‘“’A2> = § AP0 (A:) = {1y AR0y(Ae)

-~

o

a—d
(33) (51004 ) - (+577°47) = § 37 AP0 A) = f*" A0 A)
a—>b?rb—>d
(-%%CAI,AC) : (+%7‘”’A2> =—1 w A A A% =
B2
i( 29¢ — 3¢(1) > ApA A2 =
sym. in cb
= (At

3 (+hmeAid) - (+30742) = =3 wt AuAA? =
(B.12)
S o) -

(1)A*

(+1a?) - (+1ye0a) = L 2 A= —3(1)AL

(B.13)

o

We decided to keep the spinor identity matrix, where needed, in order to preserve the aesthetic rigour
of the calculus. By all means, we can now recognize the terms that sum up together by accurately
reviewing the ones above, i.e.:

o ()= -L1)E,F®
e @D+@+@D+(13) =14

« W+®+(19)+(25) = ir?A°AFy,
@+@ abAQ E,
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o (®)+(15) = 3(1)ah(A.) (A%
o (@ +(14) = $779"0,(A)9(Aa)
o (10)+(17) = ir"*1" A, A0h(Ad)
o (10)+(16) = i7" 4,A.0%(AJ)
o (12)+(18) = i7" 4%0,(Ay)
o (20)+(27) = irP*1" 4, Asda(Ac)
o (20)+(26) = —fmr" A A0, (A)
JOR +(3)+
o (23)+(28)=0
o (32)+(33) = iy A%0u(A.).

Finally, altogether, it is possible to claim that

l\DIOO

FarF™ = =31 Fu F** + 70" (Ac) Fap + i A" AcFop — 57" A*Fop + §(1)0(A. >6b(AC)+
3977 00 (A0 (Ag) + 14, A0 (Ag) + iAsAada(As)| - 3(1)A"
59" | A% (Ag) + AP0u(A,) — AgAdD"(Ac) = AuAD (A )]
v

(B.12)
= — (D FuF™ +7%0"(Ac) Fap + iy A" AcFuy — 57" A* Fy + 5(1)05(Ae) 0" (A%)+

5(1
+ Lypeyad [a (A)0(Ag) + i A ADy(Ad) + zAbAdﬁa(Ac)] _3(1)A%y
+ g(—QW— Bng(l)> [A%C(Ad) +A29,(AL) — A A9 (A) — AaAcaa(Ad)} _

Vv
sym. in cd

= L) FpF™ + 70 (Ae) Fuy + ivP A" A Fyy — 7™ A2, + 3(1)0,(A.)0" (A°)+
+ Lybeyed [a (A)0(Aq) +iAuADy(Ag) + zAbAdaa(Ac)] —3)At
3 [A28d(Ad) - AaAdaa(Ad)] .
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C.2.6 & HEW

What we previously did for F,;, F should also be repeated with £,;,£%. In particular, the thirty-six
terms emerging from

ab __ _3 2 c\ _ 3 cy _ l c 1 c 1 2.
gabg — ( 2<1)Fab + 2’7bcaa(A ) 27(10813(*’4 ) QVGCAbA + QVbCAaA + Q’YabA )

_1 abzbda _zadb _ladb lbda labZ
(=5 (@F™ + 29M07 (Aa) = Ly 0P(Aa) = 57 A" Ay + 57" A Ag + 77 A%)

are nNow:

—%(1)F‘lb _ +i’ybcaa(AC)Fab _ _Zi’YCLcab(Ac)Fab

a—b; b—a

{

= — Lll’yacab<Ac)Fab

© = Ly ApATF ™ = 1y A A
a—b; b—a
®  (+hmedad?) - (5QF®) = irp A, AF
@ (+%7abA2 —L1)F?) = —1y, AP
@ (_%(1)Fab +37 daa(Ad)> — AU AG) Fyy = —1y0b(A,) Fy

N————

a—b; b—a; d—c
+%7bd8a(Ad)> = — 17" 0a(A)0"(Aa) =
(B.12)

= —1(-29¢ = 3g°(1) ) Au(A)0"(A) =

sym. in cd

©
/N
+
(VIEH
5
QD
N
VRS

= (1) 0u(A)0"(A°) =
T

= 3(1)0y(A.)0"(A°%)

@ (~57dh(A9) - (+5770°(A0)) = § 39" D(A)u(Ad) = 17"7**00(A0)s(Ao)

~
d—c; c—d

(-t (+4040) = ALY ~ A ADAS

a—>b b—a

D) (+meed”) - (+5779°(A0)) = §3°7" A, A" (Aa)

7



7~ N
+
VIEH
2

f=al
.5}
s
\f/
~— /? /~ ~—
Nl
2
IS
U
Q
—~
o
C’/
|
=
2
o
2
58
.5}
s
=
s
&

(—270e00(A%)) - (—37"10"(A0) ) = =4 77" (A" (As) =
= =3 (-2 307) A () -
sym. in cd

®

/N
3
&
N

—%W“d(?b(AdD = 107" A A" (Ag) = 79" A A0 (Ad)

4 4

a—b; b—a

|
|
2
Q
Q.
Q
o
—~
0
&
~_
I

_i,ybc,yadAaAcab(Ad)

® &

|
(V]
2
2
=
Q
o
—~
o
&
~_
Il

—1 '\Vab'YadAQab(Ad)l = — 2y, A20,(Aq)

<
<
( a—sb; bre
<
<
<

|

ol
—~
H
SN—
&S|

8

YA AG) = 49 A APy = §7 AR AFy
N————

a—b; b—a; d—c

_i”)/bc’}/adAbAdaa(Ac)

|
N |—=
2
I
U
N
o
8N
U
N—
I

4 4

7adAbAd> ) 'Yac’yadAbAdab(Ac)l — g,ybc,ybdAaAdaa(Ac)

VvV
a—b; b—a

®» ®®
/N
i
&
3

@ <+§vbcAaAc> : (—%V“dA”Ad) = — 17" A A A Ay = 0

sym. in bc
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(o). (40 <Lt
— —i<—2 &d 3gbd(1)> Ay AgA? =
in bd
sym. in

= 3(1)A*

_% '7bdAaAdFab = ifYCbAaAcFab
d—c

I
RS
e

8}
)
g
b
B

A
S
=2

o
N

(Fhma?) - (#1240 A0) = 900 Audad® =

B.12)
= —4 (- - 39"(1)) AaAad? =

sym. in ad

@) (0R) (+hra) = i,
—%’Vbcf)/baAQaa(AcZ — —i’ch’}/bdA2ad<Ac)

(32) (+imeda(4)) - (+3r047) 3
a—d

(33) (~57edh(4)) - (+37742) = ~§ 7 A0 (A = ~ i A%Du(A)

TV
a—b; b—d
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(~3raende) - (+372047) = —1ye0, 4,4, 4° =
W—/

(B.12)
R
= (A’
3 (+hmeAid) - (+37742) = —3wt AuAA? =
(B.12)
— (=2 = 3g7(1)) A, AA° =
4 ( g ) m
=i’
(+1wd?) - (+1yha2) = Fqu At = —3(1)AT

(B.13)

In the end, all these different operators, whose partial sums are listed right down here
o ()= —1Q)FuF®
@+@+@+@ — b (A,) F
o D +B)+(19)+(25)= iy A" AFy,
o ©)+(31)=—iy"A2F,
* ®+(13) = §1)a (A (1)
o (©)+(19) = 1y"7*0,(A)0h(Aa)
e (10)+ @ =~ A, ADy(Ag)
. @ +(16) = 51" A A0 (Aa)
o (12)+(18) = — 47" A%0,(Ay)
o (20)+(27) =~y 4400 (A.)
o (21) +(26) = i7" A, A00°(A,)
JEOR +(@)+
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o (32)+(33) = —gm " A4%0,(A0)

L) Fup P — 40 (A Fop + iy A" A Fyy — 24" A’ Fyy + 3(1)9y(Ae )ab(AC)+
39797 00 (A0 (Ag) — 14,40, Ag) — Ay Aada(Ac)| — 3(1)A"

(
— 5" A%0(Ag) + AP04(A,) — A A (A) — AuA aa(Ad)]
——
B-12)
}l(l)FabFab acﬁb(AC) ab + Z’}/CbAaA Fab - abA2Fab + = ) (A )8b(Ac)+

2 (1
397 0u(A)0(Ag) — 14, 4By (Ag) zAbAdaaMc)} — (M)A

= 5(-29 = 3g7(0) ) |A20(Ag) + A2a(Al) = AAad(Ao) — AAD"(Ag)] =

J/

Vv
sym. in cd

(D FaF™ = 0 (A Fop + 7 A Ao — $9 Ay + 310 A)O (A7)
+ Lybeyed [a (A)0y(Ag) — 1A ADy(Ag) — iA,A0u(A)| — 2(1) A%

N

3i [A28d(Ad) - AaAdaa(Ad)] . (C.10)

C.2.7 as(x,Ry) and as(z, R))

In this last part we’ll carry out the derivation of the two Seeley-DeWitt coefficients, as(x, Ry) and
as(z, R,). The first is

1 1 1
az(7, Ry) = 5v2 - -V*V + —}"ab}'“b =

6
1 1
-5 “aMﬂw+;Eﬁ<i+5Wﬂ\\ WWW%&HXA;
i 1
— L 00,A" — () — SO + 0 (A oy — o A (Fr)+

- caa (Ad) cd + ,YacAda cd - E’Y ig_\ ac
_l Fab+ 1,yacab<A> _'_ . ’}/CbAaAF _7 2p +1a ab Ac)
48 ab 12 c ab ab — 24 ab ] b

1 1
+ ﬂfybc,.yad [a (A )ab(Ad) + ZA A (‘31,(Ad) + ZAbAda /8%

~ L Azeday) +£AaAd8“(Ad) -
d%c

1 1 1
_g(@aAa)Q . aba (Ac) b — 'Yab'YCdFachd . ED(aSAs) — —

32
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1
— —[O(4%) +
12 (A7) + 6/

1 ac Ad _i ab L cb pa - b c
+ 6’}/ A (9a(ch) 48FabF + 12”)/ AYAFy + 88b(Ac)8 (A )+

) 4
+ oo [a (A)O(Ag) + i AaADy(Ad) +¢AbAdaa(Ac)} + %AaAdaa(Ad) L (Ca)

1 1
acab(Ac) b — 6,}/bcAA aa( )_ 12 caa (Ad) L+

while the other one is found to be

1 1 1. .,
(Ig(l’,Rp) = §U2 — EVQU + Egabg b =

1 1 1 1
= ——(8 ACL)Q + _fyabac(Ac)Fab _M_Fw_ _fVabf)/CdFachd +/?44+

z'

0(0,4%) = 57" D(Fea) — —D(A2) 157 (Ae)Fuy + vbcA 0" (Fea)+

ca Ad acAd v f %
a ( ) cd — a cd 127
e FaF = O (A oA A AT 2Fy + 20y(A)P(A9)+
48 ab c)tab ab — 24 ab ] b

12

1 1
+ 57" [a (A)Dy(Ad) — 1A ABp(Ad) — i Ay Aa(A x/{
n 3,429’_%@4@ —ZAaAdaa(Ad) -
d—)c
_ _1 a 2 ab c . i ab, cd s cd
== 8((’3aA ) 8 (A ) ab 32’}/ Y Fachd + 12 D((‘) A ) 24")/ D(ch)—l—
o i 2 ac b be a i ca d
S0 - 2 a(Ac) w5 A E, ) g At
_l ac Ad _i ab L cb pa - b Ac
ZY AT, (Fua) = 2= FuF™ + 159 A A Fup + 88b(Ac)8 (A9)+
1 .
+5 47%(“1 [a (Ae)By(Aq) — 1A ADb(Ag) — z‘AbAdaa(Ac)] - %AaAdé‘“(Ad)- (C.12)

This concludes appendix [C]
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Appendix D

Right—sector pseudo prescription

In section we pointed out that we do lack a proper rule allowing us to move from the left to the
right part of the model and vice versa. Even so, by studying the relative signs of operators having
the same role within the left and right part of our model (such as W, and Z,, or V and U), that
task could still be accomplished. Thus, let’s start working right away.

It’s clear that V/ and U only differ in the sign of the term containing the divergence
(0,A"), therefore if we evaluated U? the result would be the same as V? ([£.11]), except that every
(0,A%)—term entails a change of sign:

1 1 ) ) 1 1
v2 - _ (aaAzz)2 __,yab 8C(AC) Fab + ZA2 aC<AC) +£7abA2Fab . _fyabfychachd + —A4
(-1)2 (-1 (-1)
2
U? = (0,472 1+ 24000,(A%) Fyy — LA20,(A%) 1 Lr A2, — @i R Sat (D)
A a A c ab 2 c A ab 16 abl’cd A . .

Similar remarks may be made about the computation of V,U, V2U, &, and E,;,E%, too. In these
cases, we also need to keep in mind the sign modification of the contracted term v*A,, that occurs

while going from W, (4.9) to Z, (4.27). This means that an expression for
VU = 8,U + [Za, U]

is straight out deduced from that of V,V , by jointly considering the changes of sign affecting
both, the terms including the usual divergence (9,A%) as well as those involving a gauge vector A“
contracted to the matrix 7,; this contraction might be direct, as in 7% Ay, or indirect through some
other tensor, as it happens in 7. AgF®. All of this brings about

o 3 s 3 cd 1 2 1 b e 1 cd
VaV = 28a(3sA ) + 4’)/ aa<ch) + 28(1(14 )"‘ 9 ’chA F a+2 chaAdF
(-1 (=1) (-1)
U
) ) 1 1 1
VaU == —%8(1(85148) + %’YCdaa(ch) + iaa(A2) - i’ybcAcha - §’YcaAdFCd- (DQ)

IThis is due to the commutator operation, that acts mixing the indices.
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Moreover, the exactly same rule also authorizes the extraction of V2U from V2V (4.13)), so that

. . ) '
VU = —%D(&AS) + i’VCdD(Fa» + 50(A%) = 570 (Ae) Fap = 7" Ay0" (Fea)+

1 .
— 5f)/caaa(AAd)ch T ,yacAdaa<ch) + %,}/1101421{7&C )

(D.3)

De facto, we could object that the kind of contraction mentioned just above shows up every time
something like
fyabFabOCd'é'fm or fyabFSbOCd';fm (etc.) (D.4)

appears, since the definition of F% engages the gauge four-potential A® itself. But we must not
be mistaken! We recall that the “rule” we are adopting right here is neither a proper prescription
nor some sort of correspondence principle. We built it ad hoc, based on the sign inequalities existing
between the graphical expressions of A— and p—quantities playing the same function. Therefore,
for our purposes, Fy;, and A, are to be considered as two distinct basic tensors, completely indipen-
dent of each other. It’s in this context that the contractions in are exempt from any sign
transmutations.
An entirely different case is the one regarding the determination of

gab - 8aZb - 8bZa + [Zaa Zb] (D5)

and E,;E%. In fact, despite the several appearances of Z, (4.27) throughout its definition, &,
doesn’t trivially descend from an overall sign change of every v A,—term inside Fg; , as we
could expect. Or rather, this does happen, but the commutator of Z, with itself, satisfying

[Za; Zb] = [Wau Wb]7

suppresses any sign mutations except those involving v**A,—terms appearing inside the derivative
part of (DA)P} In other words, this time the sign switches affect solely 9.(y**A4,)—kind terms,
producing

1 1 1 1 1 1
fab - _5 ab — 5 ’ybcﬁa(Ac) +§ ’7acab(Ac) _§’VacAbAc + §7bcAaAc + §/VabAcAc
S—— S——
(-1) (-1)
J
Eup = — S Fy+ Ep0(A9) = yah(A) — S A A 4 S Ay A 4 S AA (D.6)
ab — 9 ab 2712(: a 2’7(1(: b 27ac b 2’7bc a 27ab c - .

Of course, the same applies to £,E as well, the only difference is that, in addressing its derivation
from F,, Fe ([4.15), we must extend the sign inversion to all derivatives of A%, as a result of the

2Those arising from 9,7, — 0,24, just to be clear.
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complete contraction process:

X .
Fu o = — X P 00 (AL) Foy 4 iy @ AT Ay — Sy AZEy 4+ S 0(A)OP(A°) +
4 —— 2 2 —_——
=1 (-2
1 . . 3
+ 5777 [aa(Ac)(?b(Ad) AL A, By(Ag) +iAp Ay 6a(AC)] — SAl
N——— S—— N——
(-1 (1) 1)
3 [A2 94 Ay) — A, Ay aa(Ad)]
S—— N——"
' 1) -1
1 , : 3
Eunl™ = = FunF™ =70 (Ao) Fap + 17 A" AcFop — %fy“bAzFab + S0h(A)(A)+

1 | | 3
+ 57 [aa(Ac)ab(Ad) — 14, ABh(Aa) — i4sAadu(A)| — S AN

+ 3 [A?@d(Ad) ~ A, A (AD)]. (D.7)

Our intended purposes may be deemed fulfilled.
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Appendix E

Null traces of section 4.5

The main objective of appendix [E| is to prove the validity of eq. (4.43). Of course, when tracing
ba2(x, R), we are forced to rely upon its matrix structure (4.6, where the exact projector always

accompanies the coefficients defined in each sector. Therefore, we have

tr{be2(z, R)| = trbyo(z, R\)Pr] + tr[beo(z, Ra.)Pr] + tr[be2(x, R,) Pr| + tr{beo(z, R, ) PyL] ,

(E.1)

With that in mind, it’s easy for us to show that, given two operators A and B, the trace of the

product between their commutator ([A4, B]) and some projector (P) does vanish as long as
[A,P] =0
is respected, namely

tr[[A, B|P] = tr[ABP — BAP] = tr[ABP] — tr[B AP | =

= tr[ABP] — tr[BPA] =
(B-16)
=0.

Thus, if we explicitly wrote down all the four terms appearing in the last of (3.27))
1 _. 1 : ) 1 ‘
be, R)) = ——V'VV*(Fia — V'V, V7 (F;; — — V"V VI (Fy
20 Ba) = 2 VTR (Fal0) + VIV (Fy(a)) — s VAV (Fug0) +
1

+ gvi(V(I)}? (x))

we would have:

1, 1,
~ VRV (Fi) = = 2 VIV(0" Fu + WE Fi)) =

1 .
= £V (OFi + 0uW*, Fid) + Wi, 0" Fid) + [Wie, W, Fidl]) =

1
45

J

~
null trace term null trace term null trace term
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(8"D}}a + DOV, Fi] + 0/ [Wi, 0 Fial + 0 [Wh, WE, F]]+

(E.2)

(E.3)



v .

+ (W OF] + [WWH, Fiol] + [W* Wi, 8" Fia]] +

v Ve v~
null trace term null trace term null trace term

+ [W (Wi, [Wk,Ea]]l) =

~
null trace term

1 .
=~z 00Fu; (E.4)
. J - J T I 1) =
180vv N (F) 180vv o (07 Fij + W7, Fj))
= mv1(a I Fij+ 0 [W7, Fij] + [Wa, VFy5] + [Wo, WY, Fy]) =
~ 155 (20,2 B 0000 B+ 90 0 0 W (7 5+
sym in 4j null tr;ge term null trace term null tr;ge term
+ W5 0,07 Fyg] + W 0. W, Figl | + W, W, @ Fij]] +
null tr;ge term null tr;;e term null tr;ge term
[ v, 7)) =
null tr;ge term
Uk J — __— \gk J T J 1) =
180v ViV (Foy) 180v V(07 Foj + (W7, Fuy))
- —@vk(akaﬂfaj + Op W, Fos] + (Wi, @ Fug] + [Wi, W9, Fo]]) =
1 ) .
_ <D63]-"a] + DWW, Fogl + 05 (Wi, 0 Fog] + 0 [ Wi, [W7, Fug)] +
180\ AN - ’
J—t null trace term null trace term null trace term
+ [Wka akajfaj] + [Wka ak[Wja-Faj” + [Wk’ [Wk7 8jfaj]] +
null tr;ge term null tr;ge term null tr;ge term

+\[W’f, (Wi, (W7, faj]]D —

~
null trace term

- ooz, E.
Tmo0 Fia s (E.6)

év (V};a‘) - 6 (a (v};a> + [W 7V-Ea]) -
null trace term

= LO(VFL) (E.)

since all over (E.4)-(E.7) the underbraced operators do adhere to (E.2)), they don’t survive the trace
operation ([E.1)). In any case, the surviving ones sum up to

bus(z, Ry) = —@Dalfm + az(wfm) . (E.8)
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Nothing more need to be added.
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Appendix F

Traces involving heat kernel coefficients

Considering the importance of the SDW coefficients, especially their massive use throughout the
anomalous expectation values of chapter 5| we chose to gather in the present appendix the step
by step computation of those traces defining the anomalies themselves. They will be presented by
following the order of their appearance in chap. [5l In the following, as will be noted, we opted to
restore the spinor identity operator wherever needed: this should enhance the clarity and readability
of our work.

F.1 Trace and chiral anomaly

Therefore, let’s start with the first trace showing up in sections [5.1] and

trfas(z, Ry)Pr) B2 tr[Pras(x, Ry)] =

[P L@, - Lo, (4) P — Lyt Fut

2 8 8 32
o i s\ L cd o i 2 1 ac qb
00 ~ 517 O(F) — 5 (1O(A) 4 70 (A) Fut
_lbc a _i ca d lacd _i ab
67 Ap0*(F.q) 757 Ou(AYFq + 67 A%Dy(Frq) 48(ZI.)FabF +
. ; .
+ 57 A A+ S(L)0(A)O(A%) + 2(1) A A (A")+
1 b d . .
+ — C’)/a 8a(AC)8b(Ad) + zAaAcﬁb(Ad) —+ zAbAdﬁa(Ac) =

we can use (B.18)), 24 ( ﬂ }

(IB23D and (IB24D _ _i a2 i ab,_ cd o i s\ i 2
to neglect all - 16 t\r[’]_'l(aaA ) 64 MFachd 24 t\r[’]_-llj(asA ) 24 t\r[’l/]D(A )"‘
the null terms ) 1 . (B.33) 4 1

— (1] Fup P 4 tr[1] 9 (AP (AC) + — tr[1] ApAg0°(AD)+
96 —~ 16 —~ 8~
4 4 4
1
+— trfyned) (aa(Ac)a,,(Ad) +iAg Ay (Ag) + z’AbAdaa(AC)> +
sy
(B.33)
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1 ) .
+ — tr[fy5fybc’y“d] <8a(Ac)8b(Ad) -+ zAaAC&,(Ad) -+ ZAbAdaa(Ac)> +
48 e——_——

(B.34)

1
o tr[’}/E)’}/ab’yCd] Fachd —_
———

64
(B.34)
= L(OA — (g — g G FuFuy — 0(0,A4°) — O(AY)+
— o FaF 4 ZO(A)DP(A) + %AaAdaa(Ad)Jr
F o6 — 0" 0) (DA AL) + iAAD(AD) + 14 AD(A) )+

+ L bead (a )9(Ad) +ZW+ZW>

fully antisym.

1
abed
— € Fachd:

16
1 1 1 1
= ——(0,AY)? — —F,, Ft FF“b——D A%) — —[J(A?
(8 ) 16 ab +16 ab 6 (a ) 6 ( >+
1
— S FuF™ + 8b(Ac)8"(Ac) + %AaAdaa(AdH
1 a\4 _ b pc i 2 a
+ 12(aaA ) 12&,(,4,;)6 (A°) + 12,4 Oa(A")+

o i a( Ad i 2 ay i a( Ad
S A A" (AT) + 5 AP0,(A") — A A" (A”)+

4 L gbead 0a(A¢) Op(Aa) —LEQdeFachd =

only their antisym. part will contrib

1 1 ' 1 1
= —E@A“)z + EFabF(lb - ZD((%AS) — —D(AQ) + 68,)(,40)6*’(140)+

{ { ) [
—AaA 9% Ad _A28 Al bcadFaCF v abcha Fc —
Tyl (A G A0 ¥ g el =g

c—b; b—c

vV
Lelbnlz s rule

( (0 A2 4 — F P D(A2)+8b(AC)8b(AC))+

9
1
( (B A%) + 9,(A2A) — §eabchachd). (F.1)

ODI®

Then there is tr[as(z, Ry, ) Pr|, easily acquired from (F.1)) by virtue of the combined action of the
customary c—prescription (4.17) and the projector transmutation

1+79° 1-9°

P = — =
L 92 9 )

that basically acts by modifying the sign of each term coming from a trace involving the 75 matrix,
namely by mapping the Levi-Civita tensor in its opposite

Eabcd N _Eabcd ) (FQ)
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This enables us to write

1 1
trlaz(z, Ba) Pr) = = (= (QuA™)? 43 Fur P =0 (A%) + 03(A)0)(A°) ) +
(—D2 (-1 (-2 (-2
i s 2 Aa 1 abed
+1 (-D (9,A%) + 9, (A2A7) — = ¢ Fachd>
6 —_—— - 2 2N o

g

1) (—1)3 (-3
(2

trlas(z, Ry, ) P = %(-(aaAaV n %FabF“b —O(A?) + 8b(AC)8”(AC)>+

i

1
— | = s 2 pa\ __ — ,abcd
6( D(0,4%) + 0a(A2A%) = S FuF). (F.3)

Now it’s the turn of tr[as(z, R,)Pg], which must be computed from scratch. Fortunately, its

calculation doesn’t differ much from that of (F.1)):

B.16)
trfas(z, R,)Pr] B2 tr[Pras(, R,)] =

= ! _75 1 a)2 1 ab c 1 ab_cd
B tr{[ 2 ] [__(1)(8“A )"+ ] Oe(A°) Fop — 3277 FopFeg+

8
i s\ _ L cd . i 2\ 1 ac ab
+ 5 (WB0:A%) = 57 D(Fua) — 15 (1)O(AT) = 27" (Ac) Fart
1 be a i ca d . 1 ac Ad . i ab
+ 6’}/ Aba (Fm)—|— 12’}/ aa(A )ch 6’)/ A 8(1(ch) 48(1)FabF +
1 1 1
+ EychaAcFab + g(l)ab(Ac)ab(Ac) — Z(l)AaAdaa(Ad)+
L e ad . .
+ — C’}/a 8a(AC)8b(Ad) — ZAaAcab(Ad) — zAbAd(?a(Ac) =
we can use (B.18]), 24 ( )] }
B23)and B24) | 1 ORI I 2 61 2
to neglect all 16 t\r\[i.l(@aA ) 64 MFabFCd + 24 t\r\[i.lD(@sA ) 24 t\r\[i.lD(A i
the null terms | 4 . (B-33) 4 4
— — tr[1] Fyy F® + — tr[1] 9y(A) P (A) — = tr[1] Ay A,0°(A%)+
96 ~ 16—~ 8~
4 4 4
1
+ — trhbcfy“d] <8a(Ac)8b(Ad) — z'AaAC&,(Ad) — z'AbAdé)a(Ac)) +
48— —
1 . .
— 5 b (aa(Ac)ab(Ad) CiALAO(Ag) — zAbAdaa(Ac)>+
—_——
1
i tr[,y5,yab,ycd] Fachd —
64 —0 0o —
__1 a2_i ad bc _ _ac bd 1 5_1 2
o i ab 1 b pcy 3 a( Ad
o wF "+ 48b(AC)8 (A°) 2AaAd8 (A%)+
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L . |
+ 569" = 99 (Du(A)O0(Ad) = iAsADb(Ad) - zAbAdaa<Ac))+

— 5 &0 (0(A)0(Ad) — iAuABHAT) — iA J)+

fully antisym.
1
abed
+ 1_66 Fachd =
1

1 1 1
= —(0,A%)? — —F,F" 4+ —F,F® D A%) — —[O(A?
(8 )? 16 b+ — 16 Fab + ~0(0,A%) — G (A%)+
1

—ﬂ Y L a,,( )6b(AC)—§AaAd8“(Ad)+

+ E(a A)? — —8,,(A )P (A°) — %A?@a(mw

a d ) 2 a i a d
| + 12A A0 (A% — 12A Ou(A%) + —12AaAda (A%)+
1

_Ebcad aa(A ) ab(Ad> Leabchachd —
~——

only their antisym. part will contrib

1 ) 1
= —=(0, A2 4 %Fabwb + éD(@SAS) - 6D(A?) + 186(Ac)6”(z40)+

——AaA o¢ Ad o _AZaa A — bcadFacF v abcha Fc —

R c—b; b—c
Leibniz’s rule

N

_ é<_(aaAa)2 + %FabF“” — D(AQ) + 6’b(Ac)8”(A”>)+

i s 2 pa abcd
+ 6(D(85A) 0u(A2A") 4 eI, ch). (F.4)

Of course, for the last missing contribution to the trace anomaly, that is tr[as(x, RpP)PL] the rea-
soning is the same as before: we jointly apply the two maps ) and - to ( , getting

trlaz(z, R,)Pr] :1<— (aaAa)%r% FpF® (A )+8b(Ac)ab(Ac)>+

6 ~  S—
12 (—1)? (-2 D2
: 1
+3(D (0.4°) — 0,(A?A") + abchachd)
6 ~—— 2

(-1) (-1? (-1)?
¥

trfas(z, R,,) Py = é(—(@aA“)Q + %FabF“b — O(A?) + 8b(AC)ab(AC)>+

- %(D(GSAS) — 9,(A2A%) + leabchachd). (F.5)

2

The combination of the previous results is first used to infer the trace anomaly,

(7o) = {%(u[@(m Ry Py + trfas(a, RAC)PR])

(E.1) 1i
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(427?;2 (ifas(z, B, P + trlas(e, R, ) P]) =

-~ -~

F4) (.5)
1 1
_ 5 (—(0aA)? 4 SFWF™ — O(A?) + 04 A (4) )+

2 1 _abcd
< ss - a 2acac>_|_

( (0,A%)? + = Fy F™ — O(A?) + 9,(A )ab(AC))+

1
6

2

- - 2 1 _abed L

6<E<é Ay —Op( A A e P ) +

1 1

(S0, + SR P —D(A%) + (A)0(A%) ) +

_2( s 2 pa 1 __abcd )]_
6 5 a B) abl ¢ —

= O L (@A + S FaF - D) 4 (A4 ] +

/\

- (jgg [;( (0.A")* + %FabF‘“’ —0(4%) + ab(Ac)ﬁb(Ac)ﬂ _
= % (—(8aA“)2 + %FabF“b —O(A)? + (aaAb)(aaAb)> 7 (F.6)
and then the chiral one
(0 (IX"N) ) = (4;)2 (ﬁf[az(%VRA)PLl—El"[%(%f&)PRD =

+ (004 + 0u(AA7) — LR Fy)
(w2 Fon b B+ A )+

+ 2 (~0(0,4%) + 0,(424%) - L )] =

= s (004 - (24 + 5 ) (F.7)

F.2 Lorentz anomaly

In this case there are only two trace terms that make a contribution to the Lorentz anomaly, as we
can see from its defining expression in section [5.3} that is tr[y*/ag(z, Ry)Py] and tr[y* aq(w, Ry, ) Pg].
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In particular, we have

. (B-10)
tr[y faQ(:I;, R)) Py

) tI'[PL’)/efag(ilf, R))| =

ef+ 5.ef 1 1 1
_ tr{ [&] [__(1)(aaAa)2 = " 0A) Fuy = 557" FupFurt

we can use

(B.23) and (B.24)
to neglect all
the null terms

2 8
_ 5y L ed L 2 4 L acqp
1 b 1 d 1 d 1 b
— = A 0 (F,y) — —0,(AY)F, —v*A F.g) — — (1) F,F*
67 b8 ( ca) 12’7 8a( ) ed T 67 aa( cd) 48( ) ab +

| |
+ ébeA“ACFab + (DDA (A% + i(l)AaAd(?“(Ad)Jr

1 . .
+ g <8a(AC)8b(Ad) 4 A Ay (Ag) + zAbAdaa(AC)ﬂ } -

1 1
= —— tr[y/ ™) 0u(A°) Fup — Gl tr [y Py ) Fop Frog+
——— —_——

16
(B:33)
7 1
- — trhefvc‘i] O(Fe) + — tr[vefvac] 8b(AC)Fab—|—
1 1
S — tr[vefybc] A0 (Fu) — — tr[vefvca] 6a(Ad)ch—|—
B:33)
1 .
ey 0] A9, (Flg) + — tr[y 4] AT A, Foyt
o 2 a2
(B.33)
1
+ = tr[,yef,ybc,yad] (8a(Ac)ab(Ad) + iAaAcab<Ad) + iAbAdaa (Ac)> +
48 e——_——
1 1
— — tr[y° Y] Be(A%) Fup — — tr[y° Ty 7] FupFeat
16 e— (—— 64 ~—o
(B.13)
7 1
— — tr[y" | O(Fua) + — tr[y*y 7% 8°(Ac) Fart
s 1 o T2
(B:39)
1 1
— — tr[y9 "] 4,0(Fua) — 5 tr[7° 7] 0u(AY) Foat
o’ 72 YL
B39
1 7
+ 55 tr[75'78f'7ac] Adaa(ch) + 57 tr['75’7€f’70b] AAcF o+
ol e at T
(B.34)
1
+ =ty <6a(AC)8b(Ad) AL AD(Ag) + z‘AbAdaa(Ac)> -
—_—

1 1
_(gebgfa __ea fb)ac(Ac)Fab . _<gacgbegdf o gacgbfgde o gbcgaegdf+

4 J 16
+ gbcgafgde . gadgbegcf + gadgcegbf . gbdgcegaf + gbdgaegcf)Fachd_l_
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|~.

(gedgfc gecgfd)D(ch) + (gecgfa o gea fc)ab(Ac) ab+

T 12
1 ec e C a 1 ea C ec a

-39 g7 — 9?97 A0 (Fua) — g(g 97— 9«97 0. (A" Fog+
1 ec a ea C e C eC

+ 309 g7 — g% g7 ) A0, (Fa) + 6(g bgle — g=gft) AT A Fy+
1 a . Ccée a C e ca e ca e

+ 5 (+9" 9 " = 999" — g9 g7 + 979" 9"+

gbdgcegaf + gbdgaegcf gcdgaegbf + gcdgbegaf)

: (a (A)By(Ag) + i Ay Ady(Ag) + i Ay Agda(A, ))

4 efaba (Ac) Lo+ ac bdef _gbc adef

g gad beef + gbd acef)Fachd+

16(
1
efed efac b _ " efbc a
+—12€ O(F.q) + 3 O"(Ac)Fup 3e A0 (Fea)+

1
— ST (AN Fog e e TN, (Fug) — T TA At
1
5 (gbaecdef gcaebdef gbdecaef gcdebaef) X

: (aa(Ac)a,,(Ad) FiAg Ay (Ag) + z’AbAdc‘)a(Ac)> _

= —186(AC)(Ff6 —Fely - i(%j—w—%+

4 B e _Fepd | | e M+M}

OGRS — F) 4 (0P(A%) Y, — 0(AT) )

| .

Col»—u—t
— N
(:B

08(F) = A0 (FL)) = (AN FYa = 0 (AYF) +

/)

a—>b
(AT (Fa) = A0 (Y ) + < (A"ATF, — AA°F )+
= (ab(Ae>a (A7) — (AN)o(A) W+ D, (ADOF (A7) +
W+ O (ADA") o (AN Ad +af(Ad)ae<A )+
+M@ M@—zﬁa@ (A7) +zA28f(Ae)
W

—zAfAea,,(Ab) + ZAeAfab A") —AAGH A} + iALANG (Ag) +
d~>c
M—M—mw‘a A% +zAfAea (A%) +

Hooh—x
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—iA2D7 (A%) + iA%0° (AT) —iALADe(A) + M@%&H)

W

1 1
. _Eabefac(Ac)Fab + — (Ebdechchd —GadefFaCch _Ebcedechd +
4 16 —— —— ——
sym. in bd sym. in ad sym. in be

1 .
+e“IF Fy) + EECM O(Fea) + 3 eI (Ao) Fup — 3Ebceff‘lbaa(Fca)ﬂL
—/_/

sym. in ac b—c; c—a; a—b

1
+5 L qocef 9, (A) Fog + = 3 L caeel A4, (Fry) — g AN A Fut
_ (3 ( Cdefab c)ab<Ad) _ebdef A Ad) __ caef 6, A )+
12 ﬁ—/ /

sym. in cd

~
a—b; b—a; c—d

+ ebel §(A,),(A°) +M — ARG (A )+

sym. in ab

decoef A, A,0y(AY) pietael AL (AN + W +
N——— v

~
sym. in ac d—c; c—d; a—b

il Ay Ag0,(AY) —M+%%+@%)
sym in bd a~>b c—d a—b; b%a c—d

1 ) 1
= S04V + %D(Fef) v gab(Ae)Ffb AP (F) +

J/

-
Leibniz’s rule

1 1 1 1
—gab(Af)Feb - gAfab(Feb) —Ea@(Ad)Ffd - —Ada@(Ffd) +

[\

vV vV
Leibniz’s rule Leibniz’s rule

+%af (AYFey + %Adaf(Fe )+6A“AfF ¢ — 6AmeFaer

Leibn?;s rule
_1 abef A¢ F i cdef|:| F
1€ Oc(A) Fop + 3¢ ( )+

+3€acefab(Ac) b+ = 3 acefA 8b( )

N

—
Leibniz’s rule

1
6 acefa (Ad)Fd+ 3 acefAda ( ) EECbEanAcFab —

Leibn;;s rule ?
1 1 1 1
= 5aC(AC)Fef + 5a”(AeFfb) — gab(AfFeb) — 6ae(Aded)Jr
1 1 1
— EAdae(Ff ) + gaf (AYFey) + aAd(?f (F°)+

—“IO(F ) — —e? A" ALF,
+ 15¢ (Feq) 5e b+
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+ i(éD(Fef )+ %A“AfFae — %A“AeFaf — }leabefac(AC)Fa,,+
1 1 1
+ 3O (AcFu) + 5 0,(AFea) + aeacefAdaa(ch)) . (FB)

Starting from ([F.g8)), as usual, we are allowed to gain knowledge about the other trace’s value by
exploiting the 2 transformations provided by (4.17) and (F.2)):

1 1 1 1
trlyas(w, Ra) Py = 5 0u(A)V S 40 0/ (A°FYy) = 9P(ATFSy) — 0 (A'FY ) +

~ -~ 7 3 A -~ / ~ (& ~ v
(-1)2 (-1)2 (-1)2 (-1)2
1 1 1
_ gfldae Ffdz+6?f(AdFedz+6 Ad(?f(FedZ+
(-1)2 (-1)2 (-1
1 cdef 1 cbef pa
+ —€ D(ch> —= € A AcFab+
12— 6 ——
(=1)2 (=n*
/1 f 1 7 1 7 I . 7
+z<—D(F6 )= ACATEE —~ ACACF,T — = ¢abel 9 (A F,y +
6 N—— 6 ~——~— O6~—— 4 ~—_———
3

(-1) (-1
1 1 1
+ § Eacefab(AcFab) +6 Eacefﬁa(Achd) +6 eacefAdaa(ch)>

(~1)3 (—1)3 (—1)3

(=13 (-1)3

Y

1 1 1 1
tr[y ag(x, Ry.)Pg| = 5ac(AC)Fef + §ab(AeFf b) — 5ab(Af F%) — 6(f)e(Ade Q)+
1 1 1
- 6Adaeuﬁd) + éaf (ATFe,) + éAdéf (F9)+

1 1
+ EECdefD(ch) . EECbEanAcFab+

1 1 1 1
_ i(éD(Fef) + 6AaAfFae . 6AaAeFaf . Zeabefac(Ac>Fab+

1 1 1
n §eacefab(AcFab) i geacefaa(Achd) i geacefAdaa(ch)) . (F.9)

Finally, the Lorentz anomaly appears to be:

1 1
§<Tef — Tfe> = (tr[fyefag(x,R,\)PLl—i-ﬁr[’yefag(a:, R/\C)PRD =

4(47)? ~ -
(E-8) (.9
= i [0V + SO ATFT) — SO (ATF) — SO (AT )
4(4m)2127° 3 ! 7% d

1 1 1
— CATO () + SOT (ATF ) + S AT (Fa)+

1 1
=+ EEcdef|:|(Fvcd) o EECbeanAcFab_‘_
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1 _acef Qb 1 _ace d 1 _ace d +
3 cta 6 a C 6 a\t c

1 1 1 1
- 5(TJ?C(AC)Fef + §6*’(,4‘214”‘ b) — §ab(Af Fey) — 6ae(Ade 4)+
1
- %Adae(Ff d) + éaf (AFy) + éAdaf (Feq)+

1 1
+ —GCdefD(ch) . EECbEanACFab+

12
—i(é e LgeAffpre 1 jagenl  Leabelg (Aeyp
Leacel b A, Leacel ) (Adfz, Leace dacﬂ:
_ 2(41702 (%8C(AC)F6f + éab(AeFf,,) _ éab(AfFe,,) _ éaE(AdedH
- éAdae(Ffd) + éaf (AF°,) + éAdaf (F°0)+
+ 1—1260d€fD(ch) — %ed’ef AaAcFab> : (F.10)

That exhausts the Lorentz anomaly’s part of appendix [F]

F.3 Gravitational anomaly

The last quantities needed in chapter [5 are the traces of the two vectorial generalization of the heat
kernel coeflicients, b,2(z, Ry) and b,2(x, R».), both weighted by the relative projector. Of course,
we’'ll make use of their simplified expressions, i.e. those introduced in {4.5 through (4.44)) and (4.45))
respectively. Thus, we have

tfban(z, B P 22 te[Prbya(, Ry)) =
= tr{[l—gv :| ’ |:_6_10D81 <_%(1>F - 27ac Z(Ac) + f)/zcaa<AC)+

P A+ i)+

. 1
%CA A+ 5
1 7 1 b ]' c c
+ 20 (WA Faa + 70006 A)OH(A) = %cabm )0u(A°)+

_ %%C&,(Ab)AaAC " i%cab(A )A A+ 1%,42ab(,46)+
1 1 1
+ g”dedeFm + g%lb%c@i(Ac)de — g’de%caa(AC)de-i-

f}/db%cA A° de + 87db7acA A Fd + 87db7@aA de+

(1)A2 ia ZyacAZai<Ac> %cAZa (AC>

_ Z%.CAGACAQ + %vacAiACAQ + }ﬂw/ﬁﬂ } B

»Msoo@
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we can use (B.18]),

. , ' 4 1 . 1 4
(B23) and (B24) | _ ¢ tr[1] 00" (Fa) + — tr[1] 9 (06(A%) Fia) + — tr[Yayyac) O (0i(A°) F ™)+
to neglect all 240 ~~ 48~ 96 e —

the null terms 4 4 (B.33)

1 ) 7 .

— — tr[YapYic] O° (aa(Ac)de) — — tr[YapYic] O° (AaAchb) +

06 I d el 06 L& e
(B-33) (B-33)

+— tr[YayYac) O (A AFP) + - tr[Yayyia] 0° (A*F®)+
—_—— ~——

96 96
(B-33) (B:33)

_ i (A2 i 5 i(a ( Acy db
48 tl"[l] J (A an) + 96 tI‘[’)/ ’de%zc] 0 (81<A )F )+
i (B39

1 . 1 .
~ % tr[Y>Yapvie] O (aa(Ac)de) ~ % tr[Y>YapVie) O (AaAchb) +
(B.34) (B-34)

+ — [V’ VapVac) O (AZ-ACde) + — tr[Y’YapVia] 0" (Adeb) =
06 LT Jabac) 06 LI JdbTia)
(B.34) (B.34)

= @Dﬁ (Fia) + E@ (8b(Ab)Fm) + ﬂ(gdcgba — GaaGbe)0" (9:(A )de)"'
| .

- ﬁ(gdcgbi — GaiGbe )0’ (GQ(AC) Fd”) _

7 : 1 )
+ ﬂ(gdcgba — aaGee)0' (A AFP) + ﬂ(gdagbi — Gaigba)0' (A’ FP) +
) 1

Lo [ i c i c
— Ea (A*F,) + ﬁedbaca (0:(A)F™) — ﬁed,ﬂca (Du(A°)F™)+

1 i ) 1 i ¢ 1 i
+ ﬂedbica (A AF®) — ﬂedbaca (A;AF™) — ﬂedbiaa (A’ F®) =

_ i e nl i % b\ i (9 ( AC _i (9 ( AC
= 00 (Fia) + 150 (A" Fu) + 570 (O(A°) Fua) = 570 (0u(A%) Fuc)+

1 i c ) i i c\ 1. _i % cr . i i crn
- ﬁa (aa(A )Fcz) + 248 (aa(A )Ec) 246 (AaA Fcz) + 246 (AaA Ec)+

L (AAFE) — oA L o(A2F) — Lo (AR

243 (A;A°F,,) | 517 (A;A°F,.) + 517 .(A Fu) 517 (A*F,)+
[P [ i c ¢ i c

- 159 (A’F,) + 5 Cbac? (0:(A°)F™) — 5 bicO (0a(A)F™)+

1 P c 1 A c 1 %
+ ﬂedbicg (A AF®) — ﬂﬁdbaca (A;AF™) — ﬂﬁdbm@ (A’F®) =

— %(8%‘(85,(145)50 _ ai(ai<AC>Fac) + 8i(8a(Ac)Ec)+

]

2 (9acGbi — Gaigne)0' (AgAF ™)+

+

+ %Edbicai (AaAchb) — %Edbacﬁi (AiACde) - %Edbmai (AQde))—i—
(o (r + Lo (aam) - Lo
+ o (500" (Fu) + 50/ (AuAFe) — 50" (AAF) +
1

— 0'(A’F,) + }ledbacai (D AVF™) = Seancd (0a(4)F™)) , (F.11)
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from which tr[b,»(x, Ry, )Pg] promptly follows through the implementation of (4.17)) and (F.2):

tr[bag(l’, R/\C)PR] =

= % (0°(00(A") Fia) — 0" (04(A) Fu) + 0" (0u(A°) Fi) +

+ %edbm@i (AaACde) — %edbacﬁi (AiACde) - %Gdbmai (A2de)> +
L ngim + Lo aancr) - Lo (ane
- 6(1—053 (Fu) + 50" (AcA°Fe) = 50" (AAFoc)+
— 0'(A’Fi,) + }ledbacﬁi(&(AC)de) — iedb,-cai (aa(AC)de)) . (F.12)

The gravitational anomaly then results in

(0" Tye () + iV AEpe()) = 1 (tr[be,z(iﬁ, Ry) P +tr[bea(z, Ry, ) Pr] +

(4m)2 A -~ - o~ -
(1) F13)
1 1
+ 586 (SI‘[CLQ(Z‘, Ry\)Pr]) + 538 (‘Er[a2(x, Ry.)Pg])+
F1) F3)
1 1
+ §Ae(w) 131'[@2(.1', R,\)PL]1+§Af(:U) Er[”yef@(x, R,\)PLl—l—
1) 3
7 1
- §Ae($) trlas(z, RAC)PRl—§Af($) tr[yesas (e, Ry, ) Pr] +
3 )
a a
— Eae(fr[aQ(x,R,\)PL]J) — Eae(fl"[ag(.%, R)\C)PR]J)—F
1)
a o
— 50 (trlaa(w, Ry)Pr]) = 50, (trlaz(x. RPC)PL1)> .
3
1 1 % % c % c
- [ﬁ (a (Oh(AY) Fyp) — 0 (D:(A°) Fue) + 0' (9.(A%) Fe) +
1 , 1 . 1 .
+ iedbicﬁl (AAF™) — 5%6081 (A AR — éedbieal (A2de))+
1
6 (110 7€ ; e iC 5 7 ec

AR N 4 Lo gifg( Acypody lemiecdb>+
+ % <8Z (ab(Ab)Fie) B al (ai(AC)FSC) + aZ (ae(AC)Fic)‘i—
* %edbicai (A A°F™) — %Edbecai (A;AF®) — %Gdbz‘eﬁi (AQde)>+

(14 1 5 c 1 5i c
_6 10 3 P) 3 ic 2 7 ec

i(A2E iecizcdb izciecdb>_|_
1 1
+ 20, (—(aaAa)Z + 5 FaF —O(42) + 6b(Ac)6b(Ac)>+
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)
S 2 pa 1 __abed
+ ﬁ € 5 a P} ablc +

1 1
+ Eae(—(aamf + SFaF® - D(4%) + O A (A) )+

7

2 1 _abcd
- E € S 2 a & 2 e abl ¢ +
1
2 1 b 2 b
+ E € a & ot a & c < +
1
s 2 pa abed
- EA6<—D(8SA )+ 0a(A2A%) — ¢ Fachd>+
1 19b 19b 1 d
+ = o Ve € € 3 € 3 € g€
1 Ad 1 d 1 Ad
6 € 6 e 6 e
1 d 1 b
12 tcde < 6 Ccbe a -

1 1 1 1 1
— éAf <6D<F6f) + —AaAfFae - EAaAeFaf - —Eabefﬁc(Ac)Fab—{—

6 4
1 1 1
+ gEacefab(AcFab) —+ geacefﬁ‘l(AdFCd) —+ EGGCGfAdaa(FCd>)+
_ L a\2 1 ab 2 b/ Ac
12 € a ot a c +
1 1
- A (—D(&SAS) + 9, (A2A%) — ie“bchachd) +
. 3 1 c 19 190 1 d
2 7 Vec e 3 e 3 e G
1 Ad 1 d 1 Ad
6 € 6 e 6 e
1 cd 1 c rab
19 Eede g tevefZta +

1 .1 1 1 1
— 54! (-D(Fef) A A Py = ZATAFyp — Jeunes o A+

6 6 6
1 1 1
—f- geacefab(AcF“b) —|— EGacefaa(AdFCd) —|— EGacefAdaa(FCd)>+
- %ae(—(aam)? + %FabF“b —O(4%) + 8b(Ac)8b(Ac))+

_B s 2 pa 1 __abed +
126 g a 2 abl ¢

. g . a2 1 ab 2 b( pc
150 (~(0.A°) + GE ™ ~ D) + 0 A (4)) +

_‘_E s 2 Aa 1 __abcd +
126 g a ) abl ¢

1
- ﬁae(—(aamf FE PP - O(A2) + ab(AC)ab<AC))+
12 ‘ 2
E s 2 pa 1 _abcd
+ 12 e S a 2 al C +

(0%

= 20 (A% + L Fu — O(A2) + B(A)P(A)) +

2
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_Za s 2 pa 1 __abcd
E e s a p) ablc

1 11/, .
= o [6 (az (O(ANYE) — 8 (0,(AC) Fue) + 0 (0e(A°) Fre) +
+ %Gdbicai (AeACde) — %edbecﬁi (AiACde) — %Edbieai (AQde)) +
1 a\2 1 ab 2 b
+ 0. (0,4 + SFu P — <A ) + (A (A) )+
1

- 6,48( 0(9,A%) + 0, (AQA“)— el p L Fy )+

1 1 1 1
_Af(Z _ Aa _~ Aa c ab
A (6D(F€f) AT Fy = CAMAFy g — Seaes DAY P
1 1 1
—|— geacefc?b(AcF“b) + éeaceff)“(AdFCd) —I— aeacefAdE)a(FCd)>+
o 1
- 30. (—(aaAaV + S FuF" = 0(A%) + ab(Ac)ab(AC))} . (F.13)

This puts an end to the current appendix.
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Appendix G

Demonstration: from (B.28) to (B.29)

The main purpose of this section is to provide the detailed proof of equation (B.29), that should be
attained by properly manipulating (B.28)), i.e.

iesabc’78’75 = EOabc’Yl’yQ’yg + 61(11)0’7072’73 - E2abc’70’7173 + €3abc’70’71727

as anticipated in appendix [B] Indeed, if we entered each of the sixty-four available combinations of
the three indices a, b and ¢, we would observe that, whenever a, b and ¢ differ from one another,
i€sapney®Y? correctly reproduces v,7,7e, while it vanishes otherwise. All this is summarized in

Y

WYe HaFb A A b
i€sabey™” = {7 We HaFbragencs (G.1)

0 otherwise

or, alternatively, through

1

i€sabey™Y’ = 3 (Ya Ve — Ya¥e Vs + W VeVa — WVaVe + Ve VaVo — Ve VoVa)-

Undoubtedly, the finest of the two expressions is the latter, which not only corresponds to (B.29)),
but also gathers in itself both solutions of (G.1]) by simply antisymmetrizing the upper non-vanishing
one. This ends the current discussion.
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