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Introduction

Algebraic geometry is one of the most studied branch of mathematics.

Before the 20th century, the central issue in this subject was the study and

the classification of algebraic varieties (e.g. algebraic surfaces) as zero-locus

of polynomials. Later, between the 1930s and 1960s, André Weil, Jean-Pierre

Serre and Alexander Grothendieck contributed to a rewrite of the foundations

of algebraic geometry using the sheaf theory and introducing the concept of

scheme, a generalization of the classical notion of algebraic variety.

K3 surfaces were introduced by Weil in 1958, who named them in this

way in honor of the three mathematicians Ernst Kummer, Erich Kähler,

Kunihiko Kodaira and the K2 mountain, located in Himalaya. These objects

represent one of the exceptional case in the classification of algebraic surfaces

(Enriques-Kodaira classification).

In this thesis we describe K3 surfaces and their properties using the lan-

guage of sheaves and schemes, giving many details of these huge theories.

In the first chapter of the elaborate we present presheaves, sheaves, mor-

phisms of sheaves and the relative properties, with a great number of ex-

amples. Roughly speaking, a sheaf is a collection of objects (for example,

abelian groups or commutative rings) for any open set of a fixed topological

space, such that on the intersections of the sets, the objects are glueable in

a well defined way (1.5 and 1.10).

In the second chapter we introduce schemes. The definition of a scheme

requires several steps to be well understood.

Let R = k[x1, ..., xn], the ring of polynomials in n variables with coeffi-
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cents over an algebraically closed field k. The spectrum of R, denoted with

SpecR, is the set of prime ideals of R with the Zariski topology, that is

the closed sets are zeros of a (finite) family of polynomials. By Hilbert’s

Nullstellensatz (see [1]), the points of SpecR are in 1-1 corrispondence with

irreducible subvarieties of the affine space An (2.23). We can regard SpecR

with a sheaf of rings, which represents the regular functions over the space

(Chapter 2.2).

We can extend this construction to the spectrum of a generic commuta-

tive ring. This is necessary, since in this way any subvariety of An can be

associated to the spectrum of a ring. For instance, if we have a prime ideal

p in k[x1, ..., xn] and the variety Y = {P ∈ An : f(P ) = 0,∀f ∈ p}, then Y

corresponds to Spec(k[x1, ..., xn]/p).

A scheme is a topological space which is locally isomorphic to the spec-

trum of a commutative ring (2.39). The most important examples of scheme

are the projective ones, which are deepened in Chapter 2.4. Moreover we de-

fine abstract algebraic varieties to be a very particular case of scheme (2.87).

In the third chapter we complete the background on sheaves and schemes

with an introduction on sheaves of modules on a scheme. These objects,

together to some notion of category theory and homological algebra, allow

to speak about sheaf cohomology, a very important invariant of schemes.

The fourth chapter is focused on three fundamentals points: the intro-

duction of geometric and abstract divisors, the definition of canonical bundle

and the adjunction formula. Divisors (4.7) are essentially hypersurfaces on

a particular scheme and they’re linked by a corrispondence to a class of

sheaves of modules, Cartier divisors (4.25). The canonical bundle is a sheaf

of modules which represents the n-forms on a scheme (4.49). The adjunction

formula allows, among other things, to easily compute the canonical bundle

of many divisors in the projective space (4.50 and 4.51).

In the fifth and last chapter we describe K3 surfaces. They’re nonsingular

and complete surfaces with no global section in the cotangent bundle and

trivial canonical bundle (5.1). In the chapter we present many basic example
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and give a complete calculation of the Hodge diamond of a K3 surface, the

set of dimensions (as vector space) of its cohomology group, through the

Serre’s duality (5.11).





Introduzione

La geometria algebrica è una delle materie più studiate della matem-

atica. Prima del ventesimo secolo, l’obiettivo principale di questa materia

era lo studio e la classificazione delle varietà algebriche (e delle superfici, in

particolare) viste come il luogo degli zeri di polinomi. Successivamente, tra

gli anni ’30 e ’60 del Novecento, André Weil, Jean-Pierre Serre e Alexander

Grothendieck contribuirono ad una riscrittura dei fondamenti della geometria

algebrica attraverso la teoria dei fasci e introducendo il concetto di schema,

una generalizzazione della nozione classica di varietà algebrica.

Le superfici K3 sono state introdotte da Weil nel 1958, cos̀ı battezzate in

onore dei tre matematici Ernst Kummer, Erich Kähler e Kunihiko Kodaira

e della montagna K2, nella catena dell’Himalaya. Questi oggetti rappresen-

tano uno dei casi eccezionali nella classificazione delle superfici algebriche (la

classificazione di Enriques-Kodaira).

In questa tesi descriviamo le superfici K3 e le loro proprietà utilizzando

il linguaggio dei fasci e degli schemi, soffermandoci su numerosi dettagli di

queste enormi teorie.

Nel primo capitolo dell’elaborato presentiamo prefasci, fasci, morfismi di

fasci e le relative proprietà, fornendo un gran numero di esempi. Un fascio,

sostanzialmente, è una collezione di oggetti (ad esempio gruppi abeliani o

anelli commutativi) per ogni aperto di uno spazio topologico fissato, in modo

che sulle intersezioni degli aperti gli oggetti si possano incollare bene (1.5 e

1.10).

Nel secondo capitolo introduciamo gli schemi, la cui definizione è piuttosto

v
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articolata e che richiede diversi passi per essere compresa appieno.

Sia R = k[x1, ..., xn], l’anello dei polinomi in n variabili a coefficienti in

un campo k che sia algebricamente chiuso. Lo spettro di R, denotato con

SpecR, è l’insieme degli ideali primi di R con la topologia di Zariski, ovvero

i chiusi sono gli zeri di una famiglia (finita) di polinomi. Per il Nullstellsatz

di Hilbert (vedi [1]), i punti di SpecR sono in corrispondenza 1-1 con le

sottovarietà irriducibili dello spazio affine An (2.23). Possiamo assegnare a

SpecR un fascio di anelli, che rappresenta le funzioni regolari sullo spazio

(Capitolo 2.2).

Possiamo estendere questa costruzione sostituendo a k[x1, ..., xn] un anello

commutativo qualsiasi. Questo è necessario, poiché in tal modo ogni sotto-

varietà di An può essere associata allo spettro di un anello. Ad esempio,

se p è un ideale primo di k[x1, ..., xn] e consideriamo la varietà Y = {P ∈
An : f(P ) = 0,∀f ∈ p}, allora Y corrisponde a Spec(k[x1, ..., xn]/p).

Uno schema è uno spazio topologico insieme ad un fascio di anelli, che sia

localmente isomorfo allo spettro di un anello (2.39). L’esempio più impor-

tante di schema sono gli schemi proiettivi, che sono approfonditi nel Capitolo

2.4. Inoltre definiamo le varietà algebriche astratte come un caso molto par-

ticolare di schema (2.87).

Nel terzo capitolo completiamo la panoramica sui fasci e sugli schemi con

un’introduzione ai fasci di moduli su uno schema. Questi oggetti, insieme

a qualche nozione di teoria delle categorie e algebra omologica, consente di

parlare di coomologia di fasci, un invariante degli schemi molto importante.

Il quarto capitolo si concentra su tre punti fondamentali: l’introduzione

ai divisori geometrici e astratti, la definizione di fibrato canonico e la formula

di aggiunzione. I divisori (4.7) sono essenzialmente ipersuperfici su schemi

particolari e sono connessi attraverso una corrispondenza ad una classe di

fasci di moduli, i divisori di Cartier (4.25). Il fibrato canonico è un fascio

di moduli che rappresenta le n-forme su uno schema (4.49). La formula

di aggiunzione consente, tra le altre cose, di calcolare facilmente il fibrato

canonico dei divisori nello spazio proiettivo (4.50 e 4.51).
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Nel quinto ed ultimo capitolo descriviamo le superfici K3. Queste sono

superfici complete e nonsingolari, senza sezioni globali nel fibrato cotangente

e con fibrato canonico banale (5.1). Nel capitolo presentiamo diversi esempi

e svolgiamo il calcolo completo del diamante di Hodge di una superfice K3,

ovvero l’insieme delle dimensioni (come spazi vettoriali) dei suoi gruppi di

coomologia. Per farlo applichiamo la dualità di Serre (5.11).





Notation

In the whole elaborate, with ring we will mean a commutative ring with

an identity element.

The notation ⊂ is used for inclusion of sets. The strict inclusion will be

never used.

We will assume the basic notion of General Topology, Commutative Al-

gebra and Categories theory, with standard notations.

All the ideals of rings will be denoted with gothic letters a, b, p, q, ...
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Chapter 1

Sheaves

In this chapter we will present the category of sheaves on a generic topo-

logical space, the basic tool used in the whole elaborate.

In the first section we start defining presheaves and sheaves which have

values in a particular class of categories, but we will just focus on sheaves of

groups, rings and modules. Then, we illustrate stalks of sheaves, which char-

acterize the sheaves up to isomorphisms (Proposition 1.22). A kind number

of examples helps to make more readable this section.

In the second section we complete the definition of category of sheaves

with morphisms of sheaves. We’ll prove many basic results, which will be

very useful in the next chapters.

1.1 Presheaves and Sheaves

Let us begin with some definitions from category theory.

Definition 1.1. Let C be a category. With A ∈ C we will mean A ∈ ob(C),

the class of objects of C. A final object of C is an object F ∈ C such that

∀A ∈ C there exists a unique morphism A! F.

An initial object of C is an object I ∈ C such that ∀A ∈ C there exist a

unique morphism I ! A.

A 0-object is an object 0 ∈ C which is both a final and an initial object.

1
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For any A,B ∈ C there is a unique morphism in Hom(A,B) such that

A! 0! B. It is called 0-morphism and it is denoted again with 0.

Definition 1.2. Let C be a category with a 0-object; thus there is a 0-

morphism 0. A kernel of a morphism f : B ! C is an object A together a

morphism i : A ! B such that f ◦ i = 0 and for every morphism D
g
−! B

such that f ◦ g = 0, there exists a unique morphism D ! A such that the

diagram

D

A B C

∃!
g

0

0

i f

is commutative. A cokernel of f : B ! C is defined dually by arrow-

reversing.

We denote with ker f and coker f the kernel and the cokernel of f , re-

spectively.

Definition 1.3. Let C be a category. We say that C is an abelian category

if the following properties are satisfied.

1. For any A,B ∈ C, the set Hom(A,B) is an abelian group such that

∀A,B,C ∈ C we have f ◦ (g + h) = f ◦ g + f ◦ h for every g, h : A! B

and f : B ! C.

2. For any A,B ∈ C it is defined the direct product A×B.

3. Each morphism has a kernel and a cokernel.

4. Every monomorphism is the kernel of its cokernel and every epimor-

phism is the cokernel of its kernel.

Example 1.4. The following are all abelian categories.

1. Abelian groups Ab.

2. R-modules on a commutative ring R, ModR.
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In the following, C will always be one of the categories above.

Definition 1.5. Let X be a topological space and let C be an abelian cate-

gory. A presheaf F of objects of C on X consists of

1. for every open subset U ⊂ X, an object F(U) ∈ ob(C);

2. for every V ⊂ U open subsets of X, a morphism, called restriction,

ρUV ∈ HomC(F(U),F(V )) such that

a) F(∅) = 0, the 0-object;

b) for every open U ⊂ X, ρUU = idF(U);

c) for every open subset W ⊂ V ⊂ U of X, ρUW = ρVW ◦ ρUV .

We will denote s|V := ρUV (s), for all V ⊂ U and s ∈ F(U).

Equivalently, we can define a presheaf on X to be a controvariant functor

F between Top(X), the category of open subsets of X with morphisms of

inclusion, and an abelian category C, such that F(∅) = 0.

In the following, with a presheaf on X we will mean a presheaf of abelian

groups or commutative rings or R-modules on X.

Example 1.6. The zero presheaf is the presheaf U 7! 0 for any U ⊂ X.

Let A be a fixed object of a category. The constant presheaf A is the

presheaf U 7! A, with restriction maps ρUV = idA .

Example 1.7. Let P ∈ X be a fixed point and let A be a fixed object of a

category. The skyscraper presheaf at P is the presheaf U 7! AP (U), where

AP (U) :=

A, if P ∈ U,

0, if P /∈ U.

Here the morphisms of restiction are the zero or identity maps.

Example 1.8. Let X be a real topological manifold. We define the presheaf

of continuous maps to be the presheaf of rings U 7! C(U) = {f : U !

R : f continuous}, with the natural restictions. If X is a differentiable man-

ifold we can define the presheaf of C∞ maps in the same way.
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Example 1.9. Let k be a field and An := {(a1, ..., an) : ai ∈ k} with the

Zariski topology; thus, the closed subset of An are {(t1, ..., tn) : f1(t1, ..., tn) =

0, ..., fs(t1, ...tn) = 0}, where f1, ..., fs ∈ k[x1, ..., xn]. We note that with

this topology, every open subset of An is dense. It is called affine space n-

dimensional. An affine variety in An is a closed subset in the Zariski topology,

endowed with the induced topology. A quasi-affine variety is an open subset

of an affine variety.

Let U be a quasi-affine variety in An. If x ∈ U , a function f : U ! k

is called regular at x if there is an open subset V ⊂ U and polynomials

g, h ∈ k[x1, ..., xn] such that h is non-vanishing on V and f |V = g/h. It is

regular if it is regular at x, for any x ∈ X. The set of regular functions on

U is denoted with O(U). It has a natural structure of ring.

Let X be an affine variety in An. We define the presheaf of rings U 7!

O(U) with natural restrictions.

Definition 1.10. A sheaf F on a topological space X is a presheaf such that,

for every open U ⊂ X and for every open covering
⋃
i Vi = U we have:

1. (uniqueness) if s ∈ F(U) and s|Vi = 0 for each i, then s = 0;

2. (glueing) if we have an element si ∈ F(Vi) for each i, such that ∀i 6= j

si|Vi∩Vj = sj|Vi∩Vj , then there exists s ∈ F(U) such that s|Vi = si, for

each i.

The elements of F(U) are called sections of F on U , while the ones of F(X)

global section of F .

We will often denote with Γ(U,F) the set of the sections of F on U .

Example 1.11. The constant presheaf is not always a sheaf, because the

glueing property falls. Indeed, let X be a Hausdorff space (with at least

two points), and the presheaf U 7! A on X with A 6= 0 a fixed group (for

example). Since there exist open disjoint subsets U, V of X, we can take

x 6= y in A which match on U ∩ V = ∅. Hence there cannot be z ∈ A

such that z = x = y.
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Example 1.12. The skyscraper presheaf AP is a sheaf. Let
⋃
i Vi = U be an

open covering of an open subset U ⊂ X. If P /∈ U everything is 0, so nothing

has to be proved. Otherwise, there exists k such that P ∈ Vk. If s ∈ AP (U)

such that s|Vi = 0 for each i, then 0 = s|Vk = s, hence the uniqueness is

checked. If we have {si ∈ AP (Vi)} such that si|Vi∩Vj = sj|Vi∩Vj , then si = sj

for every i, j. Thus, si = 0 for any i, or P ∈ Vi∩Vj for any i, j. In both cases

the section s ∈ AP (U) such that s = si ∈ A = AP (U) satisfies the glueing

property.

Example 1.13. The presheaves of continuous maps on a topological mani-

fold and C∞ maps on a differentiable manifold are clearly sheaves.

Example 1.14. Let X be an affine variety in An. The presheaf O on X is

a sheaf of rings called sheaf of regular functions on X.

Let U ⊂ X be an open subset and let f ∈ O(U). Then f−1(a) is a closed

subset of U for any a ∈ k, indeed there exists an open covering
⋃
i Vi = U

such that f |Vi = gi/hi as above. Thus, Vi ∩ f−1(a) = {x ∈ Vi : gi − ahi = 0}
is closed in Vi, since gi − ahi is a continuous function. Then, Vi \ f−1(a) is

an open set in Vi for any i and

U \ f−1(a) =
⋃
i

(Vi \ f−1(a))

is an open subset, so f−1(a) is closed in U .

Now, let U be an open subset of X. For any s, t ∈ O(X) such that

s|U = g|U , we have that s = t, since (s− t)−1(0) is closed and dense in X. It

easily follows that O verifies the uniqueness and glueing properties.

In the following X will be a fixed topological space and avery (pre)sheaf

will be a (pre)sheaf on X.

We come to define stalks of (pre)sheaves. First, we have to introduce the

notion of direct limit.

Definition 1.15. Let (I,≤) be a partially ordered set. A direct system on I

is a family {Ai}i∈I of objects of an abelian category C together to a morphism

rij : Ai ! Aj for every j ≤ i, such that
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1. rii = idAi
, ∀i ∈ I;

2. rik = rjk ◦ r
i
j, ∀k ≤ j ≤ i.

Given a direct system {Ai} we define the direct limit lim−!Ai of the direct

system as
⊔
iAi modulo an equivalence relation ∼, with si ∼ sj if and only

if si ∈ Ai, sj ∈ Aj and there exists k ≤ i, j such that rik(si) = rjk(sj).

Example 1.16. If F is a presheaf, then {F(U) : U ⊂ X open} is a direct

system with the restriction map. If P ∈ X, then {F(U) : P ∈ U} is again a

direct system.

Definition 1.17. If F is a presheaf on X and P ∈ X, then we call stalk of

F at P , denoted with FP , the direct limit

lim−!{F(U) : P ∈ U}.

Thus, the elements of FP are represented by pairs (U, s), with P ∈ U , s ∈
F(U) such that (U, s) = (V, t) if there exists W ⊂ U∩V such that s|W = t|W .
We will often use the notation sP for the elements of FP .

Example 1.18. Let F be the sheaf of C∞ maps on a differentiable manifold

X and let P ∈ X. Then the direct limit of the direct system {F(U) : P ∈ U}
is exactly the set of germs of function at P .

Example 1.19. Let A be the constant presheaf on X and let P ∈ X. Then

the stalk AP = A.

Let AP the skyscraper sheaf at P ∈ X and let Q ∈ X. If X is a T1 space,

that is every point of X is closed, then the stalk

(AP )Q =

0, if P 6= Q,

A, if P = Q.

Indeed, if Q 6= P then Q ∈ U = X \ {P} which is open for assumptions and

AP (U) = 0.



1. Sheaves 7

1.2 Morphisms of Sheaves

Definition 1.20. Let F ,G be presheaves on X. A morphism of presheaves

ϕ : F ! G consists of a morphism ϕ(U) : F(U)! G(U) for each open subset

U ⊂ X and ∀V ⊂ U the following diagram

F(U) G(U)

F(V ) G(V )

ϕ(U)

ρUV ρUV

ϕ(V )

is commutative. If F and G are sheaves we say that ϕ is a morphism of

sheaves.

Composition of (pre)sheaves is again a morphism of (pre)sheaves, hence

we can define an isomorphism of (pre)sheaves as a morphism which has a

two-sided inverse.

Remark 1.21. We note that ϕ induces a morphism on the stalk ϕP : FP !
GP for every P ∈ X; namely ϕP (sP ) = (ϕ(s))P for any sP ∈ FP , where

sP is represented by (U, s). It is well defined, since if (U, s) = (V, t) in FP ,

then s|W = t|W for some W ⊂ U, V . Thus, ϕ(W )(s) = ϕ(W )(t) implies

(U,ϕ(U)(s)) = (V, ϕ(V )(t)) in GP .

The importance of stalks of sheaves is evident in the following proposition,

a sort of characterisation of sheaves, up to isomorphism.

Proposition 1.22. A morphism of sheaves ϕ : F ! G is an isomorphism if

and only if ϕP : FP ! GP is an isomorphism ∀P ∈ X.

Proof. If ϕ is an isomorphism with inverse ψ, then ψP is the inverse of ϕP

for any P ∈ X. Now let us suppose that ϕP is an isomorphism for every

P ∈ X. If we show that ϕ(U) is invertible for any U , then the inverse of ϕ

will be the collection of maps ϕ−1(U).

Let s ∈ F(U) such that t = ϕ(U)(s) = 0. For any P ∈ U we have tP = 0,

hence sP = 0. Then we have U =
⋃
i Vi with Vi open neighborhood of some

P ∈ U and s|Vi = 0. For the uniqueness property s = 0, so ϕ(U) is injective.
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Let t ∈ G(U). There exists sP ∈ FP such that ϕP (sP ) = tP for any

P ∈ U , since ϕP is surjective. Glueing together the sections (Vi, si), where

Vi is an open neighborhood of some P ∈ U and sP is represented by (Vi, si),

we obtain s ∈ F(U) such that s|Vi = si. But ϕP (sP ) = tP for any P , then

ϕ(U)(s) = t for the uniqueness property. Hence ϕ(U) is an isomorphism.

We would work with sheaves instead presheaves for the reasons above.

Luckily, we can associate a sheaf to a given presheaf in a natural way.

Proposition 1.23. Let F be a presheaf. There exist a unique sheaf F+

and a morphism of presheaves θ : F ! F+ such that, for every sheaf G and

morphism ϕ : F ! G there exists a unique morphism ϕ+ such that

F F+

G

θ

ϕ

ϕ+

is commutative. F+ is called sheaf associated to the presheaf F .

Proof. Let U ⊂ X be an open subset of X. We define F+(U) to be the set

of functions s : U !
⋃
P∈U FP such that s(P ) ∈ FP , ∀P ∈ U and ∀P ∈ U

there exists an open neighborhood V ⊂ U of P and a section t ∈ F(V )

such that tQ = s(Q) in FQ, for every Q ∈ V . With the natural restrictions

F+ is a sheaf which satisfies the universal property. For a clearer proof see

[9, Chapter 2.2].

Remark 1.24. If F is a sheaf, then F and F+ are canonically isomorphic.

If we take G = F and F id
! F then, by the universal property, there ex-

ists a unique morphism θ′ : F+ ! F such that θ′ ◦ θ = id; hence θ is an

isomorphism.

Remark 1.25. It follows from the construction of F+ that if F is a presheaf

on X, then ∀P ∈ X the stalks FP = F+
P .

Now we come to describe injective and surjective morphisms of sheaves.
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Definition 1.26. Let ϕ : F ! G be a morphism of presheaves. We define the

presheaf kernel of ϕ, the presheaf cokernel of ϕ and the presheaf image of ϕ as

the presheaf given by U 7! ker(ϕ(U)), U 7! coker(ϕ(U)) and U 7! im(ϕ(U))

and we denote them as kerϕ, cokerϕ and imϕ respectively.

Remark 1.27. If ϕ : F ! G is a morphism of sheaves, then the presheaf

kerϕ is a sheaf. Let U ⊂ X an open subset and let
⋃
i Vi = U be an open

covering of U .

Let s ∈ kerϕ(U) ⊂ F(U) such that s|Vi = 0 for each i. Then s = 0 in

F(U).

Let si ∈ kerϕ(Vi) for each i, such that si|Vi∩Vj = sj|Vi∩Vj . Then, there

exists s ∈ F(U) such that s|Vi = si for any i. Therefore ϕ(s) = 0, since

ϕ(Vi)(si) = 0 ∈ G(Vi) for any i and there are commutative diagrams

F(U) G(U)

F(Vi) G(Vi)

ϕ(U)

ϕ(Vi)

for any i. Hence s ∈ kerϕ(U).

On the contrary, imϕ and cokerϕ are not sheaves.

Definition 1.28. Let ϕ : F ! G be a morphism of sheaves. We define the

sheaf cokernel of ϕ and the sheaf image of ϕ to be the sheaves associated to

the respective presheaves. We denote them in the same way as above.

Definition 1.29. Let F and F ′ be sheaves on X. We say that F is a subsheaf

of F if for each open U ⊂ X, F ′(U) is a substructure of F(U). This means

that if F and F ′ are sheaves of abelian groups (for example) then F ′(U) is

a subgroup of F(U).

Example 1.30. If ϕ : F ! G is a morphism of sheaves, kerϕ is a subsheaf

of F . We’ll see later, Corollary 1.34, that the sheaf imϕ is a subsheaf of G.

Definition 1.31. Let ϕ : F ! G be a morphism of sheaves. We say that

ϕ is injective if kerϕ = 0, the zero sheaf. Equivalently, ϕ is injective if

ϕ(U) : F(U)! G(U) is injective for all U ⊂ X.
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Lemma 1.32. A morphism of sheaves ϕ : F ! G is injective if and only if

the induced map ϕP : FP ! GP is injective ∀P ∈ X.

Proof. Let us suppose that ϕ is injective, hence ϕ(U) is injective for each

U ⊂ X, and let P ∈ X. Let sP , s
′
P ∈ FP represented by (U, s) and (V, s′),

respectively, and suppose that ϕP (sP ) = ϕP (s′P ) = tP in GP . If (W, t) repre-

sents tP and T = U ∩ V ∩W , then ϕ(T )(s|T ) = ϕ(T )(s′|T ) = t|T , but ϕ(T )

is injective by assumption, hence s|T = s′|T and sP = s′P .

Conversely, let U ⊂ X be an open subset and let s ∈ F(U) such that

ϕ(U)(s) = 0. For any P ∈ U we have ϕP (sP ) = 0, therefore sP = 0 since

ϕP is injective. Thus, there exists an open neighborhood V of P such that

s|V = 0. Repeating for every P ∈ X, we obtain an open covering
⋃
i Vi = X

and s|Vi = 0, for any i. Hence s = 0 and kerϕ(U) = 0.

Lemma 1.33. Let ϕ : F ! G be a morphism of presheaves. If ϕ(U) : F(U)!

G(U) is injective for any open set U ⊂ X, then the associated morphism of

sheaves ϕ+ : F+ ! G+ is injective.

Proof. For any P ∈ X, the induced map on the stalks ϕP : FP ! GP is

trivially injective. But F+
P = FP and G+P = GP , hence ϕ+

P : F+
P ! G

+
P is

injective for any P ∈ X. Thus, we conclude for 1.32.

Corollary 1.34. The sheaf imϕ is a subsheaf of G.

Proof. We have an injective morphism of presheaves imϕ ↪! G. The associ-

ated morphism of sheaves is still injective for 1.33.

Definition 1.35. Let ϕ : F ! G be a morphism of sheaves. We say that ϕ

is surjective if imϕ = G.

Lemma 1.36. Let ϕ : F ! G be a morphism of sheaves and let P ∈ X.

Then

i) im(ϕP ) = (imϕ)P .

ii) ker(ϕP ) = (kerϕ)P .
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Proof. i) The sheaf imϕ is a subsheaf of G, hence (imϕ)P ⊂ GP . Moreover

imϕP ⊂ GP , so we have to show that im(ϕP ) = (imϕ)P in GP .

Let y ∈ (imϕ)P and let us consider (U, t), where t ∈ (imϕ)(U), which

represents y. Thus, there exists s ∈ F(U) such that ϕ(U)(s) = t. If x =

sP ∈ FP , then ϕP (x) = ϕP (sP ) = tP = y, that is y ∈ imϕP .

Conversely, if y ∈ imϕP then there is x ∈ FP such that ϕP (x) = y. If

(U, s) represents x in FP and (U, t) represents y in GP , then (ϕ(U)(s))P =

tP = y, that is y is in the stalk (imϕ)P of the presheaf imϕ. But the stalks

of presheaves and associated sheaves coincide, hence y ∈ (imϕ)P .

ii) Analogue.

Lemma 1.37. A morphism of sheaves ϕ : F ! G is surjective if and only if

the induced map ϕP : FP ! GP is surjective ∀P ∈ X.

Proof. We have im(ϕP ) = (imϕ)P from 1.36. Thus ϕ is surjective ⇐⇒
imϕ = G 1.22⇐⇒ (imϕ)P = GP for any P ⇐⇒ im(ϕP ) = (imϕ)P = GP for any

P ⇐⇒ ϕP is surjective for any P .

Corollary 1.38. A morphism of sheaves ϕ : F ! G is an isomorphism if

and only if ϕ is injective and surjective.

Proof. It follows from 1.22, 1.32 and 1.37.

Remark 1.39. It’s not true that a morphism of sheaves ϕ : F ! G is sur-

jective if and only if it is surjective on any open subset U ⊂ X.

If ϕ(U) is surjective for each U ⊂ X, then ϕ is surjective on the stalks,

hence it is surjective for 1.37. However, the converse is false. See 1.41 for an

example.

Definition 1.40. Let F ,G be sheaves on X. Then the direct sum F ⊕ G is

the sheaf associated to the presheaf U 7! F(U)⊕G(U) with restriction maps

induced by the ones in F and G. We have that the stalk (F ⊕G)P in P ∈ X
is FP ⊕ GP .

Example 1.41. We want to show an example of surjective morphism of

sheaves on X which is not surjective on some open set U ⊂ X.
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Let us consider X = R as topological space, F as the constant sheaf

Z and G as the sum of two skyscraper sheaves on two distinct point of R,

that is G = ZP ⊕ ZQ with P 6= Q. The natural morphism of restriction

Z ! ZP ⊕ ZQ is not surjective for any open U ⊂ X, since if P,Q ∈ U we

have Z! Z⊕Z, z 7! (z, z). However ∀S ∈ R the map induced on the stalks

ZS = Z! (ZP ⊕ ZQ)S = (ZP )S ⊕ (ZQ)S is surjective, since the right side is

0 if S 6= P,Q and Z otherwise. Then F ! G is surjective for 1.37.

We end up the first chapter introducing exact sequences of sheaves, the

inverse image sheaf and the restriction of a sheaf. The last two notions will

be fundamental in the next chapter.

Definition 1.42. Let F be a sheaf of abelian groups or modules and let

F ′ be a subsheaf of F . We define the quotient sheaf F/F ′ to be the sheaf

associated to U 7! F(U)/F ′(U). We have (F/F ′)P = FP/F ′P , for all P ∈ X.

In the following, when we talk about quotient sheaves we always suppose

to have sheaves of abelian groups or modules.

Proposition 1.43. Let ϕ : F ! G be a morphism of sheaves. Then imϕ ∼=
F/ kerϕ.

Proof. From 1.36 we have

(imϕ)P = imϕP ∼= FP/(kerϕ)P = FP/ kerϕP = (F/ kerϕ)P .

Hence imϕ ∼= F/ kerϕ for 1.22.

Definition 1.44. A sequence of sheaves and morphisms of sheaves

...! F i−1 ϕi−1

−! F i ϕi

−! F i+1 ! ...

is exact if kerϕi = imϕi−1 for every i.

Proposition 1.45. The sequence 0 ! F ϕ
−! G is exact if and only if ϕ is

injective and F ϕ
−! G ! 0 is exact if and only if ϕ is surjective.

Proof. The zero morphism has trivial image and kernel.
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Proposition 1.46. Let F ′ be a subsheaf of a sheaf F . Then the projection

map F ! F/F ′ is surjective with kernel F ′.

Proof. For any open subset U ⊂ X, the map F(U) ! F(U)/F ′(U) is sur-

jective, hence F ! F/F ′ is surjective.

The kernel of the map contains F ′, obviously. Conversely, let s ∈ F(U)

such that s 7! 0 ∈ F(U)/F ′(U), for some U ⊂ X. Hence there exists an

open covering
⋃
i Vi = U such that s|Vi ∈ F ′(Vi) for any i, so s ∈ F ′(U).

Corollary 1.47. The sequence 0! F ′ ! F ! F/F ′ ! 0 is exact.

Proof. It follows from the last two propositions.

Definition 1.48. Let f : X ! Y a continuous map of topological spaces and

let F ,G be sheaves on X and Y , respectively. We define:

1. the direct image sheaf f∗F to be the sheaf on Y associated to the

presheaf V 7! F(f−1(V ));

2. the inverse image sheaf f−1G to be the sheaf on X associated to the

presheaf U 7! lim−!G(V ), where the direct limit is taken on the subsets

V ⊂ Y such that f(U) ⊂ V .

Definition 1.49. Let i : Z ! X be an injection of topoogical spaces and F
a sheaf on X. The restriction of F to Z is the sheaf F|Z := i−1F on Z.

Remark 1.50. If Z ⊂ X is an open subset of X and F is a sheaf on X,

then F|Z(U) = F(U ∩ Z), for any open subset U of Z.
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Chapter 2

Schemes

In this chapter we present the concept of schemes, the central notion to

study abstract algebraic varieties. Roughly speaking, a scheme is a collection

of affine schemes, a generalization of affine algebraic varieties (Example 1.9)

deeply described in the first two sections.

There are two important classes of scheme: the projective ones and al-

gebraic varieties. In the last two sections we explain many fundamental

concepts to understand these kinds of schemes.

2.1 Spectrum of a Ring

We introduce the notion of spectrum of a ring, the first step to define

schemes.

Definition 2.1. Let R be a ring. The spectrum of R is the set of the prime

ideals of R, denoted with SpecR. We define:

1. V (E) := {p ∈ SpecR : p ⊃ E} for every E ⊂ R. If f ∈ R, we write

V (f) instead of V ((f));

2. D(f) := V (f)C = {p ∈ SpecR : f /∈ p} in SpecR, for every f ∈ R.

Proposition 2.2. We have the following:

15
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i) if a is the ideal generated by E, then V (E) = V (a) = V (
√
a), where

√
a = {a ∈ R : an ∈ a, for some n ∈ N} is the radical of a;

ii) V (0) = SpecR, V (SpecR) = ∅;

iii) if (Ei)i∈I is a family of subsets of R, then

V

(⋃
i∈I

Ei

)
=
⋂
i∈I

V (Ei);

iv) V (a ∩ b) = V (ab) = V (a) ∪ V (b) for all ideals a, b ⊂ R.

These results show that the sets V (E) satisfy the closed axioms in topological

spaces. The relative topology on SpecR is called Zariski topology.

Proof. The proof is an easy check. See [6, Chapter II.2] for details.

Proposition 2.3. A base for Zarisky’s topology in SpecR is given by the

sets D(f) with f ∈ R. They’re called principal open subsets of SpecR.

Proof. We have D(f) ∩ D(g) = D(fg) for any f, g ∈ R, because D(f) ∩
D(g) = V (f)C ∩ V (g)C = (V (f) ∪ V (g))C = (V (fg))C = D(fg). Moreover,

V (1) = SpecR, so the set of D(f) is a base for Zariski topology.

Example 2.4. The space SpecZ consists of all the prime ideals (p) with

p ∈ Z prime number and (0). The Zariski topology on SpecZ is the cofinite

topology, where the closed sets are the finite ones. If C is a closed subset of

SpecZ then C = V (a) with a ideal in Z. But Z is a principal ideals domain,

then a = (a) with a ∈ Z. If p1, .., pn are the prime numbers which divide a,

then C = {(p1), ..., (pn)}.

We observe that SpecR is not always a T1 space, that is it may contain

non-closed points.

Proposition 2.5. If R is a ring and p ∈ SpecR, then {p} = V (p). In

particular {p} is closed in SpecR if and only if p is maximal in R.
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Proof. The set V (p) is closed in SpecR and {p} ⊂ V (p). Let V = V (a) be

a closed subset of SpecR such that p ∈ V . Then p ⊃ a, so for any q ∈ V (p)

we have q ⊃ p ⊃ a, that is q ∈ V (a). Therefore V (p) ⊂ V .

Example 2.6. If k is a field, then Spec k is one point.

Let us consider R = k[x], with k algebraically closed. Then, the affine

line over k is the space A1
k := SpecR = {(x − a) : a ∈ k} ∪ {(0)}. Its

closed points (or maximal ideals) are in 1-1 corrispondence with the points

of k = A1. Moreover, there is a dense point (0), since {(0)} = V ((0)) = A1
k.

The affine n-dimensional space over k is An
k := Spec k[x1, ..., xn]. If k

is algebraically closed, the closed points are (x1 − a1, ..., xn − an), where

a1, ..., an ∈ k (this is not obvious, but a consequence of Hilbert’s Nullstellen-

satz, see [1]). Therefore, closed points of An
k are in 1-1 corrispondence with

points of An.

Before moving forward in the description of spectrum of rings, we need a

few results of Commutative Algebra. See [1, Chapter 1] for proofs.

Proposition 2.7. Let R 6= 0 be a ring. Then, there exists a maximal ideal

in R. Hence, for every non-unit f ∈ R, there is a maximal ideal m such that

f ∈ m.

Definition 2.8. Let R be a ring. The nilradical N (R) of R is the set of the

nilpotent elements of R.

Proposition 2.9. The nilradical of a ring R is the intersection of all prime

ideals of R.

Proposition 2.10. The radical of an ideal a ⊂ R is the intersection of all

prime ideals in R which contain a.

Proposition 2.11. In every ring R 6= 0 we have:

i) D(f) = ∅ ⇐⇒ f is nilpotent;

ii) D(f) = SpecR⇐⇒ f is a unit;
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iii) D(f) = D(g)⇐⇒
√

(f) =
√

(g).

Proof. i) D(f) = ∅ ⇐⇒ V (f) = SpecR ⇐⇒ f ∈ p, for every prime ideal

p⇐⇒ f ∈ N .

ii) D(f) = SpecR⇐⇒ V (f) = ∅ ⇐⇒ f is a unit.

iii) D(f) = D(g) ⇐⇒ V (f) = V (g) ⇐⇒
√

(f) = {p ⊃ (f)} = {p ⊃
(g)} =

√
(g).

Remark 2.12. Let ϕ : R! S be a ring homomorphism. If q ∈ SpecS, then

p = ϕ−1(q) is a prime ideal of R. Then ϕ induces a map

f : SpecS ! SpecR, q 7! p = ϕ−1(q).

However images of ideals are not always ideals.

Definition 2.13. Let ϕ : R ! S be a ring homomorphism. If a ⊂ R is an

ideal we define the extended ideal ae as the ideal generated by ϕ(a).

Proposition 2.14. Let ϕ : R ! S be a ring homomorphism. Then, the

induced map f : SpecS ! SpecR is continuous. More precisely:

i) ∀a ∈ SpecR, f−1(V (a)) = V (ae);

ii) ∀g ∈ R, f−1(D(g)) = D(ϕ(g)).

Proof. i) Let a be an ideal of R. Then

f−1(V (a)) = {p ∈ SpecS : f(p) ∈ V (a)} = {p : ϕ−1(p) ⊃ a}

= {p : p ⊃ ϕ(a)} = V (ϕ(a)) = V (ae).

ii) Let g ∈ R. Then

f−1(D(g)) = {p ∈ SpecS : f(p) ∈ D(g)} = {p : g /∈ ϕ−1(p)}

= {p : ϕ(g) /∈ p} = D(ϕ(g)).
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Proposition 2.15. Let ϕ : R ! S be a surjective ring homomorphism. Let

f : SpecS ! SpecR be the induced map. Then SpecS is homeomorphic to

V (kerϕ) via f .

Proof. By the surjectivity of ϕ, we have S ∼= R/ kerϕ. We know there is a

1-1 corrispondence between prime ideals of S and prime ideals of R which

contain kerϕ. Hence f : SpecS ! V (kerϕ) is bijective and continuous by

2.14. We show that f is a closed map.

Let V = V (a) be a closed subset of SpecS and let b = ϕ−1(a). Then,

f(V ) = {p ∈ SpecR : p = f(q), q ⊃ a} = {p : p = ϕ−1(q), ϕ−1(q) ⊃ ϕ−1(a)}

= {p : p ⊃ b} = V (b),

so f is a homeomorphism.

Corollary 2.16. Let R be a ring and let a be an ideal of R. Then SpecR/a

is homeomorphic to V (a).

Now we introduce the concept of irreducible topological space.

Definition 2.17. A topological space X is irreducible if for every non-empty

open subsets U, V ⊂ X of X, U∩V = ∅, or, equivalently, if every open subset

of X is dense.

We note that in locally euclidean spaces this is an irrelevant definition,

since any T2 space is not irreducible.

Proposition 2.18. Let R be a ring. Then SpecR is irreducible if and only

if N (R), the nilradical of R, is a prime ideal.

Proof. Let us suppose SpecR irreducible. If f, g /∈ N (R), then D(f), D(g) 6=
∅. By proof of 2.3, we have D(f) ∩ D(g) = D(fg) for any f, g ∈ R, thus

D(fg) 6= ∅ by assumption, so fg /∈ N .

Conversely, if the radical of R is a prime ideal, it lies in every open subset

U ⊂ SpecR, hence SpecR is irreducible.
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Example 2.19. The spaces SpecZ and An
k are irreducible, since the nil-

radicals of Z and k[x1, ..., xn] are zero ideals in integral domains, therefore

prime.

Example 2.20. Let f = xy ∈ R = k[x, y]. Then, SpecR/(f) is not irre-

ducible, since N (R/(f)) = (xy) which is not a prime ideal.

Lemma 2.21. Let X be a topological space and Y ⊂ X. If Y is irreducible,

then Y is irreducible.

Proof. Let us suppose there exist proper open subsets U, V ⊂ Y such that

U ∩ V = ∅. Then Y ⊂ U or Y ⊂ V by assumption. If Y ⊂ U , V C ⊃ Y and

it is a closed subset of Y , which is closed in X. Hence Y C is a closed subset

of X which contains Y , so Y C = Y and U = ∅. This is absurd.

Proposition 2.22. Let X be a topological space and let Y ⊂ X be irreducible.

Then, Y is contained in a maximal irreducible subspace of X. These maximal

subspaces are closed and cover X. They’re called irreducible components of

X.

Proof. Let Σ = {Z ⊂ X : Z irreducible, Y ⊂ Z} 6= ∅, since Y ∈ Σ. We want

to apply Zorn’s Lemma (see [1, Chapter 1]) to Σ equipped with the inclusion

relation. Let {Zi}i∈I be a chain in Σ, that is Zi ⊂ Zj or Zj ⊂ Zi for any

i, j ∈ I, and let T =
⋃
i∈I Zi. The space T is irreducible, since for any open

subset U ⊂ T and for every x ∈ T \U , there exists i ∈ I such that x ∈ Zi\U ,

but U ∩ Zi is open in Zi and U ∩ Zi = U ∩ Zi in Zi. Since Zi is irreducible,

x cannot exists, so every open subset of T is dense. Clearly T ⊃ Y , hence

T ∈ Σ and it is an upper bound of the chain. By Zorn’s Lemma, Σ has

maximal elements.

Every irreducible component is closed, since the closure of an irreducible

subspace is again irreducible by 2.21. Finally, every {x} ∈ X is an irreducible

subspace, hence it is contained in a maximal irreducible subspace of X.

Example 2.23. Let k be a field and let An be the affine space (Defini-

tion 1.9). Thus, every irreducible affine subvariety of An can be defined by
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polynomials f1, ..., fn such that (f1, ..., fn) is a prime ideal in k[x1, ..., xn].

Conversely, every prime ideal in k[x1, ..., xn] defines an irreducible subvariety

of An (see [6, Chapter I.1]). Thus, there is a 1-1 corrispondence between

irreducible subvarieties of An and points of Spec k[x1, ..., xn].

2.2 Structure Sheaves

Let R be a ring. Our target is to define a sheaf of rings on SpecR. To

do this, let us briefly recall the notion of localization of rings.

Definition 2.24. Let R be a ring. We call R local ring if there exists a

unique maximal ideal m in R.

If R, S are local rings with maximal ideals m and n, respectively, we

say that ϕ : R ! S is a local homomorphism of local rings if it is a ring

homomorphism such that ϕ−1(n) = m.

Proposition 2.25. Let R be a ring and let m be a maximal ideal in R. If

each a ∈ R \m is a unit, then R is a local ring with maximal ideal m.

Proof. If m′ is a maximal ideal in R, then m′ 6⊂ m, so 1 ∈ m′.

Definition 2.26. Let R be a ring. A subset C ⊂ R is called closed mul-

tiplicatively system if 1 ∈ C and ∀a, b ∈ C, ab ∈ C. We define the ring of

fractions of R with respect to C to be the set C−1R := (R × C)/∼ where

(a, s) ∼ (b, t) if and only if there exists u ∈ C such that u(at − bs) = 0,

∀a, b ∈ R, ∀s, t ∈ C. The equivalence class of (a, s) is denoted with a/s.

The set C−1R has a structure of ring given by the well defined operations

a

s
+
b

t
:=

at+ bs

st
,

a

s
· b
t

:=
ab

st
, ∀a, b ∈ R, ∀s, t ∈ C.

If M is a R-module, we can define in the same way the R-module C−1M .

Definition 2.27. Let R be a ring, p ⊂ R a prime ideal and f ∈ R. Then

C1 = R \ p and C2 = {fn, n ∈ N} are closed multiplicatively systems. We



22 2. Schemes

denote with Rp := C−11 R and with Rf := C−12 R. In particular, Rp is called

localization of R at p.

Let M be a R-module. We denote with Mp := C−11 M and with Mf :=

C−12 M.

Proposition 2.28. Let R be a ring and C a closed multiplicatively system

in R. Then, the prime ideals in C−1R are in 1-1 corrispondence with the

prime ideals of R which don’t meet C. This map is p 7! C−1p, where C−1p

is the ring of fractions of the R-module p.

Proof. See [1, Chapter 3].

Remark 2.29. The set Rp consists of all the fractions a/f with f /∈ p. Every

prime ideal C−1q inRp is in corrisponcence with a prime ideal q ofR such that

q ⊂ p. Therefore, Rp is a local ring with maximal ideal pRp = C−1p.

Definition 2.30. Let R be a ring and SpecR its spectrum. For every open

subset U ⊂ SpecR we define O(U) to be the set of functions s : U !
⊔

p∈U Rp

such that

1. for each p ∈ U , s(p) ∈ Rp;

2. for each p ∈ U there exists V ⊂ U neighborhood of p and a, f ∈ R

such that ∀q ∈ V we have s(q) = a/f and f /∈ q.

With the natural sum and product of functions, O(U) is a ring ∀U ⊂ X.

This presheaf (with the natural restriction maps) is a sheaf called structure

sheaf of SpecR.

Proposition 2.31. Let R be a ring. Then, for every p ∈ SpecR we have

Op
∼= Rp. Therefore Op is a local ring.

Proof. Let ϕ : Op ! Rp defined by ϕ(sp) = s(p) ∈ Rp, where s ∈ O(U) and

(U, s) is a representative of sp. It is clearly well defined and it is a morphism

of rings.
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Let a/f ∈ Rp, with a, f ∈ R and f /∈ p. On D(f) = {p ∈ SpecR : f /∈ p},
s = a/f is a well defined section of O(D(f)) and ϕ(sp) = s(p) = a/f. Hence

ϕ is surjective.

Let sp, tp ∈ Op such that ϕ(sp) = ϕ(tp). We may assume there exists an

open subset U such that s = a/f and t = b/g are representatives of sp and tp

on U . Thus a/f = b/g in Rp, so there is h /∈ p such that h(ag− bf) = 0. For

any q ∈ V = D(f)∩D(g)∩D(h) we have f, g, h /∈ q, so s(q) = t(q). Since V

is an open neighborhood of p we obtain sp = tp, so ϕ is an isomorphism.

Proposition 2.32. Let R be a ring. Then, for every f ∈ SpecR we have

O(D(f)) ∼= Rf . In particular Γ(SpecR,O) ∼= R.

Proof. See [6, Chapter II.2].

Definition 2.33. A ringed space is a pair (X,OX), where X is a topological

space and OX is a sheaf of rings on X.

A locally ringed space is a ringed space (X,OX) such that for each P ∈ X
the stalk OX,P is a local ring.

Example 2.34. Let R be a ring. Then (SpecR,O) is a locally ringed space.

It follows from 2.31.

Definition 2.35. A morphism of ringed spaces from (X,OX) to (Y,OY ) is

a pair (f, f#), where f : X ! Y is a continuous map and f# : OY ! f∗OX
is a morphism of sheaves on Y , with f#(V ) : OY (V )! OX(f−1(V )) for any

open V ⊂ Y (Definition 1.48).

Remark 2.36. Let (f, f#) : (X,OX) ! (Y,OY ) be a morphism of ringed

spaces and let P ∈ X. We have that f# induces a ring homomorphism

f#(V ) : OY (V ) ! OX(f−1(V )) for each V ⊂ Y such that f(P ) ∈ V . Then

we have a map

OY,f(P ) = lim−!OY (V ) −! lim−!OX(f−1(V )).

The direct system in the rightside direct limit is ”smaller” then the di-

rect system of the neighborhood of P , but there is a natural projection

lim−!OX(f−1(V ))! OX,P .
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This shows that f# induces a ring homomorphism on the stalks, denoted

with f#
P : OY,f(P ) ! OX,P for any P ∈ X.

Definition 2.37. A morphism of locally ringed spaces is a morphism of

ringed spaces (f, f#) such that the induced map f#
P : OY,f(P ) ! OX,P is a

local homomorphism of local rings for any P ∈ X.

A isomorphism of locally ringed spaces is a morphism with two-sided

inverse, that is a morphism (f, f#) with f a homeomorphism of topological

spaces and f# an isomorphism of sheaves.

Proposition 2.38. Let R, S be two rings.

i) Any homomorfism of rings ϕ : R ! S induces a natural morphism of

locally ringed space (f, f#) : (SpecS,OSpecS)! (SpecR,OSpecR).

ii) Any morhism of locally ringed spaces from SpecS to SpecR is induced

by a homomorphism of rings ϕ : R! S.

Proof. See [6, Chapter II.2].

2.3 Schemes

Finally, we can define the category of schemes.

Definition 2.39. An affine scheme is a locally ringed space isomorphic to

(SpecR,OSpecR) for some ring R.

A scheme is a locally ringed space (X,OX) which is locally an affine

scheme, that is for each P ∈ X there exists an open neighborhood U of P

such that (U,OX |U) is an affine scheme. Each one of these open sets are

called affine open subset of X.

A morphism of schemes is a morphism of locally ringed spaces and an

isomorphism of schemes is a morphism with a two-sided inverse.

Example 2.40. For any ring R, (SpecR,O) is a scheme, since it is a locally

ringed space.
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Let U be an open subset of a scheme X. Then (U,OX |U) is a scheme (see

[5, Chapter 3.2]).

We outline the glueing of schemes, which allows us to build non-affine

schemes.

Definition 2.41. Let X1, X2 be schemes and let U1 ⊂ X1 and U2 ⊂ X2

be affine open sets with an isomorphism ϕ : (U1,OX1|U1) ! (U2,OX2|U2) of

locally ringed spaces. We define the glueing of X1 and X2 along U1 and U2

via ϕ to be a ringed space in the following way.

The topological space is X = (X1 t X2)/∼ where x1 ∼ ϕ(x1) for each

x1 ∈ U1, with the quotient topology.

Let ψ1 : X1 ! X and ψ2 : X2 ! X be the natural immersions. The

structure sheaf OX is V 7! OX(V ), where OX(V ) is the set of pairs (s1, s2),

where s1 ∈ OX1(i
−1
1 (V )) and s2 ∈ OX2(i

−1
2 (V )), such that ϕ(s1|U1∩i−1

1 (V )) =

s2|U2∩i−1
2 (V ).

We can generalize this construction glueing n schemes X1, ..., Xn along

open subsets U1, ..., Un if, for any i, j, we have open subsets Uij ⊂ Ui and

isomorphisms of locally ringed spaces ϕji : (Uij,OXi
|Uij

) ! (Uji,OXj
|Uji

),

such that

ϕkj ◦ ϕji = ϕki on Uij ∩ Uik. (2.1)

For more details see [12, Chapter 3.2] or [5, Chapter 3.5].

Example 2.42. Let k be a field, X1 = Spec k[s], X2 = Spec k[t]. Let us

consider the open subsets U1 = X1 \ (s) and U2 = X2 \ (t). We note that

U1 = D(s) = Spec k[s, 1/s], indeed, from 2.28, there is a homeomorphism

D(s) ∼= Spec k[s]s = Spec k[s, 1/s]. In the same way U2
∼= Spec k[t, 1/t].

Let ϕ1, ϕ2 : U1 ! U2 be isomorphisms of locally ringed spaces defined by

ϕ1(f(s)) = (f(t)) and ϕ2(f(s)) = (f(1/t)).

We define:

1. the line with two origins to be the glueing of X1 and X2 along U1 and

U2 via ϕ1;
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2. the projective line P1
k over k to be the glueing of X1 and X2 along U1

and U2 via ϕ2.

We note that both of these schemes have A1
k ∪{P} as set, but later we

will see they have very different properties.

3. the projective n-space Pnk over k is obtained by glueing n+ 1 copies of

Spec k[x1, ..., xn] in the following way. We take

Ui = Spec k

[
s0
si
, ...,

ŝi
si
, ...,

sn
si

]
,

to distinguish the spaces,

Uij = Spec k

[
s0
si
, ...,

ŝi
si
, ...,

sn
si
,
si
sj

]
and ϕji : Uij ! Uji is defined by sk/si 7! (si/sj)(sk/si), for any k and

si/sj 7! sj/si.

4. the projective n-space PnR over R, where R is a ring, to be the scheme

obtained by the construction of Pnk , with an arbritrary ring R instead

of k.

Proposition 2.43. Let R be a ring. Then, the global sections of OX = OPn
R

are Γ(X,OX) = R.

Proof. Let t ∈ Γ(X,OX) be a global section of X. We set y1 = s0/si, ..., yn =

sn/si and z1 = s0/sj, ..., zn = sn/sj, where i and j are fixed. We have

t = (t0, ..., tn) with ti ∈ OUi
(Ui) = R[s0/si, ..., ŝi/si, ..., sn/si] = R[y1, ..., yn]

and ϕji(ti|Uij
) = tj|Uji

, for any i, j. Therefore

1. ti|Uij
∈ R[y1, ..., yn, 1/yj],

2. tj|Uji
∈ R[z1, ..., zn, 1/zj],

3. ti|Uij
(y1, ..., yn, 1/yj) = tj|Uji

(z1, ..., zn, 1/zi).
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If we rename the variables zk, we have

ti(y1, ..., yj, ..., yn) = tj(y1, ..., 1/yj, ..., yn),

so the variable yj doesn’t occur in ti and tj. Repeating for any i, j and

applying the condition (2.1), we obtain t0 = ... = tn = c ∈ R.

Corollary 2.44. The projective space PnR is not an affine scheme.

Proof. If we suppose PnR = SpecS, for some ring S, then Γ(PnR,OPn
R

) = S,

so PnR = SpecR by the Proposition above. By construction of PnR, this is

absurd.

Definition 2.45. Let X be a scheme. It’s irreducible if it’s irreducible as a

topological space (Definition 2.17). It is reduced if for every open set U , the

ring OX(U) is reduced, that is it has no nilpotent elements. It’s integral if

for every open set U , the ring OX(U) is an integral domain.

Remark 2.46. Let U = SpecR be an affine open subset of an integral

scheme X. The ring OX(U) is an integral domain, but OX(U) ∼= R by 2.32,

so R is an integral domain.

Proposition 2.47. A scheme X is integral if and only if it is reduced and

irreducible.

Proof. See [6, Chapter II.3].

Corollary 2.48. Let R be an integral domain. Then SpecR is integral.

Proof. From 2.18 SpecR is irreducible. For any closed multiplicatively sys-

tem C in R, C−1R has no nilpotent element since R does (See [1, Chapter

3]). Hence OSpecR(D(f)) has no nilpotent element for any f ∈ R, and the

open sets D(f) cover SpecR.

Now we want to explain in a clearer way morphisms of schemes. First,

we need the following definition.
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Definition 2.49. Let S be a scheme. A scheme over S is a scheme X

together with a morphism f : X ! S. A scheme over a field k is a scheme

over Spec k.

Proposition 2.50. Let X, Y be schemes. Let
⋃
i Ui = X be an open covering

of X and let fi : Ui ! Y be morphisms of schemes for any i. Then, there is

a unique morphism of schemes f : X ! Y such that f |Ui
= fi.

Proof. See [5, Chapter 3.3].

Remark 2.51. Let R be a ring and let f : X ! SpecR a morphism of

schemes. Thus, we have a morphism of sheaves f# : OSpecR ! f∗OX . In

particular we have a morphism of rings R ! Γ(X,OX). Hence, the global

section of a scheme over a field k form a k-algebra.

Conversely, let R! Γ(X,OX) be a morphism of rings. If
⋃
i SpecRi = X

is an affine open covering of X, then we have morphisms R! OX(SpecRi) =

Ri for any i, by using restriction morphisms of OX . By Propostion 2.38, we

have morphisms of schemes SpecRi ! SpecR for any i. Such morphisms

match on the intersections, hence it is induced a unique morphism X !

SpecR by 2.50.

Example 2.52. The projective space Pnk is a scheme over k, since Γ(Pnk ,OPn
k
) =

k. The morphism Pnk ! Spec k is induced by idk, accordingly with the remark

above.

Corollary 2.53. The affine scheme SpecZ is the final object in the category

of the schemes.

Proof. It follows from Remark 2.51, since Z is the initial object in the cate-

gory of commutative rings.

We conclude this section with the definition of closed immersion and

closed subscheme of a scheme.

Definition 2.54. Let (f, f#) : X ! Y be a morphism of schemes. We

call (f, f#) a closed immersion if f(X) is closed in Y , f : X ! f(X) is a

homeomorphism and f# : OY ! f∗OX is surjective.
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A closed subscheme of X is a closed subset Z ⊂ X together with a

structure of scheme (Z,OZ) and a closed immersion Z ! X.

Proposition 2.55. Let ϕ : R! S be a surjective morphism of rings. Then,

the induced morphism f : SpecS ! SpecR is a closed immersion.

Proof. We know f is a homeomorphism on its image from 2.15. We have to

show that f# : OSpecR ! f∗OSpecS is surjective. The induced map on the

stalks gives rise to a map Rp ! Sp for any p ∈ SpecR, which is surjective

since surjectivity is a local property of rings (see [1, Chapter 3]). Thus, f#

is surjective for the properties of morphism of sheaves (Lemma 1.37).

Remark 2.56. Let R be a ring and a ⊂ R an ideal. The projection R !

R/a is surjective, so SpecR/a ! SpecR is a closed immersion. We note

that there are many scheme structures on SpecR/a. Indeed we know that

SpecR/a ∼= V (a) as topological space (Corollary 2.16), so we can take b

such that V (a) = V (b). As example, in k[x] we have V (x) = V (x2), but

in the second case the scheme associated is not reduced (x ∈ OSpecR/(x2)

is nilpotent). We will give more details in Chapter 3 (Remark 3.11 and

Proposition 3.12).

Definition 2.57. A morphism of schemes f : X ! Y is locally of finite type

if there exists a covering of Y given by open affine subsets Vi = SpecBi

such that for each i, the set f−1(Vi) can be covered by open affine subsets

Uij = SpecAij, with Aij a finitely generated Bi-algebra.

We say f is of finite type if it’s locally of finite type with finite subsets

Uij which cover f−1(Vi) for each i.

Remark 2.58. Let R be a ring and let X = SpecR. We consider f : X !

Spec k a morphism of affine schemes of finite type. By definition, R is a

finitely generated k-algebra, that is R ∼= k[x1, ..., xn]/a, with a an ideal of

k[x1, ..., xn]. Hence, X is a closed subscheme of An
k , for some n.

Proposition 2.59. Let X be a scheme of finite type over a field k and let Y

be a closed subscheme of X. Then Y is of finite type over k.

Proof. See [5, Chapter 3.16].
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2.4 Projective Spaces

In the following, we will focus on the projective space Pn, describing

it without glueing. We need to some notions of Commutative Algebra on

graded rings.

Definition 2.60. A graded ring is a ring S together with a family of sub-

groups {Sd}d∈N of S such that

S =
⊕
d≥0

Sd,

and Sd · Sd′ ⊂ Sdd′ , ∀d, d′ ≥ 0. Thus, S0 is a subring of S and each Sd is a

S0-submodule of S.

The elements of Sd are called homogeneous of degree d and we write

deg a = d for each a ∈ Sd.
An ideal a ⊂ S is an homogeneous ideal of S if a =

⊕
d≥0(Sd ∩ a).

We denote with S+ :=
⊕

d>0 Sd the homogeneous ideal called irrilevant

ideal of S.

We have the following properties on homogeneous ideals. See [4, Chapter

8.3] or [5, Chapter 13.1] for the proof.

Proposition 2.61. Let S be a graded ring.

i) Let a be an ideal of S. Then, a is homogeneous if and only if it can be

generated by homogeneous elements of S.

ii) Sum, product, intersection and radical of homogeneous ideals are ho-

mogeneous ideals.

iii) Let a be a homogeneous ideal of S. Then, a is prime if and only if for

every f, g ∈ S homogeneous, fg ∈ a implies f ∈ a or g ∈ a.

Definition 2.62. Let S be a graded ring. We define ProjS := {p ⊂
S prime ideal : p + S+}.

We define:
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1. V (a) := {p ∈ ProjS : p ⊃ a} for every a ⊂ S homogeneous ideal;

2. D(f) := V (f)C in ProjS for every f ∈ S+ homogeneous.

Proposition 2.63. We have that:

i) V (0) = ProjS, V (ProjS) = ∅;

ii) if (ai)i∈I is a family of homogeneous ideals of S, then

V

(⋃
i∈I

ai

)
=
⋂
i∈I

V (ai);

iii) V (a∩b) = V (ab) = V (a)∪V (b) for every homogeneous ideals a, b ⊂ S.

These results show that the sets V (a) satisfy the closed axioms in topological

spaces. The relative topology on ProjS is called Zariski topology. Moreover, a

base for this topology is given by the sets D(f), where f ∈ S+ is homogeneous.

Proof. The proof is the same as in 2.2 and 2.3.

Definition 2.64. Let R be a ring and let S = R[x0, ..., xn] be the graded

ring with Sd = {f ∈ S : deg(f) = d} for each d ≥ 0. We call PnR := ProjS

the n-dimensional projective space on R.

Remark 2.65. Let k be a closed algebraically field.

1. P0
k = {(0)}.

2. P1
k = {(ax0 + bx1) : a, b ∈ k} ∪ {(0)}, that is the closed points of P1

k

are in 1-1 corrispondence with the set of lines in k2, the standard 1-

dimensional projective space.

Definition 2.66. Let S be a graded ring, C a closed multiplicatively system

in S. We call the degree of a/f ∈ C−1S the integer deg(a/f) := deg a−deg f.

Let p ∈ ProjS and f ∈ Sd homogeneous of degree d.

1. If C = {g ∈ S : g homogeneous, f /∈ p} in S, we denote with S(p) the

set of fractions in C−1S of degree 0.
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2. If C = {gn : n ∈ N} in S, then we denote with S(f) the set of fractions

in T−1S of degree 0.

Example 2.67. If R is a ring, S = R[x0, ..., xn] and p is a homogeneous ideal

in S, then

S(p) =

{
f

g
: f, g ∈ R[x0, ..., xn] homogeneous, g /∈ p and deg f = deg g

}
.

If g ∈ Sd, then

S(g) =

{
f

gn
: f ∈ R[x0, ..., xn] homogeneous, deg f = nd, n ∈ N

}
.

Let us define a structure sheaf on ProjS.

Definition 2.68. Let S be a graded ring. For any open subset U ⊂ ProjS

we define O(U) to be the set of functions s : U !
⊔

p∈U S(p) such that

1. for any p ∈ U , s(p) ∈ S(p);

2. for any p ∈ U there exists an open neighborhood V ⊂ U of p and

homogeneous elements a, f ∈ S, such that deg a = deg f and ∀q ∈ V
s(q) = a/f , with f /∈ q.

With the natural sum and product of functions, and the natural restrictions,

O is a presheaf of rings. It is a sheaf called structure sheaf of ProjS.

Proposition 2.69. Let S be a graded ring. Then, for every p ∈ ProjS we

have Op
∼= S(p).

Proof. The proof is the same as in 2.31.

Proposition 2.70. Let S be a graded ring and let f ∈ S+ be a homogeneous

element. Then (D(f),O|D(f)) is a ringed space for the Proposition above.

We have (D(f),O|D(f)) ∼= SpecS(f).

Proof. See [6, Chapter II.2].
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Corollary 2.71. The ringed space (ProjS,O) is a scheme, where S is a

graded ring.

Proof. It follows from 2.70, since the open subsets D(f) cover ProjS from

2.63.

We have the following properties.

Proposition 2.72. Let ϕ : S ! T a morphism of graded rings (a preserv-

ing degree homomorphism of rings). Let f : ProjT ! ProjS be a function

defined by p 7! ϕ−1(p), for any p ∈ ProjT . Then, f is a well defined mor-

phism of schemes and it is a closed immersion which induces an isomorphism

ProjT ∼= Proj(S/ kerϕ).

Proof. See [5, Chapter 13.2].

Corollary 2.73. Let S be a graded ring and let a be an homogeneous ideal

of S. Then, ProjS/a is a closed subscheme of ProjS.

Proposition 2.74. Let R be a ring and let us consider the projective space

X = PnR over R. Let Y be a closed subscheme of X. Then, there exists a

homogeneous ideal a ⊂ S = R[x0, ..., xn], such that Y = ProjS/a.

Proof. See [6, Chapter II.5].

Corollary 2.75. For every closed subscheme Y of PnR, there exists a unique

homogeneous ideal a of R[x0, ..., xn] such that Y ∼= V (a).

2.5 Algebraic Varieties

In this section we can define (abstract) algebraic varieties. To do this, we

will explain the concept of separatedness and properness.

Finally, we give a short introduction of the dimensional theory of rings

and topological spaces.



34 2. Schemes

Definition 2.76. Let S be a scheme and let f : X ! S, g : Y ! S be

schemes over S. The fibred product of X and Y over S is a scheme, denoted

with X×SY , together with morphisms p1 : X×SY ! X and p2 : X×SY ! Y

such that the diagram

X ×S Y

X Y

S

p1 p2

f g

is commutative and such that for each scheme Z and morphisms q1 : Z ! X

and q2 : Z ! Y such that

Z

X Y

S

q1 q2

f g

is commutative, there exists a unique morphism θ : Z ! X ×S Y such that

Z X ×S Y

X Y

S

θ

is commutative.

If S = SpecZ we write X × Y .

Proposition 2.77. Let X, Y be schemes over a scheme S. There exists the

fibred product X ×S Y and it is unique up to unique isomorphism.

Proof. Let X = SpecU , Y = SpecV , S = SpecW . Then X ×S Y =

Spec(U ⊗W V ). See [6, Chapter II.3] for the complete proof.
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Example 2.78. Let X ! Spec k be a scheme over a field k and let k ↪! k′

be a field extension. We have a morphism of affine schemes Spec k′ ! Spec k,

so we can consider the fibred product X ×k k′.

X ×k k′ Spec k′

X Spec k

In particular, there is a morphism X ×k k′ ! Spec k′, that is X ×k k′ is a

scheme over k′. This construction is called extension of scalars.

Now we define the fiber of a morphism of scheme to be a particular case

of fibred product.

Definition 2.79. Let Y be a scheme and let Q ∈ Y . We know OQ,Y is a

local ring with maximal ideal mQ. We set k(y) := OQ,Y /mQ. This field is

called residue field of Q.

Let p : X ! Y be a morphism of schemes. We define the fiber of p over

Q to be the fibred product XQ := X ×Y Spec k(Q).

Proposition 2.80. In the notations above, we have that XQ is homeomor-

phic to p−1(Q) as topological spaces.

Proof. See [5, Chapter 4.5].

Example 2.81. Let X = Spec(k[x, y]/(xy − 1)) =: SpecR and Y = A1
k =

Spec k[x], with k field. We note that X corresponds to the hyperbole {xy =

1} in the affine plane. Let k[x] ↪! k[x, y] ! R, where the latter morphism

is the natural projection to the quotient, and we consider the associated

morphism of schemes f : X ! Y . For any p = (x − a) ∈ Y , we have

Op,Y
∼= k[x]p, so the residue field of p is k[x]p/pk[x]p ∼= (k[x]/p)p (see [1,

Chapter 3]).

1. If a 6= 0, then

Xp = SpecR×Spec k[x] Spec k

= Spec(k[x, y]/(xy − 1)⊗k[x] k[x]/(x− a))

= Spec(k[x, y]/(x− a, xy − 1)) ∼= Spec k,
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which is one point. For the details of the computation, see [3, Chapter

4].

2. If a = 0, in a similar way we have Xp
∼= Spec k[x, y]/(1) = ∅.

We observe that the projetion of the hyperbole on the x-axis has empty fiber

if and only if the point is the origin.

We come to the definition of separated scheme.

Definition 2.82. Let f : X ! Y be a morphism of schemes. The diagonal

morphism ∆ : X ! X ×Y X is the unique morphism such that p1 ◦ ∆ =

p2 ◦ ∆ = idX . We say that f is separated if ∆ is a closed immersion. In

this case we say that X is separated over Y . A scheme X is separated if it’s

separated over SpecZ.

Proposition 2.83. Let X be a scheme over a field k. X is separated over k

if and only if for any affine open subsets U, V of X, U ∩ V is affine and the

canonical homomorphism OX(U)⊗k OX(V )! OX(U ∩ V ) is surjective.

Proof. See [11, Chapter 3.3].

Proposition 2.84. We have the following:

i) Each affine scheme SpecR is separated for any ring R.

ii) The line with two origins is not separated.

iii) The projective space PnR over any ring R is separated.

Proof. i) The diagonal morphism ∆: SpecR ! Spec(R ⊗ R) is induced by

R ⊗ R ! R such that a ⊗ b 7! ab, which is surjective. Hence ∆ is a closed

immersion by 2.55.

ii) Let X be the line with two origins, obtained by glueing two copies of

Y = A1
k along U = Y \ (0). The condition of the Proposition above fails,

because if U = Spec k[x], V = Spec k[y] then OX(U) ⊗k OX(V ) = k[x, y],

but k[x, y]! OX(U ∩ V ) = k[x](0) = k[x, 1/x] is not surjective.

iii) See [5, Chapter 13.2].
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Corollary 2.85. The line with two origins is not an affine scheme.

Proposition 2.86. Let f : X ! Y be a closed immersion. Then f is a

separated morphism.

Proof. See [6, Chapter II.4].

Definition 2.87. A variety is a reduced, separated scheme of finite type

over an algebraically closed field k.

Corollary 2.88. We have the following:

i) Let A be a k-algebra, where k is an algebraically closed field. Then,

SpecA is a variety.

ii) The projective space Pnk over any algebraically closed field k is a variety.

Proof. It is a consequence of 2.48, 2.51 and 2.84.

We come to the notion of complete variety.

Definition 2.89. A morphism of schemes is closed if the image of any closed

set of X is closed.

Let f : X ! Y be a morphism of schemes. It is universally closed if for

morphism of schemes Z ! Y , the projection X ×Y Z ! Z is a closed map.

A morphism of schemes f : X ! Y is proper if it is separated, of finite

type and universally closed.

Definition 2.90. A variety X over a field k is complete if X ! Spec k is a

proper morphism.

Proposition 2.91. We have the following:

i) The affine space An is not a complete variety.

ii) The projective space PnR over any ring R is is a complete variety.
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Proof. i) Let us prove the case n = 1. The general case is analogous.

Let X = A1
k and let uss consider X ! Spec k. The projection X ×kX !

X is not a closed map. Indeed X×kX = A2
k, and if we take the closed subset

V (xy − 1) ∈ A2
k, the image is X \ (0), which is not closed in X.

ii) See [6, Chapter II.4].

Proposition 2.92. A closed immersion of schemes X ! Y is proper.

Proof. See [6, Chapter II.4].

Corollary 2.93. Let k be an algebraically closed field and let X be a reduced

closed subscheme of Pnk . Then X is a complete variety over k.

Proof. Let f : X ! Pnk be a closed immersion. By 2.86, 2.92 and since com-

position of separated (proper) morphisms is a separated (proper) morphism,

then X is a proper reduced scheme over k. Finally, X is of finite type over

k by 2.59.

Proposition 2.94. Let k be an algebraically closed field and let X be an

irreducible complete variety over k. Then Γ(X,OX) = k.

Proof. See [6, Chapter II.4].

We conclude this chapter with a short overview of dimensional theory.

Definition 2.95. Let R be a ring and let p ⊂ R be a prime ideal. The height

of p is the supremum on all the integer n such that there exists a chain of

distinct prime ideals p0 ⊂ ... ⊂ pn = p.

The dimension of the ring R is the supremum of the heights of all its

prime ideals. We denote it with dimR.

Remark 2.96. If R is a local ring, then dimR is the height of its maximal

ideal.
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Definition 2.97. Let X be a topological space. The dimension of X, dimX,

is defined to be the supremum on all the integer n such that there exist an

ascending chain Z0 ⊂ ... ⊂ Zn of distinct irreducible closed subsets of X.

The dimension of a scheme X is its dimension as a topological space.

The codimension of a closed subset Y ⊂ X of a scheme X is

codim(Y,X) = inf
P∈Y

dimOP,X

(Definition by [5, Chapter 5.8]).

Definition 2.98. Let X be a variety over k. If dimX = n we say that X is

a n-dimensional variety.

Proposition 2.99. Let k be a field. Then, dimAn
k = dimPnk = n.

Proof. See [6, Chapters I.1, I.2].
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Chapter 3

Sheaves of Modules

In the first two chapters we have given the basic definitions of sheaves and

schemes and their first properties. Now we complete the view on scheaves

with sheaves of OX-modules on a scheme X. We will be able to explain two

important invariants of schemes: the Picard Group and the cohomology of

sheaves.

3.1 Quasi-Coherent Sheaves

In this section we define sheaves of modules on a scheme and we give

many examples of them. In particular, quasi-coherent sheaves are a class of

sheaves of modules which have many properties, as we will see in section 3.

Definition 3.1. Let (X,OX) be a ringed space. A sheaf of OX-modules

is a sheaf of abelian groups F on X together with a morphism of sheaves

OX ! F . This means that for any open subset U ⊂ X, the group F(U) is a

OX(U)-module and for any V ⊂ U the diagram

O(U) F(U)

O(V ) F(V )

is commutative.

41
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A morphism of sheaves of OX-modules F ! G is a morphism of sheaves

such that for any U ⊂ X the map F(U) ! G(U) is a morphism of OX(U)-

modules.

Example 3.2. Each structure sheaf OX on a scheme X is trivially a sheaf

of modules.

Let U ⊂ X be an open subset of a scheme X. Then OX |U is a sheaf

of modules on X, since for any open subset V ⊂ X we have OX(V ) !

OX(U ∩ V ) = OX |U(V ).

Kernel, cokernel and image of a morphism of OX-modules are again OX-

modules.

If F is a sheaf of OX-modules and F ′ is a subsheaf of F , then F/F ′ is

again a sheaf of OX-modules.

Example 3.3. Let F ,G be sheaves of OX-modules.

1. The sheaf direct sum F ⊕ G is the sheaf associated to the presheaf

U 7! F(U) ⊕ G(U). The stalks are (F ⊕ G)P = FP ⊕ GP , for any

P ∈ X.

2. The sheaf tensor product F⊗OX
G is the sheaf associated to the presheaf

U 7! F(U)⊗OX(U) G(U). The stalks are (F ⊗OX
G)P = FP ⊗OP,X

GP ,
for any P ∈ X.

3. If we denote with HomOX
(F ,G) the group of morphisms of sheaves

F ! G, then we define the sheaf H om to be the sheaf associated

to the presheaf U 7! HomOX |U (F|U ,G|U), denoted by H omOX
(F ,G).

The stalks are (H omOX
(F ,G))P = HomOP,X

(FP ,GP ), for any P ∈ X.

4. Let R be a ring and let M be a R-module. We recall that the exterior

algebra
∧
M = ⊕∞n=0

∧nM is the quotient of the tensor algebra TM

by the ideal generated by the elements x⊗x, for every x ∈M (here we

assume the notion of tensor algebra). Moreover, the symmetric algebra

SM = ⊕∞n=0 SnM is the quotient of TM by the ideal generated by the

expressions x⊗ y − y ⊗ x, for any x, y ∈M .
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The sheaf exterior algebra
∧
F is the sheaf associated to the presheaf

U 7!
∧

(F(U)) = ⊕∞n=0

∧n(F(U)). The stalks are (
∧
F)P =

∧
(FP ),

for any P ∈ X.

The sheaf symmetric algebra SF is the sheaf associated to the presheaf

U 7! S(F(U)) = ⊕∞n=0 Sn(F(U)). The stalks are (SF)P = S(FP ), for

any P ∈ X.

All of them are sheaves of OX-modules.

Example 3.4. Let R be a ring and let M be an R-module. The sheaf

associated to M on X = SpecR is the sheaf M̃ defined as follows.

For any open set U ⊂ SpecR we define M̃(U) to be the set of functions

s : U !
⊔

p∈U Mp such that

1. for any p ∈ U , s(p) ∈Mp;

2. for any p ∈ U there exists an open neighborhood V ⊂ U of p and

m ∈M, f ∈ R such that ∀q ∈ V we have s(q) = m/f , with f /∈ q.

The restriction maps are the natural ones. This is a sheaf of OX-modules.

Proposition 3.5. Let R be a ring and M a R-module. For any p ∈ SpecR

we have M̃p
∼= Mp.

Moreover, M̃(D(f)) ∼= Mf for any f ∈ R. In particular Γ(SpecR, M̃) =

M.

Proof. See [6, Chapter II.5].

Proposition 3.6. Let M,N be R-modules, with R a ring. Then, the sheaf

associated to M ⊗R N is isomorphic to the sheaf M̃ ⊗OX
Ñ .

Proof. Let us show that the sheaves are isomorphic on the stalks.

If C is a closed multiplicative system inR, then C−1(M⊗RN) ∼= C−1M⊗C−1R

C−1N (see [1, Chapter 3]). By the proposition above, for any p ∈ SpecR

(M ⊗R N )̃p
∼= (M ⊗R N)p ∼= Mp ⊗Rp Np

∼= M̃p ⊗Op,X
Ñp = (M̃ ⊗OX

Ñ)p.
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Here we present quasi-coherent sheaves.

Definition 3.7. Let (X,OX) be a scheme. A sheaf of OX-modules F on X is

quasi-coherent if X can be covered by affine subsets Ui = SpecAi, such that

∀i there exists an Ai-module Mi with F|Ui
∼= M̃i.

We say that F is coherent if it is quasi-coherent and Mi is a finitely

generated Ai-module, for any i.

Example 3.8. The sheaf associated to a R-module on SpecR is trivially

quasi-coherent. The structure sheaf of a scheme X is coherent.

Sheaves of ideals (see below) are sheaves which allow to connect sheaves

of modules on a scheme X with closed subscheme of X.

Definition 3.9. A sheaf of OX-modules I which is a subsheaf of OX is called

sheaf of ideals on X. Actually, for any open subset U ⊂ X, I(U) is an ideal

of OX(U).

Let Y be a closed subscheme of X and let i : Y ↪! X be the relative

closed immersion. We define the sheaf of ideals of Y to be the sheaf kernel

of the morphism i# : OX ! i∗OY . We denote it with IY .

Remark 3.10. Since i# is surjective by definition, by 1.43 we have i∗OY ∼=
OX/IY . Thus, by 1.47 we have a short exact sequence

0! IY
i

↪−! OX
i#
−! i∗OY ! 0. (3.1)

Remark 3.11. Let R be a ring and let a ⊂ R be an ideal. We know

Y = SpecR/a is a closed subscheme of X = SpecR (Remark 2.56). The

sheaf of ideals of Y is ã, since for any p ∈ SpecR/a

(OX/ãY )p ∼= Op,X/ãp,Y ∼= Rp/ap = (R/a)p = Op,Y = (i∗OY )p.

Here we have used a property of rings of fractions: if C is a closed multiplica-

tively system in a ring R, and a is an ideal of R, then C is a multiplicatively

system in R/a and C−1(R/a) = C−1R/C−1a (see [1, Chapter 3]).
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Proposition 3.12. Let X be a scheme. If Y is a closed subscheme of X,

then the ideal sheaf IY is a quasi-coherent sheaf of ideals on X.

Conversely, if I is a quasi-coherent sheaf of ideals on X there exists a

unique closed subscheme Y of X, such that IY = I.

In particular, any closed subscheme of X is uniquely determined by its

sheaf of ideals.

Proof. See [6, Chapter II.5].

3.2 Invertible Sheaves

Definition 3.13. Let X be a scheme. An OX-module F is free if F ∼=⊕
i∈I OX . If I is infinite we say that F has infinite rank. Otherwise the rank

of F is |I|.
We say that F is a locally free sheaf if there exists an open covering⋃

i Ui = X of X such that F|Ui
is a free OX |Ui

-module for each i.

Remark 3.14. If X is connected and F is a locally free sheaf on X, then

for each U of the covering above, the rank of F|U is constant. Hence it is

well defined the rank of a locally free sheaf on a connected scheme X.

Definition 3.15. A locally free sheaf of rank one is called invertible sheaf

or line bundle. We denote with PicX the set of invertible sheaf on a scheme

X.

Let F be a locally free sheaf of finite rank on X. We define the dual sheaf

of F to be F∨ := H omOX
(F ,OX).

Proposition 3.16. Let X be a scheme. Then, PicX is a commutative group

with tensor product as operation. More precisely:

i) tensor product of invertible sheaves is an invertible sheaf;

ii) F ⊗OX
OX ∼= F , for any invertible sheaf F ;

iii) F ⊗OX
F∨ ∼= OX , for any invertible sheaf F ;
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iv) F ⊗OX
G ∼= G ⊗OX

F , for any invertible sheaves F ,G.

It is called Picard group of X.

Proof. i) is obvious, we need to take the intersections of the open subsets on

which the sheaves are isomorphic to OX .

Associativity of tensor product, ii) and iv) follow by basic properties of

tensor product of modules (see [1, Chapter 2]).

Let us prove iii). First, F∨ is an invertible sheaf. Indeed, if U ⊂ X

is an open subset such that F|U ∼= OX |U , we have HomOX |U (F|U ,OX |U) ∼=
HomOX |U (OX |U ,OX |U) ∼= OX |U .

If U ⊂ X is an open subset such that F|U ∼= OX |U , then F(U)⊗F∨(U) ∼=
OX(U)⊗OX(U) ∼= OX(U).

Now we are going to explain an important example of invertible sheaf on

a projective space, that is the sheaves OX(n).

Definition 3.17. Let S be a graded ring, S =
⊕

d∈N Sd. A S-module M is

called graded S-module if there exist additive subgroups Mn ⊂ M for every

n ∈ N, such that M =
⊕

n∈NMn and Sd ·Mn ⊂Md·n for any d, n ∈ N.

Definition 3.18. Let S be a graded ring and let M be a graded S-module.

The sheaf associated to M on ProjS is the sheaf M̃ defined as follows.

For any open set U ⊂ ProjS we define M̃(U) to be the set of functions

s : U !
⊔

p∈U M(p) such that

1. for any p ∈ U , s(p) ∈M(p);

2. for any p ∈ U there exists an open neighborhood V ⊂ U of p and

m ∈ Md, f ∈ Rd for some d, such that ∀q ∈ V we have s(q) = m/f ,

with f /∈ q.

The restriction maps are again the natural ones.

Proposition 3.19. Let S be a graded ring and M a graded R-module. For

any p ∈ ProjS we have M̃p
∼= M(p).
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Moreover, for any homogeneous f ∈ S+ we have M̃ |D(f)
∼= M̃(f) via the

isomorphism D(f) ! SpecS(f) (Proposition 2.70). In particular, M̃ is a

quasi-coherent sheaf.

Proof. See [6, Chapter II.5].

Definition 3.20. Let S be a graded ring. We set S(n) :=
⊕

d≥n Sd, which

is a graded S-module since S is a graded ring. If X = ProjS, we define the

sheaf of modules OX(n) := S̃(n), for any n ∈ Z. Clearly, OX(0) = OX .

Proposition 3.21. Let S be a graded ring generated by S1 as S0-algebra

and let X = ProjS. Then OX(n) is an invertible sheaf for any n ∈ Z.

Moreover, OX(n) ⊗ OX(m) ∼= OX(n + m) for any n,m ∈ Z. In particular,

OX(n)∨ = OX(−n).

Proof. Since S is generated by S1, we have

⋃
f∈S1

D(f) = D

(∑
f∈S1

(f)

)
= D(S) = X. (3.2)

Let f ∈ S1. Then, OX(n)|D(f)
∼= S̃(n)(f), by 3.19. If we show that S(n)(f) is

a S(f)-module of rank 1, the invertibility of OX(n) will be proved. Indeed, we

would have OX |D(f)
∼= S̃(f) and so OX(n)|D(f)

∼= OX |D(f), with the subsets

D(f) which cover X by (3.2).

Let us consider the morphism of modules

S(f) ! S(n)(f),
a

fm
7!

fna

fm
,

where deg a = m. It is well defined and it is injective, because if fna/fm =

fnb/f l in S(n)(f), where deg a = m and deg b = l, then there exists q ∈ N
such that 0 = f q(fn+la−fn+mb) = f q+n(f la−fmb). So a/fm = b/f l in S(f).

It is surjective since for any a/fm ∈ S(n)(f), with deg a = m+ n, we have

a

fm
= fn

a

fn+m
.

Hence OX(n) is an invertible sheaf for any n ∈ Z.



48 3. Sheaves of Modules

For the second part of the Proposition, we note that the sheaf associated

to the module M ⊗S N is isomorphic to M̃ ⊗OX
Ñ , in the same way as 3.6.

Hence, for any f ∈ S1 we have (OX(n)⊗OX(m))(f) = OX(n)(f)⊗OX(m)(f),

which is isomorphic to OX(n+m)(f) via the morphism

a

fk
⊗ b

f l
7!

ab

fk+l
, with deg a = k + n and deg b = l +m.

Proposition 3.22. Let R be a ring, X = PnR = ProjS, where S = R[x0, ..., xn].

Then, the global sections of OX(k) are

Γ(X,OX(k)) =

Sk, if k ≥ 0

0, if k < 0.

Proof. The proof is exactly the same as in Proposition 2.43, taking D(xi) as

open subsets of X.

Proposition 3.23. Let X = Pnk and let 0! F ′ ! F ! F ′′ ! 0 be a short

exact sequence of sheaves of modules. For any l ∈ Z, we have a sequence

0! F ′ ⊗OX(l)! F ⊗OX(l)! F ′′ ⊗OX(l)! 0 which is exact.

Proof. See [6, Chapter II.5].

3.3 Cohomology of Sheaves

All the results can be found in [6, Chapter III].

First, we need to some notions from homological algebra.

Example 3.24. The following are all abelian categories (Definition 1.1).

1. Abelian groups.

2. R-modules on a commutative ring R.

3. Sheaves of abelian groups on a topological space X.
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4. Sheaves of OX-modules on a scheme X.

5. Quasi-coherent sheaves on a scheme X.

In the following, C will always be one of the categories above.

Definition 3.25. Let f : A! B be a morphism in C. Let p : B ! C be the

cokernel of f . We define the image of f to be im f = ker p.

Let

...! Ai−1
fi−1
! Ai

fi! Ai+1 ! ...

be a collection of object and morphisms of C. We call it exact sequence if

fi ◦ fi−1 = 0 and the natural morphism im fi−1 ! ker fi is an isomorphism,

for any i.

Definition 3.26. We define a complex Ȧ in C to be a collection of objects

and morphisms

...! Ai−1
di−1

−! Ai
di
−! Ai+1 ! ... i ∈ Z,

such that di ◦ di−1 = 0 for any i. The morphisms are called coboundary

operators and we will often omit their index.

We define the ith cohomology object of Ȧ to be H i(Ȧ) := ker di/ im di−1.

Indeed, in every abelian category above, the quotient of two objects is well

defined.

Definition 3.27. A morphism of complexes f : Ȧ ! Ḃ is a collection of

morphisms f i : Ai ! Bi which commute with the coboundary operators.

Given morphisms of complexes f, g : Ȧ ! Ḃ, we say that f, g are homo-

topic if there exist morphisms ki : Ai ! Bi−1 such that f − g = dk+ kd. We

say that k is an homotopy between f and g and we write f ∼ g.

We say that two complexes Ȧ, Ḃ are homotopy equivalent if there exist

morphisms of complexes f : Ȧ! Ḃ and g : Ḃ ! Ȧ such that f ◦ g and g ◦ f

are homotopic with the identity on the relative complexe.



50 3. Sheaves of Modules

Definition 3.28. Let F : C! D be a covariant functor between abelian cat-

egories. It is additive if for each A,B ∈ C, the induced map HomC(A,B)!

HomD(FA, FB) is a homomorphism of groups. F is left exact if for ev-

ery short exact sequence 0 ! A′ ! A ! A′′ ! 0 in C, the sequence

0! FA′ ! FA! FA′′ is exact in D.

If F is controvariant, we can give the same definitions as above in an

analogous way.

Example 3.29. Let (X,OX) be a ringed space. The functor Γ(X, ·) of

global sections on X from the sheaves of OX-modules to the abelian groups

is a covariant left exact functor.

Definition 3.30. An object I ∈ C is called injective if for any exact sequence

0! A! B in C, for any morphism A! I there exists a morphism B ! I

such that

0 A B

I

is commutative.

If A ∈ C, an injective resolution of A is a complex I0 ! I1 ! ... together

a morphism ε : A! I0, such that I i is injective for each i and

0! A
ε
−! I0 ! I1 ! ...

is an exact sequence.

We say that C has enough injectives if every A ∈ C has an injective

resolution.

Example 3.31. All the categories in Example 3.24 have enough injectives.

Lemma 3.32. Let C be a category with enough injectives and let A ∈ C. If

İ and J̇ are injective resolutions of A, then they are homotopy equivalent.

Definition 3.33. Let C be a category with enough injectives and let F : C!

D be a covariant left exact functor. We define the right derived functors of
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F to be the functors RiF , with i ≥ 0, such that RiF (A) := hi(F (İ)) for any

A ∈ C, where İ is a injective resolution of A.

Theorem 3.34. Let C be a category with enough injectives and let F : C! D

be a covariant left exact functor.

i) The right derived functors RiF are independent of the choice of the

injective resolution.

ii) There is a natural isomorphism F ∼= R0F.

iii) For any short exact sequence 0 ! A′ ! A ! A′′ ! 0, there exists

a morphism δi : RiF (A′′) ! Ri+1(A′) for each i ≥ 0, such that the

sequence

...! RiF (A′)! RiF (A)! RiF (A′′)
δi
−! Ri+1F (A′)! ...

is exact. This is called long exact sequence of cohomology.

iv) Given a morphism between two short exact sequences

0 A′ A A′′ 0

0 B′ B B′′ 0

then the morphisms defined in iii) make the diagram

RiF (A′′) RiF (A′)

RiF (B′′) RiF (B′)

δi

δi

commutative for each i.

v) For any injective object I of C, we have RiF (I) = 0 for each i > 0.

Finally, we come to the definition of cohomology of sheaves on a scheme.
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Definition 3.35. Let F be a sheaf ofOX-modules on a ringed space (X,OX).

We denote with H i(X,F) := RiΓ(X, ·)(F) = RiΓ(X,F) the i-th group of

cohomology of F .

Remark 3.36. By ii) of the Theorem above, it is clear that Γ(X,F) =

H0(X,F).

Definition 3.37. Let X be a topological space. We say that X is noetherian

if for any descending sequence Y1 ⊃ ... ⊃ Yn ⊃ ... of closed irreducible subsets

of X, there exists m ∈ N such that Yi = Yi+1 for any i ≥ m.

A scheme X is noetherian if it is a noetherian topological space.

Example 3.38. Any varietyis a noetherian scheme.

We have the following results.

Theorem 3.39. Let X be a noetherian scheme of dimension n. Then,

H i(X,F) = 0 for any sheaf F of abelian groups on X and for any i > n.

Theorem 3.40. Let R be a noetherian ring and let X = SpecR. Then

H i(X,F) = 0 for any i > 0 and for every quasi-coherent sheaf F on X.

Theorem 3.41. Let R be a noetherian ring and let X = PrR, with r ≥ 1.

i) H i(X,OX(n)) = 0 for each 0 < i < r and n ∈ Z.

ii) Hr(X,OX(−r − 1)) ∼= R.



Chapter 4

Divisors and Differentials

The aim of this chapter is to present divisors and to establish an explicit

connection between sheaves of modules and hypersurfaces of an algebraic

variety. Moreover, we study differentials on a scheme and we will come to

the adjunction formula (Theorem 4.50).

First of all, we need some notions from Commutative Algebra.

4.1 Discrete Valuation Rings

Definition 4.1. Let k be a field and let Γ be a totally ordered group, that is

Γ is a group and a totally ordered set such that, if a ≤ b, then a+ c ≤ b+ c

for any a, b, c ∈ Γ. A valuation of k in Γ is a map v : k \ {0}! Γ such that

1. v(xy) = v(x) + v(y) for every x, y ∈ Γ;

2. v(x+ y) ≥ min{v(x), v(y)} for every x, y ∈ Γ.

If Γ = Z the valuation is called discrete.

For convention, we set v(0) := +∞.

Proposition 4.2. Let v be a valuation of a field k. Then the set R = {x ∈
k : v(x) ≥ 0}∪{0} is a subring of k and the set m = {x ∈ k : v(x) > 0}∪{0}
is a maximal ideal of R. Furthermore (R,m) is a local ring.
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Proof. It easily follows from the properties of valuations.

Definition 4.3. The ring R is called valuation ring of v. If v is a discrete

valuation, R is called discrete valuation ring (DVR).

Let R be an integral domain with field of fractions k. We call R (discrete)

valuation ring if there exists a (discrete) valuation v of k such that R is the

(discrete) valuation ring of v.

Example 4.4. Let S = k[x0, ..., xn], where k is a field. Let f be a non-

constant homogeneous irreducible polynomial of S and let p = (f) be the

homogeneous prime ideal generated by f . Then, the localized ring S(p) is a

DVR. Let us prove this claim.

The field of fractions of S(p) is the field of homogeneous polynomial frac-

tions K := kh(x0, ..., xn) := {f/g ∈ k(x0, ..., xn) : f, g homogeneous, deg f =

deg g}. The ring S is a unique factorization domain, so for any homogeneous

g ∈ S+, there exists a unique g′ ∈ S+ such that g = fαg′ and g′ /∈ (f), where

α ∈ N. Let us consider the function

vf : K \ {0}! Z, vf

(g
h

)
:= α− β,

for any g, h ∈ Sd, d > 0. We have that vf is a valuation of K, because

vf

(
g

h
· l
m

)
= vf

(
fαg′

fβh′
· f

γl′

f δm′

)
= vf

(
fα−β+γ−δ

g′l′

h′m′

)
= α− β + γ − δ = vf

(g
h

)
+ vf

(
l

m

)
,

and

vf

(
g

h
+

l

m

)
= vf

(
fαg′

fβh′
+

fγl′

f δm′

)
= vf

(
fα+δg′m′ + fβ+γl′h′

fβ+δh′m′

)

=

α− β, if α + δ ≤ β + γ

γ − δ, if β + γ ≤ α + δ

=

vf (g/h), if vf (g/h) ≤ vf (l/m)

vf (l/m), if vf (l/m) ≤ vf (g/h).

= min{vf (g/h), vf (l/m)}.
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Moreover, {x ∈ K : vf (x) ≥ 0} ∪ {0} = {g/h ∈ K : h /∈ p} = S(p), hence

S(p) is a DVR with valuation vf .

Definition 4.5. Let (R,m) be a local ring of dimension d. We call R a

regular local ring if it is a noetherian local ring and m can be generated by d

elements.

Theorem 4.6. Let R be a noetherian integral domain such that R is a local

ring with m as maximal ideal. If dimR = 1, then R is a DVR if and only if

R is a regular local ring.

Proof. See [1, Chapter 9].

4.2 Weil Divisors

The divisors theory is not presented here in the most general case. We

will study divisors on irreducible varieties nonsingular in codimension one,

but Weil divisors can be defined on noetherian integral separated schemes

nonsingular in codimension one. This because we didn’t give any detail on

noetherian schemes in the eleborate.

Definition 4.7. Let X be an irreducible variety. X is called nonsingular in

codimension 1 if any local ring OP,X of dimension one is a regular local ring.

An integral subscheme Y of X of codimension one is called prime divisor.

A collection of prime divisors Y1, ..., Yr on X with assigned integer k1, ..., kr

is called a (Weil) divisor on X. Thus, a divisor can be written as a formal

linear combination

D =
∑

kiYi.

If ki = 0 for each i, we write D = 0. A divisor is said to be effective if

ki ≥ 0 for each i and D 6= 0.

We define DivX to be the set of Weil divisors on X, that is, the free

abelian group generated by prime divisors on X.

Example 4.8. The projective space Pnk is nonsingular in codimension one.
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Before going on, we need the notion of generic point and function field of

a scheme.

Definition 4.9. Let X be a scheme, Y an irreducible closed subset of X and

let η ∈ Y . If {η} = Y , we call η generic point of Y .

Proposition 4.10. Let X be a scheme and let Y be an irreducible closed

subset of X, Y 6= ∅. Then Y has exactly one generic point.

Proof. For the uniqueness, we suppose Y = {η1} = {η2}. If U = SpecR

is an open neighborhood of η1 and η2, and we consider η1 and η2 as prime

ideals of R, then V (η1) = V (η2) by 2.5. Then
√
η1 =

√
η2 by 2.11 iii), but

they are prime ideals, so η1 = η2.

For the existence, we note that every open subset of Y is dense for the

irreducibility of Y . Let U = SpecR be an open dense subset of Y . Clearly

SpecR is irreducible, so the nilradical p = N (R) is a minimal prime ideal

of R, by 2.18. Hence V (p) = SpecR, but then {p} is a closed subset of Y

which contains the open dense U . Therefore {p} = Y .

Example 4.11. Let Y = V (f) in Pnk be an irreducible closed subscheme,

where f is a non-costant homogeneous irreducible polynomial of k[x0, ..., xn].

It is tautological that the unique generic point of Y is (f).

Proposition 4.12. Let X be an irreducible variety and let Y ⊂ X be an

irreducible closed subset of X. Let η be the generic point of Y . Then

codim(Y,X) = dimOη,X .

Proof. By Definition 2.97, we have

codim(Y,X) = inf
P∈Y

dimOP,X .

For any P ∈ Y , if U = SpecR is an open neighborhood of P , then dimOP,X
is the height of P as prime ideal of R. By the proof of 4.10, the minimal

height of such ideals is the height of η, since it is the minimal prime ideal of

all the rings R, where SpecR is an affine open subset of Y .



4. Divisors and Differentials 57

Proposition 4.13. Let X be an integral scheme and let η ∈ X be its generic

point. Then Oη,X is a field.

Proof. Let U = SpecR be an affine open neighborhood of η in X. Since

X is integral, R is an integral domain, so the nilradical N (R) = (0). Hence

Oη,X ∼= R(0), which is the field of fractions of R.

Definition 4.14. Let X be an integral scheme with generic point η. We

denote with K(X) the field Oη,X and we call it function field of X. We call

any f ∈ K(X) rational function on X.

Example 4.15. If X = Pnk , then the generic point of X is (0) and K(X) =

kh(x0, ..., xn).

Remark 4.16. Now, let X be an irreducible variety which is nonsingular in

codimension 1 and let Y be a prime divisor on X with generic point η. Since

4.12 holds, Oη,X is a noetherian local integral domain of dimension one. In

particular, η is a principal ideal.

Moreover, we note that the field of fractions of the integral domain Oη,X
is the function field K(X) on X. Indeed any affine open subset which meets

η, contains the generic point of X too. Thus, by 4.6, Oη,X is a DVR with

valuation vY : K(X)! Z, which depends only on Y .

Example 4.17. Let X = Pnk and let Y ⊂ X be a prime divisor. By Corollary

2.75, Y is uniquely determined by a prime homogeneous ideal p of k[x0, ..., xn],

with Y = V (p). Thus, the generic point of Y is p and by the remark above,

there exists a homogeneous irreducible polynomial f ∈ k[x0, ..., xn], such that

p = (f). Hence we have a valuation

vY : kh(x0, ..., xn) \ {0}! Z,

with vY = vf , accondingly with the notation of Example 4.4.

In the following, X will always be an irreducible variety which is nonsin-

gular in codimension 1.
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Definition 4.18. Let f ∈ K(X) and Y a prime divisor on X. Let vY (f) =

d ∈ Z. Then

1. if d > 0, we say f has a zero along Y of order d;

2. if d < 0, f has a pole along Y of order d;

3. if d = 0, f is invertible on Y .

Definition 4.19. Let f ∈ K(X). We set (f) :=
∑
vY (f) ·Y , where the sum

runs over all the prime divisors on X. We call (f) the divisor of f .

Proposition 4.20. For any f ∈ K(X), (f) =
∑
vY (f) · Y is a well defined

Weil divisor, that is the sum is finite.

Proof. See [6, Chapter II.6].

Definition 4.21. Let D ∈ DivX a Weil divisor. It is principal if there exists

f ∈ K(X) such that (f) = D.

Two divisors D1, D2 are linearly equivalent if D1 −D2 is principal. The

group of Weil divisors on X modulo the linear equivalence relation is denoted

with ClX.

Example 4.22. Let X = Pnk and let Y =
∑m

i=1 kiYi be a divisor on X. Thus,

there exist homogeneous irreducible polynomial f1, ..., fm ∈ k[x0, ..., xn], such

that Yi = V (fi) for any i. We define the degree of Yi to be the degree of fi

and the degree of D to be degD =
∑m

i=1 ki deg Yi.

If D is an effective divisor, then D = (f), where f = fk11 · · · fkmm is

homogeneous. If degD = 1, 2, 3, 4, ... we call D, respectively, hyperplane,

conic, cubic, quartic,...

Proposition 4.23. Let X = Pnk . Then Cl(X) ∼= Z as groups.

Proof. Let us consider the degree function deg : DivX ! Z. Then, for any

f = g/h ∈ K(X) with deg g = deg h, we have (f) = (g) − (h), by the

properties of valuation, so deg(f) = 0. Hence deg induces a map ClX ! Z,
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which is clearly surjective. To show that it is injective we prove that each

divisor of degree d is linearly equivalent to dH, where H = (x0).

Let D =
∑
kiYi ∈ DivX be a divisor with degree d. We set D =

D1 − D2, where D1 is the sum of prime divisor with positive coefficients

and D2 = D −D1. Hence D1 and D2 are effective divisors. By the remark

above, D1 = (g) and D2 = (h), where g and h are homogeneous polynomial

such that deg g − deg h = degD = d. Then we have

D − dH = (g)− (h)− (xd0) =

(
g

hxd0

)
=: (f),

with deg f = 0. Therefore f ∈ K(X), so D − dH is principal.

4.3 Cartier Divisors and Invertible Sheaves

Now we want to link Weil divisors and line bundles. The first step is to

establish a 1-1 corrispondence between Weil divisors and Cartier divisors, a

generalization of Weil divisor which could be defined on a generic scheme.

However, in our context we define them over an integral scheme, to simplify

the notations.

Definition 4.24. Let X be an integral scheme and let K∗ be the constant

sheaf K∗ := K(X)\{0} on X. Let O∗ be the sheaf associated to the presheaf

U 7! O∗(U), the (multiplicative) group of invertible elements of O(U). A

Cartier divisor on X is a global section of the quotient sheaf K∗/O∗ on X.

Thus, a Cartier divisor on X is described by {(Ui, fi)}, where
⋃
i Ui = X is an

open covering of X and fi ∈ K(X) for any i, such that fi/fj ∈ O∗(Ui ∩ Uj),
for any i, j.

A Cartier divisor is principal if it is represented by a single (X, f) with

f ∈ K∗. It is effective if fi ∈ O(Ui) for any i.

Two Cartier divisors D1 = {(Ui, fi)}, D2 = {(Vj, gj)} are linearly equiva-

lent if D1−D2 = {(Ui∩Vj, fi/gj)} is principal. We use the additive notation

instead the multiplicative one to preserve the analogy with Weil divisors.
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We set the group of Cartier divisors on X modulo the linear equivalence

relation with CaClX.

Proposition 4.25. Let X be an irreducible variety which is nonsingular in

codimension 1 and such that every local ring in X is a unique factorization

domain. Then ClX ∼= CaClX.

Proof. We want to establish a 1-1 corrisponcence between Weil divisors and

Cartier divisors in order to send principal Weil divisors to principal Cartier

divisors.

Let {(Ui, fi)} be a Cartier divisor on X. For any prime divisor Y on X,

we choose i such that Y ∩ Ui 6= ∅ and we consider vY (fi). We have a well

defined Weil divisor D =
∑
vY (fi)Y , since for any i 6= j, fi/fj is invertible

on Ui ∩ Uj, so vY (fi) − vY (fj) = vY (fi/fj) = 0. Moreover, if {(Ui, fi)} is

principal, then {(Ui, fi)} = (X, f), with f ∈ K(X). Hence, the associated

Weil divisor is principal.

For the converse, we prove the theorem in the case X = Pnk . See [6,

Chapter II.6] for the complete proof.

Let D be a Weil divisor of degree d on X = Proj k[x0, ..., xn]. We split

D in D = D1 − D2, where D1 and D2 are effective divisors, as in 4.23.

Then Di = (gi) where gi is a homogeneous polynomial of k[x0, ..., xn], for

i = 1, 2. Now, we consider the open covering
⋃n
i=0D(xi) = X and we set

fi := g1/x
d
i g2 ∈ K(X) for any i = 0, ..., n. For every i 6= j we have fi/fj =

xdj/x
d
i on Ui∩Uj, which is an invertible element of OX(D(xi)∩D(xj)). Hence

{(Ui, fi)} is a well defined Cartier divisor. We note that if D is principal,

then d = degD = 0 and f = g1/g2 for any i, that is {(Ui, fi)} = (X, g1/g2)

is principal.

Clearly the maps are inverse to each other.

Now we associate to a Cartier divisor an invertible sheaf. In the following,

X will be an integral scheme.

Definition 4.26. Let D = {(Ui, fi)} be a Cartier divisor on an integral

scheme X. We define the sheaf L(D) associated to D in the following way.
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For any i, we set L(D)(Ui) as the OX(Ui)-submodule of K generated by

f−1i . For any open U ⊂ X, we define L(D)(U) to be the set of {si}, where

si ∈ L(D)(Ui∩U) such that si = sj on Ui∩Uj, for any i, j. It is well defined,

since fi/fj ∈ OX(Ui ∩ Uj), so f−1i and f−1j generate the same OX-module.

Remark 4.27. The sheaf L(D) is clearly an invertible sheaf, since we have

isomorphisms OX(Ui) ! L(D)(Ui), generated by 1 7! f−1i . Conversely, if L
is an invertible subsheaf of K we can build a Cartier divisor, taking on Ui

the inverse of the generator of L(Ui).

Thus, we have a corrispondence between Cartier divisor on X and invert-

ible subsheaves of K.

Proposition 4.28. Let X be an integral scheme. Then there exists an iso-

morphism of groups

CaClX  ! PicX.

Proof. By the remark above, there is a 1-1 corrispondence between Cartier

divisors and invertible subsheaves of K. Let us show that this corrispondence

is an isomorphism of groups which respect the linear equivalence of divisors.

Let D1 and D2 be Cartier divisors locally generated by fi and gj, re-

spectively. Then L(D1) ⊗ L(D2) ∼= L(D1 + D2). Indeed L(D1 + D2) is

locally generated by f−1i g−1j , while L(D1) ⊗ L(D2) is locally generated by

f−1i ⊗ g−1j , hence the sheaves are locally isomorphic. Moreover we have

L(D1)⊗L(−D1) ∼= OX , clearly. Finally, we see that D is a principal Cartier

divisor if and only if L(D) ∼= OX . Indeed, D is principal⇔ D is defined by a

single f ∈ K∗ ⇔ OX ∼= L(D) via the morphism 1 7! f−1 on global sections.

To conclude, we need to show that any invertible sheaf L of X is isomor-

phic to a subsheaf of K. We note that for any open subset U ⊂ X such that

L is trivial on U , we have

(L ⊗K)|U = L|U ⊗K|U ∼= OX ⊗K ∼= K,

which is a constant sheaf. Since X is irreducible, any two open subsets

intersect, hence L⊗K is constant and it is isomorphic to K. Thus, we have

an exact sequence 0! L! L ⊗K ∼= K, that is L is a subsheaf of K.
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Proposition 4.29. Every invertible sheaf on Pnk is isomorphic to O(l), with

l ∈ Z.

Proof. Let X = Pnk . By 4.23, we have ClX ∼= Z. Therefore

PicX ∼= CaClX ∼= ClX ∼= Z.

To conclude, we have to show that the composition of the isomorphisms

in 4.25 and 4.28 sends OX(1) to the class of hyperplanes. Indeed, ClX is

generated by this class, so PicX is the free group generated by O(1).

If X = ProjS = Proj k[x0, ..., xn] let us consider the covering of X given

by the open subsets D(xi), i = 0, ..., n. By 3.19, the local sections of OX(1)

are OX(1)|D(xi) = {f/xni : f ∈ Sn+1, n ∈ N}, hence OX |D(xi) is generated

by x−1i as OX |D(xi)-module. The (class of) Cartier divisor associated to this

sheaf via the isomorphism in 4.28 is {(D(xi), xi)}i=0,...,n, so the (class of) Weil

divisor associated to OX(1) is the hyperplane’s one.

Definition 4.30. Let {(Ui, fi)} be an effective Cartier divisor on an integral

scheme X. Let us consider the sheaf of ideals I locally generated by fi. We

define the associated subscheme Y of X of codimension one to be the closed

subscheme defined by I.

Proposition 4.31. Let D = {(Ui, fi)} be an effective Cartier divisor on an

integral scheme X and let Y be the associated subscheme of X of codimension

one. Then IY ∼= L(−D).

Proof. By the proof of 4.28, we know that L(−D) is locally generated by fi,

thus the Proposition follows from the definition above.

4.4 Differentials

In this section we introduce the differentials on a separated scheme X

over a scheme Y . We could define differentials on generic schemes, but in

this way we simplify the notations.
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Our goal is to present the notions of nonsingular variety, of canonical

bundle on a nonsingular variety and the adjunction formula.

All the proofs can be found in [10, Chapter 10.26] or in [6, Chapter II.8].

Definition 4.32. Let X be a scheme and let P ∈ X. We consider the

local ring OP,X with maximal ideal mP . We define the Zariski cotangent

space in P to be the OP,X-module mP/m
2
P . We write m/m2 if there is no

misunderstanding on the base point.

We see that m/m2 is a k(P )-vector space, where k(P ) is the residue

field of P (Definition 2.79). Indeed, for any class λ̄ = λ + m ∈ k(P ) and

x̄ = x+ m2 ∈ m/m2 we have λ̄x̄ = λx+ m2 ∈ m/m2.

Definition 4.33. Let R be a ring, A an R-algebra and M an A-module. An

R-derivation of A in M is a map d : A! M such that for any a, b ∈ A and

for any r ∈ R:

d(a+ b) = d(a) + d(b); (4.1)

d(ab) = d(a)b+ ad(b); (4.2)

d(r) = 0. (4.3)

Remark 4.34. Let X be a differentiable real manifold. We know that the

tangent space TPX at P ∈ X can be defined to be the vector space of

derivations at P , that is the set of R-derivations D : OP ! R, where OP is

the R-vector space of germs of functions at P . In particular, OP is a local

ring with maximal ideal m = {f ∈ OP : f(P ) = 0}.
We observe that for any constant function c ∈ OP and for any derivation

D, we have D(c) = 0, thus each derivations in uniquely determined by a

morphism of modules m! R and by the map OP ! m defined by f 7! f −
f(P ). Moreover, for any f, g ∈ m we have D(fg) = f(P )D(g)+g(P )D(f) =

0, so it is induced a linear map m/m2 ! R (see [14]).

Thus, to give an element of TPX is the same thing to give an element of

(m/m2)∨. This justifies the definition of Zariski cotangent space.
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Remark 4.35. Let R be a ring and A an R-algebra. Then we have a mor-

phism of rings R ! A which induces a morphism of schemes π : SpecA !

SpecR. Our aim is to define a sheaf ΩA/R of A-modules on SpecA such that

for any p ∈ SpecR, the stalks of ΩA/R represents the Zariski cotangent space.

Then, we want to generalize everything to separated schemes.

In the following, we always assume R a ring, A an R-algebra and M an

A-module.

Definition 4.36. The module of relative differential forms of A over R is

defined to be an A-module ΩA/R together with an R-derivation d : A! ΩA/R,

such that for any A-module M and for any R-derivation d′ : A ! M , there

exists a unique A-module morphism f : ΩA/R !M such that d′ = f ◦ d.

Proposition 4.37. The module of relative differential forms ΩA/R of A over

R exists and it is unique up to unique isomorphism. In particular, ΩA/R is

generated by {da : a ∈ A}.

Proof. Let us suppose A is a R-module via ϕ : R ! A. We can construct

ΩA/R in the following way: we take the set of formal symbols {da : a ∈ A}
and we quotient it with the submodule generated by the expressions:

1. d(a+ b)− da− db, for any a, b ∈ A;

2. d(ab)− bda− adb, for any a, b ∈ A;

3. dr, for any r ∈ ϕ(R).

The map d : A! ΩA/R is defined by a 7! da.

The uniqueness follows by the universal property.

Remark 4.38. Let us suppose that A is a finitely generated R-algebra. Then

A = R[x1, ..., xn]/a, where a is an ideal of R[x1, .., xn] generated by {fi}i∈I .
Then, the module of relative differential forms of A over R is generated by

dx1, ..., dxn as A-module, modulo the relations (4.1), (4.2), (4.3) and dfi = 0

for any i ∈ I.
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Example 4.39. Let A = k[x1, ..., xn] and R = k, where k is a field. Then

ΩA/R is the R-module Adx1 ⊕ ...⊕ Adxn.

Let A = k[x1, ..., xn]/(f1, ..., fm). Then

ΩA/R = (Adx1 ⊕ ...⊕ Adxn)/(Adf1 ⊕ ...⊕ Adfm).

Hence, if A = k[x, y]/(x2 − 5y3), then

ΩA/R = {fdx+ gdy : f, g ∈ k[x, y]}/(2xdx− 15y2dy).

If A = R/a, where a is an ideal of R, then ΩA/R = 0, by condition 3. of

the proof above.

Proposition 4.40. Let f : A⊗RA! A be the morphism defined by f(a⊗b) =

ab and let I := ker f . We define the map d : A! I/I2, with da = 1⊗a−a⊗1

(modulo I2). Then ΩA/R = I/I2 with d as R-derivation.

Definition 4.41. Let U = SpecA and V = SpecR be affine schemes and

let f : U ! V . We define the sheaf of relative differentials of U over V to be

the sheaf of modules ΩU/V = Ω̃A/R = Ĩ/I2.

Now, we extend this definition to any separated scheme.

Definition 4.42. Let X ! Y be a closed immersion of schemes and let I
be the ideal sheaf associated to X. We call conormal sheaf of the closed

immersion the sheaf of modules I/I2 on X.

We define the normal sheaf to be NX/Y = (I/I2)∨.

Definition 4.43. Let X ! Y be a separated morphism of schemes and

consider the diagonal morphism ∆ : X ! X×Y X. By definition of separated

morphism, we have that ∆(X) is a closed subscheme of X ×Y X. We define

the cotangent sheaf ΩX/Y of X over Y to be the conormal sheaf of ∆.

Remark 4.44. Let f : X ! Y be a separated morphism of schemes. Let

U = SpecA ⊂ X and V = SpecR ⊂ Y be affine schemes such that f(U) ⊂
V . Then we have that U ×V U ∼= Spec(A ⊗R A) is an open affine subset of
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X ×Y X. The closed subscheme Z = ∆(X) ∩ (U ×V U) is defined to be the

kernel of ∆|U , that is the kernel I of the morphism A⊗RA! A. Hence, the

cotangent sheaf of U over V is Ĩ/I2.
We can glue toghether each derivation d : A ! ΩA/R, obtaining a mor-

phism of sheaves OX ! ΩX/Y . In particular, ΩX/Y is a quasi-coherent sheaf

of modules on X.

Proposition 4.45. Let R be a ring, Y = SpecR and X = PnR. Then we

have an exact sequence of sheaves on X

0! ΩX/Y !
n+1⊕
i=1

OX(−1)! OX ! 0.

Now we briefly introduce the concept of nonsingularity in the context of

schemes.

Definition 4.46. An irreducible algebraic variety X over an algebraically

closed field k is nonsingular if all its local rings are regular local rings (Defi-

nition 4.5).

Theorem 4.47. An irreducible n-variety X over a field k is nonsingular if

and only if the cotangent sheaf ΩX/k is locally free of rank n.

Proposition 4.48. Let X be a nonsingular variety over k and let Y be

an irreducible closed subscheme of X, with sheaf of ideals I. Then Y is

nonsingular if and only if ΩY/k is locally free and the sequence

0! I/I2 ! ΩX/k ⊗OY ! ΩY/k ! 0

is exact.

Definition 4.49. Let X be a nonsingular n-variety over a field k. We define

the canonical (or determinant) bundle of X to be the sheaf ωX = det ΩX/k :=∧n ΩX/k (Example 3.3).

Theorem 4.50 (Adjunction Formula). Let Y be a nonsingular subvariety of

codimension r in a nonsingular variety X over k. Then ωY ∼= ωX⊗
∧mNY/X .
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Corollary 4.51. Let X be a nonsingular variety over a field k and let Y be

an effective Weil divisor on X, with L as associated invertible sheaf. Then

ωY ∼= ωX ⊗ L⊗OY .

We conclude the chapter computing the canonical bundle of the projective

space Pnk .

Lemma 4.52. Let X be a scheme and let 0 ! F1 ! F ! F2 ! 0 be an

exact sequence of locally free sheaves of rank n1, n and n2, respectively. Then

n∧
F ∼=

n1∧
F1 ⊗

n2∧
F2.

Proof. See [11, Chapter 6.4.1].

Corollary 4.53. Let k be a field and X = Pnk . Then ωX ∼= OX(−n− 1).

Proof. By 4.45 we have the exact sequence

0! ΩX/Y !
n+1⊕
i=1

OX(−1)! OX ! 0.

It follows from the Lemma that

ωX ∼= ωX ⊗OX ∼=
n+1∧(

n+1⊕
i=1

OX(−1)

)
∗∼=

n+1⊗
i=1

OX(−1) ∼= OX(−n− 1).

The isomorphism ∗ is a well known result of algebra. See [2], for instance.
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Chapter 5

K3 Surfaces

Finally, in the last chapter of the thesis we talk about K3 surfaces. in

the first section give several examples of K3 surfaces, some of which are only

mentioned.

In the second section we present a very important property of K3 surfaces,

that is all of them have the same Hodge diamond. We take care to calculating

it, using many results by cohomology theory (as Serre’s Duality Theorem,

5.11).

5.1 Introduction

Definition 5.1. A K3 surface is a complete and nonsingular variety X of

dimension 2 over an algebraically closed field k, such that H1(X,OX) = 0

and the canonical bundle ωX ∼= OX .

In the whole chapter, k will always be an algebraically closed field.

Nonsingular quartics in P3
k

Theorem 5.2. Let k be an algebraically closed field and let X be a nonsin-

gular quartic in P3
k (Example 4.22). Then X is a K3 surface.

69
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For the proof we proceed in 4 steps. X will always be a nonsingular

quartic in P3
k.

Lemma 1. X is a complete variety over k.

Proof. It follows directly by 2.93.

Lemma 2. X is a nonsingular surface.

Proof. It is clear by definition.

Lemma 3. H1(X,OX) = 0.

Proof. We want to compute H1(X,OX) using the long exact sequence of co-

homology (Theorem 3.34). Hence we need to start by a short exact sequence,

which will be the sequence (3.1). Therefore, we need the sheaf of ideals of X

(Definition 3.9).

By definition, X is a prime Weil divisor of degree 4. Since P3
k is a non-

singular irreducible variety, we have an invertible sheaf associated to X, by

4.25 and 4.28 and such invertible sheaf is O(4) (here we omit we are in P3
k).

By 4.31, the sheaf of ideals of X is O(−4). Thus we have the exact sequence

0! O(−4)! O ! OX ! 0.

By the long exact sequence of cohomology we have, in particular,

...! H1(P3
k,O)! H1(X,OX)! H2(P3

k,O(−4))! ...

But H1(P3
k,O) = H2(P3

k,O(−4)) = 0 by Theorem 3.41, so H1(X,OX) =

0.

Lemma 4. The canonical bundle is trivial, that is ωX ∼= OX .

Proof. By the Adjunction Formula for Weil divisors (Corollary 4.51), we have

ωX ∼= ωP3
k
⊗ L⊗OX ,

where L is the invertible sheaf associated to X. We have L ∼= O(4), by the

proof above. Now, ωP3
k

∼= O(−4) for Corollary 4.53, so

ωX ∼= O(−4)⊗O(4)⊗OX ∼= OX .
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Nonsingular Complete Intersections

Definition 5.3. Let X be a closed subscheme in Pnk , with a ⊂ k[x0, ..., xn] as

homogeneous ideal associated (Corollary 2.75). We say that X is a complete

intersection if a can be generated by r = codim(X,Pnk) elements.

In other words, X is a complete intersection if it is the intersection of r

hypersurfaces of Pnk , that is if there exist r homogeneous polynomials f1, ..., fr

such that X = V (f1, ..., fr) = Proj(k[x0, ...xn]/(f1, ..., fr)). If di = deg fi for

i = 1, ..., r, we say that X is a complete intersection of type (d1, ..., dr).

Example 5.4. We are interested in nonsingular complete intersections. As

trivial example we can consider V (f), where f is an irreducible homogeneous

polynomial.

Theorem 5.5. Let X be a nonsingular complete intersection of type (d1, ..., dn)

in P := Pn+2
k . Then, X is a K3 surface if and only if

∑
i di = n+ 3.

We proceed again by steps.

Lemma 1. X is a nonsingular complete variety over k of dimension 2.

Proof. Clear.

Lemma 2. Let X be a complete intersection of type (d1, ..., dn) in Pmk , with

m ≥ 2. Hence X has dimension q = m−n. Then, H i(X,OX(l)) = 0 for any

l ∈ Z and for any i = 1, ..., q. In particular, for l = 0, q = 2 and i = 1 we

have H1(X,OX) = 0.

Proof. In a similar way as in Lemma 2 we will need a short exact sequence

of sheaves to get a long exact sequence of cohomology.

Let us prove the Lemma by induction on n. If n = 0, then X = Pmk , so

the claim follows by 3.41.

Now, we assume the theorem for n − 1 and let Y be the scheme Y =

Proj(k[x0, ..., xm]/(f1, ..., fn−1)), where f1, ..., fn are homogeneous polynomi-

als of degree d1, ..., dn, such that X = Proj(k[x0, ..., xm]/(f1, ..., fn)). Then X

is a closed subscheme of Y . By 4.31 (applied on a generic scheme), the ideal
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sheaf of X in Y is L(−D), where D is the effective Cartier divisor associated

to X (indeed codim(X, Y ) = 1). Similarly to the proof of 4.29, we have

L(−D) = OY (−dn). By 3.10 there is a short exact sequence of sheaves of

modules

0! OY (−dn)! OY ! OX ! 0. (5.1)

For any l ∈ Z, tensoring (5.1) by OY (l) we have a sequence

0! OY (−dn + l)! OY (l)! OX(l)! 0,

which is again exact by Proposition 3.23. This exact sequence yields a long

exact sequence of cohomology

...! H i(Y,OY (l))! H i(X,OX(l))! H i+1(Y,OY (−dn + l))! ...

for any i = 1, ...,m−n−1. Since dimY = dimX+1, by inductive assumption

we have H i(Y,OY (l)) = H i+1(Y,OY (−dn + l)) = 0 and so H i(X,OX(l)).

Lemma 3. The canonical sheaf of X in P = Pn+2
k is

ωX ∼= OX

(
−n− 3 +

n∑
i=1

di

)
.

Proof. Let X = Proj(k[x0, ..., xn+2]/(f1, ..., fn)), where fi is a homogeneous

polynomial of degree di for every i. Let Xi := Proj(k[x0, ..., xn+2]/(f1, ..., fi))

for any i, with Xn = X.

The hypersurface X1 is a Weil divisor of degree d1 in Pn+2
k and by the

Adjunction Formula for divisors 4.51 we have ωX1
∼= ωP ⊗ OP(d1) ⊗ OX1

∼=
OX1(−n− 3 + d1).

Now, X2 is a hypersurface of X1 of degree d2, hence, again by 4.51,

ωX2
∼= ωX1 ⊗ OX1(d2) ⊗ OX2

∼= OX2(−n − 3 + d1 + d2). Repeating this

procedure for any i we have the claim.

Now we can give the proof of the theorem.
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Proof of the theorem. We have seen that any nonsingular complete intersec-

tion X of type (d1, ..., dn) in Pn+2
k is a nonsingular complete variety of dimen-

sion 2 with H1(X,OX) = 0. By the previous Lemma, X is a K3 surface if

and only if
∑

i di = n+ 3.

Remark 5.6. We observe that if there exists i such that di = 1, then our

surface X lies on a hyperplane isomorphic to an affine space, hence it’s not

an interesting case. If we suppose di > 1 for any i, then we have a few of

possible chance to obtain a K3 surface (we suppose d1 ≥ ... ≥ dn):

i) n = 1 and d1 = 4, that is X is a quartic in P3
k (the previous example);

ii) n = 2 and d1 = 3 and d2 = 2 (or d1 = 2 and d2 = 3). These are K3

surfaces of degree 6 in P4
k;

iii) n = 3 and d1 = d2 = d3 = 2, K3 surfaces of degree 8 in P5
k.

Other examples

It is hard to give explicit descriptions of many others K3 surfaces with

the notions exposed in this elaborate. We mention the following examples,

which are presented in [8, Chapters 1.1 and 1.4].

1. Let A be an abelian surface on k, that is a surface with a structure

of group. Let us consider the involution ι : A ! A given by x 7! −x.

Then, the minimal resolution X ! A/ι of A/ι is a K3 surface. This

kind of K3 surface is called Kummer surface.

2. Let C be a nonsingular curve of degree 6 on P2. Then, a double covering

π : X ! P2 branched along C is a K3 surface.

3. Let X be a hypersuface of Pr × Ps. We say X is of type (p, q) if the

projection of X on Pr (resp. Ps) is a hypersurface of degree p (resp.

q). Any nonsingular hypersurfaces X of P2 × P1 of type (3, 2) is a

K3 surface. Any nonsingular hypersurfaces X of P1 × P1 × P1 of type

(2, 2, 2) is a K3 surface.
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5.2 Cohomology of K3 Surfaces

In this section we want to compute some cohomology group of K3 surfaces.

Definition 5.7. Let X be a K3 surface. Let us consider the cotangent sheaf

ΩX = ΩX/k of X over k. For any p ∈ N we set Ωp
X :=

∧p ΩX , with Ω0
X = OX

and Ω2
X = ωX .

We call Hodge number of X each non-negative integer hp,q(X) which are

by definition the dimension over k of the k-vector space Hq(X,Ωp).

Since X has dimension 2, hp,q(X) = 0 if p > 2 or q > 2. We call Hodge

diamond of X the diagram

h0,0(X)

h1,0(X) h0,1(X)

h2,0(X) h1,1(X) h0,2(X)

h2,1(X) h1,2(X)

h2,2(X)

(5.2)

Our aim is to compute (5.2). Moreover, we will prove that any K3 surface

has the same Hodge diamond.

i) By 2.94 we know that Γ(X,OX) = k. Since H0(X,OX) = Γ(X,OX)

(Theorem 3.34, ii)), it follows that h0,0(X) = 1.

ii) By definition of K3 surface, ωX ∼= OX , so H0(X,ωX) = H0(X,OX) =

k. Hence h2,0(X) = 1.

iii) By definition of K3 surface we have H1(X,OX) = 0, so h0,1(X) = 0.

iv) We have that h1,0(X) = 0. See [8, Chapter 1.3] for details.

To compute the remaining Hodge numbers we need the Serre’s Duality

Theorem. First, we show that every K3 surface is a projective scheme.

Definition 5.8. Let X be a scheme over k. We say that X is a projective

scheme if there exists a closed immersion X ! Pnk , for some n ∈ N.
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Theorem 5.9. Let X be a nonsingular complete surface over k. Then X is

projective.

Proof. See [6, Chapter II.4].

Corollary 5.10. Any K3 surface is a projective scheme.

Theorem 5.11 (Serre’s Duality for a Nonsingular Projective Variety). Let

X be a nonsingular projective variety of dimension n. For any p, q = 0, ..., n,

we have

Hq(X,Ωp
X) ∼= Hn−q(X,Ωn−p

X )∨. (5.3)

Proof. See [6, Chapter III.7].

Remark 5.12. We know h0,0(X) = h0,2(X) = 1 and h0,1(X) = h1,0(X) = 0.

By Serre’s Duality we have (since k∨ ∼= k):

i) h2,2(X) = h0,0(X) = 1;

ii) h2,0(X) = h0,2(X) = 1;

iii) h2,1(X) = h0,1(X) = 0;

iv) h1,2(X) = h1,0(X) = 0.

Now we compute h1,1(X).

Definition 5.13. Let X be a projective scheme over k and let F be a co-

herent sheaf on X. We define the Euler characteristic of F to be

χ(X,F) =
∞∑
i=0

dimkH
i(X,F).

Example 5.14. For the calculations above, we can say that for any K3

surface X, the Euler characteristic of OX is χ(X,OX) = 1− 0 + 1 = 2.

Now we mention two direct Corollaries of the Hirzebruch-Riemann-Roch

formula applied in this very particular situation. We use the formula only in

the case of K3 surfaces, omitting the definion of Chern classes. The general

version of the formula can be found in [6, Appendix A.4].
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Theorem 5.15. Let X be a K3 surface. Then

χ(X,OX) =
c2(X)

12
,

where c2(X) is the second Chern class of X. See [6, Appendix A.3] for the

definition of Chern class.

Theorem 5.16. Let X be a K3 surface and let us consider the cotangent

bundle ΩX . Then dimkH
1(X,ΩX) = c2(X)− 4.

Remark 5.17. Since χ(X,OX) = 2, then c2(X) = 24 by 5.15 and h1,1(X) =

20 by 5.16.

Corollary 5.18. Let X be a K3 surface. Then, the Hodge diamond of X is

1

0 0

1 20 1

0 0

1

(5.4)

Corollary 5.19. Every K3 surface has the same Hodge diamond (5.4).
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