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Abstract

It is presented a formal mathematical approach to complex networks through
Random Matrix Theory (RMT). Wigner semicircular law is presented as a
generalization of Central Limit Theorem for certain classes of matrix ensem-
bles. The different ways for dealing with the spectral distribution of random
matrices are shown and the connections and the differences between them are
highlighted. Then it is studied how RMT can be linked to Free Probability
theory. It is exposed how two different kinds of random graphs, apparently
similar, posses different spectral properties analyzing their adjacency matri-
ces. From this analysis some geometrical and topological properties of the
graphs are deduced and correlations between vertices can be analyzed. Then
a random walk is constructed on the graph through a Markov chain, defining
the transition matrix of the process with the weighted adjacency matrix of
the network. Finally it is showed how the dynamical behavior of the random
walk is deeply connected with the eigenvalues of the transition matrix, and
the main relation are shown.

Kokosk

Si presenta un approccio matematico formale ai complex networks tramite
I'uso della Random Matrix Theory (RMT). La legge del semicerchio di Wigner
viene presentata come una generalizzazione del Teorema del Limite Centrale
per determinati ensemble di matrici random. Sono presentati inoltre i princi-
pali metodi per calcolare la distribuzione spettrale delle matrici random e se
ne sottolineano le differenze. Si e poi studiato come la RMT sia collegata alla
Free Probability. Si e studiato come due tipi di grafi random apparentemente
uguali, posseggono proprieta spettrali differenti analizzando le loro matrici
di adiacenza. Da questa analisi si deducono alcune proprieta geometriche e
topologiche dei grafi e si puo analizzare la correlazione statistica tra i ver-
tici. Si e poi costruito sul grafo un passeggiata aleatoria tramite catene di
Markov, definendo la matrice di transizione del processo tramite la matrice
di adiacenza del network opportunamente normalizzata. Infine si ¢ mostrato
come il comportamento dinamico della passeggiata aleatoria sia profonda-
mente connesso con gli autovalori della matrice di transizione, e le principali
relazioni sono mostrate.



Contents

1 Introduction 4
1.1 Random Matrix Theory . . . . .. .. ... ... ... .... 5

1.2 Network Theory and Thesis Outline . . . . . . . .. ... ... 6

2 Stochastic processes: Markov chains and Brownian motion 8
2.1 A brief revision of probability concepts . . . . . .. .. .. .. 8
2.2 Stochastic processes . . . . . . . . ... 16
2.3 Markov processes and Markov chains . . . . .. ... ... .. 19
2.3.1 Stationarity and asymptotic behavior of Markov chains 24

2.4 Wiener process and Brownian motion . . . . . . ... ... .. 26
2.4.1 Heat equation . . . . . ... ... ... 28

3 Random Matrix Theory 30
3.1 Concentration of measure . . . . . . . . . . . .. ... .... 30
3.1.1 Concentration inequalities and the Moment Method . . 31

3.1.2 Central Limit Theorem . . . . . . . .. ... ... ... 35

3.2 Operator norm Bound and Bai-Yin theorem . . ... ... .. 38
3.3 Wigner Semicircular Law . . . . . . . ... ... ... ... . 43
3.3.1 Moment method . . ... ... ... ... ... .... 46

3.3.2 Stieltjes transform method . . . . . . .. ... ... .. 47

3.3.3 Rateof convergence . . . . . ... ... ... ... ... 53

3.3.4 Physical methods . . . . .. ... ... ... ... ... 54

4 Free Probability 64
4.1 Independence and Freeness . . . . . . . .. ... . ... .... 67
4.2 Free CLT & Free convolution . . . . . .. ... ... ..... 70



5 Random Graphs and Complex Networks 73

5.1

5.2

Random graphs . . . . . . . .. ... oo 73
5.1.1 G(n,p)spectra . . . . . ... ... 78
512 Gphgspectra . . . . ... oL 81
513 Gn,p) vs Gpg « « o v v o 82
Random Walks . . . . . .. .. ... ... L. 85
5.2.1 Laplacian matrix . . . . .. .. ... ... ... 90
5.2.2  Spectra of transition matrices and comparisons with
simulations . . . . ... oL oL 91



Chapter 1

Introduction

While the world is becoming more complex and interconnected, we need more
powerful tools to deal with new emerging issues or simply for making pre-
visions. Today’s technological means give us good possibilities in gathering
crucial informations from data and thus having faithful data driven models.
But despite the usefulness of these models sometimes our knowledge of the
underlying mechanisms is not as good as the technics we have to analyze the
data. In this view also a theoretical and system modeling work is nowadays
still necessary. On the one hand we need it for its intrinsically importance as
fundamental research work in understanding what data are saying us about
the underlying process under study; on the other because it could provide
us new insights and clues in situations where there is a lack of appropriate
data and, of course, for deliver new data-inquiring methods or improving
the existing ones. Some of the most important areas of application of com-
plex system have become economics (to the point that nowadays we label
the various physical approaches to economics by the name of econophysics),
biology, sociology and, of course, statistical physics, in particular the areas
of out-of-equilibrium thermodynamics and dynamical systems. In this thesis
we will focus on the branch of complex systems which deals with complex
networks. Network theory has become nowadays a central tool for analyzing
large systems where many discrete entities interact by the means of different
mutual relations. But the dealing with networks requires deep analytical
tools to understand networks’ behavior. The main point in theoretical mod-
eling of networks is that, outside toy models, we face with real networks
which dimension and complexity requires often a statistical approach. Here
we encounter Random matriz theory (RMT in the sequel). The statistical



study of networks through random matrix theory can give us a lot of infor-
mation about the network topology, and a sort of measure on the statistical
dependence of the nodes in the network. As an invitation we will give a
brief revision of the applications of RMT and complex networks in modern
science.

1.1 Random Matrix Theory

Random matrix theory (RMT) has its beginning during the 1950s, when the
spectra of large nuclei was investigated by Wigner and Dyson. The high
complexity of the problem required a brand new approach. As is well know
by any physicist (an hard truth to live with, though), analytical results are
an exception rather than a rule. Often a statistical approach is the key
recipe to tackle the problem. Transition probabilities in large random nuclei
are well approximated by large hermitian matrices, where the entries are
affected by such a noise that they can be regarded as random. Thus a study
on the statistical behavior of the spectra of this ensemble of matrices can give
precious insights on the overall behavior of the phenomenon under inquiry.
In modern times RMT had a wide range of applications which covers both
fundamental and applied physics but also pure mathematics problems. A
good recap of different physical application of RMT can be found in [32].
In the realm of Quantum theory, RMT enters in the definition of Quantum
Chaos. Indeed thanks to Bohigas-Giannoni-Schmit conjecture [11], chaotical
quantum systems should have a spectra consistent with the one of Gaussian
Orthogonal Ensemble. Random matrix theory has been found linked to plane
tiling problems [37], and it didn’t took too much that an application to 2-
dimensional quantum gravity was found [19]. Application and connections
also with Quantum Field Theory and Conformal field theory can be found
in [32] chapter 7. Nevertheless we can affirm that, mostly, RMT theory
has his widespread in statistical physics and complex system theory. We
find applications of RMT in Anderson Localization [1], many-body systems
[14] and other problems in solid state physics which deal with a mean field
approach. From a pure mathematical point of view, RMT find application in
number theory thank to Hilbert-Pélya conjecture [4], probability, plane tiling
and Stochastic optimal control. The importance of RMT in the context
of probability theory is self evident. A theory of non commuting random
variables and their asymptotic behavior, which is called Free probability and



we will expose in section 4, is the natural evolution of classical probability
theory, and has since the first 70s attracted many probabilists interested in
stochastic processes, given the deep connection found in these two areas.
RMT is also well used in interdisciplinary fields, like econophysics, finance,
computer science and in general fields where a the system under study is big
enough to deserve a statistical treatment. For example in [59] is exploited the
universality result of RMT, Wigner semicircle law: examining the correlation
matrices of stocks’ price fluctuations one could separate the random noise
components from the deterministic component using the methods presented
in [13] to see the trend of the considered stocks.

Like often happen in subjects studied by academics coming from differ-
ent backgrounds, RMT, and in particular the computation of the Empirical
Spectral Distribution (ESD) can be approached by a lot of different methods.
Traditionally, mathematicians developed rigorous methods, based on similar-
ities with standard probability theory, while physicist tackled the problem
with many powerful methods coming from different areas of physics; we can
mention replica method [24], cavity method [56] and conformal field theory
methods [40] for citing the main ones. The powerfulness of these methods,
and the simplicity with which they get to the searched results is often faulted
by lack of mathematical rigor, especially in situation where some kind of an-
alytical continuation is performed.

1.2 Network Theory and Thesis Outline

The usages of complex networks are so numerous and destined to grow that
is difficult to make an exhaustive review. One interesting reference text could
be [52]. As already said networks can be used for modeling systems where
discrete agents interact. The possible diversity of the type of interactions,
of the agents and the topological relationship a network can be constructed
with, give scientists an adaptable, flexible and feasible tool for analyzing real
systems. Often we are interested to define a sort of dynamics over the net-
works, trying to simulate real processes going on real networks. In biological
networks [?], for example, the interaction between different species are stud-
ied. Different parameters of the network correspond to real properties of the
system that can be observed. For example a biological network constructed
with a bipartite graph, should describe a situation where two different agents,
i.e. species, interact only with agents of the other category. The connectiv-



ity of the graph represents how many interaction an individual has with the
remaining environment. Often we are interested in global properties of the
network, such as its resilience, i.e. its resistance and stability to defaults of
some of its parts. This is a crucial aspect for example in the study of the
web networks , power grids.

The principal aim of this thesis is to introduce, without pretending of be-
ing exhaustive, the setting in which a rigorous mathematical analysis of RMT
can be developed, with the goal to analyze with rigorous mathematical tools
random walks on complex networks. This kind of stochastic processes are
particular studied nowadays, where a large number of entities (from humans
to different kind of various system, like biological systems or IT frameworks)
get in touch and interact with a large set of different objects and this inter-
action must be somewhat analyzed with some kind of model. In the recent
years, complex networks, shed a light also in neural network theory, giving
great contribution to the development of a consistent Al theory.

In chapter 2 we will set the general mathematical framework: the main
results of probability theory we are going to use are presented, with a brief
focus on stochastic processes. In chapter random matrix theory and the
fundamental concept of concentration of measure are introduced, giving the
main result of Wigner semicircular law. In chapter the mathematical setting
of complex networks, random graph theory, is presented, we analyze two
types of random graph, and apply the consequences of the spectral analysis
of those to random walk defined on them, viewed as a special kind of Markov
chain (section 2.3) on a graph.



Chapter 2

Stochastic processes: Markov
chains and Brownian motion

Probability theory and its application to stochastic processes gives us pow-
erful tools for make models concerning complex networks. Our aim in this
chapter is to formalize the idea of Markov chain. Heuristically we can think a
Markov chain like the formalization of a walk in which each step is stochastic
but restricted under certain rules.

2.1 A brief revision of probability concepts

The axiomatization of probability theory throughout the use of measure the-
ory is one of the most powerful and intriguing results of the early 20*" century.
The main idea is to give a mathematical shape to the naive concept of an
event related to the process we are studying (think about and experiment
and its possible outcomes) and its probability. The setting is simple. We
have a set ) containing all the possible outcomes of our experiment. An
event is a collection of outcomes, or, stated in math terms, a subset of (2.
The set of al possible events, F, is a subset of the power set of Q (F C 29)
called o—algebra or o—field, is constrained to some necessary properties
for permitting the basic operations with events like union or intersection
avoiding problematical situations.

Definition 2.1. c—algebra
A o—algebra F of set Q is a subset of the power set 2% with the following
properties:



1. QedF
2. If B€ T, then the complement event B := Q/B is in F

3. If J is a countable index set and for each ¥v € I, B, € F, we have
ULGJ BL E g‘

Given the formal definition of the space of events is now possible to define
a probability on it. This problem is equivalent to define probability measure
on €2 compatible with the c—algebra JF.

Definition 2.2. Probability Measure
A probability measure P is a function P : F — [0, 1] with the following
properties:

1 P(Q) =1, P(0) =0

2. If J is a countable index set and for each ¥j,1 € J we have that B,, B, €
F, B.NB, =0, then

B(B) = Y P(5) (2.1

Led Led

This definition of probabilty measure automatically satisfty Kolmogorov
Axioms. For non disjointed sets we can restate (2) with the union bound,
which will be used in the sequel

P(UB,) <) P(B) (2.2)

LeJ el

The triple of mathematical objects we have mantioned (2, F,P) is itself an
unique entity, the probability space, and it is the cornerstone upon which
we will construct our theory. Another (often unmentioned) assumption we
make is that the probability space, the sample space in particular, must be
extendible. By this we mean that having two different probability spaces
QL FLPY), (Q% F2,P?) of different experiments we always assume that ex-
ists a third probability space (2, F,P) such that there exists a projection map
e s 0 — Q12 which is surjective, measurable' and probability preserving,

LGiven two measurable spaces, i.e. (Q,F), (Q,5"), a measurable function is a function
f:Q — Q such that f~1(E € ') € F, where with f~! we denote the preimage.
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ie. IP’(W;/E(B € F1/2)) = Py o(B). See further details in [65]. We can now
define another main object of probability theory, the random variable:

Definition 2.3. Random Variable
Given a probability space (Q, F,P), a random variable (r.v.) taking values
in a measurable space (R, R) is a measurable function X : Q — R.

In view of application to stochastic processes, we will often call (R, R)
state space. Given a r.v. taking values in (R,R) and aBB € F |, we will
denote with a little abuse of notation the probability of the event {w €  :
X (w) € B} with P(X € B). This probability takes the role of the probability
measure naturally induced on (R,R) by X and it is called the distribution
px of X (thus we have pux (B € R) = P(X € B)). This probability, for each
measurable B, can be expressed using the Radon-Nikodym theorem can be
expressed by

px(B) = [ fdm

where dm is a reference o—finite’ measure (for example Lebesgue measure
if R = Re) defined on R and f € L'(R,dm) such that [, fdm = 1. We have
then that dux = fdm. sometimes f is called density function if dm is
a Lebesgue measure (see [22] for further details). We will work in the next
pages with several random variables. It is convenient sometimes to work
with r.v. with the same distribution (identically distributed or in short i.d.).
If X and Y share a common distribution u, we will write X =Y. A set
of r.v. which are independent and identical distributed will be denoted by
the acronym 4.i.d.. Is it also possible to define random variables through
algebraic operation on other r.v.?. The case we are interested in is the one
of the sum of two r.v. Z = X + Y with distribution p and v respectively.
The distribution ¢ of Z is the convolution of the two distributions, { = pu*wv.
Thanks to Radon-Nikodym theorem, we can express this rule with the density
functions g(z) of u and f(x) of v

h@) = (f+ 9)(@) = [ fz = )glw)dy (2.3)

It is now possible for us to define what is the most likely outcome for a
random variable X. This notion is called expected value EX (often called

2 A measurable space (2, F) with measure y is said o—finite if there exist a sequence of
B, € F with ¢ € J countable, such that Vi, u(B,) < oo and the B;s cover Q, |J, o4 B, =
3See [61] as a reference.

LeJ
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mean), and is performed with an integration. The general formula is
EX = / X (w)dP(w) (2.4)
Q

If X takes values in the reals R, endowed with a c—algebra R, (R, R), we
can rewrite this integral; if X (w) > 0, (unsigned r.v.) Yw € Q) we have

EX = /OO xdpx ()
0

Otherwise (signed r.v.), if X € Re we can take positive and negative part of
X and then summing the expected values EX = EXT + EX~, if the single
expectation values are finite. This is given for free by the definition of the
expected value itself, inheriting the properties of the relative integral, like
linearity. In general it will be sufficient in the rest of the text when dealing
with expected values in the presence of a signed r.v. to substitute X with
|X|. A concept that will be fundamental in the sequel is the k*® moment of
a random variable X, defined as m(X) := EXF, if the absolute integrability
condition E|X|* < oo holds. For k = 1 we have the above expected value,
called also mean. An important quantity related to the 2°¢ moment is the
variance

Var(X) = E(X - EX)* = EX? — (EX)?
For a centered r.v. (i.e. with mean 0) the variance is identical to the 214
moment Var(X) = EX?. We also mention for later convenience
e the exponential moments Ee**, where ¢ - X is an inner product
defined on the state space of X taking values on the reals.

e the characteristic function Ee” X where ¢ - X is as above.

e the resolvent E%_Z with complex z.

Moments are useful for bounding probabilities. Indeed we have using first
moment Markov’s inequality

P(X > \) < i\IElX (2.5)

remembering to sobstitute X with |X| in case of a signed r.v. Using the
variance (thus the second moment) we then have Chebyshev’s inequality

Var(X)

P(IX ~EX| > ) < —

(2.6)
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Another important concept is that of independece. We say that two events
are independent if

P(B(E) = P(B)P(E)

Extending this to r.v. thanks to the relations between P and px, we say that
two r.v. X and Y are independent if

PXeBY ecl)=PX eB)PY €€) < wxy) = px X ly

this is equivalent to say that the joint distribution* is the product mea-
sure of the single variables. More generally, if we have a family of r.v.
{Xa}aeg, that could be even uncountable, and taking values on R,, is said,
jointly independent if the joint distribution coincides with the product mea-
sure. We can have in the family { X, },ec7 a weaker condition of independence.
If there is a max k for which for every subsequence in J of k elements we
have that {X,, ... X,,} are independent, we say that the family is k-wise
independent. It is a result of probability theory that given a probability
space and a distribution one can create a set of independent random vari-
ables with the same distribution (i.i.d.). An important result in this aim is
Kolmogorov extension theorem that will be discussed in the next section
because of its centrality in random processes’ existence. Another important
issue is the asymptotic behavior of events’ probability, in particular when we
are dealing with events connected to random variables. It is often the case
that a r.v. X depends on an index n, and thus the behavior of X = X,
and the probability of the occurrence of events related to it (e.g. the event
F > B =X €& with £ € R), are linked to the values of the parameter. We
are often interested in the asymptotic behavior of these events B, i.e. their
probability to hold given n — oo®

e An event B, holds surely is its complement is equal to the null event

0.

e An event B, holds almost surely if P(53;) = 1, i.e. the complement
event B,, is set with null measure.

e An event B, holds with overwhelming probability if Vo fixed, it
holds with probability 1 — O, (n™1¢).

4i.e. the distribution of the single random variable formed by the couple (X,Y)

®We will use the familiar notations f(z) = O(g(x)) and f(z) = o(g(x)) for respectively
|f(z)| < Cg(z) and |f(z)] < e(x)g(z) with £ — oo and constant C' € R and ¢(z) — 0. If
the constant C' depends on some parameter a we will write O,. See 7?7 for reference.

12



e An event B, holds with high probability if it holds with probability
1 —O(n™°), for some ¢ independent from t.

e An event B, holds asymptotically almost surely if it holds with
probability 1 — o(1).

These notations are listed in decreasing order of certainty, i.e. the one below
is implied by the one above. Another fundamental question that will be
central in 3 is about the convergence of r.v. towards a certain distribution.
We have as before a set of r.v. depending on a parameter n that goes to
infinity, and we ask whether the set of variables X,, and their distribution
converge to a limit r.v. X with a specific distribution. Let work with a set of
variables X,, and X taking values on a state space (R, R) that is taken to be
o—compact® metric space with distance d and R Borel o—algebra . These
are different types of convergence, ordered in decreasing strength:

e X, converges almost surely to X if

P(limsupd(X,,,X) <e)=1 Ve>0 (2.7)

n—oo
e X, converges in probability to X if

liminf P(d(X,,X) <e)=1 Ve>0 (2.8)

n—oo
e X, converges in distribution to X if

lim E(f(Xy)) = E(f(X)) (2.9)

n—o0

where f : R — R is a bounded function.

The next step will be conditioning our knowledge on the events. Often
we dispose of data in our experiments that allow us to restrict the sample
space. Let say that we know that on the probability space (€2, F,P) we know
that and event £ € F holds. Then the probability of a generic event B must
be restricted to BN &, and the resulting probability becomes

P(BNE)

PBIE) = —pg

6A o—compact topological space is the countable union of compact subspaces.

13



The expected value of a random variable is straightforward”: we have to
consider the new random variable (X | £) and the related distribution

pixie)(B) = P({XIP?(S} ne

Often, the notation used for this kind of conditioning is
E(X; &) = E(X1) :/Xd]P
£

where 15 is the indicator function of B. Generalizing, if we have a collection
of events, or more formally, a sub c—algebra FC F we can conditioning in
the same way, defining in a similar fashion P(B | F) and E(X | F) working
with the events J € F. For settling the thing we can say:

Definition 2.4. Conditional Expectation

Given a probability space (2, F,P) and a r.v. X taking values in the state
space (R,R) we define the conditional expectation of X conditioned by the
sub o—algebra F C F the r.v. Y = E(X | F) with the following properties:

1. Y is F—measurable.

2. For all B € F we have

/XW:/YW
B B

It follows directly by the definition that the quantity E(E(X | F)) is
nothing but E(X) itself. In fact by the properties of conditional expectation,
given two sub o—algebra ' C 52 C F we have®

E(E(X | 5%) | ") =EEX |F) | F°) =E(X | 7

taking F' = {0, Q} we get the searched equality. We have seen that con-
ditioning is strongly built over o—algebras and sub oc—algebras. It is thus
important thus to identify the main sub o—algebras which we will have to
deal with. Given a family of subsets A = {B,},cz of Q2 we will denote by

"Here it is necessary a little remark: while for discrete r.v. this concept is trivial, for
continuous one we need a construction called disintegration. See [38] for further details.
8See [22], theorem 5.1.6, page 228

14



o(A) the smallest o—algebra containing A. We will indicate with o(X) the
o—algebra generated by a r.v. X on the state space (R,R) given by the
collection of preimages {X~}(B) : B € R)} C F. If we have a sequence of
random variables { X7, X5, X3...} we denote by &F,, = (X3, Xo, X3...X,)
the o—algebra generated by the first n r.v. This notion will be important
in the study of stochastic processes, where it will represent the information
known untill the n'" step of the process. Turning back to expectations, given
two r.v. X and Y, we define E(X | Y) to be the r.v. by the c—algebra o(Y"),
E(X |Y):=E(X | o(Y)). It is important to remark that the o—algebra on
which we make the conditioning is the information available at the moment.
Thus it is intuitive that under the constraint of existence E[Y[, E[Y X| < oo
with X € F we have that E(XY | F) = XE(Y | ).

Another important topic, that will be the principal goal in chapter 3 is
the estimate on the tail of the distribution of a random variable X. This kind
of estimate is obtained through the exploitation of inequalities such as (2.5)
and (2.6). This is the first example in which we highlight the importance
of the knowledge of various moments EX* of our distribution in order to
estimating some specific behavior. This kind of reasoning will be central in
the sequel. These types of tail characterization are listed in decreasing order
of strenght.

e X is said to be surely bounded ( almost surely bounded) if there
exists a costant C' > 0 such that | X| < C surely (almost surely).

X is said to be sub-Gaussian if 4C, ¢ > 0 constants such that

P(|X]| > A) <Ce V>0 (2.10)

X is said to have sub-exponential tail if 3C, ¢, a > 0 such that

P(|X| > A < Ce™ V>0 (2.11)

X is said to have finite £*" moment if 3C > 0 such that

E(X[")<C (2.12)

for some k£ > 1.

X is said to have absolutely integrable if E|X| < co.

15



2.2 Stochastic processes

The principal goal of a stochastic process is to formalize the description of
a random process which depends on an evolution parameter. For obvious
reasons this evolution parameter is mostly taken as time. Thus we have
random variables of the form X (t,w) := X;(w)

Definition 2.5. Stochastic Process
Given a probability space (2, F,IP), a state space endowed with a sigma algebra
(S,%) and an index set’ T, a stochastic process is a measurable function

X:OxT—= S8

The set of all the values at any time of the stochastic process will be noted

by ST.

The first issue with stochastic processes is their existence. We have al-
ready mentioned that, given a known finite set of probability distributions
lla, 18 a basic result of probability theory to create a finite number of inde-
pendent r.v. But how does it work whet it comes to work with a possible
uncountable set of r.v., how we can construct their probability space? The
next theorem will be of fundamental importance:

Theorem 2.2.1. Kolmogorov Extension Theorem

Given an arbitrary index set T and a collection of measurable Hausdorff
topological spaces {S, Fi }rer endowed with topology . For each finite subset
J C T let’s define pg an inner regular probability measure on the product
sigma field Ty = [[;eq Tt with respect to the product topology 79 = [l1eq 7e. We
further require that for each finite subsets X C I C T px and pg should be
compatible: given the projection map © : I — K we must have that the
pushforward measure'® m,(jg) = psc. Then there exists a unique probability
measure pr on Fr such that, for all finite subgroups J C T, we have

(WJ)*MT = Mg

9The index set T will be mostly a subset of the real line, such as an interval or the set
of natural numbers.

0Given two measurable spaces (Q1,F1) and (Qz, F) with measure p on (21, F;) and a
map 7 : 1 — Qo we define the pushforward measure f,(u) the measure such that

Fe(n)(B € F2) = p(f~H(B))

16



Kolmogorov extension theorem is a powerful result of measure theory, an
its general form requires some abstraction to deal with generic state spaces.
We will use a simplified version keeping in mind that, usually, we work with
state spaces of the type R" and with a discrete index set. In this situation the
types of measure we are dealing with are probability measures on (R", R")
that thanks to Radon-Nicodym theorem can always be described in terms of
Lebesgue measures. The compatibility criterion now states, for a collection
B --- B, of elements of R

Pnr1(Br X oo X By X R) = p,(By X -+ X By,)

Further material on Kolmogorov extension theorem can be finded in [22,
38,64]. In a topological space, a Borel set is any set that can be formed
through the of countable union or intersection and complement (relative or
absolute) of the open sets defined by the topology. The particular sigma
algebra formed by Borel sets is called Borel algebra, which ultimately is a
o—algebra compatible with the topology. The particular class of product
sigma fields associated with a specific product topology forms a particular
kind of mathematical object called cylinder oc—algebra formed by the
underlying topological cylinder sets. As this concept is useful to define the
o—algebra generated by a stochastic process and gives a measure-theorethical
definition of stochastic process, we describe it here. We start by identifying
the state space of our whole stochastic process X; with R”, the space of real
valued function from T" given by {X;(w)}ser, sometimes called product state
space. Considering the relative Borel o—algebra B(R™) we can suppose that
our stochastic process takes values within R” > € = {X(-,w) : X(t,w) €
R,t € T,w € Q} the set of values that our process can take in the product
state space RT. Given a finite index set J, a cylinder subset of £ is defined
as

Ctl,"',tn(Bb cee ,Bn) = {X(,w) e & X(tz) € BZ,Z € j,Bl € B(R),w € Q}

The collection of these sets keeping fixed the index set and varying the B,s
in B(R) forms a o—algebra Y. Varying the index set in 7" and taking
the product we get the cylinder o—algebra F¢ = o([Ijcr Xg). We can now
see a stochastic process like a measurable function between the probability
space (Q,F,P) and the product state space, or one of its restrictions, (£ C
RT, F¢) endowed with the cylinder o—algebra X :  — €. The sigma algebra
generated by a stochastic process is now

o(X)={X"YB):Bc T}
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Usually the knowledge of the entire process is precluded, because of its evolu-
tion which follows a random behavior (e.g. V¢, X;(w) could follow a particular
distribution). Indeed one of the goals of the study of stochastic processes is
to infer the evolution of the process itself using its history till the time ¢.
Thus what is required is, it is possible, a restriction on the values of Xy s(w)
(Xp11(w) for discrete and ordered index set) given X;(w) (respectively X, (w)
). We immediately highlight that if the set of X;(w) in 7" has some prop-
erty of independence, e.g. joint independence, the values of X; s5(w) (resp.
Xpi1(w)) will not depend at all, or weakly for weaker independence condi-
tions, from the previous values X;(w) (resp. X, (w)). In these cases what is
studied is the overall behavior, studying properties such as weather or not
the process will pass near a point, if a value is likely to recur more than
once or neither once. Considering a processes evolving in ¢, the information
available at a specific time ¢ is given by the oc—algebra induced by all the
X, for 0 < t. In the case of a discrete time index set T = {1,2,---} this
coincides with the o—algebra ¥, = o(Xy,---,X,) that we have described
at the end of the previous section. In this optic will be important also the
concept of filtration:

Definition 2.6. Filtration

Given a (2, F,P) and an arbitrary index set I, let be, Yo € I, F, a sub
o—algebra of F with the property thatVi,y € J: 1 < j=3F, CF,. The family
(F.).es is called filtration. A probability space endowed with a filtration is
said filtered probability space (0, F, (F,),c1,P). A process X; with values
in (R,R) is said adapted to the filtration (Fp)ger, withI =T, if Vt € T we
have that X; : Q — R is measurable with respect to the couple (Fy, R).

It is straightforward that a stochastic process X; comes with a natural
filtration given by (F3)ser whose elements F5, 0 € T, are defined by F¥ =
{o(X;) : 7 < 0} which is called indeed natural or induced filtration.
Given a deterministic time ¢ € T, it is natural to define the set of events
w.r.t. the filtration that are the future (F = Nys; Fy) and past events
(F7 = Np<t To) at t.

Sometimes the quantity of information we have on the stochastic process
depends on some quantities which are linked with the flow of the time pa-
rameter ¢t in X; and act like a trigger on the measuration of the properties
of our system. This idea is that of stopping time or stopping rule:

Definition 2.7. Stopping time
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Given a filtered probability space (2, F, (Fg)ger, P) and a index set T, a stop-
ping time T is a random variable with values in T =T Usup(T) such that

{r<t}eF, VteT

We also define the o—algebra of the past and future events associated with
the stopping time T

F-={BeF:Bn{r=0}ec3F, ,VoecT}
Fr={BeF:Bn{r=0}e€F,,V0eT}

Euristically, the stopping time is a r.v. which entails some specific infor-
mation at a time ¢ on the process that does not need the knowledge of events
future with respect to ¢. If my stochastic process is the toss of a coin, we could
define the stopping time 7 as the time when we have a certain number n of
heads, for example. This time does not entail any information about the fu-
ture, but only on the past of the stochastic process. For a discrete time index
set T'=NU {oo} the stopping time could only have an integer value in 1 — 1
correspondence with the indexing of the stochastic process { X, Xo, -+, X, },
and thus the event {r = n} is conteined in the o—algebra generated by the
first n r.v. of the stochastic process {Tr = n} € o(Xy, X, -+, X,,). An ex-
ample of stopping time could be the hitting time of a set B, the smallest time
t at which the stochastic process hits the set B C R in the state space

{T:U}: {Xt<0' EBCaXo' EB} Egjo-

we are now ready to introduce some stochastic processes.

2.3 Markov processes and Markov chains

Markov processes, and in particular Markov chains, will be fundamental in
their application to random graphs, networks and related random walks. A

Markov process is a stochastic process for which the following property
holds:

Definition 2.8. Markov property

Given an adapted stochastic process X, on the filtrated probability space (2, F, (Fp)oer, P)
taking values on the measurable state space (R, R) is said to be markovian

or to have the Markov property if VB € R, V0,0 € T with 6 > o we have:

P(Xg eB | 317) = ]P)(Xg eB | XU) (2.13)
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We note that we could have used the natural filtration (F3 )y € T', respect
to which the stochastic process X, is naturally adapted. In substance a
Markov process is a stochastic process in which the future depends only on
the present (or most recent) value of the r.v. X;. Another way to state
Markov property is through expectation, thanks to (2.4): given a bounded
and measurable

E(Xg eB ‘ ?U) = P(Xg eB ’ XU) (2.14)

A fundamental role in Markov processes is held by transition function or
transition probability

p(y) T x Rx R —[0,1]

which, gives the probability for passing from a value X; € R to a set of values
B € R after a time J, otherwise stated the probabilty of P(X;.5 € B | X;).
Transition probability are indicated by

p(0, X, B) =P(Xs15 € B|F)Y) =P(Xs15 € B| X)) (2.15)

in which the last equality follows from the Markov property. From now on
for the sake of clarity and also for important implication on the applications
we assume that our Markov process has an origin and no end, 7" = [0, 00).
These functions are subject to some properties:

1. p(t,x, ) for t € T, x € R, is a measure probability on (R, R)
2. p(0,x,-) =4, is a point measure, x € R
3. p(+,+, B) is (T x R)-measurable

4. (Chapman-Kolmogorov equation)
plt+5,0,8) = [ plsy. Bip(t.a.dy) (2.16)

The equation (2.16) has an intuitive interpretation: the probability for get-
ting to a state X, 4 € B from a state X; = x € R is obtained integrating
over all intermediate states y € R which are sent to B by another transi-
tion function''. We can see through the properties of the integral in (2.16)
that transition functions are time homogeneous. Thanks to (2.15) the whole

HEquation (2.16) entails the semigroup property of transition functions.
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Markov process is time homogeneous'® There is a straightforward extension
of Markov property. We can indeed extend this independence of Markov
process when the sigma algebra which entails the information is the one
generated by a stopping time.

Definition 2.9. Strong Markov property

Let be X, a stochastic process like before, and let T be a stopping time. For
each value of the stopping time, conditioning on the event {T < o0}, we say
that the process has the strong Markov property if Vt:

P(XT—H S | 9:;) = P(XT—H ) | XT) (217>

with I is the past sigma algebra w.r.t. stopping time 7. Stated with transi-
tion functions we have

The formulation with expectations is straightforward.

If the stopping time 7 is a discrete r.v. the strong Markov propertiy
follows directly from the standard one's.

Once one is given with the initial distribution p in (R, R), i.e. the
probability distribution p(B) = P(X(0) € B), with some regularity condition
and a realization of the transition function p(t,z,B), we have the whole
distribution for a finite sample of X;:

Theorem 2.3.1. Finite dimensional distribution for Markov pro-
cess'
Let be p an initial distribution on (R,R), and p(t,x,B) a transition func-

tion like above. Then if [p(t,x,-)du(x) is tight'® there a Markov process

12For the sake of clarity (2.15) is self-given when we deal with Markov processes in which
there is no difference the two transitions (X; =z — X415 = y) and (Xyg =2 — Xg15 = y)
which are called indeed time homogeneous Markov processes and transitions depends only
on initial and final state (z — y) and on the interval 0 in which the transition takes act.
Because we deal only with Markov processes of this kind we take (2.15) as a definition.

13See [27], proposition 4.1.3

14Gee [27], theorem 4.1.1 for the demonstration.

15A measure p on a space ) is said to be tight if Ve, 3B C Q : u(B) = 1 — ¢, with B
compact in €.
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on (R, R) with transition probability p(t,z, B) and initial distribution p finite
n—dimensional distribution given by:

X()GB(),Xt1€Bl, , X GB )
/ / t - tn 15 Yn— 178 )p(tnfl - tn72>ynfladyn71)
Bo B 1

p(t1, Yo, dy1)dp(yo)
(2.19)

We will denote the pro probability distribution (2.19) with [P, in partic-
ular for 1 = 0, we will write P, and with E,, E, the respective expectations.
Using this probability and the time homogeneity for Markov processes we
have that

Pu(Xt—i—(S =T | Xt = y) = Py(X(S = J:) = p((Sv :B?y) (220)

for x,y € R and a time shift 6. We have handled until now the most general of
Markov processes, those with continuous index set 7" and possibly uncount-
able state space (R,R). For our applications will be enough restricts our
scope to Markov process with a discrete but possible infinite index set T' = Z™*
and a discrete, countable or even finite, state space R = {i,j,k---}. These
particular Markov processes are called Markov chains. A Markov chain X
consists of a series of r.v. at discrete timese X = {Xo, X1, Xo,--- , X, -+ }.
The transition functions now become thanks to time homogeneity and the
equal spacing of time increments and using (2.20):

pij =Pi(X1=J) =Pu(Xpp1 =7 | X5y =) (2.21)

while the probability measure 4 becomes a discrete probability measure. The

(2.16) becomes
Pij = szkpk]
keR

and the equation (2.19) becomes
P, (Xo=1i,X1 =4, Xo=k--, X =m) = pu(i)pipjr - Pim (2.22)
We can thus define the transition matrix P = (p;;); jer, such that p, =

(pij)jer is a probability vector, i.e. Y ;p; = 1: this is the simple obser-
vation that given a state j the probability of getting to 5 from all the other
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states must add up to 1. In chapter 5 and in general in statistical physics
contexts, P is called stochastic matrix; moreover if the rows of P sum up
to 1, 3°; pij, then it is called doubly stochastic. Given a Markov chain X =
{Xo, X1, X5, , X,,,- -+ } we can extract a Markov subchain Y of fined fixed
step m, such that Y = {Yy = X0, Y1 = X, Yo = Xop -+, Y = X, -+ }
it’s easy to see that the transition matrix for Y is P™, namely the m'" power
of the one of X.

With each state ¢ is possible to define a hitting time variable 7(i) defined
such that

(1) =inf{n > 1: X, =i}

It’s costumary to set 7(i) = oo if such n doesn’t exists. Let be N; =
021 1x,—; the number of visits to the site . We have that the two events
{7(i) < 0o} and N; > 0 coincide. With 7(i) we indicate the time m'™ visit
at t. Clearly 7(i) > 7™ (i), and we can define it by recurrence or time
homogeneity setting X m-1(;) as the new starting point. We will call the state
i recurrent if P;(7(i) < oo) = 1. A recurrent state is a state starting from
which it is certain for som n > 0 that X,, = 7. A state that is not recurrent is
named transient, a state starting from which is the probability of returning
is less than 1. There are other ways for identifying recurrence:

Proposition 2.3.2. Let bei € R a fixed state. Than the following conditions
are equivalent

1. 1 is recurrent
2. The event {N; = oo} is almost sure'® w.r.t. P;.

An analogous proposition old for transient state, modifying the events in
an obvious way. We define two states ¢ and j to communicate if for some
m, pj; > 0 and pJi > 0. If in R all states do communicate is then called
irreducible. This is extendible also to subsets of R. We remark that is not
true in general that p;; = pj;, thus it is not a trivial fact. We indicate this
relation with <. If 7 is recurrent and that j is reachable from 4, then 7 and
j do communicate, ¢ <> 7, and even j is recurrent. We have in fact that

16An event B is almost sure if the complementary event B has null probability w.r.t.
the defined probability measure.
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P;(7(i) < 0o) = 1 otherwise there would be an evolution of X starting from
i and passing from j such that P;(7(i) = co) > 0; moreover we have

E;N; = Z P> Z P paplt =

Thus reccurence with <+ is an equivalence relation, and our state space R is
partitioned in disjoint recurrent classes R;s such that

R=TUR URy--- (2.23)

where the 7" is the set of transient states. The different recurrent classes have
the absorbing property and are called closed: namely when we start in Ry
we stay in Ry

Pi(X, € Ri,¥n) =1, Vi€ Ry

The aim of this decomposition is that we can always restrict ourselves to
think that we are in an irreducible state space, because if it is not the case
we can break down R like above. If we start with an irreducible R it could
else be made of all transient states or is made up by a unique recurrent class.
Another distinction depends on whether E;7(7) is finite or not: we will call
1 positive recurrent in the first case and null recurrent in the second.
If there is a common divisor d; in the set of recurrence times {7 (i)} nen
it is called period; if d; = 1 the chain is called aperiodic. We have the
following!”

Proposition 2.3.3.
Given a recurrent class R, the states in it are all either positive or null
recurrent and have the same period.

2.3.1 Stationarity and asymptotic behavior of Markov
chains

Given a p(n) = (115(n)),cp probability measure on R at the time ¢t = n, and
considering it as a row vector we can define by matrix multiplication a new
probability distribution at time t = n + 1,

pu(n+1)=pun)P (2.24)

17See [5,22] for demonstrations.
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where P is the transition matrix of the Markov chain. We will indicate the
dependence by time with a subscript index, e.g. po will be the provability
distribution over R at time ¢ = 0, i.e. the initial distribution. We say that
the distribution u is stationary if it is a left eigenvector of P with eigenvalue
1, p = pP. The name stationary is refers to the fact that if we start with an
1o we will have that p(n + 1) = po for each time step, i.e. the probability of
being in a state j is the same as the initial. A brief analysis shows us that
po P is nothing than the P, distribution of X, in fact:

(oP)j =D u(0)ipiy = Pu(Xy = j) = p;(1) (2.25)
i€R
Generalizing, we have that the P, distribution of X,, is given by
poP" = py, (2.26)
A fundamental result is the following:

Theorem 2.3.4. Existence of stationary distributions

Given an irreducible and closed chain a stationary and positive (i.e. Vj, p; >
0) measure p always exists and it is unique up to a constant. If the chain is
positive recurrent p is given by

1
Wi =g

Given that an irreducible Markov chain with finite state space is always
positive recurrent, the above result is quite useful. It is also possible to
define a stationary measure in more general chains, see [5,22]. An important
case of stationary measure for physical models are reversible measures. A
reversible measure has the property that

WiPij = HjiPyji (2-27)

this property is often called in physical context detailed balance. Detailed
balance is a stronger property than stationarity and implies it as one can see
summing in i both sides in (2.27). A necessary and sufficient condition for
the existence of a reversible measure is the following one:

Theorem 2.3.5.
A reversible measure exists if and only if

1. pi; > 0 implies pj; > 0
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2. for any loop Xo, X1, ,X,, = Xo the quantity

n
Pi—1i

i=1 Pii—1

exists and is equal to 1.

Given a partition in classes like the one (2.23) we can define stationary
distribution in each R; and then take p = >", u; as a stationary measure for
the whole chain. Another important question is the asymptotic behaviour of
the quantities pj; in the limit n — co. We state the two principal results.

Proposition 2.3.6.
Given a state j transient or null recurrent, we have pj; — 0,Vi € R as
n — oo.

Thus, a non trivial behavior in the limit of n — oo is expected for positive
recurrent chains.

Theorem 2.3.7. Ergodic theorem for markov chains
For an irreducible, positive recurrent and aperiodic chain with stationary
distribution p we have that
p% — i, V]
or otherwise stated
P" —elp

where e” is the row vector of all ones.

this result can be interpreted that saying that no matter what the initial
state the limiting distribution of X, will be . The result can be generalized
to periodic chains with some trickery, see [5]. Markov chains that satisfy
theorem 77 are thus said ergodic.

2.4 Wiener process and Brownian motion

One special type of Markov processes are Wiener processes. In non-mathematical
context Wiener process is usually called Brownian motion; actually
Wiener process is the name of the mathematical model describing the phys-
ical problem of Brownian motion, thus we will use this last name for identi-
fying both, as is usage nowadays. For our discussion is important because it
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will be used to derive in 7?7 the distribution function of some special matrix
ensembles. From a theoretical point of view it is utterly important for its
wide range of uses and its rich structure provides multiple connection with
physics modeling and mathematical physics. It is also the first place in which
we introduce the normal distribution that will be fundamental in 3. We
will indicate the normal distribution by N(u, o) a distribution whose density
function f(z) is given by

e ato (2.28)

where p is the mean of the distribution'®, o2 is the variance and o is called
standard deviation. N(0,1) is often referred to as standard normal
distribution. We are now ready to define the one dimensional Brownian
motion.

Definition 2.10. Brownian motion
A one dimensional Brownian motion is a stochastic process By with time
index set T'= Rx¢ taking values in (R, R) with the following properties:

1. By =z with x € R deterministic.
2. The map t — By is almost surely continuous..

3. For each set of ordered variables ty < t; < --- < t, the increments
B, — By, _,,---,By, — B, are independent.

4.Vt to €T, ty >t_, By, — By has N(0,t, —t_) as distribution. In
particular By = By — By has as distribution N(x,t).

If the time set T is discrete we will talk about discrete Brownian mo-
tion. We can always traslate the motion in such a way that By is always
set equal to 0. If z in the first property is not a deterministic point but
is a random variable Xy, we will have that the overall process is given by
B = Xy + By, with B, standard Brownian motion. The distribution of B}
is thus the convolution of the distributions of X, and B; as B} is the sum of
two random variables and (?7) holds. Third property is referred to as inde-
pendent increments property. The fourth one entails two different properties:

18Unfortunately the standard symbol in literature for distributions and mean do coin-
cide, but it will not create any ambiguity and the context will distinguish between the two
usages.
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the property that B,, — B;_ has the same of B, _;_is referred to stationary
increments. A process with these properties is called Levy process. Thus
Brownian motion is a Levy process with gaussian stationary increments.
The power of Brownian motion is inside this gaussian property. In fact, as
we will see in 3 normal distribution plays a special role in probability theory.
We can generalize Brownian motion to a n—dimensional Brownian motion
requiring that each component B}, - - - B is a one dimensional Brownian mo-
tion. It turns out that using Kolmogorov extension theorem is possible to
demonstrate the existence of Brownian motion and its uniqueness'?. More-
over it possess normal and strong Markov property.

For what concern Brownian motion trajectory it is a result that it is
Hélder continuous with exponent 6 < % but they are not Lipschitz contin-
uous. Hence Brownian motion as a map t — B; is nowherwe differentiable.
As in Markov process we can talk about transience and recurrence. The di-
mension of the Brownian motion is central in this topic. In fact it turns out
that Brownian motion in dimensions d > 3 is transient, while it is recurrent
for d = 1. For d = 2 it is neighborhood recurrent, which means that given
a point in the plane x, the Brownian motion will visit almost surely any
neighborhood of x arbitrary many times, but will never visit  at any time.

2.4.1 Heat equation

Brownian motion is deeply linked with heat equation. In fact working with
a smooth F': R — R with bounded derivatives, we have that expanding with
Taylor F(x) where the increment corresponds to dz := z(t + dt) — z(t), we
have
Fla tdv) = F(&) + 4 P@)de + 0 p(@)janf + 0(ldaf)
v +de) = F(z) + - F(z)de + 5 -5 F(x)|dz x

Considering x a function of a parameter t, t — xz(t) we have that dz =
x(t + dt) — xz(t) and we can identify z(¢) with our Brownian process B;:

d 1 &2
F(Biyat) = F(By) + ——F(B,)dB; + =~ F(B,)|dBy|” + O(|dB,|*)
dx 2dx
Taking expectations and remembering that dB = B;, 4 — Bt is independent

of B(t) and has mean 0 for the properties of Brownian motion we have taking

198ee [22,27,51,65] as references on Brownian motion.
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expectation that

1 d?

EF(Bira) = EF(B;) + EiﬁF(Bt”dBtF + o(dt)

Performing then a limit on dt we obtain:

Ceri) = 5L sy (2.29)
dt Yo e '
The process B, has a probability density function depending on time ¢. In
fact we know that for ¢ = 0 we have a Dirac mass at xg = By. Denoting this
density function with p(x,t) we have

EF(B;) = / F(z)p(z,t)dz
R
Applying equation (2.29) we have that in a tempered distributional sense

0 0?
ap(% t) = @P(% t) (2.30)

which is the heat equation. It is known from PDE theory that the heat

kernel is given by
1 _lz—pl?

—= 2t
p(x,t) NG
For an n—dimensional Brownian motion we will have the heat kernel given
by N(u,o%I)gn, the n—dimensional multivariate normal distribution with
covariance matrix o?I. Is thanks to the integrability of N(u, 0?I)g» for n > 3
that we have transient behavior of Brownian motion; viceversa the different
types of divergence for n = 1,2 give the different recurrence properties. We
also observe that n—dimensional is rotation invariant thanks to its underlying
distribution N(u,0?I)gs. This will play a central role in section ?7?.
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Chapter 3

Random Matrix Theory

Random matrix theory! (RMT for short) sees his birth at the beginning
of the 20" century, and it was introduced for the study of the spectra of
certain heavy atoms. Since then RMT became an important object of study.
We begin our discussion with the description of concentration of measure
phenomenon and continue with the main results of RMT.

3.1 Concentration of measure

When studying an ensemble of random variables {X;, X5+, X,,} taking
values in the state space (R,R) (we will deal with variables taking values
in R or C) we may be interested in the behavior of some "nice" function
F . R" — R. The classic example is the estimate of partial sums of the
type FI(Xq,---,X,) = S, = X1 + Xo + -+ X,,. The main point is that
if the set of random variables has independence property (k—wise or even
jointly independent), their fluctuation will cancel mutually out, concentrating
the value sharply around the expected value. Obviously this concentration
will be more evident in the great n limit, where the random noise due to
fluctuations starts to flatten the value to a limit. The degree of knowledge
on the moments and on their boundedness and the degree of independence
of the variables we can exploit will affect the sharpness of the concentration.
We start with some inequalities, describing how moments and other tools can

!The textbooks that we use as reference in this section are [3,8,65] in general, but
mostly [65] which gives an overall view on the subject from different mathematical point
of views. One quite old but still masterpiece reference is the classic text by Mehta [46].
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be used for tail estimate in paragraph 3.1.1. Then we will use these powerful
tools for deriving a masterpiece result in probability theory, the central limit
theorem in paragraph 3.1.2.

3.1.1 Concentration inequalities and the Moment Method

Let’s study the behavior of the sum S,, = X;+Xs+- - -+X,,. For simplicity we
will suppose that the X; will take value in R. The case for complex variables
will be easily deduced exploiting C ~ R?. We will work with moments, and
using expectation properties it is easy to note that E(S,) = Y E(X;).
Thus normalizing S, —ES,, = >, = 1"(X; —EX;) we can always assume that
the r.v. X,, have mean zero taking S, — S,, — ES,,. Directly from equations
(2.1), (2.5) and (2.6) we can have some preliminary results. In particular
equations (2.1) and (2.5) adapted to S, results in

n

P(S, #0) <Y P(X; #0) (3.1)

=1

E[S,| < Y EX;| (3:2)
i=1
In particular eq. () is trivial, but will be useful when we will deal with non
bounded r.v. On the other side eq. () gives a better bound, but a weak
one. The point is that we are not taking advantage of the independence of
{X1, X5+, X, }. Using the second moment we make our first assumption
of independence. We have:

E(S,) = 33 EX.X,
=1 j=1

Now, the quantity E(X;X;) is equal to zero, if we have pairwise indepen-
dent r.v. unless i = j and it is equal to Var(X;) thanks to the zero mean
assumption. Using then (2.6) we have

P(|S,] > \) < ZVar (3.3)

Inserting in this equation A = ", Var(X;) we get that equation (3.3)

asserts that S, = O(y/>", Var(X;)). Euristically the values of S,, are con-
centrated inside an interval dominated by square root of the variances. We
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remark that this result is not trivial. If the X,,s are Bernoulli variables with
values {0, 1}, they have unitary variance, and thus />, Var(X;) = \ﬂn)
which in the limit n — oo is much more powerfull than the trivial bound
given by n. We can now turn to higher moments, working with variables with
unit variance and let us further assume that they are bounded, | X;| < K; we
will see in the sequel how to deal with this simplification. Considering

1<iy, - ig<n
we note that to pursue a result we must require k—wise independence. This
expectation is null otherwise we have that each X; appears at least twice.
But, for example, if k£ = 9, we cannot have that each X; appears twice, but we
must have at least an odd moment, let’s say EX ]3 It turns out that working
with odd moments does not provide control on the distribution of S,, because
of we should account of I[*E|Sn|3 # ES3. Thus we can limit our discussion to
the case of even k, and we have at most k/2 terms. We can have in general
that we can have a number inferior than k/2 if some X; appears more than
twice, say k/2 — [. Given the boundedness of the variables |X;| < K we can
make an upper bound that will be linked to the number [ such that k/2 —1 is
the number of indices that appears. In fact the other variables that appears
twice will contribute with 1, given the unit variance assumption. The bound
is given thus by K? for each [ multiplied by the number of configuration NV,

i.e. the number of ways that the set of integers {iy,- - , i} can be chosen in
{1, -+ ,n} such that we have [ variables in "excess" from the couple condition.
We have

k/2

E|S.|* <Y KN,
1=0
A combinatory argument, with some bounds lead us to the final result

ek /2 ’
P(15.] > AVi) <2 (A) (3.4

This inequality can be optimized when our variables are not just k—wise
independent for each fixed k, but are jointly independent. We end up with:
P(S,| > An) < Cexp(—c)?) (3.5)

The control of all the moments give thus a strong bound of sub-Gaussian
type. The control of each moment is somewhat included in the control of

32



the exponential moment Eexp(tS,) which can be used to demonstrate the
following theorem:

Theorem 3.1.1. Chernoff inequality
Given a set of independent and almost surely bounded r.v. {X1, Xo--+ , X}
with | X;| < K with mean p; and variance o?. We have Y\ > 0

P(|S, — p| > o) < Cmax(exp(—c)\z),exp(—c)\a/K)) (3.6)

2

7"

with C,c > 0 constants and = Y1 p;, 02 =", 0

We note that the exponential moment relies heavily on the commutativ-
ity of the random variables, thus cannot be used in more general contexts.
The condition of jointly independent r.v. can be somewhat relaxed to a
martingale property

E(X;| X1, ,Xi21) =0

which give raise to a large deviation bound of sub-Gaussian type and it is
called Azuma’s inequality.

Until now we have assumed that our variables are bounded, but what
we can do if they are not? Truncation method provides a trick for doing
this. We divide our variables X; in the sum of two different random variables
Xi<n and X; > n, where X; <y = X;1(|X;| < N) and X; - is analogous, i.e.
we split in two the variable with respect to some truncation parameter N.
The two new sums

Sp<n =Xi<n+ -+ Xp<n

Spsn =Xisv+ -+ Xpsn

can be analyzed by different means: S, <y is made up with bounded vari-
ables, so we can use the concentration inequalities that we have seen up to
now. S, >y on the other end is not made by bounded variables, but the fact
that we usually work with non heavy-tailed distribution give us the possibil-
ity of bounding S, ~n in a such way that its contribution becomes negligible
in the limit n — oo. In fact usually we can use for these tail r.v. equations
(3.1.1) and (3.1.1) which usually give a nice asymptotic behavior.

We can now analyze the case when F' is not just the sum or a lin-
ear combination of the variables {X;, X5 -+, X}, but a function taking
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real or complex values. It is necessary to make some regularity condi-
tion on F. Let us assume that F' has some kind of Lipschitz? behav-
ior. We can start with a Lipschitz behavior on the single variables, i.e.
|F(21, @1, Ty Tig, 0 &) — F @y, 21, T Tigg, -+, )| < k. We
can further assume that the variables take values in different state spaces R;.
We have the following:

Theorem 3.1.2. McDiarmid’s inequality
Given a set of independent r.v. {Xy, Xy -+, X,,} taking values in Ry,--- , R,

and a function F': Ry,--- , R, — R such that we have for each component i:
|F(:C17 Ty i1, Ty L1,y ,Q]n) - F<:C17 C L Ti-1, Ty, MRS PR 7:Cn)| S kl
(3.7)
where xp € Im(Xy) and T; € Im(X;). Then we have for A > 0:
P (|F(X) - EF(X)| > Ao?) < Cexp(—cA?) (3.8)
with C,c > 0 constants and 0? = 3" k2.

=1 "%

If we require joint Lipschitz regularity for all variables varied at once, then
we come at powerful results. The idea back this kind inequalities that will
be fundamental even in the next paragraph is that the universality behavior
of a sufficiently regular and large set of random variables is well described by
gaussian variables. Any set of regular variables will be in the great n limit
described faithfully except for errors that go to zero for n — oco. Gaussian
r.v. are concentrated under global 1—Lipschitz functions, the matter reduce
to demonstrate that this is an universal behavior. The fundamental theorem
from Talagrand ( [62]) is a cornerstone in concentration of measure theory:

Theorem 3.1.3. Talagrand concentration inequality

Given a set of independent r.v. {Xi, Xs---,X,} bounded by a constant
K > 0 such that | X;| < K Vi, let be F a 1-Lipschitz convex function, then
we have for any \:

P(|F(X) — EF(X)| > AK) < Cexp(—c\?) (3.9)

with C,c > 0 constants.

2A real valued function f(z) is said to be Lipschitz if |f(z) — f(y)| < K|z — y]| for
some constant K.
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A corollary for Talagrand concentration will be useful in chapter ?7.

Corollary 3.1.4. Given a set of independent complex r.v. {X1, Xo--+ , X},
with mean zero and unit variance, bounded almost certainly by K. Let V be a
d— dimentional subspace of C™*. Then we have, using the Talagrand inequality
with F' = d(X,V) the distance of a vector X from a subspace V', that

P(|d(X,V) = Vn—d| > \K) < Cexp(—c\?) (3.10)

3.1.2 Central Limit Theorem

We now try to give formal rigor to the assertion of universality we made
in the previous paragraph. Let’s take S,,. The point is that the statistical
fluctuations of the variables X; of a certain ensemble of r.v. under study tend
to rule out each other under certain regularity assumption in a large n limit.
This results not only in a large deviation inequalities like equation (3.6), but
the overall behavior of the variables converges to an universal distribution.
This result goes by the name of Central Limit Theorem.

Theorem 3.1.5. Central Limit Theorem
Consider the normalized sum
Sy —np

Vno
2

where the variables X; are iid real r.c. with finite mean and variance o~.
Forn — oo, Z, converges in distribution to the standard normal distribution
N(0,1)g.

L

The factor in Z,, %w is tight, in the sense that we cannot under the
general assumption of &T find any weaker regularization. There are many
ways to demonstrate CLT. They all try to demonstrate the convergence of
Z, to N(0,1) through the convergence of other quantities that are easier
to work with. One of these is an analytical method and goes through the
analysis of the distributions. It takes the characteristic function Ee®X, that
is the measure equivalent of the standard Fourier transform and uses a tool
named Lévy continuity theorem to establish the result. We will use the
moment method, that will be central even in the analysis of matrices; in fact
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Fourier method relies heavily on the commutativity of the random variables.
We quickly note that given the Taylor expansion

[e's) 1\ k
i k!

the two methods must be linked. The following continuity theorem will be
useful even in the future

Theorem 3.1.6. Carleman continuity theorem
Consider a set of sub-Gaussian variables X;, and a sub-Gaussian X, the the
following statements are equivalent

o For every k EX% converges pointwise to EX*

e X, converges in distribution to X.

So, to verify that a distribution X is the limit of a series X,,, it will
suffice to show the convergence of the moments as n — oco. The moment of
a gaussian variable G = N (0, 1)g are easy to obtain:

—a?/20° 0, if k is odd
\V2mo sy ALK IS even

It remains to evaluate the moments of Z,,. As before we can assume that the
iid random variables are distributed with unit variance, zero mean and we
can always apply truncation method and considering bounded r.v. In fact if
Zn.< converges in distribution to N(0,1) so will do Z,, ~ to zero from domi-
nated convergence theorem. The fact that we can consider X bounded give
us the possibility of applying Chernoff inequality (3.6) and use Carleman’s
theorem.Thus we can formally study the convergence of Z,, through analysis
of the moments of the distribution. This is done as follows. Considering the
k™ moment of the distribution we have

1

kE _
EXf=—p

S OEX, X,

1<iy, - ig<n

k

As before using mean zero property and unit variance we arrive to considering
sums of the type

nk/2 Z c(k,ay, - ap)EXGH - X (3.12)
1<iy,+ im<n
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where now j; < --- < j,,, are a subset of {1,--- ,n}. It’s easy to see that the
factor c¢(k,aq,- - - ap,) is the multinomial coefficent

k!

s an) = e

Now, most of the terms X3’ vanish ora are infinitesimal in the limit n — oo
with respect to a partition where each term have an even power a; of at least
2. Thus as in the previous paragraph, we have at most k/2 elements. The
number of summands in (3.12) is (:1) When we have effectively k/2 — [

different elements, the boundedness give elements that are O(n!) for n —
00. Thus we must look for only the terms where m = k/2. For odd k we
have always an exceeding term that cancel EX*. For even k, given the unit
variance assumption, each X? = 1. We remain with

1 (n k!
nk/?<m> c(k,2,-+,2) = S22 o(1) (3.13)

which coincides with (3.11) for n — oc.

The generalization of the idea behind CLT leads to the famous Linde-
berg swapping trick. In order to perform calculations (even when the
variables appear inside a nice function F') on variables that are compatible
with theorem 3.1.5 we can work with directly with gaussians G; in place of
the r.v. X;. This trick is useful when we are interested in rate of conver-
gence of CLT, such as in Berry-Esséen theorem which we present for later
convenience®:

Theorem 3.1.7. Berry-Esséen theorem
Consider a set of centered iid random variables X; with bounded third moment
E|X;|* = p < co. If u(x) is the distribution of Z, we have

() <3P
n(e) = N @) <37

where N (z) is the cumulative distribution of N(0, 1)

3See [22,44,65].
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3.2 Operator norm Bound and Bai-Yin the-
orem

We are now ready to deal with matrices and random matrix theory, as it
will be the principal argument of this chapter. We will deal principally with
square matrices n x n, but some of the results of this chapter are extendible
to rectangular matrices m x n, see as reference [8]. We can always interpret
a matrix as an array of random variables M = (;;)1<ij<n. Depending on
the characterization of the &;; we will have

e Iid matrix ensembles where the §;; = ¢ are iid variables.

e Symmetric Wigner ensembles where the ;; are independent real
random variables for the upper triangular sector j > i, but we impose
symmetric behavior &;;) = ;. Usually the elements &;;, j > ¢, are
taken to be identically distributed, but it is not a binding request. For
our studies diagonal entries will play a marginal role, because we will
see that in a large n limit their influence goes to zero, but for definition
we require that &; to be iid with a different distribution. For example,
the Gaussian Orthogonal Ensemble (GOE) has upper triangular
elements distributed under N(0,1)g law, while diagonal elements are
r.v. with distribution N(0,2)g for convenience.

e Hermitian Wigner ensembles are complex matrices, with hermi-
tian property &; = &;;. The same details we have said for symmetric
matrices hold here. An example is Gaussian Unitary Ensemble
(GUE), where off diagonal elements have as distribution N (0, 1)¢ and
the diagonal ones have N (0, 1)g.

One of the first quantities we are going to analyze is statistical behavior of
the operator norm of a n X n matrix M in a given ensemble, defined by

M|, = sup [[Mz]| (3.14)
zeCn:jz||=1
where ||-|| is the usual norm in C", in the large n limit. This value coincides

with the largest singular value o;(M)?, i.e. the square root biggest eigen-
value of the matrix MTM, where T represents adjoint. In this section we deal

4We will suppose the eigenvalues and singular values ordered in decreasing order, i.e.
>\1 Za)\2 Z "'An-
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with results that don’t require the matrix M to be symmetric or hermitian.
Even if these assumptions will be made for solving the problem in a more
direct way, the generalization to a generic matrix is possible. We are going
to use concentration of measure arguments like in the previous section, and
in particular the moment method for obtaining bounds of the type:

P(IM]l,, = A) < f(A,n)

which will in general depend on the dimension n of the matrix and the
threshold A\. We note here that te matrix .J,, i.e. the matrix n x n containing
all 1s has [|J,[|,, = n, fact that will be needed later. Like in the analysis
made for |S,|, a rough bound is given through .J,,: multiplying his entries by
O(1) we expect an operator norm of O(n). This results, as before, does not
take in account the independence of the entries and the mutual cancellations.
One key result derives directly from theorem 3.1.3:

Proposition 3.2.1. Concentration of measure for ||M|,,
Given a matriz M with independent entries M;; of mean 0 bounded by one,
|M;;| <1. Then for any A > 0 we have

P([|M],, — E (M]],,)| > A) < Cexp(—cA?) (3.15)
for some constants C,c > 0.

Basically we are going to take advantage of the convexity and the 1—Lipschitz
behavior of || M|, seen as a function on C" of the entries of the matrix M.
1—Lipschitz behavior is easily obtained by bounding ||M||,, with Frobenius
norm

- 3
M| = (ZZ ’Mij|2)
i=1j=1
. We can then apply directly theorem 3.1.3. It is left to calculate E (||M ||Op).
We will use moment method® applied to real symmetric matrices because
it is of easier implementation, in particular in combinatorial result. The
generalization to hermitian matrix requires some little effort in the analysis
we are gonna give in what follows. The problem for a generic can be tackled
considering an augmented matrix of the tipe
~ 0 M
=L 4]

®We will follow the presentation given in [65].
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reducing the problem to the study of an hermitian matrix. In the symmetric
or hermitian case ||M]|,, is directly linked to eigenvalues of M. In fact we
have that

o1(M) = max |\;(M)]

1<i<n

that is also a first direct informations on the spectrum of our matrix. The
moments of a matrix M are defined w.r.t. the Empirical Spectral Distri-
bution (ESD)

1 n
M= 525,\j(M) (3.16)
j=1

The ESD is simply the distribution that gives a weight to A; according to its
multiplicity. Otherwise stated, py(A) counts the number of eigenvalues of
M in a given interval A:

par (A) = ~H0,(M) | A() € 4)

where f indicates cardinality of the set. Considering an ensemble of random
matrices, it should be noted that ., is not a simple distribution, but rather a
random distribution. Indeed it gives us the eigenvalues of an element drawn
from the ensemble. It is itself a random variable in the space of distribution
over the real line. Now we can see that moments are defined to be

/ tduM *tl"M
(3.17)
/ tkduM *tl" Mk

Epps can be defined through Riesz representation theorem as the distribution
which solves the following identity:

/ () dB s (x E/ () dpns () (3.18)
Given the connection of moments and || M|,,,, with eigenvalues its easy to see
that the knowledge of the formers poses bonds on the latter. In fact given
that [|M]|,, = maxi<i<n [Ai(M)], we have that
k k k
||M||op StI'M S nHMHop (319)
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For example, given that the second moment my(M) = Ltr M? = %||M||2F,
in a matrix with off-diagonal entries of mean 0 and variance 1 and diagonal
entries of mean zero and bounded variance, taking M? and by the weak law

of large numbers and applying equation 3.19, we have
(1+o(M)vn < [M]l,, < (1+o(1))n

asymptotically almost surely. Like before, we now work with even moments
with & > 2, assuming that we M;; has mean zero, unit variance and are
bounded by constant K. The general term tr M* is given by

M, - M

le—1%k Mikil

(3.20)
We can view this sum graphically. Each i is a node of a graph (see chapter
5), and couples of indices that appear in (3.2) are the edges that appear in
the graph, i.e. the sequence {iy,is}, {i2,93}, - {ix—_1, %k}, {ix, 91} is a closed
path on the graph of possible indices. We study the expected value E(tr M*),
because we can take advantage of mean zero and independence of the entries.
The only non vanishing terms, like in the dissertation of the moment method
for Z,, are those in which there are at most k/2 terms, and thus at most
k/2+1 nodes. We note that we can divide the cycles in classes of equivalence,
and work with classes. For example, with £ = 6, all cycles composed by three
distinct edge, give the same contribution to the sum (). Considering a class
of j edges, with multiplicity a;,--- ,a; that sum up to k, choosing the first
node from the n possible ones, we can identify the cycle once we are given
with the j edges. Each edge is a choice between n elements (we allow to
remain in the same node). Thus we can have at most n/*! cycles of this
type. Using the conditions on M;;, we have that if {4, j} occurs a times in
the cycle, it will contribute with a factor K%~ 2, where a is the multiplicity
a; > 2 corresponding to the edge {i,j}. Thus the single summand in (3.2)
gives a contribution of K*~% and having n/*! elements in the same class it
contributes with a factor n/ ™' K*=2/, Summing over the classes, and using

the bound
KO\
It KR < e - (1’ () )

213

w{MFy =te(M--- M) = > My, M,

1<in,ig, - yig<n

NG
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we obtain that
k k-1
E(tr M*) < k n*/ 2 max | 1, K
2 Vn

ﬂby eq. (3.19) (3.21)

E(|M],) < (’;)n/ . (1, (%)

And we get by Markov inequality (2.5)

k k K k—1
P (“MHop Z )\) S )\_k <2> ’[’Lk/2+1 max (1, (ﬁ) )

Optimizing in k, taking it comparable with logn, we have that with high,
probability
|M],, =0 (ﬁlog () max (1, j%)) (3.22)
It is easy to see that if K = o(y/n), each class contribution to the sum
I KFR=2 will be oy (n/?*1), where the subscript k& means that the asymp-
totic behavior depends on it. On the other hand, if we have j = %, each edge
appears twice in this type of cycle, and by the unit variance assumption, the
contribution of the whole cycle is 1. The determination of the expectation of
(3.2) is thus reduced to the count of this type of cycles, in particular those
which travers exactly k/2+ 1 nodes. Indeed if they were less than k/241 we
would have an infinitesimal contribution, because the total number of cycle
of k/2 distinct edges that cross less than k/2 + 1 is an oy(n*/2*1) and can
be neglected. This combinatorial problem is equivalent to find the so called
Dick words of length k. This number is given by C’gn(n —1)-(n—£k/2),
where

k!
Ce = 7———— (3.23)
2 (E))
is the gth Catalan number®. This is exactly analogous to the factor o /2](612 7))

we have found in (3.13). We have thus demonstrated that, for a symmetric

6See [65] Lemma 2.3.15, page 122.
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matrix M with jointly independent elements with mean zero and variance
one, bounded in magnitude by o(y/n), the even expected moments are given
by

E(tr M*) = (Ci + 0p(1)) n3*! (3.24)

Using Stirling formula

n! = (14 o(1))vV2rnn"e™.

1/k
we see that (Cg) / — 2 as k — 0o. We have obtained

Theorem 3.2.2. Lower Bai-Yin theorem
Given a real symmetric random matrix M with upper triangular elements
independent and with mean zero and variance one and bounded in magnitude

by O(1). We have that
1M]l,, = (2 = o(1))v/n

For a sharp upper bound we need to improve the bound in (3.22); in
particular the logarithm term can be improved. Omitting the combinatorial
tedious results, we state the main results of this chapter.

Theorem 3.2.3. Upper Bai-Yin theorem

Given a real symmetric random matriz M with upper triangular elements iid
and with mean zero, variance one and 4™ moment bounded in magnitude by
O(1). Then we have asymptotically almost surely that

1M]l,,, < 2+ o(1))v/n

We note that the 4" moment boundedness is the best possible.

3.3 Wigner Semicircular Law

We are now going to study the asymptotical behavior of the ESD (3.16)
of symmetric matrices. We will pursue this, result through two methods,
moment method, using the results of the previous chapter, and the Stiltjes
transform. The main result will be Wigner semicircular distribution,
which is the asymptotic limit of the ESD of this type of matrices.

Theorem 3.3.1. Wigner semicircular distribution
Let be A,, a symmetric wigner matriz, and M, = %An the normalized ver-
sion of A,. Then the ESDs pyy, will converge almost surely to Wigner
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Wigner Semicircular Distribution

Probability Density
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Figure 3.1: Wigner semicircular distribution

semicircular distribution

1 2\ 3
Pse = 5 (4 — |z )erm (3.25)

The demonstration will require that the matrix is centered. The following
result state that even non centered have the same distribution.

Theorem 3.3.2. Rank inequality
Let be A and B two Hermitan matrices and pS(x) = pa (] — 0o, x]), pg(x) =
up(] — oo, z|) their cumulative ESD, we have:

1
IWa(z) = wp(2)ll < — rank|A — B (3.26)

where || f()]|o = sup, | f(z)]

In fact a non centered random matrix M,, can be written as M,, = W,, +
mdJ,, where J, is the matrix of all 1s and m is the mean of the distribution
of the M;;. We will deal with sparse matrices in chapter 5. Another result,
similar to theorem 3.3.2, says that if we deform ﬁMn whose distribution

converges a.s. to a limit g by a sequence N,, with #HNRH% — 0 a.s. then
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H L (M +-N2) — p a.s. Noting from the CLT that the diagonal entries of

Wigner matrix have Frobenius norm of order O(y/n), the result we have just
stated says that they can be ruled out in our calculation without loss of
generality. In the optics

Defining the sparsity parameter a as the number of the expected non zero
values in a row, Wigner law is believed to hold for o > log(n)”. This is the
threshold under which at which, reasoning with the arguments of moment
method we used in the last section, a cycle starting from a point cannot reach
some points, invalidating the reasoning we made. We will investigate more
on this point in chapter 5. Typically, theorem , is used in the case where the
entries are iid, or at most that the diagonal entries and the upper triangular
elements have two different distributions. In [67] is proved the following:

Theorem 3.3.3. Lindeberg condition for convergence

Let be A,, a symmetric matriz with diagonal and upper triangular independent
entries, with mean zero and bounded variances o;; < C. Then considering
the normalized matrix M, = %An the following two results imply each other

n

— 0 forn — o0

l

o lim, o>} 05 =1,i=1,---,n and the following Lindeberg condi-
tion:

® [in, — [se in probability,

YA>0, =1, n: lim SE((My)21an),x) =0 (3.27)
J=1

where 15 is the indicator function of B.

The name of 3.27 is another prove that Wigner semicircular law is the non
abelian counterpart of central limit theorem. In fact equation (3.27) is nothin
more than an adaptation of the more famous Lindeberg CLT to the matrix
case. This equation is the base for many generalization of semicircular law,
for example where some kind of dependence are introduced in M, see [31].

"See [34,41].
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Wigner semicircular law has also stability properties w.r.t. perturbations.
We have in fact that from Weilandt-Hoffmann inequality

Z (A+B) = N(A) < |IBl

We can transpose thls inequality in terms of ESD. In fact VA, e, € > 0, we
have given the normalized matrices A and B that:

1
parn(] =00, X)) < pia(] — 00, A+ el) + | Bl

() =00, 0) < eall = 00,3 = ) + 1B

We are ready to prove convergence to semicircular law.

3.3.1 Moment method

We are gonna use a straightforward adapted version of theorem 3.1.6 to
the case of ESD. The fact that the moments are sub-gaussian is a direct
consequence of theorem 3.2.1. What remains to show is that the moments
E tr (%Mﬁ) tend to those of semicircular distribution

/Ra:kd,usc(:x) = C’g (3.28)

where C'x is the kth Catalan number defined in (3.23). Indeed we have for

even moment k = 2m that:
/med,usc(x) =
R
2
= 1/ 24 — 22dx
2m J -2
12,
== "4 — x2d
- /0 z reax (3.29)

92k+1 1 1

- /O Y21 —ydy
_22HT(k+1/2)T(3/2) 1 (2
oo D(k+2) Ck+1\k

which coincides with 3.23 for 2k — k. Remembering by equation (3.24) that
E(tr M*) = (C’g + 0x(1))n2 ", we cam apply Carleman continuity theorem
3.1.6 and assert that LEVA — [hse &.S.
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3.3.2 Stieltjes transform method

As in classical central limit theorem, moment method works with algebraic
computations, but in a roundabout way: we already know which is the limit
distribution. In fact Carleman’s theorem 3.1.6 relies heavily on the knowledge
of the target distribution moments. Looking at the classical setting, the
straightforward method for the retrieval of the limit distribution without
knowing it is Fourier method which relies on the Fourier transform of the
distribution, which is also called characteristic function (see section 2.1).
We note that is the knowledge of the characteristic function of a distribution
is in a certain sense a control on it more powerful than a control via moment
method. In fact, we can do a Taylor expansion of Fx(t) := Ee*
ex _ o (it)"
Ee** = ~—-EX"

we retrieve the information on the moments of the considered distribution.
Thus the point is how the fourier transform could be generalized to our case.
We indeed highlight that standard fourier method relies on the commutative
properties of the random variables whose distribution is under study. One
possible generalization could be Harish-Chandra-Itzykson-Zuber integral for-
mula (see [33,35,65]) and we will say something more on it in section ??. In
fact this method can be used in an effective way only for highly symmetric
ensembles, as GOE and GUE (see the beginning of section 3.2). Another
way for recollecting our wanted result relies on Stieltjes transform method
( [8,25,65]). We define the Stieltjes transform® as

)= [ L i), sec (3.30)

r—z

where p(x) is the distribution we are interested in. In our case we are inter-
ested in the ESD of the elements of matrix ensemble we are considering, i.e.
(including the normalization factor) p L, this could be represented by the

resolvent of our matrix

-1
1 1 1
/]R:U—zd'uﬁM"(x) = gtr (\/ﬁMn—z_f) (3.31)

8Certain authors with a more functional or complex analysis background call (3.30)
Cauchy transform, sometimes multiplied by a factor —1 (i.e. 1/(z — 2)).
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As for Fourier method, Stieltjes transform has a relation with the knowledge
of the moments of our distribution. Indeed expanding s, ,  (z) we obtain:
vn n

1 1
s (2) = ——— - tr M, —
v zZ  Z22n2 z3n?

tr M2 — ... (3.32)

which entails somewhat a knowledge on the moments of the inquired dis-
tribution. The power of Stieltjes transform relies on the complex analytic
tools that we can exploit using it (in the same way as classical CLT uses the
properties of Fourier transforms in deriving the limit distribution). First we
note that s, (z) is well defined for Im z > 0 or Im z < 0. In particular, writing
2z = a + b we see that

1 b

Im =

>0
r—2z (r—a)?+b?

Thus if we take Im z > 0, having Im (s,(z)) > 0, we remain in the upper
plane. This property of being a complex analytic map which maps the upper
plane in itself defines a special class of bounded analytic function with nice
properties (see [29] theorem 3.9 part ¢); in particular, when an asymptotic

condition of the form . .
su(z) = —1+ou(1) (3.33)

z

Nf‘:f(’?)” = O(1) (0,(1) goes to zero for any fixed ) is
respected (as it is for Stieltjes transform), we have a type of Herglotz function
(see ibidem). In this view the imaginary part of the Stieltjes transform
can be seen as the convolution of the measure p with the poisson kernel

Py(x) = %—inbQ, ie.

for z going to infinity with

I (s,(a + b)) = 74 * Fy(a)

Thus we can recover the distribution p from the knowledge of its transform
Su(2)

1
lim —Ims,(a+1ib) = p, VaeR (3.34)

b—0+ T

where the above limit is to be taken with respect to the vague topology®. We
can thus affirm a theorem similar to 3.1.6

9The vague topology is the weak—*topology defined on the space of complex Radon
measure over a locally compact Hausdorff space X. The vague convergence is performed
by [y fdpn — [y fdp, Yf € Co(X) space of the test functions.

48



Theorem 3.3.4. Stieltjes continuity theorem

Given a sequence of random probability measures p,, on R, and let be v a fized
probability measure. Then j, converges almost surely to p with respect to the
vague topology if and only if s,,(z) converges in probability to s,(z), Vz:
Imz > 0.

An analogous statement holds for convergence in probability and conver-
gence in expectation. Equation (3.34) is sometimes referred to as 'Stieljes
Inversion Theorem”’. Stieltjes transform can also be used for the retrieval
of a distribution p from the knowledge of its moments using equation (3.34).
Indeed, given that moments my,(11) = Jg 2¥du(z) of our distribution exist, we
can define a moment-generating function'®

M*(z) =Y mzF, zeC (3.35)
k=1

which is an analytical function for sufficiently small z inside the convergence
radius. Then it is easy to see that, by Taylor expanding the integrand in
(3.30), we get the following equation which relates the Stieltjes transform to
the moments of the distribution under study (and it is in a certain sense the
formal result behind the naive result (3.32)):

1 " 1
sulz) = S0 () (3.36)
for sufficiently large |z|. Then using (3.34) we can recover pu. We note that
the inversion formula (3.34) works for a fixed p; that means that in for a
series of measures u, that equation could give us the analytic form of p, for
each fizxed n, but an analytic continuation performed by taking also the limit
n — oo could bring some convergence issues. The key point is to study the
asymptotic behavior of the difference

SNn - S/"n—l (337>

In particular we are interested in the case where the distribution is the ESD,
B = Bty and we will focus on this special situation (we will use the

shortcut p,). For this purpose we slightly modify the way we look at the
sequence fi,. Up to know we considered the matrices M, as drawn from the

0For an introduction to the usage of generating functions see [71].
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ensemble of Wigner random matrices. We can look at theorem 3.3 as if the
matrix M, 1 is M, where we have added one row and one column compatibile
with the ensemble we are studying. An important bound concerning the
eigenvalues of M,, .1 to the ones of M, is the following:

Lemma 3.3.5. Cauchy Interlacing Law
Given an n x n Hermitian matriz M,, we designate by M, 1 its top left
minor of dimension n —1 xn — 1. Then, for all 1 <1 < n we have

Nip1 (M) < N(Mp—1) < NiM,, (3.38)

We proceed thus to analyze the difference (3.37). Using the expression
(3.16) in the Stieltjes transform, with z = a+ib and b > 0, and using Lemma
3.3.5 we get:

ﬂ expressing through SH(Z)

n—1

e - vn o) (3.39)
”Suﬁm(a‘Hb) n(n 1)3,1#%_1 (m(a—i—zb)) =0(1)

Su_1 g, (a+1ib) =s, | Moy
N Vn—1

(a+1ib)+ O (1)

n

where the last passage comes from by expanding s, o, ( m(a + Zb))

and using the complex derivation formula for an integral representation

% (z) = [, 8kg§’zl) g(Z")dz', where in our case the integral kernel is the
Cauchy integral kernel'! Z_lz,, the contour of integration ~ is the real line R
and g(2')dz’ = du(x). We get using the trivial condition || < |Im1(z)| the
general (with respect to the considered ) the bound

dF 1

— pu— O — o 3-40

i) = O () o4

11Gee footnote 8.
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Applying this bound to the case under study we get the last equation of 3.39.
From this last result we can obtain two conclusion. First the removal of a row
and a column perturbate the Stieltjes transform in a weak way. Indeed after a
permutation of the rows (for example) we end up with the same result, where
in M,,_; the removed row and column are different. This tell us that each
row and column can influence the sequence of Stieltjes transforms s, | o

n

by at most O (%), a result that can be linked to Theorem 3.3.2. Then the
independence of the elements in the upper triangular portion and Theorem
3.1.2

n

P <|5un(2) —Es,,(2)] > \j_) < CeN?

for all A > 0 and costants C,c¢ > 0. Applying the Borel-Cantelli lemma
we find that s, (2) — Es,,(2) converges almost surely, and thus if s,,(2)
converges in expectation it also converges almost surely. So what remains is
to determinate what Es,,, (z) is. Taking the expectation of equation (3.31),
using linearity and the properties of the trace we have

-1

Es, () = jéle (\}ﬁMn _ z[n> R (\}ﬁMn _ z[n> (3.41)

77 nn

where the last passage follows from the fact that each element of the diagonal
of the resolvent is iid. Using Schur complement'?, we can express the last
term in the diagonal of an inverse matrix as a function of the inverse of the
minors. Indeed we have for a matrix A4,

. 1
n )nn * A—1 X
Ann — Y An—l

where a,,, is the last element in the diagonal of the initial matrix, while Y*
and X are respectively the last n — 1 dimensional row and column (respec-
tively) of A,, where a,,, has been removed and are used as row and column
vectors. Specializing this relation to our situation we get

Es,, (z2) = —E ! (3.42)

2+ %X* (ﬁMn—l — Z]n_l)_l X — ﬁgnn

12Gee for reference [47] or [8] chapter A.1.3.
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where we posed Y* = X* because our matrix is Hermitian and §&,, is

the last diagonal entry of M,. The main point is to note that the quan-
-1

tity %X* (ﬁMn_l - zIn_1> X is the trace of the resolvent of M,_;. In-

deed, using the alias for clarity R := (%Mn,l — zIn,l)_ , we have that

(X*RX)'V? = HR1/2XH is Lipschitz bounded function in X. Using theorem

3.1.3, we conclude that X*RX is concentrated near its mean:

P(|X"RX —EX*RX| > \n) < Ce™ (3.43)

It remains to study what is the mean. Expressing in components:

n—1n—1

EX*RX =) Y E&urién (3.44)

i=1 j=i

Conditioning on a single realization of R, and thus considering it as fixed,
we have that equation (3.44) is exactly the trace of the particular realization
R. Using the disintegration theorem we can return to the case of random R,
getting that

EX*RX = tr{R} =n \/%sunl ( \/%Z>

ﬂ using (3.39)
tr{R} = n(s,,(2) +0(1)) = X*"RX =n(Es,,(z) + o(1))

(3.45)

Using the results we have just obtained in equation (3.42), taking the n —
oo limit and using Arzeld-Ascoli theorem we have the final self consistent
equation

1 1

R TV s = (3.46)

Espn(2) = z 4 5,(2)

Solving it and taking the branch corresponding to condition (3.33) we get

—z—i-\/z2—4:> 1
z

p=o (4 - xQ)i dx (3.47)

su(z) =

where the last passage come from Stieltjes inversion formula (3.34).
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3.3.3 Rate of convergence

The use of Stieltjes transform machinery described in the last section can be
used to answer to an important question: at what rate do the distributions
KL, converge to the limit spectral distribution ps. of equation (3.25). We

remark that the usage of moment method is not suitable for this purpose
and this question has been left without answer until Zhidong Bai’s papers in
1993 [6,7]. We will give only the basic results of this issue, because it requires
some mathematical effort. The details can be found in the two mentioned
papers by Bai and in [8]. As before we will suppose that our matrix M, has
centered entries §;; with unit variance in the triangular elements but we let
the diagonal elements having variance o?. We further require that for any
n, the 3¢ and 6™ moments of the entries are bounded by a constant M,
E E’J JE < M. The point is to evaluate the o(1) term in the first part
of equation (3.46) which, of course, depends on n. We will call it for the
moment J,. Analyzing equation (3.42), we see that the error in 3.46) can be

expressed by

6
ij

-1
5= LY E Tl — 2X* (M1 —201) X +Esy, ()

MR (4 B (2) (2 = e+ 21X (HMas — 2ht) X

Working on this quantity as described in the references, we can conclude the
following:

Theorem 3.3.6. Rate of convergence
Under the above assumptions we have the following results

1

[B1t =l =0 ) (3.49
1

B — pecll = O, () (3.49)

1
IEftn — ptse]| = Ous <n+> . Ve>0 (3.50)
(3.51)

where ||-|| denotes the Kolmogorov distance as used in theorem 3.3.2.

Above O, and O, 5. denotes the convergence rate in probability and almost
surely (e.g. for X,, = O,(n~*) means that Vo > 0, there exists two constants
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M, N > 0 such thatP (| X,,n% > M) < 0, Vn > N; an analogous definition
holds for the almost surely condition).

3.3.4 Physical methods

The analysis of random matrix in statistical physics is made through two
different methods. The first one, from a conceptual and historical point of
view is replica method, followed by its evolution (in a certain sense) the
cavity method.

Replica method. Initially developed for spin glasses models by Edwards
and Anderson in their seminal paper [23] in 1975, had more and more at-
tention on it after its use made by Sherrington and Kirkpatrick in [39] for
developing their famous model. Always Edwards with Jones in 1976 ex-
tended this method to the analysis of large random matrices [24]. A modern
review can be found in [41] adapted. Substantially, the replica method tries
to evaluate the mean free energy f of a given system that is proportional to
the logarithm of the partition function Z. Being an observable depending
on some random variables which represent the inner disorder of the system
under study, through Z, the average on the disorder of the system must be
done over the free energy itself to obtain its mean value. This create an
issue, because even for the most simple kind of disorder, the gaussian one,
entailed in the distribution of some variables inside the partition function,
the average process is prohibitive through the logarithm

Hd (%ijom)) log Z(xij..n,)
ijm

where the ..., is a set of variables on which we are performing the average
and d(f(x;;..m)) is their distribution. This inconvenience is avoided recurring
to a trick. In fact logz can be always expressed by the limit

" —1

logz = lim (3.52)

n—0 n
Thus we have, taking also the thermodynamic limit (N := > 2., — 00)
on our mean free energy

lim (f) ~ lim / H d(f(xijm) hm(

N—)oo N—oo n—>0
ije--m

Z“—l)

n
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Now the average can be done more easily. An assumption in the replica
trick is that in Z" = [ Z, each Z, is independent from the other. We
are thus replicating the system under study in several independent copies,
and the searched result will be given taking the zero limit of this ensemble.
Since its publication the replica trick suffered of criticism for the entailed
mathematical problems. For example in [68] doubts are posed on the analytic
continuation required passing from integer n to real n performing the limit,
and on the tricky exchange of limits limy_, o, <> lim,_,o. As said pointed out
by Bai in [9] replica approach seems to start at the same point of Stieltjes
transform in paragraph 3.3.2, but while the Stieltjes method proceeds in
a rigorous way, the introduction in the replica approach of the Hubbard-
Stratonovich transform for decoupling the variables could be the non rigorous
and most tricky point. The problematical connection of the replica approach
to one of the known and well behaved mathematical methods is far from
being solved, but as pointed out in [63] it is probable that more conditions
should be required fo perform safely the replica trick.

The replica method for ESD of large matrices starts from the observation
that equation (3.16) can be expressed by Sokhotski-Plemelj theorem. Indeed
taken a real symmetric N x N'* matrix My, with eigenvalues {\;(Mn)}, <<,
adding a small negative imaginary part —ic we get o

1
lim

0t A — N(My) —ie P <A—A(MN)>

Find (A= M(My))  (3.53)

Thus we can express iy, of equation (3.16) as

_ L i\[: ) = lim L i\f: Im L
Fate = N £ P00 = B0 G &\ NS (M) — e )

1
= lim t
6i>1(r)17L r((/\—i{:“)[—MN>

At this point we are going to introduce the logarithm to take advantage of

I3We have switched from n to N for the dimension of the matrices because we will use
n for the replica index as is done in literature.
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its properties.

—

1

J

In (det((A —ie)l — M,)) =In ( (N —ig) — AJ(Mn)))

— Zjl In (A —ig) — A\;(M,)) (3.55)
88)\ (Indet (A — ie)I — M,,)) = tr (A —ie)] — My) ™" (3.56)
fiare = lim A [ln det (()\ —ie)] — M, )] (3.57)

N e—0+t TN 8)\ " '

Now what we are left to inspect is the quantity det (A —ie)l — M,,). As
already done for the Stieltjes transform, we will work with the complex vari-
able z := A\ — i¢ and the issues will be present near the real axis. From the
standard use of gaussian integral in physics (for example in statistical physics
or in quantum field theory) it is well known that if we treat (zI — My) as
as the matrix building up the quadratic form corresponding to the hamilto-
nian of a physical system, the quantity det™2 (21 — My) can be calculated
through a Fresnel integral:

det ™2 (2 — My) =

Before continuing two little remarks are needed. The first point that
must be highlighted is that it is easy to see looking at equation (3.56) that
this is the same starting point of Stieltjes transform method. While we
used formal mathematical manipulation in the dedicated section, here we
perform a calculation based with a statistical physics analogy. The replica
trick (3.52), which will used in the following lines, relies on an analytical
continuation which could bring formal problems and also conceptual ones,
and on some ansatz that may not be satisfied. The second point is that while
the logarithm appears in a natural way in the evaluation of the mean free
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energy in spin glass models, here it is not actually needed conceptually, but as
tool to perform computation. We are thus mapping our pure mathematical
problem to one interacting particle problem that we can solve, where the
statistical mechanics is introduced via the partition function

i\ NV N N
- 614 o0 )
Zay(2) = (\/7?) / I daxexp (—z > (2] - MN)ijxj) (3.59)
0 k=1 i,j=1
ﬂ substituting in (3.57)
. =2 0
Uy = Eli)%%r — Im (82 In 2,7]\4]\,(2)>Z:/\_iE (3.60)

It must be noted that this is a fictional correspondence. Indeed what we
would call the hamiltonian of our system is a complex function Hp,, =
izle xi (2l — M N)ij xj, and we cannot define a proper measure over the
ensemble of the states of the system. We introduced the notation Zj,(2)
for distinguish this fictional complex partition function to the real one of the
system that we will exploit for cavity method. Nevertheless, continuing with
the statistical physics analogy, we have the free energy of the system (which
ultimately is the ESD ppy,,) given by f = In Z. The random nature of My
suggest us to perform and average over the possible elements of the ensembles.
For simplifying the calculations, we will take the (My);; distributed by the
normal law N(0,0?). The limit empirical spectral distribution p,s for the
ensemble is thus given by

<(MN)$jN2>

N |exXp|——5p —

Mens Z/MMN H N d(MN)z‘j (3'61>
ij=1 (27?%)2

where we have substituted o2 = ‘% It is straightforward that the factor N
appearing there is nothing else than the ﬁ normalization that we have done
in the previous paragraphs. Now we will apply the trick (??) to the above
equation. As already said, we will have Z" =[] Z, each Z, is independent
from the other, and « is the replica index. We are thus doing conceptually
as if we have replicated our system in an integer number of copies, taking

then the n — 0 limit passing through not only integer numbers. Thus the
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expression of s, to be inserted in (3.61) is

i\ nIN
-2 9. 1|[eF oo [ g
= e (2) 7 (T L)

B=0 k=1

X exp (—zz Z (21 — My);;x ) — 1]

a=01,j=1

(3.62)

The replica trick permits us to perform the average on the ensemble. Thus,
substituting the above in equation (3.61), carrying out the gaussian integra-
tion and retaining only the terms linear in n and leading-order in N in view of
the two limits we are going to perform (the n — 0 and the thermodynamical
one N — oo) we are left with:

,uens— (())\nli%n ﬁ

x /_ZO (;ﬁ dmk> exp [—Mf:lx? . i\j (f:l ﬁﬂ }n - 1]

Where the replica index o has been factored out and absorbed in the n ex-
ponent. The integral in (3.63) may be simplified by an Hubbard-Stratonovich
transform

(3.63)

2

xp [‘]‘V] (z@-)?)Q] S 8 A G RS 500

3 7

Substituting back in (3.63) and doing the Fresnel integral we are left with an
integral inside that equation of the form

I= [(;)é <;T;V2>;/\exp <_2N ln)\) /_;OO dsexp(—Ng(s))] (3.64)

As? o1
YNE t3 Infi(1 + )]

This last integral must be performed through saddle-point integration.
We end up, after the n — 0 limit with

—2 0

N
flens = Im B\ (—Ng(so) - In )x)

g(s) =

58



1
Where sq = % {1 —1 (%2 — )2} is the correct saddle point of our integra-

tion'*. Carrying out the differentiation we end up with

1
27 J?

1
Hens = (4J2 - )\2)5 = Hsc
So we have retrieved Wigner semicircular law where the distribution of the en-
tries of the normalized matrix has variance J2. Despite the apparent clarity,
the replica method even for the ESD determination, present several mathe-
matical issues. One of the first paper criticizing the systematic usage of this
method for the ESD retrieval was [69].

Cavity method The other approach used is cavity method, developed by
Parisi with Mézard and Virasoro [48]. Cavity method is the natural evolution
of TAP equation used for a mean field approach to spin glasses. It focus on a
precise site j, and studies the marginal probabilities of the branches attached
to j in the approximation (reasonable for big systems locally treelike) that
these are independent once we excluded the site j from the system. On each
subtree a recursive approach is applied, giving a belief propagation algo-
rithm that applied recursively provides a quick convergence, provided that
the system is not too much correlated. A modern review applied to sparse
matrices can be found in [56]. Incidentally we highlight that the philoso-
phy at the base of cavity method reduces to the study of certain paths on
the system and is substantially the same of moment method, although more
light should be shed on this point, especially for the non trivial requirement
in cavity method of decoupled branches starting from a point j. For the
graph theoretical treatment used, this is a reasonable requirement, because
for sufficiently diluted random graphs, the creation of loops has a decreas-
ing probability with the asymptotic of O(N™!) (see [52] for example). The
starting point of the cavity method, as for the replica approach is the anal-
ogy with a mechanical system of IV interacting particles whose positions are
indexed by x;. Thus we arrive in the same ways described above to equation
(3.60) which is the analogous of the free energy of the system. The point
here is that we want to define (unlike for the replica approach in which this
correspondence was more conceptual and non-essential) a Gibbs-Boltzman
measure for the states of our system, thus, we have to deal with the fact

14See [24] for details on the integration process.
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that the hamiltonian of our system is a complex function. First we can get
rid of the complex unit making a variable substitution, and changing rotat-
ing the integration path in the complex plan such that its new extrema are
] — 600,40 - 0o with 2 = i. The negative imaginary part of z will ensure
convergence of the integral. At this point it is possible to introduce a proper
partition function and the Gibbs measure for our states:

ZMN( ) f+eoo

¥ exXp (—Huy (2, 2)) .

ZMN (Z)

= PMN (m) = e Hmy (@2)

Hory (%, 2) = 5 54 jeg,, Til2] — My)ijz;
(3.65)
where z is the vector of the position of the interacting particles and restricted
the summation to a graph Gy, = (V, E)'®, where the vertices V of the graph
represent our particles, and an edge will be present in the set of the graph’s
edges F if the two related particles do interact. This is conceptually the
same as looking My as a special weighted adjacency matrix of an undirected
graph. Before continuing we point out that the formal realization of a sta-
tistical mechanics through the passages we have made (including the change
of variables and the path of integration in the complex plane) is sometimes
avoided in literature as in [56] without particular worries on imaginary fac-
tors and convergence issues. The same author in [57] has presented a treatise
in which he avoids the complete statistical mechanics analogy working with
pseudo physical complex quantities, e.g. the partition function in (3.59). We
preferred to expose instead the various passages which brought us to equation
(3.3.4) and will omit the integration extrema for clearness in the following
formulas. In this formal setting we can thus rewrite equation (3.60) in the
following way
= lim T Zlm [ L:HE (3.66)
where (- - ), indicates the average with respect to Gibbs distribution (3.3.4).
If we suppose that the graph obtained from the particle analogy is locally
treelike, choosing a site x; with connectivity k;, the k; branches originating
from it are reciprocally poorly interacting except through z; itself. Speak-
ing with the probability distribution Py, (), which is nothing else that the
Joint Probabilty Density Function (JPDF) for the variables xy,...,zy, can

15See section 5 for the graph theory definitions.
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be expressed as

1 1
Py (#) = o——e @) = — T ahyj(ws, 3;) [[ duzs)  (3.67)
Y ZMN(Z) ZMN(Z) (i,j)€E ! ’ eV
where 1 represent the interaction part corresponding to My in Hus, and
¢ the self-interacting part competing to zI. If the graph is a tree as we
supposed it to be, removing a the selected site z;, equation (3.67) should
factor out as

L T ety TT éie)|  369)

]P)() (iB(Z)) _ (Z)
Zaay (2) =51\ (g jyept jev

where in general the superscrlpt () denotes that we are considering the graph
where we have removed the i'' vertex and its related features (and hence
E,E“ and Vg(i) represent respectively the edges and the vertices of the /th
branch departing from z;). This type of graph is known as cavity graph, and
the treelike approximation'® we are doing is sometimes referred to as Bethe
approximation. Each of the single k; factors appearing in formula (3.68)
is the joint probability distribution of the considered branch. The cavity
method gives us a straightforward way to calculate the marginal probability
distribution'” of each site z;, P;(x;). Indeed, indicating with di the set of
neighbors sites of ¢, we have:

(22). = ZMN /(H \%—;) (o (e9) —
dxy, %ZiJEQMN zi(zl=Mn)ijzj |
ZMN< Ewel) (H m) 28 -
1 dx; —za? N[ day
B Zy (2) \/_3j P <2> /kel;[\z (\/%> -

X exp (ajl Z{MN}MW) exp ( Z —;xh + Z mh{MN}hjxj>

€di heV\{i} h,j€V\{i}

(3.69)

16We call it approximation because in real lattice systems the treelike structure is reached
only locally and neglecting eventual cycles present in the graph.

17Given a set of random variables X; whose joint probability distribution is known, the
marginal probability of X is obtained by averaging the joint distribution with respect to
all the other variables
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Thus we see that the marginal distribution at the site 7 is

exp (l”z Z{MN}MW) exp ( > —h > "Bh{MN}thJ)

edi heV\{i} h,j€V\{i}

(3.70)

which is nothing than

/ ( ﬁ A jz—kﬁ) Pary ()

keV\i

consistently with the marginal probability definition. Now it is not diffi-
cult to see that the second exponential which we are integrating in (3.70)
can be written in terms of the (probablhty distribution over the disconnected
branches of the cavity graph G\ My P (x]) which are called the cavity distri-
butions. These can be expressed recurswely (i.e. applying again the cavity
argument on each branch starting from z;) by

—*Z.CE

]P’gi)(xj /dxa]\lexp (ch > {MN}]M@) 11 P (z (3.71)

Lcdj\i kedj\i

where with x5, we denote the set of variables adjacent to x;. The marginal
distribution of x; can be thus written as

> /dxal exp (ml Z{MN}ngg) 11 IP’Z (3.72)

Lei Leoi

P;(z;) = exp (

The equation of cavity distribution is automatically fulfilled for the Pg-i) (z;)

in the form

. 1 —%aﬁ
ptY (z;) = ———e */

! \/27‘[‘Agi)
With this substitution in equation (3.3.4) we obtain the equation for the
variances Ay)(z)
i 1
A = — (3.73)
z = Yecop il M 10Dy (2)
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With this solution even the marginals are Gaussian with variances A;, and
equation (3.72) gives the following equation for the variances:

1
Ai(z) = - (3.74)
Z— Eeeaz’{M}%}wAg )(Z)

It must be noted that because z is a complex number, cavity variances are
in general complex. Setting My = %, where ¢ = %Zﬁ\; k; is the mean
connectivity and A is a symmetric gaussian matrix with entries with zero
mean and variance J?, we are interested in the large ¢ limit. Defining

1
A=lim - > A,
70 C e
we get
‘ 1 .
lim Z{M]Z\/}iEAy) = lim — ) JiQZAEZ) — J2A
T o oo ¢ L

Performing the limit and using equation (3.74) and we retrieve Wigner
semicircle law:

1 1
A= =y = 55 VAR X2 (3.75)
m
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Chapter 4
Free Probability

In chapter 2 we described the formal setting of probability theory. In this
framework, random variables were defined (see definition 2.3) as measurable
functions from the considered set of possible events ) to a target space R.
The explicit reference to the underlying probability space in the definition of
random variables gives some constraints we want to get rid of. We already
mentioned the necessity of defining a formal way to extend our probabil-
ity space when we make particular operations such as taking limits. Indeed
the underlying space of events €2 could depend upon the index on which we
are taking the limit. This point is almost always understood, but, anyway,
remains a not negligible feature of our theory, in situation such as random
matrix theory where a lot of these operations are taken. For what is more, if
we could abstract our theory we should be able of making interesting gener-
alizations. The idea we use is inherited from non-commutative geometry [18].
As we can look at the algebra of functions on a manifold to extract informa-
tions about the manifold, here we look at the algebra of random variables as
an independent object without caring too much on the set of possible events
it lives upon. Classical random variables belong to abelian algebra. The
main point we want to generalize is the possibility that our random variables
could not be commutative objects, as for example the random matrices of
last chapter. A key feature of classic probability theory is expectation. We
have difined it through and integral!, which is of course a linear functional.
Based on the above assumption, we can make the following definition:

LA sum for discrete probability distributions, but we could always use the integral with
the Dirac measure, as we have done for ESD.
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Definition 4.1. Non-commutative probability space

A non-commutative probability space is a unital x—algebra A with
a x—linear functional T:A — C, preserving the identity 7(14) = 1 and pos-
itive. i.e. with T(XX*) > 0, VX € A; if we have that 7(XX*) =0 <=
X =0, we say that T is faithful. Given X,Y € A if we further have that
T(XY) =7(YX), T is termed trace.

Important examples of the algebra A are C*—algebras, Von Neumann
algebras (which are sometimes called W*—algebras) and bounded operator
algebras on an Hilbert space B(#H) (though this necessitates the Gelfand-
Naimark-Segal construction, see [65]). A powerful result in characterization
of Von Neumann algebras is the following:

Theorem 4.0.1. Von Neumann double commutant theorem

Let M C B(H) a complex algebra of bounded over an Hilbert space H, which
is closed under taking adjoints and is unital. Then the closure of M under
the strong operator topology is the same as the closure under weak operator
topology. The closure is given by the double commutant of M), M", and is
a Von Neumann algebra, where

M// — (M/)/

M ={Y e BH)|YX =XY, VXecM} 1)

For our purposes, and what we have seen until this chapter it will be
useful to introduce the concept of random matriz within this formal set-
ting. The naive definition of a random matrix is that of an array of a given
dimension filled with random variables. Random variables are, of course,
classical commuting objects belonging to the algebra of summable functions;
in particular we want functions where all moments are well defined, i.e.
X € L(Q) := U, L*(Q). Thus we have that A = L. The functional 7
is represented by the expectation E, while the involution * : A — A is
performed taking the complex conjugate for complex random variables, i.e.
#(X) — X. The trace property of the expectation is straightforward, while
the positivity comes from the properties of complex numbers. A determin-
istic n X m matrix with complex entries belongs to the space M,,«,(C). It
is easy to see that in this case A = M,,«,(C) possesses all the properties
required and in this case the space is non-commutative. The involution
is given by the adjoint of the matrix M, *(M) = MT. As we have already
seen in section 3.2, a natural candidate for the linear functional 7 is the re-
duced trace of the matrix, 7(M) := L tr(M). The positivity and the tracial

T on
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properties of 7 come naturally from standard trace properties. Now the idea
of representing our random matrix M, (where the subscript stresses out the
random character of the matrix) through a randomly filled array can be for-
malized; we can indeed take the algebra A := L() ® M,,»,(C), which is in a
naive sense the composition of the already analyzed cases. For what concerns
the involution, this remains as for M,,+,(C): indeed the adjoint operation
already includes the standard complex involution we have described above.
Taking the reduced trace of an element M, of our algebra, we end up with
a sum of random variables. Indeed we have & tr(M,) = £ 3" X;;, where the
X, are the random variables appearing in the diagonal of M,, and which
actually can itself be seen as random variable in L(€2). The most natural
and correct way to define a linear functional compatible with our algebra is
then taking the expectation of the obtained trace, i.e. 7(M,) = EX tr(M,).
As a self-consistence check, we can look at the measure introduced by this

linear functional. Suppressing the subscript r, we must have:
1
r(M¥) = [ Fdpar(z) = B~ (M) (4.2)
C n
We see clearly that we must retrieve the ESD puy, = %Z?Zl 5>\j(M) if M is
deterministic, or the expected? ESD py; = E% 2105 if M is a random
variable. Dealing with non commuting random variables we can ask if the
quantity

r (MFY) = [C P2 dpung(2) (4.3)

From spectral theorem, we know that if M is normal, i.e. MMT = MM,
the above expression is well defined, but in general it is not, and this is a
first big difference with classical probability theory. Generalizing to general
algebras with possibly non-adjoint elements X, X*, we ask ourselves if given
a function f(X, XT) taking values in A, is always possible to define a possibly
complex measure such that the quantity

T (FXX) = [ F(2)du(2)

is always well defined. We can simplify the problem using Stone- Weierstrass
theorem, and reducing to calculate the above quantity for f being a polyno-
mial in X and X*, P(X, X*). If we work with self-adjoint elements, which

2Rember the discussion on the expected empirical distribution of section 3.2.
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is the case, we will need only to evaluate P(X). Using Riesz representation
theorem with some expedients, we get the following one

Theorem 4.0.2. Operator Spectral Theorem

Given a probability space (A, 1) with X € A a bounded self-adjoint element,
there always exists an unique Borel measure px on [—p(X), p(X)], with p(X)
spectral radius of X, such that

r(P(x) = [ P(z)dux(2)
for any polynomial P : C — C.

Given the measure pyx is it possible to define the Stieltjes transform of it
sx(z) =7 ((X —2)7!), and theorem 3.1.6 holds.

4.1 Independence and Freeness

The next step is to deal with the independence of our random variables.
In chapter 2 we defined two random variables X, Y independent if EXY =
EXEY, where now the expectation is defined through the functional EX =
¢(X). For example, due to the commutativity of the independent variables,
it is easy to see that ¢(XY X) = ¢(X?)¢(Y). Now that our variables are not
supposed to be moved without issues the definition of the quantity ¢(XY X)
must somewhat be settled. Nevertheless it is possible to extend the classical
definition of independence for sub-algebras Ay which commute one with the
other.

Definition 4.2. Independence for Algebras
Given a non-commutative probability space (A, T), any family of sub-algebras
{As C A} oy will be called independent when

o [Au,, Ay,] = 0 when o; # ay,

o T(X1 X+ X)) = 7(X1)7(Xa) - - 7(X,) for Xy € Anys Ni # Aj when
i F

where with [-, -] we indicated the commutator of two sub-algebras.
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Of course this definition extends immediately to single random variables
X; considering the algebras generated by them. But how to deal with non
commuting sub-algebras? The right way to tackle this situation comes from
group theory, in particular the theory of free groups. Indeed, given a group
G generated by two of its subgroups G; and G,, we can ask ourselves how
can be a generic element g € G can be represented with respect to G; and
Go. G is then said to be the free product of G; and Gy, G = G; * G, whenever
a element g can be represented as a formal word of consecutive alternating
elements h; € G; and w; € G, i.e.

g = hjwihgws - - - hywy,

for a certain index k, and where the product rule of the group is intended.
In this way we can say that the two subgroups are independent in the sense
that no relation within their elements could be settled. This could be easily
extended to sub-algebras, defining a generic element a € A as the product
of subsequent different elements a; of the different sub algebras. It is easy to
gather that at this point the value of 7(a) depends in a certain sense on the
different values the linear functional takes on the different elements a; of the
sub-algebras. We have thus the following definition:

Definition 4.3. Freeness of algebras

Given a non-commutative probability space (A, T) and a family of unital sub-
algebras Ay, - -+, A, C A, we say that a family is free if T(ai,as---a,) =0
when:

o a; € A;(j) where subsequent indices are different, i(j) #i(j + 1),
e 7(a;) =0, Vi.

The family of sub-algebras is required to be unital because we remember
we should have 7(e) = 1, where e is the identity of the algebra. In the
same way we can talk about the freeness of random variables looking at
the algebras generated by them. We see that remarkably that free random
variables have some properties very similar to usual independence of classical
random variables. For example it follows that for free r.v. X;, X, we have
that 7(X7, X3) = 7(X1)7(X2) or that 7(X;, X, Xo) = 7(X)7(X3, X3) where
X € A, and Xy, X,2 € A;, with ¢ # j. Despite of being very similar
from certain algebrical aspects, freeness and independence are quite different.
Let’s take for example two free rv. X,Y. If 7(X) = 7(Y) = 0 we will
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have from the definition of freeness that 7(XY XY) = 0; this is not the
case of independent X and Y, where we would have that 7(XYXY) =
7(X?)7(Y?) which actually is (except exceptional cases) never zero. We
can extend freeness to non centered r.v. by just looking at the quantity
X — 7(X)?*We understate the identity element.) and also to polynomials of
r.v. P(X), getting the most general form

(T = r(ax, ) =0 (4.0
=1
whenever the variables X;, are free and no two adjacent indices are equal.
The first thing we notice, is that while the concept of independence is of
more practical use, the definition of freeness for non commuting random
variables appears rather cumbersome. So we ask if there is a more practical
way of discerning if two random variables are actually free. The answer
to the last question comes from combinatorics. The relationships between
combinatorics and free probability have been developed as an alternative
way of tackling problems in the theory, which is actually born as branch
of functional analysis. The pioneer in this area was R. Speicher with its
texts [49,53]. Given a set S, a partition 7 of it will be a collection of blocks
{V1,---V;} that are disjoint subset of S and together cover the whole set.
When the set is ordered we can define a partition to be crossing (CP(S)) if
given the elements x; < y; < z9 < yo we have that z; and x5 belong to the
same block while y; and y, belong to different blocks. Analogously we can
define non-crossing partitions (NC'P(S)), and we are particularly interested
to it.

ay az az a4 as ag ay ag agaipn ay az a3z a4 as ag a7 ag agaypn

LU ‘ Ly

(a) CP(10). (b) NCP(10).

Figure 4.1: Two partition of the set {a1, as, as, a4, as, ag, ar, as, ag, ajp}, one
crossing and one non-crossing.

In particular partitions where the blocks are made of two elements are
called pairings (NCPy(S)/CP(S)). It is a standard result in combinatorics

3
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that the number of elements in NCPy(n), where with the argument n we
simply intend the set {1,---n}, is exactly 0 for odd n or the ”Tth Catalan
number Cz for n even. Here we see the first connection with random matrix

theory, and semicircular law. We can now define the free cumulants.

Definition 4.4. Free cumulants

Given a non-commutative probability space (A, T), we define free cumulants
k, : A" — C to be the multilinear functionals defined by the recursive
moment-cumulant formula:

X)) =7(X) (X X)= 3 k(X1 X)) (4.5)

TeNCP(n)

where given m = {Vi,Va,... Vi}, we define k, = II; kv, (X4, ..., X,), and
kv, (Xq, ..., Xn) = {Xo@), .- - Xoy } where Vi = {v(1),...,0(r)}.

For giving an example of how k, decomposes, let’s take S = {1, 2, 3,4, 5}, and
m(S) ={(1,3,5),(2),(4)} we have k(X7 ... X5) = k3( X1, X3, X5)7(X2)7(Xy).
It is worth to notice that free cumulants are well defined. Indeed at the n
order only one free cumulant acting on n elements appears. Then it could be
defined recursively inverting the moment-cumulant formula, and calculating
in order the formulas for n — 1 order up to arriving to k; = 7(X). Once we
settled free cumulants we can now state the result which connects them with
freeness:

Theorem 4.1.1. Free cumulant theorem

Let (A, T) be a non-commutative probability space, and let Xy,..., X, € A
be random variables. Then the family {X,..., X, } is free if and only if the
free cumulants ky( Xy, ..., X)) is equal to zero whenever 2 < s < n, and
there exist k and j such that i(k) # i(j).

Thus, working with cumulants gives us a better way to see if a set of
random variables is free or not.

4.2 Free CLT & Free convolution

In the last section we have seen the first connection between random matrix
theory and free probability. Indeed, the moments of Wigner semicircle law
are given by Catalan numbers, which also give us the number of elements
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in NCPy(n). One thing we have already noticed is the closeness of the
quantities (3.23) and (3.13). This is not a case, but a deep insight of what
is going on.

Theorem 4.2.1. Free Central Limit Theorem
Given a non-commutative probability space (A, T) a family of X; selfadjoint
free identical distributed r.v., with mean zero, 7(X;) = 0, and variance one,
7(X?) =1 the quantity
X1+ + X,

vn

converges in distribution to a random variable whose probability distribution
px is Wigner semicircle law (3.25).

Sp =

From the above theorem it is now clear that the universality role that nor-
mal distribution plays in classical probability theory is played by Wigner’s
law in free probability. The difference between the two situations, as we
already noticed, is that the non commutativity poses constraint in the com-
putation of moments which became in the free case non-crossing partition,
while are crossing in the classical one. One of the tools used in classical
probability theory for dealing with sums of random variables is convolution
(2.3). We would like to generalize this notion. First by multilinearity of free
cumulants it is easy to se that if we have two free random variables X and
Y and we want to compute their sum Z = X + Y, we have that

R

Thus inverting formula (4.5) we can retrieve the moments of uy and its
analytical form. We will indicate the probability arising from this procedure
by pz = pux B py. Free convolution has strong connection with Stieltjes
transform. Defining the R—transform of a distribution p as the following
generating function

R (z) = ioknﬂz” (4.6)

we see immediately that R¥TY(2) = R¥(2) + RY(z). Thus we guess that
there should be link with the moment generating function M (z) (3.35) and
Stieltjes transform s,(z). Indeed we have

R (su(2)) + ) =2 (4.7)



The above equation, with formula (3.34) can permit us to retrieve the un-
known distribution of the variable Z.
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Chapter 5

Random Graphs and Complex
Networks

Complex networks are a powerful tool in mathematical physics. They can
model the interaction of discrete system under certain assumption, and have
far application in physics, biology, economics and also sociology models. We
will explore the mathematical setting of Complex Networks (CN), and then
try to apply the mathematical machinery developed until now to give a rigor-
ous mathematical description of some CN’s properties, in particular random
walks on complex networks.

5.1 Random graphs

A graph G = (V, E) is a discrete collection of points V' (also called vertices
or nodes) and edges (E). The edges are link between two points, and are
in general specified by indicating two such points (7,j) (we have supposed
that the nodes are ordered in such way to indicate the as {1,--- ,n}); in the
general setting a link can connect a point with itself. The cardinality of the
set of vertices |V| is called order of a graph. The cardinality of the set of
edges |E| is called size. The number of edges linked to a site i is named
degree of the site, or in physical context connectivity d. A path, is a
sequence of edges. A path in which a starting node is also the last one is
callet cyclic path or closed path or simply cycle. In the case of a graph
in which there are no more than one edge connecting two nodes a path is
identified by the sequence of nodes touched {i — j — m — k}
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We have the following properties:

e Undirected graph: a graph is undirected if the edge between (i, j) is
symmetric, i.e. (4,7) = (J,1).

@ @

e Directed graph: a graph is directed if the edge between (i,7) is an
ordered pair, i.e. (i,7) # (j,1)-

@ @

e Weighted graph: a graph is said to be weighted if each edge is as-
sociated to a number, called weight. The resulting graph is indicated
with G(V, E, W) where W;; is the matrix carrying the weights.

>——@

e Multiple edges: a graph is said to have multiple edges if two nodes
1,7 are linked by more than one edge. Usually different nodes have
different weight.

e Site loops: a graph is said to have a loop at the site i if there is
an edge (i,4). A remark: in physical contexts, or more generally in
context outside pure graph theory, a closed path, i.e. a path where the
starting node is also the last one of the path, goes by the word loop.
We will work mainly with simple graphs (see below) so no ambiguities

will raise.
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e Simple graph: a graph which has not multiple edges nor loops. In a
simple graph with n nodes we have at most n — 1 edges.

e Regular graph: a graph in which each node has the same degree.

e Complete graph: a graph in which each node has full degree (i.e.
n—1).

e Connected graph: an undirected graph is called connected if, for
every couple of point there is a path that join them. A disconnected
graph may have many connected components, i.e. maximal connected
subgraphs of G.

e Tree: a connected and acyclic graph. Usually they appear in context
with where we have locally a regular graph of constant degree k, and
thus they are usually represented as regular.
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()
e Bipartite: a graph is said to be bipartite if the nodes can be divided
in two sets such that no edges link two nodes of the same set.

Connected with a graph we can define many matrix quantities.

e Adjacency matrix: after ordering the nodes 1,--- ,n, the adjacency
matrix A for simple graph, is a matrix |V |x|V| with entries 1 in position
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A;; if nodes (4, j) are connected by an edge, and 0 otherwise. Being
simple, we note that the diagonalFor non simple graph, the adjacency
matrix A;; contains at in the position (,j) the number of directed
edges from ¢ — j. For loops we can take either a 1 or a 2, depending
on the convention.

e Degree matrix: a diagonal matrix D containing in the position (i, 1)
the number of edges connected to the node 1.

e Laplacian matrix: defined as L = D — A. Sometimes is useful to
1 1
define a symmetric normalized laplacian L*¥™ = [ — D72 AD™2 and
will have an important role in the study of random walks.

A random graph is a graph generated by a random process. For example
given a graph G(V, E) of a fixed order and size, we could pick up randomly
couple of nodes until we saturate the number of edges. In view of our appli-
cations to complex networks we will introduce two classes of random graphs:

e Erdos-Rényi graph: there are two equivalent ways of realizing an
Erdés-Rényi graph.

Case 1: G(n,m)

In this case, the random graph is picked up from with uniform proba-
bility between the set of graphs with n nodes and m edges. Thus the
fixed parameter is the number of edges, leaving the randomness of the
generation process in the stochastic choice between the various instance
of G(n, m) uniformly distributed.

Case 2: G(n,p)
This kind of random graph is generated by a Bernoulli process. G(n, p)
is a set of n nodes, and the links beetween the nodes are created with a
probability p. Usually we let be p = p(n). Mean connectivity is given
by (d) = np. The probability of getting a graph with m edges is given
by

pm(1—p)E)m

The two types of Erdés-Rényi graph will be equivalent in the following
way. For the G(n,p) the expected value of edges is (g) p. We can than
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evaluate that there will be correspondency for m = (Z) p(1 — p) with
standard deviation given by o = (g) p(1 — p).Thus the two models

G(n,p) and G(n,m = (g) p) are asymptotical coincident for the law of
large numbers, provided that p(1 — p) (g) — 0o for n — ool.

e k—regular random graph G, ; where each node has degree d. It is
important to remark that here the nodes comes by default with d free
edges attached that must be linked through a random process. We will
see that this fixed value introduces significant differences with G(n, p)
graphs’ spectra.

The presence of the constraint of fixed degree, introduce correlation inside
the graph and its adjacency matrix in a such way that Lindeberg condition
(3.27) is no more satisfied. We remember that we are interested in large n
behavior, and we can take d(n) and p(n). The study of spectra of random
graph, i.e. of the ESD of the adjacency matrix of the graph, gives interesting
results.

5.1.1 G(n,p) spectra

The spectra of Erdés-Rényi graph depends heavily on the asymptotic behav-
ior of p(n). It results that

e p = w(})? in this case the sparsity of the matrix does not undermine
n

the wigner semicircular law. We have the following®

Theorem 5.1.1. Wigner distribution for Erdés-Rényi random
graphs

Let A,, be the adjacency matriz of a Erdés-Rényi random graph G(n, p),
with p(n) = w(;). Then, the ESD of =A,, with o* = p(1 — p)
converges in distribution to Wigner’s semicircular law

: <x>:{;m*4—x2 i lel <2

0 otherwise

1See [12,36], theorem 2.2 and proposition 1.12rispectively.

2We use the asymptotical notation f(x) = w(g(x)) if ggz; = oo for z — oc.

3See [15,66)
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°p= O(%): in this cases we have a probability of the form p = &, and
logn

we will have a sparse graph. It is known that for p = 2% the graph has
a sharp threshold over which it is connected almost surely, i.e. Ve > 0
we have that the G(n, p) with p = °82(1 —¢) is disconnected a.s. while
for p = 1°2%(1 + ¢) the graph will be connected a.s. From [26] we have
the following results:

Case 1: a <1

In this case, G will be disconnected, the size of its component being
O(logn). The extreme sparsity is encoded in the presence of trees
mostly that will contribute with discrete spectra.

Case 2: =1

2
G we will have isolated components of size O(n3). This is the percola-
tion transition threshold.

Case 3: a>1

In this case, G will have a giant component of size O(n) which in the
limit @ — oo covers all the graph. The other components have size
O(logn). The giant component will contribute to the continuum part
of the spectrum while the small components, being mostly tree, will
give discrete contribution.

The presence of delta peaks in the case of sparse graph is linked to
the formation of treelike components without cycles. For an increasing
a > 1 these components are more and more unlikely to have an evi-
dent role in the spectra which becomes dominated by the continuous
component®.

4See [10] chapter 5.2 for a dissertation. Other results may be found in [60]
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(a) a=0.3. (b) «=0.8. (c) a=1
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(d) a=13. (e) a=2. (f) a=5.
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(g) o= 10. (h) a=20.

Figure 5.1: Spectral distribution of the normalized and centered adjacency
matrix M, = ﬁ(An — pJn) (J,, is the matrix of all 1s), with
0 = p(1 — p) of G(n,p), for various values of a. We took
n = 1000 and a population of 100 random graphs. In red the

Wigner semicircular law (3.25)
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Bl 1

(a) a =6. (b) a ="17.5.

Figure 5.2: Spectral distribution for two particular values of a with n =
1000 and a population of 100 samples. In fact these two values
are beside the threshold log 1000 ~ 6.91 above which the graph
becomes connected a.s.

5.1.2 (), 4 spectra

d—regular graphs in the low connectivity limit have an adjacency matrix
with highly dependent entries. In fact we can think each node is given with
d legs to be connected with other legs. While for the first node the choice
is random, with an uniform distribution over the other nodes, the more we
continue the more the choice is not free. McKay studied in [45] the spectral
behavior of these graphs.

Theorem 5.1.2. McKay distribution

Let be G4 a random d—regular graph with n nodes, and let A,, be the ad-
jacency matrix of the graph. Then, for n — oo we have that ESD of A,
converges to

pk(z) = =) (5.1)

otherwise

{d\/‘l(dl)m2 if |z| < 2vd—1

Continuing with our heuristic reasoning, if d approaches to co with n, the
constraints at late nodes becomes weaker, until, in the limit of a complete
graph, they tend to disappear. This heuristic argument is not wrong: in fact
in [66] the main result is the following:

Theorem 5.1.3. Convergence of McKay distribution to Wigner
semicircular law
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Let A,, be the adjacency matriz of a d—regular random graph G,, 4 as before.
Letting M, = ————A,,, we have that the distribution of the M, converges

in distribution to ps.(x).

T T T T T
2 Bl o 1 2

(a) d = 2. (b)d=3. (c) d = 5.

3 2 Kl o 1 2 3 3 2

E o 1 2

3 2

(d) d=10. (e) a = 20. (F) d =50 .
Figure 5.3: Spectral distribution of the normalized centered adjacency ma-
trix M| = ﬁ(/ln— 4.1,,) (Jn is the matrix of all 1s) of G, 4,

for various values of d. We took n = 1000 and a population of
100 random graphs. In red McKay distribution (5.1).

5.1.3 G(n,p) vs Gpa

The generating random process for the two graphs, even if the two sound
simile at a first glance, are deeply different and bring to very different results.
In fact even if we expect for a graph G(n, p) with expected connectivity value
(d) = np = d a behavior similar to G, we have two very different kind of
graph. The main reason for that, is that the pairing legs process for the G, 4
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brings a high correlation between the nodes in the graph, destroying the
independence condition which is fundamental for Wigner-type results. For
understanding why this is so different let’s take the complete graph of order n,
G fuu(n). The two type of graph are obtainable from this one removing edges
with a certain law. Let’s start with G(n,p). For each node i, the process
consist in the removal of the edge (7, j) with probability (1 —p). This process
repeats itself in the same way, for each node, disregarding what the process
has already done at the node j in precedence, because the probability to shut
down an edge will be the same. With G, 4 the situation is quite different. We
must remove (n — 1) — d edges for the first node. This process is totally free,
we will chose (n—1) — d randomly with uniform probability. But it is easy to
gather that going on with the nodes the process will be not be free. In fact at
each new node we must take in account what has happened to the previous
steps. Having performed the process on the first node, it is left with d edges.
Let’s take as second node one of the d nodes linked to first one. For each of
these the removable edges are not (n — 1) —d but (n — 1) —d — 1 because the
first node is now untouchable. This difference results in an overall greater
connectedness of the graph, disadvantaging the formation of isolated treelike
structure. We also note that the graph for great n and % ~ 0 results mostly
without cycles, thus treelike at least a.s. locally and with higher probability
globally depending on the behavior of %. It could be asked if this different
behavior is given for differences in the number of edges, given (d) = np = d°.
For having a quantitative measure of this we can make a comparison between
the number of expected edges and we take in account the fluctuations. We
have already mentioned that the average number of edges for a G(n, p) graph
is (Z) p. For calculating the number of edges of G, 4 the following lemma is
useful:

Lemma 5.1.4. Handshake lemma

Let G(V, E) a graph with |V| =n, V ={vy,--- ,v,} and |E| =m.
> deg(v;) =2m
i=1

where deg(v;) is the degree of v;.

5Another interesting related question is the expected number of isolated sites, the
results are large deviation inequalities which bound the fluctuation of this number of sites.
See [30] for more.
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Thus having in a d—regular graph with n nodes deg(v;) = d, Vi, we have

> deg(v;) =nd =2m — m = nzd
i=1

Setting in G(n,p), (d) = np = d where d is the fixed connectivity of G,, 4 we

h
ave G(np) _ (n o n! _ n(n-1)_ _ dn-1)
{m = (2)]? T AP T T2 PT T
d

mGn,d =

At a first glance we have similar values. What is different is that m©» is
deterministic while m&™P) is an expected value that has a fluctuation. Indeed
we have considering the formation of the edges like a sum of (g) independent

(2)

Bernoulli variables that the number of edge is given by S,, = >°:21 X;, where
X, is the random Bernoulli variable that takes value 1 with probability p,
and 0 with probability (1 — p). We have of course that

(3) n
E(S,) = E <Zzil Xi) = 9 )P
for the independence of the events. We now search some deviation inequality
and we can apply the results of section 3.1. Let’s search the probability
This can be analyzed by dividing the event |S,, — E(S,,)| in two cases
Sn > (1+€)ES,
Sn < (1 —¢€)ES,

i.e. the cases where S, exceeds (be less than, respectively) the expected value
of more (less) than a quantity (1+4¢€) (resp. 1—¢). We will deal with the case
Sn > (14 €)ES,, the other result will be straightforward. The probability of
this event is the same of that of the event {e*(S»=(1+9ES2) > 11 and applying
Markov’s inequality (2.5) with A = 1 we have

P(em(snf(lJre)IESn) > 1) <E (ex(Sn7(1+e)]ESn)) —F (ezSn) ef:r(lJre)ESn

where z is a parameter to be optimized later. It is easy to see that E(e®Xi) =
pe* 4+ (1 — p), thus applying the definition of S,, we have that

E (e75") = (pe” + (1 —p))®
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Working in the same way with the event S, < (1 — €)ES,, we have the two
bound:

P(S, > (14 €)ES,) < (pe* + (1 — p))(Be0+9(3) 52)
P(S, < (1—€)ES,) < (pe=® + (1 — p))(3)er0-r(3) '
It remains to optimize the bound in .
& [(per + (1= p))Pem G =
{ii [(pe= + (1 - p))Bes=2()] = ¢ (53)

0

{6“’”““”’(3) () [t + (1 = p) O pe — (per + (1= p))E (1 + p] =0
ef(l—E)P(g) (g) [ — (pe® + (1 — p))(g)_lpew + (pe® + (1 — p))(g)(l - e)p] =0

We give a concrete example: for n = 1000 nodes and G,, 4 with d = 2 and
G(n,p) with and (d) = np =2 <= p = 0.002. Substituting this values of
p,n in equation (5.2) for a fluctuation of 50 edges in G(n, p) (that is with an
average m&(p) = % = 999 the 5%) we have a probability of almost 0.3
in both directions. Thus the differences between the two graphs are mostly
accountable to the different method of generation; in particular the behavior
of G, 4 in the low d limit is characterized by strongly correlation.

5.2 Random Walks

We now turn back to the discussion of Markov chains in section 2.3. With
the machinery of that section we can define over the graph® a random walk.
The random walk will be simply a Markov chain in which the random vari-
able at the time ¢t = n + 1, X,,41, will be node at which we are, given the
position at time t = n X,,, i.e. we will identify the state space R with the
vertex set V. Markov matrix P will be thus constructed starting from the
adjacency matrix in some way. Indeed the interaction encoded by P in graph
jargon is represented by weighted edges of the graph normalized in a such
way to have a stochastic matrix. A model that we can keep in mind as an

6In this section we will indicate with n the time step, while the order of the graph will
be denoted by V.
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example is the one of a particle moving between the edges at each discrete
and normalized time step At = 1. In this physical view the process is called
random walk on complex network. The network is called complex be-
cause its topological properties are relevant for what concerns the behavior
of the walk, like the asymptotic behavior. This type of process has mani-
festly the Markov property: we don’t need to know where the particle was
at the time t = n — 1 for determine where will be at time ¢t = n + 1, all we
have to know is P and where we are at time ¢ = n. Taking advantage of
time homogeneity this problem will be equal formally to giving a Dirac mass
distribution d; for localizing the particle at the site j at the starting point,
and then describing its evolution applying equation (2.25) with (uo); = d;;.
Generalizing we can assume that we are given with a probability distribution
over the nodes that gives us the probability of finding at time ¢ = 0 the par-
ticle in one of the nodes. As we have seen, this evolution is given by (2.24)
with a distribution over the nodes u, seen as a row vector. Alternatively we
can follow the evolution of the column probability vector g, := pl given by

Pny1 = pp P <= :u‘g—f—l = (/"'nP)T = PTﬁn

where T is the transpose operator. But given a graph G, how we can construct
our Markov matrix? Considering a simple graph we have that the probability
of staying at a node i after a time step is null, because in simple graph loops”
are prohibited. Thus given the adjacency matrix A;j we can suppose that
from a site ¢ we can jump to any site j connected with it with the same
probability. Thus we have

_ Ay
 deg(i)

where deg(i) = >, Aj; is the degree of the node 7. This relation in matrix
notation is P = D~'A, where D is the degree matrix. This kind of random
walk is called unbiased. If we let the the graph being weighted, then the
probability of the jump is given by

(P)ij (5.4)

AWy

(Ply = degy (i)

(5.5)

"Keep attention, here we mean loops in the graph theoretical sense, even if we have
already mentioned that in physical context the word loop is often used for referring to
cycles.
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where degy (i) = >-; AijWi;. In matrix notation we can write P = Dyt (Ao
W), where o denotes the Hadamard product and Dv_vl is the inverse degree
weighted matrix with D;; = 3=, A;;. Often is assumed that the information of
the adjacency matrix is included in the weight matrix, which will have zeros
in correspondence of an absence of edges; the relation can thus be writable
P = D,;})W. We note that even if I is not symmetric, it can be symmetrized
through a similarity transformation, thus it has real spectrum. Indeed we
have for example for an unbiased random walk

[SIE

D'W =D"% (D 2WD"2) D> = D"*(I — L)D

where L is the laplacian of the graph defined by L = D — A and I (here and
in the sequel) is the identity matrix. In simple and not bipartite graph, the
random walk so created is an irreducible and aperiodic Markov chain, and
by construction reversible. We note that by construction the elements of P
are non-negative, and so is the matrix. For further studying the spectral
distribution of Markov matrices we need the following results, preceded by a
definition.

Definition 5.1. Irreducible Matrix
We say that a matriz M is irreducible if there doesn’t exist a permutation

matrix P such that M can be trasformed in block upper triangular form by
P:

(5.6)

PIMP +# lgl g]

where A, B and C' are non trivial matrices of the right dimension.

The name of this condition is named to the homonymous property of
Markov chains and graphs, see [47]. In fact an irreducible Markov chain
has an irreducible transition matrix. We have the following theorem for
identifying irreducible matrices.

Theorem 5.2.1. Criterion for Irreducible Matrices®

Given a non-negative square matriz M n X n, it is irreducible if and only if
(I + M)n—l

s a strictly positive matriz.

8See [47], page 672.
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We can now state the following powerful result

Theorem 5.2.2. Perron-Frobenius theorem
Given a non-negative irreducible matriz M the following results holds.

o The spectral radius p(M) of M is positive, p(M) > 0, is in the spectrum
of M, p(M) € (M) and is called Perron root.

o p(M) is a simple eigenvalue.

o Ezists and is unique a vector v called Perron vector identified by the
following properties:

Muv = p(M)v
lv]] =1
v>0

Morover if p(M) is the only eigenvalue on the spectral cirle of M, M is said
primitive.

The primitivity condition will have a central role in limit theory of tran-
sition matrices.

Proposition 5.2.3. Primitivity criterions.
A non-negative irreducible matrix M is primitive if and only if one of the
following occurs:

o lim; (p(LM))k exists.

o M* >0 for some k >0
e The Markov chain associated to M is aperiodic.

We now look to limit theory of transition matrices. As we have seen
this is linked to study equation (2.26) this problem resolves in the study of
the asymptotic behavior of P* or (PT)k . We suppose that the transition P
matrix describes an irreducible Markov process, and we also require prim-
itive. All these properties extend obviously to the transpose (PT)’“. The
assumption we make on P are exactly the requirements of theorem ?7: we
are restating those result analyzing only transition matrix. Given such P we
can apply Perron’s theorem. P is a stochastic matrix thus we can see that
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={1,---,1} is a left eigenvalue with eigenvalue 1, i.e. our Perron vector,
or, with the jargon of section 2.3, our stationary distribution:

el =e'P

We now work for simplicity with P” := P. We call the Perron vector of P,
vo. This can be normalized to give a probability distribution over the states.

Given an intial probability p(0) we can expand it in terms of the eigenvectors
of P, {v;}o<i<n. We have that

= Z a;(0)v; (5.7)

where «;(0) = (p(0),v;) is the projection of p(0) onto the i*" eigenvector v;.
Applying TJk, (thus the transpose of equation (2.26)) we have

p(k) = P (p(0)) = P (Z ozz-(())'vi> = ap(0)wy + 3 M0 (5.8)

>0
where the \; are the eigenvalues of v;, and from Perron’s theorem we know
that |A\;] < 1, where 1 is p(P) is the Perron eigenvalue. For the property
|Ai] <1 we recover the result of theorem 77

lim P' = v, -e” (5.9)

k—o0

Thus we can make estimate that the reaching of the asymptotical state v°¢ =
af(0)vg in time steps k is bounded by

Ip(k) —vt||* =

Z)\ Ckl 'UZ'

>0

<ZH)\042 > < A ST aZ(0) < A

>0 >0

(5.10)
where A\, = max{\; : \; # 1} < 1is the second largest eigenvalue after Perron
eigenvalue. Taking the Poissonian limit for the times steps in equation (5.8)
we have

Z)\faz(())vl — ZOZZ 'UZ Z)\

=> ai(O)ve —(1=2)k

This expression is again dominated by v, = (1 — A,), which rules the asymp-

totic behavior, and the quantity 7, = rl)\) is the relaxation time.
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For non primitive transition matrix the limit

P,
U5

does not exist. In the language of Markov chains we have a periodic process.
One way to deal with situation is to study the Cesaro limit

- [p(o) +p(1) + - +p(k - 1)]

- (5.11)

k—o0

It results that this limit converges to the stationary distribution, like for
equation (5.9):

lim

k—o0

(5.12)

[[+P+P2+---+P’“‘1]
k

The heuristic motivation for this is that the j* component of stationary
distribution represent the fraction of time spent on the node j. This is given
by the mean over the total time-steps of the j' component of probability
distributions {(k)}x>0, i-e. exactly the j™ component of the Cesaro limit
(5.11)°.

5.2.1 Laplacian matrix

We recall that the normalized laplacian matrix L*¥™ of the graph is defined
by
LV = D 3LD 3 = [ — D 3AD 3

where L = D — A is the standard laplacian. The spectral distribution of L
and L*¥™ Have important meanings. It results that o(L) > 0. The dimension
of the eigenspace Vj of L related to the null eigenvalue is the number of the
connected components of a graph. Thus, the second smaller eigenvalue gives
us information on the connectedness of the graph and it is called Fiedler
eigenvalue or algebraic connectivity. The same eigenvalue for the nor-
malized laplacian L™ is exactly v, = (1 — \,) appearing in the limit theory
of transition matrix. Thus the study of Laplacian spectrum gives us impor-
tant topological and dynamical information on the graph and the random
walk defined on it. The spectral gap between the algebraic connectivity and

9Formal threatment can be found in [47], chapter 8
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the null eigenvalue is under study, and could give important information on
the robustness'’. Further material can be found in [16, 28,50, 58].

5.2.2 Spectra of transition matrices and comparisons
with simulations

The calculation of the spectra of transition matrices is straightforward. The
definitions (5.4) and (5.5) of P in the unbiased and weighted cases tells
us that thanks to Perron-Frobenius theorem the greatest eigenvalue of P
is 1. Working with irreducible chains, isolated sites, i.e. null rows in the
matrix corresponding to zero values in D, are forbidden. Keeping in mind
that P is not centered and considering the results on centered matrices of
theorem 3.2.3, tells us that the greatest of normalized eigenvalues of a G(n, p)
concentrates at the value 2, where the normalization if provided by the factor

1 Thus eigenvalues of W (and also the others) are shrinked by a

np(1—p)
factor 7””;(;_73). In particular the second greatest eigenvalue will fluctuate,
with variance given by theorem 3.2.3 opportunely scaled, around 2,/ 17%”. For

what concerns G, 4 the discussion is the same, but this time the scaling factor

_d
! -, which is essentially the same factor adapted to G,, 4.

The behavior in the pictures 7?7 can be explained in the following way.
We have said that P can be symmetrized by a similarity transform D~z. We
can always find a base on which the matrix acts constructed in the following
way: picking the Perron eigenvector we choose the other n — 1 eigenvector in
a such way that they form a subspace orthogonal to that. This results in a
complessive rotation S. In a such way W decompose in

is given by

11 _1 1 0
ST D2PD 2S5 = [O A] (5.13)
where the symmetric matrix A entails all the randomness (and dependence
of the entries as can be seen in picture f of figure ??) of the initial matrix.
The constraint of being stochastic has thus the effect of fixing the eigen-
vector corresponding to the maximum eigenvalue 1, and leaving the random
component in the n — 1 dimensional subspace orthogonal to it.

0Robustness, has many definition in network theory depending on the event we want
to study. In general is the property of a network of maintaining its characteristics despite
small perturbation, like the removal of nodes or edges.
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Conclusions

The mathematical tools developed in chapters 2 and 3 let us analyze k—regular
graphs G, 4 and Erdés-Renyi graphs G(n,p) and the related random walks
given by the Wigner matrix constructed on the adjacency matrix. The re-
sults founded, are well summed up by the pictures of the spectra we have
calculated: while at great p and d the results are ruled by the non abelian
CLT given by Wigner semicircular law, at low p and d the spectra are highly
different. In k—regular sparse graphs, thank to their generation process,
connectedness is favored, while the same is not true for large sparse Erdos-
Renyi graphs. This has profound consequences on the respective random
walks, which have a spectral behavior similar to the linked adjacency ma-
trices. These results are in accordance with the trending methods used by
physicist, as found in [42]. Future developments could look with more deep-
ness to the linkage between these different approaches that give the same
results, trying also to enlarge the RMT study to different kinds of graphs
with different laws that are being well studied in statistical physics and less
in mathematical ambients.
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