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“Oh me, oh vita! Domande come queste mi perseguitano.

Infiniti cortei d’infedeli, città gremite di stolti,

che v’è di nuovo in tutto questo, oh me, oh vita!

Risposta:

Che tu sei qui, che la vita esiste e l’identità.

Che il potente spettacolo continua,

e che tu puoi contribuire con un verso.”

- Walt Whitman

Alla mia famiglia.





Introduzione

L’utilizzo di servizi di messaggistica su smartphone è incrementato in

maniera considerevole negli ultimi anni, complice la sempre maggiore disponi-

bilità di dispositivi mobile e l’evoluzione delle tecnologie di comunicazione via

Internet, fattori che hanno di fatto soppiantato l’uso dei classici SMS.

Tale incremento ha riguardato anche l’utilizzo in ambito business, un

contesto dove è più frequente lo scambio di informazioni confidenziali e quindi

la necessità di proteggere la comunicazione tra due o più persone. Ciò non

solo per un punto di vista di sicurezza, ma anche di privacy personale. I

maggiori player mondiali hanno risposto implementando misure di sicurezza

all’interno dei propri servizi, quali ad esempio la crittografia end-to-end e

regole sempre più stringenti sul trattamento dei dati personali.

In questa tesi andremo ad illustrare Messaging Layer Security, abbreviato

in MLS, un nuovo protocollo in fase di sviluppo che garantisce sicurezza ed

efficienza in conversazioni di gruppo. Se in una conversazione tra due client

la sicurezza può essere garantita tramite crittografia end-to-end e scambio

di chiavi, il problema sorge quando più attori partecipano alla conversazione

in modo asincrono: in questo caso lo sforzo computazionale è considerevole,

a maggior ragione considerando l’uso di dispositivi mobile con capacità di

batteria ridotta che lavorano in modo asincrono, non garantendo perciò la

presenza continua del dispositivo online.

Verrà trattata sia la parte architetturale, più generale e di indirizzo, che

la parte di protocollo, più tecnica e dettagliata. Infine verrà illustrata una

implementazione di MLS scritta in Rust e chiamata Melissa, che fornisce

tutte le funzionalità base previste dalla versione draft 05 del protocollo.

I lavori sul protocollo, tutt’ora in corso, sono portati avanti da un appos-

ito working group istituito presso l’Internet Engineering Task Force (IETF)
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ii INTRODUZIONE

composto da ricercatori universitari ed aziendali. Melissa, invece, è portata

avanti da un apposito gruppo all’interno di Wire, servizio di messaggistica

sicuro orientato alle aziende.

Il presente elaborato di tesi nasce in seguito ad un’esperienza Erasmus

negli uffici di Wire a Berlino, continuata in questi ultimi mesi da remoto.

Avvertenza

Il presente elaborato di tesi si basa su una versione Internet-Draft non

definitiva delle specifiche di Messaging Layer Security. I contenuti riportati

potranno cambiare in futuro. Tutti gli aggiornamenti relativi a MLS sono

disponibili sul sito ufficiale https://messaginglayersecurity.rocks.

https://messaginglayersecurity.rocks


Introduction

The use of messaging services on smartphones has increased considerably

in recent years, due to the growth in the availability of mobile devices and

the evolution of communication technologies via Internet, factors that have

effectively replaced the use of text messages.

This increase also concerned the use in the business environment, a con-

text where the exchange of confidential information is more frequent and

therefore the need to protect communication between two or more people.

This is important not only on a security point of view, but also for per-

sonal privacy. The major global players have responded by implementing

security measures within their services, such as end-to-end encryption and

increasingly strict rules regarding the processing of personal data.

In this thesis we will illustrate Messaging Layer Security, shortened as

MLS, a new protocol under development that guarantees security and effi-

ciency in group conversations. When in a conversation between two clients,

security can be ensured through end-to-end encryption and key exchange.

The problem arises when multiple actors participate in the conversation asyn-

chronously: in this case the computational effort is considerable, even more

so considering the use of mobile devices with reduced battery capacity that

does not guarantee the continuous presence of the online device.

The thesis will deal with both the architectural part, that is more general

and traces the outline of the subject, and the protocol part, more techni-

cal and detailed. Finally, an implementation of MLS written in Rust and

called Melissa will be illustrated, which provides all the basic functionalities

indicated in the draft 05 version of the protocol.

Work on the protocol, still in progress, is carried out by a special working

group set up at the Internet Engineering Task Force (IETF) composed of

iii



iv INTRODUCTION

university and business researchers. Melissa, instead, is carried out by a

special group within Wire, a secure business-oriented messaging platform.

This thesis document follows an Erasmus experience in the Wire offices

in Berlin, which continued remotely in recent months.

Disclaimer

This thesis work is based on a non-definitive, Internet-Draft version of

Messaging Layer Security specifications. The contents shown may change in

the future. All updates about MLS are available on the official website

https://messaginglayersecurity.rocks.

https://messaginglayersecurity.rocks
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Chapter 1

Messaging and Security

1.1 Messaging

Messaging is a type of service that allow users to exchange information by

using different means of communication. In computer science, communica-

tion is intended to take place over an electronic channel. Types of information

may include texts, images, videos, voice notes, files, documents, audio and

video calls, and much more. Messaging applications include emails, chats, in-

stant messengers, messaging apps and SMS. Communication may take place

on computers, phones, tablets and smart devices.

In this document, we will consider the case of messaging services, includ-

ing instant messengers and messaging apps.

1.1.1 General use cases of messaging services

In general, messengers provide real-time text transmission service through

the Internet between two or more users. To achieve this, we need to specify

some fundamental properties of messaging.

Users who wish to exchange messages register to a messaging service using

personal credentials, which can be an email and password pair, a username

and password, a telephone number, a one-time password, etc. The messag-

ing service is responsible for keeping authentication information safe, or to

manage authentication through third-party services (e.g. Single Sign-On)

consistently.

1



2 1. Messaging and Security

Users who join a messaging service are described by different information

about them. Typically, users must specify an identifier, which can be a

username, an email address, a person’s name or other types of identifier (e.g.

numeric or UUID). They can also be represented, optionally, by a picture or

avatar. Other information is generally defined based on the service and may

include, for example, the current status, job position, age, nickname, email

or phone number unless previously specified.

The user who enters a messaging service typically sees the list of open

conversations, known in instant messengers as buddy list. Depending on

the service, conversations may be with one person (one-on-one) or a group.

Group conversations may also be called in other ways, such as chats, chan-

nels or rooms, and they are usually distinguished by an identifier (a title or

nickname).

Users may typically initiate a one-on-one conversation by knowing the

identifier of the other person to contact or, if allowed by the service, by

searching inside a global directory. Users may place restrictions on how other

users are added, e.g. by sending a request or limiting to already authorized

users inside the buddy list. Users can create new conversations, or they can

be added to other conversations by other users, or by joining in other ways,

such as via an invitation link. Conversations may take place when both or

all users are online or not: therefore we talk about instant messaging in the

first case and asynchronous messaging in the latter.

Users of a conversation can view the history of messages and content

sent in that conversation since they joined it, in a chronological order, where

the last messages sent are usually displayed at the end of the list. Users

can participate in the conversation by writing inside the text field of the

conversation window. Based on the messaging service, they might also attach

emoticons/emojis, images, files, contacts, locations, stickers, surveys, etc.

Some messenger services also provide other advanced features, like audio

and video calls with one or more people, bots, ephemeral messages, integra-

tion with third-party services, admin control, etc.
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1.2 Evolution of messaging

Considering the above mentioned information, we can state that messag-

ing is nothing but the exchange of messages between two remote users. We

will now retrace the main steps that led to the current state of the industry.

1.2.1 Pre-Internet era (1960-1990)

In 1961, the MIT Computation Center developed the Compatible Time-

Sharing System (CTSS), one of the first time-sharing operating systems that

allowed multiple users to share resources over a single mainframe, the IBM

7094. This way, up to 30 simultaneous users were able to communicate by

storing files on an online disk. [18] Eight years later, CompuServe was in-

vented: it was the first commercial online service available in the United

States, a sort of predecessor of the World Wide Web. CompuServe was

known for its online chat and electronic mail service, message forums, soft-

ware libraries and online games. CompuServe also developed the Graphics

Interchange Format (GIF) that became popular in the 1990s, returned to the

fore in the second half of 2010s.

Shortly after, in 1971, the email service was invented by Ray Tomlinson.

His idea was to specify the destination of a message via the @, creating an

”address” now known as username@name of computer (e.g. john@example.com).

The idea of Tomlinson soon became adopted as the main network email

system of ARPANET. In 1985, Quantum Computer Services from Vienna

launched Quantum Link, an online service for Commodore 64 and 128 which

included chat rooms, email and instant messaging services.

Three years later the Internet Relay Chat (IRC) protocol was invented.

IRC provides a group chat service where users can connect to channels, in

order to discuss about different topics. It is also possible to create one-on-

one conversations. IRC is still widely used nowadays: for example, it is the

principal instant communication channel of the Wikipedia community. In

1989, Quantum Link became America Online (AOL). AOL grew exponen-

tially during 1990s, becoming one of the largest internet providers in the

United States.
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1.2.2 Instant messengers (1990-2008)

In 1996, the Israeli company Mirabilis launched ICQ, one of the first

instant messenger totally dedicated to individual chats. ICQ became very

popular in a short amount of time. The following year, AOL launched AOL

Instant Messenger (AIM), an instant messenger based on the proprietary

OSCAR and TOC protocols. In 1998, AOL acquired ICQ, while Yahoo!

launched Yahoo! Messenger and, one year later, Microsoft released the first

version of MSN Messenger.

All these messaging services were united by a common characteristic: the

lack of interoperability. A first attempt to let these messengers communicate

with each other was brought on by Jabber in 1999, an open communica-

tion protocol known later as Extensible Messaging and Presence Protocol

(XMPP). XMPP was used on a large scale by Google Talk, an instant mes-

saging and VoIP service platform by Google launched in 2005.

In 2003, Niklas Zennström and Janus Friis founded Skype, a revolutionary

telecommunication platform that provides encrypted instant messaging and

VoIP, originally built with an hybrid peer-to-peer and client-server architec-

ture.

1.2.3 Messaging apps (2008-current)

In 2008, Facebook launched Facebook Chat, a chat messaging service in-

tegrated into the Facebook platform, which later became a standalone app

called Facebook Messenger. In the same period, Twitter was launched, fea-

turing statuses with a maximum amount of 140 characters and a private

messaging service widely known as direct messages (DM), initially designed

for Twitter users who followed each other.

In November 2009, two former engineers from Yahoo - Brian Acton and

Jan Koum - developed the first version of WhatsApp, a messaging platform

for text and photos, and published it to the iOS App Store. It became really

popular and grew exponentially in a short amount of time. WhatsApp Inc.

was afterwards acquired by Facebook in 2014. During WWDC 2011, Apple

presented iMessage, a messaging service dedicated to the Apple platforms

and later supported on iOS, macOS and watchOS. The peculiarity is that it
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is integrated into the system and users can send free iMessages in the same

way they were used to sending SMS.

Google continued to invest in the messenger market with various solutions

over time, like Google Wave and Google Voice, which later became Google

Hangouts, and the Allo and Duo apps. In 2013, Nikolai and Pavel Durov,

Vkontakte co-founders, launched Telegram, a cloud-based messaging plat-

form with all the clients released open source. In the same period, interest

in messengers grew in East Asia with the Chinese solution WeChat and the

South Korean Line.

1.2.4 Business messengers

The popularity of messaging services has increased lately also on a busi-

ness level, as a communication tool for teams. Team chats can provide a

unique tool for communication within a company and, at the same time,

they can reduce the amount of emails exchanged between users. Some of

them include Skype for Business, Slack, Wire, Atlassian HipChat, Microsoft

Teams and Discord. They often include advanced features like conference

video calls, integrations, end-to-end encryption, admin tools, etc.

1.3 Security and privacy in communication

When dealing with private conversations, users expect from the messaging

services that what they write is kept private, in a way that eavesdropping and

interception should not be possible. This leads to the concepts of security

and privacy. According to the Cambridge Dictionary, privacy is someone’s

right to keep their personal matters and relationships secret. This concept

has evolved over time, switching from the right concerning the private sphere

of a subject, to the right of keeping personal data secret.

1.3.1 Cryptography

Cryptography is the study of techniques that can guarantee secure com-

munication in the presence of third parties called adversaries, preventing
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them to read private messages. Modern cryptography shares the same basic

concepts of computer security, namely:

• data confidentiality: protects the information from third parties,

guaranteeing access only to authorized parties;

• data integrity: attests the originality of data, that is, the data has

not been modified by third parties;

• authentication: guarantees the identity of the user within a commu-

nication;

• non-repudiation: impossibility of a party to dispute the authorship

of given data.

Cryptography is a horizontal discipline that is based on different fields

like computer science, mathematics, electrical engineering and physics, and it

is used in various instances of everyday life. Some of them include payment

cards, mobile communication, e-commerce and electronic communication,

digital signatures and certified electronic delivery services.

Cryptography is made of two fundamental operations: encryption and

decryption. Encryption is the transformation of a plain clear text into a

ciphertext using a cipher. Decryption is the inverse operation: given a ci-

phertext, using a cipher it is possible to decrypt text and transform it back

into plaintext. Ciphertexts are usually a sequence of scrambled and appar-

ently unreadable characters. A cipher is a system capable of transforming a

plain text into an unintelligible text.

There are two main ways to perform encryption: symmetric and asym-

metric encryption, also known as Public-Key Encryption.

Symmetric encryption

With symmetric encryption, a secret key is shared between sender and

receiver, and is used to encrypt plain texts and decrypt ciphertexts. A fun-

damental requirement for this approach is that the two parties must first

have exchanged the secret key in a secure fashion. In addition, the algorithm

must be strong enough not to allow a possible opponent to decipher the text.
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Figure 1.1: Symmetric Encryption. Source: [9]

Two possible ways to attack a symmetric encryption scheme are:

Cryptanalysis This approach relies on analysis brought on the content of a

ciphertext, encrypted through a key. Cryptoanalysis tries to deduce a

specific plaintext or the key used to encrypt it. If the attacker deducts

a key successfully, it is compromised.

Brute-force attacks This method tries every possible key on a ciphertext,

until an intelligible translation is obtained. On average, half of all

possible keys must be tried before achieving a successful result.

Public-key encryption

Asymmetric encryption, mostly known as Public-Key Encryption (PKE),

is a type of cryptography that makes use of a key pair for each party of a

communication. The public key is intended to be shared with third parties,

while the private key remains secret and kept by each of the two parties.

One key of the pair is used for encryption, while the other one is used for

decryption. Another important fact is that PKE is based on mathematical

algorithms, rather than operations on bit patterns. Public-Key Encryption

was first publicly proposed by Whitfield Diffie and Martin Hellman in 1976.

Public-Key Encryption works as follows. Assuming that the two parties

are called Alice and Bob:

1. both Alice and Bob generate a key pair for encrypting and decrypting

messages;
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Figure 1.2: Asymmetric Encryption with Public Key. Source: [9]

2. both Alice and Bob place one of the two keys in a publicly accessi-

ble register; That is the Public Key, while the companion will be the

Private Key, which will be kept private;

3. when Bob wants to send a private message to Alice, Bob encrypts the

message using Alice’s public key;

4. when Alice receives the message, she decrypts it using her private key.

Other recipients cannot decrypt the message, because only Alice knows

her private key.

Figure 1.2 shows a message encrypted using Alice’s public key. This

approach guarantees confidentiality, while Figure 1.3 shows a message en-

crypted using Bob’s private key, providing authentication and data integrity.

1.3.2 End-to-End Encryption

End-to-End Encryption, shortened as E2EE, is a way to communicate

privately where the only parties who can read the messages are the ones

who are communicating. This is possible by encrypting and decrypting the

messages directly on clients of the authorized users. No one can decrypt data,

not even an attacker or the company who runs the service itself, without
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Figure 1.3: Asymmetric Encryption with Private Key. Source: [9]

having the private keys of the parties involved in the communication - that

should remain private. Keys can be agreed by using a pre-shared secret,

a one-time secret derived from the pre-shared one, or negotiating them by

using the Diffie-Hellman Key Exchange method.

Internet

User A Device User B Device

"Hello"
qoxubrxk
xhsuiwof
dnzlaopa

qoxubrxk
xhsuiwof
dnzlaopa

qoxubrxk
xhsuiwof
dnzlaopa

"Hello"

Figure 1.4: Functioning of End-to-End Encryption. Inspired from https:

//oreil.ly/2IhYplf

Even if E2EE guarantees privacy in communication, there are some chal-

lenges that should be taken into account. One of them is the possibility of

Man-in-the-Middle attacks: rather than breaking the encryption, the sender

may try to impersonate a recipient, by sending the message encrypted with

their public key. A possible solution is to generate one-time strings based on

the public keys of the two parties. In parallel, some security issues linked

https://oreil.ly/2IhYplf
https://oreil.ly/2IhYplf
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to the device of the end user may arise. For example, a private key could

be stolen from a device during an attack; or the content of a communication

could be shared in other ways on a user’s device, like screenshots or chat

exports/backups. [20]

1.4 Secure messaging

We have seen that messengers exchange data between users, and encryp-

tion helps to hide such data from third unauthorized parties. With the

increase in the use of messaging services, the need to secure the communi-

cations has grown during the last years. This is mainly due to greater user

awareness on security issues, including data breaches and identity theft. In-

creased awareness has brought to the birth of secure messengers, designed

from scratch with security in mind like Signal, Wire and Threema, and the

implementation of end-to-end encryption to existing apps, like WhatsApp

did in 2016.

According to [19], some of the features of a secure messaging service

include:

• encryption of both texts and attachments that are exchanged;

• encryption of the content through a private key that stays on the device;

• implementation of Perfect Forward Secrecy, a property ensuring that,

even if long term keys get compromised, new session keys will remain

confidential;

• a recent audit by an independent company;

• a clearly documented service design;

• the type of cryptographic primitives used;

• availability of the code as open source for independent audits and re-

views;

• manually verified fingerprints;
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• impossibility to log, store and collect any plaintext message, metadata,

session or event.





Chapter 2

Messaging Layer Security

2.1 Background

Each messaging service is characterized by different architectures, features

and purposes. The path that led to the definition of Messaging Layer Security

passed through several different concepts and protocols.

2.1.1 Fundamental properties: Perfect Forward Secrecy

and Post-Compromise Security

Forward Secrecy Post-Compromise
Security

Time
Compromise

Figure 2.1: The temporal position of the two cryptographic properties of

MLS: Perfect Forward Secrecy and Post-Compromise Security.

As we can see from Figure 2.1, protection about secrecy of past and

future messages is guaranteed through two cryptographic properties: Perfect

Forward Secrecy and Post-Compromise Security.

Perfect Forward Secrecy (shortened as PFS) means that in a compromised

client, the secrecy properties - including access to all encrypted traffic history

and current keying material - are guaranteed for messages older than the

13
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oldest key of the client. Clients have an important role of deleting keys as

soon as they have been used with the expected message, otherwise secrecy is

considered weak.

Post-Compromise Security [6] (shortened as PCS) means that if a group

member is compromised at a certain time T , but it tries to perform an update

at a certain time T ′, with T ′ > T , then all secrecy guarantees are applied for

messages sent after T ′. For instance, if an adversary learns all secrets known

by Alice at T , and Alice wants to perform a key update at T ′, the adversary

is unable to violate the security properties after T ′.

2.1.2 PGP and OpenPGP

PGP, acronym for Pretty Good Privacy, is a family of cryptographic soft-

wares that uses a mix of symmetric-key cryptography, data compression,

hashing and public-key cryptography to provide cryptographic privacy and

authentication in online communication. It is used to encrypt and decrypt

texts, files, emails and whole disk partitions. Despite the fact that this pro-

tocol guarantees confidentiality, authentication and integrity check, it does

not provide Forward Secrecy and Post-Compromise Security. Furthermore,

it does not guarantee deniability.

PGP was initially released by Phil Zimmermann in 1991 as proprietary

software, but due to its rapid diffusion, in 1998 the specifications were col-

lected by IETF, which led to the development of PGP as an open protocol,

called OpenPGP.

2.1.3 Off-The-Record

Off-the-Record [13] is a cryptographic protocol designed by Ian Goldberg

and Nikita Borisov in 2004. It makes use of a ciphersuite composed by AES-

128 as symmetric-key algorithm, Diffie-Hellman Key Exchange (DHKE), and

SHA-1 as hash function. OTR uses a symmetric approach, so the same

private key is used to both encrypt and decrypt a message. While this

protocol guarantees end-to-end encryption of messages, mutual authentica-

tion, Perfect Forward Secrecy and non-repudiation, it does not provide Post-

Compromise Security. Furthermore, the symmetrical nature of the algorithm
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involves the use of sessions, making it suitable for use on instant messengers,

but not on asynchronous messengers.

Moreover, one of the most important limitations of OTR is the fact that it

can only be used in conversations between two users. The use with multiple

clients was treated only in 2009, thanks to mpOTR, Multi-Party Off-The-

Record Messaging [14]. While it introduces some improvements, there are

other major pitfalls, like the lack of in-session Forward Secrecy, that was

originally provided by OTR.

2.1.4 Double Ratchet Algorithm

The main goal of the MLS protocol is to guarantee an efficient way to

manage multiple clients inside a group conversation. The current widespread

solution that works efficiently with two participants is the Double Ratchet

Algorithm [8]. Also referred to as Axolotl, Double Ratchet Algorithm is used

by two parties to exchange encrypted messages based on a shared secret key.

Developed in 2013 by Trevor Perrin and Moxie Marlinspike, it is the base of

the Signal Messaging Protocol [7] by Open Whisper Systems, whose core is

used right now by the most popular messaging platforms.

In a communication between two parties, new keys are derived for every

message using the Double Ratchet Algorithm. This way, earlier keys cannot

be calculated from the newest ones, thus ensuring Forward Secrecy. Diffie-

Hellman public values are also attached to the message by both parties,

so later keys cannot be calculated from the earlier ones, providing Post-

Compromise Security. These properties protect earlier or late messages in

case of a compromised key.

The cryptographic primitives used by the Double Ratchet Algorithm are:

• Elliptic Curve Diffie-Hellman (ECDH) with Curve25519 for the Diffie-

Hellman ratchet;

• Keyed-Hash Message Authentication Code (HMAC) based on SHA-256

for message authentication codes;

• HMAC for the hash ratchet;
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• Advanced Encryption Standard (AES) for symmetric encryption.

Right now, Double Ratchet is implemented with two different approaches:

Client-side fan-out

In client-side fan-out, messages in a group conversation are sent directly

to the other clients. This way, assuming that N clients take part in a group

conversation, each client needs to send a message N times. Clients are re-

sponsible of maintaining updated keys for each participant.

This approach has been adopted by Signal, Wire (whose implementation

is called Proteus), Apple for iMessage and others.

Server-side fan-out (sender keys)

Another implementation based on the Signal Messaging Protocol is the

server-side fan-out, also known as sender keys, used for WhatsApp groups

and Facebook Messenger, and others. [17]

This is the same way as unencrypted messenger apps are implemented:

a client who wants to send a message in a group conversation, transmits a

single message to the server, which is then distributed N times by the server

to the N different clients. Messages in groups are build on pairwise encrypted

sessions, in order to achieve efficient server-side fan-out using sender keys.

2.2 The protocol

As we have seen, there are many secure messaging apps, which use similar

protocols but with different implementations. The challenges they are called

to solve are quite similar.

Messaging Layer Security, shortened as MLS, is a new security layer

intended to provide end-to-end encryption in group conversations. Messaging

services nowadays have to manage both one-on-one and group conversations:

it is therefore useful to think of a protocol suitable for group communication,

rather than point-to-point communication, in order to reduce the computa-

tional effort to encrypt and decrypt messages, and bandwidth required to
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send them. Furthermore, another major constraint is asynchronous com-

munication: services should be able to deliver messages, even if clients are

offline. MLS is meant to protect against eavesdropping, tampering, and mes-

sage forgery. The main goals of this protocol are:

• Groups: supporting large group conversations efficiently, theoretically

up to 50.000 members;

• Asynchronous: taking into account that clients may not be online

at the same time, including the worst-case scenario where none of the

members in a group are available;

• Security: managing group membership providing Forward Secrecy

and Post-Compromise Security with sub-linear scaling, instead of a

linear one.

• Formal verification: similar to Transport Layer Security (TLS) [5],

proving that the implementations satisfy the formal specification of the

protocol;

• Standardized: providing a standard protocol in order to make MLS

implementations interoperable with each other.

MLS is not intended to provide a full secure messaging protocol, but

rather to offer security measures for concrete protocols. In this regard, the

protocol does not specify a full, concrete implementation, but rather a set

of data structures that can be mapped onto concrete encodings like TLS.

Implementations that share common encodings could have a certain degree

of interoperability, but they might not be compatible because of different

authentication infrastructures.

The protocol is being designed by the MLS Working Group, a dedicated

working group at the Internet Engineering Task Force (IETF). The group has

already produced an MLS draft specification composed by two documents,

that will be analyzed in the following chapters:

• an architecture document [1] that sets the domain, the problems and

the requirements;



18 2. Messaging Layer Security

• a protocol document [2] that specifies the protocol itself.

A third document is under development and will focus on federation [3],

describing the changes needed to allow different clients from the same or

different entities to communicate with each other, and how the client will

interact with the Delivery Service.

2.3 History

The history of this protocol is quite recent and still ongoing. It has its

roots in 2015, when an increasing number of companies and researchers began

to develop an interest in tree-based cryptographic schemes. The intention to

converge on a shared protocol for end-to-end encryption applied to messaging

arrived in 2016, from an informal meeting during the IETF 96 conference in

Berlin with people from Wire, Mozilla and Cisco.

In 2017, a paper by Facebook and the University of Oxford [4] introduced

the concept of Asynchronous Ratcheting Trees (ART). During the last months

of 2017, several workshops about MLS took place. The first informal meeting

of the MLS Working Group, also known as birds of a feather (BoF), took place

during the IETF 101 conference in February 2018 in London.

In May 2018, the MLS Working Group proposed TreeKEM [15], an al-

ternative to ART more cryptographically efficient and better at handling

concurrent changes, and they adopted it in the early drafts of the MLS pro-

tocol.

Right now, MLS is supported by several organizations like Mozilla, Face-

book, Wire, Cisco, MIT, University of Oxford, INRIA, Google and Twitter.

The protocol is still a work in progress: the specifications are in a state of

”Internet-Draft”, so they are informational documents and will be subject to

changes in the upcoming months.

2.4 Performances of MLS

MLS provides five different possible operations for a group conversation:

• create an empty conversation;
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• add a new client to an existing conversation;

• update of the client secrets;

• remove a client from a conversation;

• send a message inside a conversation.

Figure 2.2 shows a comparison in terms of computational complexity for

each of the operations previously described, between the two current solutions

based on the Double Ratchet Algorithm (client-side fan-out and server-side

fan-out) and the latest version of the MLS Protocol Draft.

O(N2)

O(N)

O(log n)

O(1)

(a)
Create a

conversation

(b)
Add client to a
conversation

(c)
Update client

secrets

(d)
Remove client

from a
conversation

(e)
Send a message

Client fanout MLS Draft 05Sender keys

Figure 2.2: Performance comparison of main actions, in terms of complexity,

between Client fanout, Sender keys and MLS Draft 05
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2.5 Current implementations

Companies that are part of the Working Group have started working on

some implementations of MLS, written in different programming languages

and based on different versions of the draft. Since MLS aims to become

an IETF Internet Standard, other companies outside of the Working Group

have started showing interest on the matter and are working on their own

implementations. A non exhaustive list, that may change over time, is the

following:

Melissa The proof of concept implementation carried out by the Wire team

and object of this thesis. It is written in Rust and publicly available at

https://github.com/wireapp/melissa. It is based on the draft 05

version of the protocol.

mlspp The draft implementation made by Cisco and written in C++. Avail-

able open source at https://github.com/cisco/mlspp.

MLS* This is an implementation written in F* by the Institut National de

Recherche en Informatique et en Automatique (INRIA).

Molasses This is another early implementation written in Rust and based

on the draft 04 version of the protocol. It is carried out by Trail of Bits

and open sourced at https://github.com/trailofbits/molasses.

RefMLS An implementation written in JavaScript by the New York Uni-

versity in Paris.

Google Google is also working to an implementation written in C++.

https://github.com/wireapp/melissa
https://github.com/cisco/mlspp
https://github.com/trailofbits/molasses


Chapter 3

Messaging Layer Security

Architecture

The general architecture of Messaging Layer Security includes the speci-

fication of the general setting of the environment, the functional and security

requirements, and considerations. These concepts are treated at a higher

level than the protocol and they are described in [1]. While the protocol is

under development, the architecture is the basis of the entire specification,

therefore it is possible to affirm that it will not undergo great changes. We

will consider the version 02 of the document in this analysis.

3.1 General setting

3.1.1 Messaging Service

The base entity is the Messaging Service, shortened as MS. A Messaging

Service is a service that provides messaging features to users, that usually

have one or more devices, called clients. In a Messaging Service, users can

exchange messages in a one-on-one conversation or with other users in a

group conversation.

MLS calls members the set of participants of a Messaging Service and

consider one-on-one conversation as group conversations between two peo-

ple. This is the basic case, since conversations can have up to thousands of

21
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members. The Messaging Service consists of two services that allow clients

to send and receive messages correctly, as represented in Figure 3.1:

Group

Client n

User 1

Authentication
Service

Delivery 
Service

Client 0

User 0

Client 1

Figure 3.1: The general structure of a Messaging Service.

• an Authentication Service, shortened as AS, which is responsible

of maintaining user identities and to manage the authentication, ap-

proving or rejecting user access to the service. It is also responsible of

issuing credentials to new users and it could provide other services like

user discovery;

• a Delivery Service, shortened as DS, which is responsible to receive

and distribute messages to the group members. In group conversations,

DS may be responsible of broadcasting messages to all members of the

group. It also stores and delivers initial public keys that are required

by the clients to proceed with the establishment process of the group

secret key.

Both services may be maintained by the same entity or not. They are

logically independent: users may use a Delivery Service with an identity

issued by a third-party Authentication Service, like a Single Sign-On service.

A typical scenario of a messaging service may be the following:
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1. Alice, Bob and Charlie create three different accounts in a Messaging

Service, obtaining credentials from the Authentication Service;

2. Alice, Bob and Charlie authenticate to the Delivery Service and store

some initial keying material, which can be used to send encrypted mes-

sages for the first time. Keying material is authenticated with their

long term credentials;

3. when Alice wants to send a message in the conversation, she contacts

the Delivery Service and looks up their initial keying material. These

keys are then used to create a new set of keys that she can use to

send encrypted messages to Bob and Charlie. In the end, she sends

encrypted messages to the DS, which forwards them to the recipients;

4. Bob and/or Charlie respond to Alice’s message. Their Update messages

trigger a new key derivation that allows the shared group key to be up-

dated. This is a required step, in order to guarantee Post-Compromise

Security.

Definitions

As we can see from Figure 3.1, a group is basically a set of two or more

users called members who can interact with the Messaging Service using one

or more clients.

A client is an end-user device designed to access a conversation through

an underlying platform, like web, desktop or mobile. Each client owns one

or more long-term identity key pairs that uniquely define their identities to

other clients in a group. Clients are able to create a group by inviting other

users, add or remove users from an existing group, join or leave groups, send

and receive messages from/to other members in a group.

A group is the set of clients that knows the shared group secret established

during the group key establishment. Multiple clients belonging to a user can

be grouped together, appearing as one virtual client to the rest of the group.

In MLS there is no single ”administrator” of a group: any client can add

other clients to a conversation. Restrictions can be enforced with access

control at the application layer.
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3.1.2 Authentication Service

The Authentication Service provides a map between user identities and

long-term identity keys. As mentioned in Chapter 1.1.1, a user identity can

be identified in several ways, like email address, username, phone number, or

a unique identifier. The Authentication Service has two main responsibilities:

it is the certification authority of the Messaging Service, which signs some

credentials that link an identity to a key. It is also the directory server that

provides keys for a given identity. On a security point of view, the connec-

tion with the Authentication Service might be secured through a transport

security protocol like TLS.

The Authentication Service has a great responsibility in ensuring the

authenticity of an identity. In fact, a malicious AS could impersonate any

user of the system. To avoid that, it is possible to publish the binding between

identities and keys in a public log, such as Key Transparency. While this is

not required by MLS, it is mandatory to avoid malicious attacks.

Key Transparency

Key Transparency is an open source library provided by Google [16]. It

is an application of a public log to help clients to build trust among them.

This happens by providing a public audit record of all changes happened

to data, including all the public keys of the actual recipients associated to

an account, the times an account was updated and who has updated it.

Everything happens preserving privacy.

3.1.3 Delivery Service

As with the Authentication Service, the Delivery Service also has multiple

responsibilities within a Messaging Service. It is the directory service for the

initial keys of the clients, allowing clients to establish a shared key and send

encrypted messages to another client, even if it is offline. Delivery Service is

also responsible of routing messages between clients and broadcasting them

to multiple clients.
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Key handling

Initial cryptographic keys are authenticated using the key of the client

and stored within the Delivery Service. These keys will be used in the next

steps to establish the shared group secret. Since a user may have multiple

clients, each with its own keying material, there might be multiple entries

stored by each user. Delivery Service is also responsible for allowing users to

manage their initial keys.

When a client wants to create a group and send an initial message, it

retrieves the initial keys from the Delivery Service, verifies them using the

identity key, and creates the group secret that can be used for message en-

cryption.

Content delivery

The architecture of MLS assumes that the Delivery Service provides:

• reliable delivery: a message sent to the Delivery Service should be

delivered to all clients, even if they are not currently available for de-

livery;

• in-order delivery: messages must be delivered in the same order as

they are received from a given client, and approximately in the same

order in which they are sent by clients - this might happen because

multiple clients can send messages at the same time;

• consistent ordering: the Delivery Service must ensure that all clients

have the same message ordering of operations that are relevant for

cryptography, while MLS provides causal consistency of the messages

for each sender. Otherwise, it might cause cryptographic errors.

Delivery Service may provide some kind of ordering information to ensure

that messages are delivered in the correct order. The protocol itself can verify

these properties by detecting inconsistencies in the order of messages, but it

does not provide mechanisms to recover from this situation.

Some forms of misbehavior in the Delivery Service could be possible and

difficult to detect. Without other side information, clients may not distin-

guish a Denial of Service attack.
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Membership

MLS is designed so that neither the Delivery Service nor the Authenti-

cation Service know which clients are inside which group. They still might

learn this information in different ways under a server-side fan-out model,

like traffic analysis or server-stored lists. In the first case, it might be pos-

sible to analyze which client has sent the same message to different clients.

In the latter, a group membership list could be stored in a server within the

Messaging Service.

In addition, since one of the major requirements of MLS is to work asyn-

chronously with online and offline clients, clients may still be holding old

keys. This is a problem with two other major constraints, Forward Secrecy

and Post-Compromise Security, because they rely on deletion and replace-

ment of keys. Right now, MLS does not provide any specification to solve

this problem, but systems that will implement the specification can enforce

some mechanism for doing so.

3.2 Requirements

As mentioned before, MLS is a group messaging protocol designed to

scale easily, from a group involving two up to approximately 50.000 clients,

hence maintaining good performance and safety for the users.

3.2.1 Functional requirements

Functional requirements include all the features needed in an MLS appli-

cation in order to exchange messages consistently. They are:

Asynchronous usage

All the operations made by clients in a group conversation, including

updating keys, adding or removing members, sending messages, should hap-

pen asynchronously, assuming that no other client is online simultaneously.

Clients do not wait for another reply from a user. The underlying transport

layer has to support asynchronous and reliable message delivery.
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Recovery after state loss

Participants in a group conversation whose local state is lost or corrupted

can reinitialize their state and continue to participate in the conversation

without being removed from the group.

Support for multiple devices

Users should be able to use multiple devices within the same Messaging

Service. New clients are added to a conversation using a previously shared

key secrets or a new key. They will not gain access to the previous history

of that conversation: history recovery is not allowed by MLS, but may be

implemented outside of the scope of this protocol.

Two alternatives regarding the management of devices are currently being

analyzed. The first one is treating every device as one participant occupying

a leaf in the tree, and then logically grouped as one member by the Mes-

saging Service. The second one is treating every member as one participant

occupying a leaf, pairing virtual devices to the member in some other way.

Extensibility

Messages not affecting the group state can carry an arbitrary payload in

any format (e.g. plaintext, JSON, binary, etc.) that can be consumed among

group members.

Privacy

Metadata might be subject to traffic analysis, especially if unprotected.

The protocol aims to reduce the metadata footprint on the server side. DS

persists just the data needed for message delivery, avoiding to carry any

personal information or other sensitive metadata. A Messaging Service that

controls both Authentication Service and Delivery Service cannot correlate

the delivered messages to the initial public keys.
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Federation

MLS aims to be compatible with federated environments: multiple imple-

mentations can interoperate to form federated systems, if they use compatible

message encodings. Federation is an interesting topic currently under analy-

sis by the MLS Working Group and treated in the MLS Federation document

[3] of the specifications.

Future compatibility

Multiple versions of the protocol should be able to coexist and cooperate

in the future. MLS offers a version negotiation mechanism that prevents

version downgrade attacks where an attacker would actively rewrite messages

with a lower protocol version than the one supported by the endpoints. When

multiple versions are available, negotiation guarantees that the version agreed

upon will be the highest version supported by the group. Negotiation is

usually performed during group creation by fetching the UserInitKeys and

checking the highest version number.

3.2.2 Security requirements

Security requirements include everything needed to ensure secrecy, au-

thentication and security of communication within a conversation. These

are:

Connections between client and servers

The protocol assumes that all transport connections are secured through

a security protocol in the transport layer, such as TLS. However, intrinsic

safety of MLS is still guaranteed in case the transport layer gets compromised.

Message secrecy and authentication

MLS provides secrecy, integrity and authentication for all messages. Se-

crecy means that a message can only be read by the participants of the group

conversation where the message is sent, even in the context of an active ad-

versary. Message integrity and authentication mean that clients can only
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accept messages if sent by a group member from a particular client, refusing

to accept messages sent as a different client.

Furthermore, Authentication Service and Delivery Service cannot read

messages sent between members of a group, because they are not part of the

group. MLS provides optional protections in order to avoid traffic analysis,

like messages padding. This way, all ciphertexts are of a standard length,

reducing the ability of adversaries to understand the length of messages.

Message content can be deniable if the signature keys are exchanged over a

deniable channel prior to signing messages.

Forward Secrecy and Post-Compromise Security

Forward Secrecy and Post-Compromised Security, as already mentioned

and explained, are two of the security requirements provided by MLS.

Message encryption keys are derived via a hash ratchet, which provides

a form of Forward Secrecy: learning a message key does not reveal previous

message or root keys.

Post-compromise security is provided by Update operations, in which a

new root key is generated from the latest ratcheting tree. If the adversary

cannot derive the updated root key after an Update operation, it cannot

compute any derived secrets. Keys are partially generated from the Update

message itself, as explained in Chapter 4.8.

Membership changes

Membership of a group in MLS is managed through agreement. This

means that all group members have to agree on the list of members. All

members are informed about addition or removal of other members. Once a

client is part of a group, the set of devices controlled by the user can only be

altered by an authorized member of the group. The authorization is managed

by the application, as well as Access Control Lists that allows addition or

removal of members to certain members. Members who are removed from

a group do not have particular privileges: compromise of a former group

participant does not affect the security of the messages sent after the removal,

but might affect previous messages if group secrets have not been deleted.
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Security of attachments

Security properties expected for attachments are similar to the ones ex-

pected from messages, except that the download time for attachments might

be way longer than that of messages. This means that, in the same way,

lifetime of cryptographic keys is higher than for messages, thus slightly weak-

ening the Post-Compromise Security guarantees for attachments.

Non-repudiation vs deniability

MLS provides strong authentication within a group. This means that a

group member cannot impersonate other members and send messages with

another identity. Furthermore, recipients are able to prove that a message

was sent by a given client, otherwise the user can report an abuse to the

Messaging Service. This verification is usually provided by a third party

(non-repudiation), but it should also be possible to operate in a deniable

mode where a proof is not possible. How to supply this is right now an open

issue on the protocol side.

3.3 Security considerations

MLS assumes that the attacker has a complete control of the network.

The protocol provides the security services in front of such attackers. These

guarantees have to degrade in presence of compromise of the transport secu-

rity links and/or clients and elements of the messaging system.

Delivery service compromise

MLS provides strong guarantees in case the Delivery Service gets com-

promised. Even if totally compromised, it should not be able to:

• read messages;

• inject messages that will be acceptable to legitimate clients;

• undetectably remove, reorder or replay messages.
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The Delivery Service can mount DoS attacks where it can refuse to for-

ward any messages or specific messages. DoS are partially detectable by

clients without an out-of-band channel. The Delivery Service could provide

stale keys as initial keys to the client. This does not lead to compromise of

the message stream, but it can attack forward security. The solution is to

set an expiration to the initial keys.

Authentication Service compromise

A compromised Authentication Service could provide incorrect or ad-

versarial identities to clients. This could be mitigated with some kind of

transparency/logging mechanism.

Client compromise

MLS provides limited protection against compromised clients. In that

case, an attacker is able to decrypt messages for groups which the client is a

member of and send messages impersonating the compromised client, unless

the client updates its keying material. Secrecy is guaranteed in the past and

in the future by Forward Secrecy and Post-Compromise Security, already

explained in Chapter 2.1.1.

In addition, a client cannot send a message to a group which appears to

be from another client with a different identity. Devices from the same user

that share keying material will be able to impersonate another device.





Chapter 4

Messaging Layer Security

Protocol

The protocol document [2] shows how MLS achieves the architectural

specification expressed before. We have seen two main cryptographic con-

straints of the protocol, Forward Secrecy and Post-Compromise Security. In

this section, we will see how they are guaranteed in MLS and the way all

requirements take shape. This protocol part is based on the draft version 05.

4.1 The basics of MLS

MLS is based on the work brought on Asynchronous Ratcheting Trees

already discussed and explained in [4]. ART has been replaced by TreeKEM

[15], a more efficient solution that better handles concurrent changes and

tree scaling. Double Ratchet is not efficient for use with bigger groups over

networks with low bandwidth.

In fact, for groups with two or more clients, a common strategy is to

broadcast symmetric sender keys over shared symmetric channels. Then,

each client can send messages in the group with their own sender key. While

this can provide Forward Secrecy, it makes it difficult to achieve Post-Compromise

Security. An adversary who learns a sender key could potentially eavesdrop

messages sent from a member. Generating new sender keys is a solution, but

it requires a high computation cost that scales linearly with the group size.

33
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The protocol expects the Messaging Service to provide a long term iden-

tity key provider - the Authentication Service, a broadcast channel for each

group that will relay messages to all clients, and a directory where clients can

publish and get initial keys. The information stored by each client includes

both private and public data, and it is called state.

The protocol describes four major operations - that are the main opera-

tions for group chats:

• initialization;

• adding a member;

• updating member’s secret;

• removing a member.

4.1.1 Initialization and member addition

An initial state is set up by the group creator with the Init message and it

is based on information pre-published by clients inside the directory. When

exchanging messages, clients produce new shared states that are linked to

the predecessors, forming a Direct Acyclic Graph (DAG).

A

UserInitKeyA

B C Directory Group
Channel

UserInitKeyB 

UserInitKeyC

Figure 4.1: Pre-initializing phase: each client publishes a UserInitKey inside

the directory.

As we can see from Figure 4.1, before the initialization of a group, each

client publish its UserInitKey inside the directory of the Messaging Service.
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A B C Directory Group
Channel

UserInitKeyB, UserInitKeyC

state.init()

Add(A->AB)

state.join()

Add(AB->ABC)

state.join()

state.add(C)

Welcome(C) state.init()

(1)

(2)

(3)

Welcome(B)

state.add(B)

state.add(C)

state.init()

Figure 4.2: Initialization of a group conversation in MLS.

Any client A who wants to create a group with other clients B and C,

needs to download the UserInitKeys of both clients from the directory (1).

After that, it creates an empty state within itself and uses the UserInitKeys

to compute the Add and Welcome messages for B and C. Add messages

are used to indicate that a new user has been added to the group, while

Welcome messages are intended to inform the new user that they are added

to the group and can start sending messages (2). The procedure is repeated

for every new group member (3) and is graphically described in Figure 4.2.

Clients cannot get back in time before being added to the group, because

new secrets are generated at every new epoch.

4.1.2 Periodic updates

In order to provide Forward Secrecy and Post-Compromise Security, each

member periodically updates their leaf secret, which represents a contribution
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to the group secret.

Any member willing to update their secret can do so by generating a new

leaf secret and send an Update message, as we can see from Figure 4.3. Once

all members have processed the message, the group secrets will be unknown

to attackers. The decision about the refresh interval for updates are up to

the application.

A B Z Directory Group
Channel

Update(A)

state.update(A)

state.update(A)

state.update(A) Update(A)

...

Figure 4.3: Periodic update of secret keys.

4.1.3 Removing a member

Members are removed in a similar way, as illustrated in Figure 4.4. Any

member can generate a Remove message regarding another user (e.g. user A

who wants to remove user B) that can be consumed from other participants -

except by the removed user - to update their internal state. This will trigger

an update of the secrets that will not be delivered to the removed user, so

they will not be able to send new messages to the group.

4.2 The logic behind MLS: Ratchet Trees

MLS makes use of Ratchet Trees [4] to derive shared secrets between

multiple clients. Ratchet Trees are left-balanced binary trees: this means

that every node of the tree except leaves has two children - left and right. In
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A B Z Directory Group
Channel

Remove(B)

state.delete(B)

state.delete(B) Remove(B)

...

Figure 4.4: Removing a member from a group.

addition to the peculiarities of this type of trees, Ratchet Trees inherit all

the relational properties of a normal tree.

A tree can have multiple subtrees, that is, a part of the tree given by the

descendants of a node, which becomes the head of the subtree. The size of a

tree is the number of leaf nodes it contains.

A tree can be considered left-balanced if, for every parent, the subtree

is fully balanced or the largest full subtree is the one positioned on the left

side. This means that the left subtree is always the one that fills before. A

tree is fully balanced when its size is a power of two and both right and left

subtrees have the same size.

The direct path of a node is the concatenation of the node with the direct

path of its parent. The copath is the list of siblings of a node in its direct

path. The frontier is the list of heads of the maximal full subtrees of the

trees, ordered from left to right.

Each node has a node index, starting at zero and running from left to

right, as we can see from Figure 4.5. Since protocol messages only need to

refer to the leaves of the tree, they are indexed with a proper index called

leaf index, always numbered from left to right. Given this numbering, leaf

indices are always half of the respective node index, and leaf nodes always

have an even node index.
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A B C D E F G

H I J

K L

M

0 1 2 3 4 5 6 7 8 9 10 11 12 Node Indices

Leaf Indices0 1 2 3 4 5 6

Figure 4.5: A left-balanced tree, with node and leaf indices. Direct path is

C, I,K and is marked with black nodes, copath is H,D,L and is marked in

gray and frontier is K,L,G and is marked with a red, bolder line on involved

nodes.

4.2.1 Ratchet Tree nodes

Ratchet Trees are used to generate shared group secrets. A particular

instance of a Ratchet Tree is based on these cryptographic primitives:

• a Hybrid Public Key Encryption (HPKE) ciphersuite, which specifies a

Key Encapsulation Method (KEM), an AEAD encryption scheme, and

a hash function;

• a Derive-Key-Pair function that produces an asymmetric key pair from

a symmetric node secret.

Each node of a ratchet tree contains up to three values:

• a private key, within direct paths;

• a public key;

• a credential, in leaf nodes.
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4.2.2 Blank nodes and resolution

A Ratchet Tree node may be blank: this means that no value is present in

that node. The resolution of that node is an ordered list of non-blank nodes

that cover all non-blank descendants. Nodes are ordered according to their

indices. The three possible cases of resolution of a node X are:

• non-blank node: res(X) = {X};

• blank leaf node: res(X) = {};

• blank intermediate node: res(X) = {res(left(X)), res(right(X))}

A C D

CD

0 1 2 3 4 5 6

Figure 4.6: A binary tree with some blank nodes (1, 2 and 3).

In the example shown in Figure 4.6, we can see that:

• res(5) = {C,D}

• res(2) = {}

• res(3) = {A,CD}

Every node, including blank nodes, contains a hash that summarizes the

content of the subtree below that node.
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4.2.3 View of a Ratchet Tree

MLS assumes that each participant has a complete and up-to-date view

of the public state of the group ratchet tree, including public keys and cre-

dentials of the leaf nodes. Instead, the secret state is known only to the leaf

nodes, which represent the members of the group. This way, no participant

in a group has full knowledge of the secret state of the tree - including private

keys.

MLS maintains the member views of the tree in a way to maintain the

tree invariant. The private key for a node is known to a member of the group

only if their leaf is a descendant or equal to the node. This way, each member

knows the private keys only for nodes in its direct path.

4.2.4 Ratchet Tree updates

The contents of a parent node are based on the latest updated child and

are computed from one of its children:

Listing 4.1: Contents of a parent node computed from childrens

path_secret[n] = HKDF-Expand-Label(path_secret[n-1], "path", "",

Hash.Length)

node_secret[n] = HKDF-Expand-Label(path_secret[n], "node", "", Hash

.Length)

node_priv[n], node_pub[n] = Derive-Key-Pair(node_secret[n])

As we can see from Figure 4.7, if participants join a group with leaf

secrets A, B, C and D in this order, the resulting tree will have KDF (D)

as parent of C and D and, in turn, its parent will be KDF (KDF (D)) (a).

If the second participant changes its leaf secret to X, the parent secrets will

change according to this update (b).

4.2.5 Tree view synchronization

Members of a group have to keep their view of the tree synchronized and

up to date. When adding or removing clients, an handshake message con-

taining public values for intermediate nodes in the direct path is transmitted.
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A B C D

KDF(B) KDF(D)

KDF(KDF(D))

A X C D

KDF(X) KDF(D)

KDF(KDF(X))

(a) (b)

Figure 4.7: An example of leaf secrets update.

Other members can use these public values to update their view of the tree.

The member that proposes an update broadcasts a set of values along the

direct path of a leaf, as well as the root. These values are the public key of

the node and zero or more encrypted copies of the path secret corresponding

to the node. Other members can use these nodes of the direct path to update

their own view of the tree.

The path secret value is encrypted for the subtree corresponding to the

non-updated child of the parent. There is one encrypted path secret for each

public key in the resolution of the non-updated child.

The recipient of an update processes it through the following steps:

• Compute the updated path secrets

1. identify a node in the direct path for which the local member is

in the subtree of the non-updated child;

2. identify a node in the resolution of the copath node for which this

node has a private key;

3. decrypt the path secret for the parent of the copath node using

the private key from the resolution node;

4. derive secret values for ancestors ofthat node using the algorithm

described above;

5. recipient should verify that the received public keys agree with

the ones derived from the new node secret values;
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• Merge the updated path secrets into the tree

1. replace the public keys for nodes on the direct path with the re-

ceived public keys;

2. for nodes where an updated secret was computed in step 1, replace

the secret value for the node with the updated value.

As we can see from Figure 4.7, giving pk(X) the public key of X and

E(K,S) the public-key encryption with public key of K of the secret value

S, when an update is made along the direct path B − E −G, the following

values will be transmitted by the sender:

• for pk(G), ciphertexts E(pk(C), G), E(pk(D), G)

• for pk(E), ciphertext E(pk(A), E)

• for pk(B): {}

4.3 Ciphersuites

MLS sessions use a single ciphersuite that specifies the following primi-

tives:

• a hash function;

• a Diffie-Hellman finite-field group or elliptic curve;

• an Authenticated Encryption with Associated Data (AEAD) encryption

algorithm, as described in [10];

• a Derive-Key-Pair (DKP) algorithm that maps octets with the same

length as the output of the hash function to key pairs for the asym-

metric encryption scheme.

Public keys are opaque values in a format defined by the ciphersuite. The

two types used are HPKEPublicKey and SignaturePublicKey.

Implementations may use one of the two ciphersuites supported by MLS

and described below. More ciphersuites will be supported in the future.

Ciphersuites and signature schemes are defined as follow:
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Listing 4.2: Definition of SignatureScheme and CipherSuite

1 enum {

2 ecdsa_secp256r1_sha256(0x0403),

3 ed25519(0x0807),

4 (0xFFFF)

5 } SignatureScheme;

6

7 enum {

8 P256_SHA256_AES128GCM(0x0000),

9 X25519_SHA256_AES128GCM(0x0001),

10 (0xFFFF)

11 } CipherSuite;

4.3.1 Curve25519, SHA-256 and AES-128-GCM

This ciphersuite uses Curve25519 as Diffie-Hellman group, SHA-256 as

hash function and AES-128-GCM as AEAD algorithm. Given an octet X,

the private key produced by the DKP operation is SHA-256(X). The public

key is X25519(SHA-256(X), 9).

Curve25519 is an elliptic curve offering 128 bits of security. It is designed

for use with Diffie-Hellman Elliptic Curve key agreement scheme (ECDH)

and it is one of the fastest elliptical curve cryptographies not covered by

patents. The DH function name is X25519. The curve used by Curve25519

is y2 = x3 + 486662x2 + x, a Montgomery curve, over the prime field defined

by 2255 − 19 and using x = 9 as base point.

SHA-256 (Secure Hash Algorithm-256) is a revision of the SHA-1 algo-

rithm that was originally developed by the National Institute of Standards

and Technology (NIST) in 1993. While the algorithm is pretty similar to

SHA-1, this revision mainly differs for the message digest size - 256 bits

instead of 160 - and the number of steps needed - 64 instead of 80. [9]

AES-128-GCM is a cipher block algorithm developed by Vincent Rijmen

and Joan Daemen, adopted by NIST and intended to replace the old DES

and Triple DES algorithms. It is based on a block length of 128 bits and a key

length of 128, 192 or 256 bits. It is combined with GCM, the Galois/Counter



44 4. Messaging Layer Security Protocol

Figure 4.8: Curve25519 elliptic curve

Mode of Operation for cryptographic block ciphers.

4.3.2 P-256, SHA-256 and AES-128-GCM

This ciphersuite differs from the previous one for the usage of P-256 as

Diffie-Hellman group. Given an octet X, the private key derived by DKP is

SHA-256(X) interpreted as a big-endian integer. The public key is the result

of multiplying the P-256 base point by this integer.

P-256 is a widely used curve offering 128 bits of security developed by

NIST. The curve is described by the function y2 = x3−3x+4105836372515214

2129326129780047268409114441015993725554835256314039467401291, with

modulo p = 2256 − 2224 + 2192 + 296 − 1. According to [23], P-256 is not

considered safe, due to some lacks on the elliptic-curve discrete logarithm

problem (ECDLP). ECDLP is the problem of finding an ECC user’s secret

key, given the user’s public key.

4.4 Credentials

A group member authenticates the identities of other participants with

credentials issued by an authentication system. Any credential must express:
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• the public key of a signature key pair;

• the identity of the private key holder;

• the signature scheme used by the holder to sign MLS messages;

• some kind of information that allows a party to verify identities (op-

tional).

Listing 4.3: Definition of CredentialType, BasicCredential and Credential

types.

1 enum {

2 basic(0),

3 x509(1),

4 (255)

5 } CredentialType;

6

7 struct {

8 opaque identity<0..2^16-1>;

9 SignatureScheme algorithm;

10 SignaturePublicKey public_key;

11 } BasicCredential;

12

13 struct {

14 CredentialType credential_type;

15 select (credential_type) {

16 case basic:

17 BasicCredential;

18 case x509:

19 opaque cert_data<1..2^24-1>;

20 };

21 } Credential;
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4.5 Tree hashes

Group members can agree on the cryptographic state of the group by

generating a hash value that represents the contents of the group ratchet

tree and the member’s credentials. The hash of the tree is the hash of its

root node, defined recursively from the leaves. The hash of a leaf is the hash

of the LeafNodeHashInput object. At the same time, the hash of a parent

node including the root, is the hash of a ParentNodeHashInput object.

Listing 4.4: Definition of LeafNodeInfo, LeafNodeHashInput and ParentN-

odeHashInput types.

1 struct {

2 HPKEPublicKey public_key;

3 Credential credential;

4 } LeafNodeInfo;

5

6 struct {

7 uint8 hash_type = 0;

8 optional<LeafNodeInfo> info;

9 } LeafNodeHashInput;

10

11 struct {

12 uint8 hash_type = 1;

13 optional<HPKEPublicKey> public_key;

14 opaque left_hash<0..255>;

15 opaque right_hash<0..255>;

16 } ParentNodeHashInput

Within LeafNodeHashInput, the public key and credential fields rep-

resent the leaf public key and the credential for the member of that leaf.

info is null when the leaf is blank.

For ParentNodeHashInput, left hash and right hash fields hold the

hashes for the left and right children. public key holds the hash of the

public key stored in the node, which is null if the node is blank.
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4.6 Group state

Each member of the group maintains a representation of the state of the

group, that is updated after any operation made by other group participants.

The state is composed by these fields:

• group id: an unique identifier of the group. Once instantiated, it never

changes;

• epoch: the current version of the group key. It is incremented by one

for each GroupOperation processed;

• tree hash: contains a commitment to the contents of the group ratchet

tree and the credentials for the group members, as expressed in Chapter

4.5. The hash is updated to represent the current tree and credentials;

• transcript hash: contains the list of GroupOperation that led to this

state. It is updated as follows:

transcript hash [n] = Hash(transcript hash [n-1] ||

operation)

When a new one-member group is created, this field is set to an all-zero

vector of length equal to Hash.length.

4.7 Direct paths

Each MLS message needs to transmit node values along the direct path

of a leaf. The path contains a public key for the leaf node, and a public

key and encrypted secret value for intermediate nodes in the path. Path is

ordered from the leaf to the root.

Listing 4.5: Definition of HPKECiphertext, RatchetNode and DirectPath

types.

1 struct {

2 HPKEPublicKey ephemeral_key;

3 opaque ciphertext<0..2^16-1>;

4 } HPKECiphertext;
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5

6 struct {

7 HPKEPublicKey public_key;

8 HPKECiphertext encrypted_path_secrets<0..2^16-1>;

9 } DirectPathNode;

10

11 struct {

12 DirectPathNode nodes<0..2^16-1>;

13 } DirectPath;

The length of the secrets is zero for the first node in the path, and equal to

the length of the resolution of the corresponding copath node for the remain-

ing elements. HPKECiphertext values are computed according to Hybrid

Public Key Encryption. [11]

Decryption is performed in the corresponding way, using the private key of

the resolution node and the ephemeral public key transmitted in the message.

4.8 Key schedule

Group keys are derived using HMAC-based Extract-and-Expand Key Deriva-

tion Function (HKDF) [12]. The hash function used by HKDF is the cipher-

suite hash algorithm. Figure 4.9 explains the functioning of the key schedule.

Each Epoch Secret is combined by the Extract function of HKDF, which

takes the Update Secret of the current epoch as argument and it is salted

using the Init Secret from the previous epoch.

The Application Secret, the Confirmation Key and the next Init Secret

take the secret argument from the incoming arrow of the diagram, along with

the GroupState of the current epoch, to derive new epoch secrets.

4.8.1 Encryption keys

MLS encrypts three types of information: metadata about the sender,

handshake messages and application messages. Metadata used to lookup the

key for encryption is encrypted under AEAD with a random nonce and the

sender data key derived from the sender data secret:
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Init Secret [n-1]

Epoch Secret [n]Update Secret [n]

Application Secret [n]

Confirmation Key [n]

Init Secret [n]

Sender Data Secret [n]

Handshake Secret [n]

Figure 4.9: Functioning of key schedule

1 sender_data_key =

2 HKDF-Expand-Label(sender_data_secret, "sd key", "", key_length)

Handshake messages are encrypted using a key and a nonce derived from

the handshake secret for a specific sender, in order to prevent multiple

senders to perform this way:

1 handshake_nonce_[sender] =

2 HKDF-Expand-Label(handshake_secret, "hs nonce", [sender],

nonce_length)

3

4 handshake_key_[sender] =

5 HKDF-Expand-Label(handshake_secret, "hs key", [sender], key_length)

For application messages, a chain of keys is derived for each sender in a

similar way. This allows Forward Secrecy on these messages within and out

of an epoch. A step of this chain is called generation.
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Application Secret
Sender [n-1]

Nonce [n-1]

Key [n-1]

Application Secret
Sender [n]

Application Secret

Application Sender

Application Secret
Sender [0]

...

Figure 4.10: Application Key Schedule

The sender values are the indices of the member that will use the key to

send the message.

Usage of secrets

In order to provide Forward Secrecy at the level of Application messages,

senders must use a given secret once and increment the generation of their

secret. This way, an attacker that gets an Application Secret at epoch n+ 1

will not be able to derive the Application Secret at epoch n, nor the associated

AEAD key and nonce.

Receivers must delete an Application Secret once it has been used to

derive the AEAD key and nonce, as well as the next Application Secret.
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Receivers may keep the AEAD key and nonce for a reasonable period, but

they must delete keys and nonces once they have been used to successfully

decrypt a message.

4.9 Initialization keys

MLS provides the possibility for users to publish initialization keys that

provide some information about the user. This is useful as it allows users to

add clients asynchronously to a conversation, even if they are offline. This

operation is performed using the UserInitKey messages.

UserInitKeys specify the ciphersuites supported by the client and pro-

vide the public keys that can be used for key derivation and signing. The

identity key of the client should be stable throughout the lifetime of the

group. Initialization keys should be used only for a limited number of times

- potentially once. These keys also contain an identifier chosen by the client,

which the client must assure that uniquely identifies a given UserInitKey

object among the set of keys created by the client.

The init keys array has the same length of the cipher suites array.

Each entry inside init keys array must be a public key for the asymmet-

ric encryption scheme defined in the cipher suites array and used in the

HPKE construction for TreeKEM. The UserInitKey structure is then signed

using the identity key of the client. A structure using an invalid signature

is considered malformed. The signature process includes all the fields except

for the signature field.

Listing 4.6: Definition of UserInitKey

1 uint8 ProtocolVersion;

2

3 struct {

4 opaque user_init_key_id<0..255>;

5 ProtocolVersion supported_versions<0..255>;

6 CipherSuite cipher_suites<0..255>;

7 HPKEPublicKey init_keys<1..2^16-1>;

8 Credential credential;

9 opaque signature<0..2^16-1>;
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10 } UserInitKey;

4.10 Message framing

Handshake and application messages share the same framing structure

that provides encryption, in order to assure confidentiality, and signing to

authenticate the sender within the group.

The structures involved are MLSPlaintext and MLSCiphertext. The first

one is a plaintext message that is only signed, while the latter is both signed

and encrypted, with protection on the content of the message and related

metadata. MLSCiphertext should be used for application and handshake

messages; in case the delivery service needs to examine handshake messages,

they might be transmitted as MLSPlaintext.

Listing 4.7: Definition of ContentType enumerator and MLSPlaintext and

MLSCiphertext objects

1 enum {

2 invalid(0),

3 handshake(1),

4 application(2),

5 (255)

6 } ContentType;

7

8 struct {

9 opaque group_id<0..255>;

10 uint32 epoch;

11 uint32 sender;

12 ContentType content_type;

13

14 select (MLSPlaintext.content_type) {

15 case handshake:

16 GroupOperation operation;

17

18 case application:

19 opaque application_data<0..2^32-1>;
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20 }

21

22 opaque signature<0..2^16-1>;

23 } MLSPlaintext;

24

25 struct {

26 opaque group_id<0..255>;

27 uint32 epoch;

28 ContentType content_type;

29 opaque sender_data_nonce<0..255>;

30 opaque encrypted_sender_data<0..255>;

31 opaque ciphertext<0..2^32-1>;

32 } MLSCiphertext;

The signature can be computed this way:

• gathering the required metadata: group identifier, epoch, content type

(copied from the MLSPlaintext object), nonce, sender index, and key

generation;

• signing the protected content and metadata;

• encrypting the sender information, using the random nonce and the

key derived by the sender data secret;

• encrypting the content through a content encryption key.

The ciphertext field of MLSCiphertext is populated during the content

encryption process, while the encrypted sender data is populated during

the content metadata step. Decryption is made in a reverse manner, so first

it decrypts metadata, the message, and then verifies the content signature.

4.10.1 Metadata encryption

The sender data used for content encryption is encrypted through AEAD

using the sender data nonce and sender data key fields of MLSCiphertext,

and encoded into the MLSSenderData object. Additional authenticated data

(AAD) are handled through MLSCiphertextSenderDataAAD. Both structures



54 4. Messaging Layer Security Protocol

are described in Listing 4.8. The Delivery Service cannot detect the sender

of the message, since sender is encrypted inside MLSSenderData.

When parsing sender data during decryption, the recipients have to verify

that the sender field is an occupied leaf in the ratchet tree. To do so, the

index value must be lesser than the number of leaves of the tree.

Listing 4.8: Definition of MLSSenderData and MLSCiphertextSender-

DataAAD objects

1 struct {

2 uint32 sender;

3 uint32 generation;

4 } MLSSenderData;

5

6 struct {

7 opaque group_id<0..255>;

8 uint32 epoch;

9 ContentType content_type;

10 opaque sender_data_nonce<0..255>;

11 } MLSCiphertextSenderDataAAD;

4.10.2 Content signing and encryption

MLSPlaintext objects are signed using the signing private key corre-

sponding to the credentials of the sender at the leaf in the tree. The signature

includes metadata and message content without the signature field.

The ciphertext field of the MLSCiphertext object is produced by sup-

plying the inputs specified in Listing 4.9 to the AEAD function provided by

the ciphersuite in use. The plaintext input contains content and signature of

the MLSPlaintext object, with an optional padding.

Keys and nonces vary depending on the content type of the message. The

handshake key can be chosen from the application key chain for the current

epoch, according to the message type.

Additional Authenticated Data (AAD) used during encryption include

the value specified inside MLSCiphertextContentAAD. They are used to iden-

tify the key and nonce.
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The ciphertext of MLSCiphertext is produced by supplying AAD to

the AEAD function.

Listing 4.9: Definition of MLSCiphertextContent and MLSCiphertextCon-

tentAAD objects

1

2 struct {

3 opaque content[length_of_content];

4 uint8 signature[MLSInnerPlaintext.sig_len];

5 uint16 sig_len;

6 uint8 marker = 1;

7 uint8 zero_padding[length_of_padding];

8 } MLSCiphertextContent;

9

10 struct {

11 opaque group_id<0..255>;

12 uint32 epoch;

13 ContentType content_type;

14 opaque sender_data_nonce<0..255>;

15 opaque encrypted_sender_data<0..255>;

16 } MLSCiphertextContentAAD;

4.11 Handshake messages

As mentioned before, the group state will change after one of the following

four basic operations:

• group initialization;

• client addition;

• client removal;

• client update of the leaf key.

These operations are performed by broadcasting handshake messages to

the group. There is not a consolidated handshake phase to the protocol, be-
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cause these broadcast messages are exchanged throughout the entire lifetime

of the group, when a client needs to inform the whole group about changes.

Handshake messages encapsulate a GroupOperation message that per-

forms the change to the group state. The handshake is carried in a MLSPlaintext

that provides the signature of the sender, or in a MLSCiphertext if the ap-

plication wants to send it encrypted.

Listing 4.10: Definition of GroupOperationType, GroupOperation and Hand-

shake types.

1 enum {

2 init(0),

3 add(1),

4 update(2),

5 remove(3),

6 (255)

7 } GroupOperationType;

8

9 struct {

10 GroupOperationType msg_type;

11 select (GroupOperation.msg_type) {

12 case init: Init;

13 case add: Add;

14 case update: Update;

15 case remove: Remove;

16 };

17 opaque confirmation<0..255>;

18 } GroupOperation;

The general flow for processing a handshake message is as follows:

1. if the handshake is encrypted in a MLSCiphertext, decrypt it;

2. verify that the epoch field of the MLSPlaintext is equal to the epoch

of the current GroupState object;

3. verify that the signature of the MLSPlaintext is verified using the pub-

lic key from the credential stored at the leaf indicated by the sender

field;
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4. use the operation message to produce an updated and provisional

GroupState object incorporating the changes;

5. use the confirmation key for the new epoch to compute the confir-

mation MAC for this message and verify that it is the same as the

confirmation field;

6. if the above checks are successful, consider the updated GroupState as

the current state of the group.

The signature and confirmation values are computed over the tran-

script of group operations, using the transcript hash from the provisional

GroupState object:

1 GroupOperation.confirmation = HMAC(confirmation_key, GroupState.

transcript_hash)

HMAC uses the Hash algorithm for the ciphersuite in use. Sign uses the

signature algorithm indicated by the signer’s credential in the roster.

4.11.1 Init

Direct initialization messages are currently undefined in draft 04 and 05.

The actual workaround is to create a group state including only the client

that creates the group, and then add the initial members to the group. This

has a communication complexity of O(N log N), rather than O(N) of the

direct initialization.

4.11.2 Add

When adding a new member to a group, an existing member should send

a Welcome message to the new member and an Add message to the group.

Welcome message

The Welcome message specifies that the new member needs to initialize

a GroupState object that can be updated to the current state using the Add

message, encrypted to the new member using HPKE. The recipient key pair
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for the HPKE encryption is the one included in the indicated UserInitKey,

corresponding to the related ciphersuite.

Listing 4.11: Definition of RatchetNode and WelcomeInfo structures and

Welcome message.

1 struct {

2 HPKEPublicKey public_key;

3 optional<Credential> credential;

4 } RatchetNode;

5

6 struct {

7 ProtocolVersion version;

8 opaque group_id<0..255>;

9 uint32 epoch;

10 optional<HPKEPublicKey> tree<1..2^32-1>;

11 opaque transcript_hash<0..255>;

12 opaque init_secret<0..255>;

13 } WelcomeInfo;

14

15 struct {

16 opaque user_init_key_id<0..255>;

17 CipherSuite cipher_suite;

18 HPKECiphertext encrypted_welcome_info;

19 } Welcome;

When describing a tree through a list of nodes, credential for a node

must be populated only if that node is a leaf in the tree.

The init secret of the Welcome message is the output of Figure 4.9.

The new member can combine the Init secret with the Update secret trans-

mitted in the corresponding Add message to get the epoch secret in which it

is added. Prior epoch secrets are never revealed to new members.

The new member process the Add message for itself, so the Welcome

message should reflect the state of the group before the new user is added.

The Welcome message will contain a copy of the GroupState object owned

by the sender.

In a conversation with Alice and Bob, Bob can decrypt a Welcome mes-
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sage, but he does not have the cryptographic assurance that Alice is the

real sender. For each Update message, participating clients contribute to the

signing, this way authenticating the path in the tree. If the chain is included

in the Welcome message, Bob can ensure that Alice is not lying by verifying

that other members have signed the inner nodes as well.

Add message

The Add message provides the information needed by the existing group

members in order to update their GroupState with the new member:

Listing 4.12: Definition of Add message.

1 struct {

2 uint32 index;

3 UserInitKey init_key;

4 opaque welcome_info_hash<0..255>;

5 } Add;

The index field specifies where in the tree the new member should be

added: into an existing blank node, or at the right edge of the tree.

In both cases, the index i should be strictly comprised between 0 and the

size of the group (0 ≤ i ≤ n). When i = n, the node is added at the right

edge. If the index already exists (i < n) and the node is not blank, then

it means that the Add message is malformed and should be rejected by the

recipient.

The welcome info hash field contains a hash of the WelcomeInfo object.

The message is generated by requesting the UserInitKey for the user to be

added from the directory and encoding it into an Add message.

Joining a group

A client joining the group processes Welcome and Add messages by

preparing a new GroupState object based on the Welcome message, and

processing the Add message as an existing member would.

An existing member receiving an Add message verifies the signature of

the message, then updates its state as follows:
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Figure 4.11: The ratchet tree after adding the new client E to a group.

1. if index is equal to the size of the group, increment the group size and

extend tree accordingly;

2. verify the signature of the included UserInitKey. If the verification

fails, abort;

3. generate a WelcomeInfo object that describes the state prior to the

addition, and verify that the hash is the same as welcome info hash;

4. update the ratchet tree by setting all the nodes in the direct path of

the new node to blank;

5. set the leaf node at position index to a new node containing the public

key from the UserInitKey in the Add corresponding to the ciphersuite

in use, as well as the credential under which the UserInitKey was

signed.

The update secret resulting from this change is an all-zero octet string

of length Hash.length. Right after processing the Add message, the new

member should send an Update message in order to update its key. This will

help to limit the tree structure degrading into subtrees, and thus maintain

efficiency.
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4.11.3 Update

A member can send an Update message in order to update its leaf secret

and key pair. This provides Post-Compromise Security on the prior leaf

private key of the member.

Listing 4.13: Definition of Update message.

1 struct {

2 DirectPath path;

3 } Update;

The sender creates a message by generating a fresh leaf key pair and

computing the direct path in the ratchet tree. A member that receives an

Update message verifies the signature of the message, then updates its state

by updating the cached ratchet tree. This is made possible by replacing nodes

in the direct path from the updated leaf, using the information contained in

the Update message. If the tree contains blank nodes, the resolution of the

direct path will be used instead.

The update secret resulting from this change is the path secret for the

root node of the ratchet tree.

A B C D E F G H

I J K L

M N

O

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 4.12: The ratchet tree after updating the client D. Direct path is

represented in black, copath is represented in gray.

An open issue here is that, when a user is added to a group conversation,

they have to wait until each member performs an Update in order to get the
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complete knowledge of the group participants.

4.11.4 Remove

A Remove message is sent from a group member who wants to remove

one or more members from the group conversation. Remove messages are

not intended to be used when a member wants to remove themselves from

the group. In this case, when a member receives a Remove message where

the removed index is equal to the signer index, the recipient must discard

the message because it is malformed.

Listing 4.14: Definition of Remove message.

1 struct {

2 uint32 removed;

3 DirectPath path;

4 } Remove;
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Figure 4.13: The ratchet tree after removing the client D. Blank nodes are

represented with dashed outline. Copath is represented in gray.

Remove message is generated by the sender creating a fresh leaf key pair

and computing its direct path in the current ratchet tree, starting from the

removed leaf. A member that receives a Remove message verifies the signa-

ture of the message, then it updates its state as follows:

1. update the roster by setting the credential in the removed slot to null;



4. Messaging Layer Security Protocol 63

2. update the ratchet tree, replacing nodes in the direct path from the

removed leaf using the information contained in the Remove message;

3. reduce the size of the roster and the tree until the rightmost element

and leaf node are non-null;

4. update the ratchet tree by setting to blank all nodes in the direct path

of the removed leaf, together with the root node. We assume here

that there must be at least one non-null element in the tree, since any

GroupState must have the current member in the tree and self-removal

is prohibited;

5. truncate the tree, so the rightmost non-blank leaf is the last node of

the tree.

The update secret will be the path secret for the root node of the ratchet

tree in the first step.

4.12 Sequencing of state changes

Each handshake message is based on a given starting state called epoch,

represented in Figure 4.14 and indicated with the prior epoch field. Any

changes to the state made from a different state will generate incorrect re-

sults.

Alice creates group Bob joins Charlie joins Bob leaves

Epoch 1
Secret 1

Epoch 2
Secret 2

Epoch 3
Secret 3

Epoch 4
Secret 4

time

Figure 4.14: Graphical representation of epochs

Sequencing changes are not a problem as long as any handshake message

is based on the latest state of the group. However, there is the risk that two

members will generate handshake messages based on the same state. In this

case, members of a group should deconflict the simultaneous handshakes.
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MLS specifies two approaches: the Delivery Service that enforces a total

order, or a signal in the message that clients can use to break ties.

As long as handshakes cannot be merged, there is a risk of starvation:

in a busy group, a member may never be able to send handshakes because

they always lose to other members. Handling this problem depends on the

dynamics of the application.

With both approaches, implementations must update the cryptographic

state only when a valid handshake message is received. Generation of hand-

shakes must be stateless, because the endpoint does not know at that time

if the changes to the state will succeed or not.

4.12.1 Server-enforced ordering

With server-enforced ordering, the delivery service keeps a queue for every

incoming message. This way, outgoing messages are processed in the same

order. The server is entitled to resolve conflicts during race conditions and

it is trusted, since it does not know the content of the messages.

Messages should have a clear-text counter that can be checked by the

server for tie-breaking. Counter starts from zero and is incremented for

every new message. If two members send a message with the same counter,

the first one to arrive will be accepted by the server, and the second one will

be rejected. The rejected message needs to be sent again with the correct

counter.

To prevent manipulation, the integrity of the counter can be guaranteed

by including the counter in a signed message envelope.

4.12.2 Client-enforced ordering

Order enforcement can be implemented client-side by using a two step

update protocol. The first client sends a proposal to update, which is ac-

cepted only when it gets more than 50% of approval from the group. Then, it

sends the approved update. Clients that do not get their proposal accepted

will wait for the winner to send their update before retrying new proposals.

This approach seems to be safer, as it does not rely on the server. Nev-

ertheless, it is more complex and harder to implement, and it can also cause
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starvation for clients that keep failing to get their proposal accepted.

4.12.3 Merging updates

A X C D

KDF(X) KDF(D)

KDF(KDF(X))

X B Y D

KDF(X) KDF(Y)

KDF(KDF(Y))

(a) - Update from B (b) - Update from C

A X Y D

KDF(X) KDF(Y)

KDF(KDF(Y))

(c) - Final tree

Figure 4.15: Merging two simultaneous updates from B and C

It is possible to address the problem of concurrent changes by having the

recipients of the changes merge them. Since the value of intermediate nodes

is determined by its last updated child, updates can be merged by recipients

as long as the recipients agree on an order.

As previously mentioned, processing an update is made in two steps:

compute updated secrets by hashing up the tree, and update the tree with

new secret and public values. To merge an ordered list of updates, a recipient

simply performs these updates in the specified order.
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If we consider the tree represented in Figure 4.7 (a) and we suppose that

both B and C simultaneously decide to update to X and Y, then they will

send out updates as represented in Figure 4.15 (a) (b).

Assuming that the ordering agreed by the group says that the update

from B should be processed before the update from C, the other members in

the group will overwrite the root value for B with the root value from C, all

resulting in the state represented in Figure 4.15 (c).

While Handshake messages should be ordered, Update messages do not

have to be ordered.

4.13 Application messages

The handshake protocol provides an authenticated group key exchange

to clients. The Application secret provided by the Handshake key schedule is

used to derive encryption keys for the Message Protection Layer. Application

messages must be protected with the AEAD encryption scheme associated

with the ciphersuite used.

Each member maintains their own chain of Application secrets, where the

first one is derived based on a secret chained to the Epoch secret. The initial

Application secret is bound to the identity of each client, in order to avoid

collisions and allow support for decryption of reordered messages.

Subsequent secrets must be rotated for each message sent in order to pro-

vide stronger cryptographic security guarantees. Application Key Schedule

uses this rotation to generate fresh AEAD keys and nonces used to encrypt

and decrypt future Application messages.

Each change to the Group through handshakes will cause a change of the

group secret: this means that changes must be applied before encrypting new

Application messages. This is needed for confidentiality, in order to avoid

receiving messages from the former group members after leaving, being added

to or excluded from the group.
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4.13.1 Message encryption and decryption

Group members must use the AEAD algorithm associated with the nego-

tiated MLS ciphersuite, in order to encrypt and decrypt Application messages

according to the Message Framing section.

The group identifier and epoch allow a device to know which group secrets

should be used and from which Epoch secret to start computing other secrets

and keys. The sender identifier is used to derive the Application secret chain

of the member from the initial group Application secret. The application

generation field is used to determine which Application secret should be

used from the chain to compute the correct AEAD keys before performing

decryption.

Application messages should be padded to provide resistance against traf-

fic analysis techniques. This avoids additional information to be provided to

an attacker in order to guess the length of the encrypted message.

Padding should be used on messages with zero-valued bytes before AEAD

encryption. Upon decryption, the length field of plaintext is used to compute

the number of bytes to be removed from the plaintext to get the correct data.

Delayed and reordered Application messages

Each Application message contains the group identifier, the epoch and

a message counter. This way, a client can receive messages out of order.

However, if they can retrieve or recompute the correct AEAD decryption

key, they can decrypt messages.

Clients might be required to keep the AEAD key and nonce for a cer-

tain amount of time to retain the ability to decrypt delayed or out of order

messages.

4.14 Security considerations

This section describes how security goals of MLS, previously described in

the architectural part, are achieved at protocol level.
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4.14.1 Confidentiality of the group secrets

Group secrets are derived from the previous ones and the root key of

a ratcheting tree. The root key of the group ratcheting tree, and all the

values derived from it, are secret because only group members know their

leaf private key in the group.

Initial leaf keys are known only by their owner and the group creator,

because they are derived from an authenticated key exchange protocol. Sub-

sequent leaf keys are known only by their owner. Long term identity keys

must be distributed by the Authentication Service to clients in order to au-

thenticate their legitimate peers.

4.14.2 Authentication

MLS considers two forms of authentication:

Authentication with respect to the group. Group members can verify

a message coming from one member of the group. This is guaranteed

by the secrecy of the shared key derived from the ratchet trees. If all

members are honest, then the shared group key is only known to the

group members. Further guarantees about the sender of a message take

place by using AEAD or appropriate MAC with the shared key.

Authentication with respect to the sender. Group members can ver-

ify that a message was sent from a particular member of the group.

This is guaranteed by digital signatures on the messages.

4.14.3 Init key reuse

Initialization keys are intended to be used only once and then deleted.

Reuse of initial keys is not unsafe at all, but it may complicate protocol

analyses, because it is difficult to know how many times the initial key was

used.



Chapter 5

An Implementation of MLS:

Melissa

5.1 Melissa

Melissa is a proof-of-concept implementation of the Messaging Layer

Security protocol created by the Wire team. It is written in Rust and it is

based on the draft 05 version of the protocol. The development started in

September 2018 and the code is publicly available open source at https:

//github.com/wireapp/melissa. In order to stick to the changes expected

from the specification of MLS, new updates are implemented accordingly.

Melissa is released under the terms of the GNU General Public License.

5.1.1 Work brought on Melissa

My contribution to Melissa included the update of the project to adapt

it to the draft 04 and 05 versions of the protocol. These changes include:

• updating the terminology used for variables and functions;

• replacing the hash inside TreeKEM with KDF;

• removing the secret field from the tree nodes;

• adding credentials to the tree and removing the roster at the same

time;
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• converting from states to commitment using tree hashes;

• adding framing for handshake and application messages, together with

encryption of handshake messages.

5.1.2 Rust

Rust is a compiled, multi-purpose programming language focused on

memory safety and concurrency. It aims to be an efficient, safe and suit-

able language for developing concurrent software.

Rust syntax is influenced by Cyclone, a safe dialect of C, with aspects

of object-oriented features from C++ and functional features from Haskell

and OCaml. This makes Rust a procedural, functional and object-oriented

programming language.

Rust is a language whose popularity has grown in recent years, so much so

that it is considered the ”most loved programming language” by developers

since 2016 according to the Stack Overflow Developer Survey [21]. Rust is

also used as the programming language of Servo, an experimental browser

engine that inspired some of the major improvements brought by Firefox

Quantum.

5.2 The project

The project can be cloned or downloaded from the GitHub repository.

The only requirements are that Rust must be installed on the system - this

can be done via rustup, the official Rust installer available at https://

rustup.rs - and that the package manager should update the dependencies

needed by the project. This can be done by calling cargo update in the

terminal from the root folder of the project.

5.3 Project structure

The project is structured in modules, declared inside the lib.rs file to-

gether with the dependencies. Modules are public and they are implemented

https://rustup.rs
https://rustup.rs
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inside their respective files: for example, treemath module is declared inside

the treemath.rs file.

melissa

aesgcm

crypto

groupcodec keys

messages tree treemath

utils

hkdf

hpke schedule

Figure 5.1: Modules available in Melissa

5.3.1 The crypto submodule

The crypto folder is a submodule of the project that contains all the

cryptographic modules used in Melissa.

aesgcm contains the functions for using the AES-128 and AES-256 block

cipher algorithms. In fact, the three structures available here are Nonce,

Aes128Key and Aes256Key. AES keys implement the From and Drop traits -

the main abstraction construct of Rust, equivalent in some way to Java inter-

faces - respectively the converter from u8 vectors and the destructor. They

also specify functions to seal (encrypt) and open (decrypt) data. AES-128

seals and opens data by using the seal in place() and open in place()

primitives of ring. AES-256 methods are currently left unused, since the

two ciphersuites specify AES-128 as the encryption algorithm.

hpke handles the Hybrid Public Key Encryption (HPKE). A payload

can be encrypted through HPKE by calling the encrypt method on the

HpkeCiphertext object. The payload will be sealed with a fresh key pair

by using the ciphersuite composed by X25519, SHA-256 and AES-128-GCM.

Ciphersuites are specified by the HpkeCiphersuite enumerator and four of

them are declared, mostly for future implementations (e.g. with P256):

• P256, SHA-256 and AES-128-GCM;
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• P512, SHA-512 and AES-256-GCM;

• X25519, SHA-256 and AES-128-GCM;

• X448, SHA-512 and AES-256-GCM.

Messages can also be encrypted with a specified ephemeral key pair by

calling encrypt with ephemeral(). Both encryption and decryption proce-

dures call setup base x25519 aes 128() and setup core x25519 aes 128(),

that first creates a HpkeContext containing information like the ciphersuite

in use, then it expands both key and nonce through HKDF by using the hkdf

module. Since HPKE makes use of AES algorithms, ciphertexts are sealed

and opened by using the aesgcm module seen before.

hkdf handles the HMAC-based Extract-and-Expand Key Derivation Func-

tion (HKDF) [12], already seen in Chapter 4.8. HKDF is useful to hide the

input keying material from malicious attackers that may have some partial

knowledge about it.

When calling HKDF, it takes four arguments in input: salt, input, info

and length:

1 pub fn hkdf(salt: Salt, input: Input, info: Info, Len(len): Len) ->

Key {

2 Key(expand(extract(salt, input), info, len as usize))

3 }

The extract() function takes the input keying material to concentrate

dispersed entropy into a short but cryptographically strong pseudorandom

key (PRK) that is produced as the output of the function:

1 pub fn extract(Salt(s): Salt, Input(i): Input) -> Prk {

2 Prk(hmacsha256::authenticate(i, &hmacsha256::Key(mk_salt(s))).0)

3 }

Then, the generated output key is expanded to create a larger crypto-

graphically independent output. The number and length of the output keys

may depend on the algorithm used.

1 pub fn expand(prk: Prk, Info(info): Info, len: usize) -> Vec<u8> {

2 let n = (len as f32 / HASH_LEN as f32).ceil() as usize;
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3 let mut t = Vec::new();

4 let mut okm = Vec::new();

5

6 for i in 1..=n {

7 let mut buf = Vec::with_capacity(t.len() + info.len() + 1);

8 buf.extend(&t);

9 buf.extend(info);

10 buf.push(i as u8);

11

12 let key = hmacsha256::Key::from_slice(&prk.0).unwrap();

13 let t_i = hmacsha256::authenticate(&buf, &key);

14 okm.extend(&t_i.0);

15

16 t.clear();

17 t.extend(&t_i.0);

18 }

19

20 okm.into_iter().take(len).collect()

21 }

schedule contains functions and structures for the key schedule. Partic-

ularly, it includes the declaration of the Init Secret, the Epoch Secrets and

HKDF Label objects. It also comprehends the function to derive secrets:

given a pseudorandom key secret, a HKDF Label and a context, the secret is

derived by calling expand(secret, label, context) of the HKDF module.

Listing 5.1: Deriving secrets in the schedule module

1 pub fn derive_secret(secret: hkdf::Prk, label: &str, context: &[u8

]) -> Vec<u8> {

2 let context_hash = sha256::hash(context).0;

3 let hkdf_label = HkdfLabel::new(&context_hash, label,

HASH_LENGTH);

4 let state = &hkdf_label.serialize();

5 println!("HKDFLabel: {}", bytes_to_hex(&state));

6 let info = hkdf::Info(state);

7 hkdf::expand(secret, info, HASH_LENGTH)

8 }
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5.3.2 Group handling (group.rs)

The group module contains the core logic for managing a group in MLS.

The module handles the initialization of the group, the creation and process-

ing of the Welcome, Add, Update, Remove, Handshake messages, and deals

with init and epoch secrets. After processing every type of message, the

epoch secret gets updated by calling the rotate epoch secret() method.

This ensures Perfect Forward Secrecy.

Groups can be created starting from a Welcome message or initialized

through a Credential object and a GroupId. In the first case, the tree is

generated from the public keys, while in the latter it is generated starting

from the client’s own leaf.

The Add message is created at the same time of the Welcome message, as

illustrated in Figure 4.2. The Add message is created by encrypting the tree

with the new index of the member and the new size, together with a fresh

random leaf secret. As seen before, the new size is the number of leaves plus

one, while the expected index will be the number of leaves multiplied by 2.

Alongside, the Welcome message is created by processing the Add message

on a mutable copy of the current group.

The Update message is created by encrypting the own leaf index, the

current size of the tree and a fresh random leaf secret. Then, the message

is hashed and the secret gets updated. The Update is processed by checking

that hashes match: in this case, it merges the direct path with the hashed

nodes. Otherwise, KEM is applied to the Update path.

The Remove message is created by passing the index of the participant

that should be removed, together with the nodes and ciphertext encrypted

from the tree. The Remove is processed by applying the KEM path to the

path specified by the Remove message.

Handshake messages are created by passing the prior epoch, the index of

the signer and the algorithm used. After that, the message gets signed. Hand-

shakes are processed by verifying the signature and continuing the processing

by calling the proper process function described before and associated to
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the respective group operation value (add, update or remove).

New epoch secrets are generated by encoding the group identifier, the

group epoch, the tree and the transcript, and by updating the Init secret.

The group epoch is then incremented by 1.

5.3.3 Keys handling (keys.rs)

keys provide data structures and utilities for key handling. Particularly,

the module implements the structures for key agreement over the two curves

supported by the protocol, that is, Curve25519 and P-256. The latter is

implemented through its public key. For Curve25519, the public and pri-

vate keys are stored into a X25519KeyPair object, respectively encoded as

X25519PublicKey and X25519PrivateKey types. Key pairs can be gener-

ated from scratch, starting from an existing secret or from a private key.

Private keys can generate shared secrets and derive the public key by calling

the two methods shared secret() and derive public key():

1 pub fn shared_secret(&self, p: &X25519PublicKey) -> Result<[u8;

32], Zero> {

2 let group_element = scalarmult::curve25519::GroupElement::

from_slice(&p.0).unwrap();

3 let scalar = scalarmult::curve25519::Scalar::from_slice(&self.0)

.unwrap();

4 scalarmult::curve25519::scalarmult(&scalar, &group_element)

5 .map(|ge| ge.0)

6 .map_err(|()| Zero {})

7 }

8

9 pub fn derive_public_key(&self) -> X25519PublicKey {

10 let scalar = scalarmult::curve25519::Scalar::from_slice(&self.0)

.unwrap();

11 X25519PublicKey(scalarmult::curve25519::scalarmult_base(&scalar)

.0)

12 }

Furthermore, the keys module provides the Identity object that can

be used for identity keys. It exposes the identifier and the public key, thus
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maintaining the private key. Objects can be signed with a given Identity

by implementing the Signable trait, that provides the sign() method to

perform the signing action and verify() to ensure that the object is signed

correctly.

BasicCredential is the base structure for credentials that includes a

public key, together with an identity. Credentials can be verified through the

verify() method.

In the end, keys provides the mechanism for group initialization and

adding members to a group, through the UserInitKey object. The personal

UserInitKey is usually pushed to the Directory through the UserInitKeyBundle,

that includes the initialization key and a set of private keys that can be used

in the future by other clients, as described in Figure 4.1.

5.3.4 Encoding and decoding (codec.rs)

The codec module provides traits for encoding and decoding primitive

data types and custom data structures, in a similar fashion as TLS does. En-

coding and decoding is provided to submodules by implementing the Codec

trait. Codec makes available two methods for encoding and decoding, plus

two detached method versions that perform the respective operations on a

specified instance of the object:

Listing 5.2: The Codec trait

1 pub trait Codec: Sized {

2 fn encode(&self, buffer: &mut Vec<u8>);

3 fn decode(&mut Cursor) -> Result<Self, CodecError>;

4 fn encode_detached(&self) -> Vec<u8> {

5 let mut buffer = vec![];

6 self.encode(&mut buffer);

7 buffer

8 }

9 fn decode_detached(buffer: &[u8]) -> Result<Self, CodecError> {

10 let mut cursor = Cursor::new(buffer);

11 Self::decode(&mut cursor)

12 }

13 }
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Implementations of the Codec trait are available throughout the project.

An example implemented for the HpkeContext object is available in Ap-

pendix A.1.

The codec module also provides implementations of the encode() and

decode() methods for the primitive unsigned integer types u8, u16, u32,

u64, besides respective encoding and decoding methods for unsigned integer

vectors, named respectively encode vec uXY and decode vec uXY (where XY

is the size of the unsigned type).

5.3.5 Messages specification and protection (messages.rs

and mp.rs)

The messages module declares the four main types of operations: Wel-

come, Add, Update, Remove, together with the enclosing Handshake message.

The core structure here is GroupOperation: it contains the type of message,

declared as a GroupOperationType enumerator, the content of the group op-

eration to be performed, declared inside GroupOperationValue, and the de-

livery confirmation. The GroupOperation is then enclosed into a Handshake

message. The structure of these messages follows the specifications brought

by the protocol described inside Chapter 4.11, with some minor adaptations.

The module also contains the structures for the message framing, such as

MLSPlaintext and MLSCiphertext. Message framing was introduced with

draft 05 and is described in Chapter 4.10.

The mp module is about message protection and provides structures like

ApplicationMessage that wrap the encrypted content of a message, and

SignatureContent that contains the signed content. It also includes struc-

tures for stage secrets (nonce and key) like StageSecrets and SenderApplicationSecret.

5.3.6 Tree structure and math (tree.rs and treemath.rs)

The tree module contains declarations of the main components of a tree:

nodes, node secrets and the tree itself.

The Node object represents an instance of a node in the tree. As reported
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in Chapter 4.2.1, the structure contains three optional values: a NodeSecret

object, a Diffie-Hellman public key and a private key. Fields are valued

based on their position in the tree, whether they are leaves, a direct path or

standard nodes. If no fields are valued, the node is considered blank. The

NodeSecret can be created randomly, starting from bytes, or hashed.

The Tree object describes the structure of a ratchet tree. It is basically

a set of Node objects, together with the index of its own leaf. Trees can

be created starting with the own leaf node or from a set of public keys,

together with the own leaf index and private key. Besides implementing

utility methods such as getting own leaf node, leaf count or the root node,

the object also provides operations that can be performed on the tree for

encryption and decryption purposes. They include:

• resolve(), that recursively resolves the tree as explained in Chapter

4.2.2 and illustrated below:

Listing 5.3: Resolution of a tree for a given node

1 pub fn resolve(&self, x: usize) -> Vec<usize> {

2 let n = self.get_leaf_count();

3 if !self.nodes[x].is_blank() {

4 return vec![x];

5 }

6

7 if treemath::level(x) == 0 {

8 return vec![];

9 }

10

11 let mut left = self.resolve(treemath::left(x));

12 let right = self.resolve(treemath::right(x, n));

13 left.extend(right);

14 left

15 }

• blank up() blanks the nodes of the tree recursively from the leaves up

to the root, excluding it;
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• merge() merges a set of nodes on a given path;

• hash up() returns the hashes for nodes on the direct path on a index

leaf node;

• kem to() applies the key encapsulation to the tree, given the set of

nodes composing direct path and the copath. The encapsulation is

made by encrypting the public key of a copath node with the secret of

the direct path node for every direct-copath node pair, this way:

1 let (dirpath_node, copath_node) = node_pair;

2 let public_key = copath_node.dh_public_key.unwrap();

3 let ciphertext =

4 HpkeCiphertext::encrypt(&public_key, &dirpath_node.secret.

unwrap().0[..]).unwrap();

5 path.push(ciphertext);

• encrypt() and decrypt() respectively for encrypting and decrypting

the tree;

• apply kem path() applies the key encapsulation to a given path.

The module also provides data structures for tree hashes, introduced by

draft 05 and previously explained in Chapter 4.5.

The treemath module contains utility methods for handling trees, like

finding the left or right children, parent, siblings, etc. More precisely:

• log2() for calculating base 2 logarithm (log2(n)) and pow2() for a

power of 2 (2n);

• node level and width;

• methods for relationships in a tree: root of a tree, left and right children,

parents and siblings;

• methods for calculating the direct path and copath;

• leaves() for the list of leaves in a tree.

The module also provides utility methods to generate and read test vec-

tors, that will be covered in the next chapter.
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5.3.7 Utilities (utils.rs)

The utils module provides some utility methods to convert hexadecimal

strings to bytes and vice versa, in addition to the call to the memzero()

method provided by sodiumoxide to clear vectors.

5.4 Dependencies

Dependencies in Rust are called crates and they are handled through

Cargo, the main package manager for Rust. Information about the cur-

rent package and dependencies are specified through the Cargo.toml file,

positioned inside the root directory. Another file, Cargo.lock, is gener-

ated automatically by Cargo starting from the Cargo.toml file while in-

stalling or updating crates and specifies exact information about dependen-

cies. Cargo.toml specifies:

• name, version and authors of the current package;

• general dependencies: sodiumoxide, libsodium and ring;

• dependencies for testing and benchmarking: criterion;

• the position of the benchmark folder.

5.4.1 NaCl, libsodium and sodiumoxide

sodiumoxide is a type-safe and efficient Rust binding around Sodium

(libsodium), which in turn is a portable, cross-compilable and packageable

fork of NaCl. NaCl, abbreviation for Networking and Cryptographic Library

and pronounced as ”salt”, is a public domain library for network commu-

nication, encryption, decryption and signatures. NaCl provides all the core

operations needed to build higher level cryptographic tools. [22] It was cre-

ated by Daniel J. Bernstein, mathematician and cryptologist who also created

Curve25519.
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5.4.2 ring

ring is another hybrid Rust, C and assembly library that provides a set of

general-purpose cryptographic operations. ring makes it easy to build and

integrate it into high level frameworks and applications; it also works opti-

mally on small devices and microcontrollers, in order to support Internet-of-

Things applications. ring derives from BoringSSL, which in turn is derived

from OpenSSL, it is developed by Brian Smith and available open source at

https://github.com/briansmith/ring. ring is used within the project to

provide AES-128-GCM, which is not provided by default by libsodium.

5.4.3 Usage within Melissa

NaCl is used in Melissa for several operations, including:

• Cryptographic random bytes generation for nonces, keys and key

pair generation within the whole project;

• Public-key signatures inside keys.rs using Ed25519, a EdDSA sig-

nature scheme that makes use of SHA-512 and Curve25519;

• Secret-key authentication inside the HKDF-Extract and HKDF-

Expand functions of hkdf.rs;

• Hashing to generate SHA-256 hashes for the HKDF-Extract and HKDF-

Expand functions, the derive secret function of schedule.rs and the

specification of the ciphersuite that includes SHA-256 inside of keys.rs;

• Scalar multiplication used to generate shared secrets, Derive-Public-

Key function, and new X25519 key pairs inside of keys.rs.

ring is mostly used in aesgcm.rs to provide Authentication Encryption

with Associated Data (AEAD) for sealing and opening keys, and for sealing

and opening operations.

https://github.com/briansmith/ring




Chapter 6

Melissa: Tests and Benchmarks

6.1 Tests

As a strategic component of any software, tests help to verify the cor-

rectness of instructions, procedures and functions of the entire software or a

particular module of it. Verification is typically specified through dedicated

test cases, functions that enclose various assertions that have to succeed in

order for the test to be verified.

There are four main levels of testing:

• unit tests that verify the functionality of a portion of code, usually

classes or single functions;

• integration tests that verify the interaction between different compo-

nents, classes or modules

• system tests that verify if a system meets its requirements;

• acceptance tests used to certify the readiness of a product before the

release, usually as part of a quality assurance system.

Tests can be natively supported by the system or may require the use

of external libraries for the whole task or some parts (e.g. usage of mock

objects).
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6.1.1 Tests in Rust

Within a Rust project, tests are declared inside each module. They are

recognizable by the #[test] attribute specified before each test method. On

larger projects, tests are usually grouped into a module called tests and

marked with the #[cfg(test)] attribute. [24]

Tests are verified through two main tools: panics and assertions. Panics

are usually placed inside the code where the functions should fail. In the

following example, a panic is thrown when dividing a number by zero:

1 pub fn divide(a: u32, b: u32) -> u32 {

2 if b == 0 {

3 panic!("Divide-by-zero error");

4 }

5 a / b

6 }

Assertions are placed inside the test cases to verify a particular condition.

If the assertion fails, a panic is thrown. The assertions available in Rust are

assert!(expression), that verifies the expression to be true, and both

assert eq!(left, right) and assert ne!(left, right), verifying that

the left item is equal or not to the right item.

Tests are handled through cargo and can be launched by calling cargo

test in the terminal.

6.2 Test cases

Test cases are available inside each module. They cover the main opera-

tions to be carried out within that module.

Encoding and decoding

We have seen that the codec module includes operations for encoding

and decoding data implementable through the Codec trait. Tests here verify

that:
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• primitive types, including unsigned integers u8, u16, u32 and u64 are

correctly encoded through the encode() function;

• vectors based on primitive types are correctly encoded through the re-

spective encode vec uXY function (where XY is the size of the unsigned

type).

An example of test with 16 bit unsigned integer primitive type and vector

can be found in Appendix A.2.1.

Sealing and opening in AES

The aesgcm module contains a test for sealing and opening a payload

encrypted through AES by using both AES-128 and AES-256 algorithms.

It basically seals a payload and opens it, to see that the two copies of the

message are the same:

1 let payload = vec![1, 2, 3];

2 let key: Aes128Key = Aes128Key::from(randombytes::randombytes(

AES128KEYBYTES));

3 let nonce = Nonce::new_random();

4 let encrypted = aes_128_seal(&payload, &key, &nonce).unwrap();

5 let decrypted = aes_128_open(&encrypted, &key, &nonce).unwrap();

6 assert_eq!(decrypted, payload);

HPKE

The hpke encrypt decrypt x25519 aes() test from the hpke module

is used for testing encryption and decryption through Hybrid Public Key

Encryption. It simply encrypts a cleartext composed by a vector of integer

with the public key, and decrypts it with the private key of a X25519KeyPair,

using a HpkeCiphertext object. Then, the cleartext and decrypted payloads

are compared.

1 #[test]

2 fn hpke_encrypt_decrypt_x25519_aes() {

3 let kp = X25519KeyPair::new_random();
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4 let cleartext = vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9];

5

6 let encrypted = HpkeCiphertext::encrypt(&kp.public_key, &

cleartext).unwrap();

7 let decrypted = HpkeCiphertext::decrypt(&kp.private_key, &

encrypted).unwrap();

8

9 assert_eq!(cleartext, decrypted);

10 }

HKDF

Three tests are described into the hkdf module to verify the Extract-and-

Expand functions provided by HKDF. The tests declare the initial keying

material, the salt and the info that will be provided to the two functions,

and they verify the correctness by comparing the pseudorandom key for the

extract function, and the output keying material for the expand phase to the

expected values. test case 1() and text case 2() are basically the same

using keys of different lengths, where test case 3() verifies the functions

against empty salt and info values.

1 #[test]

2 fn test_case_1() {

3 use utils::*;

4

5 let ikm = hex_to_bytes("0

b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b");

6 let salt = hex_to_bytes("000102030405060708090a0b0c");

7 let info = hex_to_bytes("f0f1f2f3f4f5f6f7f8f9");

8 let len = 42;

9

10 let expected_prk =

11 hex_to_bytes("077709362

c2e32df0ddc3f0dc47bba6390b6c73bb50f9c3122ec844ad7c2b3e5")

;

12 let expected_okm = hex_to_bytes(
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13 "3cb25f25faacd57a90434f64d0362f2a2d2d0a90cf1a5a4c5db02d5

{...}85865",

14 );

15

16 let prk = extract(Salt(&salt), Input(&ikm));

17 let okm = expand(prk, Info(&info), len);

18

19 assert_eq!(&expected_prk, &prk.0);

20 assert_eq!(&expected_okm, &okm);

21 }

Group conversations

The group module contains a test named

alice bob charlie walk into a group(), which verifies the process of cre-

ating a group with three participants: Alice, Bob and Charlie.

More in depth, it creates a conversation with three identities, each of

them distinguished by a credential that includes the identity. Alice creates

the group with her identity, while Bob and Charlie create their UserInitKeys.

Then, Alice adds Bob to the group by creating a Welcome and Add message,

the latter being processed by Alice. In the end, Bob creates their represen-

tation of the group starting from the Welcome message from Alice.

After that, both Bob and Alice update their secret by creating an Update

message and processing it. Then, Bob adds Charlie to the group and pro-

cesses the Add message together with Alice. Charlie and Alice try to update

their secrets, which is updated by all the three participants.

Finally, Bob removes Charlie from the group, causing the remove message

being processed by all participants.

Keys

The keys module contains verification for crypto.bin test vector, to-

gether with a test that signs a payload and verifies it through the verify detached()

method. The module also tests the generation of UserInitKeys.
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Tree and tree math

The tests for tree and treemath modules are composed by the verifica-

tion of the test binaries dedicated respectively to tree resolution (resolution.bin)

and tree math (treemath.bin).

6.2.1 Test vectors

Test vectors are binary files released by the MLS Working Group that

are used to verify the compliance to the protocol. They are based on the

draft 04 version of the protocol and they are available in the MLS Implemen-

tations repository at https://github.com/mlswg/mls-implementations/

tree/master/test_vectors. Due to open issues on the protocol, there are

some minor differences between the specifications and the results of the vec-

tors.

Right now, there are six test vector files available covering the tree math,

tree resolution, cryptographic functions, key schedule, application key sched-

ule, message parsing and serialization and sessions. The three test vectors

currently available in the project and tested are treemath.bin, resolution.bin

and crypto.bin.

Tree math

The test vector for tree math aims to verify the relationships between

nodes, as defined in the protocol. This test vector is verified by the

verify binary test vector treemath() test inside the treemath module.

To do so, the vector is represented through a TreeMathTestVectors ob-

ject that contains the following values:

• tree size: the size of the tree to be tested;

• root[i]: index of the root of a tree with i+ 1 leaves;

• left[i], right[i], parent[i], sibling[i] : respectively, indices of

the left child, the right child, the parent and the sibling of the node at

the index i;

https://github.com/mlswg/mls-implementations/tree/master/test_vectors
https://github.com/mlswg/mls-implementations/tree/master/test_vectors
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The result of the respective function that should be called on the treemath

module has to be the same as the one declared in the vector.

Resolution

Resolution vectors verify the output of the tree resolution algorithm. This

test vector is verified by the verify binary test vector resolution() test

inside the tree module.

The vector is represented this way:

1 uint8_t Resolution<0..255>;

2 Resolution ResolutionCase<0..2^16-1>;

3

4 struct {

5 uint32_t n_leaves;

6 ResolutionCase cases<0..2^32-1>;

7 } ResolutionTestVectors;

The tree is distinguished by a number of leaves equal to n leaves. The

cases vector has 2(2×n leaves−1) entries; the entry at index t represents the

set of resolutions with a blank/filled pattern matching the bit pattern of the

integer t. When ((t >> n) & 1) == 1, the node n is filled, otherwise it is

blank.

The ResolutionCase vector contains the resolutions of every node in the

tree, so case[t][i] contains the resolution of the node i in the tree t.

Crypto

The test vectors about cryptographic features are declared through

CryptoTestVectors, the inputs of the functions, and CryptoCase that holds

the outputs using the specified ciphersuite. This test vector is verified by the

verify binary test vector crypto()) test inside the keys module.

The test vector is used to verify the correctness of the following methods:

• HKDF-Extract, the first step of Extract-and-Expand, over a given salt

and input keying material;

• Derive-Secret;
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Table 6.1: Code coverage results for Melissa

Module name Lines covered Percentage

crypto/aesgcm 95/101 94.06%

crypto/eckem 101/107 94.39%

crypto/hkdf 62/71 87.32%

crypto/schedule 55/69 79.71%

codec 140/178 78.65%

group 190/255 74.51%

keys 172/241 71.37%

messages 22/123 17.89%

mp 86/98 87.76%

roster 0/5 0%

tree 183/254 72.05%

treemath 150/180 83.33%

utils 13/13 100.00%

Total 1269/1695 74.87%

• Derive-Key-Pair;

• ECIES, using the key pair generated during Derive-Key-Pair.

6.2.2 Code coverage

Code coverage was implemented during this thesis work for testing pur-

poses. The component used here is Tarpaulin, a library for code coverage pur-

poses that provides line coverage, reporting tools and upload to online cover-

age services like Coveralls and Codecov. Due to its requirements, Tarpaulin

is compatible with Linux only, so it was run under a Ubuntu distribution.

Tarpaulin revealed that tests executed on the draft 04 version of the

project cover 74.87% of the entire codebase. More in depth, the results for

the single modules are listed in Table 6.1.
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6.3 Benchmarks

Benchmarks are tests that measure the performances of a software by

running the test code several times. The results of a benchmark can be used

to compare the performances with other softwares or solutions.

As previously seen, benchmarks are implemented inside Melissa through

the use of Criterion.rs, a benchmarking library created by Jorge Aparicio

and maintained by Brook Heisler, written in Rust and available open source

at https://github.com/bheisler/criterion.rs

Benchmark tests are declared inside the benches/benchmark.rs file. They

are written inside the criterion benchmark() function and they can be

launched by calling cargo bench inside the benches folder. These tests aim

to measure the performances of:

• HKDF Extract-and-Expand functions. The two functions are

performed in an average time of 20.19µs.

• encryption and decryption with ECKEM. The two operations are

performed in a similar time: encryption took an average of 239.53µs,

while decryption took 222.61µs;

• encryption and decryption with AES-128-GCM. Encryption took

an average of 9.24µs, while decryption took 2.85µs;

• creation of a UserInitKeys bundle. Bundle is created within an

average of 83.42µs;

• creation of a group with two members (Alice and Bob) and a larger

group of 10 members. Benchmarks revealed that group creation took

an average time of 3.13ms for a group with two participants (Figure

6.1) and 215.82ms for a group of 10 participants (Figure 6.2).

https://github.com/bheisler/criterion.rs
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Figure 6.1: Benchmark results for creating a group with two participants
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Figure 6.2: Benchmark results for creating a group with 10 participants



Chapter 7

Conclusions

Messaging is continuously evolving and will play an increasingly central

role in a constantly connected world. Security in communications will be

of primary importance in order to protect private conversations from third

parties, and the industry is increasingly moving in this direction.

Although end-to-end encryption has recently been implemented world-

wide in major messaging services, the focus on performance remains paramount.

In this context, Messaging Layer Security can play a fundamental role,

both for the unity of intent of the participants of the working group and their

companies, and for the intrinsic efficiency of the protocol that allows its use

on mobile devices and possibly embedded.

It will be interesting to follow the future of this protocol in several aspects,

first of all the transposition of the Internet Draft as IETF Standard, the

evolutions, the various implementations and finally the adoption by the major

players in the industry.

On a personal level, it was extremely interesting and compelling to follow

the various phases of the project, observing the first intentions of work on the

protocol, the decision of the name, and then go in depth during the recent

months through the analysis of the protocol and the work done on Melissa.
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Appendix A

Code examples

A.1 Implementation of the Codec trait

1 pub struct HpkeContext {

2 ciphersuite: u16,

3 mode: u8,

4 kem_context: Vec<u8>,

5 info: Vec<u8>,

6 }

7

8 impl Codec for HpkeContext {

9 fn encode(&self, buffer: &mut Vec<u8>) {

10 self.ciphersuite.encode(buffer);

11 self.mode.encode(buffer);

12 encode_vec_u8(buffer, &self.kem_context);

13 encode_vec_u8(buffer, &self.info);

14 }

15

16 fn decode(cursor: &mut Cursor) -> Result<Self, CodecError> {

17 let ciphersuite = u16::decode(cursor)?;

18 let mode = u8::decode(cursor)?;

19 let kem_context = decode_vec_u8(cursor)?;

20 let info = decode_vec_u8(cursor)?;

21 Ok(HpkeContext {
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22 ciphersuite,

23 mode,

24 kem_context,

25 info,

26 })

27 }

28 }

A.2 Tests

A.2.1 Encoding

1 #[test]

2 fn test_encode_primitives() {

3 // ...

4 let uint16: u16 = 1;

5 let mut buffer = Vec::new();

6 uint16.encode(&mut buffer);

7 assert_eq!(buffer, vec![0u8, 1u8]);

8 // ...

9 }

10

11 #[test]

12 fn test_encode_vec_u16() {

13 let v: Vec<u16> = vec![1, 2, 3];

14 let mut buffer = Vec::new();

15 encode_vec_u16(&mut buffer, &v);

16 assert_eq!(buffer, vec![0u8, 6u8, 0u8, 1u8, 0u8, 2u8, 0u8, 3u8])

;

17 }
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