
Alma Mater Studiorum · Università di
Bologna

SCUOLA DI SCIENZE

Corso di Laurea Magistrale in Informatica

Optimal and Automated Microservice

Deployment: formal definition,

implementation and validation

of a deployment engine

Relatore:

Chiar.mo Prof.

Gianluigi Zavattaro

Co-Relatore:

Chiar.mo Prof.

Jacopo Mauro

Presentata da:

Iacopo Talevi

Sessione I

Anno Accademico 2018-2019

Introduction

The idea of this project was born in July 2018. Its realization involved

Professor Mario Bravetti and my supervisor Professor Gianluigi Zavattaro

from the University of Bologna, Professor Jacopo Mauro and post-doctoral

researcher Saverio Giallorenzo from the University of Southern Denmark, and

myself. The main purpose of our work was to study the problem of optimal

and automated deployment and reconfiguration (at the architectural level)

of microservice systems, proving formal properties and realizing an imple-

mented solution.

Our work started from the theory described in [1], where the Aeolus compo-

nent model was used to formally define the problem of deploying component-

based software systems and to prove different results about decidability and

complexity. In particular, the authors formally prove that, in the general

case, such problem is undecidable. But they also show that by inserting lim-

itations on the model expressivity, the analysed problem becomes decidable

but very complex (Ackermann-hard) in one version, and even polynomial in

time in another.

Starting from these results we expanded on the analysis of automated de-

ployment and scaling, focusing on microservice architecture. Microservices

are a variant of the service-oriented architecture (SOA) based on small, fine-

grained and loosely coupled services. Using a model inspired by Aeolus,

considering the characteristics of microservices, we formally proved that the

optimal and automated deployment and scaling for microservice architectures

are algorithmically treatable. However, the decision version of the problem

i

ii Introduction

is NP-complete and to obtain the optimal solution it is necessary to solve an

NP-optimization problem. Thanks to a formulation of the algorithm based

on the constraint programming paradigm, state-of-the-art constraint solvers

can be used to search for the optimal solution.

To show the applicability of our approach we decided to also realize a model

of a simple but realistic case-study. We selected a microservice architec-

ture that implements an email processing pipeline, inspired by Iron.io and

described in [2]. The model is developed using the Abstract Behavioral Spec-

ification (ABS) language [3, 4], and to calculate the different deployment and

scaling plans we used an ABS tool called SmartDepl [8]. The tool allows to

specify through annotations on the ABS code all the necessary information

and it returns the solution in the form of ABS classes. To solve the problem,

SmartDepl relies on Zephyrus2 [10]. Zephyrus2 is a configuration optimizer

that allows to compute the optimal deployment configuration of described

applications.

This work resulted in an extended abstract [12] accepted at the Microservices

2019 conference in Dortmund (Germany) [13], a paper [14] accepted at the

FASE 2019 (part of ETAPS) conference in Prague (Czech Republic) [16], and

an accepted book chapter [17].

In addition to the opportunity to work side-by-side with professors, this ex-

perience gave me the chance to actively collaborate to research activities and

to participate to my first scientific conference in Dortmund. There I pre-

sented our work and shared ideas and solutions with students, researchers,

and professors, as well as with representative of the corporate sector.

This dissertation starts with Chapter 1 that introduces the Aeolus model

and the decidability and complexity results obtained in [1]. These are the

starting points of our work and the chapter introduces ideas and concepts

that are re-used in the new model proposed. Then, our novel contributions

are introduced in Chapter 2. We present the new proposed model, specifically

built for microservices, and the formal results obtained on it. To conclude,

Introduction iii

Chapter 3 discusses the case-study used to show the applicability of the solu-

tion proposed. It also briefly introduces SmartDepl to allow the reader to try

and use our approach on different applications. Finally, the conclusion pro-

vides a summary of the contributions presented and briefly discusses possible

evolutions.

Contents

Introduction i

1 Aeolus Component Model and Undecidability Proof 1

1.1 Introduction to Aeolus Component Model 3

1.1.1 Component Type . 4

1.1.2 System Configuration 5

1.1.3 Dependencies, Capacity Constraints and Conflicts . . . 5

1.1.4 Dynamic Configuration Updates 6

1.2 Aeolus Definitions . 8

1.3 Aeolus Undecidability Proof 12

1.3.1 Decidability version of Aeolus and their Complexity . . 14

2 Optimal and Automated Deployment for Microservices 15

2.1 Microservices, basic information 16

2.2 Introduction to a new approach for microservices management 16

2.3 Introduction to the new model proposed for microservices . . . 18

2.3.1 Microservice Component 19

2.3.2 Resources and Costs Introduction 23

2.3.3 An Informal Introduction to the Optimal Deployment

Problem . 24

2.3.4 An Example . 25

2.4 Model Formal Definition . 27

2.5 Decidability Proof . 37

2.6 Complexity Analysis . 44

v

vi CONTENTS

3 Case-Study: Model of an Email Processing Pipeline Mi-

croservice Architecture 47

3.1 Email Processing Pipeline Architecture 48

3.2 Language and Tool . 51

3.2.1 Abstract Behavioral Specification (ABS) Language . . 52

3.2.2 SmartDepl . 56

3.2.3 Zephyurs2 . 63

3.3 Deployment Plans . 67

3.4 Additional ABS Classes . 72

Conclusion 79

Bibliography 83

List of Figures

1.1 Debian package metadata for MySQL 3

1.2 Graphical representation of wordpress component type 4

1.3 Partial configuration with two components 5

1.4 Graphical representation of capacity constraints on provided

and required ports . 7

2.1 Monolithic vs Microservices approach 17

2.2 The AWS autoscaling service, from AWS documentation . . . 18

2.3 Introduction to the extended graphical notation 26

3.1 Microservice architecture for email processing 49

3.2 ABS objects organization in COGs 53

3.3 Graphical representation of the initial configuration automatic

generated by SmartDepl . 73

vii

List of Tables

3.1 Maximal number of simultaneous requests that each microser-

vice can manage . 69

3.2 Description of different deployment/scaling plans calculated . 71

ix

Chapter 1

Aeolus Component Model and

Undecidability Proof

The Aeolus Component Model is a previous contribution from Roberto

Di Cosmo, Jacopo Mauro, Stefano Zacchiroli and Gianluigi Zavattaro, pre-

sented in [1]. It provides a formal way to represent component-based software

configuration and deployment in complex distributed cloud applications.

Cloud applications are software that run in a cloud environment, where the

different components are executed through virtual machines hosted in het-

erogeneous hardware. They are usually offered by cloud providers and payed

with a pay-per-use approach. Using this approach, the users can request

more machines when necessary and drop them when the corresponding com-

putation is finished. All the systems are managed and connected on-the-fly,

so it is a very dynamic reality. A cloud environment does not necessarily

imply a public setting through big providers such as Amazon Web Service

[19], Google Cloud Platform [20], or Microsoft Azure [21] but it can also be

simulated through a collection of private machines (Private Cloud). Cloud

gives a lot of advantages such as cost reduction, flexibility, scalability, mo-

bility, disaster recovery and many others, but it also significantly increases

the complexity during the design, configuration, deployment and maintain

phases of a software. To address these challenges, in the last years, differ-

1

2 1. Aeolus Component Model and Undecidability Proof

ent tools have been developed both in academia and in the industry using a

range of different approaches. Examples are:

• Academic side: Fractal Component Model [22] and FraSCati [23],

ConfSolve [24]

• Industry side: Chef [25], CloudFoundry [26], Juju [27]

In short, these tools help users put together specifically prepared system

components through a ready-made user-prepared configuration. So it is a

user’s responsibility to choose which components to instantiate and how to

interconnect them. Clearly, if a reconfiguration is necessary, the users have

to do it themselves, manually or through specifically prepared codes.

Analysing these tools, the authors of [1] detected two main and necessary

characteristics for a new model:

• Expressivity: the model should allow a user to capture and describe

all aspects of a complex distributed and scalable application. Typical

aspects are: dependencies, conflicts and non functional requirements.

Examples of non-functional requirements are:

– number of instances of each component type required to guarantee

a particular service level agreement(SLA), or

– fault tolerance, or

– location of different instances of a specific component type to en-

sure fast communication everywhere, or

– replication, and others.

• Automation: it is necessary to have a tool that takes as input an

abstract description of the requested target configuration and calculates

the necessary steps to reach it starting from the current state. This

need appears very clearly in systems with a high number of components

because the complexity of deploying and configuring them significantly

increases and these phases cannot be easily managed manually.

1.1 Introduction to Aeolus Component Model 3

Figure 1.1: Debian package metadata for MySQL

The Aeolus Component Model is presented in the following sections, using

definitions and examples taken from [1]. A better and more formal expla-

nation can be found in the referenced paper. The description of the model

provided here is useful to introduce and better understand the new contri-

butions described in Chapter 2.

1.1 Introduction to Aeolus Component Model

To introduce the Aeolus Component Model it is a good idea to take in-

spiration from the package paradigm used for software installation. In the

package paradigm, popularized by FOSS (Free/Open Source Software) dis-

tributions, a package contains all the data connected with a specific software.

So it does not contain only the software artefact but also other information

like configuration settings and metadata. Clearly, a package in a machine

can be in two states: uninstalled before the installation process and installed

at the end. But during the installation process, the package passes through

other states (e.g. unpacking, configuration). The concept of state will be

fundamental in the Aeolus component definition. In each state a package can

have some requirements and/or offer some features that are usually called

provides. To give a practical intuition the authors use a Debian package de-

scription as example, showed in Figure 1.1, where the described information

are specified through two fields, called Provides and Depends. A package

life-cycle can be represented and modelled through a state machine. Each

state represents a step during the component life-cycle and it could have

requirements that must be satisfied and provides that can be used by other

4 1. Aeolus Component Model and Undecidability Proof

Figure 1.2: Graphical representation of wordpress component type

components to fill their requirements.

In addition to requirements, provides and state machine, there are other use-

ful notions:

1.1.1 Component Type

Using the previously described ideas, it is possible to define a component

type as 5-tuple <Q, q0, T, <P,R>, D> where:

• Q, q0, T are the classic components of a state machine: a set of states,

an initial state and a transition function,

• while <P,R> and D are particular fields:

– P is the set of provides,

– R is the set of requirements,

– and D is a function that links each state with its corresponding

provides and requirements sets.

The authors use the following graphical notation, showed in Figure 1.2, to

represent a component type.

1.1 Introduction to Aeolus Component Model 5

Figure 1.3: Partial configuration with two components

1.1.2 System Configuration

Using these concepts it is possible to build a definition of system config-

uration. A configuration is a collection of instances of different component

types, in particular states, and the connections between them.

A connection is a link between a required port of a component and a pro-

vided port of another. It means that the second component provides the

feature needed by the first one. Consequently the corresponding requirement

is satisfied.

A configuration is correct when all active requirements (requirements re-

quested in the current state) are satisfied by active provided ports. Using

the previous graphical notation, it is possible to represent a partial configu-

ration with two components, where the second one satisfies a requirement of

the first one, Figure 1.3.

1.1.3 Dependencies, Capacity Constraints and Con-

flicts

It is possible to observe that connections represent dependencies between

components. In the previous image, Figure 1.3, the wordpress component

has a dependency with the apache2 component on the httpd interface. Con-

sequently, to allow wordpress to reach the installed state, apache2 must be

already installed.

In addition to dependencies, Aeolus wants to allow users to model also con-

6 1. Aeolus Component Model and Undecidability Proof

flicts and non functional requirements (e.g. redundancy). To capture situa-

tions connected with redundancy, Aeolus allows to add numeric constraints

to required and provided ports.

• A number n linked with a provided port means that the corrisponding

port can be connected with at most n required ports, so it can satisfy

at most n requirements,

• while a number n linked with a required port means that the cor-

risponding port must be connected with at least n provided ports, so

to be satisfied it requires at least n provides from n different compo-

nents.

Finally, to model conflicts, Aeolus uses the number 0 linked with a required

port. This means that the required port with 0 and a provided port for the

same interface (with the same name) cannot be active at the same time.

Consequently this particular case can be used to model global conflicts be-

tween components.

Again the graphical representation can be used to better understand the

described situations. The authors of [1] provide an example with three com-

ponent types: wordpress, mysql and varnish. Varnish is a load balancer that

in this example requires at least three Wordpress back-end instances. Word-

press has a dependency with Mysql that consequently is necessary to run

a Wordpress instance. But a Mysql component can serve no more than 2

clients. This example is showed in Figure 1.4.

1.1.4 Dynamic Configuration Updates

In a cloud environment is possible to rent and release virtual machines

on the fly and in the same way components can be allocated or deallocated

following the load changes of the system (scale-up or scale-down). The Ae-

olus dynamic updates management can be showed analysing two possible

situations starting from the previous example:

1.1 Introduction to Aeolus Component Model 7

Figure 1.4: Graphical representation of capacity constraints on provided and

required ports

• if the work load is very low, the user can:

– change the capacity constraint in Varnish required port from 3 to

2

– and consequently deallocate an instance of Wordpress.

In an automatic way it is also possible to destroy an instance of Mysql

that is no longer necessary,

• if the work load is very high, the user can:

– decide to allocate two more instances of Wordpress.

In an automatic way another instance of Mysql is created to satisfy the

requirements of Wordpress instances. In fact one of the new instances

can be connected with the already available instance of Mysql with only

one link but the second one needs a new instance of Mysql because the

previous ones are no longer enough.

8 1. Aeolus Component Model and Undecidability Proof

Using the Aeolus model is therefore possible to automatically create or de-

stroy components when they are necessary or they are no longer used.

After this intuitive introduction of the model with the related graphical no-

tation, we present the main definitions used to define Aeolus.

1.2 Aeolus Definitions

The cited paper [1] provides a list of nine definitions to formally define

the Aeolus model. In this section the ideas behind these definitions will be

introduced.

As mentioned above, all components are modelled as finite state automa-

tons. Each state has a set of provided and required ports, which describe

the functionalities offered or needed by that component in that specific state.

The different functionalities are called interfaces and their names are used

as port names in the graphical representation. They are grouped in the set

I.

The first definition is the Component Type declaration. As already de-

scribed in the previous section a component type is a 5-tuple <Q, q0, T,

<P,R>, D>:

• Q, q0, T are the classic components of a state machine: a set of states,

an initial state and a transition function,

• < P,R > are the set of provides and the set of requirements. Formally

they are subsets of the interface set: P,R ⊆ I,

• D is a function that takes a state s as input and returns a couple of

partial functions: (P → N∞) and (R→ N0).

They are defined only in the provided and required ports active in

the state s. They take a port as input and return the corresponding

capacity constraints. The value returned is

– the number of requirements that the selected port can satisfy (for

1.2 Aeolus Definitions 9

provided ports): from 1 to ∞ (the default case) that allows an

unlimited amount of bindings.

– the number of necessary connections between different compo-

nents to satisfy the selected port (for required ports): from 1,

the default case, to N.

0 is a possible value used to represent conflicts.

In the previous section, the Configuration definition has already been in-

troduced too. Formally, it is a 4-tuple with:

• the set of possible component types called universe,

• the set of deployed components,

• a function that takes a deployed component as input and returns its

type and its current state and

• the set of bindings where each bind is represented as a 3-ples< port, consumer, provider >

where:

– port is an interface

– consumer and provider are two distinct deployed components.

The Configuration Correctness is formally defined through three points.

• The first one checks that conflicts are respected. If a component has

an active required port with 0, the definition says that there cannot

exist other components in the current configuration that have an active

provided port with the same interface.

• The second one controls that for each required port there are enough

distinct deployed components that provide the corresponding interface.

• The last one ensures that each provided port respects its capacity con-

straint. In particular, that it is connected with at most N required

ports, where N is the value specified by the user.

10 1. Aeolus Component Model and Undecidability Proof

When all the three points are respected the configuration is correct.

To pass from one configuration to another the authors formally define five

possible Actions:

• stateChange(z, q1, q2): where z is a deployed component and q1, q2 are

two possible state for it. This action controls that:

– z is in the q1 state,

– exists a transition for z from q1 to q2

and in that case it executes the transition arriving to a new configura-

tion where the component z is in the new q2 state.

• bind(r, z1, z2): where r is an interface and z1, z2 are two deployed

components. This action controls that:

– there is not already a binding between z1 and z2 on the interface

r,

– that r is a z1 active required port and a z2 active provided port

and in that case it passes to a new configuration where the new con-

nection from the cited deployed components through the described in-

terface is established.

• unbind(r, z1, z2): where r is an interface and z1, z2 are two deployed

components. This action controls that:

– there is a binding between z1 and z2 on ports with interface r

and in that case it passes to a new configuration where it removes the

identified connection.

• new(z): where z is a new component. This action controls that:

– z is not already deployed,

1.2 Aeolus Definitions 11

– the component type of z belongs to the component type universe

allowed

and in that case it adds to the current configuration the new deployed

component z in its initial state.

• del(z): where z is a deployed component. This action removes the

deployed component z and all its connections from the current config-

uration.

The transition from the current configuration C to a new configuration C’

after the execution of α, that is one of the actions described above, can be

represented through a labelled transition systems C
α−→ C’.

Notice that actions do not check the correctness of the reached configura-

tions. These controls, that allow to understand if an action is possible (i.e.

it leads to a correct configuration), will be considered during the definition

of deployment run.

The actions described are not enough to reach all the possible configura-

tions. For example a configuration with a circular dependency (a component

a requires for its intallation that a component b is installed, and in a dual

mode a component b requires for its intallation that a component a is in-

stalled) cannot be managed. To solve it, the authors introduce an extension

of stateChange called Multiple state change that allows to execute a set of

state change actions on different components at the same time as an atomic

transition. In a later work [31], it is proved that Multiple state change is

not really necessary. The cited paper shows that without this additional

operation the Aeolus component model remains Turing complete and all the

proofs obtained in the previous works remain possible and valid.

A Deployment Run can be defined as the application of actions to reach,

from an initial configuration a target configuration ensuring that all the

crossed configurations are correct and multi stage change operations used

are minimal.

With all the previous definitions, it is possible to define the Achievabil-

12 1. Aeolus Component Model and Undecidability Proof

ity Problem. This is the decision problem that studies whether, from an

empty configuration, it is possible to reach a final configuration that contains

an instance of a specified component type in a specified target state. If the

necessary deployment run exists, it returns true, otherwise, it returns false.

Notice that considering only a component in a given state is not limiting. In

fact, if we want to consider more components it is enough to add to their final

state a dummy provided port and to require these ports, through correspond-

ing required ports, in the specified state of the single requested component.

In this way if the achievability problem returns true, it means that there ex-

ists a deployment run to reach a configuration where our dummy component

is in the requested state. But the requested state has a required port for each

other components wanted which ensures that they are all correctly deployed.

1.3 Aeolus Undecidability Proof

The authors prove that the achievability problem for Aeouls model is un-

decidable. This is the main result of [1]. The proof will be shortly introduced

here, but it can be found in a formal and complete version in the referenced

paper.

They use a reduction proof showing that the achievability problem can be

reduced to the reachability problem in 2 Counter Machines (2CMs) [28].

2CM is a Turing-complete computational model. A 2 Counter Machine is an

abstract machine with:

• two registers, containing non-negative numbers, used as counters

• and a finite sequence of numbered instructions. There are only two

possible instruction types:

– j : Inc(Ri): increments register Ri and passes to the next instruc-

tion in position j + 1;

– j : DecJump(Ri, l): controls the value of Ri: if it is greater than

0, then it decreases it by 1 and it passes to the next instruction

1.3 Aeolus Undecidability Proof 13

with index j + 1; otherwise the register cannot be decreased so it

jumps to the instruction with index l.

Intuitively the current state of a 2CM can be represented through a 3-ple con-

taining the index of the next instruction and the values of the two registers.

For the initial state a configuration can be used with the first instruction,

index 1, and 0 as value for the two registers (1, 0, 0).

The reachability problem in 2CMs asks to understand if a specific instruc-

tion, identifiable through its index, is reachable starting from the initial state.

This problem is undecidable.

The proof shows how to model a 2CMs through the Aeolus model. It defines

two main component types, one to simulate the execution of the program and

one to simulate a register. To simulate a value v for the register i, the proof

uses v components in a particular state ri. To obtain the value of register i

it is necessary to count the number of components in state ri. Each ”active”

register component has a provided port onei. Consequently, to check if a

register is empty (value = 0), during the execution of a DecJump operation,

it is enough to control the absence of that port. This can be done using a

conflict on it. An exact description of these components and of the protocols

used to implement the 2CMs operations can be found in the paper.

The first step of the proof shows that there exists a deployment run from an

empty configuration to a configuration that model the initial state of 2CM.

Then, the real proof is organized in two prepositions:

• Completeness : proves that each step in a 2CM can be simulated through

a deployment run in the built model. The authors show exactly how an

increment instruction can be simulated in the prepared Aeolus model

and they specify that decrement and test for zero simulations are very

similar.

• Soundness : proves that each possible action in the prepared Aeolus

model corresponds to an instruction in a 2CM. The authors analyse all

the possible moves from a generic state in the Aeolus model showing

14 1. Aeolus Component Model and Undecidability Proof

that they correspond to actions in the 2CM.

At the end, they use the previous prepositions to show that a particular

instruction in 2CM is reachable if and only if there exists a deployment run

from an empty configuration to a configuration that capture a 2CM state

with that instruction. Consequently, the undecidability of achievability thus

follows from the undecidability of reachability for 2CMs.

1.3.1 Decidability version of Aeolus and their Com-

plexity

In addition to the previous results, the authors define two restrictions of

Aeolus model limiting the available capacity constraints. They prove that,

for these two simplified versions, the achievability problem becomes decidable

and they provide also a study about their complexity.

• Aeolus− is the simplest model where only the default capacity con-

straints are available. So the provided port can serve an unlimited

number of requirements and required ports are satisfied with only one

binding. The authors provide a polynomial decision algorithm for this

model.

• Aeolus core is an extension of Aeolus− adding the possibility to repre-

sent conflicts with value 0 on required ports. This model is clearly more

complex than the previous one, it remains decidable but not primitive

recursive (i.e., Ackermann-hard). They prove the decidability using

the theory of Well-Structured Transition Systems (WSTS) [29] and the

complexity with a reduction proof from the coverability problem in

reset Petri nets [30].

Chapter 2

Optimal and Automated

Deployment for Microservices

Starting from the Aeolus component model and the undecidability re-

sult described in Chapter 1, in this research project we studied a similar

problem focused on Microservice architectures. This can be summarized as

the research of a method to obtain Optimal and Automated Deployment and

Scaling Plans for Microservice Architectures.

In this work, a new model – strongly inspired by Aeolus – has been defined

to better capture the microservice distinctive traits, and formal results on

decidability and complexity have been obtained. The main result, which this

project proved, is that the optimal deployment problem for microservices is

algorithmically treatable.

With respect to Aeolus, the new model also considers the distribution of

microservices over computation nodes, introducing the concepts of resources

required from software components and provided by computation nodes, and

the costs of the latter. The optimality is defined on the total cost, or rather,

the sum of the costs of all computation nodes used.

15

16 2. Optimal and Automated Deployment for Microservices

2.1 Microservices, basic information

The Microservice approach is an architectural style inspired by service-

oriented architecture (SOA). It is very popular today and its adoption in

software design is rapidly growing. Here, we provide a short introduction,

focusing on the main characteristics that are useful to understand our con-

tributions.

A widely spread way to design software, particularly in the past, was the

monolithic approach, where the code for all the features is contained in a

single application, called monolith. With the growth of application dimen-

sions and complexity the monolithic approach has become problematic. It

has therefore been replaced by a service approach called Microservices. With

this new approach, applications are structured as collections of fine-grained

and loosely coupled services that can be independently developed and de-

ployed and that are organized around business capabilities. These aspects

allow to easily design, develop, test, maintain, scale and expand an applica-

tion. In practice, with a Microservice approach each software functionality

is isolated and developed as an independent module. Each module should

solve only the single task assigned. The different modules communicate with

each other through application programming interfaces called APIs.

Two images showed in Figure 2.1, taken from [32], give an intuitive but clear

idea of differences between the monolithic and the microservice approach.

2.2 Introduction to a new approach for mi-

croservices management

The microservices characteristics support continuous delivery/deployment

[33] and application autoscaling [34, 35] that are two modern software engi-

neering practices. These two practices strictly follow the microservice idea,

managing each component independently from the others. For example,

autoscaling supports the independent increase or decrease of microservice

2.2 Introduction to a new approach for microservices management 17

Figure 2.1: Monolithic vs Microservices approach

instances, based on the values of monitored metrics (CPU average load, re-

sponse time, ...). Autoscaling independence is strongly grounded on the

principle of loose-coupling at the base of microservices. An example of Ama-

zon Web Services Autoscaling Application can be observed in Figure 2.2.

Reasoning at local microservice level, analyzing each component indepen-

dently, these practices cannot exploit architecture information, in particular

information about microservices interdependencies.

During this research project an alternative approach has been proposed. It

tries to reason at architecture-level to have the possibility of reach the global

optimization of resources usage. Reasoning at higher-level allows to add sev-

eral instances of different services at once, reaching optimal placement of

such instances. This objective cannot be obtained through unstructured and

independently scaling actions.

A clearer idea of this new approach can be given through an example. If

the user detects a peak of inbound requests on the microservice that works

as entry point of a pipeline of sequentially-interdependent services, it would

be more efficient in time to immediately scale all the microservices in the

pipeline, instead of letting each microservice successively autoscale. In addi-

tion, managing the deployment of more instances at the same time gives the

18 2. Optimal and Automated Deployment for Microservices

Figure 2.2: The AWS autoscaling service, from AWS documentation

possibility to be efficient also in the resources usage, computing the optimal

deployment plan. This optimisation is impossible to achieve by solely relying

on horizontal autoscaling.

2.3 Introduction to the new model proposed

for microservices

To formally study the new approach introduced in the previous section,

a new specific model for microservices has been defined and the problem

of automated deployment and reconfiguration (at the architectural level)

of microservice systems has been formalized. As already mentioned in the

introduction of this chapter, these operations have been performed following

the approach taken by Aeolus component model described in Chapter 1.

2.3 Introduction to the new model proposed for microservices 19

2.3.1 Microservice Component

The general software component of Aeolus described through a full power

finite state automata is substituted with a microservice component. It is

always modelled through a finite state automata but with a fixed set of

states. The only two possible states are:

(i) Creation: manages the dependencies called strong, which identify mi-

croservices that have to be connected during the creation of a new

instance. Without them, the new instance cannot be created.

(ii) Binding/Unbinding: manages the dependencies called weak. They

must be fulfilled before the end of the deployment plan, but during this

one the corresponding requirements can be temporarily unsatisfied.

Weak dependencies can also be used to identify microservices that can

be connected/disconnected during the instance life. For example, in the

case-study presented in Chapter 3, this type of dependencies is used

in the load balancer definitions to allow for new instances connections

during an horizontal scaling operation.

This deployment life-cycle, but also the resource modelling process described

later, have been inspired by state-of-the-art microservice deployment tech-

nologies like Docker [36, 37] and Kubernetes [39, 40].

The distinction between strong and weak dependencies is inspired by Docker

Compose [38]. It allows to define, configure and run a multi-container Docker

application through a YAML configuration file.

Kubernetes

Kubernetes is an open-source system for automating deployment, scaling,

and management of containerized applications. The Kubernetes project was

started in 2014 by Google.

A container is a software package containing code and all its dependencies.

Containers allow an application to be easily portable and quickly executed on

20 2. Optimal and Automated Deployment for Microservices

different computing environments. They are created executing container im-

ages that include everything that is needed to run the corresponding applica-

tions: code, runtime, system tools, system libraries and settings. Containers

are similar to virtual machines but they are based on operating-system-level

virtualisation rather than hardware virtualisation. Consequently they are

easier to build and lighter than VMs, and because they are decoupled from

the underlying infrastructure and from the host filesystem, they are portable

across clouds and OS distributions.

Some of the main Kubernetes features are:

• it automatically distributes containers onto nodes considering their re-

sources requirements and other constraints,

• it restarts containers that fail, replaces and reschedules containers when

nodes die, kills containers that don’t respond,

• it allows to easily scale-up or scale-down the application with a simple

command or automatically based on different possible metrics,

• it allows to update the application run-time. Kubernetes progressively

rolls out changes to the code or to the configuration. At the same time,

it monitors the application to verify that everything proceed correctly.

If something goes wrong, Kubernetes rolls back the change, reverting

to the last stable state.

Kubernetes API objects are used to work with Kubernetes. They are used to

describe the desired cluster state. The Kubernetes Control Plane, a collection

of processes running on the cluster, automatically modifies the current system

state to reach the described one. A lot of different possible operations can

be automatically executed to reach the fixed goal, examples are: starting or

restarting containers, scaling the number of replicas of a given application,

and others.

A Kubernetes cluster consists of a set of nodes. A node is a worker machine

that can be a VM or a physical machine. The system maintains a lot of

2.3 Introduction to the new model proposed for microservices 21

different information on each node, such as the node’s address or the amounts

of resources offered. There are two types of nodes:

• The Kubernetes master is a single node responsible for maintaining the

desired state in the cluster.

• Non-master nodes that serve as worker machines executing the assigned

(by the master) processes.

Kubernetes offers a set of possible abstractions to easily describe a system.

These abstractions are represented by objects in the Kubernetes API. These

objects are organized on two levels. The lower level contains objects such as

Pods or Services, while the higher level contains objects called Controllers,

including ReplicaSet or Deployment. A Pod is the basic building block of

Kubernetes. It is the smallest and simplest unit that can be deployed. It can

be seen as a box for an application container. Usually Pods are not directly

managed by users but created and supervised by the higher-level objects.

These highly simplify the management of the Pods, by handling the creation

in an automatic way, conducting replication/scaling, rollout, fail-recovery

and other phases of a Pod life-cycle. For example, if a Deployment is used to

manage a Pod, in order to execute a scale operation it is enough to change

the number of replicas in the specification of the corresponding Deployment.

Then, this object produces and executes all the necessary operations to reach

a new state where the selected component is scaled. The following commands

show how to directly scale a Deployment or how to set an autoscaling service

on a Deployment:

kubect l s c a l e deployments /name −r e p l i c a s =4

kubect l a u to s c a l e deployment name −min=10 −max=15 −cpu−percent=80

To create any object, the user has to write the relative specification. This

is usually provided using a YAML file. An intuitively example for a Deploy-

ment is:

22 2. Optimal and Automated Deployment for Microservices

ap iVers ion : apps/v1

kind : Deployment

metadata :

name : nginx−deployment

spec :

r e p l i c a s : 3

s e l e c t o r :

matchLabels :

app : nginx

template :

metadata :

l a b e l s :

app : nginx

spec :

c o n t a i n e r s :

− name : nginx

image : nginx : 1 . 7 . 9

por t s :

− conta ine rPor t : 80

Information about the CPU and the memory (RAM) required can also be

optionally inserted in a Pod specification. In that cases the Kubernetes sched-

uler ensures that, for each resource type, the sum of the resource requests

from the scheduled Pod in a node is smaller than the capacity of that node.

In general, the scheduler automatically implements a reasonable placement

of Pods, but it is also possible to customize the Pods distribution over the

available nodes by specifying some constraints. For this purpose a simple

node selector or a more complex feature called affinity/anti-affinity can be

used.

2.3 Introduction to the new model proposed for microservices 23

2.3.2 Resources and Costs Introduction

Resources Introduction

To consider resources, the architecture specifications are enriched with

information about them. In particular, the new model considers two types

of resources information:

• resources offered by computation nodes to host microservices,

• resources required by each microservice to be executed.

The resources usually considered are CPU and memory.

As mentioned above, Kubernetes uses a similar approach:

• it allows to specify the capacity of each node in a Kubernetes cluster

providing:

– CPU,

– memory and

– the maximum number of pods that can be scheduled onto the

node.

(This last information has not been considered during this work but it

could be translated as the maximum number of instances that can be

hosted onto a node.)

• it allows to specify how much CPU and memory (RAM) each Con-

tainer needs. Containers can be seen as microservice instances in the

current situation.

Costs Introduction

Computation node are also introduced. They must be payed to use the

corresponding node and obtain the possibility to deploy instances on it. Con-

sequently, a good example for a computation node is a virtual machine of-

fered by a Cloud provider in a Infrastructure-as-a-Service environment. In

24 2. Optimal and Automated Deployment for Microservices

this situation a virtual machine has a specific amount of resources provided

and a cost that must be paid to use it, just like the introduced computation

nodes (e.g. AWS EC2 instance: c4.large → vCPU=2, Memory=3.75 GiB,

Cost:$0.10 per Hour [44]).

2.3.3 An Informal Introduction to the Optimal De-

ployment Problem

At this point, with reference to the new model just introduced, the optimal

deployment problem can be informally introduced:

• Input:

– an initial microservice system that is the starting point of the

process,

– a set of available computation nodes that can be used to extend the

system. They are described through a name and the information

about resources offered and the corresponding costs,

– a description of the deployable microservices, with information on

resources usage and dependencies,

– a target microservice for which at least one instance must be de-

ployed in the final configuration.

• Computation:

the tool searches a sequence of reconfiguration actions that allows to

move from the initial configuration to a configuration that contains the

instance requested.

• Output:

the sequence of reconfiguration actions that correspond to the deploy-

ment plan searched. Its optimality in term of total costs is guaranteed.

2.3 Introduction to the new model proposed for microservices 25

2.3.4 An Example

To clarify the differences between the new model and the Aeolus model,

and to get the main intuition behind the formal definitions provided below,

consider the following example, created from a simplified version of the case-

study that will be discussed in Chapter 3. In this version of the studied Email

Processing Pipeline Microservice Architecture, only three different microser-

vices are considered: an entry-point to the system called MessageReceiver,

an email analyser called MessageAnalyzer and another component called

AttachmentAnalyzer that can be used by MessageAnalyzer to control the

attachments, if necessary.

The three microservices are connected in the following way:

• MessageReceiver → MessageAnalyzer through a weak interface.

This means that a MessageReceiver instance can be initially deployed

without this connection and it can be established subsequently. This

type of connection also allows to capture the possibility of horizon-

tally scaling this part of the application by adding/removing instances

following the system load. The numerical constraint on the involved

required port requires that at least three MessageAnalyzer instances

have to be connected in the final configuration.

• MessageAnalyzer → AttachmentAnalyzer through a strong in-

terface. So this connection is immediately necessary. Indeed, to deploy

a new instance of MessageAnalyzer an available instance of Attach-

mentAnalyzer that provides the necessary functionalities to the new

component is required. The numerical constraint on the involved pro-

vided port specifies that at most two instances can be connected to the

AttachmentAnalyzer to use the functionalities provided.

The described situation can be summed up using an extended version of the

graphical notation introduced in Chapter 1, as done in Figure 2.3.

The example presented in the Figure 2.3 shows a reconfiguration process,

26 2. Optimal and Automated Deployment for Microservices

Figure 2.3: Introduction to the extended graphical notation

too. In particular, the components represented with continuous lines are al-

ready deployed and they are the initial configuration. Instead, the dashed

lines represent the components that are deployed during the reconfiguration

process and that are necessary to satisfy the interfaces’ numerical constraints.

It is possible to observe that the constraint on the MessageReceiver required

port is not satisfied with the instances already deployed. This is not a prob-

lem because it is a weak required port so it has to be considered only at the

end of the reconfiguration plan. To satisfy this constraint at least two more

instances of MessageAnalyzer have to be deployed. The first one can connect

its strong required port with the AttachmentAnalyzer already available. But

the second one cannot use it because the corresponding provided port has

a numerical constraint that blocks more than two bindings. Consequently,

also a new instance of AttachmentAnalyzer is necessary to be able to deploy

the second necessary instance of MessageAnalyzer to successfully satisfy the

MessageReceiver required port constraint at the end of the reconfiguration

plan.

This example uses the new graphical notation adopted to also describe re-

2.4 Model Formal Definition 27

sources and costs. Simply, these pieces of information are written under each

component. A microservice only contains information about the required

resources, while a node contains information about resources offered and the

corresponding cost. Observing a configuration’s graphical representation, its

total cost can be easily obtained summing the costs reported in each node

used. In the previous example, Figure 2.3, the total cost is 598 cents per

hour. In the case-study analysed in Chapter 3 and just introduced in a sim-

plified version, the computation node costs are inspired by Amazon Public

Cloud services.

2.4 Model Formal Definition

In the new model, each microservice is modelled through a component

that can be connected with others using different ports. These ports rep-

resent the required and provided functionalities described through different

interfaces that are used as names for them. As described in the previous sec-

tion, the requirements are divided into strong and weak and resources/costs

are considered, too.

In the following definitions disjoint sets will be used: I for interfaces, Z for

microservices, and a finite set R for kinds of resources. N will be used to

denote natural numbers, N+ for N \ {0}, and N+
∞ for N+ ∪ {∞}.

Definition 1 (Microservice type). A Microservice type T is a 5-ples

〈P,Ds, Dw, C,R〉 where:

• P = (I 7→ N+
∞) are the provided interfaces, defined as a partial function

from interfaces to corresponding numerical constraints (indicating the

maximum number of allowed connections);

• Ds = (I 7→ N+) are the strong required interfaces, defined as a partial

function from interfaces to corresponding numerical constraints (indi-

cating the minimum number of necessary connections);

28 2. Optimal and Automated Deployment for Microservices

• Dw = (I 7→ N) are the weak required interfaces (defined in the same

way as the strong ones, with the difference that the value 0 can also be

used, to indicate that it is not strictly necessary to connect microser-

vices);

• C ⊆ I are the conflicting interfaces. A conflict implies that the in-

terfaces cannot be active in other components’ provided ports with the

same interface;

• R = (R → N) specifies resource consumption, defined as a total func-

tion from resources to corresponding quantities indicating the amount

of required resources.

We assume sets dom(Ds), dom(Dw) and C to be pairwise disjoint. 1

Microservice types are grouped in the set Γ, ranged over by T1, T2, . . .

A Microservice type T can be accessed as a record using abbreviation as

.prov, .reqs, .reqw, .conf and .res.

To better understand how to use the different fields of a microservice type,

an example is provided. T .res returns the partial function used to describe

resources consumption. So this function takes a resource type as input and

returns the corresponding amount required. Examples can be made with

reference to the configuration showed in Figure 2.3:

• Message Receiver.res(RAM) = 4,

• Message Analyzer.reqs(AA) = 1,

• Attachment Analyzer.prov(AA) = 2.

The default values for numerical constraints on provided/required ports,

when no numbers are specified, are: ∞ for provided interfaces and 1 for

required interfaces. These values mean that if no value is explicitly assigned

to a port then:

1Given a partial function f , we use dom(f) to denote the domain of f , i.e., the set

{e | ∃e′ : (e, e′) ∈ f}.

2.4 Model Formal Definition 29

• a provided port can be connected with an unlimited amount of in-

stances, and

• a single connection is enough to satisfy a required port.

As in Aeolus, this model offers conflict interfaces. They can be used to avoid

the presence at the same time in the system of two instances with a conflict.

They can be two instances of the same microservice or two instances of dif-

ferent microservices that cannot be active together.

To manage the deployment of configuration with circular dependency in Ae-

olus, the Multiple state change action was initially introduced. In this model,

configurations with strongly circular dependency are not allowed. This means

that at least one weak port must be involved in the cycle. To formalize this

constraint, a well-formedness condition on microservice types is introduced.

Definition 2 (Well-formed Universe). Given a finite set of microservice

types U (that can be called universe), the strong dependency graph of U is

as follows: G(U) = (U, V) with V = {(T , T ′)|T , T ′ ∈ U ∧ ∃p ∈ I.p ∈
dom(T .reqs)∩dom(T ′.prov)}. The universe U is well-formed if G(U) is acyclic.

The Well-formed Universe is a necessary pre-condition and it is always

assumed. It is not a limitation because circular dependencies are possible by

inserting at least one weak interface in the cycle.

Definition 3 (Nodes). The set N of nodes is ranged over by o1, o2, . . . We

assume the following information to be associated to each node o in N .

• A function R = (R → N) that specifies node resource availability: o.res

is used to denote such a function.

• A value in N that specifies node cost: o.cost is used to denote such a

value.

30 2. Optimal and Automated Deployment for Microservices

As example, in Figure 2.3, there are 4 nodes: Node1 large, Node2 xlarge,

Node3 xlarge, Node4 large. The nodes of large type can be described as:

• Node1 large.res(RAM)= 4,

• Node1 large.res(CPU)= 2,

• Node1 large.cost = 100,

while nodes of xlarge type are described as:

• Node2 xlarge.res(RAM)= 8,

• Node2 xlarge.res(CPU)= 4,

• Node2 xlarge.cost = 199.

So new nodes can be defined providing their names, the amounts of each

type of resource offered and the corresponding costs.

A deployed system can be described through a configuration. This pro-

vides information about the possible microservice types, the set of deployed

instances, their location on computation nodes and the connections between

them. Formally:

Definition 4 (Configuration). A configuration C is a 4-ple 〈Z, T,N,B〉
where:

• Z ⊆ Z is the set of the currently deployed microservice instances;

• T = (Z → T) are the microservice types, defined as a function from

deployed instances to corresponding microservice types;

• N = (Z → N) are the microservice nodes, defined as a function from

deployed instances to nodes that host them;

2.4 Model Formal Definition 31

• B ⊆ I × Z × Z is the set of bindings, namely 3-ples composed of an

interface, the microservice instance that requires that interface, and the

microservice instance that provides it; we assume that, for (p, z1, z2) ∈
B, the two instances z1 and z2 are distinct and p ∈ (dom(T (z1).reqs) ∪
dom(T (z1).reqw)) ∩ dom(T (z2).prov).

Using again the environment showed in Figure 2.3, instances location and

bindings can be better understood through some examples:

• Bindings: using mr1 to refer solely to the instance of Message Re-

ceiver, and ma1 for the first deployed instance of Message Analyzer; the

connection between them can be represented through (MA,mr1,ma1).

In a similar way, referring to the first deployed instance of Attachment

Analyzer through aa1 another element of B is (AA,ma1,aa1).

• Location: using the names introduced in the previous point to refer

to instances, the function N can be used to individuate the instance

locations:

– N(mr1)= Node1 large,

– N(ma1)= Node2 xlarge,

– N(aa1)= Node2 xlarge.

The configuration definition does not consider the correctness aspects.

To introduce the latter, two definitions of correct configuration will be given.

The first one considers only strong interfaces. It must always be respected,

including during the internal steps of a reconfiguration process. The sec-

ond one considers the weak interfaces, and it must be satisfied when a final

configuration is obtained.

Definition 5 (Provisionally correct configuration). A configuration C =

32 2. Optimal and Automated Deployment for Microservices

〈Z, T,N,B〉 is provisionally correct if, for each node o∈ran(N)2, it holds

∀ r∈R. o.res(r) ≥
∑

z∈Z,N(z)=o

T (z).res(r)

and, for each microservice instance z ∈ Z, both following conditions hold:

• (p 7→ n) ∈ T (z).reqs implies that there exist n distinct microservices

z1, . . . , zn ∈Z\{z} such that, for every 1 ≤ i ≤ n, we have 〈p, z, zi〉 ∈ B;

• (p 7→ n)∈T (z).prov implies that there exist no m distinct microservices

z1, . . . , zm ∈ Z \{z}, with m > n, such that, for every 1 ≤ i ≤ m, we

have 〈p, zi, z〉 ∈ B.

The first constraint ensures that each node has enough resources of each

considered type to satisfy the requests of all the hosted instances. The second

one guarantees that there are enough connections from different instances to

satisfy the numerical constraint of all strong required interfaces. The third

one in a dual mode ensures that numerical constraint on each provided port is

respected, so that each provided port is not connected more than the allowed

number of times.

Definition 6 (Correct configuration). A configuration C = 〈Z, T,N,B〉 is

correct if C is provisionally correct and, for each microservice z ∈ Z, both

following conditions hold:

• (p 7→ n) ∈ T (z).reqw implies that there exist n distinct microservices

z1, . . . , zn ∈Z\{z} such that, for every 1 ≤ i ≤ n, we have 〈p, z, zi〉 ∈ B;

• p∈T (z).conf implies that, for each z′ ∈ Z\{z}, we have p /∈ dom(T (z′).prov).

To have a correct configuration, it firstly has to be provisionally correct

and in addition to this two more conditions are considered. The first one

ensures that the numerical constraints on weak interfaces are satisfied with

2Given a (partial) function f , we use ran(f) to denote the range of f , i.e., the function

image set {f(e) | e ∈ dom(f)}.

2.4 Model Formal Definition 33

at least the minimum number of bindings requested. The second one intro-

duces the conflicts, ensuring that if a conflict is specified for an interface p,

this interface is not provided by other deployed instances.

Analysing the correctness of example in Figure 2.3, it is possible to observe

that the initial configuration (in continuous lines) is only provisionally correct

because the constraints on resources, strong required interfaces and provided

interfaces are respected, but it is not completely correct because the con-

straint ≥ 3 on weak required interface MA of the Message Receiver instance

is not satisfied (there is only one binding). Considering the final configura-

tion including the components in dotted lines, the completely correctness is

reached. The resource constraints remain satisfied, the constraints on strong

required, provided and weak required interfaces are satisfied and there are

no conflicts.

To pass from a configuration to a new one, it is necessary to formalize pos-

sible actions. The model provides four possible atomic actions that can be

combined to pass from an initial to a final configuration.

Definition 7 (Actions). The set A contains the following actions:

• bind(p, z1, z2) where z1, z2 ∈Z, with z1 6= z2, and p∈I: add a binding

between z1 and z2 on port p (which is supposed to be a weak-required

port of z1 and a provided port of z2);

• unbind(p, z1, z2) where z1, z2 ∈Z, with z1 6= z2, and p∈ I: remove the

specified binding on p (which is supposed to be a weak required interface

of z1 and a provided port of z2);

• new(z, T , o, Bs) where z ∈ Z, T ∈ Γ, o ∈N and Bs = (dom(T .reqs)→
2Z−{z}); with Bs (representing bindings from strong required interfaces

in T to sets of microservices) being such that, for each p ∈ dom(T .reqs),

it holds |Bs(p)| ≥ T .reqs(p): add a new microservice instance z of type

T hosted in node o and bind each of its strong required interfaces to a

34 2. Optimal and Automated Deployment for Microservices

set of microservices as described by Bs;
3

• del(z) where z ∈Z: remove the microservice instance z from the con-

figuration and all bindings involving it.

The most difficult action to understand is certainly the new(z, T , o, Bs)

one. It is possible to provide an usage example again through the system

showed in Figure 2.3 and the abbreviations already discussed for it. In par-

ticular to deploy the first Message Analyzer instances ma1, it is necessary

to insert the instruction new(ma1,Message Analyzer, Node2 xlarge, (AA 7→
{aa1})) in the deployment plan. The connection between ma1 and aa1 must

be immediately established because it involves a strong interface.

The effects of an action on a configuration can be formalized using a labelled

transition system on configurations, which uses actions as labels.

Definition 8 (Reconfigurations). Reconfigurations are denoted by transitions

C α−→ C ′ meaning that the execution of α ∈ A on the configuration C produces

a new configuration C ′. The possible transitions from a configuration C =

〈Z, T,N,B〉 are defined as follows:

C bind(p,z1,z2)−−−−−−−−→ 〈Z, T,N,B ∪ 〈p, z1, z2〉〉
if 〈p, z1, z2〉 6∈ B and

p ∈ dom(T (z1).reqw) ∩ dom(T (z2).prov)

C unbind(p,z1,z2)−−−−−−−−−−→ 〈Z, T,N,B\〈p, z1, z2〉〉
if 〈p, z1, z2〉 ∈ B and

p ∈ dom(T (z1).reqw) ∩ dom(T (z2).prov)

C new(z,T ,o,Bs)−−−−−−−−−→ 〈Z ∪ {z}, T ′, N ′, B′〉
if z 6∈ Z and

∀ p ∈ dom(T .reqs). ∀z′ ∈ Bs(p).

p ∈ dom(T (z′).prov) and

T ′ = T ∪ {(z 7→ T)} and
N ′ = N ∪ {(z 7→ o)} and
B′ = B ∪ {〈p, z, z′〉 | z′ ∈ Bs(p)}

C del(z)−−−−→ 〈Z\{z}, T ′, N ′, B′〉
if T ′ = {(z′ 7→ T) ∈ T | z 6= z′} and
N ′ = {(z′ 7→ o) ∈ N | z 6= z′} and
B′ = {〈p, z1, z2〉 ∈ B | z 6∈ {z1, z2}}

Formalizing the possible actions and their individual effects on a con-

figuration, it is possible to define a deployment plan. Intuitively, this is a

3Given sets S and S′ we use: 2S to denote the power set of S, i.e., the set {S′ | S′ ⊆ S};
S − S′ to denote set difference; and |S| to denote the cardinality of S.

2.4 Model Formal Definition 35

sequence of actions that allow to pass from an initial configuration to a final

target configuration. The plan ensures that the correctness is respected, or

rather, all the intermediate configurations are always provisionally correct

and the final one is completely correct.

Definition 9 (Deployment plan). A deployment plan P from a provisionally

correct configuration C0 is a sequence of actions α1, . . . , αm such that:

• there exist C1, . . . , Cm provisionally correct configurations, with Ci−1
αi−→

Ci for 1 ≤ i ≤ m, and

• Cm is a correct configuration.

Deployment plans are also denoted with C0
α1−→ C1

α2−→ · · · αm−−→ Cm.

A Deployment Plan example can be provided by describing the one nec-

essary to pass from the initial provisionally correct configuration represented

with continuous lines in Figure 2.3 to the final correct configuration where

the components in dotted lines are deployed.

new(aa2, Attachment Analyzer, Node3 xlarge, ())

new(ma2, Message Analyzer, Node4 large, (AA 7→ {aa1}))
new(ma3, Message Analyzer, Node3 xlarge, (AA 7→ {aa2}))
bind (MA, mr1, ma2)

bind (MA, mr1, ma3)

Using the previous definitions it is now possible to formally define the optimal

deployment problem. Given:

• the description of all possible microservices, called universe of microser-

vice types,

• a set of available computation nodes that can be used to host new

instances and

• an initial configuration,

36 2. Optimal and Automated Deployment for Microservices

the problem consists in finding whether it is possible to reach a correct con-

figuration with at least one instance of a given microservice type T and, in

that case, how this can be done optimizing the overall cost of the used nodes.

Definition 10 (Optimal deployment problem). The optimal deployment

problem has as inputs a finite well-formed universe U of microservice types,

a finite set of available nodes O, an initial provisionally correct configuration

C0 and a microservice type Tt ∈ U . The output is:

• If there exists one, a deployment plan P = C0
α1−→ C1

α2−→ · · · αm−−→ Cm
such that

– for all Ci = 〈Zi, Ti, Ni, Bi〉, with 1 ≤ i ≤ m, it holds ∀z ∈
Zi. Ti(z) ∈ U ∧Ni(z) ∈ O, and

– Cm = 〈Zm, Tm, Nm, Bm〉 satisfies ∃z ∈ Zm : Ti(z) = Tt.

In particular, among all deployment plans satisfying the constraints

above, one that minimizes
∑

o∈O.(∃z.Nm(z)=o) o.cost (i.e., the overall cost

of nodes in the last configuration Cm), is outputted.

• otherwise, no (stating that no such plan exists).

The problem has the inputs previously described and returns a deploy-

ment plan as output, if this exists, otherwise the message ”no”. For the

deployment plan it is guaranteed that:

• in all configurations passed through, all microservice types and all com-

putation nodes used are allowed,

• the final configuration contains at least an instance of the requested

microservice type, and

• the total cost, calculated as the sum of the costs of all nodes used (that

host at least an instance), is the minimum possible.

2.5 Decidability Proof 37

2.5 Decidability Proof

In this section the proof that shows the decidability of the analysed prob-

lem for microservices will be described. As mentioned in the corresponding

section, microservices are loosely coupled services that can be indepen-

dently developed and deployed. These characteristics allow to transform

the undecidable problem showed in Chapter 1 in the decidable problem de-

scribed in this Chapter. The decidability is proved providing an algorithm,

based on constraint programming, organized in three phases:

1. the first one defines and solves a set of constraints whose solution in-

dicates which microservices must be deployed and in which nodes they

have to be hosted,

2. the second one defines and solves a set of constraints whose solution

indicates how to connect the different instances,

3. and the last one uses the information obtained by the previous phases

to synthesize the necessary deployment plan to obtain the defined con-

figuration.

The defined constraints also manage the optimization process to ensure that

the solution is the optimal one. In particular, it uses one or more optimization

metrics to minimize the overall final configuration costs.

So, it is possible to formalize a theorem that captures the described goal and

after that the corresponding proof will be presented.

Theorem 1. The optimal deployment problem is decidable.

Proof. As already mentioned, the proof follows a constructive approach pro-

viding an algorithm that solves the optimal deployment problem. The input

of this algorithm can be summarised as:

• U , the set of microservice types,

• O, the set of available computation nodes,

38 2. Optimal and Automated Deployment for Microservices

• C0, the initial configuration that is ensured to be provisionally correct,

and

• Tt ∈ U , the target microservice type for which the user wants at least

an instance in the final configuration.

In addition to these pieces of information, it is possible to pre-calculate the

set of interfaces required or provided by microservices,

I(U) =
⋃
T ∈U dom(T .reqs) ∪ dom(T .reqw) ∪ dom(T .prov) ∪ T .conf.

Starting from these data, the algorithm is structured in three consecutive

phases.

Phase 1 As briefly described above, the first phase uses a set of constraints

to check if a possible solution to the provided optimal deployment problem

exists and, if that is the case, the solution reports:

1. the number of instances that have to be created during the deployment

plan for each microservice type T (denoted with inst(T)),

2. the number of instances of each microservice type that have to be de-

ployed on node o (denoted with inst(T , o)),

3. the number of bindings that have to be established for each weak or

strong interface p from instances of type T and instances of type T ′

(denoted with bind(p, T , T ′)).

At the end, in addition to the involved constraints, a minimizing optimiza-

tion function is also introduced to guarantee that the solution proposed is the

optimal one. Usually, this is the configuration’s total cost if it is requested

to minimize the costs of computation nodes used to obtain the final config-

uration.

The cited constraints will be presented in three different logical group to

help the reader understand them. The first group concerns the number of

2.5 Decidability Proof 39

bindings:∧
p∈I(U)

∧
T ∈U, p∈dom(T .reqs)

T .reqs(p) · inst(T) ≤
∑
T ′∈U

bind(p, T , T ′) (2.1a)

∧
p∈I(U)

∧
T ∈U, p∈dom(T .reqw)

T .reqw(p) · inst(T) ≤
∑
T ′∈U

bind(p, T , T ′) (2.1b)

∧
p∈I(U)

∧
T ∈U, T .prov(p)<∞

T .prov(p) · inst(T) ≥
∑
T ′∈U

bind(p, T ′, T) (2.1c)

∧
p∈I(U)

∧
T ∈U, T .prov(p)=∞

inst(T) = 0 ⇒
∑
T ′∈U

bind(p, T ′, T) = 0 (2.1d)

∧
p∈I(U)

∧
T ∈U, p/∈dom(T .prov)

∑
T ′∈U

bind(p, T ′, T) = 0 (2.1e)

The first three expressions guarantee that numerical constraints on interfaces

are respected. In particular, 2.1a and 2.1b ensure that there are enough

bindings to satisfy all the strong and weak required interfaces. Symmetrically,

constraint 2.1c guarantees that the provided ports, with bounded capacities,

are not overused. This is obtained requesting that the capacity of instances

of a type on an interface, calculated as the sum of the single capacities,

is greater than the number of bindings where the instances of that type

are used as provider. The next one, 2.1d, instead takes into consideration

the unbound provided ports (with the default value ∞). It specifies that, if

there is no instance of a microservice type, it can not be used as provider in a

binding, but otherwise if an instance is available, this is enough to satisfy any

possible requirement on the corresponding interface. The last one, constraint

2.1e guarantees that if a microservice type is used as provider, it actually has

a provided port for the corresponding interface.

The second group concerns the number of microservice instances that have

to be deployed:

inst(Tt) ≥ 1 (2.2a)∧
p∈I(U)

∧
T ∈U,

p∈T .conf

∧
T ′∈U−{T },

p∈dom(T ′.prov)

inst(T) > 0 ⇒ inst(T ′) = 0 (2.2b)

∧
p∈I(U)

∧
T ∈U, p∈T .conf ∧
p∈dom(T .prov)

inst(T) ≤ 1 (2.2c)

∧
p∈I(U)

∧
T ∈U

∧
T ′∈U−{T }

bind(p, T , T ′) ≤ inst(T) · inst(T ′) (2.2d)

∧
p∈I(U)

∧
T ∈U

bind(p, T , T) ≤ inst(T) · (inst(T)− 1) (2.2e)

40 2. Optimal and Automated Deployment for Microservices

The first expression, 2.2a, guarantees that the final configuration contains at

least an instance of the requested microservice type as defined in the optimal

deployment problem. The second constraint, 2.2b, ensures that if there is

an instance of a microservice type with a conflict with a particular interface,

no instances of different types that provide that interface can be deployed

at the same time. The third one addresses again the conflict aspects but

considering instances of a same type. In particular, the situation where an

instance has a conflict with, and at the same time provides, an interface. In

this case at most an instance of that type can be deployed at the same time,

as requested by the cited constraint. The last two constraints, 2.2d and 2.2e

control that there are enough pairs of distinct instances to establish all the

necessary bindings identified by the first group of constraint. 2.2d considers

bindings between instances of different types while 2.2e between instances of

the same type.

The last group concerns the distribution of microservice instances over the

available computation nodes O:

inst(T) =
∑
o∈O

inst(T , o) (2.3a)

∧
r∈R

∧
o∈O

∑
T ∈U

inst(T , o) · T .res(r) ≤ o.res(r) (2.3b)

∧
o∈O

(∑
T ∈U

inst(T , o) > 0
)
⇔ used(o) (2.3c)

min
∑

o∈O, used(o)

o.cost (2.3d)

The first expression, 2.3a, defines the value of inst(T) as the sum of all the

instances of type T deployed on the used computation nodes. The second

constraint, 2.3b, ensures the correctness of resource usage. In particular, it

guarantees that each node has enough resources (of each type) to satisfy the

requirements of all the hosted instances. The last two constraints define the

optimization function used to obtain the optimal solution. The last expres-

sion, 2.3d, minimizes the sum of the costs of the computation nodes used,

that is the main user’s goal considered. A computation node is used if it

hosts at least a microservice instance. Formally, to understand if a node is

used, a boolean variable called used(o) is defined by constraint 2.3c. It is

true if and only if the corresponding node hosts at least an instance of any

kind within the allowed types.

2.5 Decidability Proof 41

The formalization through constraints allows to use a constraint/optimiza-

tion solver to search a solution. All the constraints described in Phase 1 be-

come the input of the adopted solver. If it returns a solution, the algorithm

proposed can proceed with the next phase, otherwise the required microser-

vice system, described with the set of constraints, cannot be deployed.

Phase 2 If Phase 1 admits a solution, it means that the algorithm knows

how many instances of each microservice type have to be deployed, where

they have to be deployed and how many bindings between instances of a type

and instances of another have to be created. In this second phase the con-

nections between the various instances computed in the previous phase are

specifically decided. This operation is done again using a set of constraints.

To individually identify the instances of each type a new notation is intro-

duced: sTi , with 1 ≤ i ≤ inst(T). sTi indicates the i-th instance of type T .

Clearly, it can be used only for microservice types with at least an instance

computed in Phase 1, or rather, such that inst(T) > 0.

Boolean variables are introduced to identify the presence of a binding between

two particular instances. These variables are formalized as b(p, sTi , s
T ′
j), con-

sidering that if T = T ′, or rather, a connection between two instances of a

same type has to be created, then is necessary that i 6= j, because an instance

cannot be connected with itself.

• b(p, sTi , s
T ′
j) = 1 means that there is a connection between the required

port p of sTi and the provided port p of sT
′

j ,

• b(p, sTi , s
T ′
j) = 0, otherwise

The values n and m are used to denote inst(T) and inst(T ′), respectively,

or rather, the total number of instances of types T and T ’. Also an auxiliary

total function limProv(T ′, p) that extends T ′.prov associating 0 to interfaces

outside its domain, is introduced. In this way, limProv(T ′, p) allows to call

T ′.prov on all the possible interfaces and not only on those provided by that

microservice types. If the specified interfaces are not effectively provided the

value returned is 0 that means that it cannot be used in practice.

42 2. Optimal and Automated Deployment for Microservices

The constraints formalized in this second phase are:∧
T ∈U

∧
p∈I(U)

∧
i∈1...n

∑
j∈(1...m)\{i|T =T ′}

b(p, sTi , s
T ′

j) ≤ limProv(T ′, p) (2.4a)

∧
T ∈U

∧
p∈dom(T .reqs)

∧
i∈1...n

∑
j∈(1...m)\{i|T=T ′}

b(p, sTi , s
T ′

j) ≥ T .reqs(p) (2.4b)

∧
T ∈U

∧
p∈dom(T .reqw)

∧
i∈1...n

∑
j∈(1...m)\{i|T=T ′}

b(p, sTi , s
T ′

j) ≥ T .reqw(p) (2.4c)

∧
T ∈U

∧
p/∈dom(T .reqs)∪dom(T .reqw)

∧
i∈1...n

∑
j∈(1...m)\{i|T=T ′}

b(p, sTi , s
T ′

j) = 0 (2.4d)

The first constraint fixes an upper bound to the bindings that can be cre-

ated with each provided port using the numerical value associated by the

corresponding type to the selected provided interface. The second and the

third expressions fixes, in a dual mode, lower bounds for the strong (2.4b)

and weak (2.4c) required interfaces, guaranteeing that they will be connected

with a sufficient amount of provided ports. Finally, the last constraint en-

sures that no unnecessary bindings will be established, or rather, connections

on interfaces that are not required will be avoided.

If a solution for Phase 1 exists, then also a solution for the constraints de-

scribed just now in Phase 2 exists. Because the constraints solved in Phase

1 guarantees that in the configuration obtained there are enough provided

ports, with enough capacities, to satisfy all the strong and weak required

ports. This result is formally shown in [45].

Phase 3 In this last phase of the resolution algorithm, the information

about instances, their locations and bindings obtained in the previous phases

are used to synthetize a deployment plan. The deployment plan is the solu-

tion searched and, in particular, it can be applied to the initial configuration

provided to obtain a new configuration that satisfies the user needs.

To simplify the proof and without loss of generality, in this formal demonstra-

tion, the searched deployment plan is obtained un-deploying all the instances

in the initial configuration, and after that, deploying from scratch the target

configuration. However, in practice it is possible to re-use the components

2.5 Decidability Proof 43

already deployed in the initial configuration to implement an incremental

solution that is more efficient.

So in the proof the deployment plan is obtained through two phases.

1. The first step requires to reach an empty configuration. This goal can

be easily obtained starting with a sequence of unbind actions for all con-

nections on weak required interfaces. Then, it is possible to begin the

instances deletion in a safe way. The process first removes the instances

that have not bindings on provided port, because consequently they

can be removed without disconnecting strong required interfaces on

other components losing the configuration correctness (weak required

ports have already been disconnected by previously unbind operations).

Then, the process repeats these operations until all the instances have

been deleted. This approach is possible thanks to the well-formedness

assumption (Definition 2). Indeed, it is possible to topologically sort

the configuration, ordering the instances to be removed so as to guar-

antee that no strong required interfaces will be violated. Intuitively,

the un-deploy order is the opposite of the deploy order used to obtain

the initial configuration.

2. The second step requires to reach the target configuration from scratch.

The deployment operations for the instances computed and distributed

over the nodes in Phase 1 and connected in Phase 2 can be executed

following a topological sort considering the microservices dependencies

following from the strong required interfaces. Intuitively, the process

begins deploying instances without strong required interfaces (that can

be correctly deployed) and, only when all the necessary provided ports

are available, deploying components with strong requirements. At the

end, when all the instances are deployed (it means that all the strong

required interfaces are correctly satisfied) a sequence of binding op-

erations are inserted to connect weak required ports in any possible

order.

44 2. Optimal and Automated Deployment for Microservices

Possible Extensions It is possible to extend the set of constraints defined

in the showed proof to obtain additional advantages.

A first example can be obtained considering that usually it is better to con-

nect instances hosted in a same computation node to allow them to commu-

nicate locally without using the network. To do that, it is enough to add

an optimization metric to maximize the number of local bindings. In the

following expression used to formally represents this goal, a function N that

returns the location of a microservice instance is used.

max
∑

T ,T ′∈U,i∈1...inst(T),j∈1...inst(T ′),p∈I(U),N(sTi)=N(sT
′

j)

b(p, sTi , s
T ′

j)

Another additional constraint that can be inserted is a metric to maximize

the number of bindings. For example, it is useful if the load balancers are

modelled as components where the back-ends are connected through a weak

required interface. Maximizing the bindings means that in the synthesized

configuration all the possible services that can satisfy the interface required

by the load balancer, will be connected with it to obtain the wanted be-

haviour.

max
∑

sTi ,s
T ′
j ,p∈I(U)

b(p, sTi , s
T ′

j)

2.6 Complexity Analysis

The algorithm proposed in the previous section proves the decidability of

the analysed problem. In this section its complexity will be studied. It is

possible to show that Phase 1 and Phase 2 are in NP, while Phase 3 can

be solved in polynomial time. Observing that numeric constraints can be

represented in log space, the output of Phase 2 could be exponential in the

size of output of Phase 1. This is because the output of Phase 1 indicates

only the total number of instances for each type while the output of Phase

2 requires the enumeration of all the instances that have to be deployed. In

2.6 Complexity Analysis 45

other words, the length of the deployment plan, that is the algorithm output,

could be exponential with respect to the input size. For this reason in the

worst case the algorithm has a NEXPTIME complexity.

But considering that the number of microservices hostable in a single node

in a real situation is clearly strongly limited by the amount of its resources,

it makes sense to assume that a node can host only a polynomial amount of

microservices. Using this assumption the worst case can be considered unfea-

sible in practice. Nevertheless, the decision version of the problem remains

NP-complete and consequently to obtain the optimal plan it is necessary to

solve an NP-optimization problem.

This can be better faced thank to the choice of develop the algorithm using a

constraint programming paradigm. In fact, it allows to exploit state-of-the-

art constraint solvers [41, 42, 43] that are frequently used to solve NP-hard

problems.

A formal proof of the algorithm complexity discussed in this section can be

found on [15].

Chapter 3

Case-Study: Model of an Email

Processing Pipeline

Microservice Architecture

In addition to the theoretical outcomes described in Chapter 2, a small

model of a real-world microservices application has been realized to evaluate

the applicability of the proposed approach in spite of the algorithm complex-

ity (NP under the assumption of polynomial size of the target configuration).

It simulates an email processing pipeline inspired by Iron.io and described in

[2].

It is developed using the Abstract Behavioral Specification (ABS) language,

a high-level object-oriented language that supports deployment modelling.

ABS is agnostic with respect to deployment platforms (e.g., Amazon AWS,

Microsoft Azure) and technologies (e.g., Docker or Kubernetes) and offers

high-level deployment primitives to create deployment components and to

instantiate objects inside them. The deployment and scaling plans are ob-

tained through a tool called SmartDepl. It is an ABS extension that offers the

possibility to enrich the developed code with the required information to spec-

ify the current instance of the optimal deployment problem. In particular,

this information includes: the computing resources offered by computation

47

48
3. Case-Study: Model of an Email Processing Pipeline Microservice

Architecture

nodes and required by each software component, the costs of those nodes, the

dependencies between components and the deployment constraints – which

usually drive the decisions taken by the operations’ professionals – provided

through declarative expressions. Inside, SmartDepl uses Zephyurs2, which is

a configuration optimizer. It takes the user requirements and a universe of

components, and computes the optimal configuration guaranteeing that user

needs are satisfied. The Zephyurs2 result is parsed by SmartDepl to create

an ABS module that codifies the computed optimal configuration plan. In

particular, the generated ABS code reports the allocation of components and

how to connect them.

For the proposed case-study, a simple deployment plan with one instance for

each microservice is considered, and three horizontally scaling plans with dif-

ferent dimensions have been realized. The scaling plans differ for the amount

of inbound requests expected (small, medium or large increments in the num-

ber of received emails). The experimental results reached in this case-study

are encouraging. The tool is able to compute deployment or scaling plans

that allow to OPTIMALLY deploy more than 30 new instances considering

hundreds of available machines of 3 different types.

Then, additional auxiliary ABS classes are developed and a specific ABS

feature called Timed-ABS are used to implement a simple simulation. This

allows to observe the behaviour of the system while the calculated deploy-

ment and scaling plans are applied on variations of the number of emails

received.

3.1 Email Processing Pipeline Architecture

The system modelled is an Email Processing tool. The architecture con-

tains 12 different microservices and the same amount of load balancers. It

is organized as a pipeline composed by distinct parallel sub-pipelines, each

of which analyses a different email component. In the realized model, four

sub-pipelines are considered dividing an email in the same amount of com-

3.1 Email Processing Pipeline Architecture 49

Figure 3.1: Microservice architecture for email processing

ponents:

1. headers,

2. set of links,

3. text, and

4. set of attachments.

Other branches can be easily introduced if necessary. For the attachments

only a path for images has been considered, but alternative ways can be easily

added in this case as well to specifically analyse different types of documents.

A simple representation of the realized model is showed in Figure 3.1. This

representation only contains the main microservices, while load balancers, a

DB service and other auxiliary components are expressly excluded to favour

the clarity. The processing flow can be easily understood observing the image.

1. The entry-point of the system is the Message Receiver, it is the only

component without a load balancer in front of and it simply receives

emails and forwards them to the Message Parser.

2. Message Parser extracts data from the incoming mail, parsing the dif-

ferent planned fields. It also generates a unique message id. Before

starting the different analysis, it stores some information about that

message in the DB (using the specific microservice) to know that it is

50
3. Case-Study: Model of an Email Processing Pipeline Microservice

Architecture

being analysed. After that, it sends the various mail components to

the corresponding microservices.

(a) Header Analyser receives the mail headers, analyses them and sends

the obtained result to Message Analyser.

(b) Link Analyser receives the set of links, analyses each of them and

sends the obtained result to Message Analyser.

(c) Text Analyser receives the mail text, divided in message header

and message body, analyses them and sends the obtained result

to Message Analyser. The message body analysis, in addition to

the normal operations expected, exploits the Sentiment Analyser

functionalities. It divides the text into blocks and does a sequence

of request-response calls to obtain a sentiment analysis.

(d) Virus Scanner receives an attachment, controls if it contains a virus:

in this case it sends directly a warn to Message Analyser, otherwise

the attachment proceeds on the expected path.

An attachment without virus is sent to Attachment Manager that

decides its type and sends it in the correct analysis process. In

our example only images are considered but other possible paths

can be introduced.

An image is received by Image Analyser that analyses it and sends

the obtained result to Message Analyser. The image analysis, in

addition to the normal operations expected, does two request-

response calls to NSFW Detector and Image Recognizer. The first

one is a ”Not Safe for Work Detector” and returns a boolean value

with an opinion about the image, while the second returns a string

that describes what the selected image represents.

3. All the single sub-analysis results are sent to the Message Analyser that

inserts them on the DB and checks if all the expected information have

been loaded. In this case, it recovers all the data for the corresponding

message from the DB using the message id and produces a final total

3.2 Language and Tool 51

result, which is the email processing pipeline’s output. Otherwise, if a

sub-pipeline is still analysing an email component, it moves to analyses

the next call.

• DB is a microservice that operates as an interface with a database. It

allows to insert results of partial analyses linked with a message id or to

recover all the data stored for a particular message when its analysis is

completed. In this last case, all the returned information is also deleted

from the database because the analysis of that message is finished. The

DB microservice further offers auxiliary services to monitor the system.

In particular, it counts the messages reached and the average analysis

duration. A monitor component can exploit these additional services

recovering the data at the end of a monitoring window and resetting

them for the next one.

In addition to the code specification of each microservice, an estimation on

the resources necessary to host an instance of each of them has been per-

formed. It has been realized comparing the intuitive computation load of

each microservice. These resource data are inserted with information about

dependencies through specific annotations that will be introduced later. The

cited annotations are also used to introduce the specification of the available

computation nodes. In particular in our case-study, three types of com-

putation nodes, inspired by Amazon EC2 instances, are coded: c4 large,

c4 xlarge, and c4 2xlarge.

3.2 Language and Tool

To realize the model, the Abstract Behavioral Specification (ABS) lan-

guage [5] has been used. The ABS extension SmartDepl [9] is instead used

to specify all the additional information and obtain the deployment plans.

Indeed, it offers the possibility to annotate the code with information about

resources and costs of computation nodes, resources and dependencies of

52
3. Case-Study: Model of an Email Processing Pipeline Microservice

Architecture

microservices and a declarative description of deployment plans required.

Zephyrus2 is the core of SmartDepl and it is an engine used to solve the

optimal deployment problem presented in Chapter 2. In this section, these

three tools are briefly presented.

3.2.1 Abstract Behavioral Specification (ABS) Language

As mentioned above the ABS language is a high-level, actor-based, object-

oriented language. It is designed to create models and execute the corre-

sponding code. ABS offers good features for a programming language as

algebraic user-defined data types, side effect-free functions and immutable

data. Considering also its formal semantics and compositional proof theory,

it is easy to understand that ABS allows to formally rationalise the modelled

system and its proprieties. For this purpose and to enable static analysis of

the code developed, a variety of tools (deadlock checker, resource analysis,

formal verification) have been realized. ABS expressions are divided in pure

expressions (side effect-free) or expressions with well-defined side effects. The

latter cannot be combined with other expressions to simplify the static anal-

ysis of the cited tools and, in general, other theoretical investigation on the

code.

The high-level syntax adopted, strongly inspired by Java, is very intuitive.

This choice allows not ABS-skilled programmers to understand the majority

of the codes and to easily learn how to develop ABS programs. The code is

organized in modules that exports and imports definitions.

ABS is based on asynchronous method calls. Futures are used to synchro-

nize and read the returned results. The objects are organized into COGs

(Concurrent Object Groups). Each COG runs one process at a time and

a cooperative context-switch/scheduling is adopted. Multiple COGs can be

executed in parallel. The image showed in Figure 3.2, presented in the ABS

manual [4], clarifies this idea. Two possible new instructions (new and new

local) are available to instantiate new objects in the current COG or in a new

one.

3.2 Language and Tool 53

Figure 3.2: ABS objects organization in COGs

Annotations can be written in front of statements and definitions using square

brackets ([Annotation Text]) to specify additional information or information

used by tools. The SmartDepl annotations presented in the following section

and used to provide the necessary information to solve the Optimal Deploy-

ment Problem follow this specification.

In the development of the case-study model, an extension to the ABS core,

called Timed ABS, has been used. It introduces a notion of abstract time

that allows to execute simulations studying the timing-related behaviour of

the modelled system. In the ABS environment the time does not advance by

itself but as a response to specific language instructions. In particular, time

only advances when all processes are blocked and no process is ready to be

executed. A process can be suspended by classical situations as it waits that

a condition becomes true or a result is returned through a Future but also

when there are not enough resources to be executed. Indeed the concepts of

code deployment on different possible machines, resources and their use can

also be introduced in ABS. To do that, three aspects have to be introduced

in the model:

• Locations where software components are hosted, implemented by De-

ployment Components. They can host COGs and they have a lim-

ited amount of resources that can be used by objects contained in the

hosted COGs.

• Costs to execute operations. They can be specified for each type of re-

54
3. Case-Study: Model of an Email Processing Pipeline Microservice

Architecture

sources considered and they are implemented through Resource An-

notations. Executing an annotated operation implies paying the as-

sociated costs.

• Time used to reason about advantages or disadvantages obtainable by

varying locations and costs. It is implemented with the previously

mentioned Timed ABS

These elements work together to simulate the Resource Consumption. In

particular, each deployment component offers an amount of resources. Pro-

cesses hosted in that location can execute operations that consume resources

until these are available. When the remaining amount of resources is not

enough to continue the execution, the hosted processes are stopped until a

time unit passes and the deployment component’s resources are refilled.

The deployment components are defined, created and managed through the

CloudProvider API. A provider of machines (in ABS they correspond to de-

ployment components) is modelled through a CloudProvider object. Using

this object it is possible to specify the offered machines descriptions, provid-

ing a name and the offered resources (if no value is provided for a resource

type, it is infinite). Then, DeploymentComponent objects can be created

requiring an instance of one of the possible machines using its name. This

can be done using the preLaunchInstanceNamed method offered by Cloud-

Provider objects. Consider an example inspired by the generated code for

the analysed case-study:

CloudProvider cloudProvider = new CloudProvider(”CloudProvider”);

cloudProvider.addInstanceDescription(Pair(”c4 xlarge”,

map[Pair(Cores, 4), Pair(Memory, 750)]));

cloudProvider.addInstanceDescription(Pair(”c4 large”,

map[Pair(Cores, 2), Pair(Memory, 375)]));

cloudProvider.addInstanceDescription(Pair(”c4 2xlarge”,

map[Pair(Cores, 8), Pair(Memory, 1500)]));

DeploymentComponent c4 large 0 = cloudProvider.prelaunchInstanceNamed(”c4 large”);

3.2 Language and Tool 55

DeploymentComponent c4 large 1 = cloudProvider.prelaunchInstanceNamed(”c4 large”);

DeploymentComponent c4 xlarge 0 = cloudProvider.prelaunchInstanceNamed(”c4 xlarge”);

DeploymentComponent c4 2xlarge 0 = cloudProvider.prelaunchInstanceNamed(”c4 2xlarge”);

As defined above, Deployment Components host COGs. Processes inside

COGs deployed in the same Deployment Component share the resources

provided by that Deployment Component. To deploy a new COG in a specific

Deployment Component, the corresponding definition instruction has to be

annotated with a DC annotation. Examples inspired again by the case-study

generated code are:

[DC: c4 large 0] MessageParser LoadBalancerInterface MessageParser LoadBalancer 0 =

new MessageParser LoadBalancer();

[DC: c4 large 1] MessageReceiverInterface MessageReceiver 0 =

new MessageReceiver(MessageParser LoadBalancer 0);

[DC: c4 large 2] MessageAnalyser LoadBalancerInterface MessageAnalyser LoadBalancer 0 =

new MessageAnalyser LoadBalancer();

[DC: c4 xlarge 0] HeaderAnalyserInterface HeaderAnalyser 0 =

new HeaderAnalyser(MessageAnalyser LoadBalancer 0);

[DC: c4 2xlarge 0] DBInterface DB 0 = new DB();

In ABS resources are countable, measurable properties of a deployment com-

ponent. ABS supports four resource types: Cores, Memory, Bandwidth and

Speed. Cores and Memory are static while Bandwidth and Speed are con-

sumed and refilled during the program execution. The first three types are

intuitive. The latter type models the execution speed. Speed resources are

consumed by execution of instruction annotated with the label Cost. If the

amount of Speed available is lower than the annotated cost, the execution

takes an observable amount of time. This time is necessary to refill the Speed

resource of the Deployment Component reaching a sufficient quantity.

Different back-ends with different characteristics and purposes are available

to execute ABS code. In this project the Erlang back-end has been used

because it supports the resource models and the time simulation (Real-Time

ABS).

Additional information about ABS and the tools offered can be found in the

ABS web site [3], in its documentation [4] or in the corresponding paper [5].

56
3. Case-Study: Model of an Email Processing Pipeline Microservice

Architecture

3.2.2 SmartDepl

SmartDepl is an ABS extension. It gives the possibility to declaratively

specify deployment requirements, abstracting from concrete deployment de-

cision, and by processing them it provides an ABS class that implements

the requested plan. The user can use the method deploy and undeploy of-

fered by generated classes to trigger the deployment execution or undo it if a

downscale is required. To specify the necessary information, SmartDepl uses

annotations. These can be divided in: annotations employed to describe

available computation nodes, annotations linked with ABS classes, where

necessary resources and dependencies for the corresponding components are

described, and annotations used to present user desiderata. Deployment

needs can be generated from both business decisions or technical reasons,

and SmartDepl attempts to allow users to capture all of them. Common

examples of deployment requirements are:

• A minimum number of instances of each software component to ensure

a Service Level Agreement (SLA).

• Services that work with sensitive data cannot be deployed on shared

machines.

• For world-wide applications, the used virtual machines should be dis-

tributed over different geographical locations to increase the fault-

tolerance. Cloud service providers as Amazon or Google easily allow

to specify the region and the availability zone wanted during virtual

machines initialization. The correct distribution over different geo-

graphical areas should be maintained also after scale-up or scale-down

operations, requiring particular attentions.

• To improve the network throughput and latency, it could be necessary

to specify preferences on bindings between components. For example,

local (i.e. inside a single machine or multiple machines in the same

zone) connections are usually preferable.

3.2 Language and Tool 57

• Co-location requests, when to install an instance of a component, an

instance of another is strictly necessary in the same machine.

The annotations values are specified using the JSON format. In the ABS

code, they can be inserted with the following tags:

• [SmartDeployCloudProvider : JSON String] : to describe possible

computation nodes,

• [SmartDeployCost : JSON String] : to specifies annotation linked

with an ABS class, and

• [SmartDeploy : JSON String] : to insert the declarative description

of user deployment desiderata.

Annotations used to describe possible nodes types are very simple and intu-

itive. An example is:

{

"c4_large" : {

"cost" : 119,

"payment_interval" : 1,

"resources" : {

"Cores" : 2,

"Memory" : 375

}

},

"c4_xlarge" : {

"cost" : 237,

"payment_interval" : 1,

"resources" : {

"Cores" : 4,

"Memory" : 750

}

},

"c4_2xlarge" : {

"cost" : 476,

"payment_interval" : 1,

58
3. Case-Study: Model of an Email Processing Pipeline Microservice

Architecture

"resources" : {

"Cores" : 8,

"Memory" : 1500

}

}

}

SmartDepl requires that all the ABS classes, that can be involved in an

automatically generated plan, have to be annotated. The annotations should

be inserted immediately before the related class. These annotations, linked

with ABS classes, contains:

• Resources consumed/required by an instance of the corresponding

class. SmartDepl works with resources exploiting the ABS Cloud API

[6]. Usually the main resources taken into account are the memory and

the number of cores.

• Required dependencies and eventual numeric constraints on it (for in-

stance, at least two services should be present in the initialization list

of a load balancer). This information corresponds to Required Ports

described in the formal model.

• A list of functionalities provided and eventual numeric constraints.

These information correspond to Provided Ports described in the

formal model.

An example can be taken from the code developed for the case-study model.

In this particular case, the annotation associated with the Message Receiver

microservice is used.

{

"class" : "MessageReceiver",

"scenarios" : [

{

"name" : "default",

"provide" : -1,

"cost" : {

3.2 Language and Tool 59

"Cores" : 2,

"Memory" : 200

},

"sig" : [

{

"kind" : "require",

"type" : "MessageParser_LoadBalancerInterface"

}

],

"methods" : []

}

]

}

The previous JSON object specifies a single scenario, called default, where

the microservice provides its interface to an unlimited amount of other com-

ponents (”provide” value = -1). As resources, it requires 2 core and 200MB

of RAM and as dependencies a reference to a component that provides the

MessageParser LoadBalancerInterface. This reference is passed through a pa-

rameter of the class constructor and formally it represents a strong required

port. Additional scenarios can be inserted to specify different annotations

for the same class, if it can be used in different modes.

The load balancer microservices have a slightly different annotation. An

example is:

{

"class" : "MessageParser_LoadBalancer",

"scenarios" : [

{

"name" : "default",

"provide" : -1,

"cost" : {

"Cores" : 2,

"Memory" : 200

},

"sig" : [],

"methods" : [

60
3. Case-Study: Model of an Email Processing Pipeline Microservice

Architecture

{

"add" : {

"name" : "connectInstance",

"param_type" : "MessageParserInterface"

},

"remove" : {

"name" : "disconnectInstance",

"return_type": "MessageParserInterface"

}

}

]

}

]

}

They do not have strong required ports specified through the ”sig” field, but

they have a weak required port represented through the ”methods” field.

connectInstance and disconnectInstance are methods of the annotated class

that both require a parameter of type MessageParserInterface. They imple-

ment the necessary operation to connect or disconnect an instance from the

corresponding port during the component life-cycle.

The last type of possible annotations, as cited above, allows users to define

and characterize the required deployment plans. These annotations can be

specified everywhere in the ABS code. An example can be given, present-

ing the code that has been used in the case-study to generate the initial

deployment plan.

{

"id":"MainSmartDeployer",

"specification":"

DB = 1 and

MessageReceiver = 1 and

MessageParser = 1 and

...

forall ?x in DC: (

(?x.MessageParser_LoadBalancer +

3.2 Language and Tool 61

?x.HeaderAnalyser_LoadBalancer +

...

?x.MessageReceiver +

?x.DB)

> 0 impl (sum ?y in obj: ?x.?y) = 1

)",

"DC":[],

"obj":[],

"cloud_provider_DC_availability":{

"c4_large":40,

"c4_xlarge":40,

"c4_2xlarge":40

},

"bind preferences":[

"local",

"sum ?x of type MessageParser in ’.*’ :

forall ?y of type MessageParser_LoadBalancer in ’.*’:

?x used by ?y",

"sum ?x of type HeaderAnalyser in ’.*’ :

forall ?y of type HeaderAnalyser_LoadBalancer in ’.*’:

?x used by ?y",

"..."

],

"add_method_priorities":[],

"remove_method_priorities":[]

}

The first field is the name of the deployment plan described. It will be-

come the name of the corresponding generated ABS class. So, a class with

that name and the expected behaviour (it offers the deploy/undeploy meth-

ods) can be used into the ABS code and it will become available after the

SmartDepl execution. The field ”specification” contains the main deploy-

ment requirements. In this case the user requires an instance for all the main

microservice (the corresponding load balancers are automatically added to

satisfy the components dependencies). In addition to this request, the user

requires that instances of load balancers, DB and MessageReceiver have to

62
3. Case-Study: Model of an Email Processing Pipeline Microservice

Architecture

be deployed on a dedicated machine (if a machine hosts an instance of the

specified types it can host only a single component, or in other words only

its own). The ”DC” field can be used to provide existing deployment compo-

nents with free resources, if there are some, that can be used to deploy new

objects without renting new machines, therefore saving money. The next

field, ”obj”, instead can be used to specify already deployed components and

their provided functionalities still available. They can be used if necessary

without having to deploy them again. The ”cloud provider DC availability”

allows to provide the available computation node types and the related mul-

tiplicity. The purpose of the last field used, ”bind preferences”, is very in-

tuitive. In this case, it is required to prefer local bindings if possible and to

maximize the number of connections between microservices and related load

balancers. These last constraints guarantee that each instance is always con-

nected with the corresponding load balancer. Some fields are not described

here. More complex values can additionally be specified for the showed fields.

If necessary, more information can be obtained in the SmartDepl documen-

tation, publicly available [8].

Once all the necessary information has been provided and SmartDepl has

been launched, it parses the ABS code, extracting all the presented anno-

tations. In particular, it understands which virtual machines can be used,

which components are coded, how many resources they require, what are

their required and provided ports and the end the deployment plan charac-

teristics. Using these inputs, it computes a plan to reach an optimal con-

figuration that satisfy all the user requests. As cited above, the calculated

plan can be triggered or undo using deploy/undeploy methods on an object

of the generated ABS class. The code of the deploy method is intuitively,

usually it instantiates new deployment components (that represent compu-

tation nodes), it creates new objects on them (that represent new instances)

providing all the parameters required by the corresponding constructor (that

represent the strong required ports satisfaction) and at the end it connects

different deployed components using methods specified in the annotations

3.2 Language and Tool 63

(that represent the weak required ports satisfaction). During these oper-

ations it updates data structures to store useful information to undo the

executed operations when the corresponding undeploy method is called. The

two methods can be used to deploy or undeploy the initial configuration or

inside a monitor to scale-up or scale-down the system when necessary. The

generated class interface offers also getter methods to obtain information or

references of objects deployed or computation nodes used.

SmartDepl can also provide a graphical representation of the configuration

computed, as shown in Figure 3.3.

3.2.3 Zephyurs2

As mentioned in the introduction of this section, Zephyurs2 is the engine

used by SmartDepl to find the optimal configuration required. It is presented

in [10], and here only a briefly introduction is provided. Zephyurs2 is a

tool that solves the deployment optimization problem, or in other words, it

searches a way to correctly deploy and configure an application minimizing

the costs. These operations are usually done manually, requiring times and

highly skilled specialists (DevOps team). Despite the usage of specifically

prepared experts, the considered phases remain one of the major source of

errors. The following document [54] reports that problems during deployment

and configuration are the second cause of errors in Google data centres.

The Zephyurs2 inputs are:

• a description of the available virtual machines where components can be

hosted, providing a name, the amount of each type of resource offered

and the associated cost,

• a declarative specification of software components, containing informa-

tion about required resources and dependencies, and

• a declarative representation, using constraints, of target configuration

requirements and characteristics. For example the requested number of

64
3. Case-Study: Model of an Email Processing Pipeline Microservice

Architecture

instances of a component or conflicts in co-location between instances

of different components, and so on.

These information are provided using a specifically defined language based

on JSON format. Clearly there are strong similarities between the following

specifications and the previous described SmartDepl annotations. Indeed

SmartDepl translates its annotations into Zephyrus2 accepted inputs, to use

it to solve the provided problem. Example of virtual machine description is

very easily understandable:

"c4_large": {

"num": 40,

"resources": { "Cores": 2, "Memory": 375 },

"cost": 119

}

The first field specifies the number of virtual machines of the corresponding

type available and then the other fields describe the resources offered and

the cost required. An example of a component description is:

"MessageReceiver": {

"resources": { "Cores": 2, "Memory": 200 },

"requires": { "MessageParser_LoadBalancerInterface": 1 },

"provides": [

{

"ports": ["MessageReceiverInterface"],

"num": -1

}

]

}

The fields are very intuitively: the first one specifies the resources consumed,

the second one describes the strong-required ports with corresponding nu-

merical constraint and in a similar way the last one the provided ports. The

value -1 stays for ∞, in other words, it is used with ports that can be con-

nected with an unbounded number of components.

The last type of input is specified using a specific language for deployment

constraints. This language allows to provide simple constraints, but also

3.2 Language and Tool 65

more complex cloud- and application-specific constraints. To present some

examples will be used the expressions presented in [10]:

HTTP_Load_Balancer > 0 and c3_large[1].WordPress = 1

This constraint requires at least an instance of HTTP Load Balancer com-

ponent and exactly an instance of WordPress hosted in the second virtual

machine of type c3 large. The considered virtual machine is the second one

because the indexs start from 0.

forall ?x in locations: (?x.WordPress > 0 impl ?x.MySQL > 0)

Identifiers prefixed with a question mark are variables used to codify quantifi-

cation and sum expressions. Quantification and sum building can range over

components, locations, or over components/locations whose names match a

given regular expression. The previous constraint specifies that in each loca-

tion (virtual machine) where at least an instance of WordPress is deployed,

also at least an instance of MySQL has to be deployed too. So this expression

allows to capture a co-location requirement. In a similar way is possible to

require that a component has to be installed alone, or in other words, that

if a virtual machine hosts an instance of this component, the sum of other

instances hosted has to be 0. So it hosts exactly one component. This idea

is codify has:

forall ?x in locations: (?x.HTTP_Load_Balancer > 0 impl

(sum ?y in components: ?x.?y) = 1)

Using more complex constraints is also possible to express preferences on

bindings. The simplest possibility is to use only the keyword local that spec-

ifies the request of maximize the number of connections between components

deployed in the same node. Arithmetic expressions can be used to capture

more complex preferences. To better understand these advanced possibilities

and to obtain more examples, the Zephyurs2 repository [11] can be used.

The language allows also to customizes the optimization criteria. The tool

minimizes the expressions provided in the given priority order. Cost is the

keyword used to represent the total cost of the application. Consequently

66
3. Case-Study: Model of an Email Processing Pipeline Microservice

Architecture

the following expression, that is the default value used, provides the objec-

tive function to minimize first the total cost and then the total number of

components:

cost; (sum ?x in components: ?x)

Providing all the described information the tool returns the optimal deploy-

ment plan to reach a configuration that:

• is correct, considering components dependencies and resource usage,

• satisfies the user specifications given, and

• is the optimal one considering the objective function specified.

So, the main advantage obtained using the tool is that the application archi-

tects no longer have to take care of components distribution or component

dependencies. In fact, they only describe the most important aspects of the

application, exploiting the constraint expressiveness, and they leaves to the

tool the responsibility of prepare the correct, and optimal, configuration that

satisfies the characteristics provided. For example, if the application descrip-

tion specifies only the presence of an instance of a specific component, it is the

tool that in an automatic way considers also all the components necessary to

deploy the instance required, exploiting the information about dependencies

provided in input.

Zephyurs2 is an evolution of Zephyurs. Respect to the previous version,

Zephyurs2 can handle in a better way a larger number of components and

virtual machines and it is faster. In addition to the performance, Zephyurs2

provides simplified input format using a better declarative language that

allows the users to specify the deployment scenarios in a more direct and

concise way.

The computation is based on modern SMT and CP technologies to better

manage large and complex scenarios. In fact, Zephyurs2 translates the input

provided into a Constraint Optimization Problem encoded in MiniZinc [55].

At this point the problem is solved successively minimizing the objective

3.3 Deployment Plans 67

function components. Zephyrus2 supports also some extensions to give the

possibility to find the better search method for the current problem. It is

possible:

• to use MiniSearch [56], a meta-search language for MiniZinc, to give the

possibility of use (heuristic) meta-searches solution approaches, such

as large neighborhood search (LNS), lexicographic branch-and-bound,

and And/Or search.

• the use of satisfiability-modulo-theories (SMT) solvers.

Zephyurs2 is developed in Python and it is open source. The Zephyurs2

implementation code can be found in [11] and it can be easily used and tried

through a Docker container. In [10] can be found an experimental analysis of

Zephyurs2 performances considering different settings and solving engines.

3.3 Deployment Plans

In this section will be introduced the deployment and scaling plans pre-

pared for the realized model. The first step to prepare a Deployment Plan is

the estimation of a maximum load, in term of inbound requests, supported by

a single instance of each microservice. Considering that the developed model

is used only to show the applicability of the discussed approach, these values

have been calculated intuitively, sorting the different computations respect to

a supposed workload. The list of adopted maximum input capacities (MICs)

is showed in Table 3.1. It is possible to observe how light microservices, as

Header Analyser that processes short and uniform data, have a bigger MIC

than components with an heavier computations, as Image Recognizer.

For Sentiment Analyser and Message Analyser, the number of simultaneous

manageable requests, 15K and 70K respectively, are transformed in number

of messages. In fact, these two microservices are called more times for each

message. In particular, an average of 2,5 blocks for message is considered for

Sentiment Analyser (15/2,5=6K) and an average of 5 partial results received

68
3. Case-Study: Model of an Email Processing Pipeline Microservice

Architecture

for Message Analyser (70/5=14K). The two values depend in the first case on

the length of the mail text and in the second case on the number of attach-

ments contained in the received email.

The Table 3.1 contains also the cost of each computation used to implement

the simulation of the system in ABS. In particular, for each microservice: a

unit of time is divided by the corresponding MIC and the result obtained

is multiplied by 1000 to obtain an integer value. For example, the Mes-

sage Parser, Header Analyser and Link Analyser computations have a cost of
1
40
· 1000 = 25, while Virus Scanner, NSFW Detector and Image Recognizer

computations a cost of 1
13
· 1000 = 76. The computation costs for Sentiment

Analyser and Message Analyser have been calculated considering the number

of simultaneous manageable requests (15K and 70K respectively) and not

the number of simultaneous manageable messages. Because clearly the cost

is payed at each call, so at each request. The costs are inserted in the code

through the

[Cost: n] skip;

instruction that it is used to model the behaviour of each component with-

out explicitly coded its. The cost annotations are necessary to exploit the

Deployment and Resource Modelling features of ABS to implement a simu-

lation. Costs are not introduced on components that cannot be scaled, as

MessageReceiver, load balancers and DB. But these additional annotations can

be easily introduced if they are considered useful.

Using the previous estimations, it has been prepared an initial deployment

plan with only one instance for each microservice and three incremental scal-

ing plans. Monitoring the inbound requests, or in other words, the number

of emails received in the chose time windows, is possible to incrementally

scale-up or scale-down the system using the more adapted plan. The calcu-

lated possibilities are showed in Table 3.2. It is important to observe that

the scaling plans are incrementally. So, if the biggest forecast increments

of inbound requests is registered all the three scaling plans have to be con-

sequently applied and not only the last one. All the plans are computed

3.3 Deployment Plans 69

Microservice Manageable Messages Computation Cost

Message Receiver ∞ 0

Message Parser 40K 25

Header Analyser 40K 25

Link Analyser 40K 25

Text Analyser 15K 66

Sentiment Analyser 6K (15K requests) 66

Virus Scanner 13K 76

Attachment Manager 30K 33

Image Analyser 30K 33

NSFW Detector 13K 76

Image Recognizer 13K 76

Message Analyser 14K (70K requests) 14

Table 3.1: Maximal number of simultaneous requests that each microservice

can manage

considering 40 available computation nodes of each one of the three types,

for a total of 120 available nodes.

The scaling factor of each microservice, or rather how many new instances

have to be deployed for that microservice considering the computation load,

clearly depends on the relative MIC. The number of instances added, it is

more or less the amount of additional inbound requests (number of requests

received minus the number of requests that the system can already cor-

rectly manage) divided by the corresponding MIC. For example, specifically

analysing the Image Recognizer case: it has a MIC of 13K, so if the system

received an increment of the inbound request equal to:

• +20K → 20/13 ∼= 2, this means that at least two more instances for

this microservice have to be added to correctly manage the new com-

putation load. Considering that the Image Recognizer computation is

very heavy, it was decided to add directly 3 instances.

70
3. Case-Study: Model of an Email Processing Pipeline Microservice

Architecture

• +50K → 50/13 ∼= 4, this means that at least four more instances

for this microservice have to be added to correctly manage the new

computation load.

• +80K → 80/13 ∼= 6, this means that at least six more instances for

this microservice have to be added to correctly manage the new com-

putation load.

The values computed as described are used as references, but the scaling

plans are then defined considering also other factors, changing and adapting

these values where necessary.

The load balancers are not considered in the plans because they are not

”main” microservices, so the user has not to focus on them. They are auto-

matically singly deployed in the initial deployment plan because they are nec-

essary to satisfy the microservice dependencies. A single instance is enough

because their provided ports are unbounded so the single instance can sat-

isfy all the corresponding required ports. All the microservice instances that

are deployed (or un-deployed) during the scaling plans, are automatically

connected (or disconnected) with the corresponding load balancers using the

specifically prepared methods connectInstance and disconnectInstance (spec-

ified through the annotations) and provided by load balancer classes.

The algorithm used in practice to compute the previous described deploy-

ment and scaling plans is a little be different respect to that one presented

in the decidability proof showed in Chapter 2. In particular, the Phase 3

does not remove all the deployed instances and re-deploy the new configura-

tion from scratch, but it simple adds the new instances and connects them

with the corresponding load balancers (or it executes the inverse behaviour

during scale-down operations). Considering the constraints definition, the

maximization of bindings, showed as a possible extension at the end of the

proof in Chapter 2, guarantees the described behaviour, where each new in-

stance are connected with the corresponding load balancer.

The four presented plans are computed using SmartDepl that returns for

each one an ABS class with a set of methods where the most important are:

3.3 Deployment Plans 71

Microservice (MIC) Initial (10K) +20K +50K +80K

MessageReceiver(∞) 1 - - -

MessageParser(40K) 1 - +1 -

HeaderAnalyzer(40K) 1 - +1 -

LinkAnalyzer(40K) 1 - +1 -

TextAnalyzer(15K) 1 +1 +2 +2

SentimentAnalyzer(6K) 1 +3 +4 +6

VirusScanner(13K) 1 +3 +4 +6

AttachmentsManager(30K) 1 +1 +2 +2

ImageAnalyzer(30K) 1 +1 +2 +2

NSFWDetector(13K) 1 +3 +4 +6

ImageRecognizer(13K) 1 +3 +4 +6

MessageAnalyzer(14K) 1 +1 +2 +2

Table 3.2: Description of different deployment/scaling plans calculated

Deploy and Undeploy. These classes and the cited methods can be used in

a system monitor to adapt the current configuration with the computation

load, guaranteeing that each change adopted is optimal in term of compu-

tation node costs. SmartDepl is be able to generate the code to deploy

the optimal configurations presented with a timeout of 30 minutes for each

scenario. This time has been considered reasonable because the different de-

ployment plans are computed in advance, predicting different system loads.

To obtain on-the-fly deployment plans that would allow to immediately re-

spond to unpredictable system loads, the tool should be sped. An ambitious

goal could be the possibility to compute a plan in few minutes, around the

average start-up time of a virtual machine in a public Cloud.

SmartDepl can also provide a graphical representation of the configuration

computed. An example for the initial deployment plan previous described

can be seen in Figure 3.3. It represents:

• Computation Nodes: with external boxes with the name on the top

72
3. Case-Study: Model of an Email Processing Pipeline Microservice

Architecture

and smaller boxes inside for hosted microservice instances.

• Microservice Instances: with boxes, inside a node, with three types of

information: the first field is the instance name, after that there are

a sequence of green fields that represent provided ports and red fields

that represent required ports.

• Bindings: with arrows from green fields (provided ports) to red fields

(required ports).

3.4 Additional ABS Classes

In this section a more specific presentation of the code developed will be

giveb. The ABS deployment components have been used to codify the com-

putation nodes. Instead, each microservice has been modelled through an

ABS class. Consequently each microservice instance is represented through

an instantiation of the corresponding ABS class, or in other words, through

an ABS object. The code developed consequently contains an ABS class for

each microservice described in the previous sections and another for the cor-

responding load balancer. The connections between instances are managed

through object references. If an instance has a reference to another, it can

call/communicate with its. This situation correctly model the presence of a

binding between them. The bindings required to create a new microservice

instance, that in our model are all the connections to strong required inter-

faces, are inserted as parameters of the class constructor. In this way, they

have to be available to be able to create a new instance of the class, or rather,

to simulate the deployment of a new instance of the analysed microservice.

These parameters are specified in the SmartDepl annotations as mandatory

information to deploy a new instance of the microservice type captured by

the corresponding class. SmartDepl provides them in the plans, deploying

new instances if necessary or using previous deployed instances of the nec-

essary types if available. Instead, to model weak required interfaces, it is

3.4 Additional ABS Classes 73

c4_large_5

c4_2xlarge_0

c4_xlarge_0
c4_large_2

c4_2xlarge_4

c4_large_6

c4_2xlarge_1

c4_xlarge_3

c4_large_3

c4_large_8 c4_large_7

c4_xlarge_2

c4_large_0

c4_2xlarge_2

c4_large_4

c4_large_9

c4_large_1

c4_2xlarge_3

c4_xlarge_1

default___HeaderAnalyser_LoadBalancer

HeaderAnalyser_LoadBalancerInterface

HeaderAnalyserInterface

default___MessageParser

MessageParserInterface

DBInterface

HeaderAnalyser_LoadBalancerInterface

MessageAnalyser_LoadBalancerInterface

AttachmentsManager_LoadBalancerInterface

TextAnalyser_LoadBalancerInterface

LinkAnalyser_LoadBalancerInterface

default___SentimentAnalyser

SentimentAnalyserInterface

default___SentimentAnalyser_LoadBalancer

SentimentAnalyser_LoadBalancerInterface

SentimentAnalyserInterface

default___MessageAnalyser

MessageAnalyserInterface

DBInterface

default___MessageAnalyser_LoadBalancer

MessageAnalyser_LoadBalancerInterface

MessageAnalyserInterface

default___MessageParser_LoadBalancer

MessageParser_LoadBalancerInterface

MessageParserInterfacedefault___ImageAnalyser_LoadBalancer

ImageAnalyser_LoadBalancerInterface

ImageAnalyserInterface

default___VirusScanner

VirusScannerInterface

MessageAnalyser_LoadBalancerInterface

ImageAnalyser_LoadBalancerInterface

default___DB

DBInterface

default___ImageRecognizer_LoadBalancer

ImageRecognizer_LoadBalancerInterface

ImageRecognizerInterface

default___ImageAnalyser

ImageAnalyserInterface

MessageAnalyser_LoadBalancerInterface

NSFWDetector_LoadBalancerInterface

ImageRecognizer_LoadBalancerInterface

default___ImageRecognizer

ImageRecognizerInterface

default___LinkAnalyser_LoadBalancer

LinkAnalyser_LoadBalancerInterface

LinkAnalyserInterface

default___HeaderAnalyser

HeaderAnalyserInterface

MessageAnalyser_LoadBalancerInterface

default___LinkAnalyser

LinkAnalyserInterface

MessageAnalyser_LoadBalancerInterface

default___TextAnalyser

TextAnalyserInterface

MessageAnalyser_LoadBalancerInterface

SentimentAnalyser_LoadBalancerInterface

default___VirusScanner_LoadBalancer

VirusScanner_LoadBalancerInterface

VirusScannerInterface

default___AttachmentsManager

AttachmentsManagerInterface

VirusScanner_LoadBalancerInterface

default___MessageReceiver

MessageParser_LoadBalancerInterface

default___AttachmentsManager_LoadBalancer

AttachmentsManager_LoadBalancerInterface

AttachmentsManagerInterface

default___NSFWDetector_LoadBalancer

NSFWDetector_LoadBalancerInterface

NSFWDetectorInterface

default___NSFWDetector

NSFWDetectorInterface
default___TextAnalyser_LoadBalancer

TextAnalyser_LoadBalancerInterface

TextAnalyserInterface

c4_large_5

c4_2xlarge_0

c4_xlarge_0
c4_large_2

c4_2xlarge_4

c4_large_6

c4_2xlarge_1

c4_xlarge_3

c4_large_3

c4_large_8 c4_large_7

c4_xlarge_2

c4_large_0

c4_2xlarge_2

c4_large_4

c4_large_9

c4_large_1

c4_2xlarge_3

c4_xlarge_1

default___HeaderAnalyser_LoadBalancer

HeaderAnalyser_LoadBalancerInterface

HeaderAnalyserInterface

default___MessageParser

MessageParserInterface

DBInterface

HeaderAnalyser_LoadBalancerInterface

MessageAnalyser_LoadBalancerInterface

AttachmentsManager_LoadBalancerInterface

TextAnalyser_LoadBalancerInterface

LinkAnalyser_LoadBalancerInterface

default___SentimentAnalyser

SentimentAnalyserInterface

default___SentimentAnalyser_LoadBalancer

SentimentAnalyser_LoadBalancerInterface

SentimentAnalyserInterface

default___MessageAnalyser

MessageAnalyserInterface

DBInterface

default___MessageAnalyser_LoadBalancer

MessageAnalyser_LoadBalancerInterface

MessageAnalyserInterface

default___MessageParser_LoadBalancer

MessageParser_LoadBalancerInterface

MessageParserInterfacedefault___ImageAnalyser_LoadBalancer

ImageAnalyser_LoadBalancerInterface

ImageAnalyserInterface

default___VirusScanner

VirusScannerInterface

MessageAnalyser_LoadBalancerInterface

ImageAnalyser_LoadBalancerInterface

default___DB

DBInterface

default___ImageRecognizer_LoadBalancer

ImageRecognizer_LoadBalancerInterface

ImageRecognizerInterface

default___ImageAnalyser

ImageAnalyserInterface

MessageAnalyser_LoadBalancerInterface

NSFWDetector_LoadBalancerInterface

ImageRecognizer_LoadBalancerInterface

default___ImageRecognizer

ImageRecognizerInterface

default___LinkAnalyser_LoadBalancer

LinkAnalyser_LoadBalancerInterface

LinkAnalyserInterface

default___HeaderAnalyser

HeaderAnalyserInterface

MessageAnalyser_LoadBalancerInterface

default___LinkAnalyser

LinkAnalyserInterface

MessageAnalyser_LoadBalancerInterface

default___TextAnalyser

TextAnalyserInterface

MessageAnalyser_LoadBalancerInterface

SentimentAnalyser_LoadBalancerInterface

default___VirusScanner_LoadBalancer

VirusScanner_LoadBalancerInterface

VirusScannerInterface

default___AttachmentsManager

AttachmentsManagerInterface

VirusScanner_LoadBalancerInterface

default___MessageReceiver

MessageParser_LoadBalancerInterface

default___AttachmentsManager_LoadBalancer

AttachmentsManager_LoadBalancerInterface

AttachmentsManagerInterface

default___NSFWDetector_LoadBalancer

NSFWDetector_LoadBalancerInterface

NSFWDetectorInterface

default___NSFWDetector

NSFWDetectorInterface
default___TextAnalyser_LoadBalancer

TextAnalyser_LoadBalancerInterface

TextAnalyserInterface

c4_large_5

c4_2xlarge_0

c4_xlarge_0
c4_large_2

c4_2xlarge_4

c4_large_6

c4_2xlarge_1

c4_xlarge_3

c4_large_3

c4_large_8 c4_large_7

c4_xlarge_2

c4_large_0

c4_2xlarge_2

c4_large_4

c4_large_9

c4_large_1

c4_2xlarge_3

c4_xlarge_1

default___HeaderAnalyser_LoadBalancer

HeaderAnalyser_LoadBalancerInterface

HeaderAnalyserInterface

default___MessageParser

MessageParserInterface

DBInterface

HeaderAnalyser_LoadBalancerInterface

MessageAnalyser_LoadBalancerInterface

AttachmentsManager_LoadBalancerInterface

TextAnalyser_LoadBalancerInterface

LinkAnalyser_LoadBalancerInterface

default___SentimentAnalyser

SentimentAnalyserInterface

default___SentimentAnalyser_LoadBalancer

SentimentAnalyser_LoadBalancerInterface

SentimentAnalyserInterface

default___MessageAnalyser

MessageAnalyserInterface

DBInterface

default___MessageAnalyser_LoadBalancer

MessageAnalyser_LoadBalancerInterface

MessageAnalyserInterface

default___MessageParser_LoadBalancer

MessageParser_LoadBalancerInterface

MessageParserInterfacedefault___ImageAnalyser_LoadBalancer

ImageAnalyser_LoadBalancerInterface

ImageAnalyserInterface

default___VirusScanner

VirusScannerInterface

MessageAnalyser_LoadBalancerInterface

ImageAnalyser_LoadBalancerInterface

default___DB

DBInterface

default___ImageRecognizer_LoadBalancer

ImageRecognizer_LoadBalancerInterface

ImageRecognizerInterface

default___ImageAnalyser

ImageAnalyserInterface

MessageAnalyser_LoadBalancerInterface

NSFWDetector_LoadBalancerInterface

ImageRecognizer_LoadBalancerInterface

default___ImageRecognizer

ImageRecognizerInterface

default___LinkAnalyser_LoadBalancer

LinkAnalyser_LoadBalancerInterface

LinkAnalyserInterface

default___HeaderAnalyser

HeaderAnalyserInterface

MessageAnalyser_LoadBalancerInterface

default___LinkAnalyser

LinkAnalyserInterface

MessageAnalyser_LoadBalancerInterface

default___TextAnalyser

TextAnalyserInterface

MessageAnalyser_LoadBalancerInterface

SentimentAnalyser_LoadBalancerInterface

default___VirusScanner_LoadBalancer

VirusScanner_LoadBalancerInterface

VirusScannerInterface

default___AttachmentsManager

AttachmentsManagerInterface

VirusScanner_LoadBalancerInterface

default___MessageReceiver

MessageParser_LoadBalancerInterface

default___AttachmentsManager_LoadBalancer

AttachmentsManager_LoadBalancerInterface

AttachmentsManagerInterface

default___NSFWDetector_LoadBalancer

NSFWDetector_LoadBalancerInterface

NSFWDetectorInterface

default___NSFWDetector

NSFWDetectorInterface
default___TextAnalyser_LoadBalancer

TextAnalyser_LoadBalancerInterface

TextAnalyserInterface

Figure 3.3: Graphical representation of the initial configuration automatic

generated by SmartDepl

74
3. Case-Study: Model of an Email Processing Pipeline Microservice

Architecture

necessary to specify methods to add or remove references to microservices

when the object is already instantiated. These methods are called with an

object reference to add a binding to the corresponding weak required port

or to disconnect its. The SmartDepl annotations contains a description of

prototypes of these methods and in the analysed case-study they are used to

model load balancers. The names chose for them are: connectInstance and

disconnectInstance.

In addition to the already introduced ABS classes used to model the pre-

sented case-study, others have been developed to implement a simply simu-

lation. They can be schematically presented:

• EntryPoint: simply forwards messages to MessageReceiver. It is intro-

duced to obtain an external callable entrypoint. Indeed the Erlang

backend, chosen to execute the ABS code, supports external calls to

a running model through HTTP requests. This feature can be found

in the ABS documentation in the Model API section [7]. The calls

through HTTP requests can be executed only on methods annotated as

HTTPCallable provided by an instance annotated with [HTTPName:

”name”]. To correctly annotate the corresponding creation instruc-

tion, it can not be inserted in a deployment plan. So, this component

is manually created in the initializeSystem method of the SetUpSystem

class that will be presented later. Thank to this new component the

following Python code could be used to interact with the system.

import r e q u e s t s

import j s on

u r l = ” http :// l o c a l h o s t :8080/ v2/ c a l l / entryPoint /newMessage”

payload = { ’ mailData ’ : ’ Message1 ’}
r = r e q u e s t s . post (ur l , data=j son . dumps(payload))

• WrapperScale: is used to level out the different scale classes interfaces

and to correctly manage the fact that the scaling plans are incremen-

3.4 Additional ABS Classes 75

tally. Indeed when a scaling plan is requested through this class, also

all the smaller plans are applied. For example, if the monitor requires

the application of the biggest scaling plan (Scale3), the deploy methods

are called on objects representing the Scale1, the Scale2 and the Scale3

plans at the same time. The same behaviour is clearly offered also for

the undeploy operations.

• Monitor: is used to periodically monitor the system exploiting methods

offered by DB to obtain information on: number of received messages

in the current monitoring window and average analysis time for each

message. It uses the first value to calculate the difference respect to

the number of messages actually supported and consequently decides

which scaling plan should be applied. The possible scaling plans have

to be inserted through an apposite method called insertScalingPolicy

providing the scaling plan name, the WrapperScale object and the value

used to decide when that plan should be used. At the moment the

average analysis time obtained by DB is used only to print a useful

value to observe the system adaptability to work load changes.

• MailGenerator: is used to generates mail with different speeds to peri-

odically change the work load received by the system.

• SetUpSystem: contains only a method to initialize the system. It simply

instantiates:

– the CloudProvider,

– the initial deployment plan and applies it to create the system,

– the monitor,

– the three WrapperScale objects for the corresponding three scaling

plans and inserts them in the monitor, and

– the EntryPoint object, specifying its HTTPName through the spe-

cific annotation.

76
3. Case-Study: Model of an Email Processing Pipeline Microservice

Architecture

At this point, the main function simply instantiates the SetUpSystem object

and calls on it the initializeSystem method obtaining the EntryPoint object.

This one is used to instantiate the MailGenerator and the simulation is con-

sequently launched.

To improve the possibilities given by simulation results, the costs of each com-

putation reported in Table 3.1 are increased by 60% to obtain bigger analysis

average times. Bigger values are useful to execute studies and different tests

on them. Observing the simulation prints, it is possible to note that the

system, using the scaling plans, tries to maintain the average analysis time

(printed as AAT) constant. In the reported results, around 10 time units.

Clearly, when there is a big change in the amount of inbound requests the

system requires the necessary scaling policy but some times is necessary to

apply its allowing the new configuration to be completely operational again.

During that time, the average analysis time grows before returns to the fixed

value.

1 I n i t i a l Deployment Conf igurat ion s e t up

2 Message Arr ived = 10 − AAT = 15

3 Message Arr ived = 10 − AAT = 14

4 Message Arr ived = 30 − AAT = 55 Scale1−up

5 Message Arr ived = 30 − AAT = 67

6 Message Arr ived = 30 − AAT = 11

7 Message Arr ived = 30 − AAT = 11

8 Message Arr ived = 30 − AAT = 10

9 Message Arr ived = 80 − AAT = 66 Scale2−up

10 Message Arr ived = 80 − AAT = 89

11 Message Arr ived = 80 − AAT = 65

12 Message Arr ived = 80 − AAT = 17

13 Message Arr ived = 80 − AAT = 9

14 Message Arr ived = 80 − AAT = 9

15 Message Arr ived = 80 − AAT = 10

16 Message Arr ived = 160 − AAT = 23 Scale3−up

3.4 Additional ABS Classes 77

17 Message Arr ived = 160 − AAT = 47

18 Message Arr ived = 160 − AAT = 41

19 Message Arr ived = 160 − AAT = 41

20 Message Arr ived = 160 − AAT = 14

21 Message Arr ived = 160 − AAT = 9

22 Message Arr ived = 160 − AAT = 9

The previously described behaviour can be observed in lines [4-6], [9-13] and

[16-20]. With the increase of messages received, the average analysis time

increases too, but when the required scaling policy became operative the

monitored parameter returns to the fixed value (∼= 10).

The ABS code realized, the annotations and the generated classes are pub-

licly available at [18]. The following simple code of HeaderAnalyser class is

used to provide an example.

data HeadersAnalysis = HeadersAnalysis(

String haResults,

String haMessageId

);

interface HeaderAnalyserInterface {
Unit analyzeHeaders (String headers, String messageId);

}
/∗ {

”class” : ”HeaderAnalyser”,

”scenarios” : [

{
”name” : ”default”,

”provide” : −1,
”cost” : {

”Cores” : 2,

”Memory” : 200

},
”sig” : [

{

78
3. Case-Study: Model of an Email Processing Pipeline Microservice

Architecture

”kind” : ”require”,

”type” : ”MessageAnalyser LoadBalancerInterface”

}
],

”methods” : []

}
]

} ∗/
[SmartDeployCost : ”...”]

class HeaderAnalyser(MessageAnalyser LoadBalancerInterface messageAnalyserLoadBalancer) implements HeaderAnalyserInterface {
Unit analyzeHeaders (String headers, String messageId){

//analyze headers to extract useful high−level information

[Cost: 25] skip;

HeadersAnalysis res = HeadersAnalysis(”Results of HeaderAnalysis (” + headers + ”) by HeaderAnalyser in ” + toString(thisDC()) , messageId);

//send analysis results (HeadersAnalysis object) to MessageAnalyser

messageAnalyserLoadBalancer!insertHeadersAnalysisResults(res);

}
}

The first lines contain the declaration of a user-defined algebraic data type

used to store headers analysis results. Then, the interface of the analysed

component is specified. It contains only an operation. After that, the Smart-

Depl annotation is previously presented in JSON format and later correctly

inserted with the corresponding instruction. The last part is the real code

of the analysed microservices. It contains the implementation of the single

method declared in the corresponding interface. The method simply simu-

lates the microservice behaviour through a skip instruction and then creates

a dummy result structure that is sent to the MessageAnalyser LoadBalancer.

Conclusion

This research project addressed the Optimal Deployment Problem for Mi-

croservice Architectures. It started from the Aeolus model [1] that has been

presented in Chapter 1, and from contributions of Zephyrus [10] and Con-

fSolve [24]. Inspired by the approaches followed and container-technologies

such as Docker [36] and Kubernetes [39], a new model specifically thought

for microservices has been proposed. The project began with the formal def-

inition of the new model and a formal proof to demonstrate the decidability

and complexity properties of that model. These are described in Chapter

2. Then, the theory part is followed by a practice section, which analyses a

case-study showing the applicability of the approach and ideas proposed. The

example model realized, presented in Chapter 3, shows that the generation of

a deployment plan for an architecture of microservices is fully automatable;

in particular a tool can compute an optimal configuration and prepare the

deployment actions necessary to reach it.

To support specification of deployment plans, different specification lan-

guages [46, 47], reconfiguration protocols [48, 49] and system management

tools [50, 51, 52, 53] already exist, but they do not consider the computation

nodes and the distribution of the system components over these. The pro-

posal presented in this dissertation has been specifically realized to solve the

cited problem providing all the necessary tools and considering the deploy-

ment optimality with respect to other possibilities available. The approach

proposed tries also to go beyond single-component horizontal scaling poli-

cies that are the classical behaviour of very widespread autoscaling systems,

79

80 Conclusion

proposing a new alternative that works at an higher-level and exploits archi-

tecture information.

Some possible evolutions have been identified. As already mentioned in

Chapter 3, the main future work is to investigate approaches, like local search,

to speed-up the resolution of the optimization problem, which is the heaviest

part of the computation. This advancement is necessary to allow users to

dynamically prepare and compute deployment plans, giving them the possi-

bility to use custom response to unpredictable loads instead of pre-prepared

plans. The realization of a graphical tool that allows to easily specify all the

necessary information and obtains a description of optimal deployment plans

searched following a driven path, could open the use of this approach out-

side the academic environment. Starting from this tool, a direct interfacing

with cloud platform or other real deployment languages could be imagined.

This would give the chance to automatize the plan application allowing the

user to comfortably specify in a declarative way all the required informa-

tion (through a graphic UI) and to obtain in an automatic way the system

deployed with the optimality guaranteed. In spite of these possible evolu-

tions, the current version can already be used and it could prove to be useful

in multiple situations. For example to deploy a Cloud application. In this

case, the optimality guaranteed by the tool allows users to immediately save

money paid to rent virtual machines from cloud provider.

This experience has been amazing for me. I had the chance to work for

about a year on a real research project that has provided several reasons for

gratification. It has been recognized as interesting from the scientific com-

munity, being accepted at two conferences after passing different reviews.

I have personally grown clearly on the technical/scientific side but also on

the human side, collaborating with fantastic and very present professors and

overcoming my fears when I presented this work at the Microservices 2019

conference in Dortmund in front of a large audience, discussing and answer-

ing questions not only on my part of the project but on the entire work. In

3.4 Additional ABS Classes 81

addition, during experiences linked with this project I met many professors

and students – for example during my visit period at SIRIUS research centre

in Oslo in February 2018 where I began to study ABS and Kubernetes – with

whom I shared ideas, solutions and possible evolutions of this work but also

other topics.

82 Conclusion

Bibliography

[1] Aeolus: A component model for the cloud. Roberto Di Cosmo, Jacopo

Mauro, Stefano Zacchiroli, Gianluigi Zavattaro

[2] Thinking Serverless! How New Approaches Address Modern Data

Processing Needs. Ken Fromm

(https://read.acloud.guru/thinking-serverless-how-new-approaches-

address-modern-data-processing-needs-part-1-af6a158a3af1, accessed

on May, 2019)

[3] https://abs-models.org/ (accessed on May, 2019)

[4] https://abs-models.org/manual/ (accessed on May, 2019)

[5] ABS: A Core Language for Abstract Behavioral Specification. Einar

Broch Johnsen, Reiner Hähnle, Jan Schäfer, Rudolf Schlatte, Martin

Steffen

[6] https://abs-models.org/manual/#sec:deployment (accessed on May,

2019)

[7] https://abs-models.org/manual/#-the-model-api (accessed on May,

2019)

[8] SmartDepl. Jacopo Mauro

(https://abs-models.org/tutorial pdfs/SmartDepl.pdf, accessed on May,

2019)

83

84 BIBLIOGRAPHY

[9] Declarative Elasticity in ABS. Stijn Gouw, Jacopo Mauro, Behrooz

Nobakht, Gianluigi Zavattaro

[10] Zephyrus2: On the Fly Deployment Optimization Using SMT and CP

Technologies. Erika Ábrahám, Florian Corzilius, Einar Broch Johnsen,

Gereon Kremer, and Jacopo Mauro

[11] Zephyrus2. Jacopo Mauro

(https://bitbucket.org/jacopomauro/zephyrus2/src, accessed on May,

2019)

[12] Beyond auto-scaling: application-aware optimal elasticity. Jacopo

Mauro, Iacopo Talevi, and Gianluigi Zavattaro

[13] https://www.conf-micro.services/2019/ (accessed on May, 2019)

[14] Optimal and Automated Deployment for Microservices. Jacopo Mauro,

Saverio Giallorenzo, Mario Bravetti, Iacopo Talevi, and Gianluigi Za-

vattaro

[15] Technical Report: Optimal and Automated Deployment for Microser-

vices. Jacopo Mauro, Saverio Giallorenzo, Mario Bravetti, Iacopo Talevi,

and Gianluigi Zavattaro

(https://arxiv.org/abs/1901.09782, accessed on 2019)

[16] https://conf.researchr.org/track/etaps-2019/fase-2019-papers (accessed

on May, 2019)

[17] A Formal Approach to Microservice Architecture Deployment. Jacopo

Mauro, Saverio Giallorenzo, Mario Bravetti, Iacopo Talevi, and Gian-

luigi Zavattaro (accepted for publication in ”Microservices Science and

Engineering” book)

[18] Code repository for the email processing example. Jacopo Mauro,

Saverio Giallorenzo, Mario Bravetti, Iacopo Talevi, and Gianluigi

Zavattaro

BIBLIOGRAPHY 85

(https://github.com/IacopoTalevi/ SmartDeploy-ABS-ExampleCode,

accessed on June, 2019)

[19] https://aws.amazon.com (accessed on May, 2019)

[20] https://cloud.google.com (accessed on May, 2019)

[21] https://azure.microsoft.com (accessed on May, 2019)

[22] The FRACTAL component model and its support in Java. Eric Brune-

ton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, Jean-Bernard

Stefani

[23] Reconfigurable SCA Applications with the FraSCAti Platform. Lionel

Seinturier, Philippe Merle, Damien Fournier, Nicolas Dolet, Valerio Schi-

avoni, Jean-Bernard Stefani

[24] A declarative approach to automated configuration. John Hewson, Paul

Anderson, Andrew Gordon

[25] https://www.chef.io/products/chef-infra/ (accessed on May, 2019)

[26] https://www.cloudfoundry.org/ (accessed on May, 2019)

[27] https://jaas.ai/ (accessed on May, 2019)

[28] Computation: Finite and Infinite Machines. Marvin Lee Minsky

[29] Well-structured transition systems everywhere!. Alain Finkel, Philippe

Schnoebelen

[30] Revisiting Ackermann-Hardness for Lossy Counter Machines and Reset

Petri Nets. Philippe Schnoebelen

[31] On the Expressiveness of Synchronization in Component Deployment.

Jacopo Mauro, Gianluigi Zavattaro

[32] https://blog.newrelic.com/technology/microservices-what-they-are-

why-to-use-them/ (accessed on May, 2019)

86 BIBLIOGRAPHY

[33] Continuous Delivery: Reliable Software Releases Through Build, Test,

and Deployment Automation. Jez Humble, David Farley

[34] A Review of Auto-scaling Techniques for Elastic Applications in

Cloud Environments. Tania Lorido-Botran, Jose Miguel-Alonso, Jose

A. Lozano

[35] Amazon: AWS auto scaling.

(https://aws.amazon.com/autoscaling/, accessed on May, 2019)

[36] Docker: lightweight Linux containers for consistent development and

deployment. Dirk Merkel

[37] https://www.docker.com/ (accessed on May, 2019)

[38] Docker compose documentation.

https://docs.docker.com/compose/ (accessed on May, 2019)

[39] Kubernetes: Up and Running Dive into the Future of Infrastructure.

Brendan Burns, Kelsey Hightower, Joe Beda

[40] https://kubernetes.io/ (accessed on May, 2019)

[41] The CP solver. Chuffed Team

(https://github.com/geoffchu/chuffed, accessed on May, 2019)

[42] GECODE: An open, free, efficient constraint solving toolkit.

(http://www.gecode.org, accessed on May, 2019)

[43] Google: Optimization tools.

(https://developers.google.com/optimization/, accessed on May, 2019)

[44] https://aws.amazon.com/ec2/pricing/on-demand/ (accessed on May,

2019)

[45] Automatic application deployment in the cloud: From practice to the-

ory and back. Roberto Di Cosmo, Michael Lienhardt, Jacopo Mauro,

Stefano Zacchiroli, Gianluigi Zavattaro, Jakub Zwolakowski

BIBLIOGRAPHY 87

[46] A systematic review of cloud modeling languages. Alexander Bergmayr,

Uwe Breitenbücher, Nicolas Ferry, Alessandro Rossini, Arnor Solberg,

Manuel Wimmer, Gerti Kappel, Frank Leymann

[47] Madeus: A formal deployment model. Maverick Chardet, Hélène Coul-

lon, Dimitri Pertin, Christian Pérez

[48] Robust reconfigurations of component assemblies. Fabienne Boyer,

Olivier Gruber, Damien Pous

[49] Robust and reliable reconfiguration of cloud applications. Francisco

Durán, Gwen Salaün

[50] Ansible. Red Hat

(https://www.ansible.com/, accessed on May, 2019)

[51] Puppet: Next-generation configuration management. Luke Kanies

[52] Opscode. Chef

(https://www.chef.io/chef/, accessed on May, 2019)

[53] Marionette collective. Puppet Labs

(http://docs.puppetlabs.com/mcollective/, accessed on May, 2019)

[54] The Datacenter as a Computer: An Introduction to the Design of

Warehouse-Scale Machines. Luiz André Barroso, Jimmy Clidaras, Urs

Hölzle

[55] MiniZinc: Towards a Standard CP Modelling Language. Nicholas

NethercotePeter J. StuckeyRalph BecketSebastian BrandGregory J.

DuckGuido Tack

[56] MiniSearch: A Solver-Independent Meta-Search Language for MiniZinc.

Andrea Rendl, Tias Guns, Peter J. Stuckey, Guido Tack

Acknowledgement

I would like to express my gratitude and my affection to Professor Gi-

anluigi Zavattaro, not only for the great opportunity to collaborate in this

project, but also to have been a shepherd for me during my University years.

Thanks to him I had the possibilities to pass a month period as guest at

SIRIUS research centre in Oslo and to follow my first research conference in

Dortmund. I am also indebted to Professor Jacopo Mauro. He helps me a

lot during this project answering hundreds questions asked through mail or

Whatapp/Skype messages. In addition to this, he also received and guided

me during my period in Oslo and he gave me a lot of advices before my first

conference presentation in Dortmund when I was very nervous. Their helps

and their continuous support allows me to arrive here.

During this research project I also met Professor Mario Bravetti and post-

doctoral researcher Saverio Giallorenzo. I would like to thank them and

in particular Saverio, who more collaborated with me during the case-study

model design and realization, solving multiple problems linked with my code.

My heart-felt thanks to my sister for her helps during the writing of this dis-

sertation, in spite of her several appointments around the world, and to my

family, in particular my parent to allows me to focus only on University dur-

ing this five years without worries.

I want to mention also my girlfriend Federica, who always believes in me

and encourages me to give my best, putting up with me in these years. I

cannot cite my roommate: Federico, Lorenzo and Luca that put up with all

my flaws. I am very happy to share my flat with them for at least another

90 BIBLIOGRAPHY

year. Finally, my old friends in Falconara because our relationships do not

change despite of the distance and my new friends in Bologna, who welcome

me with open arms, in spite of I am the last arrived.

