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Abstract

This thesis contains an introduction to Supersymmetric Quantum Mechanics and its
possible applications to the solution of some common problems in Quantum Mechanics.
After a brief discussion on the origins of Supersymmetric Quantum Mechanics, Lie su-
peralgebras are introduced, since they constitute the mathematical apparatus required
to develop this topic. Then, the model with N = 2 supersymmetry charges in 0 + 1
dimensions is implemented and studied, and the concept of supersymmetry breaking is
also tackled, along with the Witten index. Afterwards, some applications of this model
are discussed, namely the chain of Hamiltonians, shape invariant potentials and the con-
struction of a family of isospectral potentials. The thesis ends with a presentation of
some explicit examples of these applications, where the methods developed in the frame-
work of Supersymmetric Quantum Mechanics are used to solve some one dimensional
problems.

Questa tesi contiene un’introduzione alla Meccanica Quantistica Supersimmetrica e alle
sue possibili applicazioni nella risoluzione di problemi tipici della Meccanica Quantistica.
Dopo una breve discussione sulle origini della Meccanica Quantistica Supersimmetrica,
vengono introdotte le superalgebre di Lie, che costituiscono l’apparato matematico neces-
sario per lo sviluppo di questo argomento. Viene poi implementato e studiato il modello
con N = 2 cariche di supersimmetria in 0 + 1 dimensioni, affrontando anche il concetto
di rottura spontanea di supersimmetria e l’indice di Witten. In seguito, vengono discus-
se alcune applicazioni di questo modello, ovvero la catena di Hamiltoniane, i potenziali
invarianti in forma e la costruzione di una famiglia di potenziali isospettrali. La tesi si
conclude con esempi espliciti di tali applicazioni, in cui i metodi della Meccanica Quan-
tistica Supersimmetrica vengono usati per risolvere alcuni problemi unidimensionali.
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Introduction

1.1 The relevance of Supersymmetric Quantum

Mechanics

Supersymmetry is defined as a symmetry between bosons and fermions. This idea was
introduced in the attempt to achieve a unified description of these two kinds of particles
or, in other words, of matter and interactions. Supersymmetry first emerged in 1971 in
the work of physicists such as Gel’fand, Likhtman, Ramond, Neveu and Schwartz, and
was soon developed using a new type of algebra, called Lie superalgebra. This algebra,
which is characterized by anticommutator relations in addition to the usual commutator
ones, allows for particles with different spins to be united in the same particle multiplet
and to be transformed into each other using supersymmetry transformations. The pres-
ence of anticommutator relations is the key to overcome the powerful restrictions of the
Coleman-Mandula theorem, which forbade the presence of particles with different spins
in the same multiplet, if one used the regular Lie algebras [1]. This transition from Lie
algebras to superalgebras to unite bosons and fermions under a multiplet is discussed in
the next section.
Supersymmetry was soon appreciated because it can be introduced in Quantum Field
Theory without adding any other assumption. Supersymmetric theories were then de-
veloped because of their potential to give a unified description of gravity and the other
forces (the electroweak and the strong ones): this created the area of research called
Supergravity. The interest of this field resides in the fact that supersymmetry can im-
prove and hopefully solve divergence problems that arise when quantizing gravity. While
nowadays Supergravity is mostly thought as the low energy limit of Superstring Theory
(as the hope that some particular theory of supergravity might be finite is fading away),
supersymmetric field theories offer the chance of studying exactly various quantum field
theoretical properties. For example, the N = 4 super Yang-Mills theory is an interacting
supersymmetric and conformal theory that is being study quite actively, with the hope
of solving it exactly.
Supersymmetry is said to be unbroken if the lowest energy state of the theory is invariant
under supersymmetry transformations. If this is the case, then supersymmetric theories
predict the presence of particles with the same mass as the particles we know, but with a
spin that differs for a half integer amount. Since no such particles have ever been detec-
ted, supersymmetry must be spontaneously broken. Because of the difficulties that arise
when building models with broken supersymmetry in the four dimensional spacetime,
supersymmetry was applied to the simpler one dimensional case: this is called Super-
symmetric Quantum Mechanics. One of the main physicists that worked on this topic is
Edward Witten, who also provided an indicator of supersymmetry breaking, called the
Witten index [7]. In Chapter 2 a one dimensional supersymmetric model is presented,
along with an introduction to the Witten index.
While studying these simpler supersymmetric models, it soon became clear that Super-
symmetric Quantum Mechanics was an area of interest on its own, and not just a test
field for theories in higher dimensions. First of all, the supersymmetric formalism shed
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some light on the factorization method, an algebraic technique that is used to derive the
spectrum and eigenfunctions for some one dimensional Hamiltonians. This method was
first used by Schrödinger to solve the hydrogen atom, then it was formalized by Infeld
and Hull in the 1950s to categorize solvable potentials. It turns out that this method
is rather powerful, especially if it is applied to the particular (but not very restrictive)
class of shape invariant potentials. All of this is more intuitive and appealing using the
formalism of supersymmetry [9], as we are going to see in Chapter 3. The last section
of Chapter 3 contains the study of isospectral deformation, an algebraic method that
generates a family of potentials that are isospectral to a given one. Once again, this
method was studied by mathematicians like Darboux, Abraham, Moses and Pursey be-
fore the advent of Supersymmetric Quantum Mechanics, but it can be better understood
in terms of supersymmetry [9]. Finally, in Chapter 4 several examples of such applica-
tions of Supersymmetric Quantum Mechanics can be found.

1.2 Lie superalgebras

This section contains a brief overview of Lie superalgebras, the mathematical structure
underlying Supersymmetric Quantum Mechanics. We will start by reviewing Lie algebras
and their importance for Quantum Field Theories, as well as a crucial theorem due to
Coleman and Mandula. Then we will extend our discussion to superalgebras and their
role in the light of the Haag- Lopuszański-Sohnius theorem.
A Lie algebra A is defined as a vector space with a bilinear composition rule [ , ] that
has the following additional properties:

[A,A] = 0, (1.1)

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0. (1.2)

for all A, B and C ∈ A [2]. Property (1.1) is called skew-symmetry, and is equivalent to

[A,B] = −[B,A]; (1.3)

property (1.2), on the other hand, is known as the Jacobi identity. For our purposes,
the elements of A are going to be linear operators acting on Hilbert spaces, so the [ , ]
bracket will be naturally identified with the commutator

[A,B] = AB −BA, (1.4)

which is well known to satisfy properties (1.1) and (1.2).
As the structure underlyingA is a vector space, we can take a basis {Ai} (i = 1, 2 ... dimA)
of this vector space, whose elements are the generators of the Lie algebra. Since the gen-
erators constitute a basis, any element of the algebra, including the commutator of two
of them, can be written as their combination:

[Aa, Ab] = ifabcA
c. (1.5)

Here, we have adopted Einstein’s convention for the summation over repeated indices,
as we will do for the rest of the section. The fabc are called structure constants, because

4



they characterize every particular Lie algebra. Applying properties (1.1) and (1.2) to
the generators gives two constraints on the structure constants:

fabc = −f bac,
fabdf

dc
e + f bcdf

da
e + f cadf

db
e = 0.

(1.6)

Structure constants are also relevant because they define the adjoint representation: it
is given by the matrices

(Aa)bc = −ifabc. (1.7)

It is straightforward to check that the matrices defined this way indeed satisfy the al-
gebra characterized by (1.5); moreover, their dimension is the same as the one of the
algebra, since all the indices in this equation run from 1 to the dimension of the algebra.
The interest for Lie algebras in modern Physics arises from the study of symmetries
in elementary particle theories (e.g. isospin, the eightfold way). A particularly power-
ful result is the Coleman-Mandula theorem, which states that any group of (bosonic)
symmetries for a relativistic field theory is the direct product of the Poincaré group
ISO(3, 1) and an internal symmetry group G. The term “bosonic” indicates that we
are only considering the usual Lie algebras with commutators relations we have just
discussed, and the necessity to stress this shall become clear soon enough. So, the most
general symmetry algebra, according to this theorem, goes as follows: if we denote with
Pµ the Poincaré generators of translations, with Mµν the Lorentz generators and with
Ba the generators of the internal group G, then

[Pµ, Pν ] = 0

[Mµν ,Mλρ] = iηµλMνρ − iηµρMνλ − iηνλMµρ + iηνρMµλ

[Mµν , Pλ] = iηµλPν − iηνλPµ
[Ba, Bb] = ifabcB

c

[Pµ, B
a] = 0

[Mµν , B
a] = 0.

(1.8)

Here, the first three relations are the usual Poincaré algebra, and the fourth one defines
the algebra of G. The last two, by contrast, show that the Ba are invariant under
spacetime transformations; the fact that there isn’t a non zero relation involving both
the Poincaré generators and the internal generators implies that ISO(3, 1) and G are
“independent” groups, that is their transformations are not related: a spacetime trans-
formation cannot affect an internal one and vice-versa.
The fact that the internal group G cannot influence spacetime features was quite re-
strictive for relativistic field theories trying to achieve a unified description of bosons
and fermions. These theories aimeded to unite bosons and fermions in particle mul-
tiplets, and symmetry transformations would allow to switch between the two particle
types. The problem is that bosons and fermions differ in spin, which is a spacetime prop-
erty (since it is a form of angular momentum, connected to rotations): thus, symmetry
transformations given by an internal group cannot connect particles with different spin.
The same is true for mass, which is a spacetime property too. The conclusion is that
one couldn’t have particles with different mass and spin in the same multiplet according
to the Coleman-Mandula theorem.
However, Coleman and Mandula only considered Lie groups with real parameters, thus
an algebra involving just commutator relations, but it is possible to take into account
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algebras with anticommutator relations too. Doing so (which roughly corresponds to
lifting an hypothesis from the theorem) allows particles with different spin to be in the
same multiplet. This can be understood because, if one has a “fermionic” transforma-
tion, carrying a half-integer spin, then when this transformation acts on a particle with
integer spin the result will be a particle with half-integer spin. For example, if the ori-
ginal particle has spin s and the transformation has spin 1

2
, then the final particle can

have spin s + 1
2

or s − 1
2

[1]. The presence of anticommutators in the algebra is then
necessary, since fermionic systems are described by algebras involving anticommutator
relations. The resulting algebra, including commutators and anticommutators, is called
Lie superalgebra, and we will now give its definition.
Lie superalgebras can be thought of as extensions of Lie algebras that include two types
of elements, obeying “even-like” and “odd-like” composition rules respectively. Math-
ematically, a Lie superalgebra is defined as an algebra A which is the direct sum of two
algebras labelled with the elements 0 and 1 of the group Z2:

A = A0 ⊕A1. (1.9)

The elements of A0 will be called bosonic, while those of A1 will be called fermionic.
This algebra has the bilinear composition rule denoted [ , }, and its elements must satisfy
the following properties:

[Ai, Aj} ∈ Ai+j, (1.10)

[Ai, Aj} = −(−1)i·j[Aj, Ai}, (1.11)

(−1)i·k[Ai, [Aj, Ak}}+ (−1)j·i[Aj, [Ak, Ai}}+ (−1)k·j[Ak, [Ai, Aj}} = 0. (1.12)

for all i, j, k ∈ Z2, Ai ∈ Ai, Aj ∈ Aj and Ak ∈ Ak [3] [4]. The dot · denotes standard
multiplication.
The first property is called Z2 gradation, and tells us how the two algebras intertwine:
the bracket between two bosonic or fermionic elements is bosonic, while the bracket be-
ween a bosonic element and a fermionic one is fermionic.
The second property defines the “parity” of the bracket [ , }: it reduces to the anticom-
mutator

{Ai, Aj} = AiAj + AjAi (1.13)

if Ai and Aj are both fermionic, while it reduces to the commutator [ , ] if at least one
of them is bosonic. This allows us to rewrite property (1.10) in terms of the bosonic and
fermionic generators B and F :

[Ba, Bb] = ifabcB
c [Ba, Fα] = igaαβF

β {Fα, F β} = hαβaB
a (1.14)

where fabc, g
aα
β and hαβa are constants that characterize the superalgebra. Here, we

have used latin letters to index bosonic elements and greek letters to index fermionic
ones: this difference is due to the fact that the algebras A0 and A1 do not need to
have the same dimension, so the two types of indices possibly belong to different ranges.
These realtions show that Lie superalgebras extend Lie algebras by introducing defining
relations that involve anticommutators in addition to the usual commutators. Also,
the first equality tells us that the bosonic elements form a Lie subalgebra. If we now
insert the bosonic and fermionic generators into property (1.11) we obtain the following
constraints on the constants f, h:

fabc = −f bac, hαβa = hβαa. (1.15)
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Nothing can be concluded about the gaαβ, because the two upper indices are different in
nature (bosonic and fermionic), so they cannot be simply interchanged.
The third property in (1.12) is called the generalized Jacobi identity, since it clearly
generalizes the classical Jacobi identity (1.2), taking into account the “parity” of the
bracket [ , }. Writing this identity for the bosonic and fermionic generators, one gets
more constraints on the constants f, g, h:

fabdf
dc
e + f bcdf

da
e + f cadf

db
e = 0, fabcg

cα
γ − gbαβgaβγ + gaαβg

bβ
γ = 0,

gaαγh
γβ
c + hαβbf

ba
c + gaβγh

γα
c = 0, hαβag

aγ
δ + hβγag

aα
δ + hγαag

aβ
δ = 0,

(1.16)

where we can recognize the first equality as the subalgebra of bosonic generators.
We can see one last property of Lie superalgebras: the structure constants can be used
to form the adjoint representation, and the matrices of the representation are

R(Ba) =

(
F a 0
0 Ga

)
, R(Fα) =

(
0 Γα

Hα 0

)
, (1.17)

where the matrix elements are

(F a)bc = ifabc, (Ga)αβ = igaαβ,

(Γα)aβ = igαaβ, (Hα)βa = hαβa.
(1.18)

A notable example of Lie superalgebras are supersymmetry algebras (also called Poincaré
superalgebras), which extend the Poincaré algebra by adding fermionic generators, as
required by theories that provide a unified description of bosons and fermions. The
relevance of supersymmetry algebras resides in the Haag- Lopuszański-Sohnius theorem,
which states that those are the most general symmetry algebras for four-dimensional
Quantum Field Theories (in addition to an internal symmetry group, possibly). To get
an idea of what such an algebra is, let us see the commutator-anticommutator relations
for the d = 4, N = 1 superalgebra: this means that the algebra is four-dimensional and
that it has one fermionic generator, called supercharge (which has four real components).

[Pµ, Pν ] = 0

[Mµν ,Mλρ] = iηµλMνρ − iηµρMνλ − iηνλMµρ + iηνρMµλ

[Mµν , Pλ] = iηµλPν − iηνλPµ
[Pµ, Qα] = 0

[Mµν , Qα] = i(Σµν)α
βQβ

{Qα, Qβ} = (γµC)αβ Pµ.

(1.19)

Here, the Pµ and the Mµν are the bosonic Poincaré generators we already encountered
in (1.8), while Qα are the fermionic supercharges; further, ηµν is the Minkowski metric,
Σµν = − i

4
[γµ, γν ] and C is the charge conjugation matrix. To this, we should add that

the generators of the internal symmetry group commute both with the Poincaré generat-
ors and the supercharges. Thus, we can see that supersymmetry transformations indeed
are spacetime transformations, not internal symmetries.
The first three relations in (1.19) are the usual Poincaré algebra, which forms a subal-
gebra of this superalgebra. The fourth relation shows that the supercharges are invariant
under spacetime translations, while the fifth one tells us that they transform like spin 1

2

spinors under the action of the Lorentz group. Note that, from our previous discussion,
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we already knew that supersymmetry transformations had to have half-integer spin, but
this equation adds the restriction that transformations with spin different from 1

2
are

not allowed. Finally, the sixth relation shows that a composition of two supersymmetry
transformations generates a spacetime translation: this is a peculiar feature that char-
acterizes supersymmetry in general.
Here we have shown the N = 1 supersymmetry algebra, but one could add multiple
supercharges (N = 2, 3...) instead of just one, which gives the so called extended super-
symmetry algebras.
We now know how and why supersymmetry algebras were introduced. However, as it
has been explained in the introduction, we are only going to use them in their most
simple form: we are going to study of one-dimensional (time only) models1. In these
models, since we keep just one dimension, the only bosonic generator is the hamiltonian
H (which generates time translations); we can then add N fermionic generators Qα,
which will be related to H because of property (1.14). For example, for N = 1 (one
fermionic generator Q), one obtains this rather simple algebra:

[H,H] = 0, [H,Q] = 0, {Q,Q} = 2H. (1.20)

The N = 2 model, on the contrary, will be the object of the next chapter.

1These are called models and not theories because experimental evidence for supersymmetry is lacking
at the moment.
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The d = 1, N = 2 supersymmetric
model

2.1 Supersymmetric charges and Hamiltonian

We are now going to introduce the main characteristic elements of the d = 1, N = 2
supersymmetric model [5] [6] [8]. First, let us set set ~ = 1 for convenience. We will deal
with a point-like particle of mass m = 1 moving on the real axis; the particle will have
two possible “polarization states”, so its state will be represented by a two-component
wave function

Φ =

(
φ0(x)
φ1(x)

)
. (2.1)

We can identify wave functions of the form

ΦB =

(
φ0(x)

0

)
and ΦF =

(
0

φ1(x)

)
(2.2)

as bosonic and fermionic states respectively: the reason for this shall become clearer
as we proceed in this section. The Hilbert space H to which Φ belongs is the direct
product of a “bosonic” part, namely the L2 space of square integrable functions, and a
“fermionic” part, namely the two-dimensional Fock space F2:

H = L2 ⊗ F2 = L2 ⊕L2. (2.3)

As for the operators, we will have the standard position and momentum ones, x and
p = −i ∂

∂x
respectively (acting on L2), which are bosonic and satisfy the canonical com-

mutation relation
[x, p] = i. (2.4)

We also add the fermionic annihilation and creation operators ψ and ψ†, acting on F2:
from the theory of fermionic systems, we know that they follow the rules

{ψ, ψ} = 0, {ψ†, ψ†} = 0, {ψ, ψ†} = 1. (2.5)

Every other possible bracket [ , } between the operators x, p, ψ and ψ† vanishes: x and
p commute with ψ and ψ†, since the first two act on L2 and the last two act on F2.
It is useful to recall another property of the fermionic creation and annihilation operators:
if the basis vectors of the Fock space |0〉 and |1〉 are defined as the state with no fermionic
excitations and the state with one fermionic excitation respectively, then the action of
ψ and ψ† on these states is

ψ |0〉 = 0, ψ† |0〉 = |1〉 , ψ |1〉 = |0〉 , ψ† |1〉 = 0. (2.6)

This explicitly shows that ψ† adds a fermionic excitation, while ψ removes it. Also, there

can be no other fermionic excitations, because the rules (2.5) imply that
(
ψ†
)2

= 0, so
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we have a Pauli exclusion principle. For the Hilbert space we are dealing with, the |0〉
and |1〉 states can be realized as

|0〉 =

(
1
0

)
and |1〉 =

(
0
1

)
, (2.7)

which is in agreement with our previous definition of bosonic and fermionic states (2.2).
We can now have an explicit expression for ψ and ψ†: in the basis {|0〉 , |1〉} we find

ψ =

(
0 1
0 0

)
ψ† =

(
0 0
1 0

)
. (2.8)

It is now possible to define the fermionic supercharges Q and Q† as

Q ≡ (W (x)− ip)ψ =

(
0 W (x)− ∂

∂x

0 0

)
, (2.9)

Q† ≡ (W (x) + ip)ψ† =

(
0 0

W (x) + ∂
∂x

0

)
, (2.10)

where W is a function of x called the superpotential. We also define the hamiltonian H as

H ≡ 1

2

(
p2 +W 2(x)

)
1 +

1

2
W ′(x)[ψ†, ψ] =

=
1

2

(
− ∂2

∂x2
+W 2(x)−W ′(x) 0

0 − ∂2

∂x2
+W 2(x) +W ′(x)

)
≡
(
H− 0
0 H+

)
,

(2.11)

where 1 is the identity matrix and the prime denotes a derivative with respect to x. H+

and H− are called partner Hamiltonians and, according to our definition (2.2), they act
on the bosonic and fermionic part of the wave function, respectively. We can see that in
the supersymmetric model the potential energy is written in terms of the superpotential:

V =
1

2

(
W 2(x)1 +W ′(x)[ψ†, ψ]

)
. (2.12)

The two non vanishing components of this matrix are called partner potentials, since
they are the potentials for the partner Hamiltonians H− and H+:

V− =
1

2

(
W 2(x)−W ′(x)

)
,

V+ =
1

2

(
W 2(x) +W ′(x)

)
.

(2.13)

It is now straightforward to check that H,Q and Q† satisfy the superalgebra defined in
section (1.2), in particular:

[H,H] = 0, [Q,H] = 0, [Q†, H] = 0,

{Q,Q†} = 2H, {Q,Q} = 0, {Q†, Q†} = 0.
(2.14)

The second and third identities tell us that the supercharges are conserved, as they
commute with the Hamiltonian, while the fourth one exhibits one of the fundamental
properties of supersymmetry: the Hamiltonian is generated by the composition of two
supercharges, which means that time translations are obtained from the composition of
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two supersymmetry transformations.
One can also define the fermion number operator

F ≡ ψ†ψ =

(
0 0
0 1

)
. (2.15)

This operator satisfies the algebra

[F,H] = 0, [Q,F ] = Q, [Q†, F ] = −Q†, {F, F} = 2F, (2.16)

where the first identity shows that the fermion number is also conserved. We can now
note that the bosonic and fermionic wave functions ΦB and ΦF from (2.2) are eigen-
functions of F with eigenvalues 0 and 1 respectively: it is then consistent to call F the
fermion number operator. F also exhibits the exclusion principle: it is idempotent, so
its eigenvalues can only be 0 and 1.
Finally, let us just mention that an alternative formulation of the N = 2 supersymmetric
model can be achieved using the hermitian supercharges Q1 and Q2 instead of Q and
Q†. Q1 and Q2 are defined as follows:

Q1 =
Q+Q†√

2
, Q2 =

Q−Q†√
2i

⇐⇒ Q =
Q1 + iQ2√

2
, Q† =

Q1 − iQ2√
2

. (2.17)

Then, the algebra for Q1 and Q2 is

{Qj, Qk} = δjkH, [Qj, F ] = iεjkQk, (2.18)

where εjk is the totally antisymmetric 2× 2 tensor.

Example: the supersymmetric harmonic oscillator

This simple example is meant to illustrate and clarify the structure of the N = 2 model
presented above, which at first can appear somewhat abstract [6] [8] [9].
We start with the bosonic harmonic oscillator, which is described by the Hamiltonian1

HB =
1

2
p2 +

1

2
ωB

2x2. (2.19)

We have the usual bosonic annihilation and creation operators

a =
1√
2ωB

(ωBx+ ip), a† =
1√
2ωB

(ωBx− ip), (2.20)

whose commutator and anticommutator are

[a, a†] = 1,
ωB
2
{a†, a} = HB. (2.21)

Those can be used to define the boson number operator

NB ≡ a†a =
p2

2ωB
+
ωBx

2

2
− 1

2
; (2.22)

1We set m = ~ = 1 as before.
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its eigenvalues will be called nB (nB = 0, 1, 2...), and the corresponding (normalized)
eigenkets will be denoted as |nB〉. This allows us to rewrite the Hamiltonian as

HB = ωB

(
NB +

1

2

)
, (2.23)

which means that its eigenkets are the |nB〉 and their eigenvalues are EnB
= ωB

(
nB + 1

2

)
.

Consider then the fermionic harmonic oscillator, whose Hamiltonian is

HF =
ωF
2

[ψ†, ψ] =
ωF
2

(
−1 0
0 1

)
. (2.24)

Here, ψ and ψ† are the same fermionic annihilation and creation operators we have
analyzed in the previous section, so they obey the algebra (2.5) and can be represented
by the matrices in (2.8). We can define the fermion number operator as

NF = ψ†ψ =

(
0 0
0 1

)
, (2.25)

and its eigenkets will be the |0〉 and |1〉 we encountered above, with eigenvalues 0 and 1
respectively. Using the rules in (2.5) the Hamiltonian becomes

HF = ωF

(
NF −

1

2

)
, (2.26)

so its eigenkets are |0〉 and |1〉, with eigenvalues −ωF

2
and ωF

2
respectively.

Now, let us create a system composed by a bosonic and a fermionic harmonic oscillator
with the same frequency ωB = ωF = ω. The Hilbert space associated with this new
system is the direct product of the spaces belonging to the two oscillators, so we have a
basis |nB, nF 〉 formed by the common eigenkets of NB and NF . We can study the action
of a, a†, ψ and ψ† on this basis:

a |nB, nF 〉 ∝ |nB − 1, nF 〉 , a† |nB, nF 〉 ∝ |nB + 1, nF 〉 ,
ψ |nB, 0〉 = 0, ψ† |nB, 0〉 = |nB, 1〉 ,
ψ |nB, nF 〉 = |nB, nF − 1〉 , ψ† |nB, nF 〉 = 0.

(2.27)

The Hamiltonian of the system is

H = HB1 +HF =
ω

2
({a†, a}1 + [ψ†, ψ]) = ω(NB1 +NF ) =

=
1

2

(
ω2x2 + p2 − ω 0

0 ω2x2 + p2 + ω

)
,

(2.28)

which has exactly the form (2.11) with W (x) = ωx. We can use this knowledge to
construct the supercharges

Q =
√

2ωa†ψ =

(
0 ωx− ip
0 0

)
, Q† =

√
2ωaψ† =

(
0 0

ωx+ ip 0

)
(2.29)

and check that they have the same form as (2.9), (2.10) and follow the algebra in (2.14).
It is interesting to remark that the supercharges are compositions of fermionic creation
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and bosonic annihilation operators and vice-versa.
Further, according to (2.28) the eigenvalues of H have the form

E = ω(nB + nF ), (2.30)

which stays the same as long as the sum of bosonic and fermionic quanta is constant.
Thus, the action of the supercharges doesn’t change the energy of the system, since it
creates a bosonic quantum and destroys a fermionic one or vice-versa. One could finally
check that the operator NF has the same role as F defined in (2.15) and follows the same
algebra (2.16).

2.2 Energy eigenvalues and eigenfunctions

In this section we are going to carry out a more detailed study of the supersymmetric
Hamiltonian introduced above (formula (2.11)) [5] [9].
First, its spectrum is entirely non negative. That is because, if |Φ〉 is a generic eigenket
of H, then

〈Φ|H|Φ〉 =
1

2

(
〈Φ|QQ†|Φ〉+ 〈Φ|Q†Q|Φ〉

)
=

1

2

(∣∣Q† |Φ〉∣∣2 + |Q |Φ〉|2
)
≥ 0, (2.31)

which shows thatH is positive semi-definite. This, however, does not mean thatH always
has an eigenstate with energy E = 0; if such a state exists, we say that supersymmetry
is unbroken, otherwise we say that supersymmetry is spontaneously broken.
If the E = 0 state, often called supersymmetric vacuum, exists, then it is obviously the
ground state of the system, as states with E < 0 are not allowed. Moreover, if |Φ0〉 is
an E = 0 eigenfunction, then 〈Φ0|H|Φ0〉 = 0, so according to (2.31)(∣∣Q† |Φ0〉

∣∣2 + |Q |Φ0〉|2
)

= 0. (2.32)

For this equality to hold, both norms must vanish, which means that their arguments
must vanish too, since the Hilbert space has a positive definite norm; thus, E = 0
eigenfunctions satisfy

Q |Φ0〉 = Q† |Φ0〉 = 0. (2.33)

This shows that the supersymmetric vacuum is invariant under transformations gener-
ated by the supercharges (hence the adjective “supersymmetric”):

eαQ+βQ† |Φ0〉 = |Φ0〉 . (2.34)

Also, property (2.33) is very useful if one wants to find the vacuum wave function |Φ0〉,
because one can solve the first order equations Q |Φ0〉 = 0 and Q† |Φ0〉 = 0 instead of
the second order equation H |Φ0〉 = 0. In fact, these two equations can be easily solved
as follows:

Q |Φ〉 =

(
0 W (x)− ∂

∂x

0 0

)(
φ0

φ1

)
=

(
0
0

)
⇒ dφ1

dx
= W (x)φ1 ⇒ φ1 = c1e

U(x)

Q† |Φ〉 =

(
0 0

W (x) + ∂
∂x

0

)(
φ0

φ1

)
=

(
0
0

)
⇒ dφ0

dx
= −W (x)φ0 ⇒ φ0 = c0e

−U(x)

(2.35)

13



where U(x) is a primitive of W (x). So the general ground state eigenfunction is

Φ0 =

(
c0e
−U(x)

c1e
U(x)

)
. (2.36)

However, if E = 0 belongs to the bound spectrum (which can be ckecked applying
the spectral structure theorem to H− and H+), the solution is acceptable only if it is
normalizable: three cases then arise, according to the behaviour of U(x).

1. If limx→±∞ U(x) = +∞, only φ0 is normalizable and we must set c1 = 0, so we
have a bosonic ground state

Φ0B =

(
c0e
−U(x)

0

)
. (2.37)

2. If limx→±∞ U(x) = −∞, only φ1 is normalizable and we must set c0 = 0, so we
have a fermionic ground state

Φ0F =

(
0

c1e
U(x)

)
. (2.38)

3. If limx→±∞ U(x) = ±∞ or limx→±∞ U(x) = ∓∞, neither φ0 nor φ1 are normaliz-
able, so the ground state has E > 0.

On the other hand, if there is no bound spectrum and E = 0 belongs to the continu-
ous spectrum, then there are no normalization issues, and the general solution (2.36)
is acceptable. In this case, the ground state is doubly degenerate, and the space of
eigenfunctions is spanned by a bosonic and a fermionic state, namely

Φ0B =

(
c0e
−U(x)

0

)
and Φ0F =

(
0

c1e
U(x)

)
. (2.39)

It is easy to check that the components φ0 = c0e
−U(x) and φ1 = c1e

U(x) are eigenfunctions
of H− and H+ respectively, with eigenvalue E± = 0:

1

2
QQ† |Φ0B〉 =

(
H− 0
0 0

)(
φ0

0

)
=

(
0
0

)
⇒ H− |φ0〉 = 0,

1

2
Q†Q |Φ0F 〉 =

(
0 0
0 H+

)(
0
φ1

)
=

(
0
0

)
⇒ H+ |φ1〉 = 0.

(2.40)

Moving on to eigenstates with E > 0, we can see that they are doubly degenerate, as
for every bosonic state there is a corresponding fermionic one with the same energy, and
vice-versa. To prove this, consider a bosonic eigenstate |b〉 with eigenvalue E, then define

|f〉 = Q† |b〉 . (2.41)

Recalling that bosonic and fermionic states are eigenfunctions of F with eigenvalues 0
and 1 respectively, we can calculate (using the commutation relation in (2.16))

F |f〉 = FQ† |b〉 = Q†F |b〉+Q† |b〉 = Q† |b〉 = |f〉 , (2.42)
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which shows that |f〉 is fermionic. We can also check that |f〉 is an eigenstate with the
same energy E:

H |f〉 = HQ† |b〉 = Q†H |b〉 = EQ† |b〉 = E |f〉 . (2.43)

Moreover, if |b〉 belongs to the bound spectrum and is normalized with 〈b|b〉 = 1, then
the normalized fermionic eigenstate is 1√

2E
|f〉:

1√
2E
〈f | 1√

2E
|f〉 =

1

2E
〈b|QQ†|b〉 =

1

2E
〈b|2E|b〉 = 1. (2.44)

Here, we have used the fact that

QQ† =

(
2H− 0

0 0

)
, (2.45)

and the action of this operator on |b〉 is the same as the action of H, since the part H+

doesn’t affect a bosonic state.
Analoguous calculations show that, if we have a normalized fermionic eigenstate |f〉 with
eigenvalue E, then

|b〉 =
1√
2E

Q |f〉 (2.46)

is a normalized bosonic eigenstate with the same eigenvalue E:

F |b〉 =
1√
2E

FQ |f〉 =
1√
2E

(QF |f〉 −Q† |f〉) =
1√
2E

(Q |f〉 −Q |f〉) = 0, (2.47)

H |b〉 =
1√
2E

HQ |f〉 =
1√
2E

QH |f〉 =
1√
2E

EQ |f〉 = E |b〉 , (2.48)

〈b|b〉 =
1

2E
〈f |Q†Q|f〉 =

1

2E
〈f |2Ef〉 = 1. (2.49)

For the last one, we have used

Q†Q =

(
0 0
0 2H+

)
, (2.50)

along with the fact that H+ is the only part of H that acts on fermionic states.
For the continuous spectrum, the same calculations show that there still is this one-one
correspondance between bosonic and fermionic eigenstates; the only difference is the
“normalization” convention, which will be different since the eigenkets are no longer nor-
malizable.
It is also clear from the structure of the Hamiltonian H in (2.11) that the components
φ0 and φ1 of bosonic and fermionic states (see (2.2)) are eigenfunctions of H− and H+

respectively, with eigenvalue E.
Note that to “transform” a bosonic state into a fermionic one we have used the operator
Q† = (W (x) + ip)ψ†, where ψ† is the fermionic creation operator, and the (W (x) + ip)
part can be seen as a bosonic annihilation operator2. So, we can say that the super-
charge Q† destroys a boson and creates a fermion with the same energy, and similarly
the supercharge Q destroys a fermion and creates a boson with the same energy.

2This is clear if we compare it with the corresponding operator for the bosonic harmonic oscillator:
a ∝ ωBx+ ip.
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We can conclude this section by seeing how these general properties apply to the su-
persymmetric harmonic oscillator discussed above. Recalling (2.30), it is clear that
the spectrum is non negative, since nB and nF are non negative. The ground state is
achieved for nB = nF = 0⇒ E = 0, which means that supersymmetry is unbroken. We
can compute the ground state eigenfunction using (2.35): for the oscillator W (x) = ωx,
so U(x) =

∫
ωx dx = ω

2
x2 −−−−→

x→±∞
+∞. This means that we have a bosonic ground state

Φ0 = 4

√
ω

π

(
e−ωx

2/2

0

)
, (2.51)

which is the composition of the ground states of the bosonic and fermionic oscillators,

that is 4
√
ω/πe−ωx

2/2 and

(
1
0

)
respectively. Finally, from (2.30) we can see why the

eigenvalues E > 0 are doubly degenerate: nF can only take the values 0 and 1 because
it is the eigenvalue of the idempotent operator NF , so there are only two combinations
of nB and nF that add up to the same value.

2.3 Supersymmetry breaking and Witten index

We are now going to analyze in further detail the phenomenon of supersymmetry breaking
that was introduced in the previous section [7]. To do so, it is useful to introduce the
parity operator

(−1)F (2.52)

where F is the fermion number operator. For the N = 2 supersymmetric model, (−1)F

can be easily computed using the explicit representation of F in (2.15):

(−1)F =

(
1 0
0 −1

)
. (2.53)

The proof of this is straightforward once one recalls that F is idemponent and writes −1
using Euler’s formula:

(−1)F = eiπF = 1 + iπF +
i2π2

2
F + ... =

= 1− F +

(
1 + iπ +

i2π2

2
+ ...

)
F =

= 1− F + eiπF = 1− 2F,

(2.54)

which gives the matrix in (2.53) if one inserts the representation of F found in (2.15).
Moreover, one can check that the parity operator is fermionic and satisfies the relations

{(−1)F , Q} = 0, {(−1)F , Q†} = 0, [(−1)F , H] = 0. (2.55)

An important property of (−1)F , which holds for supersymmetric models in general,
is that its eigenfunctions are bosonic and fermionic states, with eigenvalues 1 and −1
respectively:

(−1)F |b〉 = |b〉 , (−1)F |f〉 = − |f〉 . (2.56)
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This can be easily checked using the expression for (−1)F we found at the end of (2.54):

(−1)F |b〉 = (1− 2F ) |b〉 = |b〉 , (2.57)

(−1)F |f〉 = (1− 2F ) |f〉 = |f〉 − 2 |f〉 = − |f〉 . (2.58)

This property allows us to introduce the general concept of Witten index, which is defined
as follows:

∆ ≡ nE=0
B − nE=0

F = Tr(−1)F . (2.59)

To show why the second equality holds, consider the case where we have nB bosonic
states and nF fermionic ones: we can write the operator (−1)F in the basis they form,
and then it is clear from (2.56) that its trace gives the difference between the number
of bosonic and fermionic states. However, we have seen in the previous section that
eigenstates with E > 0 always come in bosonic-fermionic pairs, so these states cancel
out in Tr(−1)F , leaving only the ones with E = 0.
It turns out that Tr(−1)F is not a good definition of the Witten index, because the sum
does not converge absolutely. To fix this, one can instead define it as

∆ = Tr
(
(−1)F e−βH

)
, (2.60)

which is a good regulation, since the sum does not depend on the parameter β and it
clearly reduces to our previous definition as β → 0.
The Witten index is an indicator of supersymmetry breaking: if ∆ 6= 0, then there
is at least one bosonic or fermionic state with E = 0, so supersymmetry is unbroken.
However, if ∆ = 0, one cannot distinguish between the absence of E = 0 states (broken
supersymmetry) and the presende of the same number of bosonic and fermionic E = 0
states (unbroken supersymmetry).
We can now compute the Witten index for the N = 2 supersymmetric model. Recalling
the three cases that arise from (2.36) (bound spectrum), we have:

1. if limx→±∞ U(x) = +∞, there is one bosonic E = 0 state, so (−1)F=1 and ∆ = 1,

2. if limx→±∞ U(x) = −∞, there is one fermionic E = 0 state, so (−1)F = −1 and
∆ = −1,

3. if limx→±∞ U(x) = ±∞ or limx→±∞ U(x) = ∓∞, there are no E = 0 states, so
(−1)F = 0 and ∆ = 0.

These cases show that one could change the form of U(x) while keeping its asymptotic
behaviour, and the Witten index would remain unchanged. This is an example of a
general topological property of the Witten index: as one changes the parameters of the
theory, some boson-fermion pairs could leave or enter the E = 0 state, but the Witten
index stays the same. This is because, as we have seen above, E > 0 states must be
doubly degenerate, and to preserve this degeneration transitions from and to the E = 0
state must happen by pairs of bosonic and fermionic excitations.
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Applications

3.1 Factorization and chain of Hamiltonians

The method of factorization has been used for a long time to solve the Schrödinger
equation; it turns out that it easily arises in the framework of Supersymmetric Quantum
Mechanics, as we are going to see in this section [9] [10] [11]. We will set ~ = m = 1
once again.
Suppose that we have a one dimensional Hamiltonian H1 and that we know its ground
state eigenvalue E

(0)
1 and eigenfunction ψ

(0)
1 (belonging to the bound spectrum). First

of all, the Schrödinger equation makes it possible to express the potential V1 in terms of
ψ

(0)
1 :

−1

2

d2ψ
(0)
1

dx2
+ (V1(x)− E(0)

1 )ψ
(0)
1 = 0 ⇒ V1(x) = E

(0)
1 +

1

2

ψ
(0) ′′
1

ψ
(0)
1

, (3.1)

where the prime denotes a derivative with respect to x. Note that the potential is well
defined because the lowest energy eigenfunction ψ

(0)
1 is nodeless.

It is also possible to factor H1, that is to write it in the form

H1 = E
(0)
1 +

1

2
A1
†A1, (3.2)

where A1 and A†1 are defined as

A1 = W1(x)− d

dx
, A1

† = W1(x) +
d

dx
. (3.3)

Here, W1 is a function of x that must be found in order for (3.2) to hold. One immedi-
ately sees that A1 and A1

† correspond to the only non-vanishing matrix elements of the
supercharges Q and Q†, respectively (see (2.9) and (2.10)).
It is useful to compute the products A1

†A1 and A1A1
†, since we will encounter them in

future calculations:

A1
†A1 = − d2

dx2
+W1

2(x) +W1
′(x) = 2H+, (3.4)

A1A1
† = − d2

dx2
+W1

2(x)−W1
′(x) = 2H−. (3.5)

Here we have highlighted the connection between these products and the partner Hamilto-
nians introduced in (2.11). A more explicit form of H1 then is

H1 = E
(0)
1 +

1

2

(
− d2

dx2
+W1

2(x) +W1
′(x)

)
, (3.6)

and its potential is

V1 = E
(0)
1 +

1

2

(
W1

2(x) +W1
′(x)
)
. (3.7)
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This shows that H+ is just H1 with a shifted potential V+ = V1−E(0)
1 , which means that

H1 and H+ have the same eigenfunctions, but the eigenvalues of H+ are shifted so that

the ground state has E = 0. In particular, ψ
(0)
1 is an eigenfunction of H+ with eigenvalue

E+ = 0:

H+ψ
(0)
1 = 0. (3.8)

We can now compute the expression of W1(x) for which (3.6) (or (3.2)) holds: we just
need to compare (3.6) with the standard expression of the Hamiltonian H1:

E
(0)
1 +

1

2

(
− d2

dx2
+W1

2(x) +W1
′(x)

)
= −1

2

d2

dx2
+ V1(x). (3.9)

Inserting the expression for V1 found in (3.1) we get

W1
2(x) +W1

′(x) =
ψ

(0) ′′
1

ψ
(0)
1

, (3.10)

which is a differential equation for W1(x), known as the Riccati equation: one solution
is

W1(x) =
ψ

(0) ′
1

ψ
(0)
1

=
d

dx
lnψ

(0)
1 . (3.11)

However, a way to calculate W (x) without solving a differential equation is provided by
supersymmetry. We know from the previous chapter (equations (2.33) and (2.40)) that

eigenfunctions of H+ with E = 0 can be found by solving A1ψ
(0)
1 = 0 (first order) instead

of H+ψ
(0)
1 = 0 (second order). Expanding the first order order equation leads to(

W1(x)− d

dx

)
ψ

(0)
1 = 0, (3.12)

which immediately reduces to (3.11).
Finding the superpotential W1 is the first step of the factorization method. So far, we
have shown how to derive it starting from the knowledge of the ground state eigenvalue
E

(0)
1 and eigenfunction ψ

(0)
1 . However, looking at the form of the potential V1, one might

be able to guess a function W1 that satisfies (3.7), without needing to know anything
about the ground state of the system. Managing to do so has two benefits: first, requiring
that (3.7) holds makes the ground state energy level emerge, usually in the form of an
additive constant needed to adjust the equality; second, one can immediately compute
ψ

(0)
1 by inverting (3.11):

ψ
(0)
1 (x) = Ne

∫ xW1(y) dy, (3.13)

where N is a normalization constant. We are going to see this process in action with
some later examples.
Now that we know the superpotential W1 (either having derived it from (3.7) or having
“guessed” it), it is possible to construct the partner Hamiltonian of H1, which we shall
denote as H2, just by reversing the order of A1

† and A1:

H2 = E
(0)
1 +

1

2
A1A1

† = H− + E
(0)
1 . (3.14)
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H1 and H2 are called partner Hamiltonians because their relationship mirrors the one
between H+ and H− with just a shift of E

(0)
1 in the spectrum. We can now get an explicit

form of H2 using (3.5) and (3.11):

H2 = E
(0)
1 +

1

2

(
− d2

dx2
+W1

2(x)−W1
′(x)

)
=

= H1 −W1
′(x) = H1 −

d2

dx2
lnψ

(0)
1 .

(3.15)

This means that the relation between the potentials V1 and V2 (often called partner
potentials) is

V2 = V1 −
d2

dx2
lnψ

(0)
1 , (3.16)

or, in terms of the superpotential,

V2 = V1 −W1
′. (3.17)

We can now use the knowledge of H+ and H− developed in the previous chapter to
deduce some properties of H1 and H2. For the bound spectrum, we know that if H+

has an eigenstate with E = 0, then H− cannot have one too; further, for eigenstates
with E > 0, H+ and H− share the same spectrum, and one can use the action of the
supercharges to obtain an eigenfunction of H− from one of H+ and vice-versa. Since

H1 = H+ + E
(0)
1 and H2 = H− + E

(0)
1 , it follows that H2 has the same spectrum as H1,

except for the ground state E = E
(0)
1 . Moreover, if∣∣∣ψ(n)

1

〉
(3.18)

is a normalized eigenket of H1 with eigenvalue E
(n)
1 , then∣∣∣ψ(n−1)

2

〉
=

1√
2
(
E

(n)
1 − E

(0)
1

)A1

∣∣∣ψ(n)
1

〉
(3.19)

is a normalized eigenket of H2 with the same eigenvalue

E
(n−1)
2 = E

(n)
1 . (3.20)

Conversely, if ∣∣∣ψ(n)
2

〉
(3.21)

is a normalized eigenket of H2 with eigenvalue E
(n)
2 , then∣∣∣ψ(n+1)

1

〉
=

1√
2
(
E

(n)
2 − E

(0)
1

)A1
†
∣∣∣ψ(n)

2

〉
(3.22)

is a normalized eigenket of H1 with the same eigenvalue

E
(n+1)
1 = E

(n)
2 . (3.23)
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For the continuous spectrum, we can deduce that there is a complete correspondence
between the eigenkets of H1 and H2 with the same energy, since the ground state isn’t
affected by normalization issues; once again, the operators A1 and A1

† realize this cor-
respondence. We can thus write for the continuous spectrum some relations that are
analoguous to the ones for the bound spectrum:

E
(λ)
1 = E

(λ)
2 , (3.24)∣∣∣ψ(λ)

2

〉
∝ A1

∣∣∣ψ(λ)
1

〉
, (3.25)∣∣∣ψ(λ)

1

〉
∝ A1

†
∣∣∣ψ(λ)

2

〉
, (3.26)

where λ is now a continuous index and the proportionality symbol indicates that one
may choose the normalization he wishes for the kets he obtains.
We can summarize this by saying that A1 generates an eigenket of H2 form one of H1

with the same eigenvalue, while A1
† does the opposite (with the exception of the ground

state of H1, if it belongs to the bound spectrum). For the bound spectrum, thanks to a
well-known property of nodes for its eigenfunctions, we can add that A1 destroys a node
in the wave function, while A1

† creates one.
It can be interesting to derive the relation between the reflection and transmission amp-
litudes of the partner Hamiltonians. For scattering, we are dealing with the continuous
spectrum, so we are going to use the relations (3.24) to (3.26) to switch between eigen-
functions of the two Hamiltonians with the same energy. First, let us define

W±
1 = lim

x→±∞
W1(x); (3.27)

thus, we can say that

lim
x→±∞

V1,2(x) =
1

2

(
W±)2. (3.28)

Assuming that the incident wave from x → −∞ is plane, the asymptotic forms for the
eigenfunctions ψ1 and ψ2 of H1 and H2 are

lim
x→−∞

ψ1,2(x) = eikx + r1,2 e−ikx,

lim
x→+∞

ψ1,2(x) = t1,2 eik
′x,

(3.29)

where

k =

√
2
(
E − E(0)

1

)
−
(
W−

1

)2
and k′ =

√
2
(
E − E(0)

1

)
−
(
W+

1

)2
. (3.30)

We can now write, according to (3.26), ψ1(x) = NA1
†ψ2(x), where N is a normalization

constant; then the asymptotic forms of ψ1 are also given by

lim
x→−∞

ψ1(x) = N
(
W−

1 + ik
)

eikx +Nr2
(
W−

1 − ik
)

e−ikx,

lim
x→+∞

ψ1(x) = Nt2
(
W−

1 + ik′
)

eik
′x.

(3.31)

Comparing the two asymptotic forms for ψ1 from (3.29) and (3.31) allows us to eliminate
N and find the relations between r1,2 and t1,2 we were looking for:

r2 =
W−

1 + ik

W−
1 − ik

r1, t2 =
W−

1 + ik

W+
1 + ik′

t1. (3.32)
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We can also compute

|r2|2 =

∣∣W−
1 + ik

∣∣2∣∣W−
1 − ik

∣∣2 |r1|2 =

(
W−

1

)2
+ 2E −

(
W−

1

)2(
W−

1

)2
+ 2E −

(
W−

1

)2 |r1|2 = |r1|2,

|t2|2 =

∣∣W−
1 + ik

∣∣2∣∣W+
1 + ik′

∣∣2 |t1|2 =

(
W−

1

)2
+ 2E −

(
W−

1

)2(
W+

1

)2
+ 2E −

(
W+

1

)2 |t1|2 = |t1|2.
(3.33)

This shows that partner potentials have the same reflection and transmission probabil-
ities.
After creating a partner Hamiltonian H2 for H1, we can go on and create a partner
Hamiltonian H3 for H2. To do so, we must write H2 in the form

H2 = E
(0)
2 +

1

2
A2
†A2 = E

(0)
2 +

1

2

(
− d2

dx2
+W2

2(x) +W2
′(x)

)
, (3.34)

with

A2 = W2(x)− d

dx
, A2

† = W2(x) +
d

dx
, W2(x) =

ψ
(0) ′
2

ψ
(0)
2

=
d

dx
lnψ

(0)
2 . (3.35)

Here, E
(0)
2 and ψ

(0)
2 denote the ground state eigenvalue and eigenfunction of H2. We can

also see that the potential V2 has the form

V2 = E
(0)
2 +

1

2

(
W2

2(x) +W2
′(x)
)
. (3.36)

The partner H3 can now be defined as

H3 = E
(0)
2 +

1

2
A2A2

† = E
(0)
2 +

1

2

(
− d2

dx2
+W2

2(x)−W2
′(x)

)
. (3.37)

Its potential V3 then is

V3 = V2 −
d2

dx2
lnψ

(0)
2 = V1 −

d2

dx2
ln
(
ψ

(0)
1 ψ

(0)
2

)
. (3.38)

We also have the following relations between the eigenvalues and eigenfunctions of H3,
H2 and H1:

E
(n)
3 = E

(n+1)
2 = E

(n+2)
1 , (3.39)∣∣∣ψ(n)

3

〉
=

1√
2
(
E

(n+1)
2 − E(0)

2

)A2

∣∣∣ψ(n+1)
2

〉
=

=
1√

22
(
E

(n+2)
1 − E(1)

1

)(
E

(n+2)
1 − E(0)

1

)A2A1

∣∣∣ψ(n+2)
1

〉
,

(3.40)

∣∣∣ψ(n)
2

〉
=

1√
2
(
E

(n+1)
2 − E(0)

2

)A2
†
∣∣∣ψ(n−1)

2

〉
, (3.41)
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∣∣∣ψ(n)
1

〉
=

1√
22
(
E

(n+2)
1 − E(1)

1

)(
E

(n+2)
1 − E(0)

1

)A1
†A2

†
∣∣∣ψ(n−2)

3

〉
. (3.42)

This means that H3 has the same spectrum as H2 except the ground state as the latter,
and also the same spectrum as H1 except for its first two energy levels. Further, the
operators A2 and A2

† can be used to obtain eigenfunctions of H3 from ones of H2 and
vice-versa.
One can extend the construction of partner Hamiltonians as long as he wishes, building
the so-called chain or hierarchy of Hamiltonians. Agreeing that symbols with a subscript
k indicate quantities belonging to the k-th Hamiltonian in the chain and that a super-
script (m) indicates the m-th eigenvalue or eigenfunction, the following general relations
can be obtained:

Hk = E
(0)
k +

1

2
Ak
†Ak = E

(0)
k−1 +

1

2
Ak−1Ak−1

†, (3.43)

where

Ak = Wk(x)− d

dx
, Ak

† = Wk(x) +
d

dx
, Wk(x) =

ψ
(0) ′
k

ψ
(0)
k

=
d

dx
lnψ

(0)
k ; (3.44)

Vk = Vk−1 −
d2

dx2
lnψ

(0)
k−1 = ... = V1 −

d2

dx2
ln
(
ψ

(0)
1 ψ

(0)
2 ...ψ

(0)
k−1

)
. (3.45)

The eigenvalues and eigenfunctions are related by:

E
(n)
k = E

(n+1)
k−1 = ... = E

(n+k−1)
1 , (3.46)∣∣∣ψ(n)

k

〉
=

Ak−1Ak−2 ... A1√
2k−1

(
E

(n+k−1)
1 − E(k−1)

1

)
...
(
E

(n+k−1)
1 − E(0)

1

) ∣∣∣ψ(n+k−1)
1

〉
. (3.47)

∣∣∣ψ(n)
1

〉
=

A1
† ... Ak−2

†Ak−1
†√

2k−1
(
E

(n+k−1)
1 − E(k−1)

1

)
...
(
E

(n+k−1)
1 − E(0)

1

) ∣∣∣ψ(n−k+1)
k

〉
. (3.48)

Equation (3.46) shows that, as one “goes up” in the chain of Hamiltonians by n steps
(that is, k increases to k + n), the Hamiltonians have the same spectrum except the
first n levels, which are removed. On the other hand, if one wants to switch between
eigenfunctions of Hk and Hl (suppose k < l) with the same energy, one needs to act on
eigenfunctions of Hk with the operators Al−1 ... Ak, or on eigenfunctions of Hl with the
operators Ak

† ... Al−1
†. A pictorial representation of this mechanism is given in Figure

3.1. Note that, while the hierarchy of Hamiltonians could virtually go on ad infinitum,
the relations between eigenvalues and eigenfunctions suggest that this construction is
only useful until we reach the Hamiltonian whose only eigenvalue is the last level in the
bound spectrum of H1.
Finally, one can obtain the reflection and transmission amplitudes for the n-th Hamilto-
nian in the chain by applying formula (3.32) for every potential in the chain:

rn =

(
W−

1 + ik1
W−

1 − ik1

)
...

(
W−
n−1 + ikn−1

W−
n−1 − ikn−1

)
r1,

tn =

(
W−

1 + ik1
W+

1 + ik′1

)
...

(
W−
n−1 + ikn−1

W+
n−1 + ik′n−1

)
t1,

(3.49)
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Figure 3.1: Illustration of the energy levels E of four partner Hamiltonians H, includ-
ing the operators A and A† that allow to switch between eigenfunctions of different
Hamiltonians.

where we have set
W±
n = lim

x→±∞
Wn(x), (3.50)

kn =

√
2
(
E − E(0)

n

)
− (W−

n )2 , k′n =

√
2
(
E − E(0)

n

)
− (W+

n )2. (3.51)

It is now possible to check that all the transmission and reflection probabilities are the
same (the calculation is basically the same as the one we saw for the first two partner
potentials):

|r1|2 = |r2|2 = ... = |rn|2 = ... |t1|2 = |t2|2 = ... = |tn|2 = ... (3.52)

The creation of a chain of Hamiltonians will be particularly useful to find the bound
spectrum (and its eigenfunctions) for a class of potentials which is the object of the
next section. Furthermore, building a chain starting from a Hamiltonian with known
spectrum and eigenfunctions generates a series of new exactly solvable potentials, whose
spectrum is almost the same as the starting one and whose eigenfunctions can be eas-
ily computed using formula (3.47). This is demonstrated in the next chapter, with the
potential box example. One could also pick a superpotential and obtain two partner
Hamiltonians with closely related spectra and eigenfunctions. This can be particularly
interesting if the partner potentials happen to have rather different forms, like the ones
shown in Figure 3.2, because it can look quite surprising that they almost share the same
spectrum and eigenfunctions.
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Figure 3.2: Two pairs of partner potentials that are quite different in shape. The left
one is generated by the superpotential W = x3, while the right one is generated by
W = tanh(x). The latter is particularly interesting, because just from the properties of
partner potentials and the spectral structure theorem one can deduce that the potential
V = 2 tanh2(x)− 1 has only one bound state, with E = 0.

3.2 Shape invariant potentials

Two potentials V1 and V2 are said to be shape invariant if they satisfy

V2(x; a1) = V1(x; a2) +R(a1), (3.53)

where a1 and a2 are sets of parameters related by

a2 = f(a1) (3.54)

for some function f , and the remainder R does not depend on x. This means that V1
and V2 have the same functional form, but can differ for a set of parameters and for an
additive constant [9] [11].
It turns out that this class includes a wide variety of common potentials encountered in
Quantum Mechanics. This is very fortunate, because applying the method of factoriz-
ation and the knowledge of supersymmetry to these potentials provides an easy way to
derive their spectrum.
Let us assume that we want to find the spectrum of the Hamiltonian H1(x; a1). If we

know its lower energy eigenvalue E
(0)
1 and eigenfunction ψ

(0)
1 , we can use formula (3.11)

to compute the superpotential

W1(x; a1) =
d

dx
lnψ

(0)
1 (x; a1), (3.55)

or alternatively we can “guess” W1(x; a1) as discussed above; then we can build a chain
of Hamiltonians Hn using the method developed in the previous section. If the partner
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potentials Vn appearing in the chain are shape invariant, it means that they satisfy

Vn(x; an−1) = Vn−1(x; an) +R(an−1), (3.56)

where
an = f(an−1) (3.57)

and the function f is the same for every n. Actually, if one wants to check wether the
potentials of the chain are shape invariant, he just needs to check it for the first pair of
Hamiltonians, so it is sufficient that (3.53) holds. This is clear because, if the second
potential differs from the first one by just a set of parameters, then the same will be true
for the corresponding superpotentials W1 and W2, so W2 will in turn generate a similar
partner potential V3, with the same functional change of parameters as the one between
V1 and V2. In other words, when we generate V3 from V2 we are just repeating the same
calculations used to build V2 from V1, the only difference is the set of parameters. This
implies that the functional form of the remainders will always be the same, too.
Once we have checked that the first two potentials are shape invariant, we can apply
condition (3.56) to every potential in the chain, and this allows us to write Vn in terms
of V1 and the remainders:

Vn(x; a1) = V1(x; an) +
n−1∑
k=1

R(ak). (3.58)

Consequently, the n-th Hamiltonian reads

Hn(x; a1) = H1(x; an) +
n−1∑
k=1

R(ak). (3.59)

This shows that the spectrum of Hn is very similar to one of H1, but it depends on the
set of parameters an instead of a1 and it is shifted by the sum of the remainders. In
particular, the lowest energy level of Hn is given by

E(0)
n = E

(0)
1 (an) +

n−1∑
k=1

R(ak). (3.60)

Further, we know from the previous section that E
(0)
n = E

(n−1)
1 , so we can use (3.60) to

get the whole spectrum of the original Hamiltonian H1:

E
(n)
1 = E

(0)
1 (an+1) +

n∑
k=1

R(ak). (3.61)

(3.59) also shows that Hn(x; a1) has the same eigenfunctions as H1(x; an), which is just
our starting Hamiltonian with the parameters changed form a1 to an = fn(a1). In
particular, its ground state eigenfunction is

ψ(0)
n (x; a1) = ψ

(0)
1 (x; an) = Ne

∫ xW1(y;an) dy, (3.62)

where N is a normalization constant. We also know from the previous section that to
“transform” an eigenket of Hn into one of H1 with the same energy we just need to apply
the operators A†, so the eigenkets of H1 can be written as∣∣∣ψ(n)

1 (a1)
〉

= N ′A†(a1)A
†(a2) ... A

†(an)
∣∣∣ψ(0)

1 (an+1)
〉
, (3.63)
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where N ′ is another normalization constant. Note that, because of the shape invariance
condition, the operators A† all have the same form and only differ in the parameters.
The same is true for the A, of course.
The shape invariance condition also simplifies relation (3.49) for the reflection and trans-
mission amplitudes, because the superpotentials Wn are just the same as the first one,
W1, but with shifted parameters, so one doesn’t need to compute all the superpotentials
(and the same is true for the k and the k′):

rn =

(
W−

1 (a1) + ik(a1)

W−
1 (a1)− ik(a1)

)
...

(
W−

1 (an−1) + ik(an−1)

W−
1 (an−1)− ik(an−1)

)
r1,

tn =

(
W−

1 (a1) + ik(a1)

W+
1 (a1) + ik′(a1)

)
...

(
W−

1 (an−1) + ik(an−1)

W+
1 (an−1) + ik′(an−1)

)
t1.

(3.64)

To summarize, we have seen that, if the first two partner potentials V1 and V2 in the
chain of Hamiltonians of H1 are shape invariant, then all the other potentials of the chain
will be shape invariant as well. In this case, we just need to study their relations in terms
of the parameters an and the remainders R(an), and the spectrum and eigenfunctions of
H1 follow directly from (3.61) and (3.63). We can see this method as a generalization
(for shape invariant potentials) of the solution of the one dimensional harmonic oscillator
involving raising and lowering operators: here, the counterparts of those operators are A
and A†, because the shape invariance condition allows us to use them to switch between
higher and lower energy eigenkets.

3.3 Isospectral deformation

In this section we shall see, starting from a given potential V1, how to use supersymmetric
partner potentials to build a family of strictly isospectral potentials, that is potentials
with the same spectrum but also the same transmission and reflection probabilities as
V1. Indeed, the search for strictly isospectral potentials is motivated by practical ap-
plications, for example in the α − α scattering some ambiguities in the potential were
observed, even if the transmission and reflection coefficients were fixed [9] [10] [11].
We start by asking this question: given a potential V1 (written in terms of a superpo-
tential W1)

V1 = E
(0)
1 +

1

2

(
W1

2 +W1
′) , (3.65)

and given its partner potential

V2 = E
(0)
1 +

1

2

(
W1

2 −W1
′) , (3.66)

is the superpotential W1 unique? That is, can we find other superpotentials W̃1 (and

corresponding potentials Ṽ1) that generate the same partner V2? If such superpotentials

W̃1 exist, we assume that they have the form

W̃1(x) = W1(x) + φ(x). (3.67)

Requiring that V2 is generated by W1 as well as W̃1 means that the following equation
must hold:

V2 = E
(0)
1 +

1

2

(
W1

2 −W1
′) = E

(0)
1 +

1

2

(
W̃ 2

1 − W̃ ′
1

)
. (3.68)
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Inserting (3.67) into (3.68), one gets

φ′ = φ2 + 2W1φ, (3.69)

which is a Bernoulli differential equation. It is known from the theory of differential
equations that a useful substitution to solve this is

y(x) =
1

φ(x)
; (3.70)

inserting it into (3.69) gives a linear differential equation for y:

y′ + 2W1y + 1 = 0. (3.71)

The solution to this can be easily found using the integrating factor method: the result
is

y(x) = −e−2
∫ xW1(t) dt

(∫ x

e2
∫ uW1(t) dt du+ λ1

)
, (3.72)

where λ1 is an integration constant. It is interesting to note that this solution can be
recast in terms of the ground state wave function ψ1

(0) of V1 (using formula (3.13)):

y(x) = −
(
ψ1

(0)(x)
)−2 [∫ x (

ψ1
(0)(u)

)2
du+ λ1

]
. (3.73)

Here, we have omitted the normalization constant for the wave function, since its presence
would just rescale the real parameter λ1. We now have the function φ(x) we were looking
for:

φ(x) = −
(
ψ1

(0)(x)
)2 [∫ x (

ψ1
(0)(u)

)2
du+ λ1

]−1
= − d

dx
ln [I1(x) + λ1], (3.74)

where we have set

I1(x) =

∫ x (
ψ1

(0)(u)
)2

du. (3.75)

This means we have found an entire family of superpotentials W̃1, depending on the real
parameter λ1, which generate V2 as a partner potential:

W̃1(x) = W1(x)− d

dx
ln [I1(x) + λ1]. (3.76)

Note that, since in the bound spectrum limx→±∞ ψ1
(0)(x) = 0, the superpotentials W1

and W̃1 have the same asymptotic limits. Now, the corresponding potentials Ṽ1 can be
found using the properties of partner Hamiltonians:

Ṽ1 = V2 + W̃ ′
1 = V1 −W ′

1 + W̃ ′
1 = V1 + φ′, (3.77)

which gives the final result

Ṽ1 = V1 −
d2

dx2
ln [I1(x) + λ1]. (3.78)

The Ṽ1 all have V2 as partner potential, so they have the same spectrum as the starting
potential V1; moreover, we know from (3.32) that partner potentials have the same
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reflection and transmission probabilities, so the family of Ṽ1 has the same reflection and
transmission probabilities as V1. We can also see that the original potential V1 is obtained
in the limit λ1 →∞.
If we are interested in the eigenfunctions ψ̃n of the family Ṽ1, we can easily find them
using the relations between partner potentials (3.19) and (3.22):

ψ̃
(n)
1 ∝ Ã†1ψ

(n−1)
2 ∝ Ã†1A1ψ1

(n), (3.79)

where, of course,

Ã†1 = W̃1 +
d

dx
. (3.80)

This leaves out the ground state wave function ψ̃
(0)
1 , since it cannot be obtained from

eigenfunctions of V2, but we have a simpler formula for it (see (3.13)):

ψ̃
(0)
1 (x) = N1e

∫ x W̃1(y) dy = N1e
∫ x[W1(y)− d

dy
ln (I1(y)+λ1)] dy = N1

ψ1
(0)(x)

I1(x) + λ1
. (3.81)

There is a particular choice of the lower boundary of the integration range for I1, namely
u = −∞, that allows us to easily compute the normalization constant N1:∫ +∞

−∞
N1

2
(
ψ1

(0)(u)
)2

(I1(u) + λ1)
−2 du = N1

2

∫ λ1+1

λ1

dt

t2
=

N1
2

λ1(λ1 + 1)
= 1

⇒ N1 =
√
λ1(λ1 + 1).

(3.82)

In the first line, we have made the substitution I1(u) +λ1 = t, so if x = −∞ then I1 = 0
and t = λ1, and similarly if x = +∞ then I1 = 1 and t = λ1 + 1. Now, because of the
reality property of one dimensional wave functions, the expression for N1 forces us to
limit λ1 to the ranges λ1 < −1 and λ1 > 0.
So, using this procedure of isospectral deformation, we have built a family of strictly
isospectral potentials from a starting one, and we have obtained an expression for their
eigenfunctions. Thus, if this is applied to a potential that can be analytically solved, one
is able to generate a family of potentials which are also solvable, but without having to
tackle the Schrödinger equation directly.
It is possible to extend this procedure starting from a “higher” potential in the chain of
partner potentials, instead of V2: we will see V3 as an example, then we will generalize
to Vn.
From our previous discussion we can realize that, starting from the knowledge of V3, it is
possible to generate a family of potentials Ṽ2 that are strictly isospectral to V2. Recalling
formula (3.78), this family is given by

Ṽ2 = V2 −
d2

dx2
ln [I2(x) + λ2], (3.83)

where

I2(x) =

∫ x [
ψ

(0)
2 (u)

]2
du ∝

∫ x [
A1ψ

(1)
1 (u)

]2
du (3.84)

and λ2 is an integration constant, but also the parameter on which the family depends.
Now, we can generate a family of potentials that are isospectral to V1 starting from each
one of the Ṽ2: this creates a two parameter family of potentials

Ṽ1 = V1 −
d2

dx2
ln [I2(x) + λ2][I1(x) + λ1]. (3.85)
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The eigenfunctions for this family will be given by

ψ̃
(0)
1 (x) ∝ ψ1

(0)(x)

I1(x) + λ1
,

ψ̃
(1)
1 (x) ∝ Ã†1A1

ψ1
(1)(x)

I2(x) + λ2
,

ψ̃
(n)
1 (x) ∝ Ã†1Ã

†
2A2A1ψ1

(n)(x) n ≥ 2,

(3.86)

with

Ã†2 = W̃2 +
d

dx
, W̃2(x) = W2(x)− d

dx
ln [I2(x) + λ2]. (3.87)

Because of observations on normalization constants for these wave functions, similarly to
what we have seen for λ1, we must limit the parameters λi, with i = 1, 2, to the ranges
λi < −1 and λi > 0.
So, starting from V3 instead of V2, we have built a two parameter family of isospectral
potentials instead of a one parameter family. If we have a potential with n bound states,
we can start this construction from the partner potential Vn+1, which is the first potential
with no bound states, so that its partner Vn has just one bound state. In this case, we
can define, for i = 1, 2, ... n,

Ii(x) =

∫ x [
ψ

(0)
i (u)

]2
du ∝

∫ x [
Ai−1...A1ψ

(i−1)
1 (u)

]2
du, (3.88)

W̃i(x) = Wi(x)− d

dx
ln [Ii(x) + λi], (3.89)

and

Ã†i = W̃i +
d

dx
. (3.90)

Here, we have introduced n real parameters λi. Then the n parameter family of potentials
which are strictly isospectral to V1 is:

Ṽ1 = V1 −
d2

dx2
ln [In(x) + λn] ... [I1(x) + λ1]. (3.91)

The eigenfunctions for this family are

ψ̃
(0)
1 (x) ∝ ψ1

(0)(x)

I1(x) + λ1
,

ψ̃
(1)
1 (x) ∝ Ã†1A1

ψ1
(1)(x)

I2(x) + λ2
,

...

ψ̃
(n−1)
1 (x) ∝ Ã†1 ... Ã

†
n−1An−1 ... A1

ψ1
(n−1)(x)

In(x) + λn
.

(3.92)

Finally, we address the uniqueness of isospectral deformation. We ask the following
question: if we apply the technique we have just described to the newly obtained family
Ṽ1, do we get another family of isospectral potentials or is Ṽ1 unique? The correct option
is the second one, as we shall see with a brief calculation. We present this proof just
for the one parameter family for the sake of simplicity, but the reasoning is exactly the
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same for families with more parameters.
If we apply the isospectral deformation to the one parameter family Ṽ1, we get a new
family parameterized by µ1:

˜̃
V1 = V1 −

d2

dx2
ln [I1(x) + λ1][Ĩ1(x) + µ1], (3.93)

where

Ĩ1(x) =

∫ x

−∞

(
ψ̃

(0)
1 (u)

)2
du = λ1(λ1 + 1)

∫ x

−∞

(
ψ1

(0)(u)

I1(u) + λ1

)2

du =

= λ1(λ1 + 1)

(
1

λ1
− 1

I1(x) + λ1

)
.

(3.94)

Inserting this expression into (3.93) we get

˜̃
V1 = V1 −

d2

dx2
ln [I1(x) + λ1]

[
(λ+ 1)I1(x)

I1(x) + λ1
+ µ1

]
= V1 −

d2

dx2
ln [I1(x) + ν1], (3.95)

with

ν1 =
λ1µ1

λ1 + µ1 + 1
. (3.96)

It can be shown that, if λ1 and µ1 satisfy λ1 < −1 ∨ λ1 > 0 and µ1 < −1 ∨ µ1 > 0, then
the same is true for ν1: ν1 < −1 ∨ ν1 > 0. This means that ν1 just reparameterizes the
original family Ṽ1 without adding any new potentials, thus the proof of the uniqueness
of isospectral deformation is complete.
So, we have seen that the knowledge of supersymmetric partner potentials has provided
a quite simple and straightforward procedure that, starting from a potential V1 with
n bound states, generates a unique n parameter family of potentials that are strictly
isospectral to V1. Indeed, the development of Supersymmetric Quantum Mechanics has
been able to revive the interest in the search for isospectral potentials.
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Examples of applications

4.1 Partner potentials of the one dimensional

potential box

In this section we compute some partner Hamiltonians for the one-dimensional potential
box, along with their eigenvalues and eigenfunctions, in order to get an intuition of the
chain of Hamiltonians mechanism we have discussed in the previous chapter [9].
Let us take the potential box in the form

V1(x) =

{
0 0 ≤ x ≤ L

∞ x ≤ 0 ∨ x ≥ L
. (4.1)

The eigenvalue problem for this potential is well known in quantum mechanical theory:
the energy levels are

E
(n)
1 =

(n+ 1)2π2

2L2
n = 0, 1, 2... (4.2)

where we have adjusted the quantum number n so that the lowest eigenvalue has n = 0.
The corresponding eigenfunctions are

ψ
(n)
1 =

{√
2
L

sin (n+1)πx
L

0 ≤ x ≤ L

0 x ≤ 0 ∨ x ≥ L
. (4.3)

From now on, we are going to focus on the range [0, L], since it is quite obvious that,
outside of it, all the partner potentials will be infinite and all their eigenfunctions will
vanish.
The first step in the construction of the chain of Hamiltonians is the computation of the
superpotential W1: using (3.11) we find

W1 =
π

L

cos πx
L

sin πx
L

=
π

L
cot

πx

L
. (4.4)

Inserting this in (3.16) allows us to obtain the first partner potential V2:

V2 = − d

dx

(π
L

cot
πx

L

)
=
π2

L2
csc2

πx

L
(4.5)

We know that this potential will have the same energy levels as V1 except the one with
n = 0: we can write these levels as as

E
(n)
2 =

(n+ 2)2π2

2L2
n = 0, 1, 2... (4.6)

The corresponding eigenfunctions ψ
(n)
1 can be found by acting on the ψ

(n)
1 with the

operator

A1 =
π

L
cot

πx

L
− d

dx
, (4.7)
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which, after adjusting the normalization according to (3.19), results in

ψ
(n)
2 =

√
2

(n+ 1)(n+ 3)L

[
cot

πx

L
sin

(n+ 2)πx

L
− (n+ 2) cos

(n+ 2)πx

L

]
. (4.8)

The general expression might look complicated, but we can compute the first three
functions to see what they look like:

ψ
(0)
2 =

√
8

3L
sin2 πx

L
, ψ

(1)
2 =

√
4

L
sin

πx

L
sin

2πx

L
,

ψ
(2)
2 =

√
32

15L
sin2 πx

L

(
5− 6 sin2 πx

L

)
.

(4.9)

These eigenfunctions are plotted in Fig. 4.1, where they are compared with the ones
belonging to the original potential.
We can go one step further and compute the third partner potential V3. To do so, let us
find the superpotential W2:

W2 =
2π

L
cot

πx

L
, (4.10)

from which we have

V2 =
π2

L2
csc2

πx

L
− d

dx

(
2π

L
cot

πx

L

)
=

3π2

L2
csc2

πx

L
. (4.11)

As for the eigenvalues, one more energy level is removed from the bottom, so

E
(n)
3 =

(n+ 3)2π2

2L2
n = 0, 1, 2... (4.12)

We can find the eigenfunctions by using

A2 =
2π

L
cot

πx

L
− d

dx
(4.13)

on the ones from the previous potential: the general expression is quite long, so we just
show the first two,which are once again plotted in Fig. 4.1:

ψ
(0)
3 =

√
4

5L

(
cos

πx

L
sin

2πx

L
− 2 sin

πx

L
cos

2πx

L

)
,

ψ
(1)
3 =

√
128

5L
sin3 πx

L
cos

πx

L
.

(4.14)

We could go on building partner Hamiltonians as long as we like, since the spectrum of
H1 is infinite, but we stop here to avoid boring calculations, having already seen what
partner potentials and their eigenfunctions look like. Note that, in this process, we have
found the eigenvalues and eigenfunctions for potentials in the form V = A csc (ax), which
can be rather complicated to compute if one tries to solve the Schrödinger equation.
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Figure 4.1: From left to right, the potential box with L = π and its first two partner
potentials. The low energy spectrum is also plotted, and every level is accompanied
by its eigenfunction.

4.2 The one dimensional harmonic oscillator

We said in section 3.2 that the chain of Hamiltonians is a procedure that extends, for
shape invariant potentials, the raising and lowering operators method developed for the
harmonic oscillator. In this section we shall familiarize with shape invariant potentials
by seeing how this factorization method indeed reduces to the annihilation and creation
operators if it is applied to the harmonic oscillator [11].
Setting ~ = m = 1, the original potential is

V1 =
1

2
ω2x2. (4.15)

We want to write it in the form (3.7): we can immediately notice that two superpotentials
that can do the trick are

W1 = ±ωx. (4.16)

If we take the + option and we insert it into Eq. (3.7), we get E
(0)
1 = −ω

2
: this is in

contrast with a well known quantum mechanical theorem, which states that the energy
levels of a system are always greater than the minimum of the potential, and in our case
the minimum is zero. This means that we must rule out this superpotential1 and take
instead W1 = −ωx: now Eq. (3.7) gives

E
(0)
1 =

ω

2
, (4.17)

which is the expected result for the harmonic oscillator. We can also compute the ground
state eigenfunction

ψ
(0)
1 = e−

∫ x ωy dy = Ne−ωx
2/2, (4.18)

1Another indicator that W1 = ωx is not a “good” superpotential is the fact that, if we insert it in
formula (3.13), it generates a non normalizable ground state eigenfunction.

34



where N is a normalization constant (that can be found to be N = 4
√
ω/π). Now we can

compute the partner potential

V2 = V1 −W ′
1 =

1

2
ω2x2 + ω, (4.19)

which is just the same as V1, but shifted by ω: this means that this potential is shape
invariant, with parameters that are all the same (the only possible parameter is ω) and
identical remainders of ω:

a1 = a2 = ... = an = ω, R(a1) = R(a2) = ... = R(an) = ω. (4.20)

Eq. (3.61) then allows us to get the entire energy spectrum of V1:

E
(n)
1 =

ω

2
+

n∑
k=1

ω = ω

(
n+

1

2

)
. (4.21)

Thanks to the shape invariance condition we know the ground state eigenfunction for
every partner potential: in fact, they are identical to the first one since the parameters
are all the same, so

ψ(0)
n = 4

√
ω

π
e−ωx

2/2. (4.22)

In order to compute the eigenfunctions for V1, we need the operators

An
† = W1(an) +

d

dx
= −ωx+

d

dx
; (4.23)

if we apply them to the ground state eigenfunctions as in formula (3.63) we get:

ψ
(n)
1 ∝

(
−ωx+

d

dx

)n
e−ωx

2/2. (4.24)

Note that the operators An
† are just the usual creation operators (and computing the An

would give the annihilation ones), so the formula for the eigenfunctions is the same as
the one resulting from the use of these operators. We can see that the shape invariance
method reduces to the “classical” one because the An, the An

† and the ground state
eigenfunctions are the same for all the Hamiltonians in the chain, so it looks like we are
always working on the original Hamiltonian H1.

4.3 Hydrogenlike atoms

In this section we derive the spectrum and eigenfunctions for hydrogenlike atoms using
the chain of Hamiltonians method and the shape invariance condition [12].
The potential energy of an electron in a hydrogenlike atom is given by the Coulomb
potential:

V = −Ze
2

r
. (4.25)

Since this is a radial potential, its eigenfunctions can be expressed as

ψ(r, θ, φ) =
χ(r)

r
Yl,ml

(θ, φ), (4.26)
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where Yl,ml
are the spherical harmonics. Inserting this into the Schrödinger equation

gives the equation for χ (with ~ = m = 1):

−1

2

d2χ

dr2
+

(
l(l + 1)

2r2
− Ze2

r

)
χ = Eχ. (4.27)

This looks like a one-dimensional Schrödinger equation with the potential

V1 =
l(l + 1)

2r2
− Ze2

r
, (4.28)

which we are now going to study. First, we want to factor this potential: looking at its
expression, we expect that its superpotential will have the form

W1 = α +
β

r
. (4.29)

Inserting this ansatz into Eq. (3.7) gives

α2

2
+
αβ

r
+
β2

2r2
− β

2r2
+ E

(0)
1 =

l(l + 1)

2r2
− Ze2

r
. (4.30)

We can now equate the terms with the same power of r and solve for α, β and E
(0)
1 :2

l(l + 1) = β2 − β
αβ = −Ze2

E
(0)
1 + α2

2
= 0

⇒


β = l + 1

α = −Ze2

l+1

E
(0)
1 = − Z2e4

2(l+1)2

. (4.31)

This already provides an expression for the ground state energy (which, for l = 0, is the
same as the one known from the standard study of hydrogenlike atoms), as well as the
superpotential

W1 = − Ze2

l + 1
+
l + 1

r
. (4.32)

The ground state eigenfunction then is

χ
(0)
1 = N0,l r

l+1e−Ze
2r/(l+1). (4.33)

We can now go on and compute the partner potential for V1:

V2 =
l(l + 1)

2r2
− Ze2

r
+
l + 1

r2
=

(l + 1)(l + 2)

2r2
− Ze2

r
. (4.34)

Its form is identical to the one of V1, except that l is replaced with l + 1, which means
that the radial Coulomb potential is shape invariant. The parameters for the chain of
partner potentials are

a1 = l, a2 = l + 1, ... aν = l + ν − 1, (4.35)

while the remainders Rν all vanish. Formula (3.61) then gives the energy spectrum for
hydrogenlike atoms:

E
(ν)
1 = E

(0)
1 (l + ν) = − Z2e4

2(l + ν + 1)2
. (4.36)

2The first equation also admits the solution β = −l; however, this solution is not acceptable, because

it would generate a non normalizable ground state eigenfunction ψ
(0)
1 ∝ r−leZer/l.
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This expression might look somewhat confusing, since the indexing of energy levels that
arises from this method is different from the typical one used for atoms. One can however
restore the usual indexing by setting the principal quantum number

n = l + ν + 1, (4.37)

so the energy levels indeed are

E
(n)
1 = −Z

2e4

2n2
. (4.38)

The range of the azimuthal quantum number can simply be obtained by noting that,
because of our construction,

ν ≥ 0 ⇒ n ≥ l + 1 ⇒ l ≤ n− 1. (4.39)

We are now ready to derive the eigenfunctions. The first one was already found in (4.33):
it corresponds to ν = 0, so according to our definition of n (4.37) it holds for l = n− 1,
that is for the highest possible angular momentum for a given n. We can then rewrite
the eigenfunction in the form

χ
(l=n−1)
1 = N0,n r

ne−Ze
2r/n, (4.40)

which is indeed the usual formula for eigenfunctions with l = n−1. Thanks to the shape
invariance condition, we can immediately find the ground state eigenfunctions for any
potential Vν :

χ(0)
ν = N ′ν,l r

l+νe−Ze
2r/(l+ν). (4.41)

In order to transform them into higher states eigenfunctions for V1, we need the “raising”
operators: the first one is found from W1:

A1
† = − Ze2

l + 1
+
l + 1

r
+

d

dr
, (4.42)

so by the shape invariance condition

Aν
† = − Ze2

l + ν
+
l + ν

r
+

d

dr
. (4.43)

Now we just need to use formula (3.48) to get that, for ν ≥ 1,

χ
(ν)
1 = Nν,l

(
− Ze2

l + 1
+
l + 1

r
+

d

dr

)
...

(
− Ze2

l + ν
+
l + ν

r
+

d

dr

)(
rl+ν+1e−Ze

2r/(l+ν+1)
)
.

(4.44)

Similarly to what we have seen for χ
(0)
1 , these are eigenfunctions for states with l =

n− ν − 1, so we can rewrite them in terms of the principal quantum number:

χ
(l=n−ν−1)
1 = Nν,n

(
− Ze2

n− ν
+
n− ν
r

+
d

dr

)
...

(
− Ze2

n− 1
+
n− 1

r
+

d

dr

)(
rne−Ze

2r/n
)
.

(4.45)
For example, for ν = 1 this gives

χ
(l=n−2)
1 = N1,n r

n−1
[
1− Ze2r

n(n− 1)

]
e−Ze

2r/n. (4.46)

We now have an expression for all the eigenfunctions of the bound spectrum, which is
equivalent to the usual one containing Laguerre polynomials.
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4.4 The Pauli equation

In this section we discuss the non relativistic description of an electron in an external
magnetic field in terms of supersymmetry [9].
Since the electron has spin 1

2
, we must use the Pauli equation

H |ψ〉 =
1

2

[(
~p+ ~A

)2
+
(
~∇× ~A

)
· ~σ
]
|ψ〉 = i

∂

∂t
|ψ〉 , (4.47)

where we have set ~ = m = e = 1, and ~σ = (σx, σy, σz) contains the three Pauli matrices.
Let us make some simplifying assumptions: first, we are not going to deal with magnetic
fields that change in time, so we will focus on the time independent equation only. Also,
let us set the magnetic field along the z axis and restrict the motion of the electron on
the xy plane. The Pauli equation now reads

H |ψ〉 =
1

2

[
(px + Ax)

2 + (py + Ay)
2 + (~∇× ~A)z σz

]
|ψ〉 = E |ψ〉 . (4.48)

The form of the Hamiltonian closely resembles the supersymmetric one in (2.11)3; indeed
one can define the supercharges

Q =
1√
2

[(px + Ax)− i(py + Ay)]

(
0 1
0 0

)
Q† =

1√
2

[(px + Ax) + i(py + Ay)]

(
0 0
1 0

) (4.49)

and check that they satisfy the algebra in (2.14). Thus, the Pauli equation already has
a supersymmetric form.
Let us now leave the general discussion and study a particular form of the magnetic field.
We choose an asymmetric gauge for ~A:

Ax = Ax(y), Ay = 0, (4.50)

so the Hamiltonian becomes

H =
1

2

[
(px + Ax(y))2 + py

2 − A′x(y)σz
]
. (4.51)

It no longer depends on x, so the wave function ψ can be factored as

ψ(x, y) = eikxφ(y), (4.52)

where k is an eigenvalue of px, so it can take all the values in −∞ < k < +∞. Inserting
this form of ψ in the Pauli equation we obtain the equation for φ:

1

2

[
py

2 + (k + Ax)
2 − A′xσz

]
φ = Eφ, (4.53)

where we can see that left term has exactly the form of a supersymmetric Hamiltonian,
with superpotential

W = k + Ax. (4.54)

3Note that, using (2.8), the commutator in (2.11) can be written as [ψ†, ψ] =

(
−1 0
0 1

)
= −σz.
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This already allows us to say that the spectrum will be non negative for any form of Ax
and that, for the bound spectrum, we will have an E = 0 level only if

lim
y→±∞

(
ky +

∫ y

Ax(u) du

)
= +∞ or lim

y→±∞

(
ky +

∫ y

Ax(u) du

)
= −∞. (4.55)

If this level exists, it will be non degenerate, while E > 0 levels will be doubly degenerate.
However, there is no way to fix k, since it comes from the “x” part of the problem, so
this adds an infinite degeneracy to every level.
We shall now analyze a special case: let us set Ax(y) = ωy + c, which corresponds to a

uniform magnetic field ~B = −ω ẑ and is known as the Landau problem. The Hamiltonian
is

H =
1

2

[
py

2 + (ωy + c+ k)2 − ωσz
]
, (4.56)

which can be split into the two partner Hamiltonians

H− =
1

2

[
py

2 + (ωy + c+ k)2 − ω
]
,

H+ =
1

2

[
py

2 + (ωy + c+ k)2 + ω
]
.

(4.57)

The superpotential is
W = ωy + c+ k, (4.58)

so we can see that its primitive

U =
ω

2
y2 + (c+ k)y −−−−→

x→±∞
+∞, (4.59)

which means that only H− has the E = 0 level. The corresponding eigenfunction is

φ
(0)
− = N0e

−ω
2
y2−(c+k)y. (4.60)

We can get the rest of the spectrum for V− using the chain of Hamiltonians, because
this potential is shape invariant: we already have its partner potential V+ in (4.57), from
which we get

V+ = V− + ω. (4.61)

Thus, the parameters of the partner potentials are all the same, and all the remainders
are Rn = ω.4 Consequently, the spectrum for V− is

En = nω n = 0, 1, 2... (4.62)

and the spectrum for V+ is the same except for the missing E = 0 level. These are
the well known Landau levels. Since the parameters are the same for all the partner
potentials, all the ground state eigenfunctions will be the same as the one in (4.60); to
get the n-th eigenfunction of H− we need to apply n times the operator

A† = ωy + c+ k +
d

dy
, (4.63)

4Note the analogy with the harmonic oscillator we have already discussed: this is due to the fact
that this potential is quadratic as well.
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while to get the the n-th eigenfunction of H+ we need to apply it n − 1 times. We
conclude that the eigenfunctions for H are

φ0 = N0

(
e−

ω
2
y2−(c+k)y

0

)

φn = Nn


(
ωy + c+ k + d

dy

)n
e−

ω
2
y2−(c+k)y(

ωy + c+ k + d
dy

)n−1
e−

ω
2
y2−(c+k)y

 n = 1, 2, 3...

(4.64)

where the Ni are normalization constants. We can see that, actually, the parameter c is
irrelevant in the solution, since it only appears in sums with k, which can already take
any real value. This is consistent with the fact that c doesn’t appear in the expression
for the magnetic field, so it doesn’t affect the electron’s dynamics.

4.5 Isospectral deformation for the harmonic

oscillator

In this section we compute the one parameter family of isospectral potentials that arises
from deforming the harmonic oscillator [9], whose potential is

V1 =
1

2
ω2x2. (4.65)

First, let us compute the quantity I1, which is going to appear in several calculations
to come. To do this, we need the ground state wave function for V1, which we found in
section 4.2 to be

ψ
(0)
1 = 4

√
ω

π
e−ωx

2/2. (4.66)

We can now use formula (3.75) to find I1:

I1(x) =

√
ω

π

∫ x

−∞
e−ωy

2

dy =
1

2
[1 + erf (

√
ωx)], (4.67)

where of course

erf(x) =
2√
π

∫ x

0

e−t
2

dt. (4.68)

Then, the deformed potential Ṽ1 is given by formula (3.78):

Ṽ1 =
1

2
ω2x2 − d2

dx2
ln

[
1

2
erf (
√
ωx) +

1

2
+ λ1

]
=

=
1

2
ω2x2 −

√
ω

π

d

dx

e−ωx
2

1
2

erf (
√
ωx) + 1

2
+ λ1

=

=
1

2
ω2x2 +

ω

π

e−2ωx
2[

1
2

erf (
√
ωx) + 1

2
+ λ1

]2 + 2ω

√
ω

π

xe−ωx
2

1
2

erf (
√
ωx) + 1

2
+ λ1

.

(4.69)

Some potentials for selected values of λ1 are plotted in Fig. 4.2: note how the isospectral
deformation of the harmonic potential acts mainly on the zone around x = 0, while the
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Figure 4.2: Isospectral potentials for the harmonic oscillator (with ω = 1), plotted for
some positive values of λ1. For values of λ1 < −1, the potentials look just the same as
the ones above, but are reflected about the y axis.

asymptotic behaviour is unchanged.
We can now compute the eigenfunctions for the deformed potentials. The ground state
one is given by formula (3.81):

ψ̃
(0)
1 (x) =

√
λ1(λ1 + 1) 4

√
ω

π

e−ωx
2/2

1
2

erf (
√
ωx) + 1

2
+ λ1

, (4.70)

and some of these are plotted in Fig. 4.3.
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Figure 4.3: Ground state eigenfunctions belonging to isospectral potentials for the
harmonic oscillator (with ω = 1), plotted for some positive values of λ1. Once again,
for λ1 < −1, the wave functions look the same as the ones above, but are reflected
about the y axis.

The other wave functions can be found through forumla (3.79); to use it, we first need
the superpotential

W̃1 = −ωx− d

dx
ln

[
1

2
erf (
√
ωx) +

1

2
+ λ1

]
= −ωx−

√
ω

π

e−ωx
2

1
2

erf (
√
ωx) + 1

2
+ λ1

, (4.71)
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as well as the raising operator

Ã†1 = −ωx−
√
ω

π

e−ωx
2

1
2

erf (
√
ωx) + 1

2
+ λ1

+
d

dx
. (4.72)

Now we know everything we need to compute the wave functions:

ψ̃
(n)
1 ∝

[
ωx+

√
ω

π

e−ωx
2

1
2

erf (
√
ωx) + 1

2
+ λ1

− d

dx

] [
ωx+

d

dx

] [
−ωx+

d

dx

]n
e−ωx

2/2.

(4.73)

For example, it is fairly simple to compute the eigenfunction ψ̃
(1)
1 for the the first excited

state:

ψ̃
(1)
1 ∝ 2ωxe−ωx

2/2 +

√
ω

π

e−3ωx
2/2

1
2

erf (
√
ωx) + 1

2
+ λ1

; (4.74)

Fig. 4.4 shows some plots of this wave function for selected values of λ1.
From now on, obtaining more explicit expressions of the eigenfunctions becomes quite
tedious and not so interesting, so we will not proceed any further.
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Figure 4.4: First excited state eigenfunctions belonging to isospectral potentials for the
harmonic oscillator (with ω = 1), plotted for some positive values of λ1. Once again,
for λ1 < −1, the wave functions look the same as the ones above, but are reflected
about the y axis.

4.6 Isospectral deformation for the one dimensional

potential box

We now compute the isospectral deformation for the one dimensional potential box,
whose potential is given by

V1(x) =

{
0 0 ≤ x ≤ L

∞ x ≤ 0 ∨ x ≥ L
. (4.75)

As we did in section 4.1, we will focus on the interval 0 ≤ x ≤ L, since it is clear that
every potential will be infinite and every wave function will vanish outside of this range.
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Let us recall the energy eigenvalues and eigenfunctions for this potential:

E
(n)
1 =

(n+ 1)2π2

2L2
, ψ

(n)
1 =

√
2

L
sin

(n+ 1)πx

L
, n = 0, 1, 2... (4.76)

We also found in Section 4.1 that the superpotential W1 and the partner potential V2
are

W1 =
π

L
cot

πx

L
, V2 =

π2

L2
csc2

πx

L
. (4.77)

As usual, we begin by computing I1 using the ground state wave function:

I1 =

∫ x

0

2

L
sin2 πy

L
dy =

x

L
− 1

2π
sin

2πx

L
. (4.78)

Consequently, the family if isospectral potentials is given by

Ṽ1 = − d2

dx2
ln

(
x

L
− 1

2π
sin

2πx

L
+ λ1

)
= − 1

L

d

dx

(
1− cos 2πx

L
x
L
− 1

2π
sin 2πx

L
+ λ1

)
=

1

L2

(
1− cos 2πx

L

)2(
x
L
− 1

2π
sin 2πx

L
+ λ1

)2 − 2π

L2

sin 2πx
L

x
L
− 1

2π
sin 2πx

L
+ λ1

.

(4.79)

Some of these potentials are plotted in Fig. 4.5.
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Figure 4.5: One parameter family of isospectral potentials for the potential box (with
L = π), plotted for some positive values of λ1. For λ1 < −1, the potentials look the
same, but are reflected about the line y = π

2 .

We can now study the eigenfunctions for the deformed potentials. The grouns state one
is

ψ̃
(0)
1 =

√
2λ1(λ1 + 1)

L

sin πx
L

x
L
− 1

2π
sin 2πx

L
+ λ1

, (4.80)
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and it is shown in Fig. 4.6 for some values of λ1. In order to compute the higher energy
eigenfunctions we need the operators

Ã†1 = W1 −
d

dx
ln(I1 + λ1) +

d

dx
=
π

L
cot

πx

L
− 1

L

1− cos 2πx
L

x
L
− 1

2π
sin 2πx

L
+ λ1

+
d

dx
; (4.81)

then the eigenfunctions are given by

ψ̃
(n)
1 ∝

√
2

L

(
π

L
cot

πx

L
− 1

L

1− cos 2πx
L

x
L
− 1

2π
sin 2πx

L
+ λ1

+
d

dx

)(
π

L
cot

πx

L
− d

dx

)
sin

(n+ 1)πx

L
.

(4.82)
We are not going to carry out the calculation for a generic n explicitly, but we can find
ψ̃

(1)
1 as an example (also plotted in Fig. 4.6):

ψ̃
(1)
1 ∝

3π

2L
sin

2πx

L
− 2

L

sin4 πx
L

x
L
− 1

2π
sin 2πx

L
+ λ1

. (4.83)
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Figure 4.6: On the left, ground state eigenfunctions for some isospectral potentials of
the potential box, with L = π. On the right, first excited state eigenfunctions for the
same potentials.

Because of the simplicity of the eigenfunctions of V1, it is easy to compute I2:

I2 =

∫ x

0

2

L
sin2 2πy

L
dy =

x

L
− 1

4π
sin

4πx

L
. (4.84)

This allows us to build a two parameter family of isospectral potentials using formula
(3.85):

Ṽ1 = − d2

dx2
ln

(
x

L
− 1

2π
sin

2πx

L
+ λ1

)(
x

L
− 1

4π
sin

4πx

L
+ λ2

)
; (4.85)

however, we will not show more calculations, but simply plot some isospectral potentials
in Fig. 4.7.
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Figure 4.7: Some potentials belonging to the two parameter isospectral family for the
potential box (with L = π). On the left, λ2 is fixed to 1 and λ1 varies, while on the
right λ1 is fixed to 1 and λ2 varies.
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Conclusions

In this thesis we have seen why and how Supersymmetric Quantum Mechanics has been
developed, as well as some applications to the solution of quantum mechanical problems.
Supersymmetric Quantum Mechanics is a reduction of supersymmetric quantum field
theories to just one dimension (time only). These theories aim to achieve a unified
description of bosons and fermions, but some mathematical difficulties arose in higher
dimensions, so Supersymmetric Quantum Mechanics was born as a “test field” to con-
duct simpler studies. Just like its higher dimensional counterparts, it is built using
supersymmetry algebras, which are extensions of the Poincaré algebras that include an-
ticommutator relations in addition to the usual commutator ones. Every supersymmetric
model has an algebra which is characterized by a number N of fermionic operators called
supersymmetry charges. We have studied the N = 2 model by building its Hamiltonian
and studying its eigenvalues and eigenfunctions. The spectrum is non negative and
doubly degenerate, except possibly the ground state if it has energy E = 0; the de-
generacy is produced by the presence of a bosonic and a fermionic state with the same
energy, and that can be transformed into each other using the supersymmetric charges.
We have also introduced the concept of supersymmetry breaking, which occurs when
the ground state of the system has energy E > 0, and we have provided an indicator of
supersymmetry breaking, the Witten index.
Then, we have shown that the concepts developed for this supersymmetric model can
have interesting applications in Quantum Mechanics. Firstly, starting from a given one
dimensional Hamiltonian, we have used the knowledge of the supersymmetric Hamilto-
nian to build a chain of Hamiltonians that have the same spectrum as the original one,
except the first levels, and whose eigenfunctions are related by some well defined operat-
ors. Then, we have seen that, for shape invariant potentials, the chain of Hamiltonians is
particularly useful because it provides simple formulae to compute their eigenvalues and
eigenfunctions. In fact, this method is the counterpart of the operator method used to
solve the harmonic oscillator, extended to the wider class of shape invariant potentials.
Also, the chain of Hamiltonians proved useful to build a family of potentials which have
the same spectrum and the same reflection/transmission probabilities as a given poten-
tial. Finally, we have given some explicit examples of these applications using common
problems in Quantum Mechanics, like the potential box, the harmonic oscillator, hydro-
genlike atoms and the Pauli equation.
Of course, the field of Supersymmetric Quantum Mechanics is much wider: for example,
we haven’t covered the superspace formalism that can be used to derive the supersym-
metric Hamiltonian more formally [5]. Also, as we have mentioned above, there are
supersymmetric models with a different number of supersymmetry charges, even though
their main features are similiar to the ones we have discussed for the N = 2 model. The
applications of Supersymmetric Quantum Mechanics are broader, too. First of all, we
need to mention that the class of shape invariant potentials has received quite a lot of
attention, and researchers have been able to develop a precise categorization for these
potentials. A supersymmetric version of the WKB method has also been developed: it
allows to find approximate solutions for the Schrödinger equation, and its results are
usually better than those obtained from the standard method [9].
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