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Abstract

The existence and structure of black holes are derived from Einstein’s general theory of
relativity. Mass inflation (an increase in mass) is found when the internal structure of
black holes is studied. The objective of the present study is two-fold: (i) to obtain an
understanding of the nature of Reissner-Nordström black holes and (ii) examine the mass
inflation phenomenon. To do so, spherical symmetric solutions to Einstein’s field equa-
tions are analyzed.The Schwarzschild solution is analyzed to show the most basic result
of general relativity. The analytical (Kruskal) continuation of the Schwarzschild solution
and the mechanism of gravitational collapse are also discussed. The Reissner-Nordström
metric is then examined in detail analyzing both the general characteristics and the most
generic field equations for a body with spherical symmetry. Moreover two important ap-
plications are considered: the Vaidya solutions and the Dray-’t Hooft-Redmount (DTR)
relation. The mass inflation phenomenon is then formulated by formally integrating
Einstein’s field equations considering continuous infalling and outgoing radial fluxes of
gravitational radiation. To evaluate the growth rate of the gravitational mass, a formal
perturbation expansion in terms of the product of the flux luminosities is developed.
Finally, the possibility that the asymmetries occurring during a realistic collapse could
change the conclusions obtained for spherical symmetry is considered. The most striking
features of the physics behind black holes and the mass inflation phenomenon are shown.
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Sommario

L’esistenza e la struttura dei buchi neri deriva dalla teoria della relatività generale di
Einstein. Il fenomeno dell’inflazione di massa (una crescita della massa) risulta dallo stu-
dio della struttura interna dei buchi neri. L’obiettivo del presente elaborato è duplice:
(i) chiarire la natura dei buchi neri di Reissner-Nordström e (ii) esaminare il fenomeno
dell’inflazione di massa. A questo scopo vengono analizzate le soluzioni a simmetria sfer-
ica delle equazioni di campo di Einstein. In particolare, viene studiata la soluzione di
Schwarzschild per mostrare un risultato base della relatività generale. Vengono inoltre
discusse la continuazione analitica (Kruskal) della soluzione di Schwarzschild e il meccan-
ismo del collasso gravitazionale. Viene poi esaminata in dettaglio la metrica di Reissner-
Nordström analizzando sia le caratteristiche generali che le più generiche equazioni di
campo di un corpo a simmetria sferica. Vengono inoltre considerate due importanti ap-
plicazioni: le soluzioni di Vaidya e la relazione DTR. Il fenomeno dell’inflazione di massa
viene poi formulato integrando formalmente le equazioni di Einstein considerando flussi
continui entranti ed uscenti di radiazione gravitazionale. Per valutare il tasso di crescita
della massa gravitazionale viene effettuata una espansione perturbativa in termini dei
prodotti delle luminosità. Infine, viene considerata la possibilità che le asimmetrie pre-
senti durante un collasso gravitazionale reale possano cambiare le conclusioni ottenute
nel caso di simmetria sferica. Vengono mostrate le caratteristiche principali della fisica
alla base dei buchi neri e del fenomeno dell’inflazione di massa.
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Chapter 1

Introduction

A black hole is a cosmological body that is formed by the collapse of a massive star.
When such a star has exhausted the internal thermonuclear fuels in its core, the core
becomes unstable and gravitationally collapses inward upon itself. The weight of the
constituent matter falling in from all sides compresses the star to a point of zero volume
and infinite density called the singularity. The structure of black holes is derived from
Einstein’s general theory of relativity.

Mass Inflation (an increase in mass) is found when we study the internal structure of
black holes. The objective of the present study is two-fold: (i) to obtain an understanding
of the nature of Reissner-Nordström black holes and (ii) to examine the mass inflation
phenomenon. An analysis of the mass inflation phenomenon requires an understanding
of Einstein’s general theory of relativity and in particular of Reissner-Nordström black
holes.

General Relativity is looked upon as one of the greatest achievements of theoretical
physics conceived by a single mind. This is expressed clearly in a remarkable speech
given by M. Born [1]:

(The general theory of relativity) seemed and still seems to me at present
to be the greatest accomplishment of human thought about nature; it is a
most remarkable combination of philosophical depth, physical intuition and
mathematical ingenuity. I admire it as a work of art.

Purely theoretical considerations led to the formulation of General Relativity. The New-
tonian law of gravitation involved the assumption of an action-at-distance law, which was
not compatible with the special theory of relativity. So, Einstein worked on a relativistic
theory of gravitation and, after ten years of hard work was finally able to formulate
the general theory of relativity. Here is a quotation about how he struggled during his
research, written in a letter to A. Sommerfeld:

At present I occupy myself exclusively on the problem of gravitation and now
believe that I shall master all difficulties with the help of a friendly mathemati-
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cian here (Marcel Grossmann). But one thing is certain, in all my life I have
never labored nearly as hard, and I have become imbued with great respect
for mathematics, the subtler part of which I had in my simple-mindedness
regarded as pure luxury until now. Compared with this problem, the original
theory of relativity is child’s play.

The key point for the passage from Special to General Relativity is embedded in the
definition of observer and of reference frame. From a mathematical point of view Special
Relativity is based on the principle that “The laws of physics are the same for all iner-
tial observers and the speed of light in vacuum is invariant” [2] and so it is realized by
assuming the existence of global (inertial) reference frames connected by Lorentz trans-
formations. In contrast, General Relativity is based on the principle that “The laws of
physics are the same in all reference frames (for all observers)” and so these laws have
to be expressed in a form which can be adapted to any measuring apparatus, regardless
of its inertial nature. This is achieved by the use of tensor quantities of the space-time
manifold, in particular by using the general metric gµν instead of the Minkowski metric
ηµν = diag(−1, 1, 1, 1) and the covariant derivative ∇a instead of the partial derivative
∂a.

To this end, the problem of General Relativity consists in finding the metric field gµν
describing the manifold, and this must be related somehow to the energy-momentum
distribution of all forms of matter. This relationship is encoded in Einstein’s field equa-
tions

Rµν −
1

2
Rgµν =

8πG

c4
Tµν ,

where Tµν represents the energy-momentum tensor. This set of ten highly nonlinear
partial differential operations relates the curvature of space-time to its matter content.
These equations reduce to the Newtonian theory of gravity, so that it is embedded in
General Relativity as a case of quasi-stationary weak fields and slowly changing matter
sources. In addition, General Relativity provides corrections to the Newtonian theory
of gravity, the most famous one being the anomalous precession of the perihelion of
Mercury.

Black hole theory is without any doubt one of the greatest triumphs of General Rel-
ativity. It has been demonstrated [3] that the external gravitational field of a black hole
relaxes to the Kerr-Newman field described by three parameters: the source’s (i) mass,
(ii) charge and (iii) angular momentum. This behavior is due to the fact that pertur-
bations developing at the surface of a spherically collapsing star produce the emission
of gravitational waves which carry away all the characteristics of the star’s gravitational
field except for the three parameters listed above. This radiation then interacts with the
space-time curvature: a part of it escapes to infinity while the rest is backscattered and
absorbed by the black hole.

Attempts have been made to find the internal structure of black holes [4]. For a
Schwarzschild black hole the asymptotic portion of space-time near the singularity is
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virtually free of aspherical perturbations, since the gravitational radiation becomes in-
finitely diluted as it reaches the singularity. Things change if the charge or angular
momentum do not vanish. The Kerr and Reissner-Nordström metric differ drastically
from the Schwarzschild one since now the singularity is timelike and both these spaces
possess a Cauchy horizon, that is a null hypersurface beyond which predictability breaks
down.

The presence of a region beyond the Cauchy horizon is an embarrassment since there
is no way of predicting the course of events in this region and signals coming from the
singularity could alter the physics in an unforeseeable manner. There is also another
problem at this internal horizon since it appears to be a surface of infinite blue shift. A
free-falling observer would see the entire future history of the universe in a flash before
encountering a wall of infinite density at the Cauchy horizon. It has been shown [5, 6, 7]
that perturbations diverge to linear order near this horizon.

For the present study it is useful to analyze the perturbations beyond linear order and
to evaluate whether or not the perturbations, allowed to act as a source in Einstein’s field
equations, can trigger the formation of a singularity of sufficient strength to effectively
stop the evolution of space-time at the Cauchy horizon. What actually happens is
that the combination of the outflux emitted from the surface of the collapsing star and
its backscattered, blue shifted radiative tail provoke the inflation of the black hole’s
internal mass parameter, which becomes classically unbounded. Mass inflation, then, is
responsible for the growth of curvature which goes to infinity at the Cauchy horizon.

In order to examine the behavior of mass inflation it is necessary to make a few
assumptions to simplify the mathematics. The first assumption is to accept as a starting
point the Reissner-Nordström solution to Einstein’s field equations. Although this metric
may appear to be too idealized and not realistic, it captures the essential physics behind
the phenomenon since it shares the global structure with the Kerr solution and possesses
the fundamental two characteristics needed: 1) the presence of a highly blue-shifted
influx and 2) separation between the Cauchy and inner apparent horizons. The spherical
model should allow a qualitative understanding of the phenomenon without introducing
too many difficulties in the mathematical description. The second assumption is to
model the in-/out- falling radiation as two intersecting radial streams of lightlike particles
following null geodesics. Furthermore it is assumed that these streams do not interact
with each other, so that they are separately conserved.

The most important solutions to Einstein’s field equations are analyzed here in chap-
ter 2. The Schwarzschild solution is analyzed to show the most basic result of General
Relativity, in particular its analytical continuation (Kruskal) and the mechanism of grav-
itational collapse. The Reissner-Nordström metric is examined in detail and, in addition
to its general characteristics, the most generic field equations for a spherical symmetric
source are derived. The generalized Vaidya solutions, describing a charged, spherical
black hole irradiated by a pure in- or outflux are also described. Finally, the generalized
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Dray-’t Hooft-Redmount (DTR) relation, which describes the gravitational field before
and after the collision of two spherical thin shells propagating at the speed of light, one
expanding the other contracting, is derived.

Chapter 3 deals with the mass inflation phenomenon which is formulated by formally
integrating Einstein’s field equations considering continuous infalling and outgoing radial
fluxes. To evaluate the growth rate of the gravitational mass, a formal perturbation
expansion in terms of the product of the flux luminosities is developed. Finally, the
possibility that the asymmetries occurring during a realistic collapse could change the
conclusions obtained for spherical symmetry is discussed.
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Chapter 2

Spherical Symmetric Solutions to
Einstein’s Field Equations

The mathematical background of the theory of General Relativity is given by differ-
ential geometry. This is a consequence of the principle of general relativity cited in the
introduction and of the principle of general covariance [2]:

The laws of physics in a general reference frame are obtained from the laws
of Special Relativity by replacing tensor quantities of the Lorentz group with
tensor quantities of the space-time manifold.

General Relativity and the geometry of space-time are thus deeply connected and this
represents the key point of the theory. Einstein’s field equations imply that matter
sources determine the space-time curvature, which in turn affects the matter’s motion.
Since we are dealing with a generic metric, which will be flat (i.e. Minkowskian) only
locally, another immediate consequence is that the concept of a straight line is substituted
by that of a geodesic line.

2.1 Schwarzschild Solution
The first exact solution to Einstein’s field equations was found by Schwarzschild in

1916 and describes the gravitational field generated by a spherical symmetric body [1].
In Einstein’s field equations

Rµν −
1

2
Rgµν =

8πG

c4
Tµν , (2.1.1)

the component which encapsulates the characteristics of the source is the energy-momentum
tensor Tµν . The description of the internal gravitational field of a celestial body is any-
thing but easy so we focus on the external field generated by the source. In the outside
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region Tµν = 0 and so, taking the trace of Eq. (2.1.1) yields

Rµ
µ −

1

2
Rgµµ = 0. (2.1.2)

We therefore obtain that outside the source R = 0 and so Eq. (2.1.1) becomes

Rµν = 0. (2.1.3)

This is the so-called Ricci tensor [2], which is obtained by the contraction of two indices
of the the Riemann tensor

Rµν = Rk
µkν . (2.1.4)

To continue in the solution of the vacuum version of Einstein’s field equation (2.1.3) we
need to use the expression for the components of the Riemann tensor

Rij = Rk
ikj = ∂jΓ

ρ
iρ − ∂ρΓ

ρ
ij + ΓliρΓ

ρ
jl − ΓlijΓ

ρ
ρl, (2.1.5)

which is related to the metric through the Christoffel symbol

Γijk =
1

2
gil(gjl,k + gkl,j − gjk,l). (2.1.6)

The solution is made easier by the use of isometries, i.e. by the introduction of Killing
vectors. Firstly, since the source is assumed to be static we are implicitly considering
the existence of a time-like Killing vector Kt, associated to a suitable coordinate t such
that

Kt =
∂

∂t
. (2.1.7)

Since the source has spherical symmetry, it is possible to introduce three Killing vectors
Ki = d/dθi corresponding to the three rotations centered on the source. These vectors
must be preserved in time, and this means that they have to commute with Kt. We can
therefore assume that in this metric rotations are orthogonal to Kt, like they were for
the flat Minkowsky space-time, and use the familiar spherical coordinates on surfaces
with the same t.

These considerations lead to a metric with a diagonal form

ds2 = −A(r)dt2 +B(r)dr2 + C(r)(dθ2 + sin2 θdφ2). (2.1.8)

It is possible to rescale the radial coordinate to get C(r) = r2. With this choice the
coordinate r is identified through the area of a surface of coordinate radius r

A(r) =

∫
dΩ2 = 4πr2. (2.1.9)
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It is interesting to note that r is no longer the classical radius, in fact the radius length
of a sphere A(r) is

R(r) =

∫ r

0

√
grrdr. (2.1.10)

Using the metric of Eq. (2.1.8) yields the following components of the Christoffel symbol

Γ0
10 =

A′

2A

Γ1
00 =

A′

2B
Γ1
11 =

B′

2B
Γ1
22 = − r

B
Γ1
33 = −r sin2 θ

B

Γ2
12 =

1

r
Γ2
33 = − sin θ cos θ

Γ3
13 = Γ2

12 Γ3
23 =

cos θ

sin θ
.

(2.1.11)

Using these components in Eq. (2.1.5) gives a system of four equations

R00 = −A
′′

2B
+
A

′

4B

(A′

A
+
B

′

B

)
− A

′

rB
(2.1.12a)

R11 =
A

′′

2A
− A

′

4A

(A′

A
+
B

′

B

)
− B

′

rB
(2.1.12b)

R22 =
1

B
− 1 +

r

2B

(A′

A
− B

′

B

)
(2.1.12c)

R33 = R22 sin2 θ. (2.1.12d)

Considering these equations, firstly we find that

(AB)′ = AB′ + A′B = 0 (2.1.13)

and so
A = B−1 (2.1.14)

(note that the dimensionless constant here was taken to be one, which can always be
done by rescaling the time variable). Secondly, by Eq. (2.1.12c) we find that

1 = A+ rA′ (2.1.15)

which results in
A = 1− 2K

r
. (2.1.16)

The constant K can be determined by looking at the week field limit and this in turn
yields the final form of the Schwarzschild metric,

ds2 = −
(

1− 2m

r

)
dt2 +

(
1− 2m

r

)−1
dr2 + r2dΩ2, (2.1.17)
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This solution is asymptotically flat, since for r →∞ it reduces to the Minkowski metric
ηµν = diag(−1, 1, 1, 1).

A feature which jumps straight to the eye is the presence of a singularity behavior
in the proximity of r = rs = 2m, the Schwarzschild radius. Here the grr element of the
metric becomes singular so that the (t, r) coordinates cease to be valid. In particular,
the time coordinate t reaches infinity, so that an observer watching a probe falling in
the gravitational field sees it slowing down until reaching the Schwarzschild radius. If
we consider the point of view of an observer on the probe, nothing prevents him from
crossing the apparent singularity and continuing his voyage. This behavior is explained
by the fact that r = rs is just a coordinate singularity, while r = 0 is the real one, indeed
the Riemann tensor is finite at the Schwarzschild radius. A typical component is

R1
212 = R1

313 ∼
1

r3
. (2.1.18)

Hence, at r = 2m the tidal forces remain finite, while they diverge for r → 0. So, the
Schwarzschild solution is exact until a position outside of the horizon is considered, i.e.
where r > rs.

2.1.1 Kruskal Continuation

The singular behavior of the Schwarzschild solution can be eliminated by a suitable
change of coordinates. Let us start by introducing the rescaled radial coordinate

r∗ =

∫
dr

1− 2m/r
= r + 2m ln(r − 2m), (2.1.19)

in order to define the Eddington-Finkelstein coordinates

v ≡ t+ r∗, (2.1.20a)
u ≡ t− r∗. (2.1.20b)

Hence, v is an advanced null coordinate and u a retarded null coordinate. If we use
(v, r, θ, φ) as coordinates we get a metric of the form

ds2 = −
(

1− 2m

r

)
dv2 + 2dvdr + r2dΩ2. (2.1.21)

The manifold is the region 2m < r < ∞ but it is easy to see that the metric of Eq.
(2.1.21) is analytic in the larger manifold 0 < r <∞. By introducing the new coordinate
v, the Schwarzschild metric has been extended so that it is no longer singular at r = 2m.
It can also be noted that the surface r = 2m is null, briefly a surface upon which every
vector normal to it is null.
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The Eddington-Finkelstein representation of the Schwarzschild solution has the odd
feature of not being time symmetric. One could expect this from the cross term dvdr in
Eq. (2.1.21). A consequence of this behavior is that the r = 2m surface acts as a one
way membrane, letting pass only future-directed non space-like curves from the outside
(r > 2m) to the inside (r < 2m). Further, any such curve which crosses the membrane
will reach the singularity (r = 0) in a finite proper time (or affine distance if it is a null
curve).

The same procedure can be followed by taking the coordinates (u, r, θ, φ), which leads
to the metric

ds2 = −
(

1− 2m

r

)
du2 − 2dudr + r2dΩ2. (2.1.22)

The observations made previously hold even for this choice, except for a few details. In
fact, now the isometry of the Schwarzschild metric reverses the direction of time. The
membrane r = 2m is a surface that only past-directed time-like or null curves can cross
from the outside to the inside.

Now it is possible to use Eqs. (2.1.20a, 2.1.20b) to make both the extensions simul-
taneously. In this way we are able to embed both manifolds described above in a larger
one, so that they coincide in the region r > 2m. Let us start by considering the metric
with the coordinates (v, u, θ, φ)

ds2 = −
(

1− 2m

r

)
dvdu+ r2dΩ2, (2.1.23)

where r is a function of (v, u) determined by

1

2
(v − u) = r + 2m ln(r − 2m). (2.1.24)

Now it is possible to operate a further change of coordinates V (v) and U(u) leaving
the two-dimensional space (θ, φ) = const expressed in double null coordinates. The
resulting metric is

ds2 = −
(

1− 2m

r

)
dv

dV

du

dU
dV dU + r2dΩ2. (2.1.25)

The choice of the functions V and U determines the precise form of the metric. Let us
consider the Kruskal coordinates

V ≡ −e−v/4m, (2.1.26a)

U ≡ −e−u/4m, (2.1.26b)

which yield the following metric

ds2 = −e−r/2m16m2

r
dV dU + r2dΩ2 (2.1.27)
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that can be reduced to a form corresponding to the Minkowski space-time, by introducing
the coordinates x′ and t′ where

x
′
=

1

2
(V − U) and t

′
=

1

2
(V + U), (2.1.28)

to obtain the metric

ds2 = e−r/2m
16m2

r
(−dt′2 + dx

′2) + r2dΩ2. (2.1.29)

Fig. 2.1.1 is a Kruskal diagram showing regions inside and outside of the event horizon
of the Schwarzschild solution.

x′

t′

r=0

r=0

II

II’

I’ I

r=cost >2m

r=cost <2m

t=cost

r=2m

Figure 2.1.1: Kruskal diagram.

As can be seen from Fig. 2.1.1 lines with r = const are plotted as hyperbolas, while
t = const lines correspond to radial lines crossing the origin. Region I (r > 2m) and
region II (r < 2m) are isometrically equivalent to the advanced Finkelstein extension,
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while regions I and II’ are equivalent to the retarded extension. There is also a region I’
which is again isometric to the outside Schwarzschild solution, but there are no time-like
or null curves which go from I to I’. Every future-directed non space-like curve which
crosses the surface r = 2m reaches the singularity r = 0 at t′ =

√
2m+ x′2, while

every past-directed non space-like curve which crosses t′ = −|x′ | approaches another
singularity at t′ =

√
2m+ x′2.

In the analysis of gravitational radiation, it is useful to construct a conformal com-
pactification of Schwarzschild-Kruskal space-time, known as the Penrose diagram [8],
which makes it possible to discuss the behavior at infinity of local differential geometric
tools. In order to do so, let us define new advanced and retarded coordinates V ′ and U ′
where

V ′ = arctan(V
√

2m), U ′ = arctan(U
√

2m) (2.1.30)

for
−π < V ′ + U ′ < π and − 1

2
π < V ′ <

1

2
π, −1

2
π < U ′ <

1

2
π (2.1.31)

(see Fig. 2.1.2).

II

II’

I’ I

r=0 (future singularity)

r=0 (past singularity)

i+i+

i−i−

i0i0

r = 2m, t =∞

T +T +

T −T −
r =∞

Figure 2.1.2: Penrose diagram for Schwarzschild-Kruskal space-time.

Now it is possible to see future, past and null infinities of the asymptotically flat
regions I and I’. The fact that every particle which crosses the surface r = 2m has to fall
to the singularity is related to the property that each point inside region II represents
a closed trapped surface. This means that if we consider any two-dimensional sphere
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p (every point in these diagrams represents a two-dimensional sphere) and two two-
dimensional spheres q and s formed by photons emitted respectively radially outwards
and inwards from p, and if all of them lie in the region r > 2m, then q will be larger
than p and s will be smaller than p. If they all lie in the region r < 2m the areas of both
q and s will be smaller than p, so that p is a closed trapped surface. The existence of
singularities is closely related to the existence of the closed trapped surfaces.

Causal relations in the Schwarzschild-Kruskal space-time may be understood by con-
sidering that light rays are lines at 45◦, as in the Minkowski manifold. Observers in I
and I’ can receive signals from II’ and send them to II, but not the contrary.

2.1.2 Gravitational Collapse

Outside a spherically symmetric star the solution to Einstein’s equations is necessarily
that part of one of the asymptotically flat regions of the Schwarzschild solution where
r > r0 with r0 corresponding to the surface of the star. There will be, for r < r0, a
solution depending on the radial distribution of density and pressure inside the star. In
fact, even if the star is non-static the solution outside will be part of the Schwarzschild
solution limited by the surface of the star, provided that it remains spherically symmetric.

If the star is static then the radius r0 must be greater than 2m (with m the mass of
the star), i.e. the Schwarzschild radius. In fact, the surface of the star must lie on the
trajectory of a time-like Killing vector and in the Schwarzschild solution there exist such
vectors only in the subspace r > 2m. If r0 were less than 2m the star’s surface would be
expanding or contracting.

The life of a star generally consists of a long period of quasi-stationarity, where the
star burns its nuclear fuel and supports itself against gravity by thermal and radiation
pressure. Afterwards, when the nuclear fuel is exhausted, the pressure will decrease,
the star will cool and it will start to contract (see Fig. 2.1.3). If this contraction
can not be halted by any other force, then the star will collapse until reaching the
Schwarzschild radius. Once this point has been crossed since the solution outside must
be the Schwarzschild one, the star will be embedded in a closed trapped surface and
thus a singularity will occur. Collapse to a singularity can not be avoided but at some
point near it probably General Relativity will cease to be valid since it seems likely that
quantum effects will arise.

But what happens to an observer on the surface of a collapsing star? This question
can be answered if the collapse is exactly spherically symmetric so that the solution
outside of the star will be given by the Schwarzschild solution. In this case, an observer
O on the surface of the star, even if it may seem counterintuitive, will pass trough r = 2m
at a certain (proper) time, say τ ′ and will not notice anything special at that time. In
fact, since tidal forces remain weak at the Schwarzschild radius, curvature is locally the
same as it is elsewhere and the only difference will be that O will no longer be visible
by an external observer, say O′. During the collapse, O′ sees O’s time increasingly slow
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Singularity r=0

Event
horizon

Star’s surface

r = 2m

Distant
astronomer

Time

Space

Infalling
light rays

Outgoing
light rays

Figure 2.1.3: Diagram of the spherical symmetric collapse in Eddington-Finkelstein co-
ordinates.

down and never reach the time τ ′, no matter how long he waits. This means that the
light he receives from O will have a greater and greater shift of frequency to the red and,
as a consequence, a greater and greater decrease in intensity. Thus, even if O′ never
stops to see the surface of the star, the star will start to become faint. First the center
will become too faint to be seen, and then the rim. The characteristic time scale for this
to happen is τ ∼ Rs/c ∼ 10−5(M/Ms).

When the star has collapsed completely, we are dealing with a black hole and are
thus left with an object which is, for all practical purposes, invisible. The “surface of
a black hole” means its event horizon surface area 4πR2

s. In fact, the black hole still
possesses the same Schwarzschild mass and produces the same space-time geometry as it
did before the collapse. Thus, a possible way to “see” a black hole consists in the study
of its gravitational effects, for instance the motion of nearby bodies, or the deflection
of light rays passing near it. Because of its great gravitational attraction, a black hole
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acts like a cosmic vacuum cleaner. For example, if a black hole is part of a closed binary
system, it can suck up matter from its partner and heat it to such a degree that a strong
X-ray source results.

One of the most striking features of the spherical symmetric collapse to a black hole
is that the singularity appears in the region r < 2m where light rays cannot escape
to infinity. This means that the singularity, which is the place where physics and pre-
dictability cease to be valid, is excluded from the outer asymptotically flat region, so
that here predictability still holds. It has been conjectured by Penrose that this is the
behavior of all “realistic” singularities (“Cosmic censorship hypothesis”). The horizon is
thus the boundary of the region which is causally connected to a distant observer. It acts
as a one way membrane through which energy and information can pass to the inside
but not to the outside. The existence of such membranes is another striking feature of
General Relativity.

2.2 Reissner-Nordström Black Holes

The solution of interest for the present work is the one obtained for a charged body
with spherical symmetry, i.e. a spherical charged black hole. This solution can be
found using the same expressions for the Christoffel symbols in Eq. (2.1.11). In fact
these are the same for every spherical symmetric space-time. The difference with the
Schwarzschild solution in encoded in the energy-momentum tensor, which now has a
Maxwellian contribution given by

Eµ
ν =

e2

4πr4
diag(−1,−1, 1, 1). (2.2.1)

The considerations about isometries made in section 2.1 are still valid, so we are dealing
with a metric of diagonal form

gµν = diag(−A(r), B(r), r2, r2 sin2 θ). (2.2.2)

From Einstein’s field equations we therefore find two linearly independent equations

1

B

( 1

r2
− B′

rB

)
− 1

r2
= −Ge

2

r4
(2.2.3a)

1

B

( 1

r2
+
A′

rA

)
− 1

r2
= −Ge

2

r4
. (2.2.3b)

From the two above equations we find, as in the Schwarzschild solution, (AB)′ = cost
and so

A = B−1. (2.2.4)
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Resolving Eqs. (2.2.3a, 2.2.3b) yields

A = 1− 2m

r
+
e2

r2
. (2.2.5)

The Reissner-Nordström solution is thus given by

ds2 = −f0dt2 + f−10 dr2 + r2dΩ2, (2.2.6)

f0 = 1− 2m

r
+
e2

r2
, (2.2.7)

where e represents the body’s total charge and m its mass, measured by an observer at
great distance from the black hole.

The space-time generated by a spherical charged source is given by the solution to
Einstein’s field equations with an energy-momentum tensor given by

Eµ
ν =

e2

4πr4
diag(−1,−1, 1, 1), (2.2.8)

which is the contribution given by the electromagnetic field.
The main difference with the Schwarzschild metric is the presence of two horizons,

an external event horizon and an internal Cauchy horizon. This characteristic is evident
in Fig. 2.2.1 where it is possible to observe the different behavior of the gtt element of
the metric in the two solutions. Astrophysically, charged black holes are of little interest
since macroscopic bodies do not posses sizable net electric charge.

1

RN

S

r−

r+

rs
r

Figure 2.2.1: Behaviour of the gtt metric element in Schwarzschild (S) and Reissner-
Nordström (RN) solutions.

The two solutions to the equation f0 = 0 represent the two horizons which arise in
the metric and are given by

r± = m±
√
m2 − e2. (2.2.9)
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We are only interested in the case where m2 > e2, so that the two solutions exist and
are different. r± divide space-time into three regions: ∞ > r > r+, r+ > r > r− and
r− > r > 0.

It is interesting to look at the behavior of a time-like geodesic inside the black hole.
In order to do so let us introduce a new coordinate t̃ defined by t − r = t̃ − r∗, where
now r∗ is given by

r∗ =

∫
dr

1− 2m/r + e2/r2
=

∫
dr

f0
= r +

r2+
r+ − r−

ln(r − r+)−
r2−

r+ − r−
ln(r − r−).

(2.2.10)
Thus, we obtain

dt = dt̃+ (1− f0)dr, (2.2.11)

which inserted into the metric of Eq. (2.2.6) gives

ds2 = −f0dt̃2 + 2(1− f0)dt̃dr + (2− f0)dr2 + r2dΩ2. (2.2.12)

If now we try to see how the radial null geodesics (ds2 = 0, dΩ2 = 0) behave, we find
that

(t̃+ dr)[f0dt̃− (2− f0)dr] = 0. (2.2.13)

Thus, we have found two families of radial null geodesics

t̃+ r = cost, (2.2.14a)
dt̃

dr
=

2− f0
f0

, (2.2.14b)

which are plotted in Fig. 2.2.2.

1

2− f0

f0

r−
r+

r

Figure 2.2.2: Graph of the slopes f0 and 2− f0.

16



From Fig. 2.2.3 we see that at r± the slope of Eq. (2.2.14b) becomes vertical and
the surface r = r+ is an event horizon, similar to the one found for the Schwarzschild
solution. A surprising fact is that light cones in the region r− > r > 0 are no longer
oriented to the singularity r = 0 so that a time-like curve will never reach it but will
return to the surface r = r− in a finite proper time.

r− r+

r

t̃

Figure 2.2.3: Geodesics and light cones.

To find an extension like the one found for the Schwarzschild solution in section 2.1,
we start by introducing Eddington-Finkelstein coordinates as in Eq. (2.1.20), where now
r∗ is given by Eq. (2.2.10) and then we define the null coordinates (see Eq. 2.1.26)
related to the inner horizon r = r−

U = −e−k0u, (2.2.15a)
V = −e−k0v, (2.2.15b)

where k0 is the surface gravity of the inner horizon: k0 ≡ −f ′0(r−)/2 = (m2
0 − e2)1/2/r2−.

This constant parameter is necessary so that the metric becomes regular at r = r−. Now
it is possible to operate a conformal compactification by defining the coordinates

V ′ = arctan

(
exp

(
r+ − r−

4r2+
v

))
, U ′ = arctan

(
−exp

(
−r+ + r−

4r2+
u

))
. (2.2.16)

By taking the metric with these new coordinates we obtain the maximal extension
of the Reissner-Nordström space-time, which is shown in Fig. 2.2.4.
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(time-like singularity)
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(time-like singularity)
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=
r−
)

(r = r+)
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i−i−

T +T +

T −T −

r =∞r =∞

Figure 2.2.4: Penrose diagram of the maximal extension of Reissner-Nordström space-
time.

As can be seen, there are an infinite number of asymptotically flat regions where
r > r+ (denoted by I) which are connected by intermediate regions where r+ > r >
r− and r− > r > 0 (respectively denoted by II and III). The fundamental aspect of
this representation is that now the real singularity r = 0 is time-like, while for the
Schwarzschild-Kruskal manifold it was space-like. Thus, the singularity can be avoided
by a future-directed time-like or null curve; such a curve can pass through regions II, III
and again II to re-emerge into another asymptotically flat region I. It is important to
remember that once a particle from region I has crossed the event horizon it is forever lost
for the observers in that asymptotically flat universe. For instance, consider a particle P
crossing r = r+: it would appear as infinitely red-shifted to an observer whose world line
stays outside the horizon, and will approach the future infinity i+. Now P is in region
II, where curves of constant r are space-like so that every point of the figure is a closed
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trapped surface. When P crosses r = r− it sees the entire history of one of the regions
I, so that objects here appear to be infinitely blue-shifted as they reach i+. This is a
suggestion that the surface r = r− will be unstable under small perturbations, which
could probably lead to a singularity, as we will see in chapter 3.

A few remarks about the two horizons are now in order. First, by looking at Fig.
2.2.2 it is possible to notice that the outer horizon r = r+ is an event horizon. Thus,
everything which crosses this surface is forever lost for the asymptotically flat universe.
The situation is different for the inner horizon, called Cauchy horizon. In fact, this
one can be described in terms of causal properties of the space-time, for which it is
worth introducing some terminology. Infinite spacial surfaces in the space-time are called
Cauchy surfaces. Points through which every time-like curve would intersect a Cauchy
surface constitutes its domain of dependence. Solutions to the wave equation can be
constructed within the domain of dependence of their Cauchy data. Finally, a Cauchy
horizon is the boundary of the domain of dependence of a Cauchy surface. This means
that predictability breaks down at the inner horizon of a Reissner-Nordström black hole
for every Cauchy surface in our asymptotically flat universe. Thus, it seems that the
Cosmic censorship hypothesis holds even for charged black holes since the singularity
remains covered by the horizon.

2.3 Field Equations for Spherical Space-Times
We are now going to derive the field equations for spherical space-times. It is more

convenient to use a coordinate system of the form (xa, θ, φ), with a = 1, 2 and the
coordinates xa left unspecified. The metric then takes the generic form

ds2 = gabdx
adxb + r2dΩ2, (2.3.1)

where gab is the metric in the two-space (θ, φ) = cost.
Let us start by considering Einstein’s field equations

Gαβ = Rαβ −
1

2
gαβR = 8π(Tαβ + Eαβ), (2.3.2)

where Eαβ is the Maxwellian contribution to the stress-energy tensor and Tαβ the non-
Maxwellian contribution which will describe the cross flow of light-like radiation and
α, β = 0, 1, 2, 3. From the metric of Eq. (2.3.1) it is possible to derive the components
of the Einstein tensor 1

Gab = −[2rr;ab + gab(1− r,ar,a − 2r�r)]/r2 (2.3.3a)

Gθθ = sin−2 θGφφ = r�r − 1

2
r2R. (2.3.3b)

1With � of a scalar quantity f intended as �f = gabf;ab.
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The Maxwellian contribution to the stress-energy tensor Eαβ has to be thought of
as representing a static electric field generated by a point charge e located in the origin
r = 0 and is expressed as

Eα
β =

e2

8πr4
diag(−1,−1, 1, 1). (2.3.4)

About the non-Maxwellian contribution Tαβ it is most convenient to leave it generic and
just decompose it according to

T aa = T, T θθ = T φφ = P. (2.3.5)

Substitution into Eq. (2.3.2) then gives

2rr;ab + gab(1− r,ar,a − 2r�r − e2/r2) = −8πr2Tab, (2.3.6a)

r�r − 1

2
r2R− e2/r2 = 8πr2P. (2.3.6b)

It is now useful to introduce the scalar fields f(xa), m(xa) and k(xa)

gabr,ar,b ≡ f ≡ 1− 2m/r + e2/r2, (2.3.7a)

k ≡ −1

2
∂rf = −m/r2 + e2/r3 = −(m− e2/r)/r2, (2.3.7b)

which inserted into Eqs. (2.3.6) give

r;ab − gab(k +�r) = −4πrTab. (2.3.8)

Now it is possible, taking the trace of Eq. (2.3.8), to obtain

�r = −2k + 4πrT, (2.3.9)

which inserted into Eq. (2.3.8) and Eq. (2.3.6b) furnish

r;ab + kgab = −4πr(Tab − Tgab), (2.3.10a)
R− 2∂rk = 8π(T − 2P ). (2.3.10b)

Equations (2.3.10a and 2.3.10b) are the basic field equations for any spherical system.
Now it is time to consider a special case of Einstein’s field equations by taking the non-

Maxwellian component of the stress-energy tensor so that it describes in- and outgoing
fluxes of radiation, i.e. of the form

Tab = ρinlalb + ρoutnanb (2.3.11)
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where la is a radial null vector pointing inwards and na a radial null vector pointing
outwards. It is important to notice that the scalars ρin and ρout do not have a direct
operational meaning since the null vectors can be arbitrarily normalized.

Upon noting that in this case P = T = 0, from Eq. (2.3.10) we obtain

r;ab + kgab = −4πrTab, (2.3.12a)
R = 2∂rK = 2(2m− 3e2/r)/r3, (2.3.12b)
m,a = 4πr2T b

a r,b, (2.3.12c)
(r2T ab);b = 0. (2.3.12d)

The last equation was obtained by using the conservation equation (r2T ab);b = (r2);aP
and the fact that, by Eq. (2.3.7a), f,a = −(2/r)m,a and therefore

m,a = 4πr2(T b
a − δ ba T )r,b. (2.3.13)

Equations (2.3.12a, 2.3.12b and 2.3.12c) may now be used to derive three one-dimensional
scalar wave equations of the form �ψ = ρ.

First, taking the trace of Eq. (2.3.12a) and noting that the trace of Tab is zero yields

�r = −2k. (2.3.14)

Taking the derivative of Eq. (2.3.12c) and using the conservation relation gives

�m = −4πr2T abr;ab, (2.3.15)

and substituting the value of r;ab from Eq. (2.3.12a) yields the second one-dimensional
scalar wave equation

�m = −(4π)2r3T abTab. (2.3.16)

This is a very useful equation because it does not depend on the singular contributions
of ρin and ρout but just on the bilinear one ρinρout.

For the third wave equation more work is necessary. The purpose is to find an
expression for � ln f which will be used in section 2.5 to derive the generalized DTR
relation. Let us start by noting that, for every scalar function ψ,

� lnψ = (ψ�ψ − ψ,aψ,a)/ψ2. (2.3.17)

By taking the second derivative of Eq. (2.3.7a) and k,a = −m,a/r
2 +Rr,a/2 it is possible

to calculate �f as

�f = ∇a(−2m,a/r + 2mr,a/r
2 − 2e2r,a/r

3)

= −2(�m/r − r,am,a/r
2 + k�r + k,ar

,a)

= −2�m/r + 4m,ar,a/r
2 − 2k�r −Rr,ar,a

= −2�m/r + 4m,ar,a/r
2 + 4k2 − fR.

(2.3.18)
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The product f ,af,a yields

f ,af,a = 4m,am,a/r
2 − 4(2m/r2 − 2e2/r3)m,ar

,a/r + (2m/r2 − 2e2/r3)r,ar
,a

= 4m,am,a/r
2 + 8km,ar

,a/r + 4fk2.
(2.3.19)

Therefore, it is necessary to determine the product m,am
,a which can be calculated as

follows

m,am
,a = (4π)2r4T b

a r,bT
a
cr
,c

= (4π)2r4T dbTecr,br
,cgdag

ea

=
1

2
(4π)2r4T ebTecr,br

,c

=
1

2
(4π)2r4T ecTecr,br

,cg b
c

= −1

2
r�mr,br

,b = −1

2
r�mf.

(2.3.20)

Inserting Eq. (2.3.20) into Eq. (2.3.19) yields

f ,af,a = −2f�m/r + 8km,ar
,a + 4fk2. (2.3.21)

Finally, substituting Eqs. (2.3.21 and 2.3.18) into Eq. (2.3.22) yields, after a few calcu-
lations, the third wave equation

� ln f = 16πf−2(f − 2kr)T abr,ar,b −R. (2.3.22)

Note that � ln f is linear in T ab.
All these wave functions will be very useful in chapter 3 since they can be formally

integrated.

2.4 Charged Vaidya Solutions

Until now we have considered only solutions with a vanishing non-Maxwellian compo-
nent of the stress-energy tensor Tab. However, by taking

Tab = ρinlalb, (2.4.1)

we are led to the ingoing charged Vaidya solution

ds2 = dv(2dr − findv) + r2dΩ2, (2.4.2a)
fin = 1− 2min/r + e2/r2, (2.4.2b)
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where v is taken as the Eddington-Finkelstein advanced time coordinate defined in Eq.
(2.1.20a), with the normalization condition la = −∂av. This solution represents the
situation of a spherical, charged black hole which is irradiated by a light-like radiation
falling inside from the infinite past of the universe.

The same can be said for the outgoing charged Vaidya solution, with Tab = ρoutnanb,
which is given by

ds2 = du(2dr − foutdu) + r2dΩ2, (2.4.3a)
fout = 1− 2mout/r + e2/r2, (2.4.3b)

where now u is the retarded time coordinate defined in Eq. (2.1.20b), with the normal-
ization condition na = −∂au. Now, conversely, we are dealing with a spherical, charged
black hole irradiated by an outgoing radiation coming from the other universe (in a phys-
ical sense this radiation may be thought of as coming from the surface of the collapsing
star). Using the generalized field equation m,a = 4πr2T b

a r,b (Eq. 2.3.12c) and the above
Vaidya solutions the relationships between min/mout and ρin/ρout can be determined:

dmin(v)/dv = 4πr2ρin, (2.4.4a)
dmout(u)/du = 4πr2ρout. (2.4.4b)

Note that according to Eq. (2.4.4b) the mass parameter actually increases even though
the star loses mass.

Eddington-Finkelstein coordinates represent a good choice in describing the system
since they reduce to classical advanced and retarded time far from the source. Further-
more, since mass parameters are objects which can be measured at infinity, so that they
have a direct operational meaning, their derivatives in Eqs. (2.4.4a and 2.4.4b) also have
a direct operational meaning as do the energy densities ρin and ρout.

2.5 Dray-’t Hooft-Redmount (DTR) Relation
Until now only the cases of single in- or outgoing fluxes of gravitational radiation

have been considered. Let us now consider the case in which a Reissner-Nordström
space-time is perturbed by a crossflow of infalling and outgoing light-like gravitational
radiation which can be modeled as two spherical thin shells, one contracting and the
other expanding, as shown in Fig. 2.5.1. The shells divide space-time into four different
sectors, each one possessing a mass m and a function f . The generalized Dray-’t Hooft-
Redmount (DTR) relation describes the relationship between the masses of these four
sectors (the original DTR relation is valid in the case of vanishing charge).

The first step in determining the DTR relation requires expressing the field equations
in double null coordinates (V, U), which for now are left unspecified, giving the general
form

ds2 = −2e2σdV dU, (2.5.1)
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Figure 2.5.1: Two concentric null shells colliding at event q which divide space-time into
four different regions A, B, C, D. The energy content of the infalling shell is given by
mC −mB while that of the outgoing shell by mD −mB.

where σ = σ(V, U). Using this metric it is possible to find that for a scalar function φ

�φ = −2e−2σφ,UV . (2.5.2)

The stress-energy tensor takes the usual form Tab = ρinlalb + ρoutnanb, but now the
normalization condition is chosen to be

la = −∂aV, na = −∂aU. (2.5.3)

Recalling Eq. (2.3.12c) it is clear that r2ρin(ρout) do not depend on U(V ), therefore

ρin =
Lin(V )

4πr2
and ρout =

Lout(U)

4πr2
, (2.5.4)

where Lin(Lout) represent the luminosities (note that they do not have direct operational
meaning since they depend on the choice of the coordinates U and V ). Using these
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results in Eq. (2.3.16) yields

�m = −2(re4σ)−1Lin(V )Lout(U). (2.5.5)

Considering Eq. (2.3.22), it is possible to appreciate that � ln f does not depend
on the bilinear contribution LinLout but just on the single contributions. This property
is fundamental for the integration of the field equations in order to obtain the DTR
relation. Before doing so, it is important to consider a mathematical result which is a
generalization of Green’s identity, as discussed in the 1990 article of E. Poisson and W.
Israel [4].

Any equation of the form �φ = ρ can be formally integrated (note that we are
using the metric of Eq. (2.5.1)). Suppose we are interested in the solution for φ with
the boundary conditions located in a characteristic sector Ω described by the equations
U = U1 and V = V1. From an application of Green’s identity it follows that the solution
at event (U, V ), which has to be in the future of sector Ω, will be given by

φ(V, U) = −1

2

∫ U

U1

∫ V

V1

e2σ
′
ρ′dV ′dU ′ + φ(V, U1) + φ(V1, U)− φ(V1, U1). (2.5.6)

The simplicity of this result follows from the fact that the Green function of the operator
�, if expressed in double null coordinates, is given by the superposition of two Heavyside
step functions. Note that the solution at event (U, V ) is given by the sum of the boundary
conditions specified on the sector Ω and by a surface integral over the past radial light
cone of the event.

The DTR relation is derived simply by the application of Eq. (2.5.6) to Eq. (2.3.22)
[9], since ρ is linear in Lin and Lout, which are now represented by δ functions. In fact,
if we integrate over an arbitrarily small light-like rhombus around the collision point (q
in Fig. 2.5.1) the absence of any bilinear term guarantees that the integral contribution
will be arbitrarily small. Therefore, we get ln fA = ln fC + ln fD − ln fB and so

fAfB = fCfD. (2.5.7)

In absence of gravity, the expression takes a trivial linear form, expressing the conserva-
tion of material energy in the collision. Its actual non linear form encases mathematically
a number of surprising nonlinear effects normally hidden in Einstein’s field equations,
the most surprising of which is mass inflation.
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Chapter 3

Mass Inflation

The necessary characteristics for mass inflation to occur are (i) a surface of infinite
blue shift and (ii) a separation between the Cauchy and apparent horizon. The need
for the second characteristic is not immediately evident. In fact, one would expect that
the infinitely blue shifted influx could be enough to generate the inflation of the mass
parameter and that the outflux could hypothetically be switched off without altering
the situation. However, in this case no mass inflation occurs. This apparent mystery
is simply explained: while the Cauchy horizon is a surface of infinite blue shift for our
asymptotically flat universe, the inner apparent horizon is a surface of infinite red shift for
other asymptotically flat universes and so the two effects cancel each other out because
the two surfaces coincide. Nevertheless, if the outflux gets switched on it crosses the
Cauchy horizon and focuses its generators so that the apparent horizon starts deflating
very fast and the surfaces become distinct. In conclusion, the infinitely blue shifted
influx is a key element for explaining the phenomenon, but it needs to be triggered by
an arbitrarily small amount of outgoing radiation which creates the necessary separation
between the Cauchy and apparent horizons.

If mass inflation occurs then the curvature also inflates. This is so because, even if
the internal mass parameter has no global meaning, it always has a local one. In fact, it
determines the "Coulomb" component of the local curvature. An increase in the mass
parameter would be manifested locally, for example, by an increase in the tidal forces
felt by an (extended) observer falling radially inward near the Cauchy horizon, even
though this observer would register the energy density due to the infalling radiative tail
as almost not blue shifted and vanishingly small.

3.1 Derivation of Mass Inflation

For the derivation of a mathematical expression for the mass inflation phenomenon
let us start by considering a Reissner-Nordström black hole perturbed by a cross flow
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of infalling and outgoing radiation. Consider, in particular, switching on the infalling
flux at advanced time V1 and the outgoing flux at retarded time U1 (see Fig. 3.1.1).
In this way space-time is divided into four different regions, depending on the values
of V and U , with four different mass parameters. Numbering these regions as in Fig.
3.1.1 it is possible to see that for U < U1 and V < V1 the space-time geometry will be
described by the Reissner-Nordström solution with mass m1. For U < U1 and V > V1 or
U > U1 and V < V1 the geometry will be given respectively by the ingoing or outgoing
Vaidya solution. Furthermore, for the cross-flow region where U > U1 and V > V1 the
space-time geometry will have a solution given by Eqs. (2.3.12) with suitable boundary
conditions.

INFLOW

OUTFL
OW

r = 0
singularity

inner apparent
horizon

outer
apparent

horizon

V = 0

V = V1

Cauchy
horizon

event
horizon

m0

m1

m2

m3

Figure 3.1.1: Background Reissner-Nordström space-time perturbed by cross-flowing
streams of radial radiation.

Let us start again by considering double null coordinates, without specifying which
ones, where

ds2 = −2e2σdV dU + r2dΩ2, (3.1.1)

with a non-Maxwellian contribution to the stress-energy tensor given by

Tab = [Lin/4πr
2]lalb + [Lout/4πr

2]nanb. (3.1.2)
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la = −∂aV and na = −∂aU are the normalization conditions.
From Eq. (2.3.7a)

1− 2m(U, V )/r + e2/r2 = −2e−2σ(∂Ur)(∂V r) (3.1.3)

which, using Eq. (2.3.12c), yields the field equations for m:

∂Um = −Lout(U)e−2σ(∂V r), (3.1.4a)
∂Vm = −Lin(V )e−2σ(∂Ur). (3.1.4b)

Now let us notice that it is possible to derive the relation between Lin and dmin(v)/dv
in the pure ingoing region where m = min and f = fin so that there the solution is
completely given by the ingoing Vaidya solution. For continuity, Lin will be the same as
that of the cross flow region. In this way, using the second of Eqs. (3.1.4b) in terms of
v and Eq. (2.3.7a), the result is

∂Vm =
∂m

∂v

∂v

∂V
= −Lin(V )e−2σ∂Ur = −Lin(V )e−2σ

2∂Ur∂V r

2∂V r
= Lin(V )

f

2∂V r
. (3.1.5)

Considering a light-like (ds2 = 0) flow within the ingoing Vaidya solution, it gives

2dr = findv → fin = 2
∂r

∂v
, (3.1.6)

which substituted into Eq. (3.1.5) yields

∂m

∂v

∂v

∂V
= Lin

∂r

∂v

∂V

∂r
. (3.1.7)

Finally, the expression for Lin is given by

Lin =

(
∂v

∂V

)2
∂min(v)

∂v
, (3.1.8)

and similarly for Lout

Lout =

(
∂u

∂U

)2
∂mout(u)

∂u
. (3.1.9)

It is now important to determine the expression for min(v). In order to do so, it
is useful to recall the analysis by Richard H. Price made nearly fifty years ago [10],
which showed that the amplitude of the backscattered radiation varies as v−n at late
advanced times, where n is given by 2l+2 with l representing the multi-pole order of the
testing field. Now the energy density of the ingoing radiation, which is proportional to
dmin/dv, will vary as v−2n, so that the ingoing mass function will reach the asymptotic
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limit m0 −min(v) ∼ v−(4l+3). The dominant contribution to the influx will come from
the quadrupole moment l = 2 so that typically m0−min(v) ∼ v−11. Finally, we can take

dmin(v)/dv ∼ v−p, (3.1.10)

with p = 4(l + 1) > 12. It will be seen that for Lout it is not important to know how
it behaves but just to consider it as a positive quantity, which is reasonable since it
determines the energy density of the radiation escaping from the surface of a collapsing
star.

Eq. (2.5.5) and Eq. (2.5.6) can be used to obtain a formal expression for the mass
function

m(V, U) =

∫ U

U1

∫ V

V1

(r′e2σ
′
)−1Lin(V ′)Lout(U

′)dV ′dU ′+min(V ) +mout(U)−m1. (3.1.11)

Until now the coordinates V and U have been left unspecified. In order to define the
coordinates V and U , we start by assuming that the influx is switched on at V = V1 and
the outflux at U = U1. This means that we also assume that the flux is turned off at V2. In
particular the case of interest here is where V2 tends to the Cauchy horizon. In this model,
space-time is divided into 4 static regions with massm0,m1,m2,m3 and in inflow, outflow
and cross-flow regions (see Fig. 3.1.1). Each static region is described by the Reissner-
Nordström solution and has its couple of null Eddington-Finkelstein coordinates, as
defined in Eqs. (2.1.20a and 2.1.20a). Let us define the coordinate v as the advanced
time referred to the static region m0, so that the Cauchy horizon will lie in the v = ∞
surface. In the same way the coordinate u is defined as the retarded time referred to the
region m1, so that the outer horizon will lie in the u = −∞ surface. The coordinates V
and U can now be defined as the Kruskalized advanced/retarded time associated with
the inner horizons r = r0 = m0−(m2

0−e2)1/2 and r = r1 = m1−(m2
1−e2)1/2 respectively:

V = −e−k0v, (3.1.12a)
U = −e−k1u, (3.1.12b)

with k0 = (m2
0− e2)1/2/r20 and k1 = (m2

1− e2)1/2/r21. In this way it is possible to see that
V = 0 on the Cauchy horizon and U = −∞ on the outer horizon.

Using this system of coordinates in Eq. (3.1.8) gives

Lin(V ) ∼ [− ln(−V )]−p

V 2
∼ v−pe2k0v, (3.1.13)

and, for V → 0, ∫ V

V1

Lin(V )dV ∼ [− ln(−V )]−p

−V
∼ v−pek0v. (3.1.14)
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Considering Eq. (3.1.11) it can be seen that m(V, U) will diverge as V → 0, unless the
factor re2σ goes to infinity quickly enough. Intuitively, this factor will instead tend to
go to zero. This is the case since the product of the derivatives ∂Ur∂V r remains well
behaved probably because the coordinates U and V are well behaved in the vicinity of
the Cauchy horizon and because this horizon should not deflate too quickly. In fact,
the behavior of the Cauchy horizon is only ruled by the amount of outgoing radiation
focusing its generators, since it is described by rCH(U) ≡ r(V = 0, U). This is not the
case of the inner apparent horizon, described by the scalar rAH derived from f(rAH) = 0,
which collapses catastrophically as the mass inflates to infinity.

Although it is not possible to prove that the factor re2σ goes to zero, it can be shown
that it cannot grow to infinity approaching the Cauchy horizon. In order to do so, let
us call ψ = re2σ and derive an expression for � lnψ which can be integrated using again
Eq. (2.5.6). Any scalar function ψ verifies

� lnψ = (ψ�ψ − ψ,aψ,a)/ψ2, (3.1.15)

so that in this case

� lnψ = [re2σ(�r + 2r�σ + 2rσ,a)e
2σ − fe4σ − r2e4σ4σ,aσ,a]/r

2e4σ =

= �r/r + 2�σ − f/r2.
(3.1.16)

The Ricci scalar is calculated to be R = −2�σ, which yields

�σ = −∂rk = −(2m− 3e2/r)/r3. (3.1.17)

Using Eqs. (3.1.17, 2.3.7a, 2.3.14 and 2.3.7b) in Eq. (3.1.16) gives

� lnψ =
2

r3
(m− e2/r)− 2

r3
(2m− 3e2/r)− 1/r2 + 2m/r3 − e2/r4 =

= 3e2/r4 − 1/r2 = (3e2 − r2)/r4.
(3.1.18)

It is possible to integrate the above expression using Eq. (2.5.6),

lnψ = −1

2

∫ U

U1

∫ V

V1

e2σ
′
(3e2 − r′2)/r′4 dV ′dU ′ + lnψ(U1, V ) + lnψ(U, V1)− lnψ(U1, V1) =

= ln
ψin(U1, V )ψout(U, V1)

ψ(U1, V1)
− 1

2

∫ U

U1

∫ V

V1

ψ′r′−5(3e2 − r′2) dV ′dU ′,

(3.1.19)

where ψin and ψout represent the function re2σ, which can be obtained respectively from
the known ingoing and outgoing charged Vaidya solutions.

Now the first term is finite because ψin is finite on the Cauchy horizon [4]. This is an
effect of the fact that when only the influx is considered, the surfaces of infinite blue-shift
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and red-shift coincide, thus preventing the inflation of the mass parameter. The second
term is more delicate since it might be unbounded and what is crucial is the sign of the
contribution. If the integral is actually unbounded the dominant contribution will come
from values near the Cauchy horizon. Since |e| < m0 (indispensable for the creation of
the black hole), r0 < |e| so that in the vicinity of the Cauchy horizon the contribution
from the integral will be negative because (3e2 − r2) remains positive. Considering this,
lnψ will be necessarily not bounded below, but bounded above. This in turn ensures
that re2σ cannot go to infinity near the Cauchy horizon, hence it cannot stop the inflation
phenomenon.

In summary, mass inflation is expressed through the divergence of Eq. (3.1.11). The
physical interpretation is that the combined effect of the infalling flux, which is infinitely
blue-shifted and piles up at the Cauchy horizon, and of the outgoing radiation, which
produces the fundamental separation between Cauchy and apparent horizons, results in
the inflation of the internal mass parameter.

The phenomenon can be understood further from an application of the DTR relation
(Fig. 2.5.1): if the two shells cross through each other near the Cauchy horizon of sector
B, then fB will be very small but since fAfB remains constant fA will increase as the
cross section goes near the Cauchy horizon. This can be interpreted as a violent increase
of the mass parameter at the intersecting point. However, the DTR relation does not
help in understanding the characteristic time over which mass inflation occurs.

No trace of the mass inflation phenomenon is perceptible externally. Outside the
black hole the mass m does not inflate, but remains practically the same as the mass of
the original star. News of the drastic change of the internal field must propagate with the
speed of light as a gravitational wave, and it can never emerge from the event horizon.
Classical physics provides no damping mechanism for this growth of curvature near the
Cauchy horizon. However, as the curvature grows it is possible that new, unknown
quantum effects come into play.

3.1.1 Growth Rate Estimation

It is possible to derive an estimation of the mass growth rate by expanding the integral
of Eq. (3.1.11) in powers of bilinear LinLout. Keeping only the first-order term, it
is possible to take for re2σ the background values in the Reissner-Nordström solution
with mass m0 (in first approximation m0 ' m1). Recalling the definition given for the
coordinates U and V in the section of Reissner-Nordström black holes,

U = −e−k0u and V = −e−k0v, (3.1.20)

with k0 = −f ′0(r0) = (m2
0−e2)1/2/r20 the surface gravity of the inner horizon, it is possible

to see that near the Cauchy horizon f0 ' −2UV . This implies that the metric element
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gUV takes the form

gUV =
f0

2k20UV
' − 1

k20
. (3.1.21)

Using Eq. (3.1.21) we can take
re2σ ' r0

k20
. (3.1.22)

Substituting Eq. (3.1.13) and Eq. (3.1.14) into Eq. (3.1.11) yields an estimation of the
internal mass parameter

m(U, V ) '
∫ U

U1

∫ V

V1

(r′e2σ
′
)−1Lin(V ′)Lout(U

′)dV ′dU ′

' m0
k0
m0

∫ U

U1

Lout(U
′)dU ′

k0
r0

∫ V

V1

Lin(V ′)dV ′

' m0Γ(U)ε2
(k0v)−pek0v

k0r0
,

(3.1.23)

where Γ(U) = k0m
−1
0

∫ U
U1
Lout(U

′)dU ′ represents the fraction of the star’s mass radiated
away. Since, as was said above, the principal contribution comes from the quadrupole
moment p = 12

m(U, V ) ' m0Γ(U)ε2
(k0v)−12ek0v

k0r0
, (3.1.24)

with ε representing a dimensionless quadrupole moment.
This crude estimate shows that mass inflates exponentially with Eddington-Finkelstein

advanced time with a characteristic time scale of 1/k0. This is probably an underestimate
since, as was shown above, the factor re2σ does not remain constant but will reasonably
tend to go to zero thus precipitating further mass inflation.

3.1.2 Asymmetries

Some aspects about how asymmetries, which reasonably are present in any realistic
collapse, influence the spherical symmetric phenomenon of mass inflation should be con-
sidered. The broad aspects of mass inflation should be generic since it is characterized
mainly by the presence of a surface of infinite blue shift and a separation between the
Cauchy and apparent horizons.

In the case of a rotating black hole, the angular momentum J is nearly conserved
during the collapse and completely conserved in the case of axial symmetry. Thus, the
Kerr parameter a = J/m will be negligible compared to the mass in the vicinity of the
Cauchy horizon. This shows that the geometry will be expected to be given by the
Schwarzschild solution.
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Let us now consider the effects of non rotational asymmetries. It has been shown by
the work of E. Poisson and W. Israel in 1989 [11] that the tail of the spacelike singularity,
corresponding to large values of advanced time v, developed at r = 0 during the collapse,
relaxes asymptotically to a Schwarzschild-like form. It is straightforward to adapt it to
the situation where a Cauchy horizon is present: a spacelike curve in the region near the
horizon now corresponds to the curve in r = 0. Asymmetries can interfere with the tail
just for a very brief period of the star’s history and also become exponentially red shifted.
Thus, the geometry of the Cauchy horizon’s tail is determined only by the asymptotic
values of the external field as v →∞. But it is known that it relaxes to a Kerr-Newman
form which, among other things, has a constant inner-horizon surface gravity k0. This
means that the exponential mass inflation factor ek0v (Eq. (3.1.14)) is uniform and so the
variations ∆m/m ∼ ∆θ of the mass aspect m(θ, φ, v) on the angular scale ∆θ should
not grow exponentially but remain nearly constant during inflation. In the vicinity of
the Cauchy horizon these nonuniformities will be negligible on length scales comparable
to the local curvature. Thus, the geometry of space-time should be indistinguishable
from a Schwarzschild solution for a very large mass factor.

In conclusion, there are no reasons to expect that the effect of rotations or asymme-
tries should modify the results found about mass inflation.

34



Chapter 4

Conclusions

In the present study the most striking features of the physics behind black holes have
been shown. In chapter 2, beginning with the Schwarzschild solution it is clear that
the choice of the right coordinates to describe the metric is fundamental to understand
the essential physics behind the various solutions to Einstein’s field equations. This is a
recurring concept in all general relativity and fundamental to the analysis of the mass
inflation phenomenon.

The calculations presented in the section on Reissner-Nordström black holes show
that in addition to the classic event horizon a new one with peculiar characteristics is
created: a Cauchy horizon. The presence of this null surface gives importance to the
study of the internal structure of black holes. In fact, this is a surface of infinite blue
shift beyond which predictability breaks down. Indeed, initial data specified for example
at the beginning of a gravitational collapse are not sufficient to predict what happens to
the future of the Cauchy horizon.

Considering a Reissner-Nordström space-time perturbed by in- or outgoing fluxes
of radiation different solutions to Einstein’s field equations are possible: the Vaidya
solutions and the DTR relation. The importance of this last relation is that it gave a
first glance that something strange was happening at the Cauchy horizon. In fact two
streams of gravitational radiation, modeled as two spherical thin shells one contracting
and one expanding, divide space-time into four separated regions each one with a different
mass m and function f (see Fig. 2.5.1). The relation of Eq. (2.5.7) implies that if the
two shells are interacting near the inner horizon the smallness of the function of the outer
region (B) will be balanced by the largeness of that of the inner region (A) and this can
be interpreted as a violent increase of the mass parameter at the intersecting point.

In this study of the mass inflation phenomenon, the calculations show that the in-
tersection of the outgoing gravitational radiation with its backscattered blue shifted ra-
diative tail at the Cauchy horizon causes a classically unbounded inflation phenomenon
of the internal mass parameter of the hole. Since this region is causally disconnected
from the outside of the hole, the external mass parameter remains well behaved. Un-
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fortunately the field equations do not permit the derivation of an explicit expression
for m(U, V ). The estimation derived for the growth rate (Eq. (3.1.24)) is probably an
underestimate since the factor re2σ will reasonably tend to vanish precipitating further
mass inflation.

The mass inflation phenomenon is one of the most peculiar aspects of the non linearity
of general relativity. The singularity created at the inner horizon suggests that the
classical laws of general relativity will cease to be valid at the so called Planckian scale,
where quantum effects will presumably occur.
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