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Abstract

This thesis is focused on the problem of seeking an optimal set of the model points se-

lection when dealing with a portfolio of term insurance policies and a LIBOR Market

Model that determines the dynamics of the forward rates. Specifically, the study is asso-

ciated to the problem of minimizing a specific risk functional which measures the average

discrepancy between two portfolios: the given portfolio of policies and the model points,

a small group of representative contracts which substitute the first one, without misrep-

resenting its inherent risk structure. This optimization process is aimed to reducing the

computation difficulties of the valuation of the performance of any portfolios of policies,

projections to be made daily by life insurance companies.

In particular, in the present thesis, after a brief reference to some basic concepts in the

interest rate field, there are described the LIBOR Market Model and the risk functional

in a Banach space. The portfolio representation problem is also examined, because it

allows to define the dynamics of those portfolios within a certain class that best repre-

sents the inherent risk structure of a given financial exposure. Finally, it is analyzed the

particular case of the term life insurance.



Sommario

Questo lavoro di tesi è incentrato sulla ricerca di un portafoglio ottimale di model

points quando consideriamo un portafoglio di polizze di assicurazione sulla vita a termine

e il LIBOR Market Model che disciplina le dinamiche dei tassi forward. In particola-

re, lo studio è correlato alla ricerca del minimo di uno specifico funzionale di rischio il

quale misura la discrepanza media tra due portafogli: il portafoglio di polizze iniziale

e il model points, un piccolo gruppo di contratti rappresentativi con il quale il primo

viene sostituito senza alterare la sua struttura di rischio inerente. Questo processo di

ottimizzazione ha come scopo di ridurre il costo computazione della valutazione della

performance di una portafoglio di polizze, proiezioni che quotidianamente le compagnie

assicurative devono effettuare.

Nello specifico, nel presente lavoro, dopo un breve accenno ad alcuni concetti base nel-

l’ambito dei tassi di interesse, vengono descritti il modello LIBOR e il funzionale di rischio

in uno spazio di Banach. Viene, inoltre, approfondito il problema della rappresentazione

di un portafoglio fissato, in quanto quest’ultimo ci permette di definire le dinamiche di

questi portafogli all’interno di una determinata classe che meglio rappresenta il rischio

inerente di una data esposizione finanziaria. Infine, viene analizzato il caso particolare

delle assicurazioni della vita a termine.



Abbreviations

s.t. = such that

w.r.t = with respect to

a.s = almost surely

i.e. = id est = that is

B.m. = Brownian motion

FRA = Forward Rate Agreement

IRS = Interest Rate Swap

LMM = LIBOR Market Model

LFM = Lognormal Forward LIBOR Model

PSF = Payer (Forward) Interest Rate Swap

RSF = Reicever(Forward) Interest Rate Swap
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Introduction

The progressive economic growth of the last decades, driven by technological and

financial developments, has led to significant changes in the life insurance sector. Nowa-

days, insurance companies treat a large number of different securities, which are traded

in order to hedge their exposure.

In particular, life insurance companies are allowed by regulators to estimate the per-

formance of any portfolio of policies on the basis of suitable model points in order to

reduce the computational difficulties of the operation. This procedure is permitted un-

der suitable conditions, i.e. when the inherent risk structure of the original portfolio is

not misrepresented and there are not loss of any significant attribute of the portfolio itself.

The point of this work is analyzing in detail the model points risk functional when

dealing with a term life insurance portfolio and the dynamics of the forward rate is de-

termined by the LIBOR Market Model. The main advantage of the latter is that it can

be made consistent with an arbitrage free term structure model; this is possible because

each rate is lognormal under the forward to the settlement date arbitrage free measure

rather than under spot arbitrage free measure.

This thesis is structured as follows:

Chapter 1 We present some basic financial instruments, in particular we define dif-

ferent types of interest rates and the main derivatives, as caps floors and swaps with the

respective ones Black’s formula.
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Chapter 2 We introduce the LMM, describing the dynamics of LIBOR forward rates,

also under different numeraire. Then we present the Black volatilities implied by the cap

market and show that the risk neutral valuation formula of caps gives the same prices

as the Black’s cap formula.

Chapter 3 We describe the risk functional, after that we have fixed a specified set.

We demonstrate the Theorem 3.0.8 that give us two different formulations of the risk

functional. Then, we consider the portfolio representation problem, highlighted the sen-

sitivity based hedging approach and the case when we work with correlate risk factors.

Chapter 4 We discuss the problem of determining an optimal model points for a

term life insurance portfolio, when a LIBOR Market Model determines the dynamics of

forward rates. So, we make some assumptions for the LIBOR forward rates and then we

define a model points risk functional relative to term insurance portfolio for a class of

individuals.



Chapter 1

Standard definitions and concepts in

the interest-rate world

1.1 The Bank account and short rate

Definition 1.1.1. We define a Bank account or Money-market account B(t) to

be the value of a bank account at time t ≥ 0. We assume B(0) = 1 and the money

account process is described by

dB(t) = rtB(t)dt B(0) = 1

where rt is a positive function of time, called instantaneous short rate at which the bank

account grows up.

By solving:

B(t) = exp(

∫ t

0

rsds) (1.1)

Definition 1.1.2. The (stochastic) discount factor D(t, T ), for t ≤ s ≤ T time

istants, is the amount at time t that is equivalent to one unit of currency payable at time

T:

D(t, T ) =
B(t)

B(T )
= exp(−

∫ T

t

rsds) (1.2)

The probabilistic nature of rt is important. In many pricing application r is assumed

to be a deterministic function, so (1.1) and (1.2) at any future time are deterministic

6
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functions. However, when dealing to interest rate products, the main variability that

matters is clearly that of interest rates themselves. It is therefore necessary to consider

the evolution of r in time through a stochastic process, so the bank account (1.1) and

the discount factors (1.2) will be stochastic processes, too.

1.2 Zero-Coupon Bonds and Spot Interest Rates

Definition 1.2.1. A zero coupon bond (pure discount bond) with maturity date

T , also known as T-bond, is a contract which guarantees its owner the payment of 1

unit of currency at the date T , with no intermediate payments. The price at time t of a

bond with maturity date T is denoted by p(t, T ).

Assumption 1.2.2. We make some assumptions to guarantee the existence of the regular

bond market:

• fot every T > 0 exists a (frictionless) market for T-bonds;

• p(t, t) = 1 for all t, in order to avoid arbitrage;

• for each fixed t, the bond price p(t, T ) is differentiable rispect to time of maturity

T > t.

Remark 1.2.3. We analize now the relationship between the discount factor D(t, T ) and

the zero coupon bond p(t, T ). The difference is inherent in the definition of the two ob-

jects being respectively an “equivalent amount of currency” and a “value of a contract”.

If the rates r are deterministic, then D is deterministic and necessarily D(t, T ) = p(t, T ).

However, if rates are stochastic, D(t, T ) is a random quantity at time t depending on the

future evolution of rates r between t and T . Whereas, p(t, T ) is the t-value of a contract

with maturity date T , so it has to be known, then deterministic, at time t.

Definition 1.2.4. The time to maturity T − t is the quantity of time, in years, from

the present time t to the maturity time T > t. We denote by τ(t, T ) the measure between

t and T , that is usually expressed to as year fraction between the dates.
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So, every time we want to know the present value of a future-time payment we have

to consider the price of zero coupon bonds for that future time.

Zero coupon bond prices are the basic quantities in interest-rate theory, and all interest

rates can be defined in terms of zero coupon bond prices.

Therefore, zero coupon bond are theoretical instruments that are not directy observable

in the market. To talk about zero coupon bonds in terms of interest rates, and vice versa,

we need to define two features of the rates: the compounding type and the day-count

convention. The latter is the convention according to which a particular choice is made

to measure the time between two dates. To understand how it works we mention three

generic examples of the day-count convention:

• Actual/365 : with this convention a year is 365 days long and the year fraction be-

tween two dates, expressed by day/month/year, D1(d1,m1, y1) and D2(d2,m2, y2),

is the actual number of days between them divided by 365.

D1 −D2

365

• Actual/360 : in this case a year is 360 days long, so the year fraction is:

D1 −D2

360

• 30/360 : with this convention months are assumed 30 days long and years 360 days.

The year fraction is given by:

max(30− d1, 0) +min(d2, 30) + 360 ∗ (y2 − y1) + 30 ∗ (m2 −m1 − 1)

360

We define now the compounding type.

Definition 1.2.5. The continuously-compounded spot interest rate prevailing

at time t for the maturity T is denoted by R(t, T ), it is a constant rate at which an

investment of p(t, T ) unity of currency at time t accrues continuously to yield a unity

quantity of currency at maturity time T, i.e.

R(t, T ) := − ln p(t, T )

τ(t, T )
(1.3)
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or equivalently

eR(t,T )τ(t,T )p(t, T ) = 1.

From this formula we can express the bond price as:

p(t, T ) = e−R(t,T )τ(t,T ).

Definition 1.2.6. The simply-compounded spot interest rate prevailing at time t

for the maturity time T is denoted by L(t, T ), it is a constant rate at which an investment

of p(t, T ) unity of currency at initial time t accrues proportionally to the investment time

to produce a unity quantity of currency at maturity time T. In formulas:

L(t, T ) :=
1− p(t, T )

τ(t, T )p(t, T )
. (1.4)

They are denoted with L because the most importart interbank rate market LIBOR

rates are simple-compouned rate. LIBOR rates are connected to zero bound prices by

Actual/360 day count covention for computing τ(t, T ).

Similarly to before we have:

p(t, T )(1 + L(t, T )τ(t, T )) = 1

and so we can express a bond price in terms of L as:

p(t, T ) =
1

1 + L(t, T )τ(t, T )
.

Definition 1.2.7. The annually-compounded spot interest rate prevailing at time

t for the maturity T is denoted by Y (t, T ), it is a constant rate at which an investment

of p(t, T ) unity of currency at initial time t, has to be made to produce a quantity of one

unity of currency at maturity T , when reinvesting the obtained amounts once a year; i.e.

Y (t, T ) :=
1

[p(t, T )]
1

τ(t,T )

− 1 (1.5)

equivalently:

p(t, T )(1 + Y (t, T ))τ(t,T ) = 1

and so the bond prices in terms of this rates are defined by:

p(t, T ) =
1

(1 + Y (t, T ))τ(t,T )
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Example 1.2.8. We can understand better how the annually compounding works consid-

ering this example. If we invest today a unit of currency at the simply-compoundend

rate Y, in one year we will obtain the amount A = 1(1+Y ). If we repeat the process and

we invest a quantity for another year at the same rate Y, we have A(1+Y ) = (1+Y )2 in

two years. And so, by reiterating the investment for n years, the final amount we obtain

is (1 + Y )n.

Definition 1.2.9. The k-times-per-year compounded spot interest rate prevailing

at time t for the maturity T is denoted by Y k(t, T ), it is a constant rate (referred to

a one year period) at which an investment of p(t, T ) unity of currency at initial time

t has to be made to produce a quantity of one unity of currency at maturity T , when

reinvesting the obtained amounts k times a year. In formulas:

Y k(t, T ) :=
k

[p(t, T )]
1

kτ(t,T )

− k (1.6)

equivalently:

p(t, T )

(
1 +

Y k(t, T )

k

)kτ(t,T )

= 1

and so the bond prices in terms of this rates are defined by:

p(t, T ) =
1(

1 + Y k(t,T )
k

)kτ(t,T )
.

Remark 1.2.10. We can observe that if we consider the limit of k-times-per-year com-

pounded rates for the number k of compounding times going to infinity we obtain the

continuously-compounded rates:

lim
k→+∞

k

[p(t, T )]
1

kτ(t,T )

− k = − ln(p(t, T ))

τ(t, T )
= R(t, T )

Remark 1.2.11. The previous definitions of spot interest rates are equivalent in infinites-

imal time intervals:
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r(t) = lim
T→t+

R(t, T )

= lim
T→t+

L(t, T )

= lim
T→t+

Y (t, T )

= lim
T→t+

Y k(t, T ) ∀k

1.3 Forward rate

We define now the forward rates that are characterized by three time instants t, T

and S, so related t ≤ T ≤ S, which represent respectively: t is the time instant at which

the rate is considered, T is the expiry and S is the maturity of the rate.

Forward rates are interest rates that can be locked in today for an investment in a future

time period, and they are agreed consistently with the current term structure of discount

factors.

Definition 1.3.1. Given t, T and S, defined as above, we describe a process that

starting at time t allows us to make an investment of one dollar at time T , and to have

a deterministic rate of return, determined at the contract time t, over the range [T, S].

The proceedings is as follows:

1. at time t we sell one T-bond =⇒ this give us an income of p(t, T ) dollars;

2. with this income we buy p(t, T )/p(t, S) S-bonds =⇒ so now the investment at t is

0;

3. at time T the T-bond matures =⇒ we have to pay out one dollar;

4. at time S the S-bond mature at one dollar at piece =⇒ we will receive exactly

p(t, T )/p(t, S) dollars at time S;

The actual effect is that, thanks to a contract fixed at time t, an investment of one dollar

at time T give us a yield of p(t, T )/p(t, S) dollars at time S. So, this kind of contract

stipulated at time t guarantees us a riskless rate of interest over the future range [T, S].

This interest rate is called forward rate.
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The main forward rates are continuously compounded rates or simple rates, defined

as follows.

Definition 1.3.2. The continuously compounded forward rate R for [T, S], where

T > t is the expiry and S > T the maturity time, contracted at time t, is defined by:

R(t, T, S) := − ln(p(t, S))− ln(p(t, T ))

S − T
(1.7)

solution to the equation:

eR(S−T ) =
p(t, T )

p(t, S)
.

Whereas, the simple compounded forward rate, or LIBOR rate F, defined on the

same three time instants t ≤ T ≤ S, is given by:

F (t, T, S) := −p(t, S)− p(t, T )

(S − T )p(t, S)
(1.8)

solution to the equation:

1 + (S − T )F =
p(t, T )

p(t, S)

We remember that S − T = τ(T, S).

1.3.1 Forward rate agreement FRA

We give, now, a definition of forward rate through the forward rate agreement

(FRA), which is an agreement made to assure that a determined interest rate will apply

to either borrowing or lending a certain capital during a specified future period of time. A

FRA is a contract featured by three time instants: t the current time, T the expiry time

and S the maturity time, with t < T < S. The contract provides that at the maturity

time S, a fixed payment based on a fixed rate K is exchanged against a floating payment

based on the spot rate L(T, S) resetting in T . Hence, this contract allows to lock the

interest rate for the range [T, S] at a desired value K, with the rates that are simply

compounded. Formally, the value of the contract in S is given by the difference between

the fixed rate multiplied for the duration of the contract and the nominal value N , that

represents units of currency that one receives, and same product for the floating rate,

that is the amount to pay. In formulas:

Nτ(T, S)(K − L(T, S)).
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For the definition of LIBOR rate (1.4), we have:

N

[
τ(T, S)K − 1

p(T, S)
+ 1

]
(1.9)

Considering 1/p(T, S) the quantity of currency at time S, its value at time T is

given by the product p(T, S)(1/p(T, S)) = 1, where p(T, S) is the zero coupon price.

Furthermore, one unit of currency at time T is given by p(t, T ) units of currency at time

t. And so, the quantity 1/p(T, S) in S is equivalent to the amount p(t, T ) in t.

Replacing these observations in (1.9), we obtain that the value of FRA at time t is:

FRA(t, T, S, τ(T, S), N,K) = N [p(t, S)τ(T, S)K − p(t, T ) + p(t, S)]. (1.10)

So, remembering (1.8), we can express the value of FRA in terms of simply compounded

forward interest rate:

FRA(t, T, S, τ(T, S), N,K) = N

[
p(t, S)τ(T, S)K + p(t, S)

(
1− p(t, T )

p(t, S)

)]
=

= N [p(t, S)τ(T, S)K + p(t, S)(−τ(T, S)F (t, T, S))]

=⇒ FRA(t, T, S, τ(T, S), N,K) = Np(t, S)τ(T, S)(K − F (t, T, S)). (1.11)

Remark 1.3.3. As we have done for the spot rate, we can define the instantaneous forward

rate as the limit of the previous forward rates:

lim
S→T+

L(t, T, S) = − lim
S→T+

1

p(t, S)

p(t, S)− p(t, T )

S − T

= − 1

p(t, T )

∂p(t, T )

∂T

=
∂ln(p(t, T ))

∂T

1.3.2 Interest Rate Swaps

A generalization of the FRA is the Interest Rate Swap (IRS). A swap is a com-

mitment to exchange the payments originating from a fixed and a floating leg.
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Definition 1.3.4. Given a space of dates T = {Tα, . . . , Tβ} and a set of year fractions

τ = {τα, . . . , τβ}, at a specified instant Ti the amount of the fixed leg is made up of the

product between the fixed interest rate K, the nominal value N and a year fraction τi

between Ti+1 and Ti, so it is given by

NτiK,

on the other hand, the floating part payment is the quantity

NτiL(Ti − 1, Ti)

where L(Ti − 1, Ti) is the interest rate resetting at the instant Ti−1 ∈ Tα, Tα+1, . . . , Tβ−1

for the maturity given by the current payment instant Ti into the dates Tα+1, . . . , Tβ.

Remark 1.3.5. The payer of the fixed leg is termed PFS (i.e. Payer(Forward-Start)

Interest Rate Swap) whereas the floating leg is received by the Receiver IRS (RFS).

The discounted payoff of a PFS at a time t < Tα is given by

β∑
t=α+1

D(t, Ti)Nτi(L(Ti−1, Ti)−K)

and accordingly, the discounted payoff of a RFS at a time t < Tα can be expressed as

β∑
t=α+1

D(t, Ti)Nτi(K − L(Ti−1, Ti)).

We can see this contract as a portfolio of FRAs, we can evaluate the latter sum as a sum

of (1.10) or (1.11):

RFS(t, T , τ, N,K) =

β∑
t=α+1

FRA(t, Ti−1, Ti, τi, N,K) =

= N

β∑
t=α+1

τip(t, Ti)(K − F (t, Ti−1, Ti)) =

= −Np(t, Tα) +Np(t, Tβ) +N

β∑
t=α+1

τiKp(t, Ti).

(1.12)



1.4. Derivative of Interest-Rate 15

Definition 1.3.6. The forward swap rate Sα,β(t) at time t, for the sets of times T
and year fractions τ , is the fixed rate K calculated when RFS(t, T , τ, N,K) = 0, i.e. it

is chosen such that the value of the swap equals zero at the present time t. So from the

latter equation we have:

Sα,β(t) =
p(t, Tα)− p(t, Tβ)∑β

t=α+1 τip(t, Ti)
(1.13)

We can write this definition in terms of forward rate(LIBOR) dividing both the numer-

ator and the denominator by p(t, Tα)

p(t, Tk)

p(t, Tα)
=

k∏
j=α+1

p(t, Tj)

p(t, Tj−1)
=

k∏
j=α+1

1

1 + τjFj(t)
∀k > α

where Fj(t) = F (t, Tj−1, Tj).

Therefore, we obtain in (1.13)

Sα,β(t) =

1−
∏

j=α+1,...,β

1
1+τjFj(t)∑

t=α+1,...,β

τi
∏

j=α+1,...,i

1
1+τjFj(t)

1.4 Derivative of Interest-Rate

1.4.1 Interest rate Caps/Floors

Interest rates cap or floor are financial insurance contracts that exchange payments

at the end of each period only if it has a positive value. The cap can be viewed as a

payer IRS whereas a floor is equivalent to a receiver IRS.

Given a set of dates T = {Tα, . . . , Tβ} with associated the set of year fractions τ =

{τα+1, . . . , τβ}, the cap discouted payoff is given by

β∑
t=α+1

D(t, Ti)Nτi(L(Ti−1, Ti)−K)+.

On the other hand, the floor discounted payoff is given by

β∑
t=α+1

D(t, Ti)Nτi(K − L(Ti−1, Ti))
+.
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Where ”+” denotes the fact that we take the max between the difference of fixed and

floating rate or otherwise 0, i.e. max
(
(L(Ti−1, Ti) − k), 0

)
for the cap and max

(
(K −

L(Ti−1, Ti)), 0
)
.

Technically, a cap is the sum of a number of basic contracts, called caplet, it is determined

at Ti−1 but not payed our until at time Ti, it is given by,

Xi := D(t, Ti)Nτi(L(Ti−1, Ti)−K)+

and analogously a floor can be viewed as a portfolio of floorlet contracts.

Remark 1.4.1. The market practice is to price a cap by using the Black’s formulas at

time t

CapBlack(t, T , τ, N,K, σα,β) = N

β∑
t=α+1

p(t, Ti)τiBl(K,F (t, Ti−1, Ti), vi, 1) (1.14)

where, denoting by Φ the standard Gaussian distribution function,

Bl(K,F, v, w) = FwΦ(wd1(K,F, v))−KwΦ(wd2(K,F, v))

d1(K,F, v) =
ln(F/K) + v2/2

v

d2(K,F, v) =
ln(F/K)− v2/2

v

vt = σα,β
√
Tt−1 (1.15)

the costant σα,β is known as the Black volatility for caplets.

Analogously,the floor is priced by using the formula:

FlrBlack(t, T , τ, N,K, σα,β) = N

β∑
t=α+1

p(t, Ti)τiBl(K,F (t, Ti−1, Ti), vi,−1) (1.16)

In the market, therefore, cap prices are not quoted in monetary terms but instead in

terms of implied Black volatilities.

It is implicit in the Black formula that the forward rate are lognormal, under some

probability measures.
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1.4.2 Swaptions

A European swaption is defined as the option, purchased at time t, to enter at

time Tα a swap spanning the period (called tenor) Tβ − Tα, with the fixed leg paying at

the swaption maturity with a fixed swap rate K.

The option will be exercised only if this value is positive, so the payer swaption payoff,

discounted from the maturity time Tα to the current time is equal to

ND(t, Tα)
( β∑
t=α+1

p(Tα, Ti)τi(F (Tα, Ti−1, Ti)−K)
)+

.

Contrary to the cap, this payoff cannot be decomposed in elementary product, each

depending on a single forward rate.

Remark 1.4.2. The market practice is to price swaptions by using the Black’s formula,

the price of the payer swaption at time t is:

PSBlack(t, T , τ, N,K, σα,β) = N

β∑
t=α+1

p(t, Ti)τiBl(K,Sα,β(t), σα,β
√
Tα,−1) (1.17)

where σα,β is a volatility parameter quoted in the market, it is different from the

caps/floors Black volatility.



Chapter 2

The LIBOR market models

In this chapter, we present one of the most popular interest-rate models: the LIBOR

market models. LIBOR is short for London Interbank Offered Rate and it serves as the

first step to calculating interest rates on various loans throughout the world. The British

Bankers’ Association publishes daily LIBOR values for a range of different currencies.

The actual determination of these values is obtained by averaging quotes for loans from

a number of contributing banks.

The market practice is to price the option (call(through the cap) or put(through the

floor) option on a forward rate) assuming that the underlying forward rate process is

lognormally distributed with zero drift. Before market models were introduced, there

was no interest-rate dynamics compatible with either Black’s formula for caps or Black’s

formula for swaptions. The introduction of market models provided a new derivation of

Black’s formulas based on rigorous interest-rate dynamics.

The main advantage of this market practice is that it can be made consistent with

an arbitrage-free term structure model. Consecutive quarterly or semiannual forward

rates can all be lognormal while the model will remain arbitrage free. This is possible

because each rate is lognormal under the forward to the settlement date arbitrage-free

measure rather than under spot arbitrage-free measure. Lognormality under the appro-

priate measure is needed to justify the use of the Black futures formula with discount

for caplet pricing.

The market models will thus produce pricing formulas for caps and floors (the LIBOR

18
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models), and swaptions (the Swap market models) which are of the Black-76 model

type and so conforming to the market practice. The LIBOR model market(LMM) is

also known as ”Log-normal Forward LIBOR Model” or ”Brace-Gatarek-Musiela 1997

Model” (BGM model), from the names of the authors that described it.

2.1 Description of the Lognormal Forward-LIBOR

Model (LFM)

We make the usual mathematical assumptions. All processes are defined on the

probability space (Ω,Ft,P), where the filtration {Ft; t ≤ 0} is the natural filtration

generated by M-dimensional Brownian motion Z = {Z(t); t ≤ 0}.
Let t = 0 be the current time. Let a set of increasing expiries-maturities {T0, . . . , TM}
from which are taken pair of dates (Tk−1, Tk) for the forward rates. We consider also the

corresponding set of year fractions {τ0, . . . , τM}, where τk is the year fraction associated

with the expiry-maturity pair (Tk−1, Tk) for k > 0, in a most popular caps it is equal to

a quarter of a year; besides τ0 is the year fraction from expiry T0. We set T−1 := 0.

We also consider:

• Fk(t) := F (t, Tk−1, Tk), k = 1, . . . ,M the generic forward rate between times Tk e

Tk−1 where in the latter time it coincides with the simply-compounded spot rate

prevailing at time Tk−1 for the maturity Tk, i.e. Fk(Tk−1) = L(Tk−1, Tk);

• Qk the probability measure associated with the numeraire p(·, Tk), it is often called

the forward (adjusted) measure for the maturity Tk. And we can prove Qk is a

martingale measure for Fk, indeed we have the following result.

Lemma 2.1.1. For every k = 1, . . . ,M the LIBOR process Fk is a martingale

under the corresponding forward measure Qk on the interval [0, Tk−1].

Proof. By the definition of simple compounding, we have

Fk(t)p(t, Tk) =
p(t, Tk−1)− p(t, Tk)

τk
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being p(t, Tk−1)−p(t, Tk) a difference between two price of discount bonds and 1/τk

a notional, results that Fk(t)p(t, Tk) is the price of a tradable asset. So, when it is

normalized respect to the numeraire p(·, Tk), and then divided by p(t, Tk), Fk has

to be a martingale under the measure Qk.

• Zk(t) a M-dimensional Brownian motion, under the measure Qk, with instanta-

neous covariance ρ = (ρi,j)i,j=1,...,M

E[dZk(t)dZk(t)′] = ρdt

• σk(t) the instantaneous volatility coefficient for the forward rate Fk(t)

Under these hypotheses, it follows that Fk is modeled according to a driftless dy-

namics under Qk.

Definition 2.1.2. If the LIBOR forward rates have the dynamics

dFk(t) = σk(t)Fk(t)dZ
k
k (t) t ≤ Tk−1 (2.1)

where Zk
k is k-th component of Qk-Wiener as described above, lower indices indicate the

components whereas upper indice show under which measure we are working. Then we

say that (2.1) describe a discrete LIBOR market model with volatilities σk for all

k = 1, . . . ,M

Remark 2.1.3. We consider now a scalar notation of (2.1)

dFk(t) = σk(t)Fk(t)dZk(t) t ≤ Tk−1

and if σk is bounded, it has a unique strong solution that describes a geometric Brownian

motion. Indeed through Itô’s formuala we obtain

dlnFk(t) = −σk(t)
2

2
dt+ σk(t)dZk(t) t ≤ Tk−1

=⇒ lnFk(T ) = lnFk(0)−
∫ T

0

σk(t)
2

2
dt+

∫ T

0

σk(t)dZk(t)

=⇒ Fk(T ) = Fk(0) · e−
1
2

∫ T
0 σk(s)2ds+

∫ T
0 σk(s)dZk(s) t ≤ Tk−1
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It is now easy to see that if σk is assumed to be deterministic, under this measure Fk

has lognormal distribution indeed we can write:

Fk(T ) = Fk(0) · eYk(0,T )

where Yk(0, T ) is normally distribute with expected value

mk(0, T ) = −1

2

∫ T

0

σk(s)
2ds

and variance

Σ2
k(0, T ) =

∫ T

0

σk(s)
2ds.

2.1.1 Forward Rate Dynamics under different Numeraires

We calculate the dynamics of Fk(t) under a measure Qi different from Qk for t ≤
min(Ti, Tk−1), that have to be alive in t.

Proposition 2.1.4. Under the lognormal assumption, we obtain that the dynamics of

Fk under the forward measure Qi in three cases are:

i < k t ≤ Ti : dFk(t) = σk(t)Fk(t)
k∑

j=i+1

ρk,jτjσj(t)Fj(t)

1 + τjFj(t)
dt+ σk(t)Fk(t)dZk(t)

i = k t ≤ Tk−1 : dFk(t) = σk(t)Fk(t)dZk(t)

i > k t ≤ Tk−1 : dFk(t) = −σk(t)Fk(t)
i∑

j=k+1

ρk,jτjσj(t)Fj(t)

1 + τjFj(t)
dt+ σk(t)Fk(t)dZk(t)

where we remember that ρk,j is a correlation matrix of differents Brownian motions, and

Z = Zi is a Brownian motion under Qi.

Proof. Consider the forward rate Fk(t) = F (t, Tk−1, Tk) under the forward measure Qi

with i < k. By remembering that the dynamics under the Tk-forward measure Qk has

null drift, starting from the latter we compute the dynamics under Qi.

In order to prove this proposition, we consider the result of Girsanov Theorem, which

shows that it is possible to arbitrarily replace the drift of a Itô process by suitably modi-

fying the probability measurement and the Brownian motion. So we find the appropriate
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Girsanov transformation that will take us from Qk to Qi. Denoting by ηik(t) the Radon

Nikodym derivative:

ηik(t) :=
dQi

dQk

∣∣∣∣
Ft

=
p(0, Tk)p(t, Ti)

p(0, Ti)p(t, Tk)

and then in particular, from (1.8) we have

ηi−1
i =

p(0, Ti)

p(0, Ti−1)
· (1 + τiFi(t))

We compute the dynamics of ηi−1
i under Qi, assuming that Qi satisfies (2.1), is:

dηi−1
i (t) =

p(0, Ti)

p(0, Ti−1)
τidFi(t) =

p(0, Ti)

p(0, Ti−1)
τiFi(t)σi(t)dZ

i(t)

=
p(0, Ti)

p(0, Ti−1)
τi

1

τi

(p(t, Ti−1)

p(t, Ti)
− 1
)
σi(t)dZ

i(t)

= ηi−1
i

p(0, Ti)

p(0, Ti−1)

1

ηi−1
i

(p(t, Ti−1)

p(t, Ti)
− 1
)
σi(t)dZ

i(t)

=⇒ dηi−1
i (t) = ηi−1

i (t)
τiFi(t)

1 + τiFi(t)
σi(t)dZ

i(t) (2.2)

Thus, the Girsanov kernel ηi−1
i (t) for the transition from Qi to Qi−1, that represents the

drift correction for forward rate Fi(t), is given by:

λ :=
τiFi(t)

1 + τiFi(t)
σ
′

i(t)

so from the Girsanov theorem we have:

dZi(t) =
τiFi(t)

1 + τiFi(t)
ρi,i−1σ

′

i(t)dt+ dZi−1(t)

And applying this inductively we obtain:

i < k : dZi(t) = −
k∑

j=i+1

τjFj(t)

1 + τjFj(t)
ρk,jσ

′

j(t)dt+ dZk(t) (2.3)

i > k : dZi(t) =
i∑

j=k+1

τjFj(t)

1 + τjFj(t)
ρi,jσ

′

j(t)dt+ dZk(t) (2.4)
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Corollario 2.1.5. Consider a given volatility structure σ1, . . . , σN , where each σi is

bounded, a probability measure QN and a QN -Brownian motion ZN . We define the

processes F1, . . . , FN by

dFi(t) = −Fi(t)σi(t)

(
N∑

j=i+1

τjσj(t)Fj(t)

1 + τjFj(t)
ρk,j

)
dt+ Fi(t)σi(t)dZ

N(t) (2.5)

for i = 1, . . . , N .

Then the Qi-dynamics of Fi are given by (2.1) and thus exists a LIBOR model with the

given volatility structure.

Proof. First of all, we prove that (2.5) admits solution, for i = N it is simple to see that

dFN(t) = σN(t)FN(t)dZN(t)

which is an exponential martingale, because we know that the measure-dependent drift

correction turns an arbitrary forward rate into a forward rate driftless (i.e. an exponential

martingale); since σN is bounded the solution does exist.

We suppose now that (2.5) admits a solution for k = i+ 1, . . . , N , then we can write the

i-th component (i < k) of (2.5) as

dFi(t) = −Fi(t)µi[t, Fi+1(t), . . . , FN(t)]dt+ Fi(t)σi(t)dZ
N(t)

where µi[t, Fi(t)] = σi(t)

(∑N
j=i+1

τjσj(t)Fj(t)

1+τjFj(t)
ρk,j

)
the percentage drift of dFk under Qi

and it only depends on Fk with k = i + 1, . . . , N . Denoting the transpose vector

(Fi+1(t), . . . , FN(t)) by FN
i+1, using the Itô formula, we thus have the explicit solution:

dlnFi(t) =
dFi(t)

Fi(t)
− 1

2Fi(t)2
σi(t)

2Fi(t)
2dt =

= µi[s, F
N
i+1(t)]dt+ σi(t)dZ

N
i (t)− 1

2
σi(t)

2dt

=⇒ lnFi(t) = lnFi(0) +

∫ t

0

(
µi[s, F

N
i+1(s)]− 1

2
σ2
i (s)

)
ds+

∫ t

0

σi(s)dZ
N
i (s)

=⇒ Fi(t) = Fi(0)exp

{∫ t

0

(
µi[s, F

N
i+1(s)]− 1

2
σ2
i (s)

)
ds

}
· exp

{∫ t

0

σi(s)dZ
N
i (s)

}
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for 0 ≤ t ≤ Ti−1. So this proves the existence by induction. Now analogously to the

previous proposition, knowing that λ, the Girsanov kernel, is also bounded this involves

that it satisfies the Novikov condition.

2.2 Pricing Caps in the LIBOR model

2.2.1 Equivalence between LFM and Black’s caplet prices

We are now able to show that Black’s model can be used to price European options

in terms of the forward price of the underlying asset when interest rates are stochastic.

Consider a European call option (cap) on an asset with strike price K and payment dates

Tα+1, . . . , Tβ. The option’s price at time 0 of a cap can be obtained by considering the

risk neutral expectation E of its discounted payoff, so it is given by

E

{
β∑

t=α+1

D(0, Ti)τi(Fi(Ti−1)−K)+

}

=

β∑
t=α+1

P (0, Ti)τiE
i[(Fi(Ti−1)−K)+]

with the nominal N = 1, and where Ei denotes expectation under the forward measure

Qi. It is a sum of contract called Ti−1-caplet. Recall that a Ti−1-caplet is a contract

paying at time Ti the difference between the Ti maturity spot rate at time Ti−1 and a

strike rate K, so the price at initial time 0 is:

p(0, Ti)E
i[max(Fi(Ti−1)−K, 0)]

Then given the lognormal distribution for Fi, we can compute a Black and Scholes

price for a stock call option whose underlying stock is Fi, struck at K, with maturity

Ti−1, with zero constant “risk-free rate” and instantaneous percentage volatility σi(t).

The price of the Ti−1-caplet implied by the LFM coincides with that given by the corre-

sponding Black caplet formula, i.e.

CplLFM(0, Ti−1, Ti, K) = CplBlack(0, Ti−1, Ti, K, vi) (2.6)

= p(0, Ti)τiBl(K,Fi(0), vi) (2.7)
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Bl(K,Fi(0), vi) = Ei(Fi(Ti−1)− k)+

= Fi(0)Φ(d1(K,Fi(0), vi))−KΦ(d2(K,Fi(0), vi))

d1(K,F, v) =
ln(F/K) + v2/2

v
,

d2(K,F, v) =
ln(F/K)− v2/2

v
,

where

v2
i = Ti−1v

2
Ti−1−caplet

v2
Ti−1−caplet :=

1

Ti−1

∫ Ti−1

0

σ2
i (t)dt.

The quantity v2
Ti−1−caplet is called Ti−1- volatility and it has been defined as the square

root of the average percentage variance of the forward rate Fi(t) for t ∈ [0, Ti−1].

2.2.2 Spot vs Flat Volatilities

It is therefore clear that in the market the cap prices are quoted in terms of Black

volatilities, and these volatilities can furthermore be quoted as flat volatility or as for-

ward or spot volatility as a function of maturity. In the first, the maturity is the

maturity of a cap or floor, instead in the case of spot volatility, it is the maturity of a

caplet or floorlet.

Given the fixed set of dates Tj = {T0, . . . , TN}, we assume that for each i = 1, . . . , N

there is a cap with resettlement dates T0, . . . , TN and we denote the market price by

Capm, the implied Black volatilities are defined as follows

• the flat volatilities vT1−cap, . . . , vTN−cap are the solutions of the equation:

Capm(t, Tj, K) =

j∑
i=1

CapBlack(t, Ti−1, Ti, K, vTj−cap) j = 1, . . . , N

• the spot or forward volatilities vT1−caplet, . . . , vTN−caplet are the solutions of the equa-

tion:

Caplm(t, Ti−1, Ti, K) = CaplBlack(t, Ti−1, Ti, K, vTi−caplet) i = 1, . . . , N
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where Caplm(t, Ti−1, Ti, K) = Capm(t, Ti, K)−Capm(t, Ti−1, K)

The following graph shows the typical pattern for spot volatilities and flat volatilities

as a function of maturity, moreover we remind that the caps whose implied volatilities

are quoted by the market typically have either T0 equal to three months for α = 0 and

the other Ti’s are equally three months spaced , or T0 equal to six months for α = 0 and

all other Ti’s equally six months spaced.

Figure 2.1: The volatily hump (J.Hull)



Chapter 3

Risk Functional

In this chapter, we introduce the problem of seeking an optimal set of model points

associated to a fixed portfolio. First of all, the problem of efficient substitution of a

portfolio of market securities is closely related to the portfolio representation problem.

It consists in defining the dynamics of those portfolios within a certain class that best

represents the inherent risk structure of a given financial exposure.

To generalize this problem, a specific risk functional is minimized, which measures the

average discrepancy between the two portfolios in terms of stochastic variation of the

underlying risk factors within a given time frame.

We first study the general case on the Banach space and in the next chapter we

examine the problem in term life insurance.

This chapter is based on [8].

We fix a separable Hilbert space H and we write 〈·, ·〉H to denote its inner product.

We also fix a Banach space E with its dual E∗, the duality pairing of x∗ ∈ E∗ and x ∈ E
is denoted by 〈x∗, x〉E. Furthermore, we denote the space of bounded linear operators

from H to E with L(H,E) and L(E∗, H) is its adjoint. We write I to denote the unit

interval on the real line. Let (Ω,F ,P) be a reference complete probability space and

for any X ∈ L1(Ω, E), a Banach space, E[X] is the expected value of X with respect

to P. We fix an H-cylindrical Wiener process W = {W (t) : t ∈ I}, toghether with

the augmented filtration GW that is generates, and we fix H = L2(I,H). Where a H-

27
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cylindrical Wiener process W is a one-parameter family of bounded and linear operator

from H to L2(Ω), that satisfy:

• for any h ∈ H the process Wh = {Wth : t ∈ I} is a standard Brownian motion;

• for any t, s ∈ I and h1, h2 ∈ H results E{Wth1Wsh2} = (s ∧ t)〈h1, h2〉H .

In the sequel, a process X is adapted if it is adapted to the filtration GW . Moreover, we

say X to be stochastically integrable if it is so with respect to W .

Let ξ0 ∈ L2(Ω, E) be a strongly GW0 -measurable random variable, consider an adapted

and strongly measurable E-value stochastic process b = {bt : t ∈ I} that belongs to

L2(Ω, L2(I, E)). Where an E-valued process is a one parameter family of E-valued

random variables indexed by I. Further, we fix an adapted and H-strongly measurable

L(H,E)-value process σ = {σt : t ∈ I} that belongs to L2(Ω, L2(I, γ(H,E))), where

γ(H,E) is the operator ideal in L(H,E).

Furthermore, the processes satisfy:

ξ0 ∈ H1,2(E) b ∈ H1,2(L2(I, E)) σ ∈ H2,2(L2(I, γ(H,E))).

Then we define the E-valued process ξ = {ξt : t ∈ I} by setting

ξt = ξ0 +

∫ t

0

bsds+

∫ t

0

σsdWs for any t ∈ I. (3.1)

Definition 3.0.1. Let D be some UMD Banach space. Let ψ : I×E → D be a function

of class C1,2, i.e. it is differentiable in the first variable and twice continuously Fréchet

differentiable in the second variable. We say that ψ is a BS − function relative to ξ, if

the following condition is satisfied a.s.

∇1ψ(t, ξt) +
1

2
tr(∇2

2ψ(t, ξt);σt) = 0, for any t ∈ I. (3.2)

where ∇kψ denotes the derivative of ψ with respect to the k-th component, for any

k = 1, 2.
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Lemma 3.0.2. Let ψ : I ×E −→ D be a function of class C1,2. If ψ is assumed to be a

BS−function relative to ξ, then the dynamics of the process ψ(t, ξt) is so characterized:

ψ(t, ξt) = ψ(0, ξ0) +

∫ t

0

∇2ψ(s, ξs)bsds+

∫ t

0

∇2ψ(s, ξs)σsdWs, a.s. for any t ∈ I.

(3.3)

Definition 3.0.3. By a P -set relative to ξ we understand any set Φ of E∗-valued and

adapted process φ = {φt : t ∈ I} such that the following conditions are satisfied:

(i) for any φ ∈ Φ results ‖ φ ‖∞<∞, where

‖ φ ‖∞= inf{C ≤ 0 :‖ φt ‖E∗≤ C a.s. for any t ∈ I};

(ii) for any φ ∈ Φ, there exists a function ϕ : I × E → E∗ of class C1,2
b , i.e. ϕ satisfies

‖ ∇2ϕ ‖∞= sup
(t,x)∈I×E

‖ ∇2ϕ(t, x) ‖L(E,D)<∞, such that

φt = ϕ(t, ξt), a.s. for any t ∈ I;

(iii) for any φ ∈ Φ the following identity holds true

〈φt, ξt〉E = 〈φ0, ξ0〉E +

∫ t

0

〈φs, bs〉Eds+

∫ t

0

〈φs, σs〉EdWs a.s. (3.4)

Definition 3.0.4. Fix a P -set Φ relative to ξ and consider a function f : I × E → R.

We define the discrepancy process between f and φ relative to ξ, for any φ ∈ Φ as

F (φ) = {Ft(φ) : t ∈ I} where

Ft(φ) = f(t, ξt)− 〈φt, ξt〉E for any t ∈ I. (3.5)

If not otherwise specified, when f and Φ are fixed, we write F (φ) to denote the

discrepancy process.

Lemma 3.0.5. Let Φ be a P -set relative to ξ , if f : I × E → R is of classe C1,2
b then

Ft(φ) ∈ L1(Ω), for any t ∈ I and φ ∈ Φ with

sup
t∈I
‖ Ft(φ) ‖2

L2(Ω)<∞
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Lemma 3.0.6. Let Φ be a P -set relative to ξ and f : I ×E → R a function of class C1,2
b

then Ft(φ) ∈ H1,2 for any t ∈ I and φ ∈ Φ with

DFt(φ) = (∇2f(t, ξt)− φt)Dξt a.s. (3.6)

where D : L2(Ω, E)→ L2(Ω, γ(H, E)) is a closed operator that it represents the Malliavin

derivative; moreover H1,2 = H
1,2(R).

We also point up that for any t ∈ I, (3.6) is equivalent to:

DFt(φ) = ∇2f(t, ξt)Dξt − 〈φt, Dξt〉E a.s. (3.7)

Definition 3.0.7. Let Φ be a P -set relative to ξ and let f : I ×E → R be a function of

class C1,2
b , we define the risk functional, relative to ξ induced by f over Φ, F : Φ→ R

given by

F(φ) =

∫
I

E{[|Ft(φ)− EFt(φ)|2]}dt for any φ ∈ Φ (3.8)

If not otherwise specified, when f and Φ are fixed, we use F to denote the risk

functional relative to ξ induced by f over Φ.

The following theorem gives us two different equivalent representations of the risk func-

tional.

Theorem 3.0.8. Given Φ a P -set relative to ξ and f : I × E → R a function of class

C1,2
b . Then:

(i) the functional F admits the following representation

F(φ) =

∫
I

E

{∫ t

0

‖ E{(∇2f(t, ξt)− φt)Dsξt|GWs } ‖2
H ds

}
dt for any φ ∈ Φ;

(3.9)

(ii) if f is assumed to be a BS − function relative to ξ and bt = 0 a.s. for any t ∈ I
the functional F boils down to

F(φ) = E

{∫
I

‖ (∇2f(t, ξt)− φt)σt ‖2
H (1− t)dt

}
for any φ ∈ Φ; (3.10)

Since σ takes values in γ(H,E) we obtain in the last equation

(∇2f(t, ξt)− φt)σt = ∇2f(t, ξt)σt − 〈φtσt〉E
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The proof of the theorem is based on the following lemma.

Lemma 3.0.9. Let Φ be a P -set to ξ and f : I ×E → R a function of class C1,2
b ; in the

particular case when f is assumed to be a BS − function relative to ξ and bt = 0 a.s.

for any t ∈ I we have a.s.

Ft(φ) = F0(φ) +

∫ t

0

(∇2f(s, ξs)− φs)σsdWs for any φ ∈ Φ t ∈ I. (3.11)

Proof of Lemma 3.0.9. Fix t ∈ I. Since the function f is assumed to be a BS−function,

for the lemma 3.0.2 we have

f(t, ξt) = f(0, ξ0) +

∫ t

0

∇2f(s, ξs)bsds+

∫ t

0

∇2f(s, ξs)σsdWs a.s.

And then for any φ ∈ Φ from (3.4) we know that Ft(φ) for t ∈ I has the following

representation :

Ft(φ) = F0(φ) +

∫ t

0

(∇2f(s, ξs)− φs)bsds+

∫ t

0

(∇2f(s, ξs)− φs)σsdWs a.s.

thus from the condition bt = 0 a.s. we obtain (3.11).

Proof of Theorem 3.0.8. (i) Since f is assumed to be of class C1,2
b , from the lemma

3.0.6 we obtain that Ft(φ) ∈ H1,2 and that for any φ ∈ Φ and t ∈ I we have

DFt(φ) = (∇2f(t, ξt)− φt)Dξt a.s (3.12)

Then, fix t ∈ I and since the variable Ft(φ) is GWt -measurable, for the Clarke-Ocone

representation formula we obtain:

Ft(φ)− EFt(φ) =

∫ t

0

E{DsFt(φ)|GWs }dWs a.s. (3.13)

Moreovere, as we have seen above, being that Ft(φ) is adapted and strongly mea-

surable, we can write:

E

{∣∣∣∣ ∫ t

0

E{DsFt(φ)|GWs }dWs

∣∣∣∣2} = E

{∫ t

0

‖ E{DsFt(φ)|GWs } ‖2
H ds

}
. (3.14)

Then, if we rewrite (3.14) in terms of (3.12) and (3.13), we have

E{|Ft(φ)− EFt(φ)|2} = E

{∫ t

0

‖ E{(∇2f(t, ξt)− φt)Dsξt|GWs } ‖2
H ds

}
(3.15)

At last, if we integrate both sides of (3.15) with respect to t ∈ I, we obtain the

thesis (3.9).
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(ii) We notice that if we fix φ ∈ Φ results EFt(φ) = EF0(φ) a.s., for any t ∈ I. Since f

is assumed to be a BS − function relative to ξ and bt = 0 a.s., for any t ∈ I, the

previous lemma 3.0.9 gives us the following representation

Ft(φ)−EFt(φ) = F0(φ)−EF0(φ)+

∫ t

0

(∇2f(s, ξ)−φs)σsdWs a.s.for any t ∈ I.

(3.16)

Then, let p(x) = |x|2, for any x ∈ R and for any t ∈ I, as we have seen, from the

strong measurability, according to (3.16), we obtain

|Ft(φ)− EFt(φ)|2 = |F0(φ)− EF0(φ)|2+

+
1

2

∫ t

0

tr(∇2
2p(Fs(φ))− EFs(φ); (∇2f(s, ξs)− φs)σs)ds+

∫ t

0

κs(φ)dWs a.s.

(3.17)

where for any s ≤ t we set

κs(φ) = 2(Fs(φ)− EFs(φ))(∇2f(s, ξs)− φs)σs.

Let h1, h2, . . . be an orthonormal basis of H and considering that ∇2(p(x)) = 2 for

any x ∈ R. So, from the definition of the trace operator tr(·, ·) we have

tr(∇2
2p(Fs(φ)− EFs(φ)); (∇2f(s, ξs)− φs)σs) = 2

∑
n≥1

((∇2f(s, ξs)− φs)σshn)2 =

= 2 ‖ (∇2f(s, ξs)− φs)σs ‖2
H .

Considering that E|F0(φ) − EF0(φ)|2 = 0 and that F0(φ) is GWs - measurable, and

so F0(φ) = EF0(φ) a.s. In this way, from (3.17) we obtain

E{|Ft(φ)− EFt(φ)|2} = E

{∫ t

0

‖ (∇2f(s, ξs)− φs)σs ‖2
H ds

}
. (3.18)

Thus, integrating both sides of (3.18) with respect to t ∈ I, we obtain the thesis

(3.10).

Definition 3.0.10. Let Υ be some set and a functional G : Υ → R. We say that any

element v∗ ∈ Υ is G-optimal is the following inequality holds true

G(v∗) ≤ G(v) for any v ∈ Υ. (3.19)
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3.1 Portfolio Representation Problem

Now we take in consideration the problem of substituting a financial exposure with-

out misleading its performance in terms of the related inherent risk structure. The risk

factors of a given portfolio are represented by tradable observables, such as the market

price of a stock, a commodity itself or some major market benchmark assessing the value

of an entire class of securities. The only market risk that we consider is the one that

affects financial exposure.

Any element of E represents the overall discounted value of the risk factors at a

determined time. Furthermore, I is the reference time range, that is taken as a period

of one year and its fractions are determined with respect to the day-count convention.

We assume that the process (3.1) gives us dynamics for the overall discounted value of

the risk factors. We also consider f : I×E → R of class C1,2
b as a fixed financial exposure

and thus f(t, ξt) is its discounted value at any time t ∈ I. Moreover, for a fixed P -set

Φ relative to ξ, we will suppose that any φ ∈ Φ is the dynamics of a certain portfolio of

risk factors handled by the trader, then 〈φt, ξt〉E is its discounted value at time t ∈ I,

which depends on the overall discounted value ξt and the portfolio composition φt.

We consider the risk functional F relative to ξ induced by f over Φ as the error that

happens when substituting the exposure represented by f with some portfolio in Φ.

Hence, the functional measures the sensitivity of the financial exposure to little variations

of the underlying risk factors.

Remark 3.1.1. We remember that a integrable process X = {Xt : t ∈ I} is a market

price if

EXt = EX0 for any t ∈ I.

The process ξ in (3.1) is a market price when we take bt = 0 a.s., for any t ∈ I. In the

case when f is assumed to be a BS−function relative to ξ and bt = 0 a.s. for any t ∈ I,

for the Lemma 3.0.2 we have

Ef(t, ξt) = Ef(0, ξ0) for any t ∈ I.

Hence, in the case of ξ is a market price and f is a a BS − function relative to ξ, we

obtain that, for any t ∈ I, also f(t, ξt) is a market price. From this it results that the
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assumption (3.2) is a risk-free condition. Moreover, from the Lemma 3.0.9 we can write

EFt(φ) = EF0(φ) for any t ∈ I and φ ∈ Φ.

Then, when f(0, ξ0) = 〈φ0, ξ0〉E a.s., for any φ ∈ Φ, we have Ft(φ) = 0 a.s. for any t ∈ I
and φ ∈ Φ and so, the risk-functional F induced by f over Φ is given by

F(φ) =‖ F (φ) ‖2
L2(Ω×I) for any φ ∈ Φ.

Therefore, the F -optimal portfolio φ∗ ∈ Φ minimizes the average squared discrepancy

when the financial exposure is market valued and it is perfectly hedged by any portfolio

φ ∈ Φ at time t = 0.

3.1.1 Constrained Hedging

Let f : I × E → R be a function of class C1,2
b and fix a P -set Φ relative to ξ. In the

theorem 3.0.8 we have two different representation of the functional F in terms of the

operator ∇2f , if there is a process φ∗ ∈ Φ such that a.s. results:

φ∗t = ∇2f(t, ξt) for any t ∈ I (3.20)

then φ∗ is the F -optimal, indeed in this case we have F(φ∗) = 0. In this respect, the

optimization of the functional is correlated with the notion of portfolio immunization via

sensitivity-based hedging approach.

We take E coincident with the Euclidean space R
2, where 〈·, ·〉E is the standard

product and e = (e1, e2) is its canonical basis. Furthermore, we consider H coincident

with R and then the H-cylindrical process W is a standard one dimension Brownian

motion. Fixed this, the space γ(H,E) boils down to E itself. Then, we represent the

process σ ∈ L2(Ω, L2(I, E)) as σ = (σ1, σ2), where each σi = {σi,t : t ∈ I}, for any

i = 1, 2, is equal to

σi,t = 〈ei, σt〉E for any t ∈ I.

Analogously, ξi = {ξi,t : t ∈ I}, for any i = 1, 2, are the components of the process ξ

such that

ξi,t = 〈ei, ξt〉E for any t ∈ I.
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Moreover, here and in the sequel, we assume that a.s. bt = 0 and σ2,t = 0 for any t ∈ I,

further we fix ξ2,0 = 1 a.s. Then for i = 1, 2 we obtain

〈ei,
∫ t

0

σsdWs〉E =

∫ t

0

〈ei, σs〉EdWs for any t ∈ I

thus the representation of the dynamics is as follow

ξ1,t = ξ1,0 +

∫ t

0

σ1,sdWs a.s. ξ2,t = 1 a.s. (3.21)

Consider f : I × E → R of class C1,2 and a P -set Φ relative to ξ. We can write, for any

φ ∈ Φ, the variable φt in terms of its components, and then we have, for i = 1, 2,

φi,t = 〈ei, φt〉E for any t ∈ I.

Proposition 3.1.2. Let Φ be a P -set relative to ξ and f a BS− function relative to ξ.

If the components of the process ξ are given by (3.21), then

F(φ) = E

{∫
I

|∂x1f(t, ξ1,t, ξ2,t)− φ1,tσ1,tσ1,t|2(1− t)dt
}

for any φ ∈ Φ. (3.22)

Proof. Being E = R
2, for any t ∈ I and x = (x1, x2), we obtain that

∇2f(t, x) = (∂x1f(t, x1, x2), ∂x2f(t, x1, x2))

and so we can set

∇2f(t, x)y = 〈∇2f(t, x), y〉E for any y ∈ E

then the thesis follow from (3.21) and the statement (ii) of the Theorem 3.0.8, with

σ2,t = 0 a.s., for any t ∈ I.

We may interpret the first component of the process ξ as a risk-neutral dynamics for

the discounted price of some risky asset and, on the other hand, the second component as

a risk-neutral model for the discounted value of the bank account. Moreover, f represents

a European contingent claim written on the risky asset and the P -set Φ relative to ξ

stands for the entire class of the hedging portfolios.

Finally, if there is a process φ∗ ∈ Φ such that

φ∗1,t = ∂x1f(t, ξt) for any t ∈ I (3.23)
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condition called delta-hedging for the contingent claim f , then φ∗ is F -optimal, since

from (3.22) results F(φ∗) = 0.

Supposing that the first component of φ∗ ∈ Φ satisfy the delta hedging condition (3.23),

when the condition

f(0, ξ0) = 〈φ∗0, ξ0〉E (3.24)

then F0(φ∗) = 0 a.s. Thus the latter equation (3.24) implies that the financial exposure

is perfectly hedged by the portfolio φ∗ ∈ Φ at time t = 0. Besides, from the lemma 3.0.9

we have that Ft(φ
∗) = 0 a.s. for any t ∈ I and we obtain the second component of φ∗

from the identity

φ∗2,t = f(t, ξt)− φ∗1,tξ1,t a.s. for any t ∈ I

Given this framework, the identity (3.3) boils down to

∇1f(t, ξ1,t, ξ2,t) +
1

2
∂x1,x1f(t, ξ1,t, ξ2,t)σ

2
1,t = 0 a.s. for any t ∈ I

and it corresponds to a Black-Scholes type equation, whereby the risk-free rate is set to

be null at any time.

3.1.2 Correlation and residual risk

We now consider the particular case when the condition φ∗t = ∇2f(t, ξt) is not satis-

fied. This is interesting when the financial exposure and the replication portfolio actually

depends upon two different but correlated risk factors.

We assume E and H coincident with the Euclidean space R2 and, as we have seen pre-

viously, 〈·, ·〉E and e = (e1, e2) are respectively the standard product and the canonical

basis. We fix ρ ∈ (−1, 1) and we define the inner product on H as 〈ei, ej〉H = 1 if i = j

and 〈ei, ej〉H = ρ when i 6= j. Let f : I × E → R be a function given by

f(t, x) = 〈e1, x〉E for any t ∈ I x ∈ E (3.25)

f is of class C1,2
b and for any t ∈ I and x ∈ E results∇2f(t, x) = e1. Let Φ a P -set relative

to ξ, we assume that for any φ ∈ Φ exists a real-valued process φ2 = {φ2,t : t ∈ I}, with

whom any φ is identified, which satisfies the following identity,

φt = φ2,te2 a.s. for any t ∈ I (3.26)
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Proposition 3.1.3. Let f be the function given by (3.25) and Φ be a P -set relative to

ξ that verifies the condition (3.26). If bt = 0 a.s., for any t ∈ I then

F(φ) = E

{∫
I

‖ 〈e1, σt〉E − φ2,t〈e2, σt〉E ‖2
H (1− t)dt

}
for any φ ∈ Φ (3.27)

Proof. Notice that ∇1f(t, x) = 0 and ∇2
2f(t, x) = 0 for any t ∈ I and x ∈ I, so f is a

BS − function relative to ξ. Furthermore, we have

∇2f(t, ξt)σt = 〈e1, σt〉E for any t ∈ I

and for any φ ∈ Φ

〈φt, σt〉E = φ2,t〈e2, σt〉E for any t ∈ I

then we obtain the thesis directly from the Theorem 3.0.8.

Proposition 3.1.4. Let f be the function given by (3.25) and Φ a P -set relative to ξ

that verifies the condition (3.26). If bt = 0 a.s., for any t ∈ I then the process φ∗ ∈ Φ is

defined by

φ∗2,t = ρ(σ1,t/σ2,t) for any t ∈ I (3.28)

and it is F-optimal; where for any i = 1, 2 the real process σi = {σi,t : t ∈ I} is such that

〈eiσi〉E = σi,tei for any t ∈ I.

Remark 3.1.5. The H-Wiener process W can be understood as a 2-dimensional Wiener

process where each component Wi is given by Wi,t = Wtei for any t ∈ I, and with ρ that

is their instantaneous correlation,

E{Wte1 ·Wte2} = 〈e1, e2〉Ht = ρt for any t ∈ I.

Hence, we can interpret the components of the process ξ as the dynamics if the

discounted prices of two correlated risky assets, moreover, a perfect hedged may not be

recovered. In this case, we have that given φ∗ ∈ Φ as in (3.28), F(φ∗) is strictly positive

for ρ < 1 and it vanishes for ρ = 1, where in the latter case the two assets are completely

correlated. Then we may understand F(φ∗) as the residual hedging risk.



Chapter 4

Optimal Model Points in Term Life

Insurance

In this chapter, we discuss the problem of determining an optimal model points port-

folio related to some fixed policies portfolio. Specifically, we describe the model points

associated to a given term life insurance portfolio as a group of policies that minimizes

a certain risk functional, as we have seen in general in the previous chapter.

The model points are suitable representative contracts with which the insurance com-

panies replace any homogeneous group of policies in order to compute the cash flow

projections. These projections must be carried out by insurance companies in order to

evaluate the value of their portfolios and to demonstrate the compliance of their portfo-

lios, by considering the sensitivity analysis. Indeed, life insurance companies are allowed

by regulators to estimate the performance of any portfolio of policies on the basis of suit-

able model points in order to reduce the computational difficulties of the operation. This

procedure is permitted under suitable conditions, i.e. when the inherent risk structure

of the original portfolio is not misrepresented and there is not a loss of any significant

attribute of the portfolio itself.

In particular, we assess the problem of the model points selection when dealing with

a portfolio of term insurance policies and a LIBOR Market Model that determines the

dynamics of the forward rates. Term life insurance, also known as pure life insurance,

is life insurance that guarantees payment of a lump sum benefit on the death of the

38
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policy owner, provided that it occurs until a specific term that is defined in the contract.

Once the term expires, the policyholder can either renew for another term, convert to

permanent coverage, or allow the policy to terminate.

For the sake of simplicity, we assume that the benefit related to each policy is always

represented by a unit amount of a certain currency. We consider only policies that are

unaffected by credit risk, in other words, the insurance company always guarantees the

entire benefit that is provided for in the contract. Moreover, we do not analyze the

revenues received by the insurance company and thus we do not take into account the

premiums stream of the contract nor any further expense that is the responsibility of the

client.

Assumption 4.0.1. for the LIBOR Market Model

As we have seen in the chapter 2, we recall some assumptions for the LIBOR Market

Model, which governes the time evolution of the forward rates:

• (Ω,F ,P) a complete probability space;

• T = {T0, T1, . . . , TN} a finite set of maturity time with T0 = 1 and T0 < . . . < TN ;

• τn = Tn − Tn−1 a year fraction for any n = 0, . . . , N ;

• I = (0, 1) unit interval on the real line, i.e. a period of one year;

• pn(t) := p(t, Tn) the risk-neutral discounted price at time t ∈ I for a market val-

ued bond maturing at future time Tn, we highlighted also that, denoting Fn(t) the

LIBOR forward rate associated to the period (Tn−1, Tn], we can write

pn(t) = p0(t)
n∏
k=1

1

1 + Fk(t)τk
for any t ∈ I, t < Tn (4.1)

• H = R
N with h1, . . . hn components of any h ∈ H with respect to orthonormal basis

‖ h ‖H=

{∑
n,k

ρnkhnhk

}1/2

for any h ∈ H

where ρnk = e−δ(n−k) for some constant δ ∈ R+;
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• H-cylindrical process W = {W (t) : t ∈ I} which is assumed as a correlated N-

correlated Weiner process W (t) = (W1(t), . . . ,WN(t)) for t ∈ I s.t.

E{Wn(t)Wk(t)} = ρnk;

• GW = {GWt : t ∈ I} the augmented filtration generated by W , we remember that a

process is adapted if it is adapted w.r.t. GW ;

• dF (t) = µ(t)dt+Σ(t)dW (t) dynamics of the N-dimensional process F (t) = (F1(t), . . . , FN(t)),

with F (0) = (F1(0), . . . , FN(0)) where for any n = 1, . . . , N , the dynamics of the

forward rate Fn(t) is given by

dFn(t) = µn(t)dt+ ΣnkdWn(t) (4.2)

where µn(t) is the N-components of µ(t) and Σnk is a matrix

µn(t) = σn(t)Fn(t)
n∑
k=1

ρnkτkσkFk(t)

1 + Fk(t)τk

Σnk(t) = σn(t)Fn(t)δnk

• p̃n(t) = pn(t)
p0(t)

the discounted bond price, for any t ∈ I, associated to the bond

expiring at the date Tn ∈ T , p̃n(t) admits the following dynamics

dp̃n(t) = −εn(t)p̃n(t)dW (t) (4.3)

where

εn(t) =
n∑
k=1

τk
1 + Fk(t)τk

Σk(t). (4.4)

4.1 Term Insurance Portfolio

We consider a generic term insurance policy in a given portfolio that have to be

labelled by both the age of the policy owner at time t = 0 and the maturity date of

the contract. Hence, taken two finite index sets I and J , let X = {xi : i ∈ I} and

Y = {yj : j ∈ J } be finite sequences of real values such that xi ≤ 0 for any i ∈ I and

yj ≤ 1 for any j ∈ J . So, each class of individuals with age labelled by xi ∈ X and term
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date yi ∈ Y are uniquely identified by the couple (xi, yj).

We denote the force of mortality at time s ≥ 0 related to the class of individuals labelled

by xi ∈ X , i.e. the instantaneous rate of mortality at time s and relative to an individual

that has xi age at time t = 0, with

µ(s, xi + s) = a(s)exp(xi + s)b(s) for any s ≥ 0 and xi ∈ X (4.5)

where a(s) and b(s) are functions that can be observed deterministically.

Assumption 4.1.1. We take a(s) = 0 for any s ∈ I

=⇒ µ(s, xi + s) = 0 for any s ∈ I and any i ∈ I (4.6)

this assumption ensures that the eventual death of policyholders does not bring changes

to any portfolio of term insurance policies within the time range I. The latter is assumed

as acceptable hypothesis because all the events that happen in the first years affect hardly

on the performance of the overall portfolio.

Given this framework, the survival index, i.e. the proportion of the individuals

labelled by xi ∈ X which survive to age xi + Tn, is defined by

S(xi, Tn) = exp

{
−
∫ Tn

1

µ(s, xi + s)ds

}
for any xi ∈ X and any n = 0, . . . , N

(4.7)

and deriving S w.r.t. its second component we obtain

ST (xi, Tn) = −S(xi, Tn)µ(Tn, xi + Tn).

Definition 4.1.2. For any i ∈ I and j ∈ J , we define the discounted risk-free value at

time t ∈ I of a term insurance policy owned by an individual labelled by xi ∈ X and

with maturity yj ∈ Y as

zij(t) = −
N∑
n=1

ST (xi, Tn)p̃n(t)1{Tn≤yj} (4.8)

Definition 4.1.3. We define a term insurance portfolio relative to X and Y any

matrix v = {vij : xi ∈ X and yj ∈ Y}. Besides, the discounted risk-free value v(t) of v

at time t ∈ I is given by any linear combination of (4.8), i.e. it is defined as

v(t) =
∑
ij

zij(t)vij. (4.9)
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where any component vij is considered as the quantity of policies in v that are owner by

the class of inidividuals labelled by xi ∈ X and yj ∈ Y .

Definition 4.1.4. We call dimension of a term insurance portfolio v relative to X and

Y the amount

dim(v) =
∑
ij

vij

Moreover, for any couple of term insurance policy portfolio we write

(v1 − v2)(t) = v1(t)− v2(t) for any t ∈ I.

4.1.1 Model points risk functional

We consider a policy portfolio v relative to X and Y and we fix a set W of term

insurance policy portfolios relative to X and Y .

Given this setup, we can define.

Definition 4.1.5. The model points risk functional induced by a model points

portfolio v over W is defined by the functional V :W → R such that

V(w) =

∫
I
E|(v − w)(t)− E(v − w)(t)|2dt for any w ∈ W (4.10)

As we have seen in section 3.1 of the previous chapter, we can regard the risk func-

tional V(w) as the error that happens if we substitute the policy portfolio v with the

model points portfolio w ∈ W . We observe that when v ∈ W we have V(v) = 0.

Definition 4.1.6. A model points portfolio w∗ ∈ W is said V-optimal relative to v if

V(w∗) ≤ V(w) for any w ∈ W (4.11)

We can represent the model points risk functional in another form, according to the

following proposition.

Proposition 4.1.7. The model points risk functional induced by a portfolio v over W
admits the following form

V(w) = E

{∫
I

‖
∑
n

{∑
ij

(vij−wij)ST (xi, Tn)1{Tn≤yj}

}
εn(t)p̃n(t)‖2

H(1−t)dt
}

for any w ∈ W .

(4.12)
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Proof. Let E = R
N , we set, for any t ∈ I, p̃(t) = (p̃1(t), . . . , p̃N(t)). We define U =

(X × Y) as the class of real matrices r = {r(xi, Yj) : i ∈ I and j ∈ J }. We take the

functional Z ∈ L(E,U) such that for any xi ∈ X and yj ∈ Y resuls

Z(q)(xi, yj) = −
∑
n

qnST (xi, Tn)1{Tn≤yj} ∀q ∈ E

and, we consider the process given by (4.9) z(t) = {z(t) : t ∈ I} which can also obtain

from

z(t) = Z(p̃(t)) for any t ∈ I.

Z is linear and then for any q ∈ E its Frechét derivative ∇Z(q) ∈ L(E,U) satisfies, for

any xi ∈ X and yj ∈ Y

(∇Z(q)q′)(xi, yj) = −
∑
n

q′nST (xi, Tn)1{Tn≤yj} for any q′ ∈ E.

Besides,for any xi ∈ X and yj ∈ Y , it is true the following identity

(∇Z(·)ε)(xi, yj) = −
∑
n

p̃n(t)εn(t)ST (xi, Tn)1{Tn≤yj} (4.13)

where ε is a matrix whose n-th row is given by p̃n(t)εn, as defined in (4.4). Finally, we

consider the function ζ : I × E → U defined as

ζ(t, q) = Z(q) for any t ∈ I and q ∈ E. (4.14)

This definition is possible because we have assumed, imposing (4.6) ,that the survival

index (4.7) does not depend on t ∈ I. We observe also that ζ is C1,2
b and then it is a

BS − function relative to p̃. Then we can rewrite (4.3) as follow

dp̃(t) = −ε(t)dW (t) (4.15)

then

V(w) = E

{∫
I

‖
∑
ij

(vij − wij)(∇Z(p̃(t))ε(t))(xi, yj)‖2
H(1− t)dt

}
for any w ∈ W

(4.16)

the latter, jointly with (4.13) gives us the thesis.
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4.1.2 Numerical considerations in Matlab

In this section, we represent the following functional from a numerical point of view:

V(w) = E

{∫
I

‖
∑
n

{∑
ij

(vij−wij)ST (xi, Tn)1{Tn≤yj}

}
εn(t)p̃n(t)‖2

H(1−t)dt
}

for any w ∈ W .

(4.17)

The latter, for any w ∈ W , is estimated as a combination of Monte Carlo simulation for

computing the expectation, jointly with the discretization of the integral w.r.t. the time

variable t ∈ I.

Here and in the sequel, we fix, for n = 1 . . . , N , the set of maturity date T = {10, . . . , 90}
and so, for any n = 1, . . . , 9, Fn(0) = {0.02, 0.03, 0.04, 0.04, 0.05, 0.05, 0.06, 0.06, 0.06};
furthermore, for every n and for any t ∈ I = [0, 1], we set σn(t) = 0.1.

First of all, we show one path of 1000 simulations that represents the dynamics of the

Forward rate Fn relative to the LIBOR Market Model, described in the chapter 2 and

given by

dFn(t) = µn(t)dt+ Σn(t)dWn(t)

then, for numerical simulation we have used the following scheme

ln(F̂n(t) + ∆t) = ln(F̂n(t)) + µn(t)∆t+ σn(t)∆Ŵn(t)

where

µn(t) = σn(t)
n∑

m=1

ρnmσm(t)F̂m(t)

+τmF̂m(t)

and for any t ∈ I we identify with F̂n(t) and ∆Ŵn(t) the approximations of Fn(t) and

dWn(t) respectively.

Given this assumptions, we set the correlation matrix for the N -correlated Brownian

motion, remembering that is computed with Cholesky decomposition, i.e. this means

that the initial matrix must be symmetric and definite positive, with elements between

−1 and 1; the dynamics of the forward rate is showed in the Figure 4.1.

We assume that for any s ≥ 1, a(s) = a = 0.03e − 13 and b(s) = b = 0.06e − 11,

and we also fix X = {25, 28, 31, . . . , 67, 70, 73} a set of ages with term date set Y =

{55, 52, 49, . . . , 13, 10, 7} for the term insurance portfolios v.
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Figure 4.1: Forward rate LIBOR

On the other hand, we have to fix also a setW for the optimal model point w. It is as-

sumed asXW = {25, 31, 37, 43, 49, 55, 61, 67, 73} and YW = {55, 49, 43, 37, 31, 25, 19, 13, 7}.
Given this framework, we consider two examples:

Case 1: we fix vij = (X(i), Y (j)) and analogously wij = (XW (i), YW (j)), so we print 10

simulations of the calculation of the functional and we get, in 0.397139 seconds,

the following results collected in the table 4.1
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V =

0.0102

-0.0378

-0.0887

-0.0888

0.0655

-0.1285

0.0114

-0.0053

0.0033

-0.1267

Table 4.1: 10 simulations of the computation of the risk functional

Case 2 : we fix, analogously to before, vij = (X(i), Y (j)), but we compute all the values

of XW for every single YW , then we obtain a table of |YW | = 9 columns of 10

simulations in 2.369400 seconds:

YW = 55 YW = 49 YW = 43 YW = 37 YW = 31 YW = 25 YW = 19 YW = 13 YW = 7

-0.0797 0.0169 0.1173 -0.1709 -0.0306 -0.3175 -0.0203 0.2764 -0.1440

-0.0172 -0.1396 -0.0936 -0.1820 -0.1461 0.0295 0.2102 0.1369 -0.2258

-0.1411 0.1353 -0.0546 0.1840 -0.1005 0.0519 -0.3487 0.2657 -0.2593

0.0091 0.0144 -0.1035 -0.0258 -0.3116 -0.0212 -0.0432 0.4872 -0.0117

-0.0897 -0.0429 0.1987 -0.1324 0.0769 0.0867 -0.1026 -0.0898 0.3428

0.0885 0.1231 0.0341 -0.0870 -0.0264 -0.0263 -0.0986 -0.2008 -0.4094

-0.0299 0.0174 -0.3365 -0.3465 -0.2964 -0.1634 0.1050 0.0801 0.1543

0.0181 0.1422 -0.2696 0.1294 -0.0095 -0.2139 0.0629 -0.1749 0.0671

0.0203 -0.0313 -0.1281 0.0560 0.2736 0.0743 -0.1398 -0.3718 -0.1516

-0.0267 -0.1299 0.1177 0.0765 -0.0988 0.1717 0.1598 0.0969 0.0666

Table 4.2: 10 simulations of the computation of the risk functional
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Math Toolbox

In this chapter we recall some elements of the theory of stochastic processes, useful

for the description of financial models.

Let (Ω,F ,P) be a probability space and I = [0, T ] or I = R≥0 a real interval.

Definition A.0.1. A measurable stochastic process on R
N is a collection (Xt)t∈I of

random variables with values in R
N such that

X : I × Ω→ R
N , X(t, ω) = Xt(ω)

is measurable w.r.t. the product σ-algebra B(I) ⊗ F . We say that X is integrable if

Xt ∈ L1(Ω,P) for every t ∈ I.

Definition A.0.2. A stochastic process X is continuous (a.s.) if the paths t � Xt(ω)

are continuous functions for every ω ∈ Ω(for almost all ω ∈ Ω).

Definition A.0.3. A filtration (Ft)t≥0 in (Ω,F ,P) is an increasing family of sub σ-

algebras of F .

Definition A.0.4. Given a stochasic process X = (Xt)t∈I , the natural filtration for X

is defined by

F̃Xt = σ(Xs|0 ≤ s ≤ t) := σ({X−1
s (H)|0 ≤ s ≤ t,H ∈ B}) t ∈ I.

A stochastic process X is adapted to a filtration (Ft) is F̃Xt ⊆ Ft for every t, i.e. in

other word if Xt if Ft-measurable for every t.

48



49

Here and in the sequel, let (Ω,F ,P, (Ft)).

Definition A.0.5. Let M be an integrable adapted stochastic process on filtered prob-

ability space, defined as above. We say that M is

• a martingale w.r.t. (Ft) and to the measure P if

Ms = E[Mt|Fs] for every 0 ≤ s ≤ t

this mean that a martingale M is constant in time;

• a super-martingale if

Ms ≥ E[Mt|Fs] for every 0 ≤ s ≤ t;

• a sub-martingale if

Ms ≤ E[Mt|Fs] for every 0 ≤ s ≤ t;

Definition A.0.6. We denote by L
2
loc the family of processes (ut)t∈[0,T ] such that

• they are progressively measurable w.r.t. the filtration (Ft)t∈[0,T ];

•
∫ T

0
u2
tdt <∞ a.s.

Remark A.0.7. We notice that the space L2
loc is invariant w.r.t. changes of equivalent

probability measures.

Definition A.0.8. A d-dimensional Brownian motion is a stochastic process W =

(Wt)t≥0 in R
d such that

(i) W0 = 0 P-a.s.;

(ii) W is Ft-adapted and continuous;

(iii) for t > s ≥ 0 the random variable Wt−Ws has multi-normal distribution N0,(t−s)Id ,

where Id is the (d× d)-identity matrix, and it is indipendent of Fs
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Remark A.0.9. We can observe that from the properties (i) and (ii) the paths of a B.m.

start at time t = 0 from the origin a.s. and they are continuous. As a consequence for

every i = 1, . . . , d we have

W i
t ∼ N0,t

since W i
t = W i

t −W0a.s.

Remark A.0.10 (Correlated Brownian motion). Given an (N×d)-dimensional matric

α with constant real entries, we fix

ρ = αα∗ (A.1)

where ρ = (ρij) is a (N ×N)-dimensional matrix, symmetric, positive semi-definite and

ρij = 〈αi, αj〉 where αi is the i-th row of the matrix α.

Given µ ∈ RN and a d-dimensional Brownian motion W , we set

Bt = µ+ αWt → dBt = αdWt (A.2)

We observe that Bt ∼ Nµ,tρ, with Cov(Bt) = tρ where

E

[
(Bi

t − µi)(B
j
t − µj)

]
= tρij

In this case we say that B is a Brownian motion starting from µ with deterministic

correlation matrix ρ.

Definition A.0.11. An N -dimensional Itô process is a stochastic process X of the form

Xt = X0 +

∫ t

0

µsds+

∫ t

0

σsdWs t ∈ [0, T ] (A.3)

where X0 is a F0 measurable random variable, W is a d-dimensional Brownian motion,

µ ∈ L1
locis a (N × 1)-vector and σ ∈ L2

locis a (N × d)-matrix. We can rewrite this formula

in differential form

dXt = µtdt+ σtdWt ⇔ dX i
t = µitdt+

d∑
j=1

σijt dW
j
t i = 1, . . . , N

The process µ is called DRIFT coefficient, while σ DIFFUSION coefficient.
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Lemma A.0.12. Consider an Itô process X, defined as above, and fix C = σσ∗. Then

we have that the covariation process is the stochastic process (〈X i, Xj〉t)t∈[0,T ] given by

〈X i, Xj〉t =

∫ t

0

Cij
s ds t ≥ 0 ⇔ d〈X〉t = Ctdt.

Theorem A.0.13 (Itô formula). Given an Itô process of the form (A.3) and let f =

f(t, x) ∈ C1,2(R× RN). Then

df = ∂tfdt+∇f · dXt +
1

2

N∑
i,j=1

∂xi,xjfd〈X i, Xj〉t (A.4)

with f = f(t,Xt) and ∇f = (∂x1f, . . . , ∂xNf).



Appendix B

Absence of Arbitrage

We present briefly the theory of the change of the probabily measure introducing a

so-called martingale measure or a risk neutral measure. It has a central role in a

interest rate theory because at every martingale measure corresponds to a market price of

the risk and a price for the derivatives which avoids introducing arbitrage opportunities.

Arbitrage is an opportunity to perform financial operations at no cost that produce a

risk-free profit. In real markets, arbitrages exist but in the theoretical framework, it is

clear that in a sensible financial model it must exclude these forms of profit. In fact, the

principle of absence of arbitrage has become the dominant criterion for the valuation of

financial derivatives.

B.1 Change of measure

Definition B.1.1 (Exponential martingales). We consider a d-dimensional Brownian

motion (Wt)t∈[0,T ] on the space (Ω,F , P, (Ft)). Let λ ∈ L2
loc be a d-dimendional process:

we define an exponential martingale associated to λ as

Zλ
t = exp

(
−
∫ t

0

λs · dWs −
1

2

∫ t

0

|λs|2ds
)
, t ∈ [0, T ] (B.1)

where · denotes the scalar product in R
d. By the Itô formula we have

dZλ
t = −Zλ

t λt · dWt (B.2)

52
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Zλ is a local martingale. Since Zλ is positive and Zλ is a continuous adapted process, it

is also a super-martingale:

E[Zλ
t ] ≤ E[Zλ

0 ] = 1, t ∈ [0, T ]

and thus (Zλ
t )t∈[0,T ] is martingale if and only if E[Zλ

t ] = 1.

Lemma B.1.2. If there exists a constant C such that∫ T

0

|λt|2dt ≤ C a.s.

then Zλ in (B.1) is a martingale such that

E

[
sup

0≤t≤T
(Zλ

t )p

]
<∞, p ≤ 1

In particular Zλ ∈ Lp(Ω, P ) for each p leq1.

Theorem B.1.3 (Bayes’ formula). Let P,Q be probability measures in (Ω,F) with

Q �F P . If X ∈ L1(Ω, Q), G is a sub σ-algebra of F and we set L = dQ
dP

∣∣
F , then we

have

EQ[X|G] =
EP [XL|G]

EP [L|G]

Then, supposing that Zλ in (B.1) is a martingale and we define the measure Q on

(Ω,F) by
dQ

dP
= Zλ

T ⇐⇒ Q(F ) =

∫
F

Zλ
TdP F ∈ F (B.3)

then from the Bayes’ theorem we have for every X ∈ L1(Ω, Q)

EQ[X|Ft] =
EP [XZλ

T |Ft]
EP [Zλ

T |Ft]
t ∈ [0, T ]

Consequently we have the following lemma:

Lemma B.1.4. Assume that Zλ in (B.1) is a P -martingale and Q is the probability

measure defined in (B.3). Then a process (Mt)t∈[0,T ] is a Q-martingale id and only if

(MtZ
λ
t )t∈[0,T ] is a P -martingale.
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Theorem B.1.5 (Girsanov’s theorem). Let Zλ in (B.1) be an exponential martingale

associated to the process λ ∈ L2
loc. We assume that Zλ is a P -martingale and we consider

the measure Q defined by
dQ

dP
= Zλ

T

Then the process

W λ
t = Wt +

∫ t

0

λsds t ∈ [0, T ] (B.4)

is a Brownian motion on (Ω,F , Q, (Ft))

In general , in financial application, we assume that λ is a bounded process, but it

is diffucult to prove, so we introduce this condition to ensure that Zλ is a martingale.

Theorem B.1.6 (Novikov condition). If λ ∈ L2
loc is such that

E

[
exp

(
1

2

∫ T

0

|λs|2ds

)]
<∞

then the exponential martingale Zλ in (B.1) is a strict martingale.

Proposition B.1.7 (Representation if Brownian martingales). Let (Wt)t∈[0,T ] a

d-dimensionale Brownian motion on the space (Ω,F , P, (Ft)). For every d-dimensional

process u ∈ L2
loc and M0 ∈ R result that the real integral process

Mt = M0 +

∫ t

0

us · dWs t ∈ [0, T ] (B.5)

is a FW -martingale. Moreover, every real FW -martingale can be represent in this form.

Theorem B.1.8. Under the assumtion of Girsanov’s theorem if M is a local martingale

in (Ω,F , P, (FWt )) then there exists a unique u ∈ L2
loc(FW ) such that

Mt = M0 +

∫ t

0

us · dW λ
s t ∈ [0, T ]

where W λ is the Q-Brownian motion defined in (B.4).

Theorem B.1.9 (Change of drift). Let Q be a probability measure equivalent to P .

The Radon-Nikodym derivative of Q with respect to P is an exponential martingale

dQ

dP

∣∣∣∣
FWt

= Zλ
t dZλ

t = −Zλ
t λt · dWt
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with λ ∈ L2
loc and the process W λ is defined by

dWt = dW λ
t − λtdt (B.6)

is a Brownian motion on (Ω,F , P, (FWt )).
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