
Alma Mater Studiorum · Università di Bologna
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Sommario

Il monitoraggio dell’attività cardiaca tramite PPG e app è promettente, ma

classificare il ritmo cardiaco in normale o fibrillazione atriale (FA) è difficile in

caso di misure rumorose.

In questo lavoro caratterizziamo un dataset di 1572 soggetti che hanno

fornito i loro segnali raccolti tramite un’app e la videocamera dello smartphone.

Studiamo le distribuzioni di tre proprietà dei segnali: l’area, l’ampiezza del picco e

l’intervallo temporale tra i picchi successivi. Valutiamo se qualche fattore influisca

sulle distribuzioni, scoprendo che gli effetti principali si hanno per l’età e il BMI.

Valutiamo l’accordo fra i risultati sui canali R G B, trovandolo buono per i primi

due.

Dopo aver identificato indici di qualità dalla letteratura, ne usiamo alcuni

per una classificazione, combinandoli con una grandezza data dal dynamic time

warping, una tecnica che ottimizza l’accordo fra due segnali, uno di riferimento e

un soggetto. Otteniamo un’accuratezza dell’89% sul test, per una classificazione

binaria.

Sulle serie temporali assunte caotiche, valutiamo l’aspetto dei diversi ritmi nei

Poincaré plots e quantifichiamo i risultati tramite una misura di dispersione 3D,

su un dataset di 20 soggetti, 10 sani e 10 con FA, che risultano significativamente

differenti secondo la loro morfologia 3D. Estendiamo l’analisi al dataset maggiore,

ottenendo ulteriori risultati significativi.
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Abstract

The field of app-based PPG monitoring of cardiac activity is promising, yet

classification of heart rhythms in normal sinus rhythm (NSR) or atrial fibrillation

(Afib) is difficult in the case of noisy measurements.

In this work, we aim at characterizing a dataset of 1572 subjects, whose

signals have been crowdsourced by collecting measurements via a dedicated

smartphone app, using the embedded camera. We evaluate the distributions of

three features of our signals: the peak area, amplitude and the time interval

between two successive pulses. We evaluate if some factors affected the distribu-

tions, discovering that the strongest effects are for age and BMI groupings. We

evaluate the results agreement between the R G B channels of acquisition, finding

good agreement between the first two.

After finding signal quality indexes in literature, we use a subset of them in a

classification task, combined with dynamic time warping distance, a technique

that matches a signal to a template. We achieve an accuracy of 89% on the test

set, for binary quality classification.

On the chaotic temporal series we evaluate the appearance of different types

of rhythms on Poincaré plots and we quantify the results by a measure of their

3D spread. We perform this on a set of 20 subjects, 10 NSR and 10 Afib, finding

significant differences between their 3D morphologies. We extend our analysis to

the larger dataset, obtaining some significant results.
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1 Introduction

1.1 Atrial Fibrillation

Atrial fibrillation (Afib) is a medical condition that occurs when the heart atria contract

rapidly, irregularly and incompletely due to irregular electrical signals that interfere

with the normal physiological pace making of the heart and also with ventricular

contraction, which becomes irregular too [1]. The normal sequence of the systolic

phase, where blood is pumped from the atria to the ventricles and subsequently to the

body and lungs, is thus altered.

Atrial fibrillation is one of the most frequent pathologies affecting cardiac health, as

it is the most common arrhythmia in the world [2, 3], with a conservatively-estimated

population of more than 30 million of patients worldwide [4], leading to hundreds of

thousands of deaths.

The financial burden placed by atrial fibrillation on health systems is also heavy:

worldwide are being spent tens billions of dollars each year for treatment and man-

agement of atrial fibrillation and of its consequences (more than 6 billion of dollars in

the US alone) [5].

Several factors have been linked to an increased probability of developing atrial

fibrillation [6], among which are: older age, being overweight, smoking, binge

drinking (including acute episodes), other cardiac conditions (such as atrial flutter).

Current treatment options can control the rhythm and revert it to a normal sinus

rhythm (cardioversion) [7].

Diagnosing atrial fibrillation is not always straightforward, since it may arise in

several different clinical manifestation, or even be asymptomatic, therefore accounting

for the conservative epidemiological estimates previously reported.

A summary of these different manifestations could be as follows [2]:
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• paroxysmal atrial fibrillation, with occasional episodes, lasting from some sec-

onds up to two days and then disappearing without treatment. Paroxysmal

atrial fibrillation clearly represents one of the least detectable manifestations of

atrial fibrillation, as continuous monitoring is required and might still not prove

successful;

• persistent atrial fibrillation consists of single episodes that last longer than seven

days or less;

• long-standing persistent atrial fibrillations occurs for episodes of a duration

longer than a year;

• permanent atrial fibrillation is always present.

Symptomatic patients will experience symptoms such as palpitations, shortness of

breath, chest discomfort, being tired, but atrial fibrillation episodes can be asymp-

tomatic [3].

The diagnosis is usually performed by evaluating an electrocardiogram performed

at a medical facility, or by using a continuous-monitoring device such as the Holter,

worn by the patient over the course of a day [8]. Hence, especially in high-risk

populations, it might prove useful to access more cost-effective and potentially more

widespread diagnostic methods, in order to achieve greater coverage and more

frequent measurements.

1.2 About the project

Heart for Heart is a crowd-sourced initiative promoted by the Arrhythmia Alliance, the

Atrial Fibrillation Association, Happitech and other partners, which aims at gathering

a million of cardiac measurements [9]. It also aims at increasing awareness of

atrial fibrillation and accelerating the pace of progress on atrial fibrillation diagnostic

technology. Happitech has conducted clinical trials of its technology in the past in

collaboration with hospitals in Amsterdam (The Netherlands) and is now (as of time

of writing, in 2018 and 2019) conducting more trials involving also UMC Utrecht

(Utrecht, The Netherlands).
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1.3. Goals and structure of the thesis

1.3 Goals and structure of the thesis

We present data collected by using a technique called photoplethysmography (PPG).

This thesis aims at:

1. characterizing the data available;

2. identifying possible techniques suitable to classify two different rhythms in data,

normal sinus rhythm (NSR) and atrial fibrillation (Afib);

3. analysing the issue of signal quality.

In order to achieve these objectives, we will proceed in the following fashion: after

introducing useful terminology and relevant context for the analysis in Chapter 1, in

Chapter 2 we will present the findings currently available in specialized literature

regarding signal quality indexes for PPG signals.

We will focus on dynamic time warping, a technique for aiding in assessing signal

quality in Section 3.2 and subsequently, in Section 3.1 we will explore whether some

factors play a role in the values of the different features of the PPG signal.

Building on the exploratory evidence from our previous analysis, in Section 3.3 we

will study our data from a physical perspective: considering the temporal data series

as chaotic, we use recurrence techniques, namely Poincaré plots and spread measures,

to assess ulterior properties of the two rhythms.
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1.4 Photoplethysmography

Photoplethysmography (PPG) is a technique first used in 1938 [10] to assess physio-

logical changes due to the variable blood perfusion in skin and tissues. Its etymology

[11] comes from the Greek words for light, increase and record, meaning recording

increases (of volume) by exploiting light.

1.5 The signal

The principles

The genesis of the technique is rooted in two principles, one physiological and one

physical in nature.

The first reason lies in the fact that arteries and arterioles are more heavily affected

by the flow of blood pumped into them than veins are. When blood is pumped into

them, in the systolic phase, they enlarge and dilate, determining a characteristic

increase in volume which is not present in surrounding tissue or veins [12].

The second reason is that different tissues interact differently with incident light:

oxygen-rich blood especially has a higher absorption of light than venous blood or

surrounding tissues [12].

By measuring changes in light absorption in bodily tissues it is thus possible to

detect changes related to the blood flow and to cardiac activity.

Building the signal

In order to build a meaningful signal upon these principles, several steps must be

undertaken.

At first, light penetration in human skin must be evaluated [13]. For visible

light, there is a window in the red, which extends to the near infrared region of the

electromagnetic spectrum, namely from circa 600 nm of wavelength up to circa 2500

nm.

Further infrared light and ultraviolet are absorbed by water in tissue, whereas blue

light is the most strongly absorbed region of the visible spectrum [12]. Also, yellow

and green light are strongly absorbed, but both deoxy- and oxy- haemoglobin have
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high absorptivity for green light, thus resulting in a generally higher signal-to-noise

ratio (SNR) for green light than for other, more intense, wavelengths [12].

Measurement devices can exist either in transmission mode, where light travels

from one end of the anatomical part to the opposite one, such as from the front to

the rear of the ear lobe or of the fingertip, or in reflective mode, where both the light

source and the detector are on the same side of the part under analysis. We will

now assume, for clarity, that we are operating with reflected light, but the following

description holds true also for transmitted light.

So, if we shine either visible light or near infrared LASER onto the skin and detect

the reflected light component, we obtain a signal that has two components [12]:

1. a direct component (DC), which is due to absorption by tissues and venous

blood. This is mostly stationary, with a low-frequency oscillation due to the

respiratory rate (that, in fact, it can be estimated by PPG signals [14, 15, 16,

17]);

2. an alternate component (AC), superimposed to the direct component, due to

the different amount of light absorption in arterial blood, depending on cardiac

activity.

The latter component is pulsatile: a decrease in intensity of reflected light is due to

an increased absorption, due to the (delayed) systolic phase that has increased the

amount of blood in the vessels, and conversely, an increase in the intensity of reflected

light is associated to the diastolic phase. The delay is related to the fact that we are

observing cardiac activity when it has reached the region of the body under analysis,

therefore later than the actual cardiac cycle phases.

Light sources are usually LEDs, but also ambient light can be used. Dedicated

sensors and commercial consumer cameras, both professional or embedded in smart-

phones are commonly used as detectors [18].

To effectively perform the measurement, suitable regions of the body must be

found. Most commonly used are ear lobes, fingertips, wrists, forehead [12] which all

have high perfusion and not much surrounding tissue.

In a typical acquisition session, the device is placed in contact with the chosen body

region, such as the fingertip, a light is shone into the skin and recording starts. In our
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case, the users would place their fingertips on the camera of their smartphones; the

app would start recording a video and lighting the tissue and blood with the embedded

flash light, continuously on. For RGB cameras, for channel of the camera sensor, from

the video frame several regions of interests (ROIs) are extracted. Within each region,

the average intensity of the signal is computed, and the process is repeated over

every sample, typically corresponding to a frame, thus producing the signal intensity

value at each time sample. The typical visualization of the PPG signal mirrors the

actual intensity: signal is shown to be higher when intensity is lower, that is when the

amount of blood in arteries and arterioles is increasing.

1.6 Applications

Photoplethysmography finds application both in clinical and non-clinical contexts,

and its potential of assessing physiological processes is of growing interests in diverse

fields, including security and emotional response detection.

Clinical PPG sensors

Clinical PPG sensors and devices are available and in clinical use, for continuous

monitoring. Often, they are operating in transmission mode, applied to the fingertip

of the patient, who is generally lying in bed. One of the usages of these sensor is that

of triggering arrhythmia alarms [19]. Since this alarm usually results in a scramble of

the assisting staff to the patient in order to face the arrhythmia, there is a growing

need of reduction of the false alarm rate. Most pulse oximeters [20] to detect oxygen

saturation in blood are indeed PPG devices, and also blood pressure can be recovered

from the PPG signal [21].

Non-clinical measurements

Most usage of the PPG technology outside of the medical facilities is now happening

on wearable or mobile devices, which are notoriously becoming ubiquitous. All

that is needed is a camera and a flash light (truly, an LED), but several wearables

incorporate dedicated sensors and infrared laser light sources. In some cases, webcams

or surveillance cameras are used.
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The increased availability of PPG-based monitoring calls for both improved relia-

bility of results and assessments, such as for sporty people, and for exploiting new

opportunities in reliably evaluating the health status of high-risk populations and

enhanced screening.

Noise and challenges

Noise and artefacts play a pivotal role in the feasibility of using PPG technology

reliably. Two main sources of disturbance can dramatically influence the quality of

the signal:

1. ambient light, or changes in intensity of the light source, which result in changes

of the baseline level. This effect can also be due to automatic exposure settings

on smartphone video recording applications, which change the ISO sensitivity

of the sensor;

2. motion artefacts, due to a number of reasons: breathing, talking, vibrations,

variations in the pressure between the body and the device. These effects are

much harder to identify.

Finally, when applicable, the power source frequency might influence the signal trends

[21].

1.7 Terminology

As the growth of the PPG-based field is relatively recent compared to the electro-

cardiogram (ECG) analysis, there is often some misconception or inaccuracy in the

terminology employed [22], especially since most of the quantities of value in PPG-

based analysis are derived from those exploited in ECG.

A typical ECG lead presents five important points around each beat, marked and

commonly named as P, Q, R, S and T . The time interval occurring between two

successive beats is often measured as the difference between two successive R points,

and it is therefore referred to as RR. Since not every such interval will be properly

detected, the set of intervals will be deprived of those deemed of unworthy quality.

The remaining high-quality intervals are now referred to as NN intervals.

7
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In the PPG there is not yet a consensus on nomenclature: we will refer only to

each peak as a pulse, to its top-point as P, thus marking the time interval between

two successive pulses as PP time interval (see, for instance, [23]). Each heart beat is

called pulse when it is detected via its distorted form in peripheral circulation. Since

we do not perform any removal of low-quality data, we will only use PP intervals and

we will refer to them, sometimes, as pulse or beat time interval or duration, meaning

the time interval between two successive pulses. We will refer to the amplitude of

each pulse, from trough to peak, as peak or pulse amplitude, and we will refer to the

area under it as peak or pulse area (area of the peak).
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2 Literature review

In this Chapter we will present our findings on methods and features used in literature

to assess signal quality for PPG signals.

2.1 Introduction

As part of our research, we aimed at assessing the quality of the PPG signal, since

this is crucial to distinguishing atrial fibrillation from normal sinus rhythm, especially

in the case of measurements that are collected in uncontrolled environments and

conditions, where noise and artefacts could be significantly present. Therefore, we

searched over the literature to identify some metrics that might prove to be useful in

assessing signal quality. We refer to these metrics as signal quality indexes (SQIs).

2.2 Relevant findings

Hereby we present the most interesting approaches to signal quality assessment that

we encountered, followed by a note on how to best label signal quality itself.

The bibliographical search was performed by looking for the key

(Photoplethysm* AND (signal quality)) OR (Photoplethysm* AND (SQI)) OR (PPG

AND (signal quality)) OR (PPG AND (signal quality))

on PUBMED and by evaluating also interesting entries found in the references of

papers we evaluated. We obtained 58 articles after evaluating titles and abstracts.

Our aim was to identify a set of SQIs that were used commonly, to exploit them

too, later in our analysis. We also included some features used to assess the presence

of atrial fibrillation, since we are interested in that rhythm too. Signal quality for
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PPG is not clearly defined, i.e. there is not one single commonly-accepted definition,

but generally a good quality signal enables us to identify morphological features and,

more importantly, reliably estimating heart rate and its variability, whereas a bad

signal would fail in doing so.

After reading the papers, we assessed that 22 of them were meeting our needs

for approaches to the signal quality problem, that is, were proposing clearly-defined

indexes and pipelines to assess the signal quality, and that tested their techniques

on datasets of at least tens of subjects (the minimum sample size in the papers we

accepted was 36 subjects). Of these 22 papers, we will now present 15, having

discarded seven: three focused on filtering and preprocessing without providing

actual signal quality indexes, two were reviews of the field, one focused exclusively on

spectral approaches, whereas we were interested mostly on time-domain features, and

the last one explored the possibilities of different colour spaces but did not provide

actual signal quality indexes.

Signal quality indexes

Several papers focused on ad hoc approaches to the problem of assessing signal quality,

developing novel and elaborated frameworks and pipelines, which we didn’t identify

as a right fit to our search.

One of the most straightforward approaches to signal quality is to investigate

the causes of signal degradation itself, namely motion artefacts. Therefore, if avail-

able, analysing accelerometer magnitude could recover important information. This

approach has been developed by Nemati et al. in [24], where they included the mag-

nitude as a feature to a neural network to identify atrial fibrillation. They achieved

very promising results (accuracy of approximately 97%) on a small-sized sample of

36 patients.

A second straightforward approach would be that of exploiting some a priori

knowledge of the physiology of the processes involved in order to discard unrealistic

data values. Orphanidou et al. [25] only accept segments whose heart rates are

within the range of 40 bpm to 180 bpm. Moreover, they place an upper limit to the

duration of a beat, either by ECG or PPG measurement, that has to be shorter than 3

seconds and they expect the ratio between the duration of the maximum time interval

10
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between two beats and the minimum duration to be not higher than 2.2, within a 10

seconds long windows. They acknowledge the fact that their approach might not be

suitable in the case of highly irregular beats, but it might still be sufficient or effective

depending on the applications envisioned.

Firoozabadi et al. in [23] devise a strategy that aims at reliably assessing parame-

ters from which is defined heart-rate variability (HRV), that is the fact that the time

interval between two successive beats is not regular, in a healthy heart (the degree of

HRV exhibited by a subject may indicate the presence of some pathologies). They refer

to heart rate variability as pulse rate variability (PRV), in the context of PPG. Such

parameters are the same used for ECG analysis, such as the percentage of beats whose

duration is longer of 50 ms (pNN50), the standard deviation of the set of said beats

(SDNN), its mean, the standard deviation of the subsequent differences of the duration

of a beat and of the following one (SDSD), the root mean square of the subsequent

differences (RMSSD). In order to achieve these measures, which they compare to the

corresponding values obtained from simultaneous ECG recording leads, they estimate

the inter-beat interval (IBI) as the median value of the beat duration estimated by

three different points: from the peak of one pulse to the peak of the subsequent peak

(PP), from trough to trough (TT) and from upslope to upslope (UU), assessed as the

point where the slope of the rising signal is maximum.

Silva et al. [26] approached the issue with multi-channel filtering and found that

their ad hoc signal quality index was related to the magnitude of the signal noise ratio

(SNR) and proved to perform similar to the human-assessed labels of binary quality,

either bad or good.

Sološenko et al. [27] built templates of the PPG waveform by linear combination

of a log-normal distribution and two gaussians, to use in pair with public annotated

databases, to extract pulse duration from which they could evaluate heart rate and

type of rhythm.

Yu et al. [28] use two features that are fed into an SVM classifier: the fraction of

aligned waves and the pulse rate variability.

Many papers focused on features of the frequency domain, where the signal is

transformed to its counterpart in the frequency domain by means of the Fourier

11
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Transform, which can be expressed [29] for a finite discrete signal f(tk)k=0,...,N−1 as

F̃n =

N−1∑
k=0

fk exp
(
−

2π
N
nik

)
n = 0, . . . ,N− 1, where we obviously renamed f(tk) with fk.

Krishnan et al. [30] identify kurtosis of the spectrum as an SQI, whereas Yu et al.

[28] had also evaluated high-frequency power, low-frequency power and their ratio.

Spectral and log-accelerometer powers were instead included by Wander et Morris

[31].

Integrated approaches or template matching were used in several instances, espe-

cially on the single pulse level, such as [16, 32, 20], either by cross-correlation to the

previous beat or by comparison to a golden standard of reference.

Of particular interest is the work by Li and Clifford [19, 33], who also apply a

technique called dynamic time warping to enhance the match between signal and a

reference template. They combine those techniques with autocorrelation and cross

correlation measures, to create fused SQIs.

Elgendi [34] and Liang et al. [14] make use of different quantities, such as

perfusion index, entropy, SNR, zero crossing, spectral power, but most importantly

kurtosis and especially skewness emerge as significant SQIs, as also in [30].

Furthermore, and lastly, Elgendi finds [34] that a signal quality classification in

three categories is generally more effective than the binary classification in good and

bad quality. Signal quality is thus assessed as good, if both morphological features

such as the dicrotic notch and the systolic and diastolic waves are visible, acceptable if

the waveforms are visible but there is a lack of dicrotic notch, and bad quality, when

morphology is severely compromised.
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3 Analyses and results

3.1 Exploratory statistics

In this Section we will report on our research into the general properties of the dataset,

especially when divided into subgroups of different classes pertaining to the subjects’

properties, such as age, lifestyle etc. We investigate significant differences in the

data distribution for the different groups of each class and we assess the underlying

distribution models.

Description of the dataset

Data The complete dataset is crowdsourced via a campaign and data collection is

performed via a dedicated application. It is comprised of 1572 subjects. For each

one of them, we have the PPG signal for the R, G, B channels of the camera sensor,

each frame’s time-stamp and the values of the accelerometer magnitude along three

orthogonal axes X̂, Ŷ, Ẑ. All of these values are in arbitrary units, apart from the

time, which is measured in seconds (we will use milliseconds very frequently, as it is

common practice in the field). Frame rate per second is 30 fps and each acquisition

lasts about 90 seconds. The user was guided by the app in placing his or her fingertip

upon the camera of the smartphone. The LED flash would then illuminate the finger

for the entirety of the data acquisition process, which must be performed at rest, as

much as possible.

Metadata Each user has also voluntarily provided additional information: their age,

sex, weight, height, location (city), any known heart condition and further details on

it, their lifestyle, whether they are smokers or not. The app is also capable of logging

the model of the device which has been used to perform the measurement. A unique,



Chapter 3. Analyses and results

anonymous, ID is also associated to each subject. None of the additional information

is required, therefore it is not infrequent to encounter missing or null values.

Reliability The reliability of the metadata could not be independently verified, and

in addition to that, it must be noted that some classes are not uniquely-defined: i.e.

there is no indication as of which answer an ex-smoker should have provided, or how

the three possible categories of lifestyle (active, moderate, sedentary) are defined.

Even the labels regarding any known cardiac condition are not to be taken for granted:

it is not unlikely that those who have received a diagnosis are also under active

treatment for the condition, which may have reverted any physiological symptom back

to the normal state, thus removing any difference with respect to a healthy subject’s

signal altogether.

Therefore, we will treat any analysis as unsupervised, with exceptions for the

more reliable labels such as Sex and Device, which are respectively unlikely to be

misreported or automatically collected by the application and, hence, reliable.

Review A review of the red channel of the signal is available for most of the subjects.

This review is performed by people trained in labelling PPG signals and it assesses the

following:

1. class it determines the type of rhythm displayed in the data stream. It may be

any of the following categories: normal sinus rhythm, atrial fibrillation, flutter,

arrhythmia, undetermined, strange, damaged, premature atrial or ventricular

contractions;

2. quality any segment of data could be labelled as high, medium or low quality.

Common criteria in literature [34], [35], [25] to define signal quality are related

to the possibility of identifying morphological features of the pulse and assessing

heart-rate variability (HRV);

3. confidence a score regarding the degree of confidence of the quality assessment

performed. It can be high, medium or low and it is assigned by the reviewer.

Matching As a general rule, each data stream is divided in three segments of 30 s of

duration each, starting from a so-called guard point located after the initial transient

14
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has damped. For some acquisitions, less than three segments are available. The review

file also contains several duplicates, which have been removed.

Matching each review to the proper data file is not a straightforward task, as

no reference to the ID is available in the review. Anyway, it is present an index

that matches the progressive data index of each subject in the dataset, therefore we

performed an association based on said number.

The analysis

Preliminary selection

We decided to focus on a subset of the metadata available, specifically limiting our

analysis to the classes of sex, device, age, lifestyle, height and weight (combined in

the body-mass index). Each category has been grouped according to these criteria:

1. sex in male and female, presented in Table 3.1, in fairly balanced groups;

2. device in 13 groups - iPhone models 4S, SE, 5, 5C, 5S, 6, 6S, 6 Plus, 6S Plus, 7,

7 Plus and iPod 7.1 and iPad Pro (9.7in). The corresponding number of subjects

per group is reported in Table 3.2;

3. age in 8 groups, corresponding to the decades from 10 to 90 years old, as in

18-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80-89. We present the relevant

number of subjects in Table 3.3;

4. BMI as defined by [36] in the groups underweight (BMI < 18.5), normal

(18.5 6 BMI < 15), overweight (25 6 BMI < 30), obese (BMI > 30). The

imbalance between the classes can be noticed by reading Table 3.4;

5. lifestyle as provided by the users, it can be active, moderate or sedentary, as

shown in Table 3.5. With the exception of the sex class, the other groups present

a degree of class imbalance for the number of subjects per class.

Data preprocessing

Raw data presents several components in the signal that need to be accounted for in

order to enable a more accurate analysis. In Figure 3.1 we display an example of such
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Sex

Male 664
Female 679

n.a. 229

Table 3.1: Number of subjects for grouped by sex. Missing entries have not been
analysed. The classes are balanced.

Age

iPhone 4S 34 iPhone 6 Plus 63
iPhone SE 168 iPhone 6S Plus 52
iPhone 5 42 iPhone 7 165

iPhone 5C 35 iPhone 7 Plus 113
iPhone 5S 303 iPod 7.1 4
iPhone 6 325 iPad Pro (9.7in) 5
iPhone 6S 263 n.a. 0

Table 3.2: Number of subjects for grouped by device. As this label is automatically
collected by the device, it is reliable and there are no missing entries. The group size
is unbalanced, from a few entries to a fifth of the number of total subjects.

Age

18-19 26
20-29 130
30-39 171
40-49 283
50-59 388
60-69 261
70-79 78
80-89 7
n.a. 228

Table 3.3: Number of subjects for grouped by age groups. Missing entries have not
been analysed. Class imbalance is strong for the youngest and eldest age groups and
for the most abundant, of people in their fifties.
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BMI

Underweight 13
Normal 578

Overweight 525
Obese 193
n.a. 263

Table 3.4: Number of subjects for grouped by BMI. Missing or null entries of height or
weight have not been analysed. There is an important class imbalance as far as the
obese is concerned, and even more so for the underweight class.

Lifestyle

Sedentary 251
Moderate 772

Active 314
n.a. 235

Table 3.5: Number of subjects for grouped by lifestyle. Missing entries have not been
analysed. The moderate group has more than twice the number of subjects of the
other groups.
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Figure 3.1: Sample of raw signal for the red channel.
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a signal, which is given by the sum of three major components: the PPG signal itself,

a variable baseline which can be described as a DC component, associated [12] with

venous perfusion modulated by the respiratory rate, noise and artefacts of unknown

frequency. We also consider that shifts in baseline might be caused by the adaptive

exposure level of the camera sensor of the recording devices.

Each signal is filtered with a proprietary algorithm. An example of a filtered and

detrended signal is shown in Figure 3.2.
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Figure 3.2: Sample of the detrended signal for the red channel. It is a close-up that
crops out the complete amplitude of the initial transient, for the sake of visualization.
The sample is the same of Figure 3.1.

Methods

From each patient’s data, for the three channels separately, we extracted the following

three features: PP time interval (the time interval between two successive pulses,

measured from peak to peak), amplitude and area of the pulses (which we will also

call peaks).

The following processes must be intended as performed on each repetition possible

over the classes and their further groupings, for each possible feature analysed: data
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of a feature (i.e. peak amplitude) is grouped according to a class (e.g. lifestyle) into

the groups of that class (e.g. active, moderate, sedentary).

Empirical test of subjects’ data

At first, we evaluate the distribution of the feature values for a random subset of

100 subjects, to get an intuition of what the underlying distributions might be. Their

distribution is not normal or log-normal, and often it is very sharply peaked. We

performed a fit with the Cauchy distribution and a fit with the normal distribution

and checked whether any clustering was displayed regarding the groups of each class

in the parameters plane, µ− σ for the normal and τ− γ for the Cauchy, where τ is its

location parameter and γ the scale parameter. The general expression [37] for the

Cauchy distribution is

P(x) =
1

γπ

(
1 +

(
x−τ
γ

)2
)

for a random variable x ∈ R.

No clustering appeared to be present, in any channel. For instance, the reader may

refer to Figures 3.3, 3.4, 3.5, that show some typical distributions of the values of

the features for 20 of those 100 subjects of the random subset for the three different

features extracted. We only display 20 subjects for the sake of clarity and readability.
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Figure 3.3: Distribution of the values of the PP time interval feature for twenty random
subjects out of the 100-subject subset that we used to assess which distributions were
likely to match the data distributions. Original data is from the red channel. PP time
interval is measured as the time interval between the peaks of two successive pulses.
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Figure 3.4: Distribution of the values of the pulse area feature for twenty random
subjects out of the 100-subject subset that we used to assess which distributions were
likely to match the data distributions. Original data is from the red channel. Pulse
area is measured as the area under each pulse.
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Figure 3.5: Distribution of the values of the peak amplitude feature for twenty random
subjects out of the 100-subject subset that we used to assess which distributions were
likely to match the data distributions. Original data is from the red channel. Peak
amplitude feature is measured as the average value of the amplitude of the signal,
from the peak to both the preceding and successive trough.
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Distribution of the means

Methods We proceeded to get the distribution of the mean values of the feature for

the patients and test it for several possible probability density distributions: normal,

log-normal, Weibull, gamma, exponential.

We briefly recap here their salient properties. The normal distribution is very well

known, and its probability density function is of the form

P(x) =
1√
2πσ

exp
(
−
(x− µ)2

2σ2

)
where x ∈ R is a random variable, µ is the mean and σ2 the variance. In presence of a

strictly positive quantity whose logarithm ln(x) is normally distributed, we have the

log-normal distribution [38, 39]:

P(x) =
1

x
√

2πσ
exp

(
−
(ln(x) − µ)2

2σ2

)
with σ > 0 acting as a shape parameter; µ is the mean of the log of the random

variable x, and σ2 is its variance.

The 2-parameter Weibull distribution [40, 41] for a random variable x > 0 can be

expressed as

P(x) =
B

A

( x
A

)B−1
exp

(
−
( x
A

)B)
where B is the shape parameter and A the scale parameter. The other distributions

that we considered are the Gamma distribution, defined [42, 43], as

P(x) =
1

baΓ(a)
xa−1 exp

(
−
x

b

)
for the random variable x > 0 with a shape parameter and b scale parameter. It is

used commonly in when modelling lifetimes. It is a general version of the exponential

distribution, which is obtained when a = 1, thus resulting in [44, 45]

P(x) =
1
b
e−

x
b

Γ(x) denotes the gamma function, which for a positive real number x > 0 is defined

as Γ(x) =
∫∞

0 u
x−1e−udu.

We made use of the Anderson-Darling test to a significance level of α = 5% to

check whether the null hypothesis H0 of the data coming from the distribution under

examination was rejected or not.
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The Anderson-Darling test [46, 47] can assess the hypothesis that a given set of

data comes from a certain distribution. For xii=1,...,N monotonically increasing ordered

data points, it computes the statistic

A2 = −N−

N∑
i=1

2i− 1
N

(ln F(xi) − ln(1 − F(xN+1−i)))

which is compared to the relevant critical value, and where F(x) is the cumulative

distribution function of the distribution under evaluation. The test requires the data

samples to be monotonically increasing, but it can estimate distribution parameters

and is useful when data are not normally distributed.

In order to address the issue of multiple testing, we used the Bonferroni correction

[48], which divides the chosen significance level α by the number m of tests being

performed.

The issue stems from the following fact: when performing multiple tests, there is a

chance of obtaining significant results when there is no actual difference. This chance

is in fact not small, as we are about to show.

Let’s consider a value of α = 0.05, as we – and others – commonly assume, and

let’s perform m = 30 tests. Then the probability [49] of obtaining at least a significant

result is

P(1+ s.r.) = 1 − P(0 s.r.) = 1 − (1 − α)m

which for us evaluates to

1 − (1 − 0.05)30 ≈ 0.785 ≈ 79%

not really a neglectable effect!

Results In most situations, log-normal and Weibull were found to be significantly

better performing than the other distributions, and comparably so among each other.

For the blue channel, the lognormal distribution had an edge, whereas the Weibull

outperformed the log-normal on the green channel data. The red channel showed a

less crisp difference in performance, with the Weibull better performing on the PP

time interval data and the log-normal on the other features (area and amplitude of

the peaks). The scores and best-performing choices of these two distributions for the

channels and features examined are presented in Table 3.6 and Table 3.7 respectively.
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3.1. Exploratory statistics

Red channel Green channel Blue channel

Sex
·/2

Lifestyle
·/3

Device
·/13

BMI
·/4

Age
·/8

Sex
·/2

Lifestyle
·/3

Device
·/13

BMI
·/4

Age
·/8

Sex
·/2

Lifestyle
·/3

Device
·/13

BMI
·/4

Age
·/8

Peak amplitude
Lognormal 0 1 10 2 5 0 0 6 1 3 0 1 7 2 6

Weibull 0 0 6 0 4 0 2 9 2 6 0 0 10 1 3

Peak area
Lognormal 0 2 10 3 6 0 0 6 1 3 0 1 8 1 5

Weibull 0 0 3 0 2 0 2 9 3 6 0 0 9 1 3

PP time interval
Lognormal 0 0 7 1 3 0 0 8 1 2 0 0 7 1 3

Weibull 0 1 10 2 4 0 2 8 2 5 0 0 3 0 1

Table 3.6: Number of times that the test did not reject the null hypothesis at 5%
significance level. Aggregating over the five classes and taking the most frequently
accepted distribution as a model generates Table 3.7. We used Bonferroni correction
to address the issue of multiple comparisons.

PP time interval Peak area Peak amplitude

R Weibull Lognormal Lognormal
G Weibull Weibull Weibull
B Lognormal Lognormal Lognormal

Table 3.7: Overall best performing probability density function fit for the distributions
of the means of the features, based on the number of times of acceptance of the null
hypothesis across the different classes at 5% significance level.

The data did not display meaningful distributions on a log-log plot either, thus ruling

out, for example, the possibility of a power-law distribution.

Discussion It is important to note that in the case of the blue channel, where the

lognormal was found to be the best fit consistently, there was a very low number – five

– of instances of in which the null hypothesis was not rejected at the 5% significance

level, therefore we will not pursue further analysis of its data, since it is seldom

properly modelled by our distributions.

Moreover, it must be noted that the Sex class has consistently rejected to be

modelled by any distribution, apart from some sporadic occasions in which the

exponential has been successful.

Scatter plots of the distribution parameters

Distribution of the means We plotted the values of the parameters A and B of

the Weibull and µ and σ of the lognormal distribution (when more appropriate) and

grouped them within each class: points are too scarce to show any clustering, but they

never overlap or come close to it, as is shown in Figure 3.6. In Figure 3.7 we present
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Figure 3.6: Example of the scatter plot of the parameters of the Weibull distribution
for means of PP time interval grouped by device type. A refers to the scale parameter
and B to the shape parameter.

the results of fitting the Weibull distribution to the means of the PP time interval to

the data grouped per the BMI class.
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Figure 3.7: Weibull fit of the distribution of the mean PP time interval for the subjects,
grouped according to their BMI. Only two out of the four groups did not reject the
null hypothesis: the underweight and obese groups. The different appearances of
the underweight and obese groups are due to their smaller sample sizes, respectively
of 13 and 193 subjects, whereas normal has 578 samples and overweight has 525
subjects.

Fitting to each subject’s data We wondered if NSR or Afib rhythms would result

in clusters on the parameter space. Hence, we fitted each subject’s features with the

Weibull, gamma, normal, lognormal distributions and grouped the subjects’ points

according to their rhythm class, as obtained by the reviews of the dataset. To improve

our chances of noticing any effect, if present, we restricted our analysis only to high-

quality and high-confidence NSR and Afib rhythms, for the entire duration of the

acquisition. We obtained respectively subjects 905 and 30 subjects for the NSR and

Afib classes. We only limited our analysis to the three usual features extracted from

the red channel data, since we do not have any label regarding confidence and quality

for neither the blue nor the green channel. As displayed in Figure 3.8, which is a

typical result obtained, no clusters were observed.
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(a) Feature: PP time interval for the red channel only. A refers to the scale parameter and B
to the shape parameter.
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(b) Feature: peak area for the red channel only. A refers to the scale parameter and B to the
shape parameter.
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(c) Feature: peak amplitude for the red channel only. A refers to the scale parameter and B to
the shape parameter.

Figure 3.8: Representation of the best-fit parameters for a Weibull distribution on
each subjects’ data, for the three features.
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Significant effects within the classes

In order to establish whether any significant difference was present among the values

of the different groups of each class (intra-class significant effects), we visually

compared by means of boxplots the distributions of the mean values, as shown in

Figure 3.9.

Subsequently we performed a Kruskal-Wallis test and compared the combinations,

at a significance level of α = 5% and applied the Bonferroni correction to deal with the

multiple comparisons problem (it is likely to randomly obtain statistically significant

differences when performing multiple tests between different classes). The Bonferroni

correction [48] is a conservative countermeasure that divides α by the number m

of tests that are being performed, thus considering an effective significance level

αE = α/m.

The Kruskal-Wallis test is a non-parametric test that compares population medians

by ranking the samples according to their magnitude (smallest value is 1, and then

increasing up to the number N of data samples), summing the ranks Ri for each group

of data and computes the statistic

H =
12

N(N+ 1)

k∑
i+1

R2
i

ni
− 3(N+ 1)

where k is the number of groups and ni the number of observations for the i − th

group [50, 51]. The statistic is approximately distributed as a χ2 statistic with k− 1

degrees of freedom, as long as ni > 4, ∀ i = 1, . . . ,k. We hereby summarize which

combination of groups significantly differed from each other, for each channel, class

and feature.

Device When considering results grouped by device type, we obtain a significant

difference between the distributions of the means of the values for:

1. iPhone 5S and iPhone 7 Plus, as found consistently across the R G B channels

for the PP time interval feature;

2. iPhone 5S and iPhone 7, as found consistently across the R G B channels for

the peak amplitude;
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Sex When considering results grouped by sex, we obtain a significant difference

between males and females, as found consistently across the R G B channels for the

PP time interval feature.

BMI When considering results grouped by BMI, we obtain a significant difference

between:

1. underweight and normal, as found consistently across the R G B channels for

the peak area feature;

2. underweight and obese, as found consistently for the red channel both from

the peak area feature and the PP time interval.

Age If we consider people grouped by their decades of age, we obtain a significant

difference between:

1. people under thirty and those in their forties and sixties, as found consistently

across the R G B channels for the PP time feature;

2. people aged 30-39 and 40-49, as found consistently across the three channels

for the PP time interval.

Lifestyle Lifestyle does not yield any significant difference consistently in any feature

or channel.

We must take with caution the potential value of these results for practical applica-

tions, such as a correction on the values that accounts for intrinsic biases. Generally

speaking, for personalised monitoring, a provider would be interested in consistent

deviations from a single baseline model. These results do not allow the provider to

predict the group of an individual, except in extreme cases, as the overwhelming

majority of the subjects would end up in a region of great overlap of values, as was

shown by the whiskers of the box plots, for instance in Figure 3.9. The region within

the whiskers represent where more than 99% of the values of that distribution are,

and by looking at the plots along the groups it is clear that most of these regions

overlap for the different groups. We only obtained paired differences, that is a group

against another single group, not a group standing out from all the others (apart from

the sex class, which is binary). The results however could be the tip of more findings
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similar to these ones, which could be hidden at the moment by confounding factors. A

multivariate analysis could discern the presence of such effects, and it would be best

performed on large, reliable datasets.

Discussion

The statistically significant difference between groups of a class might not be of

practical importance, even though is a part of the characterization of the dataset. This

is likely to be the case for the Device class, where the intra-class differences do not

necessarily equate directly to practical applications, and even more, in a field where

the technology is changing rapidly.

It is important to stress once more that most of these features are self-reported,

ambiguously defined and often subjective: a diagnosed patient who has successfully

achieved cardioversion by means of the treatment, would likely display an NSR rhythm

but might still self-report Afib as rhythm class, because of the previous diagnosis.

Another limitation of our analysis is that we did not perform a multivariate analysis,

which could have discerned more classes.
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(c) Blue channel.

Figure 3.9: Typical boxplots of the means values of a given feature (here: PP time
interval) grouped within a class.
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Comparison of results across the R G B channels

We already showed that the blue channel leads to poor performances, both in finding

a good distribution to model the values and in having values systematically different

from the other channels, as in Figure 3.9c. The box plots and comparisons within the

classes that we presented also highlight the poor performance of the blue channel,

especially over the area and amplitude features, whose results often do not agree

where there is a match between those of the green and red channels.

Red and green channel often yield similar results when the PP time interval is

used, whereas over the other features there is seldom a match.
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3.2 Signal quality estimation

By building on our findings presented in Chapter 2, in this Section we present our

process to build a set of features that we exploited to classify signal quality of our

data.

Introduction

In this Section we present a technique called dynamic time warping, which is a

candidate to be a part of a processing pipeline that aims at effectively classifying the

quality of the signals, without relying on reviewed input, such as peak labels provided

by an expert.

We will briefly introduce the concept of dynamic time warping, then report on our

findings on its application to our signals and eventually discuss its potential.

We finally combine it with other signal quality indexes and classify the quality of

the signals in our dataset.

Dynamic Time Warping

Given two signals, which we will denote by A and B, each comprised of p points

Ai = (ti;ai) and Bj = (tj;bj) with both i, j = 1, . . . ,p, where ti and tj are the time

points of collection of the two signals of respective amplitudes ai and bj, in whatever

units are appropriate. The algorithm generally works also for two signals of different

sizes, as long as their dimensionality is the same, but we only deal with signals of the

same duration and sampling rate, therefore size and we will restrict our presentation

to this particular case.

Dynamic time warping (DTW) [52] is a technique that maps A and B into two

so-called warped signals AW and BW which are obtained via the values of the signals

A and B takes at two sets of indexes iA and iB, both of length q > p, obtained

from the original indexes 1, . . . ,p (repetition of values is accepted) according to the

following criterion: the warped paths minimize their distance, as it is commonly stated.

We will follow suit in using this expression, but not without having highlighted the

fact that not every possible combination is explored by the algorithm, but only those

within a certain region [53, 54], close to the identical match (a signal to itself). Not
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3.2. Signal quality estimation

only this makes the problem tractable, it also reflects the expectation that a match

between two similar signals should not somehow present extreme variations from the

identity match.

Thus, distance is the minimum value of the sum of the Euclidean distances between

the template and sample points, after the warping (other metrics could be employed).

Let’s consider the p×p matrix D of the distances between each point of one signal

to the other points in the second signal, i.e. the (h,k) − th element of D, dh,k, is the

distance between the h− th point Ah of A and the k− th sample Bk of B, according

to the metric chosen (we use the Euclidean distance).

Starting from position d1,1 (the distance between the two first points A1 and B1 of

the signals), a path is built that reaches the end point dp,p (the distance of the final

points Ap and Bp). From each position, only horizontal ((h,k) 7→ (h+ 1,k)), vertical

((h,k) 7→ (h,k+ 1)) or diagonal ((h,k) 7→ (h+ 1,k+ 1)) increments of a single step

are accepted, as if we were moving a king across a chessboard.

This is best explained visually, with an example, as Figure 3.12 illustrates: the path

starting in the bottom-left corner and reaching the upper-right corner of the distance

matrix D is the one that minimizes the sum of the distances and doesn’t violate any

of the additional constraints: it must start from d1,1 and end in dp,p, without any

interruption, loops or turning back. How is it obtained, though? Let’s consider two

signals, which in this example are two NSR good quality segments, shown in Figure

3.10.

The algorithm starts at the initial point of each signal, which is fixed, as a boundary

condition. It computes the distance between the two points according to the metric

chosen, in our case, Euclidean. If we indexed the signal samples as a sequence of the

likes of 1, 2, 3, . . . , we have started from the two initial points of the two signals of

indexes h = 1 and k = 1. Now the algorithm progresses to a new couple of points.

These can be chosen in one of three possible ways, corresponding to the previously

mentioned chess-king moves. It can proceed horizontally to the right, or vertically

up, or diagonally. The corresponding couples of indexes would be, respectively:

(h = 2,k = 1), (h = 1,k = 2), (h = 2,k = 2) which are the indexes of the previous

points either increased by one or not at all (as the king does on the chessboard). The

distances between the corresponding signal points are then computed. For example,

for the pair (h = 2,k = 1) the distance would be computed between the second point
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Figure 3.10: Two high quality NSR signals, before being processed by the DTW
algorithm. There are 121 sample points in each signal.

(h = 2) of the first signal and the first point (k = 1) of the second signal, which is

the same that was used in the previous step. The algorithm progresses to the index

combination that has the minimum distance of those computed and builds the new

indexes arrays of minimum distance. For example, if of the three possible moves the

vertical one was found to be the one that minimizes the distance, the arrays would

be: iA = [1, 1] and iB = [1, 2], where the first entries are from the first points and the

second entries from the successive step.

When we will use these vectors to warp the signals, we will index the first signal

with iA and thus build a signal whose first value would be as follows:

1. the first point is always constrained to be the first point of the original signal;

2. for the second sample point of the warped signal, we look into the second

position of the index array (iA or iB). We take the index in that position,

let’s say iA(2) = 1, and then assign the value of the first sample point of the

original signal to the warped signal. Thus, if A(1) = 4 (a.u.), we will have

AW(2) = A(iA(2)) = A(1) = 4 (a.u.);
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Figure 3.11: The two signals of Figure 3.10 after being warped, that is, re-indexed
according to the best path, which is the new sequence of indexes that minimise the
sum of the Euclidean distances between the points of the signals. The reader may
notice that the time duration of the signal has increased, due to the stretch intrinsic to
the warping procedures, as in the length q of the arrays of indexes being longer than
the original sample size p of each signal.

3. the procedure is repeated until both signals reach the last point.

The arrays would expand to a length q > p, until both signals are indexed to their

end points. Then, the algorithm repeats the procedure until it reaches the end point,

which is fixed too, corresponding to the two final points of both signals. The path of

minimum distance across the distance matrix for our example is displayed in Figure

3.12. The warped signals are obtained by indexing the original signals with the new

sequences of indexes, iA and iB, and we present the result in Figure 3.11.

We were inspired by the approach of [33], who used dynamic time warping in

their estimation of signal quality. They fused different features into a signal quality

index (SQI), which they submitted as a feature in a support vector machine classifier,

which had to assess the belonging of each segment of a signal to one out of three

quality classes.
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Figure 3.12: Matrix D of the distances with p = 121 and optimal path, the one that
minimizes the cumulative distance of the two signals. The axis are the values within
the new indexes arrays, iA, iB.

They worked on a single-beat basis, obtaining features based on the degree of

correlation between a template beat and a signal to evaluate. The template beat for

each signal was created iteratively by averaging together the beats of each signal

segment, provided that they were similar enough to the running template beat, a

decision made on the basis of their correlation.

Three features were based on the direct match of the signal, a linear stretch (or

compression) of it to the same duration of the template beat, and a DTW-processed

match. The fourth SQI that was fused was the percentage of the non-clipped signal,

meaning non-saturated around the peak or the minimum.

However, we wanted to explore the possibilities of DTW not to a single beat but

applied to a whole segment of the signal, which contained several beats.

Methods

We proceeded to apply dynamic time warping to a segment which includes some

peaks. The first step was to label the filtered data to evaluate their quality. Data had

40



3.2. Signal quality estimation

been previously labelled by reviewers according to the type of rhythm (we were only

concerned with NSR and Afib rhythms), and only the red channel is employed, since

it’s the only one that has been labelled. The labels regarded both the rhythm class and

the type of each peak. Each data stream was segmented by a proprietary algorithm,

according to a user-provided time duration. The algorithm would then label each

segment as either good or bad quality, based on the frequency of the types of peaks

present in each segment.

We proceeded to define a proper template for each possible combination of labels,

totalling four classes: Afib good or bad quality, NSR good or bad quality. Template

definition could either be by averaging over all the elements of a given class or by

hand-picking some segments which could be set as a reference. We evaluate both the

signal itself or its successive difference, a measure proportional to its first derivative,

that reflects, for instance, how fast the signal is rising or diving, when considered

along its duration. In practice, the rhythm class label (Afib or NSR) was provided by

the human reviewer, whereas the binary quality class label was determined by the

algorithm, taking into account the peak class labels provided by the human reviewers.

Optimization was performed by comparing the distance distributions for the classes

at different combinations of parameters. We tried to maximize the separation of the

distributions for the different classes: e.g. trying to warp an NSR good quality signal

to an Afib bad quality template should result in a higher minimum distance (worse

match) than the distance of it to a NSR good quality template. We did not have a

clear expectation on the outcomes of a possible hierarchy in the case that one of the

two categories being the same: should the distance be higher when matching an NSR

good quality to an Afib good quality or to an NSR bad quality? Our main goal was

to achieve good discrimination between the good and bad quality classes, therefore

our optimization process has prioritized said outcome, which would prove useful in

providing real-time feedback to the user of the monitoring application.

Results

As far as the optimization process is concerned, we soon discovered that a situation

was problematic: generating the templates by averaging would distort heavily the

expected features of each class, resulting in a template that would not be easily
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classifiable. This is shown in Figures 3.13 and 3.14, for the segments of 4 and 7

seconds of duration. It is clear even to the untrained eye that the templates even

appear reversed: the Afib look like NSR and vice versa - they have not been inverted.

One often-proposed solution is that of aligning the starting point of each sample.

This has been performed and did not lead to any improvement: since the pulse is

not periodic, the averaging process still occurs between points that are unaligned

even if the initial part of each stream has been aligned, thus cancelling out the

signature appearances of the different signals. Moreover, dynamic time warping itself

is essentially a technique to align the signals as much as possible, so, even if it were

somehow possible, it would have been redundant to align the signals first.
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Figure 3.13: Average templates for the 4 seconds long segments. The averaging took
place over the whole dataset. At first glance, it would seem that we mistook NSR good
quality for Afib bad quality and vice versa! This is not the case. The unpredictable
appearance of the templates, far from the expectations, is due to the averaging process.
It’s clear why we proceed to hand-pick the reference templates, displayed in Figure
3.15.
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Figure 3.14: Average templates for the 7 seconds long segments. The averaging took
place over the whole dataset. In this case too, as per Figure 3.13, the results are not
acceptable as templates. Therefore, we selected manually the golden standards that
we show in Figure 3.16.

43



Chapter 3. Analyses and results

0 1 2 3 4

Time (s)

-6

-4

-2

0

2

4

6

A
m

pl
itu

de
 (

a.
u.

)

10-4 Template Afib bad quality

0 1 2 3 4

Time (s)

-5

-4

-3

-2

-1

0

1

2

3

A
m

pl
itu

de
 (

a.
u.

)

10-3 Template Afib good quality

0 1 2 3 4

Time (s)

-4

-3

-2

-1

0

1

2

3

A
m

pl
itu

de
 (

a.
u.

)

10-3 Template NSR bad quality

0 1 2 3 4

Time (s)

-3

-2

-1

0

1

2

A
m

pl
itu

de
 (

a.
u.

)

10-3 Template NSR good quality

Figure 3.15: Templates for the 4 seconds long segments. We have chosen them
manually. Now the appearance agrees with our expectations.
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Figure 3.16: Templates for the 7 seconds long segments. These have been hand-picked
so that their morphology corresponds to the notion of the different groups of rhythms
and qualities.
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Hence, we focused on 4 s and 7 s long segments, which we present in Figure 3.15

and 3.16, in which it is clearly visible the typical feature of an NSR pulse (bottom

right). We performed a Kruskal-Wallis test between the distances between each

template and the data grouped according to their class: e.g. we warped the four

classes to a template, say NSR good quality, grouped the resulting distances according

to the classes and tested them reciprocally. Also here we applied the Bonferroni

correction for multiple tests. We obtained that matching the data to the Afib good

quality templates results in all classes being significantly different (α = 5% before

correction) from each other and therefore we concluded that this is the template

that discriminates the most between the different classes, as shown in Figure 3.17. A

similar result is obtained using the 7 seconds long templates.
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Figure 3.17: Box plot of the mean rank values for the classes when matched to the
hand-picked 4-seconds-long Afib good quality template. In this case, the template
used in the DTW is the one for which the mean ranks of the distances grouped by
the four groups are significantly different. This means that the distribution of the
distances for the four groups are different from each other. However, as displayed in
Figure 3.18, the actual values of the distances still overlap.

However, lest we forget, that the typical distributions of the distances between the

warped paths resemble that shown in Figure 3.18: the amount of overlap is significant.

46



3.2. Signal quality estimation

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Distance (a.u.)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
F

re
qu

en
cy

Template: Afib GQ

NSRGQ
NSRBQ
AfibGQ
AfibBQ

Figure 3.18: Typical appearance of the distribution of distances between the warped
signals of each class and a template, in this case the Afib good quality.

Attempt at classification

Building upon our previously identified SQIs [34], we proceeded to attempt to classify

the different classes, at least for the macro-classes of good and bad quality.

We employed a shallow neural network of five layers and trained it on the 4-

seconds-long segments, aiming at classifying good and bad quality segments, regard-

less of rhythm, since our motivation is that of detecting bad quality data to warn the

user.

As features we started with six SQIs: median of the signal, mean, standard

deviation, skewness, kurtosis, DTW-distance from best-performing template (Afib

good quality). Guided by intuition, we also introduced the number of local minima of

a segment, since it is expected a higher number in bad quality and Afib, and after some

tests we decided to drop the mean and standard deviation of the signal. Therefore,

the network was trained upon 5 features.

We also chose to under-sample our data (per each class) to the number of elements

of the least abundant class, so to avoid the issue of class imbalance, where the network

achieves high accuracy by betting all on the most frequent label (i.e., it almost always
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predicts a sample to be of the most abundant class). We held out 10% of the samples of

each class for testing, totalling 220 samples. Both under-sampling and hold-outs were

performed randomly. On the remaining 90% of data (1652 samples) we performed

a 5-fold cross validation which divides the data in 5 five groups: for five times, it

takes out one group, trains on the other four and validates the performance on the

group held out. In order to avoid data leakage, that is the transmission of information

outside of each data group, which would render null the validation, we standardized

the feature only within the 5-fold cross validation iterations and not before (the test

set was standardized too).

We achieved a classification accuracy of almost 89% on the test set of the features

extracted from the 4-seconds-long sets, as shown in Figure 3.19. This test was not

seen before by the model.

If we take a look at the misclassified samples, we discover that:

• when the model wrongly predicts bad quality instead of good quality, 9 of the

16 samples are Afib and 7 are NSR;

• when the model wrongly predicts good quality instead of bad quality, 1 instance

out of 9 is an atrial fibrillation episode, the remaining 8 are of normal sinus

rhythm.

It is interesting the fact that, according to our judgement, for six of the seven NSR

good quality signals misclassified, it is unclear why they have been labelled as good

quality in the first place. This points us towards an iteration of our quality assessment

algorithm, which can be further refined and finely tuned.

These results are to be considered preliminary, due to the small sample size and the

limited tuning of the network, and reflect the fact that in the presence of fibrillation

and real data, simple SQI metrics alone are often not sufficient to achieve the desired

outcome; most of the studies we encountered focus either on fibrillation in a very

controlled setting, to reduce noise and bad quality, or focus on controlled sources of

disturbance to the signal and warn that the results and solutions devised could prove

tricky in presence of fibrillation.

Probably, out of all the papers that we read, the one that is more directly com-

parable to our result is, once again, that by Li and Clifford [33]. Besides the type
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of classifiers and the features employed, the main differences between our two ap-

proaches are in that their approach focuses on single beats, whereas we use time

windows and that they use a three-class signal quality grouping, whereas ours is

binary. Their accuracy of 95.2% is remarkable, and ours under-performs with that

regard. However, we can reasonably hope that by fine tuning our model and possibly

adding some more features we too can achieve more satisfying results.
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Figure 3.19: Confusion matrix of the performance of the classifier over the test set.
The result displayed has been achieved over the test set, undisclosed to our model
before of the final evaluation. The model was trained with a 5-fold cross validation.
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3.3 Poincaré Plots

In this Section we explore a physical approach based on recurrence plots to evaluate

the appearance and properties of the two different rhythms – NSR and Afib – on these

plots.

Introduction

The study of heart beat and dynamics in terms of chaos theory has long been discussed

and described [55], with more and more instances of applications of clinical relevance.

In particular, it is well known that the cardiac cycle is not a periodical phenomenon,

as there is an amount of intrinsic variability that is actually an index of the health

status of the heart itself.

This explains why many studies and techniques have focused on assessing heart-

rate variability and not only on the beats-per-minute heartrate.

Poincaré plots are a kind of recurrence plot that have been used to assess heart-rate

variability (HRV) and that are regarded as informative in the cardiology community

[56, 57].

Given a set of n measurements of a certain variable x(t) at different time points

t1, . . . , tn, the Poincaré plot is constructed by plotting each value of {xi}i=1,...,n against

its subsequent one, where we imply xi = x(ti). Hence, we are scattering the points of

coordinates {(xi, xi+1)}i=1,...,n−1 on the bidimensional plane, or {(xi, xi+1, xi+2)}i=1,...,n−2

in the three-dimensional space.

Methods

We performed our analysis on two independent sets of data. The first is a small

sample of 10 Afib patients and 10 healthy control, validated clinically. We do not have

any metadata associated to the data, apart from the rhythm labels. The second is

a subset of our main dataset, from which we have extracted the high-quality, high-

confidence, pure NSR and pure Afib rhythms, resulting in 905 and 30 subjects per

class, respectively, as in Chapter 3.1. Our labels are only valid for the red channel for

this database, therefore we did not analyze green and blue channel data.
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Figure 3.20: Poincaré plot of the PP time interval for the red channel data of the
20 subjects for which clinically-validated labels are available. Points appear more
clustered for the NSR rhythm than for Afib.

We filtered the signals as per our standard procedure. We then proceeded to

extract the PP time interval and amplitude of the peaks; we normalized the latter to

its median value per each subject. After generating the three-dimensional Poincaré

Plots, we computed the eigenvalues of the correlation matrix of the data, and we took

the ratio between the two largest eigenvalues as a measure of the shape of the cluster

in the Poincaré plot. Finally, we compared the values across the two classes, NSR and

Afib. In Figures 3.20 and 3.21 we show the typical appearance of the Poincaré plots

for the pilot dataset, respectively for the PP time interval and for the peak amplitude,

both for the red channel, restricting to the bi-dimensional plots for greater clarity of

visualization. In order to have a sense of the local density of the points, which may

overlap, we produced heatmaps, which we present in Figure 3.22 for the PP time

interval of the red channel and Figure 3.23 for the peak amplitude of the red channel.

Results

Comparing ratios The ratios r = λi/λj, where (i, j) = {(1, 2), (1, 3), (2, 3)} of the

three largest eigenvalues of the correlation matrix for the two classes are normally
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Figure 3.21: Poincaré plot of the normalized amplitude for the red channel data of
the 20 subjects for which clinically-validated labels are available. Range has been
restricted to the 0-4 interval for a clearer visualization. Data appears to be more
clustered for NSR than for Afib, with the notable exceptions of samples NSR 4 and 5,
which we suspect being corrupted by noise.

distributed, and the one-way ANOVA yields the results displayed in Table 3.8 for the

normalized amplitude and in Table 3.9 for the PP time interval. The ANOVA assumes

as null hypothesis that the mean is the same for the different classes and evaluates the

F-statistic to compute the relevant p-value [58]. The F-statistic is defined as the ratio F

between the variation from the mean between groups and the variation within each

group from the mean estimate [59], normalized to their degrees of freedom (k − 1

for the inter-group variation, and N− 1 for the intra-group variation, where k,N are

respectively the number of classes and the number of observations).

We tested whether the Afib and NSR results for the ratio r are consistent across

the pilot and larger datasets: results are reported in Table 3.10. The larger dataset

had 905 samples, whereas the pilot was made of 10 samples for the NSR class. We

performed a second analysis in which we compared the large dataset with a balanced

synthetic dataset generated from the pilot dataset, normally distributed and with

the same mean and variance. The means were found to be significantly different

(p ≈ 10−6), but this result will be further discussed later on.
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Figure 3.22: Tile-view of an intensity-normalized 3-D histogram of data of Figure
3.20. Areas in white indicate absence of data. NSR data presents often a bimodal
appeareance and the heatmaps clearly display the greater degree of dispersion of the
Afib data.

λ1/λ2 λ1/λ3 λ2/λ3

Pilot
pR = 0.003
pG = 0.4
pB = 0.1

pR = 0.02
pG = 0.5
pB = 0.2

pR = 0.004
pG = 0.8
pB = 0.08

Large
pR = 0.4
pG = n.a.
pB = n.a.

pR = 0.3
pG = n.a.
pB = n.a.

pR = 0.3
pG = n.a.
pB = n.a.

Table 3.8: p-values from the ANOVA test between the classes NSR and Afib of each
dataset. For the large dataset, only the labelled channel has been evaluated, that is
the red channel. Feature analysed is the normalized amplitude.
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Figure 3.23: Tile-view of an intensity-normalized 3-D histogram of data of Figure
3.21. Areas in white indicate absence of data. Once more, the appearance of the data
is more dispersed for Afib, with the exception of the two possibly-noisy samples of
NSR. The restricted axis range of the plots hides the very high values of normalized
amplitude that are present in the Afib population, which often exceeded 4.

λ1/λ2 λ1/λ3 λ2/λ3

Pilot
pR = 0.1
pG = 0.1
pB = 0.7

pR = 0.03
pG = 0.02
pB = 0.4

pR = 0.3
pG = 0.007
pB = 0.5

Large
pR = 3 · 10−6

pG = n.a.
pB = n.a.

pR = 1 · 10−6

pG = n.a.
pB = n.a.

pR = 0.6
pG = n.a.
pB = n.a.

Table 3.9: p-values from the ANOVA test between the classes NSR and Afib of each
dataset. For the large dataset, only the labelled channel has been evaluated, that is
the red channel. Feature analysed is the PP time interval.
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Figure 3.24: Ratio of the two largest eigenvalues of the correlation matrix for the pilot
dataset, starting from the PP time interval values. The blue channel appears to be the
most regular, whereas spikes are often present for both the red channel, to an extent,
and for the green channel, more intensely.
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Figure 3.25: Ratio of the two largest eigenvalues of the correlation matrix for the pilot
dataset, starting from the normalized amplitude values. For the red channel especially,
values appear to be higher in the NSR population than in the Afib population.
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Red channel NSR Afib

PP time interval
pλ1/λ2 = 0.6
pλ1/λ3 = 0.5
pλ2/λ3 = 0.3

pλ1/λ2 = 0.3
pλ1/λ3 = 0.3
pλ2/λ3 = 0.5

Normalized amplitude
pλ1/λ2 = 0.07
pλ1/λ3 = 0.5
pλ2/λ3 = 0.5

pλ1/λ2 = 0.007
pλ1/λ3 = 0.04
pλ2/λ3 = 0.05

Table 3.10: Comparing the consistency of result within classes across the two different
datasets. Here we report the results of the three ratio comparisons for the red channel.

Discussion

As far as the 20-subjects dataset is concerned, Figures 3.22 and 3.23 present two

interesting differences between the NSR and Afib classes: for PP time interval data,

NSR tends to be bimodal and less spread than Afib, which presents only one peak

and a larger area covered; amplitude data shows a larger spread for the Afib series,

with some exceptions that may be due to noisy acquisitions both in the NSR and Afib

groups, as shown by large transients in the unrestricted-range Poincaré plot.

Testing generally differentiates between the eigenvalue ratios of the two groups,

NSR and Afib, only for the red channel of the clinically-validated dataset, for the

PP time feature. Conversely, ratios are almost always comparable across the two

datasets, with the only exception of the amplitude for Afib subjects for the λ1/λ2 ratio.

Summing up, only the red channel seems to have some degree of useful information

embedded. We must stress the fact that each dataset has its own drawbacks: the

larger is not clinically validated, the smaller has very few samples per each group.

This could be a factor influencing our synthetic dataset, which aims to reproduce the

mean and variance of such a small set: the implicit hypothesis that 10-20 samples are

representative of what a larger collection would yield is very strong and must be taken

into consideration when assessing the strength of our previous result. Nevertheless,

the results do look promising, with the potential for assessing different morphological

features of the distributions of data on the Poincaré Plots, according to their rhythms.

The robustness of further findings would benefit from a large dataset of accurately

labelled signals and metadata.
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4 Discussion and conclusion

4.1 Discussion

We now wish to retrace our main results and provide more context and perspective to

these findings.

In Section 3.1 we resolved to characterize the dataset, by assessing whether any

factor, such as age, sex, BMI, device, lifestyle, would display signature properties of

the dataset.

Our findings indeed recovered some differences, between single groups of a class,

such as between the distributions of time intervals in iPhone 5S and iPhone 7 Plus

and amplitude for iPhone 5S and iPhone 7. While this result in itself might be of

limited practical interest, both because of the fast life-cycle of devices and because of

the limited applicability to an analytical pipeline, we might speculate that it reflects

some difference in the camera of the two devices.

BMI shows a degree of difference between the distribution values too, especially

when considering peak area, between the underweight class and the overweight and

normal class. While this result might prove true, it must be noted once again that

the underweight class had just some tens of subjects, whereas the others were more

abundant.

Age, we could summarize, shows a light divide at the age of forty, with the PP time

interval feature different between the younger group and those above forty years old.

We warn that this finding however is not bulletproof, since some classes do not result

in significant differences, such as those older than 70 when compared to people under

30.

We found no difference within the lifestyle class, in contrast to our expectations,

which would refer to the commonplace notion that sedentary lifestyles do worsen

cardiac health. The noise level of the dataset could have contributed to this. Moreover,
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we must remember that labels are self-reported and loosely defined and that our

non-parametric tests are constrained by the Bonferroni correction which can lead to

a high number of false negatives. Moreover, a lot of other co-factors might hide any

underlying difference.

In fact, this might very well be the most important limitation of our exploratory

analysis, that it wasn’t multivariate and, as such, perhaps, it still has not delved deep

enough into the layers of overlap.

Other findings denote that the Weibull distribution often (and, less often, the

log-normal) might describe the data distributions, even though on several instances

no distribution was found.

It is interesting to note that, in agreement with our expectations (from our readings

in literature [12]), we noticed that red and green channel produce fairly similar results,

whereas the blue channel does not.

In Section 3.2 we followed through with our analysis of the issue of signal quality,

that we started in Chapter 2, the correct classification of which is of crucial importance

to the feasibility of accurate real-time monitoring of the cardiac rhythm type, and

possibly diagnostics. It is important to note that several works either focused on

small sized sets of controlled acquisitions to address signal quality alone or focused

on classifying the rhythm class without a control on signal quality, apart from the

pre-processing pipeline.

We chose to explore the possibilities of dynamic time warping, a technique to

achieve a better match of two signals, on a multiple-peak segment-wise approach, and

we combined it with some very straightforward signal quality indexes widely used in

literature.

The optimization of the match between the signals proved tricky, but the classes

were indeed distinguished. The solution of our optimization class-wise does not

avert the fact that many distance features of the different classes overlap for the

vast majority of their values, though. When combined with the other SQIs, the DTW

distance feature produces a good result in a classification test by means of a neural

network, achieving almost 89% accuracy on the test set, shown to the model only after

the 5-fold cross validation was completed. This result is a good starting point, given

the simplicity of the features provided and considering the small size of our dataset,

which had to be under-sampled to achieve class balance and has thus to consider class
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size as the limiting factor. However, it performs far worse than other techniques have

achieved, which is even above 95% [33].

Building upon the notion of chaotic systems, as the heart beat is regarded to be, in

Section 3.3 we aimed at exploiting Poincaré plots, a kind of recurrence plots widely

used in the assessment of heart rate variability, first to a small, clinically-labelled

dataset and subsequently to our larger dataset, in order to check for different forms of

the Poincaré plots, between the Afib and NSR classes.

We used the ratios of the magnitudes of the eigenvalues of the covariance matrix

to assess the relative spread of the data in the Poincaré plots. We found significant

differences on the distributions for the PP time values, when the ratio involved the

largest eigenvalue. This dataset only had labels for the red channel.

The smaller pilot dataset shows instead significant values when the eigenvalues

are divided by the third largest eigenvalue. Limitation of this analysis involve several

factors: firstly, the clinically-reliable set is very small, but also there is no label referring

to the quality of the data in it. We suspect that some of its data have a high degree of

noise, however we were not able to unambiguously support or disprove this suspicion.

It is worth looking deeper into these results: more robust conclusions could be drawn

by performing the analysis on a large dataset, labelled reliably.

Conversely, the larger dataset has been labelled, even though not clinically or

selectively for segments of the set, which would be preferable to the global quality and

confidence scores that we had, as segments of partial lower quality might influence

the results.

The comparison of results between the two datasets suffers from the class imbal-

ance. Even the synthetic generation of samples does not fully address this problem, as

the original dataset for generation is indeed very small and might not be sufficient to

accurately represent a wider population. A large-size, reliably-labelled dataset would

prove crucial for obtaining more robust results.
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4.2 Conclusions

Concluding, we might state the promising and vast field of PPG-based cardiac health

monitoring faces great challenges if it is to provide real-time feedback and diagnostics

to end users or health care providers.

The open issue of dealing with noisy measurements when addressing different

type of rhythms for clinical purposes is such, open. Our piece of research points to the

direction of the strong need for accurately labelled measurements and multivariate

analysis, to conclusively answer the questions of underlying effects in different groups.

A heart rhythm classification that takes into account also signal quality seems to

be within reach, especially by exploiting the power of machine learning data analysis

techniques.

The physical approach of recurrence of the chaotic time series yields promising

findings as far as discerning between NSR and Afib rhythms is concerned. At this

stage, classification is potentially possible via analysing the 3D spread of the Poincaré

plots of the time intervals of a signal.

4.3 Possible developments

As the field is thriving with research, several possibilities can be further pursued.

Specifically, several times during our analysis, we felt the need of using a growing

number of reliably labelled signals and clinical reports, so to assess the correspondence

of user-reported data to the signal features or, more simply, to be able to rely on

the labels provided. On that, a multivariate analysis of the data could discriminate

different properties of the groups.

Some publicly accessible PPG databases are available, some are annotated, or

present also simultaneous labelled ECG leads, which can be used to reliably assess the

heart rhythm.

Signal quality classification might benefit from additional features and exploring

the performances of other classifiers.

The potential of several quantities is still left to explore within the chaos theory

approach; however, the crucial goal to achieve in future is to expand the size of

reliably-labelled datasets, in order to obtain robust results.
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