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Abstract

This work is focused on the numerical study of the inflationary evolution in the presence
of backreaction effects due to the production of primordial magnetic fields.
In the context of inflationary string models it is possible to generate a coupling of the
inflaton with the electromagnetic field through the introduction of the Gauge Kinetic
Function in the standard electromagnetic Lagrangian term. Since the inflaton changes
monotonously during inflation it is natural to assume that the coupling function is a
decreasing function of time, leading to the presence of a high electric energy density.
This fact, known as the backreaction problem, does not allow to solve the background
and Maxwell equations separately, and so it is often avoided.
Recent researches, however, showed that the backreaction can cause a slowdown in the
evolution of the inflaton towards its minimum. This effect could play a crucial role
in string inflationary models where the inflaton field range can be upper bounded by
geometric conditions associated with the size of the extra dimensions. These Kähler
cone conditions for the string moduli space can forbid the possibility to obtain enough
e-foldings of inflation, and so a slowing-down of the inflaton due to backreaction effects
can help to get a better phenomenology.
The analysis is carried out in two particular models of inflation, Kähler Inflation and
Fibre Inflation, where the inflaton is a closed string mode belonging to the hidden sector.
In both cases we obtain the desired slowdown, although in Kähler Inflation it is more
difficult due to a stronger dependence of the potential on the microscopic parameters of
the underlying compactification theory.





Sommario

Questo lavoro di tesi si focalizza sullo studio numerico dell’evoluzione inflazionaria in
presenza di effetti di backreaction dovuti alla produzione di campi magnetici primordiali.
Nell’ambito dei modelli inflazionari di stringa è possibile generare il coupling dell’inflatone
con campi elettromagnetici tramite l’introduzione della Funzione Cinetica di Gauge nella
Lagrangiana elettromagnetica ordinaria.
Dato che l’inflatone evolve in maniera monotona durante l’inflazione, è naturale assumere
che la funzione di coupling sia decrescente nel tempo, il che implica la presenza di un’alta
densità di energia elettrica. Come risultato, noto come problema del backreaction, le
equazioni di background e quelle di Maxwell non possono più essere risolte separata-
mente e di conseguenza tale regime viene spesso evitato.
Recenti ricerche hanno tuttavia evidenziato come il backreaction possa causare un ral-
lentamento dell’inflatone nella sua evoluzione verso il minimo del potenziale. Tale ef-
fetto potrebbe avere un ruolo molto importante nei modelli inflazionari di stringa dove
l’intervallo dei valori permessi per l’inflatone può essere superiormente limitato da con-
dizioni geometriche associate alle dimensioni extra. La presenza di tali condizioni del
cono di Kähler per lo spazio dei moduli può essere in contrasto con la possibilità di avere
abbastanza e-foldings di inflazione e quindi un rallentamento dell’inflatone, dovuto al
backreaction, potrebbe essere utile per avere maggiore accordo con la fenomenologia.
A tal fine sono stati considerati due particolari modelli inflazionari di stringa, quello
della Kähler Inflation e quello della Fibre Inflation, nei quali l’inflatone è un modo di
stringa chiuso appartenente al settore nascosto. In entrambi i casi si ottiene alla fine
il rallentamento desiderato, anche se nel caso della Kähler Inflation con maggiore dif-
ficoltà a causa della dipendenza più intensa del potenziale dai parametri microscopici
provenienti dalla compattificazione delle dimensioni extra.
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Introduction

One of the most fascinating questions in physics is related to the origin and evolution of
the Universe in the first moments of its existence. Today, the most successful cosmolog-
ical paradigm able to describe the physics at early times is that of primordial inflation.
According to this theory, the Universe, before its standard evolution in the radiation and
matter cosmological era, has undergone a rapid phase of accelerated expansion driven
by a scalar field. In this way, one can explain successfully the temperature anisotropy
observed in the Cosmic Microwave Background and can resolve many problems related
with the initial conditions emerging in the Standard Cosmological Model.
The particular energy and density conditions that characterize this period of cosmic
evolution make inflation an ultraviolet sensitive phenomenon. To address the critical
questions about the inflationary dynamics it is required, therefore, to treat it in a com-
plete theory of quantum gravity which unifies in a consistent way Quantum Field Theory
and General Relativity.
The search for a unified theory of elementary particles and their interactions has culmi-
nated in the last years to the development of string theory. Since it is defined in a consis-
tent way in ten dimensions, in order to extract any information about four-dimensional
physics, we need to consider the six extra dimensions very small and compactified within
a suitably six dimensional complex manifold. The low energy effective action of string
compactifications on Calabi-Yau three-folds gives rise to a large number of uncharged
massless scalar fields with a flat potential which lead to long range scalar forces unob-
served in nature. It should, therefore, exist a mechanism that generates a potential for
them. This makes string theory a particularly suitable context to study inflation since
recent developments in moduli stabilisation techniques have revealed the emergence of
many closed string modes which are excellent candidates to drive inflation.
In this thesis we focus, in particular, on two inflationary string models, Kähler Inflation
(KI) and Fibre Inflation (FI), which arise in the context of Type IIB compactifications
embedded in a promising moduli stabilisation scheme called the Large Volume Scenario
(LVS).
The aim of our analysis is the numerical study of the inflationary evolution in presence
of backreaction effects due to the coupling of the inflaton with the electromagnetic field.
To this end we modify the standard electromagnetic Lagrangian term via the introduc-
tion of a coupling function which depends on time through the inflaton.

1



From the numerical analysis, it turns out that the presence of backreaction changes the
ordinary inflationary dynamic and could cause a slowdown of the inflaton field. This
fact is very useful because it could in principle make reconcile the geometrical limits
that emerge in string theory due to the Kähler cone conditions of the moduli space with
the phenomenological requirement, coming from the observations, of obtaining enough
e-foldings of inflation.

In the first three chapters, we introduce the necessary tools for the understanding of
inflation and the theory of compactification and moduli stabilisation. More precisely, in
the first chapter we present the Standard Cosmological Model, its problems and how the
introduction of an initial inflationary phase can resolve them, as well as Cosmological
Perturbation Theory.
In the second chapter we describe the theory of Supersymmetry which is necessary for
the internal consistency of string theory.
String theory compactifications are analyzed in the third chapter where we present all
the necessary elements for its understanding while in the fourth chapter the techniques
of compactification and stabilisation are applied to the two inflationary models which
we are interested in.
In the fifth chapter there is the numerical analysis of the inflationary evolution and the
comparison of the results coming from the two regimes with and without backreaction.
After presenting our conclusions, we describe some proposals for future work that can
be carried out based on the formalism developed in this thesis.
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Chapter 1

Inflation

The Standard Cosmological Model, developed during the second half of the last century,
provides a detailed description of the current state of the Universe and of its thermal
history. It is based on General Relativity, the advent of which has opened the way
for a systematic study of theoretical cosmology. Its main assumption, inspired by two
fundamental observations i.e. the recession of galaxies, discovered by Hubble and the
presence of the Cosmic Microwave Background, discovered by Penzias and Wilson, is
that on sufficiently large scales the Universe appears homogeneous and isotropic. On
smaller scales, instead, there is a strong inhomogeneity, due to the gravitational attrac-
tion that has concentrated matter into stars, galaxies and galaxy clusters.
According to the Standard Cosmological Model, after the Big Bang, the Universe began
to cool down and expand until the present day. This evolution is divided into two phases,
one dominated by radiation and the other dominated by matter whereas today we are
experiencing a phase of accelerated expansion driven by the cosmological constant. In
contrast to this well-defined picture we have no certain knowledge about what happened
well before nucleosynthesis. Thanks to the new observations and the development of
theoretical physics, we know that the theory must be completed by an initial period
of accelerated expansion occurring before the radiation era, called inflation, in order to
solve many phenomenological problems that emerge in the standard cosmology. In this
way, we obtain a simple explanation for the homogeneity and flatness of the Universe
as well as for the absence of cosmic relics. This rapid expansion at very early times
provides also a mechanism for the origin of the observed large-scale structure based on
the presence of quantum primordial fluctuations.
Inflation is an ultraviolet sensitive phenomenon, and so it cannot be described by ordi-
nary effective theories but it has to be understood within the framework provided by
an ultraviolet completion. String theory, is one of the most promising candidates to
describe the initial evolution of our Universe as it is a theoretical model which unifies
Quantum Field Theory and General Relativity in a consistent way. This chapter presents
the basic notions of the standard and inflationary cosmology that we will use later in a
string cosmology context.
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1.1 The Standard Cosmological Model

The most important feature of modern cosmology is the Cosmological Principle accord-
ing to which on sufficiently large scales the Universe is homogeneous and isotropic. This
assumption together with the laws of General Relativity form the basis of the Standard
Cosmological Model. In this context, the Universe can be viewed as a perfect fluid with
two main components, matter and radiation.
The metric which is in agreement with the cosmological principle is found by foliating the
spacetime with spatial three-dimensional homogeneous surfaces Σt of constant curvature
K and by using comoving coordinates which identify the class of static geodetic observers
as privileged. The result is the Friedmann-Robertson-Walker (FRW) metric which de-
scribes a spacetime manifold that admits spatial three-dimensional homogeneous and
isotropic sections of constant curvature K.

dS2 = dt2 − a2(t)

(
dr2

1− kr2
+ r2(dθ2 + sin2θ dφ2)

)
(1.1)

All the dynamics, expressed in terms of the cosmic time, is contained in the scale factor
a(t), which depends on the distribution of matter in the Universe and it is determined
by Einstein equations. On the basis of k = K/|K| we can distinguish between three
possibilities:

• k = 0

dS2 = dt2 − a2(t)

(
dr2 + r2(dθ2 + sin2θ dφ2)

)
(1.2)

With the change of coordinates

x = r cosφsinθ y = r sinφsinθ z = r cosθ

θ ∈ [0, π] φ ∈ [0, 2π)

the spatial metric becomes

dσ2 = dx2 + dy2 + dz2 (1.3)

which describes a spatially flat surface and therefore it gives rise to a flat universe.
In this case the whole curvature is contained in time.

• k = 1

dS2 = dt2 − a2(t)

(
dr2

1− r2
+ r2(dθ2 + sin2θ dφ2)

)
(1.4)
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In order to remove singularities on r = ±1, it is convenient to use r = sinχ in
terms of which the spatial metric becomes

dσ2 = dχ2 + sin2χ (dθ2 + sin2θ dφ2) (1.5)

Through the change of coordinates

x = a0 sinχcosφsinθ y = a0 sinχsinφsinθ z = a0 sinχcosθ w = a0 cosχ

χ ∈ [0, π] θ ∈ [0, π] φ ∈ [0, 2π)

we obtain
dσ2 = dx2 + dy2 + dz2 + dw2 (1.6)

which is a three-dimensional sphere immersed in R4. In this case the Universe has
positive curvature and it is compact with finite volume.

• k = −1

dS2 = dt2 − a2(t)

(
dr2

1 + r2
+ r2(dθ2 + sin2θ dφ2)

)
(1.7)

We have again singularities which are removed by the redefinition r = sinhχ

dσ2 = dχ2 + sinh2χ (dθ2 + sin2θ dφ2) (1.8)

Through the change of coordinates

x = a0 sinhχcosφsinθ y = a0 sinhχsinφsinθ z = a0 sinhχcosθ w = a0 coshχ

χ ∈ [0,∞) θ ∈ [0, π] φ ∈ [0, 2π)

we get
dσ2 = dx2 + dy2 + dz2 − dw2 (1.9)

This is a hyperboloid immersed in the Minkowski space which gives rise to non
compact spaces with constant negative curvature

More generally, in the coordinates (t, χ, θ, φ) the metric becomes

dS2 = dt2 − a2(t)

(
dχ2 + S2

k(χ) (dθ2 + sin2θ dφ2)

)
(1.10)

with

Sk(χ) =

{ sinχ, k = 1
χ, k = 0

sinhχ, k = −1
(1.11)
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The worldlines of isotropic observers (χ, θ, φ) = constant are the geodetics and so are at
rest with respect to the matter contained in the Universe. In the view of the Universe
as a cosmological fluid, the role of isotropic observers is played by galaxies, which move
away from each other with a relative velocity given by Hubble’s law

v = Hr (1.12)

where the Hubble parameter H(t) = ȧ(t)/a(t) measures the expansion rate of the Uni-
verse and r is the proper distance of the galaxies. The dot always represents the derivative
with respect to the cosmic time t.
The expansion is studied also through the redshift z, which determines the difference be-
tween the wavelength of a signal λe emitted at time te and that measured by an observer
in motion with respect to the source λ0, at the time t0 > te.

z =
λ0 − λe
λe

(1.13)

We find

1 + z =
a(t0)

a(te)
(1.14)

In order to understand the dynamics of the Universe, it is necessary to determine the
evolution of the scale factor through the Einstein equations

Rµν −
1

2
gµνR = 8πGTµν (1.15)

Rµν is the Ricci tensor, R is the scalar curvature and Tµν is the stress-energy tensor of
a perfect fluid

Tµν = −pgµν + (ρ+ p)uµuν (1.16)

where uµ is the 4-velocity, ρ is the energy density and p the pressure. Homogeneity
implies that ρ and p are functions only of time. There are three unknown functions
a(t), ρ(t), p(t) and therefore we need an equation of state that relates the energy density
and pressure. The sources of the cosmic gravitational field can be described as perfect
barotropic fluids with equation of state

p = wρ (1.17)

where w is a constant. From the conservation law of the stress-energy tensor Tµν;µ = 0
we find

ρ̇ = −3H(t)(ρ+ p) (1.18)

which can be rewritten like
d

dt
(ρa3) = −p d

dt
(a3) (1.19)

From the generic equation of state (1.17) we have
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d

dt
(ρa3) = −ρw d

dt
(a3)⇒ dρ

dt
a3 + 3ρa2da

dt
= −3ρwa2da

dt
⇒ dρ

ρ
= −3(1 + w)

da

a

∫ ρ

ρ0

dρ

ρ
= −

∫ a

a0

da

a
3(1 + w)⇒ ρ(t)

ρ0
=

(
a(t)

a0

)−3(1+w)

⇒ ρ(t) = ρ0

(
a0

a(t)

)3(1+w)

(1.20)

where a0 and ρ0 are the current values of the respective quantities. Looking on (1.20) we
can distinguish between three cases corresponding to the three different relevant fluids:
Barionic matter is grouped into stars, galaxies and galaxy clusters. On a cosmic scale
the single galaxy is described by a grain of dust and so the pressure can be neglected.
Galaxies in addition to gas, intergalactic and interstellar powders and black matter are
contribute to the matter energy density ρm. In this case

wm = 0 pm = 0 ρm(t) = ρ0,m

(
a0

a(t)

)3

(1.21)

or

ρm(t) = ρ0,m(1 + z)3 (1.22)

so matter density decreases with the expansion of the Universe as ρm(t) ∝ a−3.
The radiation energy density ρr, on the other hand, is composed mostly by the CMB
but also from the cosmic neutrinos background and it is characterized by

wr =
1

3
pr =

ρr
3

ρr(t) = ρ0,r

(
a0

a(t)

)4

(1.23)

or

ρr(t) = ρ0,r (1 + z)4 (1.24)

so decreases with the expansion of the universe as ρr(t) ∝ a−4.
Finally, we have the energy density of dark energy the contribution of which is equivalent
to that of a positive cosmological constant characterized by

wΛ = −1 pΛ = −ρΛ (1.25)

The energy density ρΛ = Λ
8πG remains constant regardless of the evolution of the scale

factor. The total energy density is given by the sum of all these components

ρtot = ρm + ρr + ρΛ (1.26)

but the evolution of the Universe is driven by the one that dominates in each cosmological
period.
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Figure 1.1: Different Cosmological Epochs

Since the radiation energy density, which is the dominant one immediately after the
Big Bang, decreases faster than that of matter while that of the cosmological constant
remains constant, we can distinguish three different eras that have followed one another
as it is described in Figure (1.1). Right after the Big Bang, the Universe was dominated
by radiation, next has entered in the matter era, and today we are in the dark energy
era with the Universe that undergoes accelerated expansion. The transition from the
radiation era to the matter era has occurred when ρr = ρm at zeq = 3360 ± 70 about
61,000 years after the Big Bang.

By introducing the stress-energy tensor of the perfect fluid as the source of the Einstein
equations we obtain the Friedmann equations

ȧ2 + k =
8πG

3
ρa2 (1.27)

ä = −4πG

3
(ρ+ 3p)a (1.28)

These equations in addition to the equation of state allow us to determine the three
unknown functions a(t), ρ(t) and p(t). In terms of the cosmological parameter defined
as

Ω =
ρ

ρc
(1.29)

where ρc = 3H2/8πG is the critical density corresponding to the flat universe the equa-
tion (1.27) can be rewritten as

ȧ2

a2
=

8πG

3
ρ− k

a2
(1.30)

It follows that

Ω− 1 =
k

H2a2
(1.31)
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which is a very useful equation for the comparison with observations. More precisely,
studying the cosmological parameter we can get information on the geometry of our
Universe. { Ω > 1⇒ ρ > ρc k = 1

Ω < 1⇒ ρ < ρc k = −1
Ω = 1⇒ ρ = ρc k = 0

(1.32)

The actual value of Ω, found through observations, is Ω0 = 1, 000(7), which means that
our Universe is almost flat.
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1.2 Problems of the Standard Cosmological Model

To study the propagation of a signal in the FRW metric instead of physical time, t, it is
better to use the conformal time η,

η =

∫
dt

a(t)
(1.33)

in terms of which the (1.1) becomes

dS2 = a2(η)

(
dη2 − dχ2 − Σ2

k(χ)(dθ2 + sin2 θ dφ2)

)
(1.34)

A massless particle is characterized by dS2 = 0, and so

dη2 = dχ2 ⇒ χ(η) = ±η + const (1.35)

where we have chosen, without loss of generality, dθ = dφ = 0. We can obtain, therefore,
the maximum comoving distance traveled from the moment of Big Bang, ti until the
moment t under consideration that is called Particle Horizon:

χp(t) = χ(t)− χ(ti) = η − ηi =

∫ t

ti

dt

a(t)
(1.36)

At time η the events which are at χ > χp(η) are not accessible to the observer at χ = 0.
The physical dimension of the Particle Horizon is

dp(t) = a(t)χp = a(t)

∫ t

ti

dt

a(t)
(1.37)

It is interesting to note that in reality photons have started to propagate at the time of
decoupling td, thus after the Big Bang and consequently the real Horizon that limits the
light signals is the Optical Horizon

dopt = a(t)

∫ t

td

dt

a(t)
(1.38)

Although the two Horizons do not differ so much between them, the fact that the pho-
tons are released after the Big Bang hides very useful information about the primordial
Universe. When the matter content of the Universe satisfies the strong energy condition
w > 1/3 then the particle Horizon has a value very similar to the Hubble scale 1/H
which is of order of the 4-curvature scale and it characterizes the size of the locally
inertial reference system. However, these two quantities are conceptually different since
the first is identified by kinematic reasoning while the second is a dynamical quantity
related to the expansion rate. When the strong energy condition is violated the Par-
ticle Horizon grows faster than Hubble scale and thus they differ significantly. More

10



precisely, if w < 1/3 then the expansion of the Universe is accelerated ä > 0 and the
Particle Horizon is

dp(t) = a(t)

∫ t dt

a(t)
= a(t)

∫ a da

aȧ
(1.39)

where the integral is convergent for t → ∞ and a → ∞. At large times, therefore, the
particle Horizon is proportional to a(t), while the Hubble scale is H−1 = a(t)/ȧ(t). Since
during accelerated expansion ȧ(t) is an increasing function of time the two quantities
are quite different.
The high degree of homogeneity of the cosmic background radiation that is observed
experimentally it is difficult to reconcile with the presence of a Particle Horizon. In
fact, isotropy implies that at decoupling the plasma was at thermal equilibrium with
temperature fluctuations of order ∼ 10−5. However, to achieve thermal equilibrium,
the various regions of a system must have been in contact for a sufficiently long time.
Considering that the signals propagate at the speed of light and that the Universe has
not existed for an infinite time but began with the Big Bang, the standard model of
cosmology cannot explain such high degree of homogeneity in the CMB. More precisely it
is reasonable to wonder if the radiation coming from opposite directions of the sky comes
from regions that have had enough time to make causal contact and thus thermalize or
not. The size of the regions that have had enough time to thermalize at decoupling can
be approximated with the distance traveled by light emitted at the time of the Big Bang
up to that moment. This size must then be compared with the size of the Horizon which
corresponds approximately to the distance traveled by the photons of the CMB before
reaching us. The comoving distance made from a light signal from the moment when
the scale factor was a1 to the moment when the scale factor became a2, in the case of a
fluid with parameter w, is

∆χ =

∫ a2

a1

da

aȧ
=

∫ a2

a1

a
−3(1+w)/2
0

H0
a−

1
2

+ 3
2
w =

2

3w + 1

1

a0H0

[ (a2

a0

) 1+3w
2

−
(
a1

a0

) 1+3w
2 ]

where we have used the (1.27), and so

∆χ =
2χH

1 + 3w

[ (a2

a0

) 1+3w
2

−
(
a1

a0

) 1+3w
2 ]

where χH =
1

a0H0
(1.40)

which becomes

∆χd = 2χH
(√
a2 −

√
a1

)
∆χr = χH

(
a2 − a1

)
(1.41)

for dust and radiation respectively. As matter becomes dominant at zmat = 8800 and
decoupling takes place at zdec = 1100 we can approximate the whole scale factor evolution
with the one dominated by non relativistic matter. The Horizon at decoupling, with
w = 0, is

∆χdec =

∫ tdec

0

dt

a(t)
=

∫ adec

0

da

aȧ
=

∫ adec

0

1

a
3/2
0 a1/2H0

da = 2χH

(
adec
a0

)1/2

(1.42)
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and since 1 + zdec = a0/adec

∆χdec =
2χH√

1 + zdec
(1.43)

The Hubble radius at decoupling is

∆χH =

∫ a0

adec

da

aȧ
=

2χH

a
1/2
0

(
a

1/2
0 − a1/2

dec

)
= 2χH

(
1− 1√

1 + zdec

)
(1.44)

By confronting the two quantities

∆χdec
∆χH

∼ 1.7◦ (1.45)

it turns out that at decoupling only regions which today form an angle 1.7◦ have had
sufficient time to make thermal contact. Outside the Hubble radius, bodies expand at
speeds higher than light’s and therefore the signals that they send will never reach us. In
other words, the Hubble scale corresponds to the maximum distance of the most distant
observers who could send us signals. The Particle Horizon, on the other hand, gives
us the size of the regions in causal connection at a given moment, which in this case
is the moment of decoupling. It is clear that at the time of decoupling the region in
causal contact, i.e. the one enclosed in ∆χdec, is very small compared to the size of the
region we see today. The uniformity of the CMB, however, implies that at decoupling
the casual connected region had to be greater than the Hubble scale at the same time.
This problem known as Horizon Problem can be solved by adding an initial phase of
accelerated expansion that allows to put in causal contact the entire Universe by the
time of decoupling.
Another problem that cannot be solved in the Standard Cosmological Model is the
Flatness Problem. The observations suggest that the actual density of the Universe is
very close to the critical one which means that our Universe is almost flat. In the FRW
model, however, the cosmological evolution moves the density parameter away from unity
and therefore to reproduce the observational evidences it is necessary a unnatural fine-
tuning of the initial conditions. More precisely the evolution of the density parameter is
given by (1.31) and so

dΩ

da
= − k

(a2H2)2

d

da

(
a2H2

)
= − 2k

a2H2

(
1

a
+

1

H

dH

da

)
(1.46)

dH

da
=
dH

dt

dt

da
=
äa− ȧ2

ȧa2
=

1

ȧa

(
−4πG

3
(ρ+ 3p)

)
−1

a
H = − 1

aH

(
4πG

3
(ρ+ 3p) +H2

)
where was used equation (1.28).

dΩ

da
= − 2k

a2H2

(
1

a
− 1

aH2

(4πG

3
(ρ+ 3p) +H2

))
⇒ a

dΩ

da
=

2k

a2H2

(
4πG

3H2
(ρ+ 3p)

)
dΩ

d log a
=

2k

a2H4

4πG

3
(ρ+ 3p) ⇒ dΩ

d log a
= (Ω− 1)Ω(1 +

3p

ρ
) (1.47)
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From (1.47) it is clear that for ordinary matter ρ + 3p > 0, Ω(a) is increasing if Ω > 1
and decreasing if Ω < 1. This means that the solution Ω = 1 is a repulsor and therefore
in order to reproduce the observations we must require |Ω− 1| < 10−64 at Planck time,
which corresponds to an extremely homogeneous initial condition. Even this problem
can be solved by introducing an initial phase of accelerated expansion in which the strong
energy condition is violated. In fact, if w < −1/3, i.e. p < −ρ/3 then from (1.47) the
solution Ω = 1 becomes an attractor and so the energy density assumes its critical value
in a natural way. In order to confirm observations the accelerated expansion has to last
long enough so that the subsequent decelerated expansion governed first by radiation
and then by matter brings the density parameter to a value sufficiently close to one
without any fine-tuning.
If the Hot Big Bang begins at very high temperatures, it emerges the problem of un-
wanted relics that may survive until the present day and that are forbidden by obser-
vations . An example is the gravitino, the particle occurring in supergravity as the
spin-3/2 partner of the graviton. Depending on the theory, there may also be unwanted
topological defects. If in the early Universe a GUT symmetry is restored then magnetic
monopoles are produced when it is spontaneously broken. Their abundance typically is
higher than allowed by observations unless they are connected by strings. Relic abun-
dances can be reduced to a satisfactory level by the expansion during inflation, provided
that they are produced before the inflationary epoch.
Apart from resolving all these problems the biggest success of inflation is to explain
the origin of primordial inhomogeneities which are responsible for the small anisotropies
in the CMB and that are required for structure formation. In fact, the homogeneous
and isotropic geometry of the standard model does not provide the thermal fluctuations
of cosmic radiation and consequently there are no density fluctuations that could have
been condensed to form the actual observed structure. Today it is believed that the
density and energy fluctuations currently existing on a cosmic scale are due to the quan-
tum fluctuations of matter and geometry amplified during the inflationary phase and
subsequently increased at a macroscopic level.
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1.3 Inflation

Inflation is referred to the period of accelerated expansion governed by a scalar field
that violates the strong energy condition. The inflationary cosmology is not a substitute
for the Standard Cosmological Model but rather an add-on that occurs at very early
times without disturbing any of its successes. To obtain inflation we need matter with
negative pressure, i.e. a scalar field, called inflaton, with Tµν = diag(ρ,−p,−p,−p). In
general there is no equation of state linking pressure and energy density. However, in the
regime where we can neglect the kinetic energy of the field compared to the potential,
it is approximately true that p ≈ −ρ. A scalar field minimally coupled to gravity is
described by the action

S[g, φ] = −
M2
pl

2

∫
d4x
√−gR+ SM [g, φ] (1.48)

where Mpl = 2.4 · 1018 GeV is the reduced Planck mass, R is the scalar curvature,
g = det gµν and SM [g, φ] is the action of the scalar field modified accordingly to the
Principle of General Covariance

SM [g, φ] =

∫
d4xLM (φ,∇φ, g) =

∫
d4x
√−g

(
1

2
gµν∂µφ∂νφ+ V (φ)

)
(1.49)

The stress-energy tensor of a scalar field in General Relativity becomes

Tµν = ∂µφ∂νφ− gµνLM =
2√−g

δSM
δgµν

(1.50)

From the stationary condition for the action we get the Einstein equation (1.15),

0 =
δS

δgµν
= −

M2
pl

2

∫
d4x

δ(
√−g)

δgµν
R+

δR

δgµν
√−g +

δ(
√−g)

δgµν
LM +

√−g δLM
δgµν

= −
M2
pl

2

∫
d4x
(
− 1

2

√−ggµνR+Rµν
√−g

)
− 1

2

√−ggµνLM +
1

2

√−g∂µφ∂νφ

= −1

2

√−g
(
−
M2
pl

2
gµνR+M2

plRµν − Tµν
)

considering Mpl = 1/8πG. From the field equation for the scalar field, instead, we have

∂α
δLM
δ∂αφ

− δLM
δφ

= 0 (1.51)

we find
δLM
δ∂αφ

=
√−ggαµ∂µφ

δLM
δφ

= −√−g V ′(φ)
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and finally
1√−g∂α(

√−ggαµ∂µφ) + V ′(φ) = 0 (1.52)

Using (1.50) in the case of spatially homogeneous, isotropic and flat configurations

dS2 = dt2 − a2(t)δikdx
idxk gµν = diag(1,−a2,−a2,−a2)

where the inflaton depends only on time φ = φ(t), we have

ρ =
1

2
φ̇2 + V (φ) (1.53)

p =
1

2
φ̇2 − V (φ) (1.54)

while the (1.52) becomes

1

a3
∂0(a3g00∂0φ) +

1

a3
∂i(a

3gii∂iφ) + V ′(φ) = 0⇒ 1

a3
3a2φ̇ȧ+ φ̈+ V ′(φ) = 0

φ̈+ 3Hφ̇+ V ′(φ) = 0 (1.55)

Using (1.53), (1.54) in (1.27) with k = 1, we obtain

H2 =
1

3M2
pl

(
1

2
φ̇2 + V (φ)

)
(1.56)

while by replacing them in the (1.28), we have

ä

ȧ
= − 1

3M2
pl

(
φ̇2 − V (φ)

)
(1.57)

In the accelerated expansion ä > 0 and so V (φ) > φ̇2. In particular, if the potential
energy dominates over the kinetic one we can neglect the kinetic terms in the stress
energy tensor: ρ ≈ V (φ) and p ≈ −V (φ) and consequently ρ ≈ −p.

As long as the approximation

V (φ) >>
1

2
φ̇2 (1.58)

is true, the Universe undergoes an accelerated expansion with exponential growth of
the scale factor. To sustain this inflationary regime long enough in order to solve the
problems seen above, while the scalar field moves towards the minimum of the potential
V (φ), its kinetic energy must change slowly

|φ̈| << 3H|φ̇| (1.59)
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As long as the slow roll conditions (1.58) and (1.59) are fulfilled the scalar field in its
motion towards the minimum of the potential starting from a higher value generate a
cosmological constant which drive the expansion. The equations (1.55), (1.56) become

3Hφ̇ = −V ′(φ) (1.60)

H2 =
1

M2
pl

V (φ) (1.61)

The slow roll conditions can be reformulated as conditions for the potential. In fact,
inflation begins if ε� 1 and lasts long enough if |η| � 1, where ε and η are the slow roll
parameters

ε =
M2
pl

2

(
V ′(φ)

V (φ)

)2

(1.62)

η = M2
pl

V ′′(φ)

V (φ)
(1.63)

The amount of inflation that occurs normally is quantified by the number of e-foldings,
i.e. the ratio of the scalar factor at the final time to its value at some initial time.

N(t) ≡ ln
a(tend)

a(t)
(1.64)

where tend is the moment of time when inflation ends. This measures the amount of
inflation that still has to occur after time t, with N decreasing to 0 at the end of
inflation. To solve the Horizon and flatness problems, around 50-60 e-foldings of inflation
are required. In terms of the potential it becomes

N = − 1

M2
pl

∫ φend

φ

V (φ)

V ′(φ)
dφ (1.65)

because from (1.60) and (1.61) we have

V ′(φ) =
3φ̇2

M2
pl

V (φ)

V ′(φ)
H = − φ̇2

M2
pl

V (φ)

V ′(φ)
(1.66)

N = ln
a(tend)

a(t)
=

∫ tend

t

ȧ

a
dt =

∫ tend

t
Hdt = − 1

Mpl

∫ φend

φ

V (φ)

V ′(φ)
φ̇dt

The Universe, through the mechanism of inflation, is driven in a natural way in a state
such that the subsequent evolution, dominated first by radiation and after by matter
leads to that we observe today. The inflationary solutions are attractors and thus all the
solutions approaching one another very quickly to the point of being indistinguishable.
The subsequent evolution is, therefore, independent from the initial conditions before
inflation and the flatness problem is resolved. The maximum distance at which a signal
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can be propagated from an initial moment ti to a final one t, it is equal to the difference
of the corresponding conformal time

∆χ = χ− χi =

∫ t

ti

dt′

a(t′)
= η(t)− η(ti) (1.67)

The conformal time depends on the Hubble radius

η =

∫
dt

a(t)
=

∫
da

aȧ
=

∫
1

a2H
da =

∫
1

aH
d(ln a) (1.68)

From the (1.27) with k = 0 and (1.20) we have

(
ȧ

a

)2

=
8πG

3
ρ =

8πG

3
ρ0

(
a0

a

)3(1+w)

=
ρ0

ρ0c
H2

0

(
a0

a

)3(1+w)

⇒ ȧ = H0
a

3
2

(1+w)

0

a
1
2

(1+3w)

and consequently

1

aH
=

1

ȧ
=

a
1
2

(1+3w)

H0a
3
2

(1+w)

0

(1.69)

which gives the Hubble radius in function of a. If 1 + 3w > 0, the Hubble radius is an
increasing function of a, while if 1 + 3w < 0, it is decreasing.

η =

∫
1

aH
d(ln a) =

∫
a

1
2

(1+3w)

H0a
3
2

(1+w)

0

d(ln a) =

∫
1

H0a
3
2

(1+w)

0

eln a
1
2 (1+3w)

d(ln a)

η =
1

H0a
3
2

(1+w)

0

2

1 + 3w
a

1
2

(1+3w) (1.70)

From this expression it is clear that for ordinary matter w > −1
3 the conformal time

increases with a and at the beginning it is zero. Introducing inflation, on the other hand,
the violation of the strong energy condition 1+3w < 0, implies an initial conformal time
ηi → −∞ and consequently we have a shrinking Hubble sphere, i.e. the decreasing of
the comoving Hubble radius

d

dt

(
1

aH

)
< 0 (1.71)

This means that by violating the strong energy condition the elapsed conformal time
between the initial singularity and the moment of decoupling is much longer. This
explain how very distant points may have been in causal contact in the past resolving
the Horizon Problem (Figure 1.2).

The end of inflation is identified with the end of the slow roll regime ε ∼ 1 and η ∼ 1.
By this time all classical inhomogeneities have been exponentially washed out and the
Universe has became very flat. If the potential has a minimum the scalar field oscillates
around the minimum and these oscillations are damped due to the Hubble expansion.
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Figure 1.2: Resolution of the Horizon Problem

The Inflaton therefore decays and produces the known particles of the Standard Model
(SM). This process, known as Reheating, generates the conditions for the particle den-
sities and for the temperature which are at the beginning of the subsequent evolution of
the Universe correctly described by the Standard Cosmological Model.
More precisely after the end of inflation the inflaton starts to oscillate around the global
minimum of the potential and most of its inflationary energy is transformed first in
kinetic energy and after in standard model degrees of freedom. If we assume a direct
coupling of the inflaton φ with a bosonic field χ

L =
1

2
∂µφ∂

µφ− V (φ)− g2φ2χ2 (1.72)

through the process of spontaneous symmetry breaking we obtain two types of inter-
actions: φχχ and φφχχ. The decays φ → χχ and φφ → χχ transfer the energy at χ
particles which belong to the Standard Model. The equation is

φ̈+ 3Hφ̇+ Γφ̇+m2φ2 = 0 (1.73)

where the additional friction term Γ represents the energy exchange and marks the end of
inflation when it equals the decreasing Hubble parameter H. This description of reheat-
ing ignores quantum corrections, i.e. the backreaction of the classical inflaton oscillations
on the quantum mechanical production of the SM fields. In fact the coupling between
the two fields changes the equation of motion of the χ-particles and this can lead to res-
onance phenomena. In this context we can distinguish two different phases: the initial
preheating which takes place in a regime of broad parametric resonance which eventu-
ally becomes narrow, and the subsequent slow reheating and thermalization where the
classical theory of reheating can be successfully applied to the products of the preheating
process.
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1.4 Quantum Fluctuations during Inflation

In the context of the Standard Cosmological Model it is impossible to explain the pres-
ence of thermal variations in the CMB and the large density fluctuations of the cosmic
matter that have gave rise to the galactic and extragalactic structures which we observe
today.
Inflationary models provide an answer also to this problem. In fact, density and energy
fluctuations currently existing on a cosmic scale are caused by quantum fluctuations of
matter and geometry amplified during the inflationary phase and subsequently grown
to the macroscopic level. More precisely, being the inflaton a quantum entity, it will
have spatially varying fluctuations which imply that different regions of space inflate by
different amounts. These differences in the local expansion histories lead to different
local densities at the end of inflation and consequently to fluctuations in the CMB tem-
perature.
In order to study the evolution of quantum fluctuations of the scalar field, it is in general
convenient to do a Fourier decomposition of the modes that compose it and study the
evolution of each comoving wavenumber. During inflation the comoving Hubble radius
is decreasing whereas in the rest of the whole evolution of the Universe it is increasing.
A fixed comoving scale λ = 1/k therefore may begins its evolution smaller than the
comoving Hubble radius 1/aH while by the end of inflation it becomes larger. When

Figure 1.3: Evolution of cosmic scales

k = aH the corresponding mode crosses the Horizon. It, therefore, stops to oscillate and
begins its amplification.
In order to understand the amplification mechanism we must refer to the theory of cos-
mological perturbations. In a generic gravitational model with two type of sources, a
scalar field and a perfect fluid minimally coupled to gravity we have

G ν
µ =

1

M2
pl

(
T ν
µ + ∂µφ∂

νφ− 1

2
δνµ(∂φ)2 + δνµV (φ)

)
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where φ is the inflaton which satisfies the (1.52) and T ν
µ is the stress-energy tensor of

the perfect fluid which is the source in the subsequent evolution of the Universe. The
unperturbed homogeneous isotropic and flat geometry is given in terms of the conformal
time by

dS2 = a2(η)(dη2 − |d~x|2) (1.74)

In order to obtain perturbations we must add spacetime dependent fluctuations to the
metric and the sources.

gµν(η) + δgµν(η, ~x)

φ(η) + δφ(η, ~x) T ν
µ (η) + δT ν

µ (η, ~x)
(1.75)

These fluctuations are distinguished in scalar, vector and tensor degrees of freedom.
As long as we are in the linear approximation perturbations evolve independently and
therefore we can study them separately. We are interested on the scalar ones because
they have the necessary gravitational instability for the formation of the structures and
for the generation of the thermal fluctuations of the CMB. The tensor perturbations are
responsible for the generation of gravitational waves while the vector ones are rapidly
decreasing with the expansion of the Universe and therefore can be neglected. Since
in our case we are interested on the inflationary regime, we can consider as the only
sources for the Einstein Equations the scalar field and its perturbations fixing T ν

µ = 0
and δT ν

µ = 0. Once all perturbations are introduced, we have to do some redefinitions
through gauge transformations so that they correspond to the same point of the space-
time. There are particular combinations that result automatically gauge invariant the
most important of which is the Curvature Perturbation R. Through a suitable gauge
choice we obtain the inflaton’s perturbation in terms of the inflaton itself and of the
scalar perturbations of the metric, called Bardeen Potentials. To normalize the Bardeen
perturbation in order to describe the evolution of quantum fluctuations we consider the
scalar and gauge invariant variable v which diagonalizes the perturbed action. In fact,
if we expand the unperturbed action

S = −
M2
pl

2

∫
d4x
√−gR+

1

2

∫
d4x
√−g(∂µφ∂

µφ− 2V ) (1.76)

until the orders (δg)2, (δφ)2 we obtain

δS =
1

2

∫
dxdη z2(η)(R′2 +R∇2R) (1.77)

where z is the pump field, i.e. the external cosmological field that amplifies fluctuations.
The prime in this context represents the derivative with respect to conformal time η.
The previous action is equivalent to the

δS =
1

2

∫
dxdη z2(η)(R′2 +R∇2R) +

d

dη
(zz′R2) (1.78)
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and through the canonical variable v = zR, it becomes

δS =
1

2

∫
dxdη (v′2 + v∇2v +

z′′

z
v2) (1.79)

The equation of motion that follows from (1.79) is

v′′ −
(
∇2 +

z′′

z

)
v = 0 (1.80)

which gives a canonical description of the evolution of scalar perturbations. The nor-
malization of v fixes the normalization of R which is a very useful quantity, as it links
the evolution of a mode from the Horizon exit during inflation to its re-entry during the
standard cosmological evolution. In the slow roll approximation where φ′ = 0, the pump
field is equivalent to the scale factor. In order to solve (1.80) we expand the field in a
Fourier expansion

v(η,x) =

√
V

(2π)3

∫
dk vk e

ikx (1.81)

where vk satisfies the

v′′k +

(
k2 − z′′

z

)
vk = 0 (1.82)

The effective potential is z′′

z and the pump field during inflation acts to increase the
amplitude of the Fourier components present in an appropriate sector by transferring
energy from unperturbed external fields to individual fluctuations. During the inflation-
ary epoch

a(η) ∼ (−η)α with η → 0− (1.83)

Equation (1.82), therefore, assumes the form

v′′k +

(
k2 − α(α− 1)

η2

)
vk = 0 (1.84)

For k � |η|−1 the effective potential is negligible and therefore the modes oscillate
without any amplification. For k � |η|−1, on the other hand, the equation becomes

v′′k
vk
' a′′

a
⇒ vk ∼ a (1.85)

so they follow the evolution of the scale factor and therefore their amplitude grows in
a accelerated way. In conclusion modes with wavelength bigger than the Hubble scale
(which we often call with a certain abuse Horizon), i.e. the ones with k � |η|−1 are
sensible to the geometry and are therefore amplified. For wavelength inside the Hubble
Horizon k � |η|−1, instead, there is no amplification. In the interval ηex < η < 0 where
ηex is the moment of Horizon exit of the mode k, ( k|ηex| ∼ 1), the (1.85) becomes

vk(η) ' z(η)αk + z(η)βk

∫ η

ηex

dη′

z2(η′)
+ · · · (1.86)
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where the constants αk and βk are fixed by imposing the initial conditions at the time
η = ηex. In the case of z ∼ a ∼ (−η)α, vk assumes the explicit form

vk(η) = α̃k(−η)α + β̃k(−η)1−α (1.87)

For accelerated expansion the first term is always dominating for η → 0− and we actually
find that outside the Horizon the amplitude of the mode vk grows in a inflationary way
with respect to the corresponding amplitude inside the Horizon. In this case therefore
the potential term is the dominant one.
The general solution of (1.84) is expressed in terms of the Hankel functions of first and
second kind

vk(η) = η1/2(AkH
(2)
ν (kη) +BkH

(1)
ν (kη)) (1.88)

where ν = 1/2 − α, and Ak, Bk are constants of integration that are fixed through
appropriate initial conditions. In order to fix the initial conditions we must keep in mind
that the quantum fluctuations produce microscopic perturbations of the homogeneous
and isotropic standard model.
The action (1.79) can be viewed as the action of a free scalar field with time-dependent
mass m = z′/z in Minkowski space. The time dependence of the mass is caused by the
interaction of the perturbations with the homogeneous expanding background. It can
therefore be quantized in the canonical way following the ordinary procedure through
creation and annihilation operators. The associated momentum is

π =
δL
δv

(1.89)

Fields become operators satisfying the commutation relations

[v̂(η,x), v̂(η,y)] = 0 [π̂(η,x), π̂(η,y)] = 0 [v̂(η,x), π̂(η,y)] = iδ(x− y) (1.90)

The modes vk satisfy the relation

vkv
′?
k − v′kv?k = i (1.91)

For η → −∞, equation (1.84) becomes

v
′′
k + k2vk = 0⇒ v′k = −ikvk (1.92)

and from the (1.91) we find the correct normalization of the vacuum state

vk =
e−ikη√

2k
for η → −∞ (1.93)

This asymptotic state is called Bunch-Davies vacuum. By imposing this initial condition
we can normalize the general solution (1.87) and using the limit of Hankel Functions for
large arguments k|η| � 1

H(1)
ν (kη)→

√
2

πkη
eikη+iεν H(2)

ν (kη)→
√

2

πkη
e−ikη−iεν (1.94)
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with εν a factor of constant phase, we find

Ak =

√
π

4
Bk = 0 (1.95)

In conclusion the solution becomes

vk(η) =

(
πη

4

)1/2

H(2)
ν (kη) (1.96)

Once we know the correct normalization for the Fourier components of the canonical
coordinate, we can compute the normalised solution for any other scalar perturbation.
To this end from a dimensional analysis we can parameterize the pump field using the
convenient Planck units:

z(η) =
Mpl√

2

(
− η

η1

)α
η < 0 (1.97)

where η1 is an arbitrary time scale, for example the time when inflation ends. From the
definition of the curvature perturbation we have

Rk(η) =
vk
z

=
1

Mpl

(
πη1

2

)1/2(
− η

η1

) 1
2
−α
H(2)
ν (kη) (1.98)

For a generic scalar perturbation ψ we can find the power spectrum for the various
modes k by calculating the Fourier transformation of the two point correlation function

ξψ(r) = 〈ψ(x, t), ψ(x′, t)〉 (1.99)

with x′ = x+r, and by valuating this function at scales equal to the comoving wavelength
of each mode. If

ψ(x) =

∫
d3k

(2π)3
ψke

ikx

then

ξψ(r) =
1

V

∫
d3x ψ(x)ψ(x + r) =

∫
d3x

∫
d3k

(2π)3

d3k′

(2π)3
ψkψk′e

i(k+k′)x+ik′r

=

∫
d3k

(2π)3

d3k′

(2π)3
ψkψk′e

ik′rδ(k + k′) =

∫
d3k

(2π)3
|ψk|2e−ikr =∫ ∞

0

k2dk

(2π)3

∫ π

0
2π sin θdθe−ikr cos θ|ψk|2 =

∫ ∞
0

dk

2π2k

sin(kr)

kr
k3|ψk|2 =

∫ ∞
0

dk

k

sin(kr)

kr
∆2
ψ

∆2
ψ(k) =

k3

2π2
|ψk|2 (1.100)

is the power spectrum of the perturbation. Its square root controls the relative amplitude
of the various modes and the typical amplitude of the fluctuations on length scales
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r ∼ k−1.
Outside the Horizon, i.e. for k|η| � 1, we can use the limit of small arguments of the

H
(2)
ν (kη) :

H(2)
ν −→

k|η|�1
p?ν(kη)ν − iqν(kη)−ν + · · ·

where the complex coefficients q, p depend on ν and they have unitary modulus. In an
expanding universe α < 0, and so the expansion is dominated by the second term. The
power spectrum of R for k|η| � 1, from (1.98) becomes

∆2
R =

k3

2π2
|Rk|2 = |qν |2

k3η1

4πM2
pl

(kη1)−2ν =
|qν |2
4π

(
k1

Mpl

)2( k

k1

)3−2ν

(1.101)

where k1 = 1/η1. This spectrum is time independent and therefore it remains constant
for all modes outside the Horizon until the time of their possible re-entry. It is convenient
to express this constant spectrum outside the Horizon in terms of the parameters of the
unperturbed model valuated at the moment when each mode crosses the Horizon

R = −i qν
Mpl

(
πη1

2

)1/2

(kη1)−
1
2

+α = −iqν
(
π

4k

)1/2(1

z

)
hc

(1.102)

where we have used the (1.97) and the pump field is valuated at Horizon crossing (hc).
The corresponding spectrum assumes the form

∆2
R =

k3

2π2
|Rk|2 =

|qν |2
8π

(
k

z

)2

hc

=
|qν |2
8π

(
1

zη

)2

hc

=
|qν |2
8πα2

(
H2

φ̇

)2

hc

(1.103)

From this expression we can see that the amplitude tends to be more amplified the
more slowly the scalar field evolves in time. The slow roll inflation models are therefore
particularly efficient in the process of amplifying scalar perturbations.

In the slow roll approximation z′′/z = (2 + 9ε− 3η)/η2, where ε and η are the slow roll
parameters and so the (1.82) becomes

v
′′
k + (k2 − 2 + 9ε− 3η

η2
)vk = 0 (1.104)

Comparing this with the (1.84) we find

ν2 =
9

4
+ 9ε− 3η ⇒ ν ' 3

2
+ 3ε− η (1.105)

In order to obtain the explicit spectral amplitude for the slow roll we observe that for
ν = 3/2 we have qν = i

√
π/2 and α = −1. In consequence,

∆2
R(k) ' 1

8π2M2
pl

(
H2

ε

)
hc

' 1

24π2

(
V

ε

)
hc

(1.106)
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The dependence on k is parameterized by the spectral index ns

ns = 1 +
d ln ∆2(k)

d ln(k)
≡ 1 +

k

∆2(k)

d∆2(k)

dk
(1.107)

For the slow-roll model we have

∆2
R(k) ∼

(
k

k1

)3−2ν

=

(
k

k1

)−6ε+2η

(1.108)

and so
ns = 1− 6ε+ 2η (1.109)

The spectral index is a very useful quantity because relates the theoretical model to
observations. From the WMAP observations on CMB anisotropies in fact, it turns out
ns = 0.96± 0.01. Another important quantity that links theory with observations is the
tensor-to-scalar ratio r related to the presence of primordial gravity ways and therefore
to tensor perturbations. For this we have

r = 16ε (1.110)

For the study of the CMB anisotropies the most relevant quantity is the gauge invariant
Bardeen potential. The amplitude of the modes that exit the Horizon in an inflationary
phase are freezing not only for the curvature perturbations but also for the Bardeen
Potential. In fact, the scalar perturbation outside the Horizon is constant with a value
proportional to this curvature perturbation:

P =
1

150π2

(
V

ε

)
hc

(1.111)

The modes of the Bardeen potential remain constant until the eventually re-entry in
the Horizon at late times. Its values will be therefore the initial conditions for the
subsequently evolution responsible for the CMB anisotropies. Another important aspect
is that through scalar perturbations we can make a selection of the inflationary models
in Ultraviolet theories. This quantity, in fact, is extremely useful to constrain inflation
models embedded in String Theory because it depends on the microscopic parameters
that come from the underlying supersymmetric theory.
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Chapter 2

Supersymmetry

Many of the major developments in physics of the past century arose from identifying and
overcoming contradictions between existing ideas. Today, we are facing the incompati-
bility between General Relativity and Quantum Field Theory since any straightforward
attempt to quantize gravity is non renormalizable. Particle physics is described success-
fully in the context of the Standard Model, augmented by neutrino masses, which is in
excellent agreement with the experimental data but unfortunately it is considered only
an effective theory that fails at high energies and left a lot of open questions. The search
for a complete theory of elementary particles and their interactions unifying the forces
of Nature, including gravity, in a single quantum mechanical framework is focused today
more and more in String Theory. It was developed for the first time in the late 1960s in
order to explain the strong nuclear force and even if, eventually, it was realized that the
correct context for describing the properties of hadrons is Quantum Chromodynamics,
it turns out that String Theory solves many of the problems emerging in the Standard
Model. Today, it is considered a highly promising area of research in Theoretical Physics
with important applications also in Cosmology.
One of the fundamental aims of research is to investigate the physical motivation for the
number and nature of different particles and interactions.
More precisely, in the Standard Model, the fact that there are three families of fermions
and four interactions as well as the value of more than 20 free parameters are fixed by
experiments without understanding their theoretical origin.
In this context there are also problems connected to naturalness as a result of loop cor-
rections to the masses of scalar fields which are not protected by any symmetry and so
are automatically brought to the biggest scale of the theory. It is, therefore, unclear
why there are totally different energy scales like the electroweak scale with respect to
the Planck scale, a problem known as the Hierarchy Problem, or why the cosmological
constant is experimentally so small.
Moreover, in the Standard Model besides the kinetic electromagnetic term FµνF

µν one
can add another coupling of the form θFµνF̃

µν where F̃µν = εµνρσF
µν is the dual elec-

tromagnetic tensor and θ is a parameter. This term is usually overlooked because it can
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be written as a total derivative of fields. In QCD, however, there are some fields, the
istantons, that are not nulls at infinity and as a result the boundary term is non-zero.
The introduction of this term implies the violation of CP symmetry and the production
of an electric dipole moment for the electron which have never been observed experimen-
tally. As a consequence, it emerges a problem of naturalness because while we expect
a natural value for θ the experimental limits constrain the angle to be θ ≤ 10−11. One
possible explanation lies in the existence of a global symmetry U(1)PQ which sets the
angle to the desired null value. When this symmetry is spontaneously broken the pa-
rameter becomes the pseudo-Goldstone Boson of the symmetry which called QCD axion
a(x) and non perturbative effects to the potential induce a minimum at a(x) = 0 and
consequently θ = 0.
The biggest problem, however, as mentioned above, is that any attempt to unify the
Standard Model with gravity is to be considered in the context of effective theories since
the coupling strength of General Relativity has negative mass dimension and so the in-
teraction becomes stronger at higher energies making the theory non renormalizale. For
energies above the Planck scale, in fact, it violates unitarity and stops making sense.
More precisely, gravity is the gauge theory of spacetime transformations. If we want to
make the theory symmetric under the respective local transformations we have to change
the action by introducing the corresponding gauge boson, i.e the graviton. The resulting
field equations are nonlinear and the theory is non renormalizable. In general a theory
with more symmetries is more convergent. In order to improve the divergent behavior of
the interaction it is, therefore, useful to introduce new symmetries like Supersymmetry.
The gauge theory of Supersymmetry is Supergravity (SUGRA), which actually is more
convergent, but still not renormalizable. There is some theoretical evidence that N = 8
SUGRA might actually be free of divergences. The ultimate solution has to be searched
in the context of String Theory which solves definitely this incompatibility introducing a
cut-off on lengths by substituting point particles with one-dimensional extended objects,
the strings.
In the context of an Ultraviolet Completion of the Standard Model it is possible to solve
also all the other problems mentioned above. String Theory is, therefore, one of the
best candidate for this purpose, even if there is no experimental evidence that it is the
correct description of our world.
Supersymmetry is a symmetry that links bosons with fermions providing a solution to
the Hierarchy problem through the mutual cancellation of the loop contributions associ-
ated to the two types of particles. Its introduction ensures that strings are consistently
defined in ten dimensions. The limit at low energies of String Theory is Supergravity.
More precisely SUGRA in ten dimensions is the effective theory of superstrings at en-
ergies lower that the string mass. To get meaningful results from the phenomenological
point of view we need to compactify six of the ten dimensions in a complex manifold with
particular properties, the Calabi-Yau, leaving only four extended dimensions through a
dimensional reduction. Besides having incorporated the Gravitation and having solved
the Hierarchy Problem through the miraculous cancellation, we can also derive all the
parameters of the Standard Model in a natural way from a single unknown parameter
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which is the string tension. Supersymmetry, finally, has opened the way for the advance
of Grand Unification Theories (GUT) because in its context the running of the couplings
lead to their coincidence at high energies, MGUT ∼ 1016 GeV .
For all these reasons, today it is thought that the unification of all fundamental forces
is based on Supersymmetry and on the existence of extra dimensions in the context
of M-Theory which is the more advanced version of String Theory. This direction is
explored not only by theoretical physicists but also by experimental ones which search
for supersymmetric particles in colliders as an important confirmation of the existence
of strings.
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2.1 Basics of Supersymmetry

Supersymmetry is the spacetime symmetry under the exchange of fields with integer
spin and fields with semi-integer spin. The generators of such transformations are anti-
commutating spinors Q such that

Q|Boson〉 = |Fermion〉
Q|Fermion〉 = |Boson〉

The theorem that restricts the possible forms for such symmetries is the Haag-Lopuszanski-
Sohnius extension of the Coleman-Mandula theorem. According to Coleman-Mandula’s
theorem the most general symmetry Lie group in field theories with mass gap is given
by the product of Poincarè group and an internal symmetry group G whose Lie algebra
is [

Pµ, Pν
]

= 0
[
Mµν , Pλ

]
= −iηνλPµ + iηµλPν[

Mµν ,Mλρ

]
= −iηνλMµρ + iηµλMνρ + iηνρMµλ − iηµρMνλ (2.1)[

Ba, Bb
]

= ifabcB
c

[
Ba, Pµ

]
= 0

[
Ba,Mµν

]
= 0

where Pµ and Mµν are the generators of the Poincaré and Ba are those of G group. We
extend this algebra introducing fermionic generators which together with the bosonic
ones form two sets of generators G = G0 ⊕ G1, G0 = {Ba}, G1 = {Fα}. The Lie
superalgebras are Z2 graduated algebras containing a set of bosonic generators with
parity +1 under Z2 and a set of fermionic generators with parity -1 under Z2 satisfying[

Ba, Bb
]

= ifabcB
c[

Ba, Fα
]

= igaαβF
β (2.2)

{Fα, F β} = hαβaB
a

The generalization of Coleman Mandula theorem states that admitting the use of anti-
commutators the most general Lie superalgebras are the supersymmetry algebras which
are extensions of the Poincaré algebra including fermionic generators. To have a realistic
theory, like the Standard Model, fermions must be chiral and this results in a constraint
for the algebra satisfied by the generators Q and Q†. In a general supersymmetric the-
ory we can also have more than one pair of fermionic generators up to a maximum of
4 for normal gauge theories and a maximum of 8 for the theories involving gravitation.
Theories that contain more than one distinct copy of the generators Q and Q† are math-
ematically interesting but do not have any phenomenological prospects because they
cannot allow the existence of chiral fermions. We will therefore focus on the case of a
single pair of fermionic generators (simple SUSY) for which we have:

{Q,Q†} = 2σµPµ {Q,Q} = {Q†, Q†} = 0
[
Pµ, Q

]
=
[
Pµ, Q†

]
= 0

[
Qα,M

µν
]

=
(
σµν
) β

α
Qβ

(2.3)
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where Pµ is the four-momentum generator of spacetime translations, Q† is the hermitian
conjugate of Q and

σ0 = σ̄0 =

[
1 0
0 1

]
σ1 = −σ̄1 =

[
0 1
1 0

]

σ2 = −σ̄2 =

[
0 −i
i 0

]
σ3 = −σ̄3 =

[
1 0
0 −1

]

(
σµν
) β

α
=
i

4

(
σµσ̄ν − σν σ̄µ

) β

α

(2.4)

In the supersymmetric world instead of having single-particle states we have multiplets
of particles states, called supermultiplets, which are irreducible representations of the
supersymmetry algebra. From the expressions written above it is clear that particles
in the same supermultiplet must have equal masses and different spins. Moreover they
must have the same internal charges because the supersymmetry generators Q and Q†

commute with the generators of gauge transformations.
It can be shown that each supermultiplet contains an equal number of fermionic and
bosonic degrees of freedom. This property allows us to distinguish the fundamentals
particles into two supermultiplets: the chiral supermultiplet with one Weyl fermion and
two real scalar fields, and the gauge or vector supermultiplet containing one massless
gauge boson of spin-1, at least as long as the gauge symmetry is not spontaneously bro-
ken, and one Weyl fermion. The chiral fermions of the Standard Model belong to the
chiral supermultiplet and not to the gauge one. The reason is that in the second case
the gauge bosons are transformed in the adjoint representation and consequently since
the particles in the same supermultiplet must transform according to the same represen-
tation also fermions transform in the adjoint representation and this implies having no
chiral fermions but only supersymmetric partners of the gauge bosons, called gauginos.
Supergravity is the gauge theory of supersymmetry. In fact, when SUSY becomes a local
symmetry we introduce a Weyl spinor of spin-3/2 called gravitino. In that case we have
also the gravitational supermultiplet which contains the graviton and the gravitino.
There are also other possible supermultiplets but these are always reducible to combina-
tions of chiral and gauge supermultiplets. In a supersymmetric extension of the Standard
Model each of the known particles belong in either a chiral or a gauge supermultiplet
and must have a superpartner with spin differing by 1/2 unit.
The matter particles, as we have already seen, must be contained in the chiral supermul-
tiplet and therefore their bosonic partner must be spin-0 vector bosons, i.e the sleptons
and the squarks. The Higgs Boson, being a scalar particle, has to belong to the same
supermultiplet. It turns out that it is not enough to have a single supermultiplet con-
taining the Higgs particle but it necessary to have two of this. The vector bosons of the
Standard Model must obviously belong to gauge supermultiplet together with gauginos.
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The particles of the Standard Model together with their supersymmetric partners give
rise to the most basic model phenomenologically supported called Minimal Supersym-
metric Standard Model (MSSM).
It is interesting that while the SM particles have been found experimentally their super-
symmetric partners have never been observed yet although they have the same mass.
It turns out that SUSY must be a broken symmetry in the vacuum state in which we
live. From the theoretical point of view we expect that the symmetry is spontaneously
broken so that SUSY is hidden at low energies but the underlying theory is still super-
symmetric. However, since it is not clear the mechanism through which this happens
we parameterize our ignorance introducing terms which break explicitly the symmetry.
These terms shall be such that it is still valid the miraculous cancellation leading to the
resolution of the Hierarchy Problem. More precisely the contribution to the Higgs mass
due to the coupling of Higgs H with the scalar particle s: λsH

2s2, is given by

∆m2
H =

λ2
s

16π2
Λ2
UV + · · · (2.5)

while the contribution due to the coupling with the fermion f : −λfHff̄ , is

∆m2
H = −|λf |

2

8π2
Λ2
UV + · · · (2.6)

where ΛUV is the highest scale of the theory. Supersymmetry implies the introduction of
two complex scalar fields for each Dirac fermion and so, requiring a specific relationship
between the two coupling constants, we get the mutual cancellation of the loop correc-
tions due to the coupling with the two particles. The SUSY breaking terms that ensure
the validity of the relationship between the coupling constants are called soft terms. The
total Lagrangian in this case is

L = LSUSY + Lsoft (2.7)

Soft terms carry a correction of the form

∆m2
H = m2

soft

[ λ

16π2
ln
( ΛUV
msoft

)
+ · · ·

]
(2.8)

where m2
soft is the the larger mass scale contained in the Lagrangian Lsoft and the non

supersymmetric corrections must vanish in the limit msoft → 0. Since the splitting
between the masses of the particles and their partners depends on msoft their difference
will not be too big and therefore there is hope that they will be found also experimentally
over the next years.
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2.1.1 Supersymmetric Lagrangians in 4 dimensions

The simplest supersymmetric model is the one that describes a free chiral supermultiplet.
The action contains the scalar part that describes a complex scalar field φ and the
fermionic part that contains a single left-handed two component Weyl fermion ψ.

S =

∫
d4x

(
Lscalar + Lfermion

)
(2.9)

where
Lscalar = −∂µφ? ∂µφ Lfermion = iψ†σ̄µ∂µψ (2.10)

A supersymmetry transformation transforms the scalar boson field φ into something
involving the fermion field ψα. The simplest possibility is

δφ = εψ δφ? = ε†ψ† (2.11)

where εα is an infinitesimal, anti-commuting, two-component Weyl fermion constant that
parameterizes the supersymmetry transformation. For the fermionic field, instead, we
have

δψα = −i
(
σµε†

)
α
∂µφ δψ†α̇ = i

(
εσµ
)
α̇
∂µφ

? (2.12)

With these transformations we eventually get

δLscalar + δLfermion = −ε†∂µψ†∂µφ− ε∂µφ?∂µψ + ε∂µφ
?∂µψ + ε†∂µψ

†∂µφ

−∂µ
(
εσν σ̄µψ∂νψ

? + εψ∂µφ? + ε†ψ†∂µφ
)

and so

δS =

∫
d4x

(
δLscalar + δLfermion

)
=̇ 0

To prove that the above action is supersymmetric we must also show that SUSY algebra
is closed, i.e. that the commutator of two supersymmetry transformations parameterized
by two different spinors ε1 and ε2 gives another symmetry of the theory. In fact, we have(

δε2δε1 − δε1δε2
)
φ = i

(
− ε1σµε†2 + ε2σ

µε†1
)
∂µφ

where −i∂µ corresponds to the generator of spacetime translations Pµ in the Heisenberg
picture. In the fermionic case, however, emerges an additional term which is canceled
only on-shell using the classic equations of motion. In fact, if we look at the following
expression(

δε2δε1 − δε1δε2
)
ψα = i

(
− ε1σµε†2 + ε2σ

µε†1
)
∂µψα + iε1αε

†
2σ̄

µ∂µψ − iε2αε†1σ̄µ∂µψ

we note that the last two terms cancel each other out only if the equation of motion
σ̄∂µψ = 0 is valid. To ensure that symmetry holds even off shell we introduce an auxiliary
field, i.e. a new complex scalar field F which does not have a kinetic term.

Lauxiliary = F ?F (2.13)
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Only the off-shell Lagrangian depends on the auxiliary fields while using the equations
of motion they are canceled out. In the modified theory

L = Lscalar + Lfermion + Lauxiliary (2.14)

where

δF = −iε†σ̄µ∂µψ + i∂µψ δF ? = i∂µψ
†σ̄µε (2.15)

δLauxiliary = −iε†σ̄µ∂µψ + i∂µψF
? + i∂µψ

†σ̄µεF (2.16)

and

δψα = −i
(
σµε†

)
α
∂µφ+ εαF δψ†α̇ = i

(
εσµ
)
α̇
∂µφ

? + ε†α̇F
? (2.17)

we have the closure of SUSY algebra also off-shell. Applying the Noether’s theorem
we obtain the conserved four-current called supercurrent which is an anti-commuting
four-vector and its hermitian conjugate

Jµα =
(
σν σ̄µψ

)
α
∂νφ

? J†µα̇ =
(
ψ†σ̄µσν

)
∂νφ (2.18)

that are separately conserved

∂µJ
µ
α = 0 ∂µJ

†µ
α̇ = 0 (2.19)

giving rise to the conserved charges

Qα =
√

2

∫
d3xJ0

α Q†α =
√

2

∫
d3xJ†0α (2.20)

These are the generators of supersymmetry transformations satisfying the algebra (2.3).

Interactions

To have a realistic theory with many chiral supermultiplets we must add to the free
Lagrangian

L = −∂µφ?i ∂µφi + iψ†iσ̄µ∂µψi + F ?iFi (2.21)

the most general interaction Lagrangian which contains renormalizable gauge and non-
gauge interactions

Lint =

(
−1

2
W ijψiψj +W iFi + xijFiFj

)
+c.c.− U (2.22)

where W ij ,W i,xij and U are polynomials in the scalar fields φi, φ
?i, with degrees 1,2,0

and 4 respectively. The Lagrangian must be supersymmetric and so eventually we get

Lint =
(
− 1

2
W ijψiψj +W iFi

)
+ c.c. (2.23)
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with W ij a holomorphic function of φi. Therefore, we can write

W ij = M ij + yijkφk (2.24)

where M ij is a symmetric mass matrix for the fermion fields, and yijk is the Yukawa
coupling of a scalar field φk with two fermions ψi, ψj , that must be totally symmetric
under interchange of i, j, k. It is therefore convenient to express

W ij =
δ2

δφiδφj
W (2.25)

where

W =
1

2
M ijφiφj +

1

6
yijkφiφjφk (2.26)

is a holomorphic function of the scalar fields φi treated as complex variables, called
superpotential. In a similar way we obtain

W i =
δW

δφi
= M ijφj +

1

2
yijkφjφk (2.27)

We can therefore conclude that the more general non-gauge interactions for chiral super-
multiplets are determined by the superpotential W . The full Lagrangian L = Lfree+Lint
lead to the equations of motion

Fi = −W ?
i F ?i = −W i (2.28)

and therefore

L = −∂µφ?i∂µφi + iψ†iσ̄µ∂µψi︸ ︷︷ ︸
kinetic terms

− 1

2

(
W ijψiψj +W ?

ijψ
†iψ†j

)
︸ ︷︷ ︸

interactions

− W iW ?
i︸ ︷︷ ︸

scalar potential

(2.29)

which clearly shows that the scalar potential is

V (φ, φ?) = W kW ?
k = F ?kFk = M?

ikM
kjφ?iφj +

1

2
M iny?jknφiφ

?jφ?k+

+
1

2
M?
iny

jknφ?iφjφk +
1

4
yijny?klnφiφjφ

?kφ?l (2.30)

If we have a gauge supermultiplet, i.e a massless gauge boson Aaµ and a two-component
Weyl fermion gaugino λa, we have the gauge transformations

Aaµ → Aaµ + ∂µΛa + gfabcAbµΛc (2.31)

λa → λa + gfabcλbΛc (2.32)

where a, b, c run over the adjoint representation of the gauge group, Λa is an infinites-
imal gauge transformation parameter, g is the gauge coupling and fabc are the totally
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antisymmetric structure constants that define the gauge group. Again, it is necessary to
introduce an auxiliary real and bosonic field traditionally called D in order to have a con-
sistent supersymmetry also off-shell. The Lagrangian density for a gauge supermultiplet
turns out to be

Lgauge = −1

4
F aµνF

µνa + iλ†aσ̄µ∇µλa +
1

2
DaDa (2.33)

where
F aµν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν (2.34)

and
∇µλa = ∂µλ

a + gfabcAbµλ
c (2.35)

is the covariant derivative of the gaugino field.
The auxiliary fields satisfy the trivial equation of motion Da = 0, which however changes
when we introduce the coupling between chiral and gauge supermultiplets. Let us sup-
pose that chiral supermultiplets transform under the gauge group in a representation
with hermitian matrices

(
T a
) j
i

satisfying [T a, T b] = ifabcT c. The scalar, fermion and
auxiliary fields must be in the same representation because supersymmetric transforma-
tions commute with gauge transformations and therefore Xi → Xi + igΛa(T aX)i, for
Xi = φi, ψi, Fi. To have a gauge-invariant Lagrangian we have to replace the ordinary
derivatives with the covariant ones

∇µφi = ∂µφi − igAaµ(T aφ)i (2.36)

∇µψi = ∂µψi − igAaµ(T aψ)i (2.37)

In this way, the vector bosons of gauge supermultiplets are coupled with the fermions of
chiral supermultiplets. In conclusion the most general Lagrangian is

L = Lchiral + Lgauge−
√

2g(φ?T aψ)λa −
√

2gλ†a(ψ†T aφ) + g(φ?T aφ)Da︸ ︷︷ ︸
interactions

(2.38)

where Lchiral is the fermionic Lagrangian in which we have replaced the normal deriva-
tives with the covariant ones and Lgauge is that of expression (2.33).
The scalar potential in this case turns out to be

V (φ, φ?) = F ?iFi +
1

2

∑
a

DaDa (2.39)

where Da in the modified Lagrangian has the equation of motion Da = −g(φ?T aφ). The
(2.39), thus, becomes

V (φ, φ?) = F ?iFi +
1

2

∑
a

g2(φ?T aφ)2 (2.40)

The sum of squares is always non negative for any field configuration.
The two types of contributions that compose the scalar potential are known as F-term
and D-term.
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Superspace formalism

All the above results can be obtained in a very elegant way through the method of
the superspace that allows to find actions manifestly invariant under SUSY through
a geometric approach. More precisely, the superspace is built adding to the ordinary
spatio-temporal xµ coordinates the anti-commuting ones, {xµ, θα, θ†α̇}, and the transla-
tions along the latter give rise to the supersymmetry transformations. In this method
the components of a supermultiplet are joined together in a single object called super-
field which is a function of the superspace coordinates.
The generators of the translations in the directions of the superspace are defined as

Q̂α = i
∂

∂θα
−
(
σµθ†

)
α
∂µ Q̂α = −i ∂

∂θα
+
(
θ†σ̄µ

)α
∂µ

Q̂†α̇ = i
∂

∂θ†α̇
−
(
σ̄µθ

)α̇
∂µ Q̂†α̇ = −i ∂

∂θ†α̇
+
(
θσµ

)
α̇
∂µ

(2.41)

These operators satisfy the same commuting and anti-commuting rules of the genera-
tors of SUSY but they act on different spaces: the former act on the functions of the
superspace while the latter on the Hilbert space. A function S of the superspace is a
superfield if it is transformed as

δεS = −i
(
εQ̂+ ε†Q̂†

)
S (2.42)

It is useful to define the chiral covariant derivatives so that the derivative of a superfield
with respect to θα and θ†α̇ it is also a superfield

Dα =
∂

∂θα
− i
(
σµθ†

)
α
∂µ Dα = − ∂

∂θα
+ i
(
θ†σ̄µ

)α
∂µ

D̄α̇ =
∂

∂θ†α̇
− i
(
σ̄µθ

)α̇
∂µ D̄α̇ = − ∂

∂θ†α̇
+ i
(
θσµ

)
α̇
∂µ

(2.43)

which satisfy the relationships

{Dα, D̄β̇} = 2iσµ
αβ̇
∂µ

{Dα, Dβ} = {D̄α̇, D̄β̇} = 0
(2.44)

The chiral superfield Φ
(
x, θ, θ†

)
which contains the components of the chiral supermul-

tiplets is defined through the condition

D̄α̇Φ = 0 (2.45)

and it has the form

Φ
(
x, θ, θ†

)
= φ

(
x
)

+ iθ†σµθ∂µφ
(
x
)

+
1

4
θθθ†θ†∂µ∂

µφ
(
x
)

+
√

2θψ
(
x
)
− i√

2
θθθ†σ̄µ∂µψ

(
x
)

+ θθF
(
x
)

(2.46)
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Similarly, the anti-chiral superfield is such that

DαΦ? = 0 (2.47)

The vector or real superfield V
(
x, θ, θ†

)
, instead, it is obtained through the constraint

V = V ? (2.48)

and therefore

V
(
x, θ, θ†

)
= a+ θξ + θ†ξ† + θθb+ θ†θ†b? + θ†σ̄µθAµ + θ†θ†θ

(
λ− i

2
σµ∂µξ

†)
+ θθθ†

(
λ† − i

2
σ̄∂µξ

)
+ θθθ†θ†

(1

2
D +

1

4
∂µ∂

µa
)

(2.49)

where in addition to the usual components of a gauge multiplet we have the bosonic
fields a, b and the fermionic one ξ. The additional auxiliary fields can be supergauged
away through the transformation

V → V + i
(
Ω? − Ω

)
(2.50)

and, in the so-called Wess-Zumino gauge, we obtain

VWZ = θ†σ̄µθAµ + θ†θ†θλ+ θθθ†λ† +
1

2
θθθ†θ†D (2.51)

The advantage of working with this method is that by integrating any superfield with
respect to the coordinates of the superspace we automatically obtain a manifestly SUSY
invariant action. In fact, since the supersymmetric variation of a superfield is written as
total derivative of the coordinates of integration, an action of the form

A =

∫
d4x

∫
d2θ

∫
d2θ† S

(
x, θ, θ†

)
(2.52)

where S is a superfield, is such that δεA = 0.
In order to have a real action, the superfield must be real and so we can have either a real
superfield or the sum of a chiral superfield and its complex conjugated. To obtain the
Lagrangian density we integrate on the fermionic coordinates. We have two possibilities
called F- and D-term contributions:∫

d2θ

∫
d2θ† V

(
x, θ, θ†

)
≡ [V ]D =

1

2
D +

1

4
∂µ∂

µa (2.53)

where it should be noted that the term ∂µ∂
µa is canceled when we integrate on the

bosonic spatio-temporal coordinates.∫
d2θ Φ

(
x, θ, θ†

)∣∣∣∣
θ†=0

≡ [Φ]F = F (2.54)
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In conclusion, to create a supersymmetric Lagrangian it is necessary the D-term of a real
superfield and the F-term of a chiral superfield together with its complex conjugated.
The supersymmetric fermionic Lagrangian is obtained choosing the D-term of the real
combination Φ?iΦi. To introduce interactions and mass terms we use the superpoten-
tial that in this context is a holomorphic function of the chiral superfields and then it
is reduced to a function of simple scalar fields by integrating on the anti-commuting
coordinates.

W =
1

2
M ijΦiΦj +

1

2
yijkΦiΦjΦk (2.55)

L = [Φ?iΦi]D +
(
[W
(
Φi

)
]F + c.c.

)
(2.56)

In order to treat an Abelian gauge theory, i.e. a theory with a U(1) symmetry, we must
introduce chiral and anti-chiral field strength superfields:

Wα = −1

4
D̄D̄DαV W†α̇ = −1

4
DDD̄α̇V (2.57)

In fact under the transformation (2.50) these superfields remain unchanged. The ordi-
nary gauge Lagrangian (2.33) is obtained with a change of variable from the combination∫

d4xLgauge =

∫
d4x

1

4

(
[WαWα]F + c.c.

)
(2.58)

where [WαWα]F = D2 + 2iλσµ∂µλ
† − 1

2
FµνFµν +

i

4
εµνρσFµνFρσ (2.59)

in the Wess-Zumino gauge.

We can add an additional term, known as Fayet-Iliopoulos term, of the form

LFI = −2κ[V ]D = −κD (2.60)

which is important for the SUSY breaking.
If we consider the coupling of the gauge Abelian field with a set of chiral superfields Φi

carrying a U(1) charge qi, we have the gauge transformations

Φi → exp
(
2igqiΩ

)
Φi

Φi? → exp
(
− 2igqiΩ

)
Φi?

(2.61)

With these transformations the kinetic term [Φ?iΦi]D is no longer gauge invariant and
so must change to

[Φ?i exp
(
2gqiV )Φi]D (2.62)

The presence of V in the exponential is possible because V is dimensionless but there
is the possibility that it may not be renormalizable. However, thanks to the gauge
dependence of V the higher order terms can be supergauged away.
The total Lagrangian eventually has the form

L = [Φ?i exp
(
2gqiV )Φi]D +

(
[W
(
Φi

)
]F + c.c.

)
+

1

4

(
[WαWα]F + c.c.

)
− 2κ[V ]D (2.63)
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where [Φ?i exp
(
2gqiV )Φi]D =

F ?iFi −∇µφ?i∇µφi + iψ†iσ̄µ∇µψi −
√

2gqi
(
φ?iψiλ+ λ†ψ†iφi

)
(2.64)

From the (2.59) and (2.64) we obtain the contribution of the D-term to the scalar
potential

VD
(
Φ
)

= κD − 1

2
D2 − gqiDφ?iφi (2.65)

while the contribution of the F-term is the same of (2.30).

Non-renormalizable supersymmetric Lagrangians

The non-renormalizable interactions can be neglected for most phenomenological appli-
cations as they involve couplings with negative mass size proportional to 1/Mpl. In fact,
for energies of order E ≤ 1TeV the influence of the non-renormalizable interactions is
too small to be interesting. There are, however, particular contexts, for example those
in which gravitation cannot be treated classically, in which such effects become impor-
tant. A non-renormalizable Lagrangian that involves chiral and gauge supermultiplets
(superfields) it is written as

L = [K
(
Φi, Φ̃

?j
)
]D +

(
[
1

4
fab
(
Φi

)
ŴaαŴb

α +W
(
Φi

)
]F + c.c

)
(2.66)

where Φ̃?j =
(
Φ? exp

(
2gaT

aV a
))j

.
The density Lagrangian depends on three functions of superfields. The Superpotential
W (Φi) is a gauge invariant holomorphic function of chiral superfields treated as complex
variables. It has dimension [mass]3. The Gauge Kinetic Function fab

(
Φi

)
is a dimen-

sionless function of chiral superfields treated as complex variables. It is symmetric under
the interchange of its two indexes which run over the adjoint representation of the simple
and Abelian component gauge groups of the model. For the non-Abelian components
of the gauge group, it is just proportional to δab, but if there are two or more Abelian
components, the gauge invariance of the field-strength superfields allows kinetic mixing
so that fab is not proportional to δab in general. The Kähler Potential K

(
Φi, Φ̃

?j
)

is a
real function of both chiral and non-chiral superfields and has dimension [mass]2. In
renormalizable theories it is simply reduced to ΦiΦ̃

?i. The part of the Lagrangian coming
from the superpotential is

[W
(
Φi

)
]F = W iFi −

1

2
W ijψiψj (2.67)

with W i = δW
δΦi

∣∣∣∣
Φi→φi

and W ij = δ2W
δΦiδΦj

∣∣∣∣
Φi→φi

.

After integrating out the auxiliary fields the contribution of the superpotential to the
scalar potential is

VF = W iW ?
j̄

(
K−1

)j̄
i

(2.68)

40



where K−1 is the inverse of the Kähler metric

Ki
j̄ =

δ2K

δΦiδΦ̃?j

∣∣∣∣
Φi→φi,Φ̃?i→φ?i

(2.69)

which characterizes the complex Kähler manifolds. As we will see in more detail later,
these are complex and symplectic manifolds for which the complex and symplectic struc-
tures are compatible.
More generally, the whole field content of the Lagrangian after integrating out the auxil-
iary fields is determined by the functions W , K, fab and their derivatives with respect to
the chiral superfields while the remaining chiral superfields are replaced by their scalar
components. It is, therefore, important to study the behavior of these functions under
quantum corrections: The Kähler Potential gets corrections order by order in pertur-
bation theory. The Gauge Kinetic Function receives corrections only at one loop while
the superpotential and the Fayet Iliopoulos term κ are not renormalized in perturbation
theory.
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2.2 Supersymmetry Breaking

As we have already said the soft terms are introduced in order to parameterize our
ignorance about the mechanism that governs the spontaneous SUSY breaking, i.e the
situation in which the Lagrangian is supersymmetric while the vacuum state is not
invariant under the supersymmetry transformations

Qα|0〉 6= 0 Q†α̇|0〉 6= 0 (2.70)

Considering the {Qα, Q†β̇} = 2
(
σµ
)
αβ̇
Pµ, and contracting it with

(
σ̄ν
)β̇α

, we have

2∑
α=1

(
QαQ

†
α +Q†αQα

)
= 4E (2.71)

From (2.70) and (2.71) it follows that the state where SUSY is spontaneously broken
has strictly positive energy. If there are no spacetime dependent effects and fermion
condensates we have 〈0|E|0〉 = 〈0|V |0〉 and therefore SUSY breaking can only take place
if the VEVs of Fi and Da are not canceled out on the same vacuum state. Spontaneous
SUSY breaking always implies the presence of a massless Nambu-Goldstone mode with
the same quantum numbers as the broken generators. These neutral massless Weyl
fermions are called goldstini. Its components among the various fermions of the theory
are proportional to the VEVs of the corresponding auxiliary fields. Therefore, SUSY
breaking occurs through the auxiliary fields and more precisely the F-term gives the
breaking in the case of chiral superfields while the D-term gives the breaking in case of
vector superfields.
In the case of chiral superfield, in particular, as we have said, the transformations are

δφ = εψ δψ = εF − iσµε†∂µφ δF = iε†σ̄µ∂µψ

SUSY breaking requires that at least one of them must be non zero. Since Lorentz
invariance implies that 〈ψ〉 = 〈∂µψ〉 = 0, the only possibility to having SUSY breaking
is

〈F 〉 6= 0→ 〈δψ〉 6= 0 (2.72)

and so the goldstino is ψ and we have 〈VF 〉 > 0.
If, on the other hand, we have a vector superfield V =

(
λ,Aµ, D

)
then δλ ∝ εD is the

only that can have a non-zero contribution if 〈D〉 6= 0. So in this case the goldstino is λ.

• F-term SUSY breaking

The models in which the F-term is responsible for the SUSY breaking are called
Raifeartaigh’s models. The idea of these models is to choose the superpotential
so that the equations Fi = − δW ?

δφi?
= 0 do not have simultaneous solutions within

a compact domain. In this way the potential will be positive in the minimum
ensuring the breaking of the symmetry. In this case it emerges a massless scalar
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field, i.e a flat direction in the scalar potential which can only be raised by quantum
corrections Veff = Vtree level + V1-loop + · · · . The fermionic superpartner, however,
remains massless because it is constitutes the goldstino.

• D-term SUSY breaking

SUSY breaking with a non-zero D-term can occur through the Fayet-Iliopoulos
mechanism which works only in the case of a U(1) gauge symmetry. It is, therefore,
complicated to use this method in the supersymmetric extensions of the Standard
Model.

Supersymmetry breaking occurs in a hidden sector of particles that have no or only very
small direct couplings to the visible sector chiral supermultiplets of the MSSM. The
two sectors share some interactions that are responsible for mediating supersymmetry
breaking represented by the MSSM soft terms. The mechanisms that can be used for this
purpose are gravity mediation and the gauge mediation. In the first case the mediators
fields are coupled to the SM particles through gravitational interactions. The couplings
are suppressed by the inverse of Planck mass. From the dimensional analysis we have

msoft ∼
〈F 〉
Mpl

(2.73)

For msoft ∼ O(100GeV ) its results
√
F ∼ o(1010 − 1011 GeV ). In the second case,

instead, the ordinary gauge interactions are responsible for the presence of soft terms.
The idea is to introduce new chiral supermultiplets which are coupled not only with the
source of SUSY breaking, i.e a non zero 〈F 〉, but also with the particles of MSSM. The
soft terms arise from loop diagrams that involve messenger particles. Again, from the
dimensional analysis we have

msoft ∼
αa
4π

〈F 〉
Mmess

(2.74)

where αa/4π is the loop factor for Feynman diagrams and Mmess is the characteristic
mass scales of messenger fields. If Mmess and

√
F are comparable, then the SUSY

breaking scale is
√
F ∼ O(104 GeV )
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2.3 N = 1 Supergravity

In quantum field theories, in order to have an invariant action under a gauge group,
for example the U(1) local symmetry group we must introduce a spin-1 gauge field
Aµ. If, instead, we want to ensure the invariance under local spatio-temporal Poincarè
transformations, the gauge field which must be introduced is a massless spin-2 field, i.e
the graviton. So gravity originates in a natural way when we have general coordinate
transformations. The resulting theory is not renormalizable and since theories with
more symmetries are more convergent, it is useful to apply in this context the ideas
of supersymmetry. Supergravity is the gauge theory of global supersymmetry. In the
superspace formalism, as we have seen, a superfield is transformed under supersymmetry
as δΦ = i

(
εQ+ε†Q†

)
Φ. If ε becomes a function of spacetime ε

(
x
)

then SUSY is extended
to a local symmetry. The resulting theory is the N = 1 supergravity. The gauge field
of local supersymmetry transformations consists in the spin-3/2 gravitino Ψµ

α. The
inclusion of gravity, therefore, can be described by the gravity supermultiplet.
The scalar potential of global SUSY, VF , is modified in supergravity as

VF = exp

(
K

M2
pl

){
(K−1)ij̄DiWDj̄W̄

? − 3
|W |2
M2
pl

}
(2.75)

where DiW = ∂iW + 1
M2
pl

(
∂iK

)
W . For finite values of the Planck mass the potential

VF is no longer semi-positive definite. The global supersymmetric scalar potential VF =(
K−1

)ij̄
∂iW∂j̄W

? is restored in the limit Mpl →∞.
Similarly to the case of global supersymmetry, also the local one has to be spontaneously
broken in order to match observations. As long as supersymmetry is unbroken, the
graviton and the gravitino are both massless, each of them with two helicity states.
Once supersymmetry is spontaneously broken the gravitino acquires a mass by absorbing
the goldstino which becomes its longitudinal component in the so-called super-Higgs
effect. The massive spin-3/2 gravitino has now four helicity states and it is traditionally
indicated as m3/2. Since m3/2 must vanish when SUSY is restored

(
〈F 〉 → 0

)
and when

gravity is turned off
(
Mpl → 0

)
, it turns out that

m3/2 ∼ 〈F 〉/Mpl (2.76)

It follows that the mass of the gravitino is very different in the two methods of SUSY
breaking mediation, i.e the gravity and the gauge one, since they usually make very
different predictions for 〈F 〉. From a phenomenological point of view it is interesting
notice that local SUSY-breaking automatically generates soft-terms in the global super-
symmetric Lagrangian, realizing the so-called gravity mediated SUSY-breaking. Usually,
the SUSY-breaking scale is roughly given by the gravitino mass as we can see by com-
paring the (2.73) and (2.76).
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Chapter 3

String Compactifications

The biggest success of String Theory is that it unifies General Relativity with QFT in a
single theoretical context containing all the ingredients of the Standard Model, i.e. gauge
interactions and chirality. It also has all the advantages of a supersymmetric theory since
supersymmetry must be intrinsically included to remove tachyonic instability. Since it is
defined in a consistent way in ten dimensions in order to have informations about physics
in four dimensions, interesting from the point of view of phenomenology, we have to com-
pactify the six extra dimensions in a suitable complex manifold called Calabi-Yau. An
important consequence of the compactifications and the subsequent dimensional reduc-
tion, is the emergence of a large number of massless scalar fields called moduli. These
generate unobserved long range fifth forces which can cause phenomenological problems
and have to be stabilised by assigning them a potential. Moduli stabilisation is necessary
also because many of the couplings of other fields depend on their vacuum expectation
values. One of the most promising mechanisms within perturbative String Theory that
generate a non trivial potential for the massless scalar fields is via fluxes which, however,
have a backreaction on the geometry of the compactification. For this reason we have
focused on Type IIB flux compactifications in which the backreaction is well-controlled
and gives rise only to warped Calabi-Yaus. In this chapter we explain the basic elements
of string theory which allow to understand the procedure of compactification used in
two specific cases in the next chapter.
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3.1 Strings

String theory is a quantum theory of 1-dimensional extended objects that are moving in
a D-dimensional spacetime. In their motion the strings sweep a 2-dimensional surface,
the worldsheet labeled by the coordinates σ along the string and τ . σ takes the values
0 ≤ σ ≤ π for an open string and 0 ≤ σ ≤ 2π for a closed one. The embedding of the
worldsheet in the D-dimensional spacetime is defined by the set of functions XM (τ, σ)
where M = 0, . . . , D−1. The evolution of the worldsheet is given by the Polyakov action

S = − 1

4πα′

∫
dσ

∫
dτ
√
γ γαβ ηMN ∂αX

M∂βX
N α = τ, σ (3.1)

where XM
(
τ, σ
)

describes the position of the string, ηMN is the spacetime Minkowski
metric in ten dimensions, γαβ is the worldsheet metric, γ = −det γαβ and α′ is the Regge
slope, i.e. a free parameter related to the string tension by T = 1/(2πα′) = 1/(2πl2s)
with ls is the string scale. By varying the Polyakov action with respect to XM we obtain
the equation ( ∂2

∂σ2
− ∂

∂τ2

)
XM (τ, σ) = 0 (3.2)

and introducing left- and right-moving worldsheet coordinates σ± = τ ±σ, the equation
becomes

∂

∂σ+

∂

∂σ−
XM (τ, σ) = 0 (3.3)

which means that XM is the sum of left- and right-moving degrees of freedom

XM (τ, σ) = XM
R (σ−) +XM

L (σ+) (3.4)

In the case of closed strings XM (τ, 0) = XM (τ, 2π), X ′M (τ, 0) = X ′M (τ, 2π) the mode
decomposition is obtained introducing a pair of left and right creation and annihilation
operators which are respectively αMn , α̃Mn and αM−n, α̃M−n with n > 0. Each mode carries
an energy proportional to the level. The mass of a state is obtained using the operator

M2 =
2

α′
( ∞∑
n=1

α−nαn + α̃−nα̃n − 2
)

(3.5)

The vanishing condition for the energy-momentum tensor is translated in the vanish-
ing of the Virasoro operators on the physical spectrum. The most important of these
constraints tell us that the operator

L̂0 =
1

2

( ∞∑
n=1

α−nαn − α̃−nα̃n
)

(3.6)

when it is applied on physical states must be zero. This condition implies that the
number of the excited left oscillator levels it is equal to the number of the excited right
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oscillator levels. The massless states have, therefore, one left-moving and one right-
moving excitation, namely

|ξMN 〉 = ξM ξ̃Nα
M
1 α̃N1 |0〉 (3.7)

The tensor ξMN = ξM ξ̃N is decomposed into ξMN = ξsMN + ξtηMN + ξaMN . The state
corresponding to the polarization ξsMN is a massless state of spin-2, i.e. the graviton.
The state corresponding to the scalar ξt is the dilaton, while the antisymmetric tensor
(2-form) ξaMN describes the B-field. These fields form the massless closed string spectrum
and by their equations of motion and in particular from that of the dilaton we can fix
the dimensions of the spacetime to 26. We notice that in the massless closed string
spectrum it is absent a gauge field (one-form). This is obtained in the spectrum of the
open strings where the massless states are given by

|ξM 〉 = ξMα
M
1 |0〉 (3.8)

The string coupling gs is not an unknown arbitrary parameter but it is given by the
VEV of the dilaton which is always present in the massless string spectrum.

gs = e〈Φ〉 (3.9)

The ground state of Hilbert space |0〉 has a negative mass square. This tachyonic insta-
bility means that the bosonic string is unstable and will condensate to the true vacuum
of the theory. In order to remove the tachyon from the spectrum we need supersym-
metry. In fact by introducing the superpartners of XM : ΨM ,Ψ̃M , which are Majorana
fermions on the worldsheet, we obtain the superstring theory. The action is modified
according to

S =
1

4π

∫
d2σ ηMN

( 1

α′
∂XM ∂̄XN + ΨM ∂̄ΨN + Ψ̃M ∂̄Ψ̃N

)
(3.10)

We have two different boundary conditions for the equations of Ψ and Ψ̃, i.e. those of
Ramond (R):

ΨM (τ, 0) = ΨM (τ, 2π) (3.11)

and those of Neveu-Schwarz (NS):

ΨM (τ, 0) = −ΨM (τ, 2π) (3.12)

In the normal mode expansion the first type of conditions give rise to integer modes while
the second ones give semi-integer modes. The cancellation of the conformal anomalies
implies that the Superstring Theory is defined consistently in ten dimensions. The mass
operator is modified accordingly to

M2 =
1

α′

( ∞∑
n=1

αnα−n +
∑
r

rψrψ−r − a+ {the same with tilde}
)

(3.13)

where the constant a come out from the normal ordering and it is equal to 0 in the
first case and to 1/2 in the second one. ψr and ψ̃r are respectively the right and left
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creation operators while ψ−r and ψ̃−r are the corresponding annihilations operators
which satisfy {ψMr , ψNs } = {ψ̃Mr , ψ̃Ns } = ηMNδr+s. The physical states are obtained
from the cancellation of the operator

L̃0 =

( ∞∑
n=1

αnα−n +
∑
r

rψrψ−r − a+ {the same with tilde}
)

(3.14)

At the end we have the massless states

R-R ξMNψ
M
0 ψ̃N0 |0〉 NS-R ξMNψ

M
1/2ψ̃

N
0 |0〉

NS-NS ξMNψ
M
1/2ψ̃

N
1/2|0〉 R-NS ξMNψ

M
0 ψ̃N1/2|0〉

(3.15)

Based on how the GSO projection is done we get two different theories : Type IIA and
Type IIB linked together by T − duality a symmetry under the exchange of winding
and vibration modes with the contemporary substitution of R with 1/R, where R is the
radius of the compactification. In this thesis we have used the Type IIB String Theory
and consequently from now and then we will focus only on it. The only important thing
to note in this regard is that in addition to these two theories there are also the E8×E8

heterotic, SO(32) heterotic and Type I and all together they are constitute low-energy
limits of the same complete theory. They are not independent but are connected by
dualities and we can move from one to another by varying the VEVs of the massless
scalar fields inside the moduli space. For the aim of this research we are interested in the
closed string bosonic spectrum and so we focus only on the NS-NS and R-R sectors of
Type IIB theory. In addition, since the involved energies are quite low, E �Ms where
Ms is the string mass, we can ignore the massive string modes and we consider only the
massless spectrum. More precisely from the R-R sector we obtain a zero-form C0, a two-
form C2 and a four-form C4 while from the NS-NS sector we have the same content of
the closed bosonic string, i.e. the dilaton Φ, the graviton GMN and the two-form known
as B-field. When we will focused on four dimensions the corresponding R-R 4-form C4

integrated on the 4-cycles of the Calabi-Yau will give the axionic partner of the Kähler
moduli, and the 3-form fluxes of the two sectors will be used as background fluxes in
order to stabilise the scalar potential at tree level.
In open strings from the R and NS sectors we get respectively a fermion and a gauge
field AM . With N D-branes on top of each other, the open strings transform in adjoint
representations of U(N). The excitations along the brane represent a U(N) gauge field
and gaugino, while the excitations orthogonal to the branes are bosons and fermions
in the adjoint representation of U(N). With stacks of D-branes intersecting at angles,
or D-branes placed at special singularities, the U(N) symmetry can be broken to the
ordinary gauge group of the Standard Model. This is related with the two methods that
we have to embed the visible sector in the Calabi-Yau manifold.
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3.2 Extra dimensions and compactifications

The idea of extra dimensions has not emerged in the context of String Theory but had
already been formulated around 1920 by Kaluza in his attempt to unify gravitation
and electromagnetism. Since in the Universe the visible dimensions are only four, three
spatial and one temporal, if we add some dimensions they must necessarily be very small
and imperceptible for the ordinary experiments: they are compactified. In the simplest
case we have a massless scalar field in five dimensions φ

(
xM
)

with M = 0, 1, 2, 3, 4.
The action is

S5D =

∫
d5x ∂Mφ∂Mφ

? (3.16)

We choose the extra dimension x4 = y to be circular, i.e. y ≡ y + 2πR.
The total spacetime in this case is M4×S1, where M4 is the Minkowski spacetime and S1

is a circumference. Then, the five-dimensional field can be expanded in Fourier modes

φ
(
xµ, y

)
=

∞∑
n=−∞

φn
(
xµ
)

exp

(
iny

R

)
(3.17)

The five-dimensional equation of motion is

∂M∂
Mφ
(
xM
)

= 0⇒
(
∂µ∂

µ + ∂4∂
4
) ∞∑
n=−∞

φn
(
xµ
)

exp

(
iny

R

)
= 0

and therefore (
∂µ∂

µ − n2

R2

)
φn
(
xµ
)

= 0 (3.18)

At the end we have a massless scalar field and a ”tower” of massive scalar fields with
masses which increase with n

m2
n =

n2

R2
(3.19)

The action for the 5-dimensional massless scalar field is reduced to the sum of the
action in four dimensions for a massless scalar field and an infinite number of massive
scalar actions also in four dimensions. If we are interested on energy scales lower than
the compactification scale 1/R, known as Kaluza-Klein scale, then we can neglect all
the massive modes and we can focus our attention only on the massless one. This
dimensional reduction, it is responsible for the big number of massless scalar fields that
appears when we move from a theory with more dimensions to an effective one with less
dimensions.
Let us focus now on the case of String Theory. The theory of superstrings, as we have
already said, is defined in a consistent way in 10 dimensions. Hence it requires six
spatial extra dimensions described by a six-dimensional Calabi-Yau manifold. The main
purpose of string phenomenology is to find a compactification whose low energy EFT
reproduces a suitable extension of the Standard Model and more precisely N = 1, D = 4
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supergravity. In particular, if we are at energies above the string mass Ms we have a ten-
dimensional String Theory where both massive and massless states are excited. Below
the Ms scale, instead, we still have a ten-dimensional theory but this time the massive
modes are not excited and we can focus only on the massless ten-dimensional spectrum
as we have done in the previous section. When, finally, we go below the Kaluza-Klein
scale, integrating out the six extra dimensions, we get the four dimensional effective
supersymmetric theory with a large number of massless scalar fields, the moduli, while
we neglect the tower of the massive ones. There is a huge number of possible Calabi-Yau
three-folds each of which leads to a different effective theory. In the next section we
describe the general features of these manifolds.
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3.3 Calabi-Yau manifolds

Taking into account the compactification in S1, previously seen, the immediate general-
ization in the case of six extra dimensions is the toroidal one where the total manifold
is decomposed as

M10 =M10−d × T d

with T d the d-dimensional torus, defined by the identification

xm ≡ xm + 2πRm

These compactifications preserve N = 8 SUSY, and so they do not allow to reproduce
most of the physical results that we observe. For this reason we are looking for more
sophisticated manifolds that support less supersymmetry: the Calabi-Yau, M6:

M10 =M4 ×M6

In the absence of fluxes these manifolds must be Ricci-flat

Rmn = 0 (3.20)

We also have constraints related to the vacuum state:
Since M4 is the four dimensional Minkowski spacetime in order to respect Poincaré
symmetry only scalar fields can have non-zero vacuum expectation values. The other
constraint come from supersymmetry because a supersymmetric vacuum where only
bosonic fields have non-vanishing expectation values should obey 〈Qεχ〉 = 〈δεχ〉 = 0.
In Type II theories the fermionic fields are two gravitini and two dilatini. When no
fluxes are present, requiring zero VEV for the gravitino variation is equivalent to de-
mand the existence of a covariantly constant spinor on the ten-dimensional manifold,
i.e. ∇M ε = 0. Splitting the spinors into four-dimensional and six-dimensional ones
and considering that the four dimensional spinors are just constants, since M4 is the
Minkowski spacetime, at the end it is requested the existence of a covarianty constant
spinor in the six dimensional compactification manifold, i.e. a spinor such that

∇m η = 0 (3.21)

This condition implies an algebraic constrain, i.e. that there should exist an everywhere
non-vanishing Weyl spinor and a differential constrain related to the integrability of the
covariantly constant spinor. The first implies that the structure group is reduced to
SU(3), while the second implies that the manifold should have SU(3) holonomy.

Alternatively, these properties are obtained from the fact that the Calabi-Yau is a Kähler
manifold, i.e. a complex and symplectic manifold with compatible respective structures
.
A complex manifold of dimension 2n is an integrable almost-complex manifold that
allows to decompose any n-form

A =
1

n!
Am1,...,mndx

m1 ∧ · · · ∧ dxmn (3.22)
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in an holomorphic and an anti-holomorphic part:

Ap,q =
1

p!q!
Ai1,...,ip,j̄1...,j̄qdz

i1 ∧ · · · ∧ dzip ∧ dz̄j̄1 ∧ · · · ∧ dz̄j̄q (3.23)

where zi is a set of holomorphic one-forms, z̄i a set of anti-holomorphic one-forms and
p + q = n. Thanks to the integrability also the exterior derivative can split in an
holomorphic and an anti-holomorphic component with result

d = ∂ + ∂̄

∂ : (p, q)→ (p+ 1, q) ∂̄ : (p, q)→ (p, q + 1)
(3.24)

Such manifolds have holonomy GL(n,C).
A 2n-dimensional manifold is symplectic if there is a globally-defined nowhere vanishing
non-degenerate two-form J such that

dJ = 0 (3.25)

Similarly to complex coordinates zi for complex manifolds, in symplectic manifolds we
can define Darboux coordinates (xi, yi) such that

J =
n∑
i=1

dxi ∧ dyi (3.26)

Such structure has holonomy Sp(2n). A complex and symplectic manifold with compat-
ible complex and symplectic structures have

J = jij̄dz
i ∧ dz̄j̄ (3.27)

and the holonomy of the manifold must be contained in the intersection of the holonomies
of the two structures i.e. U(3). The complex structure I and the symplectic two-form
together define the metric of the Kähler manifold which at the end is

gij̄ = ∂i∂̄j̄K

with K the Kähler potential.
On complex manifolds one can define cohomology classes for (p, q) forms, Hp,q. The
dimensions of these cohomology classes are denoted by the so called Hodge numbers
h(p,q), which satisfy the

p∑
k=0

h(k,p−k) = bp h(p,q) = h(q,p) = h(n−p,n−q) (3.28)

where bp are the Betty numbers that define the dimension of cohomology. A particularly
important cohomology class is the first Chern class where lives the Ricci two-form. A
Calabi-Yau manifold always admit a Ricci-flat metric and so it is a Kähler manifold with
non trivial first Chern class.
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In conclusion, the Calabi-Yau is a manifold with h(1,0) = h(2,0) = 0 and h(3,0) = 1. A
representative of this cohomology class is the holomorphic three-form Ω. Using these
properties we can arrange the Hodge numbers in a diamond which in the six-dimensional
case is

1

0 0

0 h(1,1) 0

1 h(2,1) h(2,1) 1

0 h(1,1) 0

0 0

1

Calabi-Yau compactifications preserve the N = 2 SUSY. This amount of supersymmetry,
however, does not give rise to the necessary chiral interactions needed by phenomenolog-
ical applications and so in order to have a realistic theory half of the SUSY generators
must be projected out. This is obtained through the orientifold projection which implies
the presence of O7/O3 planes that carry RR charges and the presence of D7/D3 branes
in different places of the compact space, necessary to cancel tadpoles.
In order to stabilise part of the moduli we use background fluxes. Calabi-Yau manifolds
are both complex and symplectic with the additional constrain c1 = 0. For general
flux compactifications, however, this is not true anymore and both J and Ω can have
a non-trivial exterior derivative. Moreover, the two supersymmetry parameters εi in
the absence of fluxes have been expanded in terms of the same internal spinor while in
presence of fluxes the symmetry between left- and right-movers can be broken and con-
sequently we need two different internal spinors. In conclusion general flux backgrounds
can be understood as complex or symplectic manifolds in a generalized sense. The only
case in which the backreaction is under control it is in the Type IIB theory where gives
rise only to warped Calabi-Yaus.

In the next sections we focus on the Large Volume Scenario which emerges naturally in
the context of Type IIB flux compactifications on Calabi-Yau orientifolds in presence
of spacetime filling D3/D7 branes and O3/O7 planes. An excellent description of these
techniques can be found in the articles [2],[6],[7],[9],[12],[13],[11],[5],[14].
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3.4 Type IIB compactifications on Calabi Yau three-folds

The moduli fields that arise from the Kaluza-Klein reduction parametrize the shape
and the size of the compactified extra dimensions and compose the hidden sector of the
effective theory that corresponds to the N = 2, D = 4 supergravity. The effective action
arises from expanding all the ten-dimensional fields in a basis of massless forms. As
we have seen in the simple case of the scalar field in 5 dimensions we are interested to
the harmonic forms on Calabi− Y au which give the massless spectrum of the effective
four dimensional theory. To this end, it is useful to note the isomorphism between the
space of harmonic p-forms and the p-th cohomology which implies that each cohomology
class has exactly one harmonic form which is taken to be a representative of it. The
four dimensional low energy action it is eventually obtained by expanding all the 10-
dimensional fields in harmonic forms. From the NS-NS sector we obtain a total of
2
(
h(1,1) + h(2,1) + 1

)
moduli. More precisely, we have h(2,1) complex structure moduli

Uα, α = 1, . . . , h(2,1), parameterizing the deformations of the complex structure, i.e. of
the shape of the extra dimensions and h(1,1) of τi, i.e. the real parts of Kähler moduli
characterizing the volume of the divisors Di, which are dual to the elements of the base
of H1,1. Finally we have the axio-dilaton whose VEV fix the string scale. If we compose
the τi with its axionic partner coming by the integration of the R-R sector C4 form
along Di,

∫
Di
C4 = θi, we obtain the Kähler moduli Ti = τi + iθi, which parametrize the

deformations in size of the Calabi-Yau. The Kähler potential at tree level assumes the
form

Ktree = −2 ln(V)− ln(S + S̄)− ln(−i
∫
M

Ω(U) ∧ Ω̄(Ū)) (3.29)

where V is the volume of the Calabi-Yau manifoldM expressed in string units ls = 2π
√
α′

and Ω is a holomorphic (3, 0)-form of M. The volume can be expressed in terms of the
Kähler form J , once this is expanded in the base of H1,1(M,Z) as

J =
h(1,1)∑
i=1

tiD̂i (3.30)

where ti are the 2-cycle volumes

V =
1

6

∫
V
J ∧ J ∧ J =

1

6
kijkt

itjtk (3.31)

with kijk the triple intersection numbers of M.

τi =
∂V
∂ti

=
1

2

∫
M
D̂i ∧ J ∧ J =

1

2
kijkt

jtk (3.32)

Once the intersections number are known, using equations (3.31) and (3.32), we can
compute the explicit forms for the volumes of the compactifications. The superpotential
at tree level is given by the 3-form fluxes F3 and H3 coming respectively from the R−R
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and the NS −NS sector. Setting G3 = F3 − SH3, in fact, the superpotential assumes
the form

Wtree =

∫
M
G3 ∧ Ω (3.33)
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Chapter 4

Inflationary String Models

The inflationary paradigm is very successful in resolving the most important puzzles
of modern cosmology. Any inflation model is sensitive to Planck scale physics and so
any attempt to understand this period of cosmic evolution should be embedded in an
ultraviolet complete theory like String Theory. The dimensional reduction followed in
the context of compactifications gives rise to a large number of massless scalar fields with
flat potential which can be the ideal candidates to drive inflation. Since their presence is
in contrast with phenomenological observations they must be stabilised using non zero
background fluxes. Recent developments in techniques of moduli stabilisation have led
to a large number of new inflationary scenarios based on either open or closed string
modes. In this thesis we have been focused on two very promising models of string
inflation coming from the large volume limit of the scalar potential in Calabi-Yau Type
IIB flux compactification in which the inflaton is a closed string mode: K”ahler Inflation
and Fibre Inflation. More precisely, in the first case the inflaton is the size of a blow-up
mode yielding a small field inflationary model which is in good agreement with current
observational data. In the second model, instead, the inflaton is the size of a K3 fibre
over a CP 1 base producing a large field inflationary model, which is particularly suitable
for the production of primordial gravity waves.
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4.1 Moduli Stabilisation

The process of moduli stabilisation is the first step towards string phenomenology as the
moduli vacuum expectation values determine the string scale and the gauge couplings.
The axio-dilaton and the complex structure moduli can be fixed to their values at their
supersymmetric minimum by turning on background fluxes on the internal manifold.
These fluxes could in general have a backreaction on the geometry of the Calabi-Yau
modifying the internal space. In the case of Type IIB compactifications however, as we
have already said, fluxes induce just a warp factor and this is why this compactifications
are so suitable for the cosmological applications. On the other hand, the Kähler moduli
are stabilised in a second time through non perturbative corrections to the superpo-
tential. Using the expressions at tree level for the Kähler potential and superpotential
(3.29),(3.33) the F-scalar potential (2.75), in Planck units, becomes

VF = eK
(∑

T

Kij̄DiWDj̄W̄ +
∑
U,S

Kij̄DiWDj̄W̄ − 3|W |2
)

=

eK
(
|W |2(KT T̄∂TK∂T̄K − 3) +

∑
U,S

Kij̄DiWDj̄W̄ − 3|W |2
)

=

= eK
(
KUŪDUWDŪW̄ +KSS̄DSWDS̄W̄

)
(4.1)

where we have used the no-scale property of the Kähler potential

KT T̄∂TK∂T̄K = 3 (4.2)

Because VF ≥ 0, we have the minimum of the axio-dilaton < S > and of the complex
structure moduli < U >, for DUW = 0 and DSW = 0. In the simplest case we have
V = τ3/2, where τ is the real part of the single Kähler moduli T = τ + iθ. The Kähler
potential K = −2 ln(V), assumes the form

K = −3 ln(τ) (4.3)

In order to stabilise the Kähler modulus we introduce non-perturbative corrections on
the superpotential coming from the coupling with D3 and D7 branes

W = W0 +Ae−aT (4.4)

where W0 is the constant value of the superpotential obtained from the stabilisation of
the axio-dilaton and of the complex structure moduli. From the explicit computation

KT =
1

2

∂K

∂τ
= − 3

2τ
KT T̄ =

1

4

∂2K

∂τ2
=

3

4τ2
(4.5)
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we have

VF = eK
(
KT T̄ (WT W̄T̄ +WT W̄KT̄ +WW̄T̄KT + |W |2KTKT̄ )− 3|W |2

)
=

1

τ3

(4τ2

3
a2A2e−2aτ + 4τaA2e−2aτ − 4τaAW0e

−aτ cos(aθ)
)

(4.6)

and minimizing with respect to the axionic partner of the Kähler moduli θ, at the end
we find

VF =
4

3τ
A2a2e−2aτ +

4

τ2
aA2e−2aτ − 4a

τ2
AW0e

−aτ (4.7)

Minimizing the potential (4.7) with respect to τ , ∂VF
∂τ = 0, we have

−4

3
A2a2

(
τe−2aτ + 2τ2ae−2aτ

)
− 8aA2

(
e−2aτaτ + e−2aτ

)
+ 4aAW0

(
2e−aτ + aτe−aτ

)
= 0

which in the limit of large volume aτ � 1, is simplified to

−8

3
A2a3τ2e−aτ + 4a2AτW0 = 0

from which it follows that in the minimum

e−aτ =
3

2aA

W0

τ
∼ W0

τ
(4.8)

In order to have a large volume limit, it is necessary to have an exponentially small value
of the tree level superpotential, |W0| < 10−4. In this model, known as the KKLT sce-
nario, the presence of the minimum is not guaranteed for natural values of W0. Moreover,
the vacuum solution corresponding to an AdS supersymmetric minimum has negative
energy and it is not suitable for a realistic cosmological theory. To uplift the initial AdS
minimum it is necessary to add D̄3-branes which, however, break SUSY explicitly and
this is in contrast with the fact that we are working in a supersymmetric context.
These problems can be solved in the Large Volume Scenario framework in which we take
into account perturbative α′ corrections to the Kähler potential but we neglect string
loop corrections.

K = −2 ln

(
V +

ξ̂

2g
3/2
s

)
with ξ̂ =

h(1,2) − h(1,1)

(2π)3
ζ(3) and ξ = ξ̂/g3/2

s (4.9)

where ζ(3) ∼ 1.2 and gs is the string coupling.
In this case moduli stabilisation is performed without fine tuning of the internal fluxes
and the compactification volume is fixed at an exponentially large value (in string units
ls). Moreover the minimum is AdS but, contrary to KKLT, breaks SUSY spontaneously
giving rise to the super-Higgs effect. The LVS in conclusion can be viewed as a gener-
alization of the KKLT scenario which allows to introduce more complicated topologies.
In the following we describe two models embedded in the Large Volume Scenario very
promising for the realization of the inflationary slow roll dynamic, in which the inflaton
is a closed string mode of the hidden sector: Kähler Inflation [14],[5] and Fibre Inflation
[7],[12],[13].
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4.2 Kähler Inflation

In Kähler Inflation we use a Swiss cheese type volume of the form

V = α(τ
3/2
1 −

∑
i

λiτ
3/2
i ) (4.10)

where all the τi are rigid cycles, blow ups of pointlike singularities of the CY which
are fixed small by non perturbative corrections while τ1 is stabilised exponentially large
due to α′ and non-perturbative effects. The parameters α and λi are model dependent
constants that can be computed once we have identified a particular compactification
geometry. From the (4.9) we can compute the Kähler metric for an arbitrary number of
moduli.

∂K

∂τ1
= −6ατ

1/2
1

2V + ξ

∂2K

∂τ2
1

=
18α2τ

3/2
1 − 3α(2V + ξ)

(2V + ξ)2τ
1/2
1

=
3α4/3(4V − ξ + 6α

∑n
i=2 λiτ

3/2
i )

(2V + ξ)2(V + α
∑n

i=2 λiτ
3/2
i )1/3

∂K

∂τj
=

6αλjτ
1/2
j

2V + ξ

∂2K

∂τi∂τj
=

18α2λiλjτ
3/2
i τ

3/2
j

(2V + ξ)2

∂2K

∂τ1∂τj
= −

18α2λjτ
1/2
j τ

1/2
1

(2V + ξ)2
= −

18α5/3λjτ
1/2
j (V + α

∑n
i=2 λiτ

3/2
i )1/3

(2V + ξ)2

∂2K

∂τ2
i

=
3αλi(2V + ξ + 6ατ

3/2
i λi)

(2V + ξ)2√τi
(4.11)

where we have substitute τ1 = ( 1
α)2/3(V + α

∑n
i=2 λiτ

3/2
i )2/3.

Considering that Kij̄ = 1
4
∂2K
∂τi∂τj

, we have

K11̄ =
3α4/3

4

4V − ξ + 6α
∑n

i=2 λiτ
3/2
i

(2V + ξ)2(V + α
∑n

i=2 λiτ
3/2
i )1/3

Kij̄ =
9α2

2

λiλj
√
τi
√
τj

(2V + ξ)2
(4.12)

Kīi =
3α

4

λi(2V + ξ + 6αλiτ
3/2
i )

(2V + ξ)2√τi
K1j̄ = −9α5/3

2

λjτ
1/2
j (V + α

∑n
i=2 λiτ

3/2
i )1/3

(2V + ξ)2

which can be inverted to give

K11̄ =
4(2V + ξ)(V + α

∑n
i=2 λiτ

3/2
i )1/3(2V + ξ + 6α

∑n
i=2 λiτ

3/2
i )

3α4/3(4V − ξ)

Kij̄ =
8(2V + ξ)τiτj

4V − ξ K1j̄ =
8(2V + ξ)τj(V + α

∑n
i=2 λiτ

3/2
i )2/3

α2/3(4V − ξ)

K īi =
4(2V + ξ)

√
τi(4V − ξ + 6αλiτ

3/2
i )

3α(4V − ξ)λi

(4.13)
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Using a superpotential of the form

W = W0 +
n∑
i=2

Aie
−aiTi (4.14)

we eventually have

VF =
4

(2V + ξ)2

(
K11̄D1WD1̄W̄ +

n∑
i=2

K 1̄i(D1WDīW̄ +DiWD1̄W̄ )

+

n∑
i=2

K īiDiWDīW̄ +

n∑
i<j
i,j=2

Kij̄(DiWDj̄W̄ +DjWDj̄W̄ )− 3|W |2
)

(4.15)

K11̄D1WD1̄W̄ =
12(V + α

∑n
k=2 λkτ

3/2
k )(2V + ξ + 6α

∑n
k=2 λkτ

3/2
k )

(4V − ξ)(2V + ξ)
×

(
W 2

0 + 2W0

n∑
k=2

Ake
−akτk cos(akθk) +

n∑
k,l=2

AkAle
−akTk−alT̄ l

)
(4.16)

n∑
i=2

K 1̄i(D1WDīW̄ +DiWD1̄W̄ ) =
n∑
i=2

24τi(V + α
∑n

k=2 λkτ
3/2
k )

4V − ξ ×

(
2W0aiAie

−aiτi cos(aiθi) + 2aiAi

n∑
k=2

Ake
−(aiτi+akτk) cos(aiθi − akθk)−

6αW 2
0 λiτ

1/2
i

2V + ξ

− 12W0αλiτ
1/2
i

2V + ξ

n∑
k=2

Ake
−akτk cos(akθk)−

6αλiτ
1/2
i

2V + ξ

n∑
k,l=2

AkAle
−akT̄k−alTl

)
(4.17)

n∑
i=2

K īiDiWDīW̄ =
n∑
i=2

4(2V + ξ)
√
τi(4V − ξ + 6αλkτ

3/2
k )

3αλi(4V − ξ)
×

(
a2
iA

2
i e
−2aiτi − 6W0αλiτ

1/2
i

2V + ξ
aiAie

aiτi cos(aiθi) +
9W 2

0α
2λ2

i τi
(2V + ξ)2

+
18W0α

2λ2
i τi

(2V + ξ)2

n∑
k=2

Ake
−akτk cos(akθk) +

9α2λ2
i τi

2V + ξ

∑
k,l

AkAle
−akTk−alT̄l

− 6aiAiαλiτ
1/2
i

2V + ξ

n∑
k=2

Ake
−(akτk+aiτi) cos(akθk − aiθi)

)
(4.18)
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n∑
i<j
i,j=2

Kij̄(DiWDj̄W̄ +DjWDj̄W̄ ) =

n∑
i,j=2,i<j

8(2V + ξ)τiτj
4V − ξ ×

(
2aiAiajAje

−(aiτi+ajτj) cos(aiθ − ajθj)+

18λiλjτ
1/2
i τ

1/2
j α2

(2V + ξ)2

(
W 2

0 + 2W0

n∑
k=2

Ake
−akAk cos(akθk) +

n∑
k,l=2

AkAle
−akTk−alT̄l)

−
6αλjτ

1/2
j

2V + ξ
aiAiW0e

−2aiAi cos(aiθi)−
6αλiτ

1/2
i

2V + ξ
ajAje

−2ajτj cos(ajθj)

−6aiAiα

2V + ξ
λiτ

1/2
i

n∑
k=2

Ake
−(akτk−aiτi) cos(aiθi − akθk)

− 6ajAjα

2V + ξ
λjτ

1/2
j

n∑
k=2

Ake
−(akτk−ajτj) cos(ajθj − akθk)

)
(4.19)

Adding all terms together at the end we have

VF =

n∑
i<j
i,j=2

AiAjcos(aiθi − ajθj)
(4V − ξ)(2V + ξ)2

e−(aiτi+ajτj)(32(2V + ξ)(aiτi + τjaj + 2aiajτiτj) + 24ξ)

+
12W 2

0 ξ

(4V − ξ)(2V + ξ)2
+

n∑
i=2

(
12e−2aiτiξA2

i

(4V − ξ)(2V + ξ)2
+

16(aiAi)
2√τie−2aiτi

3αλi(2V + ξ)

+
32e−2aiτiaiτiA

2
i (1 + aiτi)

(4V − ξ)(2V + ξ)
+

8W0Aie
−aiτi cos(aiθi)

(4V − ξ)(2V + ξ)
(

3ξ

2V + ξ
+ 4aiτi)

)
(4.20)

The vacua that emerge from stabilisation in the Large Volume Scenario, like in the
KKLT, have negative energy. In order to describe inflation we need a dS minimum with
positive energy which however is more difficult to obtain than a stable AdS minimum.
The reason why the AdS configuration is more stable is because it is protected by SUSY
in the KKLT and thanks to the large volume limit in the case of LVS. In order to obtain de
Sitter vacuum configurations we must add an uplifting term at the background solution
derived from SUSY breaking. Since this uplifting term cannot be perturbatively small it
is important to break SUSY in a parametrically controlled way in order not to invalidate
the stabilisation method which is based on an effective supersymmetric action. One way
could be through multiple D-branes in the singular vertex of a cone of the Calabi-Yau
which supports gauge theories in four dimensions, some of which will give metastable
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vacua where SUSY is dynamically broken. The problem is that it is not guaranteed that
this metastability will survive under the subsequent stabilisation. The idea, therefore,
it is that the stabilisation in the AdS minimum and the SUSY breaking responsible for
the uplifting of this minimum occur in two different regions of the compactification. The
uplifting term in our case will assume the form

Vuplift =
β

V2
(4.21)

and must be added to the potential (4.20).

In the limit V → ∞ with τ1 � τi, the potential becomes

VL =

n∑
i=2

8(aiAi)
2

3αλiV
√
τie
−2aiτi −

n∑
i=2

4W0aiAiτi
V2

e−aiτi +
3ξW 2

0

4V3
+

β

V2
(4.22)

where we have minimize with respect to the C4-axions θi. We find the minimum of τi

∂VL
∂τi

= 0 ⇒ aiAie
−aiτi =

3αλiW0(1− aiτi)
2V(1

2 − 2aiτi)
(4.23)

which in the large volume limit aiτi � 1, becomes

eaiτi ∼ 4VaiAi
3αλiW0

√
τi
⇒ τi ∼

1

ai

(
ln(V)− ln

(
3αλiW0

2aiAiτi

))
(4.24)

The second term in the bracket is tend to zero and so at the minimum we have aiτi ∼
ln(V). If we substitute the minimum in the potential we obtain

V min
L = −3

2

n∑
i=2

W 2
0αλiτ

3/2
i

V3
+

3ξW 2
0

4V3
+

β

V2

and considering aiτi ∼ ln(V)

V min
L = −3W 2

0

2V3

( n∑
i=2

λiα

a
3/2
i

ln(V)3/2 − ξ

2

)
+
β

V2
(4.25)

In order to have inflation a flat enough potential must exists. This can be obtained by
displacing one of the small modulus τi, with i = 1 . . . n, away from its minimum value
keeping the others fixed at their global minima. This modulus will be the inflaton since
at constant volume the potential is exponentially flat along this direction and we obtain
a successful inflationary fashion when it is rolls back to its minimum. Inflation ends
when all moduli take their minimum values. If we choose the inflaton to be τn then after
displacing it, the potential (4.25) becomes

V min
L = −3W 2

0

2V3

(n−1∑
i=2

λiα

a
3/2
i

ln(V)3/2 − ξ

2

)
+
β

V2
(4.26)
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To ensure that the minimum of the potential along the other directions remains un-
changed if we displace τn from its minimum there should be little difference between
(4.25) and (4.26). In conclusion, all the fields except τn will remain unchanged during
inflation if

ρ =
λn

a
3/2
n

/

n∑
i=2

λi

a
3/2
i

� 1 (4.27)

The potential along the inflationary direction τn, if we neglect the double exponential is

Vinf (τn) =
BW 2

0

V3
− 4W0anAnτn

V2
eanτn (4.28)

where B includes several terms of (4.22). In terms of the canonically normalised field
ψ
Mpl

=
√

4αλn
3V τ

3/4
n , the inflationary potential, in Plank units, is

Vinf (ψ) =
BW 2

0

V3
− 4W0anAn

V2

(
3V

4αλn

)2/3

ψ4/3 exp

(
−an

(
3V

4αλn

)2/3

ψ4/3

)
(4.29)

V ′inf (ψ) = −16W0anAn
3V2

(
3V

4αλn

)2/3

ψ1/3 exp

(
−an

(
3V

4αλn

)2/3

ψ4/3

)
(4.30)

×
(

1− ψ4/3an

(
3V

4αλn

)2/3)

V ′′inf (ψ) =
16W0anAn

9V2

(
3V

4αλn

)
e−anτn(9anτ

1/2
n − 4a2

nτ
3/2
n − τ−1/2

n ) (4.31)

Substituting these expressions into (1.62) and (1.63), we find

ε ' 32V3a2
nA

2
n
√
τn(1− anτn)2e−2anτn

3B2αλnW 2
0

(4.32)

η ' − 4anAnV2

3αλn
√
τnBW0

(1− 9anτn + (2anτn)2)e−anτn (4.33)

The number of e-foldings is

Ne =

∫ ψ

ψend

1√
2ε
dψ = −3BW0λnα

16V2anAn

∫ τn

τendn

eanAn√
τn(1− anτn)

dτn (4.34)

where τ endn is the point in field space where ε ∼ η ∼ 1. In order to obtain a large
enough number of e-foldings, at the beginning we must have large values of τn so that
V2e−2anτn � 1.

In the limit of slow roll we have

ns − 1 = 2η − 6ε r = 16ε (4.35)
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and, since the slow roll parameters at the time of Horizon exit are related to the number
of e-foldings, we can express ns and r in terms of Ne. By expressing primordial pertur-
bations in terms of the empirical parameters such as the scalar tilt ns and the tensor
to scalar ratio r, we are able to constrain models of inflation. In particular the most
likely values of the empirical parameters are computed as a function of model parame-
ters. They are determined by evolve the initial fluctuations and comparing them with
the observed CMB fluctuations. In this way, we have a reliable way to constrain all the
model dependent microscopic parameters of the theory. The COBE normalization for
the density fluctuations δH = 1.92× 10−5 requires(

g4
s

8π

)
3λβ3W 2

0

64
√
τn(1− anτn)2

(
W0

anAn

)2 e2anτn

V6
= 2.7× 10−7 (4.36)

where we have included a factor of g4s
8π as an overall normalization in V . It turns out

that the internal volume must take the values 105 < V < 107.

To conclude the discussion on Kähler inflation it is worth noting that in general the
displacement of the inflaton from its global minimum affects the potential experienced by
the other moduli fields [10]. Thus, in general, the minimum values for the moduli during
inflation differs from the minimum during the post-inflationary epoch and light moduli
at the end of inflation are typically displaced from their post inflationary minimum.
When the Hubble scale becomes smaller than the post inflationary mass of the moduli
the energy density of the Universe is dominated by their coherent oscillations. This
vacuum misalignment is useful to constrain the masses of moduli fields, requiring that
the reheating temperature is suitable for the successive Big Bang Nucleosinthesis. On
the other hand it can affects the number of e-foldings which is dependent on the post
inflationary history of the Universe. In the case of Kähler inflation we are interested on
the misalignment of the volume modulus during inflation. By determining the difference
between its inflationary and post inflationary minima we obtain the post inflationary
history of the Universe and how it affects the number of e-foldings. After the end of
inflation we have coherent oscillations of the inflaton and the volume modulus. The
energy is dominated by matter until the inflaton decay. Inflaton quanta behaves as
radiation while the energy associated to the volume modulus behaves as matter. Since,
as we have seen in the first chapter, radiation energy dilutes faster than matter energy,
at the end we have a second phase of matter dominance that ends when also the volume
modulus decays. Once the precise post inflationary history is understood it is possible to
compute the precise preferred range of number of e-foldings which turns out to be smaller
than the corresponding number in the standard cosmological timeline. The reduction
of the number of e-foldings between the Horizon exit of the pivot mode and the end of
inflation, due to the presence of cold particles of the volume modulus has a significant
effect on the inflationary predictions.
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4.3 Fibre Inflation

Fibre Inflation is a large field inflationary model in which the inflaton is the size of a K3
fibre over a CP 1 base. These models are realised for K3 fibrered Calabi-Yau three-folds
with almost three Kähler moduli. In my case i have used exactly three Kähler moduli Ti,
i = 1, 2, 3. The real part of T1 parameterises the volume of a K3 or T 4 divisor D1 fibred
over a P 1 base and will play the role of the inflaton. This field is stabilised at subleading
order due to string loop corrections to K. The real part of T2, instead, parametrizes
the volume of the base D2 of the fibration and it controls the overall volume V which
is stabilised at leading order via α′ corrections. The corresponding axions of these two
moduli, as we have already said, come from the reduction of the ten-dimensional bulk
form C4 over D1 and D2 respectively and they are fixed small through non-perturbative
corrections to the superpotential. The real part of T3 finally is a blow up mode which is
fixed small by non perturbative corrections and it is necessary for the full stabilisation
of the volume at leading order. By expanding the Kähler form in the basis of dual forms
we find

V =
1

6
(3k122t1t

2
2 − k333t

3
3) (4.37)

where t1 is the volume of the P 1 base and t22 is the size of the K3 or T 4 fibre. Using the
relation (3.32) we have

τ1 =
1

2
k122t

2
2 τ2 = k122t1t2 τ3 =

1

2
k333t

2
3 (4.38)

and finally

V = α(
√
τ1τ2 − γτ3/2

3 ) (4.39)

with α = 1/
√

2k122 and γ = 2
√
k122/(3

√
k333).

The tree level Kähler potential with the leading α′ and string loop perturbative correc-
tions reads

K = Ktree +Kα′ +Kgs = −2 ln

(
V +

ξ̂

2g
3/2
s

)
+Kgs (4.40)

Considering only the α′ contribution in the previous expression and including non-
perturbative corrections to the superpotential

W = W0 +
3∑
i=1

Ake
−akTk 'W0 +A3e

−a3T3 (4.41)

we have

∂K

∂τ1
=

(
− 2

V +
ξ

V2

)
ατ2

2
√
τ1

∂2K

∂τ2
1

= − ατ2

4τ
3/2
1

(
− 2

V +
ξ

V2

)
+
α2τ2

2

4τ1

(
2

V2
− 2

ξ

V3

)
∂K

∂τ2
=

(
− 2

V +
ξ

V2

)
α
√
τ1

∂2K

∂τ2
2

= α2τ1

(
2

V2
− 2

ξ

V3

)
66



∂K

∂τ3
= −

(
− 2

V +
ξ

V2

)
3

2
αγ
√
τ3

∂2K

∂τ2
3

=
9

4
α2γ2τ3

(
2

V2
− 2

ξ

V3

)
−3

4

αγ√
τ3

(
− 2

V +
ξ

V2

)
∂2K

∂τ1∂τ3
= −3α2γ

√
τ3τ2

4
√
τ1

(
2

V2
− 2

ξ

V3

)
∂2K

∂τ2∂τ3
= −3

2
α2γ
√
τ1
√
τ3

(
2

V2
− 2

ξ

V3

)
∂K

∂τ1∂τ2
=

α

2
√
τ1

(
− 2

V +
ξ

V2

)
+
α2τ2

2

(
2

V2
− 2

ξ

V3

)
(4.42)

These expressions can be approximated neglecting α′ corrections. If we write the volume
as V ∼ α√τ1τ2 the Kähler metric at tree level it turns out to be

K0
ij̄ =

1

4τ2
2


τ22
τ21

γ( τ3τ1 )3/2 −3γ
2

√
τ3τ2

τ
3/2
1

γ( τ3τ1 )3/2 2 −3γ
√
τ3√
τ1

−3γ
2

√
τ3τ2

τ
3/2
1

−3γ
√
τ3√
τ1

3αγ
2V

τ22√
τ3

 (4.43)

and its inverse: K īj
0 = 4

 τ2
1 γ

√
τ1τ

3/2
3 τ1τ3

γ
√
τ1τ

3/2
3

1
2τ

2
2 τ2τ3

τ1τ3 τ2τ3
2V
3αγ

√
τ3

 (4.44)

In the light ofKij̄ = 1
4

∂K
∂τi∂τj

the scalar potential, without string loop corrections, becomes

V =
8a2

3A
2
3

√
τ3

3αγV e−2a3τ3 +
4W0a3A3τ3 cos (a3θ3)

V2
e−a3τ3 +

3ξW 2
0

4V3
(4.45)

and after minimizing with respect to the axionic partner θ3

V =
8a2

3A
2
3

√
τ3

3αγV e−2a3τ3 − 4W0a3A3τ3

V2
e−a3τ3 +

3ξW 2
0

4V3
(4.46)

In the (4.41) we have chosen τ2 and τ3 big enough to remove the dependence of the
superpotential on these two moduli. We must also add the uplifting term at the scalar
potential in order to find the correct minimum, with a zero or a tiny positive value,
produced by the tension of an D̄3-brane in a warped region of the extra dimensions.
This term will not depend on τ1 once V is fixed. As a consequence, the scalar potential
at this level depends only on the overall volume V and on the mode τ3 which it results
completely stabilised. In fact we can rewrite for simplicity

V =
λ
√
τ3

V e−2a3τ3 − µτ3e
−a3τ3

V2
+

ν

V3
(4.47)

with

λ =
8a2

3A
2
3

3αγ
µ = 4W0A3a3 ν =

3ξ

4
W 2

0 (4.48)
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∂V

∂τ3
= 0 ⇒ λV√

τ3
e−a3τ3

(
1

2
− 2a3τ3

)
= µ(1− a3τ3) (4.49)

∂V

∂V = 0 ⇒ −λ√τ3e
−2a3τ3V2 + 2µτ3Ve−a3τ3 − 3ν = 0 (4.50)

From the second equation we find

V =
µ
√
τ3e

a3τ3

λ

(
1 +

√
1− 3νλ

µ2τ
3/2
3

)
(4.51)

and substituting in (4.49) in the the approximation a3τ3 � 1, we get

〈τ3〉 =

(
ξ̂

2αγ

)2/3

〈V〉 =

(
3αγ

4a3A3

)
W0
√
< τ3 >e

a3<τ3> (4.52)

There is a combination of τ1 and τ2 that has not yet been stabilised, that is, a direction
in the moduli space along which the potential is still completely flat. This combination
therefore will gives rise to the inflaton field.

String loop corrections give the necessary contribution in order to stabilise τ1 and τ2 at
large values. They are the result of two contributions, i.e. the exchange between D3

and D7-branes of closed strings, which carry Kaluza-Klein momentum δKKK
(gs)

and the

exchange of winding strings, between intersecting stacks of D7 branes δKW
(gs)

.

δKKK
(gs)

= − 1

128π4

3∑
i=1

EKKi (U, Ū)

Re(S)τi
δKW

(gs)
= − 1

128π4

3∑
i=1

EWi (U, Ū)

τjτk

∣∣∣∣
i 6=j 6=k

(4.53)

In the first correction we assume that all the three 4-cycles of the torus are wrapped by
D7-branes and τi denotes the volume of the 4-cycle wrapped by the i-th D7-brane while
in the second expression τi and τj denote the volume of the 4-cycle wrapped by the i-th
and the j-th intersecting D7-branes. These expressions are significantly simplified since
they contain a very complicated dependence on the complex structure moduli which
however are fixed by fluxes at tree level and a very simple dependence on T moduli.
The expressions (4.53) have been calculated in the case of N = 1 compactifications on
T 6/(Z× Z). On general Calabi-Yau manifolds the corrections are generalized as

δKKK
(gs)
∼

h(1,1)∑
i=1

CKKi (U, Ū)

Re(S)V (ailt
l) (4.54)

where ailt
l is a linear combination of the basis of 2-cycle volume tl that it is transverse

to the 4-cycle wrapped by the i-th D7 brane, while

δKW
(gs)
∼
∑
i

CWi (U, Ū)

(ailtl)V
(4.55)
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where ailt
l now is the 2-cycle where the two D7-branes intersect. The two functions

CKKi (U, Ū), CWi (U, Ū) are unknown, but fortunately are simply constants once the
complex structure moduli have fixed. In terms of the tree level Kähler metric these
corrections give a contribution to the scalar potential of the form

δV 1−loop
(gs)

=

(
(CKKi )2

Re(S)2
aikaijK

0
kj̄ − 2

∑
i

δKW
(gs),ti

)
W 2

0

V2
(4.56)

In our case branes are wrapped only around the basis 4-cycles and the contribution
(4.56) is simplified because aikaijK

0
kj = Kīi.

The KK string loop correction associated to a stack of D7-branes that warp τ3 does not
depend on the combination of fields which represent the inflaton and consequently it
is not important for the general inflationary characteristics. Moreover from the precise
form of the volume (4.39), it is clear that the blow up mode τ3 does not intersect any
other cycle and so we can neglect also the winding string corrections for it. The relevant
contributions, therefore, are related to τ1 and τ2:

δV(gs) = δV KK
(gs),τ1

+ δV KK
(gs),τ2

+ V W
(gs),τ1τ2

(4.57)

δV KK
(gs),τ1

= g2
s

(CKK1 )2

τ2
1

W 2
0

V2
δV KK

(gs),τ2
= 2g2

s

(CKK2 )2

τ2
2

W 2
0

V2
V W

(gs),τ1τ2
= −

(
2CW12

tint

)
W 2

0

V3

where tint is the 2-cycle denoting the intersection locus of the 4-cycles τ1 and τ2.

∂V
∂t1

=
1

2
k122t

2
2 =

(
1

2
k122t2

)
t2

∂V
∂t2

= k122t1t2 =

(
1

2
k122t2

)
2t1

tint =

(
1

2
k122t2

)
=

√
(
1

2
k122t2)τ1 ≡

√
λ1τ1 (4.58)

The string loop correction (4.57), eventually assumes the form

δV(gs) =

(
A

τ2
1

− B

V√τ1
+
Cτ1

V2

)
W 2

0

V2
(4.59)

where A = (gsC
KK
1 )2, B = 2CW12 /

√
λ = 4αCW12 , since as we have seen α = 1/

√
2k122

and C = 2(αgsC
KK
2 )2. It is clear that A and B are positive while the sign of B is

undetermined. The form of the corrections suggest us to use only τ1 as the parameter
along which the potential is flat and therefore it is represent the inflaton field. Inflation
will correspond to an initial situation, with the K3 fibre much larger than the base and a
final situation with the base larger than the K3 fibre. The inflaton field can be stabilised
through the string loop corrections

d(δV(gs))

dτ1
= 0⇒

(
−2Aτ−3

1 +
B

2V τ
−3/2
1 +

C

V2

)
W 2

0

V2
= 0 (4.60)
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We solve the equation

−2Ax2 +
B

2V x+
C

V2
= 0 for x =

1

τ
3/2
1

and we find
1

τ
3/2
1

=
B

8AV

(
1 +

B

|B|

√
1 +

32AC

B2

)
(4.61)

For B > 0:
1

τ
3/2
1

=
B

4AV

(
16AC

B2
+ 2

)
∼ B

4AV
For B < 0:

1

τ
3/2
1

= − B

8AV
16AC

B2
= − 2C

BV

τ1 '
(
−BV

2C

)2/3

for B < 0 τ1 '
(

4AV
B

)2/3

for B > 0 (4.62)

The kinetic term of the Lagrangian, at leading order, is

−Lkin = K0
ij̄(∂µTi∂

µT̄j̄) =
∂2K

4∂τi∂τj
(∂µτi + i∂µθi)(∂

µτi − i∂µθj)

=
∂2K

4∂τi∂τj
(∂µτi∂

µτj + ∂µθi∂
µθj) =

1

4τ2
1

∂µτ1∂
µτ1 +

1

2τ2
2

∂µτ2∂
µτ2 + · · · (4.63)

By writing τ2 = 2V
(
λ1
τ1

)1/2

with λ1 = 1 and so α2 = 1/4λ2
1 = 1/4, we have

−Lkin =
1

4τ2
1

∂µτ1∂
µτ1 +

2

τ1τ2
2

∂µV∂µV −
2V
τ2

1 τ
2
2

∂µV∂µτ1 +
V2

2τ2
2 τ

3
1

∂µτ1∂
µτ1

− Lkin =
3

8τ2
1

∂µτ1∂
µτ1 +

1

2V2
∂µV∂µV −

1

2Vτ1
∂µV∂µτ1 + · · · (4.64)

where we have used the V ∼ α√τ1τ2.
From (4.64) it is clear that the fields τ1 and V are not canonically normalised. In first
place we can rewrite the expression as

−Lkin =
3

8

(
1

τ1
∂µτ1

)(
1

τ1
∂µτ1

)
+

1

2

(
1

V ∂µV
)(

1

V ∂
µV
)
−1

2

(
1

V ∂µV
)(

1

τ1
∂µτ1

)
=

3

8
∂µχ1∂

µχ1 +
1

2
∂µχv∂

µχv −
1

2
∂µχv∂

µχ1 (4.65)

where we have substitute χv = ln (V) and χ1 = ln (τ1). At this point it is easy to
canonically normalised the two fields by(

∂µχ1

∂µχv

)
=M

(
∂µφ1

∂µφv

)
(4.66)
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with M satisfying the

MT

(
3
4 −1

2
−1

2 1

)
M = 12×2 (4.67)

to obtain the kinetic Lagrangian in terms of the mass eigenstates −Lkin = 1
2∂µφ1∂

µφ1 +
∂µφ2∂

µφ2. In order to study the possibility of having inflation we must displace one of
the fields from its minimum similarly to what we did in the case of Kähler. Since the
potential for τ1 is systematically flat in the absence of string loop corrections we expect
this very field to be the best candidate for representing the inflaton. The inflationary
Lagrangian with all the other field fixed at their minima will be

Linf = −3

8

(
∂µτ1∂

µτ1

τ2
1

)
−Vinf (τ1) (4.68)

and the inflationary potential

Vinf (τ1) = V0 +

(
A

τ2
1

− B

V√τ1
+
Cτ1

V2

)
W 2

0

V2
(4.69)

where V0 comes from the (4.46) with τ3 replaced by its minimum value 〈τ3〉. We obtain
therefore a single field inflation model where V and τ3 remain fixed while the inflaton τ1

rolls back to its minimum. In terms of the canonically normalised field

φ =

√
3

2
ln (τ1) ≡ 1

k
ln (τ1) (4.70)

the potential (4.69) becomes

Vinf (φ) = V0 +
W 2

0

V2

(
Ae−2kφ − B

V e
−kφ
2 +

C

V2
ekφ
)

=
1

V10/3
(C0e

kφ̂ − C1e
− kφ̂

2 + C2e
−2kφ̂ + Cup) (4.71)

where we have shifted φ = 〈φ〉+ φ̂ by its vacuum and we have adjusted V0 = Cup/〈V〉10/3

to ensure that Vinf (〈φ〉) = 0.

In the case of A,C � B and B > 0, the (4.71) is approximated by

Vinf '
C2

〈V〉3/2
(

3− 4e
−kφ̂
2 + e−2kφ̂ +Rekφ̂

)
(4.72)

with C2 = W 2
0

(
B4

256g2sA

)1/3

and R = 4g4
s
AC
B .

∂Vinf

∂φ̂
=

C2

〈V〉3/2 2k

(
e−

kφ̂
2 − e−2kφ̂ +

1

2
Rekφ̂

)
(4.73)
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It follows that

ε =
1

2
4k2

(
e−

kφ̂
2 − e−2kφ̂ + 1

2Re
kφ̂

3− 4e−
kφ̂
2 + e−2kφ̂ +Rekφ̂

)2

=
8

3

(
e−

kφ̂
2 − e−2kφ̂ + 1

2Re
kφ̂

3− 4e−
kφ̂
2 + e−2kφ̂ +Rekφ̂

)2

(4.74)

and

η = −4

3

e−
kφ̂
2 − 4e−2kφ̂ −Rekφ̂

3− 4e−
kφ̂
2 + e−2kφ̂ +Rekφ̂

(4.75)

In the slow roll regime R1/3 � e−
φ̂
2 � 1 the potential is

Vinf (φ̂) ' C2

〈V〉10/3
(3− 4e

−kφ̂
2 ) (4.76)

and the slow roll parameters become

ε ' 8

3

1(
3e

kφ̂
2 − 4

)2 η ' −4

3

1(
3e

kφ̂
2 − 4

) ε ' 3η2

2
(4.77)

Ne =

∫ φ̂

φ̂end

1√
2ε

=

∫ φ̂

φ̂end

√
3

4
(3e

kφ̂
2 − 4) =

(
9

4
e
kφ̂
2 −
√

3φ̂

)∣∣∣∣φ̂
φ̂end

(4.78)

Slow roll conditions break down once φ̂ is small enough. We have the end of inflation
around the point φ̂end ∼ 1. For bigger values of φ̂ we have the slow roll regime, where
the potential presents the necessary for inflation, plateau. The number of e-foldings
depends mostly on the initial value of φ̂ while it is independent from the precise value
of the inflaton at the end of inflation. It is therefore model dependent and so sensible
on the parameters of the underlying supergravity theory. It depends also on R and in
fact the request of having almost 60 e-foldings constraints R ≤ 5× 10−5.
The slow roll parameters, instead, are independent on the precise normalization of the
potential. Using the ns = 1 + 2η? − 6ε? ∼ 1 + 2η?, r = 16ε? and the (4.77) we get

r ' 6(ns − 1)2 (4.79)

As we have done also for Kähler inflation in order to reproduce the COBE normalization
for primordial scalar perturbations δH = 1.92× 10−5 we have to impose(

gse
Kgs

8π

)(
V 3/2

V ′

)
' 2.7× 10−7 (4.80)

where the prefactor gse
Kgs/8π is the correct overall normalization of the potential.
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4.4 General properties of inflationary string models

We conclude this chapter with a discussion on general properties emerging in the contest
of Type IIB string inflationary models such as those described in the previous sections.
In slow roll inflation the parameters ε and η must be sufficiently small during all the
inflationary phase, i.e. while the inflaton rolls back to its minimum. However the η
parameter is related to the mass of the inflaton which is a scalar and therefore features
the general problem due to the absence of symmetries that protect scalar masses against
any kind of quantum corrections.
More precisely

η =
V ′′(φ)

V (φ)
M2
pl ∼

m2
φ

H2M2
pl

M2
pl ∼

m2
φ

H2
� 1

To avoid fine tuning, we solve the η problem by giving a mass to the inflaton only via
α′ and non perturbative corrections. This means that at tree level all the τ -directions
are flat. This feature is expressed in the no scale structure of the Kähler potential

Kij̄
0 K0iK0j̄ = 3.

A very important moment in the context of inflation is reheating, i.e. when the inflaton
decays into ordinary matter degrees of freedom. In our case, where the inflaton is a
closed string mode and therefore it belongs to the hidden sector, it is highly non trivial
to understand how the coupling with the visible sector takes place. In general there are
two different ways to introduce the visible sector in the inflationary string models in the
LVS: the first is based on the presence of a rigid 4-cycle which does not intersect other
cycles and can shrink down at a singularity. In that case the visible sector is built via
D3-branes at the singularity. In the second way the visible sector is built via magnetized
intersecting D7-branes wrapping a blow up 4-cycle which is stabilised at a volume larger
than the string scale. In both methods SUSY is broken due to non vanishing background
fluxes by the F−term of the Kähler moduli. An important difference is that in the case
of D3-branes at singularity there is no local SUSY breaking and the visible sector is
sequestered. This feature implies that the main inflaton decay channels are just the
axionic particles leading to an overproduction of relativistic degrees of freedom whose
number is however constrain by observations. We are therefore forced to consider models
where the visible sector lives on D7-branes wrapped around the inflaton 4−cycle in order
to maximize the inflaton branching ratio into SM fields. In the next chapter there is the
explicit computation of the coupling functions with the gauge bosons for the two models
of inflation that we have seen.

Finally, an essential characteristic to consider is related to the range of allowed inflaton
values [8]. In the context of Calabi-Yau compactifications with background fluxes in
the Large Volume Scenario it emerges that the inflaton field range could be bounded
from above. Moduli fields belong to the moduli space described by the Kähler metric.
The directions of the overall volume as well as these of the small blow up modes that
resolve singularities are uplifted with the inclusion of leading α′ and non perturbative
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effects. This stabilisation imposes the constraints V = 〈V〉 and τs = 〈τs〉, on the moduli
space which is reduced in that of the remaining flat directions. The latter therefore is
a subspace of the full Kähler moduli space and contains the unstabilised moduli fields
that in general represent the inflaton. In the case of h(1,1) = 3 the reduced space is
one-dimensional and compact. More precisely it can be parameterized in terms of the
canonically normalised field φ and its volume turns out to be limited from above

∆φ ≤Mpl ln (V) (4.81)

This implies, therefore, a constrain on the inflaton field range. For an intuitive way to
understand this limitation, we can focus our attention on the case ofK3 fibred geometries

where V ∼ √τ1τ2 − γτ3/2
3 . In this case τ1 and τ2 can be seen pictorially as the two sides

of the rectangle representing the volume. When one of the two gets smaller, it causes
the corresponding growth of the other. If the volume is fixed and contains also a fixed
small blow up cycle within it then the variations of τ1 and τ2 are constrain not only
by the fact that the volume must remain constant but also are limited by the cycle
inside the rectangle. In other worlds the mode that are shrinking can get smaller only
until it meets the rigid fixed 4-cycle and then it stops causing the arrest in the growing
of the other. The size of the reduced moduli space is dependent on the fixed overall
volume and in a more moderate way on the fixed value of the small blow up mode. In
general there is an increasing in the allowed range of inflaton values at larger volumes
but this variation is significant only in the case of K3 fibred geometries. These are
also the only cases in which we can obtain trans-Planckian size of the moduli space
and inflation is even more UV sensitive. This fact makes the Fibre inflation models
particularly suitable for studying primordial gravity waves. Kähler moduli inflation on
the other hand, belong to small field models of inflation with sub-Planckian inflaton
field range. The implications of these purely geometric considerations combined with
the particular shape of the inflationary potential which determine the inflaton range
must be compared with the range needed to obtain enough e-foldings of inflation in
order to solve the flatness and the Horizon problem. In this thesis, as it is described
in the next chapter, we have focused mainly on trying to overcome these limitations by
slowing-down the inflaton with backreaction effects, in order not to invalidate the theory
of inflation as a good candidate to explain primordial cosmology.
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Chapter 5

Numerical analysis of
backreaction from magnetogenesis

The aim of this chapter is the numerical study of the inflationary evolution in the pres-
ence of backreaction effects due to the coupling of the inflaton with the electromagnetic
field. For this purpose we have to modify the standard electromagnetic Lagrangian term
by introducing a coupling function dependent on time through the inflaton. During
inflation the inflaton changes monotonously and therefore it is natural to assume that
the coupling function is decreasing. This leads to a large electric energy density which
could influence the standard inflationary evolution.
In this direction we have used the Kähler (KI) and Fibre (FI) models of Inflation. We
have first studied the evolution of the inflaton in the absence of backreaction and after
we have introduced the coupling function in order to compare the results obtained in
the two different regimes.
The numerical analysis has pointed out that the coupling of the inflaton with the elec-
tromagnetic field can cause a slowdown of the inflationary dynamics. The result is the
increase of the number of e-foldings which is very useful from the point of view of in-
flationary string models where the limits related on the allowed values of the inflaton
could in principle invalidate their reliability.
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5.1 The necessity of more e-foldings of Inflation

In general in the geometric moduli space of a compact Kähler manifold there is at least
one universal flat direction given by the modulus describing the total volume of the
internal space. In order to find phenomenologically viable vacua where the effective
field theory approximation is holding we are interested in the moduli space of Kähler
deformations in the context of Type IIB Calabi-Yau orientifolds with background fluxes
in the Large Volume Scenario. In these models, as we have already said, leading α′ and
non-perturbative corrections can lift the overall volume modulus as well as any blow
up mode that resolving point-like singularities reducing the total moduli space in that
of the, at least one, flat direction representing the inflaton field. The reduced moduli
space is described by the reduced Kähler metric and, if ns is the number of the stabilised
4-cycles, it contains (h(1,1)− ns− 1) 4-cycles flat directions and (h(1,1)− ns) axionic flat
directions. The axionic directions cannot give rise to a non-compact moduli space as
they are periodic and so can be neglected in this discussion. In the special case of three
Kähler moduli, h(1,1) = 3, the reduced moduli space turns out to be unidimensional. In
fact, it is obtained as the intersection between the two hypersurfaces inside the Kähler
cone defined fixing the volume modulus and the small blow up mode at their minima

V(τi) = 〈V〉 τs = 〈τs〉 (5.1)

as it can be seen from the Figure (5.1).

Figure 5.1: Unidimensional reduced moduli space in the Kähler cone defined by the
intersection of the two hypersurfaces coming from the stabilisation of the volume and
the blow up modes.

The crucial point is that the reduced moduli space is found to be compact [8]. In fact,
if we parameterize it in terms of the canonically normalised inflaton field φ, its volume
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is bounded from above
∆φ

Mpl
≤ c ln (V) (5.2)

This limit in the range of the allowed values of the inflaton, puts a restriction on the
number of e-foldings during inflation. In order, however, to solve the Horizon and flat-
ness problem, we need at least 50-60 e-foldings of inflation and consequently this upper
bound sets strong constraints on inflationary models and it could in principle invalidate
the success of inflation in describing primordial cosmology. Moreover, a geometrical
constrain on ∆φ causes a theoretical upper bound in the observed tensor to scalar ratio.
In order to have observable primordial tensor fluctuations in string constructions we
need, therefore, a transplanckian range for the inflaton field ∆φ ≥Mpl, and this can be
obtained only in large field inflationary models.
After these considerations, it becomes clear that we need a mechanism which is able to
slowdown the inflaton allowing in this way to increase the number of e-foldings.
In this chapter we present the attempt to find such mechanism in the context of Kähler
and Fibre inflation through the coupling of the inflaton to the electromagnetic field.
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5.2 System of equations

We consider a spatially flat Friedmann-Robertson-Walker Universe with metric gµν =
(1,−a2,−a2,−a2) and

√−g = a3. The action for the inflaton coupled to the electro-
magnetic field is

S =

∫
d4x
√−gL0 =

∫
d4x
√−g

(
1

2
gµν∂µφ∂νφ− V (φ)− 1

4
f2(φ)gµαgνβFµνFαβ

)
(5.3)

with Fµν = ∂µAν − ∂νAµ and Aµ the vector potential.
From the field equations for the scalar field

∂α
δL
δ∂αφ

− δL
δφ

= 0

we have

∂α(
√−ggαν ∂νφ) +

dV (φ)

dφ

√−g +
1

2
f(φ)f ′(φ)gµαgνβFµνFαβ

√−g = 0

and so
1√−g∂α(

√−ggαν ∂νφ) +
dV (φ)

dφ
= −1

2
f(φ)f ′(φ)FµνF

µν (5.4)

When it is explicitly reported the argument of a function the prime represent the deriva-
tive with respect to that argument.
In equation (5.4) the left hand side is the ordinary equation for the inflaton field while
the new term appearing in the right hand side is responsible for the backreaction effect.
From the field equations for the electromagnetic field

∂α
δL

δ∂αAµ
− δL
δAµ

= 0

we have

∂α(
√−g f2(φ) gµαgνβFµν) = 0 (5.5)

The stress energy tensor is

Tµν =
2√−g

δS

δgµν
=

2√−g
δ

δgµν

(√−gL0

)
=

2√−g
δ(
√−g)

δgµν
L0 +

2√−g
√−g δL0

δgµν

Tµν = −gµνL0 + ∂µφ∂νφ− f2(φ)gαβFαµFβν (5.6)

where we have use the fact that

δ(
√−g)

δgµν
= −1

2

√−g gµν (5.7)
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If the coupling function f(φ) is decreasing in time then the electric component of the
electromagnetic field dominates the magnetic one and so we can neglect it

Fij = a2(t)εijkBk(t) ' 0 F0i = a(t)Ei(t) (5.8)

In this approximation we have

ρ = T00 = ∂0φ∂0φ− f2(φ)gνκF0νF0k − L0 = ∂0φ∂0φ− f2(φ)giiF0iF0i − L0

In addition we consider a spatially homogeneous inflaton field, so

L0 =
1

2
∂0φ∂0φ− V (φ)− 1

2
f2(φ)g00giiF0iF0i

and consequently

ρ =
1

2
∂0φ∂0φ+ V (φ)− 1

2
f2(φ)giiF0iF0i =

1

2
φ̇2 + V (φ)− 1

2
f2(φ)

(
− 1

a2

)
a2EiEi

ρ =
1

2
φ̇2 + V (φ)︸ ︷︷ ︸

ρinf

+
1

2
f2(φ)E2︸ ︷︷ ︸
ρE

(5.9)

where we have denoted with ρinf the energy density of the inflaton field and with ρE
the electric energy density.
From the Friedman equation for a flat Universe we have

H2 =
1

3M2
pl

(ρinf + ρE) =
1

3M2
pl

(
1

2
φ̇2 + V (φ) + ρE

)
(5.10)

The equation (5.4) becomes

1

a3
∂0(a3∂0φ) +

dV (φ)

dφ
= −1

2
f(φ)f ′(φ)2g00gii(−E2)

φ̈+ 3Hφ̇+
dV (φ)

dφ
= f(φ)f ′(φ)E2 = 2

f ′(φ)

f(φ)
ρE (5.11)

and the (5.5) becomes

∂0(a3f2(φ)
1

a2
aEi) = 0⇒ ∂0(a2f2(φ)Ei) = 0

2ȧf2(φ)Ei + 2af(φ)f ′(φ)Ei + af2(φ)Ėi = 0

By multiplying by Ei/a at the end we find

ρ̇E + 4HρE + 2ρE
ḟ(φ)

f(φ)
= 0 (5.12)
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which gives the evolution of the electric energy density.
Inside the Horizon the modes of the electric energy density oscillate in time and have
to be treated as quantum fluctuations. When they cross the Horizon, however, start to
behave monotonically and become classical. These are the modes which contribute to
the electric energy density. Since their wavenumber is larger than the Hubble scale the
corresponding electric field can be considered spatially homogeneous. In the equation
(5.12), the classical part of the electric energy density at a certain moment of time is
determined by the modes which crossed the Horizon from the beginning of inflation till
the moment under consideration

ρE =

∫ kH(t)

ki

dρE
dk

dk (5.13)

where ki is the moment of the mode which crosses the Horizon at the beginning of
inflation and kH(t) = H(t)a(t). It is important to note that the number of relevant
modes with wavelength larger than Hubble radius changes in time. In order to keep this
fact in consideration in the equation (5.12) we must introduce an additional boundary
term describing the mode which cross the Horizon at a given time t

(ρ̇E)H =
dρE
dk

∣∣∣∣
k=kH

× dkH
dt

(5.14)

In order to calculate (ρ̇E)H we need the electric power spectrum dρE
dk and so it is useful

to study the mode decomposition of the electric field.
At this end it is convenient to use the conformal time in terms of which the metric
becomes

dS2 = a2(η)(dη2 − δikdxidxk) (5.15)

The action for the electric field in a curved background suitably modified in order to
contain the coupling function, dependent on time through the inflaton, is

S = −1

4

∫
d4x
√−gf2(η)FµνF

µν = −1

4

∫
d4x
√−gf2(η)gµνgρσFµρFνσ

S =
1

4

∫
d4xf2(η)(2F0iF0i − FijFij) (5.16)

We want to write the (5.16) in terms of the vector potential Aα = (A0, Ai). It is
convenient to decompose its spatial part in its transverse and longitudinal components
as Ai = ATi + ∂iχ, with ∂iA

T
i = 0.

F0iF0i = (∂0Ai − ∂iA0)2 = (∂0(ATi + ∂iχ)− ∂iA0)2

= ∂0A
T
i ∂0A

T
i + ∂0A

T
i ∂0∂iχ+ ∂0∂iχ∂0A

T
i + ∂0∂iχ∂0∂iχ− 2∂0A

T
i ∂iA0

− 2∂0∂iχ∂iA0 + ∂iA0∂iA0 = A
′T
i A

′T
i − χ′∆χ′ + 2A0∆χ′ −A0∆A0 (5.17)
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where we have reject the terms containing ∂iA
T
i = 0. In this context the prime denotes

derivative with respect to conformal time η.

FijFij = (∂iAj − ∂jAi)2 = 2∂iA
T
j ∂iA

T
j − 2∂iA

T
j ∂jA

T
i = −2ATj ∆ATj (5.18)

Using these expressions in the (5.16) we have

S =
1

2

∫
d4xf2(η)(A

′T
i A

′T
i − χ′∆χ′ + 2A0∆χ′ −A0∆A0 +ATj ∆ATj ) (5.19)

By varying the (5.19) with respect to χ′ we find χ′ = A0 and so the action becomes

S =
1

2

∫
d4xf2(η) (A

′T
i A

′T
i +ATi ∆ATi ) ≡ 1

2

∫
dη

∫
dxf2(η) (A

′T
i A

′T
i +ATi ∆ATi ) (5.20)

At this point we expand the transverse component of the vector field in the momentum
space

ATi (x, η) =
∑
σ=1,2

∫
dk

(2π)3/2
Aσk(η)εσi (k)eikx (5.21)

where εσi , σ = 1, 2 are two orthogonal polarization vectors.

A
′T
i (x, η) =

∑
σ=1,2

∫
dk

(2π)3/2
A
′σ
k (η)εσi (k)eikx (5.22)

∆ATi (x, η) =
∑
σ=1,2

∫
dk

(2π)3/2
Aσk(η)εσi (k)(−k2)eikx (5.23)

∫
dxA

′T
i A

′T
i

=

∫
dx

∑
σ,σ′=1,2

∫
dk

(2π)3/2

∫
dk′

(2π)3/2
A
′σ′

k′ (η)A
′σ
k (η)eikx+ik′x′εσi (k)εσ

′
i (k′)

=
∑
σ=1,2

∫
dkA

′σ
k (η)A

′σ
−k(η)εσi (k)εσ

′
i (−k) (5.24)

In the same way we find∫
dxATi ∆ATi =

∑
σ=1,2

∫
dkAσk(η)Aσ−k(η)εσi (k)εσi (−k)(−k2) (5.25)

Using (5.24), (5.25) in (5.20) we obtain

S =
1

2

∑
σ=1,2

∫
dη

∫
dk f2(η)εσi (k)εσi (−k)

(
A
′σ
k (η)A

′σ
−k(η)− k2Aσk(η)Aσ−k(η)

)
(5.26)
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Rewritten in terms of the new variable

vσk(η) =
√
εσi (k)εσi (k) f(η)Aσk(η) (5.27)

Using the

vσk(η)vσ−k(η) = εσi (k)εσi (−k)f2(η)Aσk(η)Aσ−k(η) (5.28)

and

f2(η)εσi (k)εσi (−k)A
′σ
k (η)A

′σ
−k(η) = v

′σ
k (η)v

′σ
−k(η) +

f ′′(η)

f(η)
vσk(η)vσ−k(η) (5.29)

at the end we have the action

S =
1

2

∑
σ=1,2

∫
dη

∫
dk

(
vσ
′

k (η)v
′σ
−k(η)−

(
k2 − f ′′(η)

f(η)

)
vσk(η)vσ−k(η)

)
(5.30)

This action describes two real scalar fields with time dependent effective masses in terms
of their Fourier Components. From (5.30) it follows that

v
′′σ
k (η) +

(
k2 − f ′′(η)

f(η)

)
vσk(η) = 0 (5.31)

The initial condition for this equation is the analogue of the Bunch-Davis vacuum

vk(η) =
1√
2k
e−ikη(t) for kη(t)→ −∞ (5.32)

The quantization of the system is very simple because it is reduced to the classical
procedure that is followed in the case of a scalar field in the curved space. After the
quantization we have

ÂTi (x, η) =
1

f(η)

∑
σ=1,2

∫
dk

(2π)3/2
√

2

(
eikxv?k(η)â−k + e−ikxvk(η)â+

k

)
(5.33)

In order to find the energy density we compute the stress-energy tensor

Tµ ν =
δL

δ∂µAρ
∂νAρ − δµνL = −f2(η)FµρFνρ − δµνL (5.34)

and then

T 0
0 = f2(η)

(
1

4
FijF

ij − 1

2
F0iF

0i

)
=
f2(η)

2a4

(
∂iA

T
j ∂iA

T
j +A

′T
i A

′T
i

)
(5.35)

We are now interesting in finding the electric energy density

ρE = 〈0|T̂ 0
0 |0〉 (5.36)
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where we consider only the second term in the bracket of (5.35), since we are interested
only in the homogeneous classical part which is the one given by the modes outside the
Horizon.

〈0|Â′Ti (x, η)Â
′T
i (x, η)|0〉 =

4

∫
dk

2(2π)3

(
f
′2(η)

f4(η)
|vk(η)|2 − 2

f ′(η)

f3(η)
v?k(η)v′k(η) +

1

f2(φ)
|v′k(η)|2

)

= 2

∫
dk

(2π)3

∣∣∣∣ ∂∂η
(
vk(η)

f(η)

)∣∣∣∣2=
1

π2

∫ ∞
0

dkk2

∣∣∣∣ ∂∂η
(
vk(η)

f(η)

)∣∣∣∣2 (5.37)

ρE = 〈0|T̂ 0
0 |0〉 =

∫ ∞
0

dk
k2f2(η)

2a4π2

∣∣∣∣ ∂∂η
(
vk(η)

f(η)

)∣∣∣∣2 (5.38)

The electric power spectrum, therefore, results

dρE
dk

=
f2(η)

2π2

k2

a4

∣∣∣∣ ∂∂η
(
vk(η)

f(η)

)∣∣∣∣2=
f2(t)

2π2

k2

a2

∣∣∣∣ ∂∂t
(
vk(t)

f(t)

)∣∣∣∣2 (5.39)

where in the last expression we have returned to the cosmic time. Once we have deter-
mined the electric power spectrum we can calculate the boundary term which has to be
added at the equation (5.12). At the moment of Horizon crossing the evolution of each
mode changes from oscillatory to monotonous. We can assume that at the moment of
Horizon crossing its behavior is still approximated by the Bunch-Davied vacuum. Then∣∣∣∣ ∂∂t

(
vk
f

)∣∣∣∣2=

∣∣∣∣−ik√2k

1

f
e−ikt/a − ḟ

f2

1√
2k
e−ikt/a

∣∣∣∣2
=

1

2kf2(t)

(
k2

a2
+

(
ḟ

f

)2)
(5.40)

If we calculate this at Horizon exit at the end we have

dρE
dk

∣∣∣∣
H

× dkH
dt

=
k

2π2a2

(
k2

a2
+

(
ḟ

f

)2)∣∣∣∣
k=kH=a(t)H

× dkH
dt

(ρ̇E)H =
H3

4π2

(
H2 +

(
ḟ

f

)2)
(5.41)

And so the equation (5.12) becomes,

ρ̇E + 4HρE + 2ρE
ḟ

f
=
H3

4π2

(
H2 +

(
ḟ

f

)2)
(5.42)

The system of equations that we are needed for the numerical calculation is (5.10), (5.11),
(5.42). In order to have the equations in Planck units we must use the redefinitions

φ′ =
φ

Mpl
, H ′ =

H

Mpl
, V ′ =

V

M4
pl

, ρ′ =
ρ

M4
pl

, t′ = t ·Mpl (5.43)
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It is convenient to express the evolution of the inflaton field in terms of the number of
e-foldings rather than of the cosmic time t. At this end we appropriately modify the
(5.10), (5.11) and (5.42) using the fact that

dN = Hdt (5.44)

and it is straightforward to find the equations

d2φ

dN2
+

(
3 +

1

H

dH

dN

)
dφ

dN
+
V ′(φ)

H2
=

2

H2

f ′(φ)

f(φ)
ρE (5.45)

3H2 =
H2

2

(
dφ

dN

)2

+V (φ) + ρE (5.46)

dρE
dN

+ 4ρE + 2
df(φ)

dN

1

f(φ)
ρE =

H4

4π2

(
1 +

(
df(φ)

dN

1

f(φ)

)2)
(5.47)

In the absence of backreaction the terms related to the electric energy density and to the
coupling function are missing. We further manipulate the equations in order to make
them more compact, in these two cases with and without backreaction. We take the
derivative with respect to the number of e-foldings of the (5.46) initially without the
contribution of the electric energy density.

6H
dH

dN
= H

(
dφ

dN

)2dH

dN
+H2 dφ

dN

d2φ

dN2
+ V ′(φ)

dφ

dN

d2φ

dN2
= 6

1

H

dH

dN

1
dφ
dN

− 1

H

dH

dN

dφ

dN
− V ′(φ)

H2
(5.48)

we substitute (5.48) in the (5.45) where for now we neglect the term in the right hand
side.

6
1

H

dH

dN

1
dφ
dN

+

(
3 +

1

H

dH

dN

)
dφ

dN
− 1

H

dH

dN

dφ

dN
− V ′(φ)

H2
+
V ′(φ)

H2
= 0

from which follows that

1

H

dH

dN
= −1

2

(
dφ

dN

)2

=
V (φ)

H2
− 3 (5.49)

and so
d2φ

dN2
+

(
3− 1

2

(
dφ

dN

)2) dφ
dN

+
V ′(φ)

V (φ)

(
3− 1

2

(
dφ

dN

)2)
= 0

d2φ

dN2
+

(
3− 1

2

(
dφ

dN

)2)( dφ
dN

+
V ′(φ)

V (φ)

)
= 0 (5.50)
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where we have used the fact that

1

H2
=

1

V (φ)

(
3− 1

2

(
dφ

dN

)2)
(5.51)

We repeat the same computation in the presence of backreaction, i.e. considering the
electric energy density and the coupling function in the equations. By taking the deriva-
tive of (5.46) with respect to the number of e-foldings we have

6H
dH

dN
= H

dH

dN

(
dφ

dN

)2

+H2

(
dφ

dN

)
d2φ

dN2
+ V ′(φ)

dφ

dN
+
dρE
dN

from which we find

d2φ

dN2
= 6

1

H

dH

dN

1
dφ
dN

− 1

H

dH

dN

dφ

dN
− V ′(φ)

H2
− 1

H2

dρE
dN

1
dφ
dN

(5.52)

Substituting this in (5.45), we eventually obtain

1

H

dH

dN
=

1

6

1

H2

dρE
dN
− 1

2

(
dφ

dN

)2

+
1

3

1

H2

dφ

dN
ρE
f ′(φ)

f(φ)
(5.53)

From (5.45) and (5.53) we have

d2φ

dN2
+

(
1

6

1

H2

dρE
dN

+ 3− 1

2

(
dφ

dN

)2

+
1

3

1

H2

dφ

dN
ρE
f ′(φ)

f(φ)

)
dφ

dN
+
V ′(φ)

H2
=

2

H2

f ′(φ)

f(φ)
ρE

d2φ

dN2
+

(
3− 1

2

(
dφ

dN

)2) (1

6

dρE
dN

dφ

dN
+
dφ

dN
(V (φ) + ρE) +

1

3

(
dφ

dN

)2

ρE
f ′(φ)

f(φ)

+ V ′(φ)− 2
f ′(φ)

f(φ)
ρE

)
1

V (φ) + ρE
= 0 (5.54)

where we have used the fact that

1

H2
=

1

V (φ) + ρ

(
3− 1

2

(
dφ

dN

)2)
(5.55)

From (5.47) and (5.55) we find the equation for the electric energy density

dρE
dN

+ 4ρE + 2
df(φ)

dN

1

f(φ)
ρE =

(
V (φ) + ρE

)2 1

4π2

(
1 +

(
df(φ)

dN

1

f(φ)

)2)(
3− 1

2

(
dφ

dN

))−2

(5.56)
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5.3 Coupling Functions

In the context of any successful model of inflation, we have to provide a method to excite
the Standard Model degrees of freedom in order to link the inflationary phase with the
subsequent standard Big Bang evolution of our Universe. Since in string inflationary
models the inflaton belong to the hidden sector, it is highly non trivial to explain its
decay into the particles of the visible sector. As we have explained in the previous sector,
it is convenient to use magnetized D7-branes wrapping the inflaton 4-cycle.
In the context of our study we are interested on the coupling of the inflaton field with
the massless gauge bosons. In order to find the coupling function once we have expanded
the inflaton around its minimum, τ = 〈τ〉+ τ̂ , we express it in terms of the canonically
normalised field. In general the couplings to the gauge bosons are obtained from the
moduli dependence of the tree-level Gauge Kinetic Function.

1

g2
= Re(fD7) =

〈τ〉
2π

(5.57)

When the D7-branes have non-diagonal magnetic fluxes F1,i which break the gauge
group to SU(3)× SU(2)× U(1) the three gauge couplings are given by

1

g2
i

=
τ − h(F1,i)s

2π
(5.58)

where the inflaton is shifted by the real part of the dilaton with a coefficient dependent
by F1,i. The electromagnetic term, therefore, becomes

Lgaugekin = −1

4

1

g2
FµνFµν = −1

4

(
τ − hs

2π

)
FµνFµν (5.59)

• Kähler Inflation

We expand the inflaton τ around the minimum in the (5.59)

Lgaugekin = −1

4

(〈τ〉+ τ̂ − h〈s〉
2π

)
FµνFµν = −1

4

(〈τ〉 − h〈s〉
2π

+
τ̂

2π

)
FµνFµν

= −1

4

(〈τ〉 − h〈s〉
〈τ〉

〈τ〉
2π

+
τ̂

2π

)
FµνFµν = −1

4

〈τ〉
2πγ

FµνFµν −
1

4

τ̂

2π
FµνFµν

where we have set

γ =
〈τ〉

〈τ〉 − h〈s〉 (5.60)

In terms of the canonically normalised field strength

F̂µν =

√
〈τ〉
2πγ

Fµν (5.61)
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we have

Lgaugekin = −1

4
F̂µνF̂µν −

1

4
γ
τ̂

〈τ〉 F̂
µνF̂µν = −1

4

(
1 + γ

τ̂

〈τ〉

)
F̂µνF̂µν (5.62)

Considering that τ =

(
3V
4αλ

)2/3

φ4/3 we have

τ̂

〈τ〉 =
τ

〈τ〉 − 1 =
φ4/3

〈φ〉4/3 − 1 (5.63)

and finally

Lgaugekin = −1

4

(
1 + γ

(
φ4/3

〈φ〉4/3 − 1

))
F̂µνF̂µν (5.64)

We can set, therefore, the coupling function of the inflaton field with the electromagnetic
field

fK(φ) =

√
1 + γ

(
φ4/3

〈φ〉4/3 − 1

)
(5.65)

• Fibre Inflation

In the same way we find the coupling function in the case of the Fibre Inflation model.

From (5.62) considering that in this case

τ̂

〈τ〉 =
τ

〈τ〉 − 1 =
ekφ

ek〈φ〉
− 1 (5.66)

we have

fF (φ) =

√
1 + γ

(
ekφ

ek〈φ〉
− 1

)
(5.67)
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5.4 Numerical evolution

For the numerical analysis of the inflationary evolution we study first the dynamic in the
absence of backreaction. More precisely, using the expression for the slow roll parameter
ε, we can identify the initial and final value of the inflaton by requiring a suitably
amount of e-foldings. Next we solve numerically the (5.50) using the previously found
initial condition and a zero initial velocity. Once the ordinary evolution is known it must
be compared with the evolution in the backreaction regime. At this end we solve the
(5.54), (5.56) with the same initial conditions and a zero initial electric energy density.
In Fibre Inflation the slow roll is controlled by the large value of the moduli rather than
on the detailed tunning of parameters in the scalar potential. In this case, therefore,
the numerical research of the inflationary evolution is simpler with respect to the case
of Kähler Inflation where instead the choice of a particular set of parameters is quite
important. In both cases however, there could be a slowdown of the inflationary dynamic
in the backreaction regime which, for a particular fixed number of e-foldings, reduces
the corresponding range of the inflaton field.

5.4.1 Fibre Inflation

In the case of Fibre inflation we use the potential found in the previous chapter in which
we neglect the term with R and the overall normalization.

V (φ) = 3− 4e
− φ√

3 + e
− 4φ√

3 (5.68)
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V(ϕ)

Figure 5.2: Potential in FI

The minimum of the potential is for φvev = 0, while the value at the end of inflation,
which is obtained from the ε(φ) ' 1 with ε given by (4.74) with R = 0, is φend = 0.92.
By requiring N = 59.5 number of e-foldings we find the initial value for the inflaton
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Figure 5.3: Evolution without BR in FI

φin = 6. By numerically solving the (5.50), with φ(0) = φin and φ′(0) = 0 we find the
detailed evolution presented in Figures (5.3), (5.4).
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Figure 5.4: Evolution at the end of inflation without BR in FI

Next we consider the backreaction regime in which we numerically solve (5.54) and (5.55)
with initial conditions φ(0) = φin, φ′(0) = 0 and ρ(0) = 0. The coupling function is
given by (5.67) with γ = 1 in all cases unless another choice is explicitly indicated. The
result is presented in Figures (5.5) and (5.6). Looking at the Figures (5.4), (5.6), it is
evident that the backreaction allow to earn a little amount of e-foldings. If we fix the
number of e-foldings we have therefore a reduction of the inflaton range.
It is interesting to note that the result is quite independent from the precise value of
γ. In fact, looking the form of the coupling function we can see that in the quantity
f ′(φ)/f(φ) the dependence on γ is canceled when the latest take large values. In fact the
slowdown increases slightly from γ = 1 at γ = 100 and after that remains unchanged.
The evolution of the electric energy density is represented in Figure (5.7).
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Figure 5.5: Evolution in presence of BR in FI
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Figure 5.6: Evolution at the end of inflation in presence of BR in FI

If we change the initial condition for the electric energy density allowing a non zero
initial value ρ(0) = 0.7, then we obtain a larger slowdown of the inflaton field (Figure
5.8).
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Figure 5.7: Evolution of the electric energy density in FI
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Figure 5.8: Evolution in presence of BR in FI with ρ(0) = 0.7

5.4.2 Kähler Inflation

In the case of Kähler Inflation the procedure is more complicated due to the dependence
on the microscopic parameters. The scalar potential, in terms of the non canonically
normalised field τ , is

V (τ) = V0 +
8aA
√
τe−2aτ

3Vλα − 4aAW0τe
−aτ

V2
(5.69)

with

V0 =
W 2

0 β

V3
β =

3

2
λa−3/2(log (V))3/2 (5.70)

where V0 is the term which dominates the scalar potential. In a similar way with
that presented in Fibre Inflation, we express the potential in terms of the canonically
normalised field, and we find from (4.32) the final value for the inflaton field and the
initial one requiring a suitably number of e-foldings. We numerically solve the equation
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(5.50) first and the system of (5.54) and (5.56) next in order to find the inflationary
evolution in the two regimes. The initial conditions even in this case are φ(0) = φin,
φ′(0) = 0 and ρ(0) = 0. The coupling function is that of Kähler Inflation (5.65).
In this case we choose different sets of the underlying parameters to see which of them is
more suitable for the slowdown. We present the results in the same graphics where the
blue line always represent the solution in the backreaction regime, while the orange one
corresponds to the ordinary inflationary evolution. A natural choice of the microscopic
parameters which can be done following the article [4], is

Case 1 : W0 = 57 α = 1 λ = 1 A = 1.87 a = 2π (5.71)

With this set of parameters it is quite difficult to achieve the slowdown of the inflaton
field. In fact, as we will see, the effect of the backreaction is related to the intensity of the
scalar potential which for natural values of the compactification volume 105 ≤ V ≤ 108

is very small. For V = 108 we find that in the backreaction regime the inflaton slow
rolls in its minimum faster than in the ordinary evolution. By reducing the value of the
volume the two evolutions become more and more similar until the case of V = 102−103

in which we obtain the desired slowdown. These differences can be seen in Figures (5.9)-
(5.11).

63.1 63.2 63.3 63.4 63.5 63.6 63.7
N

0.0007

0.0008

0.0009

0.0010

0.0011

0.0012

0.0013

ϕ

Figure 5.9: Case 1, V = 107 in KI
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Figure 5.10: Case 1, V = 106 in KI
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Figure 5.11: Case 1, V = 102 in KI

In order to obtain the slowdown for bigger values of the compactification volume the
most effective way is to increase the value of W0 and reduce α and on a less important
note by reducing a and incrementing λ and A. For

Case 2 : W0 = 130 V = 104 α = 1/100 λ = 1 A = 10 a = 2π/10 (5.72)

we have a backreaction already for V = 104 as can be seen in Figure (5.12). For

Case 3 : W0 = 400 V = 104 α = 1/100 λ = 1 A = 1 a = 2π (5.73)

we find a valid difference in the evolution of the two regimes as can be seen from the
Figure (5.13). For

Case 4 : W0 = 400 V = 104 α = 1/100 λ = 10 A = 10 a = 2π (5.74)

we have the plot of Figure (5.14).
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Figure 5.12: Case 2, V = 104, in KI
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Figure 5.13: Case 3, V = 104, in KI
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Figure 5.14: Case 4, V = 104 in KI

94



62 64 66 68
N

0.020

0.025

0.030

ϕ

Figure 5.15: Case 5, V = 104 in KI

For

Case 5 : W0 = 400 V = 104 α = 1/100 λ = 1 A = 10 a = 2π/30 (5.75)

we have the plot of Figure (5.15).

For

Case 6 : W0 = 500 V = 104 α = 1/100 λ = 10 A = 10 a = 2π (5.76)

we have the plot of Figure (5.16)
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Figure 5.16: Case 6, V = 104 in KI

For

Case 7 : W0 = 200 V = 104 α = 1/100 λ = 1 A = 10 a = 2π/30 (5.77)

we have the plot of Figure (5.17). Finally, if we choose the biggest value of W0, we
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Figure 5.17: Case 7, V = 104 in KI
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Figure 5.18: Case 8, V = 105 in KI

increase A and we further reduce a we have a small slowdown even for the case of
V = 105. In fact, for

Case 8 : W0 = 500 V = 105 α = 1/100 λ = 10 A = 50 a = 2π/50 (5.78)

we have the plot of Figure (5.18)

Even in this case if we choose a non zero initial condition for the electric energy density
we obtain a higher number of e-foldings. In fact, if we take for example the Case 1, with
V = 106 and with initial condition ρ(0) = 10−22 we obtain the plot of Figure (5.19).

The electric energy density in all these cases has the same evolution. At the beginning it
is quite constant and very small because it is dumped by the dominating term in (5.56)
which is the one containing the Hubble constant. When the term in the right hand
side of the same equation becomes larger, the electric energy density starts growing and
presents a peak. If the peak is high enough then we have a satisfactory slowdown. This
evolution can be seen for the Case 4, for example, in Figure (5.20)
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Figure 5.19: Caso 1, V = 106, with ρ(0) = 10−22 in KI
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Figure 5.20: Case 4: Evolution of the electric energy density in KI

Comparing the plots it is clear that the most significant parameter is the stabilised at
tree level superpotential, W0, which depends on the complex structure moduli. For a
constant value of W0 a little more slowdown is obtained by reducing the model dependent
constant a = 2π/N where N is related to the number of the branes and take the values
1 ≤ N ≤ 100, and the constant α dependent on the particular Calabi-Yau that we have
chosen. In order to have more backreaction it is also useful to increase a little the model
dependent parameters A and λ, without however ruining the slow roll dynamics.

Finally, there is also a light dependence on f ′(φ)/f(φ). For 1 < γ < 1000 the ratio
increase with γ, giving a little more delay for the inflaton, while for γ > 1000 become
independent from it. Obviously for γ = 0 the backreaction is turned off. In Figure
(5.21) we present the inflationary evolution for γ = 0, 10, 100 corresponding to the set
of parameters chosen in Case 3.
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Figure 5.21: Case 3: Plots with different values of γ in KI

The explanation of these differences can be understood by analyzing the form of the
equations that we report below for convenience.

d2φ

dN2
= −

(
3− 1

2

(
dφ

dN

)2) (1

6

dρE
dN

dφ

dN
+
dφ

dN
(V (φ) + ρE) +

1

3

(
dφ

dN

)2

ρE
f ′(φ)

f(φ)

+V ′(φ)− 2
f ′(φ)

f(φ)
ρE

)
1

V (φ) + ρE

The most important term for the backreaction is the last one which contains the electric
energy density. If we compare the above equation with that of the ordinary regime

d2φ

dN2
= −

(
3− 1

2

(
dφ

dN

)2)( dφ
dN

+
V ′(φ)

V (φ)

)
we see that the two evolutions are quite the same when

1

6

dρ

dN

dφ

dN
+

1

3

(
dφ

dN

)2

ρ
f ′(φ)

f(φ)
− 2

f ′(φ)

f(φ)
ρ ' 0

When ρ remains small the expression is positive and the second derivative of the inflaton
more negative causing the accelerated progress which can be seen in the cases of large
compactification volumes with natural values (Figure (5.9)). In order to have the desired
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slowdown the electric energy density have to become quite large. In the equation which
governs the evolution of the electric energy density:

dρE
dN

+4ρE+2
df(φ)

dN

1

f(φ)
ρE =

(
V (φ)+ρE

)2 1

4π2

(
1+

(
df(φ)

dN

1

f(φ)

)2)(
3− 1

2

(
dφ

dN

))−2

the growing of the density in the peak depends on the potential which is contained in the
right hand side. So it is quite predictable that the choices of the microscopic parameters
that lead to a bigger potential cause more backreaction and consequently more slowdown
of the inflaton field.
In the case of Fibre Inflation the energy density was quite large from the beginning and
the slowdown of the inflaton field it is more easy to obtain. Even this effect is dependent
on the potential which is more stable and independent from the precise form of the
underlying parameters.
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Conclusions and outlook

The goal of this thesis was the study of the inflationary dynamic in presence of backreac-
tion effects due to the coupling of the inflaton with electromagnetic fields. The numerical
analysis was carried on in the context of two very promising inflationary string models,
Kähler inflation and Fibre inflation, where the inflaton is a closed string mode.
The numerical analysis has pointed out that in general the backreaction cause a slow-
down of the inflaton field with respect to its standard evolution. This effect is due to the
extra terms that appears together with the coupling function in the modified equation
which make the second derivative of the inflaton less negative and therefore the evolution
less sharp.
In the case of Fibre inflation the slowdown of the inflaton is always present because the
electric energy density, which is mostly responsible for the backreaction, is high enough.
In Kähler inflation, however, this effect it in not so easy to obtain and in some circum-
stances we even get the opposite effect characterized by a more abrupt decrease of the
inflaton field. We have to make the correct choice of the underlying parameters in order
to allow more number of e-foldings of inflation. In this case the evolution of the electric
energy density is quite constant at the beginning while towards the end of inflation it
has a peak. In order to have the slowdown it is necessary a quite high peak which is
obtained increasing the coefficients of the potential and in particular V0 which is the
dominating term.
This result is very important because it allows to reduce the range of the inflaton cor-
responding to a particular fixed number of e-foldings. In this way we could provide a
solution to the incompatibility which emerge between the geometrical limits of the infla-
ton range and the phenomenological requirements related on the number of e-foldings.
It is possible, therefore, to reconcile the inflationary models coming from string theory
with the standard cosmological inflation and observations.

In this direction, it could be interesting in some future work to compute the precise
amount by which the inflaton range is reduced due to the presence of the backreaction.
The resulting range could be then compared with the limits emerging from the geometri-
cal arguments presented in the article [8]. In this way it would be possible in principle to
make a selection or a characterization of all possible Calabi-Yau compactifications and
different models of string inflation in the context of which such limits emerge creating a
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point of contact between the two theories.

In the context of our analysis based on the coupling of the inflaton with the electromag-
netic field, it is also possible to explain the origin of the magnetic fields carried by all
celestial bodies which have been misused from planets to interstellar medium [20],[15],[1].
In fact, the mechanism based on the Biermann Battery proposed to generate the seed
magnetic fields and the different types of dynamo which can enhance them cannot ex-
plain the presence of large scale magnetic fields with large correlation length into the
cosmic voids. It seems, therefore, more likely that their origin occurred in the primordial
Universe during inflation. In this context, the presence of a time dependent coupling
function in the standard electromagnetic action break the conformal invariance which
would not allow the enhancement of electromagnetic fluctuations during inflation and
thus constitute an excellent way for their production.
From the analysis computed in section 5.2 we have found the equation satisfied by the
modes of the electromagnetic field (5.31). It is convenient to rewrite this equation using
instead of the conformal time the number of e-foldings. At this end it is useful to find
the Hubble constant in conformal time

dη =
dt

a
(5.79)

H =
ȧ

a
=
a′

a2
=
H
a

(5.80)

where the dot represent the derivative respect to cosmic time, the prime represent the
derivative respect to conformal time and H is the Hubble constant in conformal time.
At this point from dN = Hdt we find dN = Hdη.
The equation (5.31) thus becomes

∂2vσk
∂N2

+
∂vσk
∂N

1

H
∂H
∂N

+

(
k2

H2
− ∂2f

dN2
− 1

H
∂H
∂N

∂f

dN

)
vσk = 0 (5.81)

In the presence of backreaction the equation (5.11) in terms of the conformal time η
becomes

d2φ

dη2
+ 2

dφ

dη
H+ V ′(φ)a2 = 2

f ′(φ)

f(φ)
a2ρE (5.82)

and the (5.10) becomes

3H =
1

2

(
dφ

dη

)
+V (φ)a2 + a2ρE (5.83)

In terms of the number of e-foldings these equations become

∂2φ

∂N2
+

(
2 +

1

H
∂H
∂N

)
∂φ

∂N
+
V ′(φ)a2

H2
=

2

H2

f ′(φ)

f(φ)
a2ρE (5.84)

and

H2 =
1

2

(
∂φ

∂N

)2

H+ (V (φ) + ρE)a2 (5.85)
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If we take the derivative with respect to the number of e-foldings of the equation (5.85)
we find

6H∂H
∂N

= H∂H
dN

(
∂φ

∂N

)2

+H2 ∂φ

∂N

∂2φ

∂N2
+ V ′(φ)

∂φ

∂N
a2 +

∂ρE
∂N

a2 + (V (φ) + ρE)2a2

and so

∂2φ

∂N2
= 6

1

H
∂H
∂N

1
∂φ
∂N

− 1

H
∂H
∂N

∂φ

∂N
− V

′(φ)a2

H2
− 1

H2

1
∂φ
∂N

∂ρE
∂N

a2− V (φ) + ρE
H2

2a2 1
∂φ
dN

(5.86)

Substituting this into (5.84) at the end we obtain

1

H
∂H
∂N

= −2 +
1

3
ρE

∂φ

∂N

f ′(φ)

f(φ)

3− 1
2

(
∂φ
∂N

)2

V (φ) + ρE
+ 3− 1

2

(
∂φ

∂N

)2

+
1

6

3− 1
2

(
∂φ
∂N

)2

V (φ) + ρE

∂ρE
∂N

(5.87)

Using the (5.87) and the

1

H2
=

3− 1
2

(
∂φ
∂N

)2

(V (φ) + ρE)a2
(5.88)

the (5.81) becomes

∂2vσk
∂N2

+
∂vσk
∂N

(
−2 +

1

3
ρE

∂φ

∂N

f ′(φ)

f(φ)

3− 1
2

(
∂φ
∂N

)2

V (φ) + ρE
+ 3− 1

2

(
∂φ

∂N

)2

+
1

6

3− 1
2

(
∂φ
∂N

)2

V (φ) + ρE

∂ρE
∂N

)

+

(
k2

3− 1
2

(
∂φ
∂N

)2

(V (φ) + ρE)a2
− ∂2f

dN2
− ∂f

dN
×
(
−2 +

1

3
ρE

∂φ

∂N

f ′(φ)

f(φ)

3− 1
2

(
∂φ
∂N

)2

V (φ) + ρE
+ 3

− 1

2

(
∂φ

∂N

)2

+
1

6

3− 1
2

(
∂φ
∂N

)2

V (φ) + ρE

∂ρE
∂N

))
vσk = 0 (5.89)

This equation must be resolved numerically using as background the numerical solutions
found in the previous section with initial conditions these of the Bunch-Davies vacuum.
Once the vσk are determined, it is easy to find the magnetic power spectrum from equation

δ2
B(k, η) =

∑
σ=1,2

|vσk(η)|2k5

4π2a4f2
(5.90)

In fact the power spectrum of the vector potential A =
√
−AiAi is found by the

〈0|ÂTi (x, η)ÂiT (y, η)|0〉 = − 1

a2
〈0|ÂTi (x, η)ÂTi (y, η)|0〉
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= − 1

a2f2

∑
σ=1,2

∫
dk

(2π)3
eik(x−y)|vσk(η)|2 =

1

a2f2

∑
σ

∫
dk

k

sin(k|x− y|)
k|x− y|)

k3

(2π2)
|vσk(η)|2

and so

δ2
A(k, η) =

∑
σ=1,2

k3|vσk(η)|2
4π2a2f2

(5.91)

Considering that

B2 = −BiBi =
1

2a4
FikFik =

1

a4
(∂iAk∂iAk − ∂kAi∂iAk)

we have

δ2
B(k, η) = δ2

A(k, η)
k2

a2
(5.92)

from which follows (5.90).

The study on the origin of the magnetic fields in the primordial Universe due to the
presence of the coupling function that breaks the conformal invariance it is today of
great interest. In fact, besides explaining their presence on large scales, it constitutes also
another sector in which the predictions of string theory could in principle be compared
with observations. It is therefore a very broad and important topic to focus future
researches.
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