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Abstract

With ”In silico” seawater we mean the calculation of some chemical-physics properties of seawater through

computer simulations. Seawater is essentially an aqueous electrolyte solution characterized by a very complex

composition, indeed an agreed Reference Composition required over a hundred years of study.

Since it has a such complex composition, it is easy to realize that the number of molecules needed to

reproduce the Reference Composition Seawater is exceedingly large to be implemented in molecular simulations.

It seems thus interesting to design a simplified system with a composition close to the Reference Composition

Seawater but more amenable to computer simulation. The first assumption we have made is to ignore minor

constituents, i.e. ions with a mole fraction lower than a given value. In particular, since the mole fraction, X,

of HCO−
3 is already very small (XHCO−

3
≈ 0.0015) we may neglect it. Thus, our model for seawater would only

deal in principle with Na+, Cl−, Mg2+, SO2−
4 , Ca2+ e K+.

One of the aims of this work is to investigate the contribution of the different ions to the properties of

seawater. Following the same line of reasoning of the previous paragraph it seems interesting to analyse whether

the replacement of Ca2+ and K+ by Mg2+ and Na+, respectively.

We may take the argument to the extreme: it makes sense to replace seawater by an equivalent NaCl

solution? Despite the difficulty of defining an equivalence between seawater and NaCl solutions, the study of

the latter system may be of interest. In this work, we have carried out a parallel study of the NaCl solution at

”similar salinities” as those investigated for seawater.

Two different forcefields have been used in this work. For the first set we have chosen the Joung-Cheatham

(JC) potential while the second one use the OPLS (optimized potentials for liquid simulations) forcefield. We

have shown that the predictions for the JC and OPLS potentials are in good agreement with the experimental

measurements for the thermodynamics and dynamics properties.

For the viscosity and density, the calculated data are compared with experimental. While for the structure

and the self diffusion coefficient, for which there is no experimental data, the data calculated with the different

models are compared to each other.

A first satisfactory model of seawater has been developed, but considerable efforts are still required to

achieve a more accurate Force Field.
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Abstract

Con ”In silico” seawater si intende il calcolo di alcune proprietà chimico fisiche dell’acqua marina attraverso

simulazioni al calcolatore. L’acqua marina è essenzialmente una soluzione elettrolitica caratterizzata da una

composizione molto complessa, si pensi solo che per definire una composizione di riferimento ci sono voluti più

di 100 anni di studio.

Data l’enorme complessità di tale soluzione è facile rendersi conto che il numero di molecole necessarie

per la riproduzione della composizione dell’acqua marina è estremamente grande per essere implementato in

simulazioni molecolari.

In questo lavoro viene descritto un modello semplificato di acqua marina adottato per una simulazione

numerica. In prima approssimazione, sono stati trascurati gli ioni a bassa concentrazione, come, ad esempio,

HCO−
3 (XHCO−

3
≈ 0.0015). Gli ioni considerati sono Na+, Cl−, Mg2+, SO2−

4 , Ca2+ e K+.

Uno degli scopi principali di questo lavoro è quello di indagare il contributo dei diversi ioni sulle proprietà

dell’acqua marina. Seguendo questa linea di ragionamento è stato interessante analizzare la sostituzione degli

ioni Ca2+ e K+ con Mg2+ e Na+, rispettivamente.

Le proprietà dell’acqua marina sono quindi state confrontate con quelle di una soluzione di NaCl, che

rappresenta il soluto maggioritario.

In questo lavoro di tesi sono stati usati due diversi Force Field (FF): il Joung-Cheatham (JC) e l’OPLS

(Optimized Potentials for Liquid Simulations). Abbiamo dimostrato che entrambi i potenziali danno un risultato

soddisfacente nel riprodurre le proprietà termodinamiche e dinamiche dell’acqua marina.

Nel caso della viscosità e della densità, i dati calcolati sono comparati con dati sperimentali. Mentre per

quanto riguarda la struttura e i coefficienti di diffusione, per i quali non vi è alcun dato sperimentale per l’acqua

marina, sono comparati tra di loro i dati calcolati con i diversi modelli.

È stato quindi sviluppato un primo modello soddisfacente di acqua marina, ma per realizzare un Force Field

più accurato sono ancora necessari notevoli sforzi.
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Chapter 1

Introduction

1.1 Overview of significant seawater properties

Seawater is water from a sea or ocean. Since the word sea is often used interchangeably

with ”ocean”, in this work we will refer to the saline water contained in seas and oceans as

”seawater”. The seas and oceans contain 97% of Earth’s water. Seawater is integral to life,

forms part of the carbon cycle, and influences climate and weather patterns. Seawater is

essentially an aqueous electrolyte solution. Although the ionic composition is quite complex,

most of the water properties are essentially dependent (apart of the thermodynamic conditions)

on the salinity, i.e. the amount of dissolved salts.

The salinity of the surface seawater is greatly influenced in coastal regions by the fresh

water flow from rivers, and in polar regions by the processes of freezing and thawing of ice.

Also, the salinity of water in the surface layer of oceans is dependent on evaporation and

precipitation. Leaving aside these surface or coastal effects, on average, seawater has a salinity

of about 3.5%. This means that every kilogram (roughly one litre by volume) of seawater

has approximately 35 grams of dissolved salts. However, the salinity changes from one ocean

to another and, for normal open ocean, ranges between 33 and 37% (see Fig. 1.1). Several

factors influence the saline content of the oceans. Evaporation accounts for the larger salinity

of equatorial regions while the delivery of fresh water from the melting of ice seems to be the

reason of the low levels of salinity in polar areas. In addition to these factors it is worth noting

the existence of ocean currents. Below, we will comment more thoroughly the characteristics

and importance of the ocean currents. Salinity is a fundamental property of seawater and

basic to understanding biological and physical processes in oceans. Many processes that have

significant socio-economic impacts depend critically on salinity. These are not limited to fishing

productivity but also include biological effects on the preservation of marine ecosystems (coral

reefs, estuary and coastal wetlands, mangroves), as well as the development of harmful algal

2



1.1. Overview of significant seawater properties

Figure 1.1: Horizontal distribution of salinity in Earth’s oceans.

blooms or jellyfish invasions, survival of invasive species, etc.

The average temperature of the ocean surface waters is about 17 degrees Celsius and the

temperature varies mainly with latitude. The polar seas (high latitude) can be as cold as -2

degrees Celsius while the Persian Gulf (low latitude) can be as warm as 36◦C. Then, strictly

speaking, the relevant range of seawater only spans about 40 degrees. However, in desalination

processes the temperature of the brine can be higher than 100◦C. This extends considerably

the range of possible relevant temperatures for saline water.

Besides the horizontal changes of temperature and salinity there is a vertical profile for both

magnitudes. Bodies of seawater are made up of layers, determined by temperature and salinity.

Most of the heat energy of sunlight is absorbed in the first few centimeters at the ocean’s surface,

which heats during the day and cools at night as heat energy is lost to space by radiation. The

effect of the wind creates turbulence, thus mixing water to create a layer of almost constant

temperature, salinity and density called the wind-mixed layer. Below this mixed layer, the

temperature, salinity and density remain relatively stable over day/night cycles and change

gradually as the depth increases. The profile of the thermocline depends on the latitude. It is

shallow to nonexistent in the polar regions (the water column is cold from the surface to the

bottom) and variable in temperate regions. Fig. 1.2 shows a tropical ocean thermocline. Note

the rapid change between 100 and 1000 meters. It is also interesting that the temperature is

nearly constant after 1000 meters depth. The pattern of a typical halocline (Fig. 1.3) is quite

similar to that of the thermocline represented in Fig. 1.2. Average density of seawater at the

surface is 1.025 kg/L. Thus, seawater is denser than pure water (density 1.0 kg/L at 4C). The

density of seawater depends essentially on salinity and temperature so it changes with latitude

3



1. Introduction

Figure 1.2: Typical thermocline at tropical latitudes.

and depth accordingly with the variations of these properties. Thus, the vertical profile of the

density is almost constant at the polar regions but changes with depth at other latitudes: it

increases in the first 1000 meters but changes very little at higher depths (see Fig. 1.3).

1.2 Thermohaline circulation and its effects on global

climate

How are ocean currents caused, and how do they affect climate? These questions were hotly

debated in the nineteenth century. Some argued that water is simply pushed along by the wind;

others postulated convection currents caused either by heating and cooling or by evaporation

and precipitation. Even today, the driving forces and climatic effects of ocean currents are still

not completely understood. In 1908, Johan Sandström[4] laid the foundations of our modern

understanding of ocean currents and elucidated the properties of wind-driven and thermal

circulation. The latter term was amended by the 1920s to thermohaline circulation[4, 5],

because water density in the ocean is determined by both temperature and salinity.

Sandström found that thermal gradients can give rise to a steady circulation only if heating

occurs at a greater depth than cooling, a fact that is familiar to oceanography students as

Sandstorm’s theorem. But fluxes of heat and freshwater occur mostly at the ocean’s surface.

So what is the deep heat source that drives the ocean’s observed thermohaline circulation?

Sandström recognized that it is the downward penetration of heat at low latitudes, due to

4



1.2. Thermohaline circulation and its effects on global climate

Figure 1.3: Vertical profiles of temperature, salinity and density at tropical latitudes.

turbulent mixing, that provides this thermal engine. Turbulent mixing is powered by winds

and tides. Thermohaline circulation is thus caused by the joint effect of thermohaline forcing

and turbulent mixing. It can be defined as currents driven by fluxes of heat and freshwater

across the sea surface and subsequent interior mixing of heat and salt.

Thermohaline and wind-driven currents cannot therefore be separated by oceanographic

measurements. There are thus two distinct forcing mechanisms, but not two separate circula-

tions. Change the wind stress, and the thermohaline circulation will change; alter thermohaline

forcing, and the wind-driven currents will also change. However, although thermohaline circu-

lation is not measurable, the concept is still a useful one, and modern models of oceans can be

used to carry out computer experiments to study the properties of these currents.

As we can see in Figure 1.4 at high latitudes the water sinks, both for the low temperature

and for the high salinity caused by the formation of the ice floe. Moving towards the equator,

the bottom water decreases its density by interacting with the other waters and tends to rise,

particularly in the south of the Indian Ocean. The ascent of deep water (upwelling) promotes

biological productivity as it causes the ascent of mineral nutrients. The water masses involved

in this circulation carry both energy (in the form of heat) and materials (dissolved substances,

gases and particles) with the consequence of significantly affecting both the terrestrial climate

5



1. Introduction

Figure 1.4: Schematic representation of the global thermohaline circulation. Surface currents are

shown in red, deep waters in light blue and bottom waters in dark blue. The main deep water

formation sites are shown in orange. (from Kuhlbrodt et al.[1] modified after[2]).

and marine biology. Simulations in which the ocean’s heat transport is switched off consistently

show a large winter cooling over the northern Atlantic and adjacent land areas, reaching several

degrees in inland Europe, up to 10◦C over Greenland and even exceeding 20◦C over the Nordic

seas. This heat transport warms the climate on both sides of the Atlantic, and is therefore

not the main reason that Europe is warmer than America. This phenomenon is mainly due

to the prevailing winds in the two regions. Nevertheless, ocean currents do make the northern

Atlantic much warmer than at comparable latitudes in the northern Pacific. Changes in these

currents are our best explanation for the abrupt and marked climate swings that occurred over

the north Atlantic many times during the most recent glacial period, as shown by Greenland’s

ice cores and by deep-sea sediments. Circulation changes might again be triggered by global

warming.

1.3 ’In silico’ seawater

Molecular computer simulation[6, 7] is a powerful technique that allows to calculate the prop-

erties of a molecular system from first principles or from the knowledge of the interactions (the

forcefield) between the molecules. Computer simulation provides information on properties not

easily accessible by experiment. For instance, due to the complex composition, the detailed

ionic structure of seawater cannot be resolved from diffraction experiments. Also, the relative
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1.3. ’In silico’ seawater

contribution of each ion to the final properties of the solution can not be obtained experimen-

tally but it is trivially evaluated in computer simulation calculations. The goal of this work is to

investigate for the first time the possibility of accounting for the physico-chemical properties of

seawater from scratch using the state of the art computer simulation techniques and knowledge

of water and ionic forcefields. We have mentioned that the thermohaline circulation depends

essentially on the gradients of density which, in turn, depend on the gradients of temperature

and salinity.

Temperature is a well defined thermodynamic variable but, what is salinity? Salinity[8] is

the amount of dissolved compounds (mostly ions such as chlorine, sodium, magnesium, sulfate,

calcium, potassium and others) within seawater. As commented above, the salinity changes

from a point of an ocean to another. But how about the composition? An essential property of

seawater is the Principle of Constant Proportions: the ratio between the concentrations of the

different components of seawater is essentially constant and independent of the total amount

of ions. This simplifies considerably the problem

The aim of the present thesis is then the development of a model that can reproduce and

predict, through molecular dynamics (MD) simulations carried out in a computer, the properties

of seawater at different temperatures and salinities. More specifically, the aims of this work

are:

1. The development of a model for seawater solutions based on the successful TIP4P/2005

water model[9].

2. To determine if two widely employed forcefields, namely, OPLS[10] and Joung-Cheatham

(JC)[11], are able to reproduce thermodynamic, dynamic and structural properties of

seawater.

3. To analyse the relative contributions of the different ions. This will allow to check to

what extent the model can be simplified by reducing the number of ions of the system

while preserving the predictions for the seawater properties.

The structure of the thesis is as follows. Chapter 2 annotates the composition of seawater.

It also describes two important standards defined by the scientific community: the Reference

Seawater Composition and the Absolute Salinity. Chapter 3 provides the theoretical frame-

work of the molecular dynamics technique, the simulation tool used in this work. In the fourth

chapter we will comment the methodology. There, we will discuss the specific features of the

implemented seawater composition and give the technical details of the simulations. The pre-

sentation of the results is given in Chapter 5. In particular, we will analyse our calculations for

7



1. Introduction

the density, viscosity and radial distribution functions at different temperatures and salinities.

A summary of the main conclusions (Chapter 6) will close this thesis.
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Chapter 2

Seawater Composition and Salinity

2.1 Seawater composition

2.1.1 Principle of Constant Proportions

The first investigations of the major inorganic components of seawater were made by A. Marcet

in 1819[12]. He wrote ”... all the specimens of sea water which I have examined, however

different in their strength, contain the same ingredients all over the world, these bearing very

nearly the same proportions to each other; so that they differ only as to the total amount of their

saline contents”. In 1862 Forchhammer reported the determination of the concentrations of Cl – ,

SO 2 –
4 , Mg 2+, Ca 2+ and K+ directly and Na+ by difference[13]. He made these measurements

on several hundred surface water samples from all parts of the world. Based on these analyses,

he concluded that the ratio of major salts in samples of seawater from various locations was

almost constant, consistent with earlier speculation by Marcet. This constant ratio is known

as Forchhammer’s Principle, or the Principle of Constant Proportions. In addition to this

principle, Forchhammer is credited with defining the term salinity to mean the concentration

of major salts in seawater. Some years later, Dittmar[14] made careful determinations on

77 water samples representative of all oceans collected on the voyage around the world of the

H.M.S. Challenger. Besides the major components, he measured the concentrations of Br – and

CO –
3 . The results of Dittmar’s work showed that there were no significant regional differences

in the relative composition of seawater.

Although the ion proportions are virtually constant, the constancy is not absolute. This

lead to the proposal of a standard representing the composition of seawater. Martin Knudsen,

at the international conference for the exploration of the sea held in Stockholm in 1899[15],

proposed to define arbitrarily as ”Standard Seawater” certain samples taken from the North

Atlantic surface water in a specific region. Modern studies of the major components of Standard
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2. Seawater Composition and Salinity

Seawater were carried out by Cox, Culkin and Riley[16–19] as part of an international study

of the salinity of seawater. Measurements of Carpenter and Manella[20] for Mg 2+ showed that

previous determinations were incorrect. Later work has been done to determine the amount of

minor components such as F – [21] and boron[22].

2.1.2 Reference Composition and Reference Seawater

Along the years it became evident the need of a benchmark for the composition of Standard

Seawater. In 2008 a Reference Composition — consisting of the proportions of major com-

ponents of Atlantic surface seawater (referred to as Standard Seawater) — was defined using

earlier analytical measurements. The stoichiometry of sea salt introduced there was thus based

on the most accurate prior determinations of the composition, adjusted to achieve charge bal-

ance and making use of the 2005 atomic weights[3]. The Reference Composition defines the

mole fractions (see Table 2.1) so that each mole fraction, Xi, when multiplied by 107, is an

integer.

The Reference Composition gives only the relative abundance of the solutes in seawater but

it does not give any indication of the water content. Reference Seawater is defined as seawater

with Reference Composition solute dissolved in pure water as the solvent and adjusted to its

thermodynamic equilibrium state.

2.2 Salinity

2.2.1 Chlorinity and Practical Salinity

Earlier determinations of salinity were made with time-consuming gravimetric analysis. Besides,

the procedure is subject to the chemical difficulty in drying the salts in seawater. Determination

of the salinity using chemical analysis is difficult for several reasons: (1) some of the dissolved

substances (namely, Cl – and Na+) are present in high concentrations while others are present

in such minute quantities that they have not even been detected in seawater although they have

been found in marine organisms or salt deposits; (2) two of the major constituents (Na+ and

K+) are difficult to determine accurately (in fact, Na+ is usually obtained indirectly); (3) it is

extremely difficult to separate chemically related substances (Ca 2+/Sr 2+). However, once the

Principle of Constant Proportions was well established, new methods of evaluating the salinity

were at hand.

At the end of the nineteenth century, Dittmar showed that the evaluation of salinity could

be done as well, if not better, by determining the weight of chlorine in a sample. The calculation
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2.2. Salinity

Table 2.1: The ionic stoichiometry used in the definition of the Reference Composition, expressed in mole

fraction of ions Xi. Third column gives the mass fractions, Wi, using the 2005 atomic weights[3]. Fourth column

presents the mass ratios respect to chlorinity ri. Using the defined Xi and the current accepted values for the

molecular masses, the average atomic weight of sea salt is 31.4038218 g/mol. Last columns give the properties of

KCl-normalized Reference Seawater: mass per kg of solution wi, and molality mi. The sum of the fifth column

is the special Reference Salinity corresponding to S = 35, S35
R , which is exactly 35.16504 g/kg.

Reference Composition KCl-normalized Reference Seawater

Solute i 107Xi (Definition) Wi ri wi(g/kg) mi(mol/kg)

Na+ 4 188 071 0.3065958 0.556492 10.78145 0.4860597

Mg 2+ 471 678 0.0365055 0.066260 1.28372 0.0547421

Ca 2+ 91 823 0.0117186 0.021270 0.41208 0.0106568

K+ 91 159 0.0113495 0.020600 0.39910 0.0105797

Sr 2+ 810 0.0002260 0.000410 0.00795 0.0000940

Cl – 4 874 839 0.5503396 0.998904 19.35271 0.5657647

SO 2 –
4 252 152 0.0771319 0.140000 2.71235 0.0292643

HCO –
3 15 340 0.0029805 0.005410 0.10481 0.0017803

Br – 7520 0.0019134 0.003473 0.06728 0.0008728

CO 2 –
3 2134 0.0004078 0.000740 0.01434 0.0002477

B(OH) –
4 900 0.0002259 0.000410 0.00795 0.0001045

F – 610 0.0000369 0.000067 0.00130 0.0000708

OH – 71 0.0000038 0.000007 0.00014 0.0000082

B(OH)3 2807 0.0005527 0.001003 0.01944 0.0003258

CO2 86 0.0000121 0.000022 0.00042 0.0000100

Sum 10 000 000 1.0000000 1.815069 35.16504 1.1605813

H2O 964.83496 55.5084720

Sum 1000.00000 56.6690534
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2. Seawater Composition and Salinity

of the chlorine content can be made with a rapid titration of the seawater against silver nitrate

solution. Notice that the bromide and iodide anions also precipitate with silver. Accordingly,

chlorinity Cl was firstly defined as the weight of chlorine in grams per kilogram of seawater

after the bromides and iodides had been replaced by chlorides. Multiplying the chlorinity by a

constant factor gives the salinity.

In the 1960s and 1970s, various properties of seawater samples were studied quantitatively as

a function of chlorinity. In fact, the composition of Standard Seawater was usually represented

by the measured values of r, the mass ratio of the major components of seawater relative to the

chlorinity Cl. Properties derived experimentally from Standard Seawater samples allowed the

mathematical construction of quantitative relations between the properties such as the equation

of state of seawater ρ = ρ(Cl, T, p).

Chlorinity is not the only quantity that has been used as a ’standard’ measure of salinity;

conductivity has also served this purpose. The two approaches are essentially equivalent for

Standard Seawater (Millero et al., 1977), but the resulting values for derived quantities such as

densities are not precisely consistent when composition anomalies are present, as for example in

the Baltic Sea (Millero and Kremling, 1976). Thus, prior to 1978, two incompatible definitions

of salinity were in use, one based on the chlorinity, the other one on the conductivity of seawater.

This fact complicated the history of salinity measurements and caused severe problems in the

comparability of their results.

In 1978 the Joint Panel on Oceanographic Tables and Standards recommended the Practical

Salinity Scale (PSS-78) to all oceanographic organizations as the scale in which to report future

salinity data. In the formulation of PSS-78[23], the Practical Salinity, S, of a sample of seawater

is defined in terms of the ratio K15 of the electrical conductivity of the seawater sample at the

temperature of 15◦C and the pressure of one standard atmosphere, to that of a potassium

chloride (KCl) solution, in which the mass fraction is 32.4356×10−3, at the same temperature

and pressure. The K15 value exactly equal to 1 corresponds, by definition, to a practical salinity

exactly equal to 35[23, 24].

2.2.2 Absolute and Reference Salinity

Absolute Salinity SA is defined as the mass fraction of dissolved material in seawater. A precise

direct experimental determination of SA is practically impossible. One of the purposes of the

introduction of the Reference Composition was just to determine a “best estimate” of the

Absolute Salinity for Standard Seawater. This new scale is the Reference-Composition salinity

SR (or Reference salinity for short).
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Seawater with a Practical Salinity of 35 has provided a benchmark in past discussions of

salinity. Let us refer to it as KCl-normalized Reference Seawater. By definition the Reference

Salinity of the normalized Reference Seawater is fixed to our current best estimate for the the

Absolute Salinity of this solution, namely 35.165031 g/kg[25]. The complete definition of SR is

(a) The Reference-Composition Salinity of pure water is defined to be zero.

(b) The Reference-Composition Salinity of normalized Reference Seawater is defined to be

exactly 35.16504 g kg−1.

(c) The Reference-Composition Salinity is defined to be conservative during mixing. If a sea-

water sample of mass m1 and Reference-Composition Salinity SR1 is mixed with another seawa-

ter sample of massm2 and Reference-Composition Salinity SR2, the final Reference-Composition

Salinity SR12 of this sample is

SR12 =
m1SR1 +m2SR2

m1 +m2

(2.1)

Negative values of m1 and m2 corresponding to the removal of seawater with the appropriate

salinity are permitted.

(d) The Reference-Composition Salinity of a seawater sample at a given temperature and

pressure is equal to the Reference-Composition Salinity of the same sample at another temper-

ature and pressure when the transition process is conducted without exchange of matter, in

particular, without evaporation, precipitation or degassing of substance from the solution.

Table 2.1 presents the weight fractions and molalities of the constituents of the KCl-

normalized Reference Seawater. Notice that the Reference Salinity of this solution (the sum of

the masses of the ionic components in the fifth column) gives 35.16504 g/kg in accordance with

the above definitions.

The definition of the Reference Salinity is particularly suited for theoretical and simulation

calculations. On the other hand, the possibility of determining a correction for the Absolute

Salinity for actual samples whose composition differ from the Reference Composition it is also

possible[26]. The largest such corrections would be based on measurements of changes in the

carbonate system and the addition of CaCO3, CO2 and nutrients from the oxidation of plant

material. Since this work is devoted to the properties of Reference Seawater there is no need

for such corrections.
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Chapter 3

Molecular Dynamics

Following the earlier success of Monte Carlo simulations, Alder and Wainwright[27] developed

the method of molecular dynamics (MD) to simulate perfectly elastic collisions between hard

spheres in an IBM 704 computer. Loup Verlet[28] made the first MD simulation for a system

interacting via the Lennard-Jones potential[29]. Rahman and Stillinger[30] were able to show

that a more realistic (and relatively complex) system like liquid water could be described using

a potential model proposed by Fermi.

Molecular Dynamics (MD) is a computer simulation technique for studying the physical

motion of atoms and molecules and to predict the macroscopic properties of a system from

the molecular interactions between particles[6, 7]. The atoms and molecules are allowed to

interact for a fixed period of time, giving a view of the dynamic evolution of the system. In the

most common version, the trajectories of atoms and molecules are determined by numerically

solving the Newton’s equations of motion for a system of interacting particles. The forces

between particles and their potential energies are often calculated using interatomic potentials

or molecular mechanics forcefields. For this reason it can be defined as a deterministic method.

This approach is successful within the limits in which it is not necessary to take into account

the typical nuclear quantum effects of, for example, very small atoms or light molecules. A large

number of trajectories are derived by integrating over time the Newton’s equations of motion.

From the ensemble of trajectories, classical statistical mechanics is employed to evaluate the

averages leading to the macroscopic properties of the system. Thermodynamic, dynamical or

structural properties are accessible using the MD method.

3.1 Force Field

The classical MD method rely on the knowledge on the interaction potential between the

molecules. These are usually referred to as the forcefield[31]. The most commonly used force-

14



3.1. Force Field

fields represent the potential energy of the system as the sum of two contributions, namely

intramolecular and intermolecular, corresponding to interactions between bounded and un-

bounded atoms

V (r) = Vbond(r) + Vunbond(r) (3.1)

The interaction between bonded atoms, may include stretching, bending and torsion terms and

takes a form of the type

Vunbond(r) =

Nstretch∑
i=1

kstri (ri − r0i)2 +

Nbend∑
i=1

kbeni (θi − θ0i)2 +
Ntors∑
i=1

ktori [1 + cos(niφi − γi)], (3.2)

where the constants r0i and θ0i represent bond distances and bond angles with corresponding

kstri and kbeni strength constants, φi is the torsional angle for the i-torsion while ktori , ni e

γi are parameters whose physical meaning depends on the atoms involved. The sums are

extended respectively to all stretching, rotations and torsions present in the molecules under

consideration. In this work the intramolecular potential has been neglected because we consider

the water molecules as rigid.

The intermolecular potential can be defined as the difference of energy when the molecules

are in a specific configuration (given by the coordinates ~r1, ω1, ..., ~rN , ωN), and the energy of

these molecules when they are at infinite separation (V = 0). In principle, the determination

of V requires quantum calculation. In a liquid, for example, the number of molecules is of the

order of the number of Avogadro, so that a quantum calculation of its energy is impossible

(quantum calculations can currently address systems of the order of up to ≈ 100 molecules).

So we work with an empirical expression of V which is known by the name Force Field. The

most common forcefields are based on pair-additive potentials. In this approximation the total

energy of the system is a sum of the interactions between pairs of molecules (n, m), as seen in

the following equation:

Vunbond =
∑
n

∑
m>n

Vnm (3.3)

Often, the molecules consist of a number of interaction sites (which may or may not be coinci-

dent with the atoms of the molecule) and the potential energy between a pair of molecules is

in turn a summation over all possible site-site interactions

Vnm =
∑
i

∑
j>i

Vij(rij). (3.4)

In most cases, the interaction between pairs of sites of different molecules, Vij, contains terms.

The first correspond to exchange-dispersion forces (usually represented by a Lennard-Jones

potential, and a coulombic interaction coming from the partial charges qi, qj placed respectively
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at sites i and j of molecules n and m. Thus,

Vij(rij) = 4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

+
1

4πε0

qiqj
rij

. (3.5)

where εij represents the depth of the potential well, and σij is the distance at which Vij(rij) = 0.

The minimum of the potential occurs at re = 21/6σij (see Figure 3.1). Notice that the first term

of the Lennard-Jones potential, representing the repulsive forces, is short-ranged (it is always

positive and inversely proportional to the twelfth power of r. The attractive term (negative

and inversely proportional to the sixth power of r) is also short ranged. On the contrary, the

coulombic interactions may be attractive (between unlike-charged sites) or repulsive (between

like-charged sites) but are long ranged since they depend on r−1. In the above expression, ε0

is the dielectric constant in vacuum.

Figure 3.1: Lennard-Jones potential. The dotted line shows the typical cutoff distance, rc

3.2 Classical Molecular Dynamics

Let us consider a system of classical particles and a forcefield describing their interactions. Clas-

sical Molecular Dynamics (MD) is the technique allowing to generate a number of trajectories

in a given thermodynamic ensemble. In the microcanonic ensemble (also termed as NVE), the

trajectories are generated by solving the Newton’s law which relates the total force acting on

the element i to the variation produced in its velocity:

~Fi = mi
∂~vi
∂t

= −
∂V
(
~r N
)

∂~ri
. (3.6)

As seen in equation (3.6), the force acting on i may be simply evaluated as the (minus) gradient

of the potential energy V at the position ~ri. Assuming that we know ~ri(0) y ~vi(0) for a starting

configuration, equation (3.6) allows the calculation of the new positions of the particles at a

time δt, thus generating a new configuration in the NVE ensemble. Analytical solution of the

Newton equation is not possible for a molecular system. Thus, one must resort to numerical

algorithms for differential equations to solve Eq. 3.6.
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3.3. Verlet’s algorithm

3.3 Verlet’s algorithm

The intent of a MD simulation is to derive the trajectories of the particles by solving Newton’s

equations over time. In order to implement this calculation, the simulation time must be

discretized so the integration is done for finite intervals. The time intervals take the name of

timestep (∆t) and the algorithms based on this strategy are called finite difference methods.

One of the widely used algorithms in MD is the Verlet’s algorithm[28]. His basic idea is to write

two Taylor series approximations truncated at the third term (where the accelerations appear)

~ri(t+ δt) = ~ri(t) + ~vi(t)δt+
1

2
~ai(t)(δt)

2, (3.7)

~ri(t− δt) = ~ri(t)− ~vi(t)δt+
1

2
~ai(t)(δt)

2, (3.8)

where ~vi is the velocity and ~ri is the position of the particle i at time t. We want to know the

velocity and the positions in a time t+ δt. Adding both equations we obtain

~ri(t+ δt) = ~2ri(t)− ~ri(t− δt) + ~ai(t)(δt)
2. (3.9)

Let us analyze the previous expression in more detail. The first term is the position of a

particle at time t, the second is the position of the same particle at time −δt (i.e., at the

previous timestep) and the last one depends on the acceleration. To get the new positions,

the only unknown variable is the acceleration of the particle, which can be determined from

equation (3.6)

~ai =
∂~vi
∂t

= −∇iV (~r1.....~rN)

mi

. (3.10)

Once the accelerations are known, the velocities can be evaluated by finite differences as follows

vi =
∂~ri
∂t
≈ ∆ri

∆t
=
~ri(t+ δt)− ~r(t− δt)

2δt
. (3.11)

In summary, the steps required to perform a Molecular Dynamics simulation using the

Verlet’s algorithm are:

1. Setup the initial configuration with the positions and velocities of the particles.

2. Evaluate the forces on the particles in that configuration.

3. Calculate the acceleration with the Newton equation.

4. Determine the positions and velocities for the new configuration.

5. Repeat the procedure from step 2 several million times.
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For each configuration, a number of properties may be evaluated (either on the fly or after

the simulation if the configurations are saved). The potential energy is readily accessible when

evaluating any new configuration. Also, the kinetic energy (Ekin), is easily obtained Ekin =

1
2
mv2. Notice that the total energy Etot = Ekin + Epot must be conserved along the whole

simulation. This limits the timestep to values around 1-2 fs. In fact, the stability of the

solution of any differential equation is very sensitive to the details of the algorithm.

An alternative integration method is the so-called Velocity Verlet algorithm whose main

advantage is that it provides directly the velocities. It proceeds according to the steps described

below:

~vi(t+
1

2
δt) = ~vi(t) +

1

2
~ai(t)(δt) (3.12)

~ri(t+ δt) = ~ri(t) + ~vi(t+
1

2
δt)δt (3.13)

~ai(t+ δt) = − 1

m
∇~Vi(r(t+ δt)) (3.14)

~ri(t+ δt) = ~vi(t+
1

2
δt)δt+

1

2
~ai(t+ δt)δt (3.15)

~ri(t− δt) = ~ri(t)− ~vi(t)δt+
1

2
~ai(t)(δt)

2. (3.16)

3.4 Periodic boundary conditions

The number of molecules in a liquid is of the order of the number of Avogadro. However the

maximum number of molecules that can be dealt with in a MD simulation with the current

multicore computers is of the order of one thousand per core. A system made of a few thousand

molecules show important surface effects and the properties of the system do not correspond to

those of the bulk. A useful tool to avoid edge effects is the use of periodic boundary conditions[6,

7]. In this procedure the system of N molecules is replicated indefinitely along the three

dimensions (ot two in a 2D system). The simulation box of size L (a cubic box is the more

general choice) is considered the primitive cell of an infinite and periodic network of identical

cells, as can be seen Figure 3.2. The molecules of the replicated cells are called images of the

corresponding molecule in the central box. If in the course of the simulation a molecule of

the central box moves in one direction, its replicas also move in the same way. Thus, when a

molecule leaves the central box, one of the images will enter the opposite side, thus preserving

the number of molecules per box.
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In Figure 3.2 a two-dimensional version of a periodic system is shown. Replicated boxes

are arbitrarily labeled A, B, C, etc. When particle 7 moves along a border, its images 7A, 7B,

etc (where the subscript specifies the replicated box corresponding to each image) move across

their contiguous frontiers. In this way, the density of the central box (and hence, that of the

whole system) is preserved. During the simulation it is not necessary to store the coordinates

of all the images (since it is an infinite number) but simply those of the central box.

Figure 3.2: Periodic boundary conditions for a two-dimensional system.

3.5 Cut-off

The intermolecular energy is zero when all the molecules of the collective are infinitely separated.

In any other case, the potential energy is calculated by adding the intermolecular potentials

between all the molecules. If periodic boundary conditions are used, the energy of a molecule

with the other N − 1 particles in M replicas is obtained as

V (1) = V (1, 2) + V (1, 3) + ...+ V (1, N) + V (1, 1A) + V (1, 1B) + ...+ V (1, 1M) +

+V (1, 2A)+V (1, 2B)+ ...+V (1, 2M)+V (1, 3A)+V (1, 3B)+ ...+V (1, 3M)+ ...+V (1, NM) .

(3.17)

If infinite replicas would be taken into account, the sum would contain infinite terms. In

practice, the evaluation of the interatomic potential requires the use of approximations. As

we observe in Figure 3.1, the Lennard-Jones potential is almost negligible beyond ≈ 3σ. In

general, for any short ranged potential, it is customary to neglect the interactions between

particles separated by a distance larger than a given value, rc, called the cutoff radius.
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3. Molecular Dynamics

When using periodic boundary conditions, it is important that any molecule can not interact

with any of its replicas nor with more than one replica of another molecule (the opposite could

lead to spurious errors). Only the closest neighbours are thus considered for the evaluation

of the intermolecular interaction. This procedure is called minimum image criterion. Notice

(see Figure 3.3) that the nearest image of a given particle needs not to be in the same cell.

Therefore, the interactions between pairs of molecules separated by distances greater than the

cutoff radius are not evaluated, which defines a truncated potential Vtrunc(rij):

Vtrunc(rij) =

V (rij) rij ≤ rc

0 rij ≥ rc
(3.18)

The choice of a certain cut-off distance imposes a minimum value to the unit cell size. For

consistency with the minimum image criterion, the cutoff radius rc must be less than half the

edge of the simulation box L/2. For instance, if the cutoff distance is 3σ and the size of a

molecule is σ ≈ 3 Å then rc ≈ 10 Åand the length of the box must be L ≥ 20 Å.

Figure 3.3: Periodic boundary conditions for a two-dimensional system. Notice that the central

particle (filled circle) interacts only with the nearest neighbours (using the minimum image

convention) within the cutoff distance (dashed line).

3.6 Ewald Sum and Particle-Mesh Ewald

The potential of Coulomb, described in the last term of the equation (3.5), is a long-range

potential because it decays slowly with the distance between the particles (V ∝ r−1). Therefore,

the truncation of the coulombic forces is not possible. In a system with charged particles, each
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3.6. Ewald Sum and Particle-Mesh Ewald

charge is usually surrounded by successive layers carrying alternating charge signs. Although

there is some cancellation between these layers, the overall series is slowly convergent. The

Ewald Sum[32] is a technique devised to speed-up the convergence. Here, we give a brief

description of its physical basis and concentrate on its implementation[6, 7].

The Ewald sum method manages to transform the Coulomb sum, which converges slowly

and conditionally, into two rapidly convergent sums plus a constant term. In this method, each

punctual charge qi, is surrounded by a charge distribution of equal magnitude and opposite sign

that extends radially from it. For convenience, this charge distribution is taken as Gaussian:

ρi (r) =
qiα

3

π3/2
e−α

2r2 , (3.19)

where α is an arbitrary parameter that determines the width of the Gaussian distribution and r

is the distance to the particle i where the distribution is centered. This extra charge distribution

acts as an ionic cloud that surrounds the punctual charge and shields the interaction between

neighbouring charges (see Figure 3.4). The resulting screened interactions are now short-ranged

and converge more or less quickly depending on the choice of α. This parameter is then usually

chosen so that the interactions beyond the cutoff distance rc are negligible.

Obviously, each of these shielding distributions have to be compensated by another charge

distribution with sign opposite to the previous one, so that the sum of these two distributions

recovers the original charges of the system. The intermolecular potential associated to the latter

distribution is also a rapidly convergent function when evaluated in the reciprocal (Fourier)

space.

Figure 3.4: Charge distributions in Ewald Sum. (a) Original point charges. (b) Punctual charges

and shielding distributions. (c) Compensating charge distributions.

On the other hand, notice that when introducing the Gaussian distributions we have in-
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cluded terms of autointeraction. The interaction of each Gaussian with its corresponding punc-

tual charge must be subtracted from the total interaction. In summary, the equation of the

Ewald Sum is

VC = Vreal + Vreciprocal + Vself , (3.20)

where

Vreal =
∑
i

∑
j

j>i

qiqj
rij

erfc (α rij) , (3.21)

Vreciprocal =
∑
~k

4π

L3

1∣∣∣~k∣∣∣2 exp

[
− k2

4α2

] ∣∣∣ρ(~k)∣∣∣2 , (3.22)

Vself = − α√
π

Nq∑
i=1

(qi)
2 , (3.23)

erfc(x) being the complementary error function

erfc(x) =
2√
π

∫ ∞
x

e−t
2

dt, (3.24)

which tends to zero for large x. The first term Vreal, due to the potential of the screened system,

is calculated in real space. It is in fact the Coulomb’s law damped with the erfc function. A

typical value of α is 1/3 Å−1. The original Coulomb’s law decays slowly but, multiplied by

erfc(x), tends to zero quickly. Therefore the resulting interaction may be truncated at ≈ 10 Å.

The Vreciprocal term corresponds to the interactions between the Gaussian charge distributions.

In Eq. 3.22, ~k is a vector of the reciprocal space lattice (usually, the sum extends over about

200-1000 reciprocal space vectors), and ρ
(
~k
)

is the structure factor,

ρ
(
~k
)

=

Nq∑
i=1

qi exp
[
i~k~ri

]
, (3.25)

where ~ri defines the location of the i charge in the real space. Finally, the third term Vself

is the above mentioned self-interaction term which does not depend on the coordinates of the

particles of the system. It is a constant that may be evaluated once, at the beginning of the

simulation.

The Particle-Mesh Ewald (PME) methods[33] approximate the reciprocal-space term of the

standard Ewald summation by a discrete convolution on an interpolating grid, using the discrete

Fast-Fourier transforms (FFT). The PME algorithm scales as N log(N), and is substantially

faster than ordinary Ewald summation on medium to large systems. On very small systems it

might still be better to use Ewald to avoid the overhead in setting up grids and transforms.
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3.7. Long-range corrections

3.7 Long-range corrections

If the intermolecular potential is not rigorously null for greater distances than rc, truncated

interactions will result in a systematic error in V . If intermolecular interactions decay rapidly,

energy can be corrected by adding a contribution to V . Let us start from the expression for

the average potential energy, 〈V 〉, of the system[7]

〈V 〉 =
N

2

∫ ∞
0

dr 4πr2︸ ︷︷ ︸
dV

ρ g (r)︸ ︷︷ ︸
ρ(r)︸ ︷︷ ︸

N(r)

v (r)

︸ ︷︷ ︸
V of molecules

in r+dr

. (3.26)

Figure 3.5: Instantaneous configuration of a set of N identical particles viewed from a reference

particle

Now, by tweaking the potential, we reorganize the integral of the equation (3.26) as follows:

〈V 〉 =
N

2

∫ rc

0

4πr2ρ g (r) v (r) dr +
N

2

∫ ∞
rc

4πr2ρ g (r) v (r) dr. (3.27)

The first term is the potential energy calculated by Molecular Dynamics for the truncated

potential. The second term is a long-range correction (it is the missed energy from rc until∞).

The truncation of potential affects very little to the calculation of properties with respect to

the real system, excepting the potential energy. To avoid this problem, a long-range correction

is usually added assuming that beyond the cutoff the distribution of particles is coincident with

the density, g (r) = 1.

3.8 NVE, NpT and NVT ensembles

A molecular dynamics simulation within the NVEensemble, or microcanonical ensemble, is

defined by a system of N molecules in a constant volume V and a constant total energy E.

This type of simulation corresponds to an adiabatic process where no heat exchange is produced.
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3. Molecular Dynamics

There, the potential and the kinetic energy vary according to the particles trajectory along the

simulation. However the sum of the kinetic and potential energies, that is, the total energy,

remains constant.

For the calculation of properties of a system and to be able to compare these properties with

the experimental ones, it is sometime convenient to work at a fixed pressure, temperature, or

volume. When we impose conditions of constant pressure and temperature the configurations of

the system are those of the isothermal-isobaric ensemble (NpT ). If we fix the temperature and

volume we are working in the isothermal-isochoric ensemble or canonical ensemble (NVT ). In

the canonical ensemble the system can exchange energy with the environment, experimentally

assimilated to a sample immersed in a thermal bath. The question is: how do we fix the

temperature and/or pressure in our system? In the following we describe two of the most

commonly used algorithms to reach our goals: the Nosé-Hoover thermostat[34, 35] and the

Parrinello-Rahman barostat[36].

3.8.1 Nosé-Hoover thermostat

It is well known that the temperature is linked to the kinetic energy of the particles (K) as

3

2
NkBT = 〈K〉 . (3.28)

Thus, it is trivial to calculate the temperature of the system from the mean velocities of the

molecules in a large number of configurations:

3

2
kBT =

1

2
mi

〈
v2
〉

=⇒ T =
mi 〈v2〉

3kB
. (3.29)

To fix the temperature we need to modify Newton’s motion equations, adding a parameter ξ

as follows

mi
d2~ri
dt2

= −∇iV (1, 2, ..., N)− ξmi~vi, (3.30)

dξ

dt
=

[
N∑
i=1

1

2
m~vi

2 − 3

2
NkBTf

]
1

τ
, (3.31)

where ξmi~vi is a viscous force, and ξ is the coefficient of this viscous force which can be negative

or positive depending on the needs of the system. If ξ > 0, then −ξ (mi~vi) < 0, and the added

force slows down the particles. On other hand if ξ < 0, −ξ (mi~vi) > 0, so the added force

accelerates the particles. Thus, the thermostat works differently (accelerating or retarding

the particles) depending on the sign of ξ so the temperature fluctuates around the desired

temperature Tf . The parameter τ has time units and is called thermostat relaxation time.

Typically τ is set to around 1 ps.
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3.8. NVE, NpT and NVT ensembles

The extended-ensemble approach was first proposed by Nosé[34] and later modified by

Hoover[35]. In the latter formulation, the system Hamiltonian is extended by introducing a

thermal reservoir and a friction term ξ (also called heat bath variable). The equations of motion

are replaced by
d2~ri
dt2

=
~Fi
mi

− ξ d~ri
dt
, (3.32)

The friction parameter is a fully dynamic quantity with its own equation of motion

dξ

dt
=

1

Q
(T − T0) . (3.33)

The reference temperature is denoted T0, while T is the instantaneous temperature of the

system. The strength of the coupling is determined by the constant Q (usually called the

’mass parameter’ of the reservoir) in combination with the reference temperature. The mass

parameter is a somewhat awkward way of describing coupling strength, especially due to its

dependence on the reference temperature. To maintain the coupling strength, one would have

to change Q in proportion to the change in reference temperature. GROMACS works instead

with the period τT of the oscillations of kinetic energy between the system and the reservoir.

It is directly related to Q and T0 via

Q =
τ 2TT0
4π2

. (3.34)

This provides a much more intuitive way of selecting the Nosé-Hoover coupling strength. In

addition, τT is independent of system size and reference temperature.

3.8.2 Parrinello-Rahman barostat

Analogous to the thermostat of Nosé-Hoover, in the Parrinello-Rahman barostat[36], a param-

eter is used to adjust the pressure. To do this we consider that the vectors of the simulation

box are represented by a matrix b that meets the motion equations

db2

dt2
= VW−1b′

−1
(p− pref ) , (3.35)

where V is the volume of the box, and W is a matrix of parameters that determines the strength

of the coupling. p and pref are the current and reference pressure matrices, respectively. The

equations of Newton are modified by adding a new term

d2~ri
dt2

=
~Fi
mi

−M
d~ri
dt
, (3.36)

with

M = b−1
[
b
db′

dt
+
db

dt
b′
]

b′
−1
. (3.37)
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The inverse matrix of the mass parameter W−1 determines the strength of the coupling and

how the box can be deformed. Finally, the pressure of the of the i configuration is given by

pi =
NkBT

V
+

1

3V

[
N∑
i=1

~ri · ~Fi

]
. (3.38)

The first term corresponds to a system without intermolecular forces. The second term adds

the intermolecular forces.

3.9 Constraint algorithms

The use of constraints in MD stems from the need to eliminate the vibrations of high-frequency

bonds that require short integration steps. The factor that determines the timestep in the

integration of the Newton equation is the highest frequency that occurs in the system. For the

O-H bond the stretching frequency is of the order of 1014 Hz, corresponding to an average period

of the order of 10 fs. Accepting that, in order to correctly reproduce the progress of a periodic

function, it must be sampled at least twenty times per period, limits the timestep is limited

to less than 0.5 fs. If the molecules do not have torsional degrees of freedom, the stretching

motion can be averaged and the forcefield may be calculated assuming that the molecules are

rigid. The integration of the motion of a rigid molecule may be done by decoupling the motion

of the center of mass and the rotation. Such a procedure has an important drawback: it is very

difficult to implement a general code to solve the equations for the motion of any arbitrary

molecule.

A more general procedure is to assume that the molecules are made of interaction sites.

Each site has its own equations of motion so the problem reduces to the motion of a number

of punctual sites. In this approach the angular motion is the result of the different velocities

of the sites forming the molecule. An obvious problem is that this does not ensure that the

shape of the molecule is preserved after the integration. The implementation of constraints

solve this question. By introducing a method that constraint the distances between the sites of

a rigid molecule, the timestep of the integration may increased up to 2 fs. Since the vibrations

of bonds are practically decoupled from the other vibrations of the system, the constraints do

not alter the remainder of the dynamics of the system.

The first method proposed for performing a constrained trajectory is the so-called SHAKE,

that was introduced in 1977 [37]. The SHAKE algorithm changes a set of unconstrained

coordinates ~r
′

to a set of coordinates ~r
′′

that fulfill a list of distance constraints, using a set

~r SHAKE(~r
′ → ~r

′′
; ~r). This action is implemented by solving a set of Lagrange multipliers

in the constrained equations of motion. Assume that the equations of motion must fulfill K
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holonomic constraints, expressed as

σk(~r1 . . . ~rN) = 0; k = 1 . . . K, (3.39)

(e.g. (~r1 − ~r2)2 − b2 = 0). Then the forces are defined as

− ∂

∂~ri

(
V +

K∑
k=1

λkσk

)
, (3.40)

where λk are Lagrange multipliers which must be solved to fulfill the constraint equations. The

second part of this sum determines the constraint forces ~Gi, defined by

~Gi = −
K∑
k=1

λk
∂σk
∂~ri

(3.41)

The displacement due to the constraint forces in the leapfrog or Verlet algorithm is equal to

(~Gi/mi)(∆t)
2. Solving the Lagrange multipliers (and hence the displacements) requires the

solution of a set of coupled equations of second degree. These are solved iteratively by SHAKE

until all the constraints are satisfied within a relative tolerance TOL.

3.10 Gromacs

GROMACS (GROningen MAchine for Chemical Simulations)[38] is an engine to perform

molecular dynamics simulations and energy minimization, developed in 1991 at Department

of Biophysical Chemistry, University of Groningen, Netherlands. It is a versatile package to

perform Molecular Dynamics, i.e. simulate the Newtonian equations of motion for systems with

hundreds to millions of particles.

GROMACS is primarily designed for biochemical molecules like proteins, lipids and nucleic

acids that have a lot of complicated bonded interactions, but since it is extremely fast at

calculating the nonbonded interactions (that usually dominate simulations) many groups are

also using it for research on non-biological systems, e.g. polymers and, like us, water solutions.

GROMACS provides extremely high performance compared to all other programs. A lot

of algorithmic optimizations have been introduced in the code. In GROMACS 4.6 and up, on

almost all common computing platforms, the innermost loops are written in C using intrinsic

functions that the compiler transforms to SIMD machine instructions, to utilize the available

instruction-level parallelism. This program is Free Software, available under the GNU Lesser

General Public License (LGPL), there is no scripting language - all programs use a simple

interface with command line options for input and output files.

This program requires three input for the simulation of a model files, which are as follows:
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3. Molecular Dynamics

1. the topol.top file where there are the parameters of the Force Field.

2. the configuration of the system conf.g96 where it can be found the initial velocities ~vi(0),

positions ~ri(0) of the atoms, and size of the simulation box.

3. the grompp.mdp file where it can be found the time and the condition (pressure and

temperature) of the system.

When the simulation ends, the results can be analyzed using a GROMACS command

called g energy. With this command you can get the average values of many properties of the

system, including density, kinetic and potential energies, etc.
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Chapter 4

Methodology

4.1 Simplified seawater composition for numerical simulations

Having a look at Table 2.1 it is easy to realize that the number of molecules needed to repro-

duce the Reference Composition Seawater is exceedingly large to be implemented in molecular

simulations. The total number of ions in the definition of the Reference Composition amounts

to 107. The number of water molecules for a Reference Seawater of salinity around 35 g/kg

would then be of the order of 500 millions. The huge size of such system would pose a number

of problems to perform molecular simulations. Not only as a result of the computing cost of

the simulations but also because of the difficulties of implementing a working starting config-

uration. More importantly perhaps is the fact that the calculated properties are not sensitive

to extremely fine composition details. It is not necessary to reproduce exactly the Reference

Composition Seawater to arrive at significant conclusions about the ability of the current force-

fields to account for the seawater properties. It seems thus interesting to design a simplified

system with a composition close to the Reference Composition Seawater but more amenable to

computer simulation.

The first assumption we have made is to ignore minor constituents, i.e. ions with a mole

fraction lower than a given value. In particular, since the mole fraction, x, of HCO –
3 is already

very small (x = 0.0015) we may neglect it as well as the rest of components with lower con-

centration. Thus, our model for seawater would only deal in principle with Cl – , Na+, Mg 2+,

SO 2 –
4 , Ca 2+, K+. However, most of the neglected chemical compounds are ions carrying a

negative charge so it is not possible to ignore them completely in order to fulfill the electroneu-

trality condition. It is thus required to include a monovalent ion representing the ensemble of

these minor constituents. A system containing just one ion representing the minor constituents

would consist of about 300-350 ions and 15000− 20000 water molecules. With these premises

in mind, it would seem trivial the design of an acceptable model for seawater. However, consid-
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erable tweaking is required because the number of ions must be integer numbers. The relative

abundance of all the ions can not be easily reproduced with small integer numbers. Besides, the

rounding of numbers leads quite often to deviations of electroneutrality. After a cumbersome

trial and error we have finally arrived at a composition fulfilling the requirements.

The resulting composition for our ”in silico” seawater of salinity SR = 35.16 g/kg, is shown

in Table 4.1. It matches the Reference Composition Seawater to a great accuracy: the mole

fractions of our model are correct approximately up to the fourth decimal figure. In fact,

such good agreement is somewhat unexpected given the relatively small number of ions in our

sample. Notice that, since a single ion represents all the minor constituents, the properties of

this single ion are not well defined.

Let us recall that we are interested in properties which derive from the interaction between

particles. Since the principal contribution to the potential energy in a ionic solution is the

coulombic term, the main feature of the single anion representing the minor constituents is

that it must ensure the charge neutrality. Small variations in the dispersion interactions of this

anion with the rest of particles have a negligible impact in the properties of the system. In fact,

the most significant effect of the dispersion forces in a ionic solution is the excluded volume

determined by the van der Waals radius. Any reasonable choice for the van der Waals radius

of the single anion would suffice for our purposes. For simplicity, we have chosen to use for this

anion the same potential parameters as those of Cl – . In summary, the resulting composition

for our “in silico” seawater of salinity SR = 35.16 g/kg is shown in the fifth column of Table 4.1

and contains 15210 water molecules and 318 ions (Cl – , Na+, Mg 2+, SO 2 –
4 , Ca 2+, K+). From

the composition of this sample, intended to simulate the KCl-normalized Reference Seawater,

it is straightforward to obtain the Reference Composition seawater at any desired salinity by

adding or removing water molecules.

One of the aims of this work is to investigate the contribution of the different ions to the

properties of seawater. More specifically, we intend to shed light on the effect of a further

simplification of the sample. Following the same line of reasoning of the previous paragraph

it seems interesting to analyse whether the replacement of Ca 2+ and K+ by Mg 2+ and Na+,

respectively, has a noticeable effect on the solution properties. We may take the argument to

the extreme: it makes sense to replace seawater by an equivalent NaCl solution? Because of the

large set of experimental data available for both systems, there is no need to carry out molecular

simulations to answer the question: there is no such equivalence for a wide set of properties. It

is easy to realize that a rescaling of salinities by a factor is able to provide an excellent match

of the densities of both systems. However the factor is slightly dependent on temperature. But

a rescaling trying to match the corresponding experimental values for a dynamical property
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such as the viscosity does not work at all (even using a different factor than that employed for

the density).

Despite the difficulty of defining an equivalence between seawater and NaCl solutions, the

study of the latter system may be of interest. Although other ions make significant contributions

to the properties of seawater, the largest ionic contributions come from the Na+ and Cl –

interactions. In this work, we have carried out a parallel study of the NaCl solution at ”similar

salinities” as those investigated for seawater. Since we will compare each solution with its

corresponding experimental data, there is no room for ambiguity.

4.2 Force Field

4.2.1 Water model

To represent the water potential we have chosen a rigid non-polarizable simple model because

it provides an excellent compromise between performance and simplicity. Among these type of

water models, TIP4P/2005[9] has shown to give the best performance for a large number of

properties[39, 40]. Figure 4.1 displays the essential features of TIP4P/2005.

rOH
rOMHOH

H

O

H
!+!+

!-

M

Figure 4.1: TIP4P/2005 Water model

It has a Lennard-Jones site centered at the oxygen atom, and three charges located in the

following way: two positive charges on each hydrogen, qH , and a negative one located at the

point M, −2qH = qM (M is placed along the bisector of the H-O-H angle). The following table

gives the parameters of the model.
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4.2. Force Field

rOH [nm] H-O-H [◦] σ [nm] ε[kJ/mol ] qH [e] rOM [nm]

TIP4P/2005 0.09572 104.52 0.31589 0.7749 0.5564 0.01546

Table 4.2: Parameters of the TIP4P/2005 water model. The distance between the oxygen and hydrogen is

denoted as rOH . The angle formed by hydrogen, oxygen and the second hydrogen is denoted as H-O-H. The

LJ centre is located at the oxygen with parameters σ and ε/kB [K]. The assigned charge of the hydrogen atom

is qH . rOM it is the distance from the oxygen to the site M placed along the bisector H-O-H.

4.2.2 Ionic Interactions

Two different forcefields have been used in this work. Both sets differ in the parameters of Na+

and Cl – . For the first set we have chosen the Joung-Cheatham (JC)[11] potential while the

second one use the OPLS (optimized potentials for liquid simulations)[10] forcefield to represent

the sodium-chloride interactions. The same parameters are used in both sets for the rest of

ions. The OPLS forcefield also provides parameters for the divalent cations and these are the

obvious choice for the second forcefield which will be denoted as OPLS. But these will also be

used in the other set (it will be referred to as JC despite being actually a merge between JC

and OPLS). Finally, for the sulfate anion, the parameters given by Cannon et al.[41] will be

incorporated to both the JC and the OPLS sets. The following tables show the parameters of

the main ions.

Table 4.3:

JC OPLS

Name Mass Charge σ[nm] ε [kJ/mol] σ[nm] ε [kJ/mol]

Na+ 22.98977 1 2.1595E-01 1.4764 3.33045E-01 1.15980E-02

Cl – 35.453 -1 4.8305E-01 0.535E-01 4.41724E-01 4.92833E-01

Mg 2+ 24.305 2 1.64447E-01 3.66118E+00 1.64447E-01 3.66118E+00

OSO4 24.01565 -1 3.15000E-01 0.83740E+00 3.15000E-01 0.83740E+00

SSO4 0 2 3.55000E-01 1.04670E+00 3.55000E-01 1.04670E+00

4.2.3 Cross Interactions

Cross interactions refer to interactions between different atoms such as ion-ion, ion-water or

water-water. The cross interactions have been calculated through the well-known Lorentz-
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4. Methodology

Berthelot combining rules

εij = (εi · εj)
1
2 (4.1)

σij =
σi + σj

2
(4.2)

4.2.4 Sulfate Anion

Unlike the other ions, the sulfate, is a polyatomic molecule and, as for water, it may be con-

sidered a rigid molecule. Since GROMACS is based on site-site interactions a constraint

method (we use SHAKE, see chapter 3.9) is required to preserve the molecular geometry. But

the constraint algorithm can not work for a molecule with tetrahedral symmetry because the

motion of the outer atoms determine that of the central ion. However the site-site interactions

can not ensure this requirement and, thus, the constraint algorithm fails.

This failure forced us to use virtual atoms; these are interacting atoms, but without their

own mass. The force exerted on a virtual atom is projected to the rest of sites. After evaluating

the new positions of the massive sites, the position of the virtual sites can be obtained. Two

problems arise from the use of virtual sites: the preservation of a) the total mass of the molecule,

and b) the moments of inertia. In order to get rid of the first problem the mass of the sulphur

was distributed among the oxygen atoms (see the table 4.3. However this modify the moments

of inertia of the molecule. In order to keep them constant, the massive interaction sites should

be moved towards the center of the molecule. In this way we would have five virtual interacting

centers (at the positions of the four oxygens and the sulfur), and four mass centers for a total

of nine interaction centers. This would complicate the calculations very much and, probably,

would not affect the results of the simulations as the sulfate is the minority component of the

solution. Thus, we have kept the positions of the O and S atoms at their original position.

4.3 Evaluation of properties

4.3.1 Temperature

The absolute temperature T is related to the kinetic energy of the N -particle system

Ekin =
1

2

N∑
i=1

miv
2
i , (4.3)

through
1

2
NdfkT = Ekin, (4.4)
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4.3. Evaluation of properties

where k is Boltzmann’s constant and Ndf is the number of degrees of freedom which can be

computed from:

Ndf = N −Nc −Ncom. (4.5)

Here Nc is the number of constraints imposed on the system. When performing molecular

dynamics Ncom = 3 additional degrees of freedom must be removed, because the three center-

of-mass velocities are constants of the motion, which are usually set to zero. When simulating

in vacuo, the rotation around the center of mass can also be removed, in this case Ncom = 6.

When more than one temperature-coupling group is used, the number of degrees of freedom

for group i is

N i
df = (3N i −N i

c)
3N −Nc −Ncom

3N −Nc

(4.6)

The kinetic energy can also be written as a tensor, which is necessary for pressure calculation

in a triclinic system, or systems where shear forces are imposed

Ekin =
1

2

N∑
i=1

mi~vi ⊗ ~vi (4.7)

4.3.2 Pressure and virial

The stress (or pressure) tensor P is calculated as the difference between kinetic energy Ekin

and the virial Ξ

P =
2

V
(Ekin − Ξ), (4.8)

The virial Ξ tensor is defined as

Ξ = −1

2

∑
i<j

~rij ⊗ ~Fij, (4.9)

where V is the volume of the computational box. The scalar pressure p, which can be used for

pressure coupling in the case of isotropic systems, is related to the trace of the stress tensor

P = trace(P)/3 (4.10)

4.3.3 Density

The simulations for the calculation of the density were carried out in the isothermal-isobaric

ensemble NpT . In this ensemble, the volume of the box is not constant, but fluctuates around

an average value, so the density is simply calculated as:

ρ =
M

〈V 〉
(4.11)

where 〈V 〉 is the ensemble averaged box volume and M is the total mass of the sample.
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4. Methodology

4.3.4 Self diffusion coefficient

The self diffusion coefficients (D) are obtained through the Stokes-Einstein equation[42]

D =
1

6

〈
[~ri (t)− ~ri (0)]2

〉
t

=
MSD

6t
, (4.12)

where ~ri (0) is the particle’s position i in a certain origin of time t, and ~ri (t) is the position

of this particle at time t. [~ri (t)− ~ri (0)]2 is just the square of the distance that the particle

has moved. Making an average over all the particles of the system and time origins we get〈
[~ri (t)− ~ri (0)]2

〉
, usually called Mean Square Displacement, MSD . Large MSD indicate large

self diffusion coefficients.

From equation 4.12 we get MSD = 6Dt, so if we represent the mean square displacement

as a function of t, the slope of the curve provides the self diffusion coefficient: D = 1
6
·m.

4.3.5 Shear viscosity

The shear viscosity has been calculated using the Green-Kubo equation[43]

η =
V

kbT

∫ ∞
0

〈Pαβ(t0)Pαβ(t0 + t)〉 dt, (4.13)

where 〈Pαβ(t0)Pαβ(t0 + t)〉 it is the autocorrelation function of the off-diagonal components of

the stress tensor. In isotropic systems, the stress tensor is symmetric and the components out

of the diagonal, Pxy, Pxz, and Pzy, are equivalent. Besides, due to the rotational invariance of

the molecule, the terms (Pxx − Pyy)/2 y (Pyy − Pzz)/2 are also equivalent[44, 45]. Thus, in our

numerical integration calculations, the resulting autocorrelation function was calculated as an

average of five equivalent components of the stress tensor.

To evaluate the shear viscosity[45, 46] we need to perform simulations in the NVT ensemble.

Thus, we must know the volume of the system and keep it constant in the simulation. The

calculation of the volume requires a previous simulation in the NpT ensemble from which we

get the volume of the system at the desired temperature and pressure.

4.3.6 Radial distribution functions

The radial distribution function (rdf) or pair correlation function gAB(r) between particles of

type A and B is defined in the following way

gAB(r) =
〈ρB(r)〉
ρB

=
1

ρB

1

NA

NB∑
i∈A

NB∑
j∈B

,
δ(rij − r)

4πr2
(4.14)

〈ρB(r)〉 being the particle density of type B at a distance r from particles A, and ρB the

average particle density of type B (see Figure 4.2b). Essentially, the radial distribution function
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4.3. Evaluation of properties

represents the probability of finding a pair of particles i and j at the interparticle distance rij

in the case of an isotropic fluid.

In practice, the analysis program gmx rdf divides system into spherical slices (from r to

r + dr, see Figure 4.2 (a)) and replaces the δ-function by an histogram.

Figure 4.2: (a) gAB(r). The slices are colored gray. (b) Normalization 〈ρB〉local. Normalization

volumes are colored gray.

An example of a rdf is given in Fig. 4.3 Note that g(r) presents two clear local maximum,

the first corresponds to r ≈ 0.25 nm which is the first coordination sphere. At larger distances,

the function oscillates around 1. The rdf must become essentially flat at distances smaller than

half the box length indicating that there is no correlation between a particle and any of its

replicas.
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Figure 4.3: Typical shape of a radial distribution function.
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4. Methodology

4.3.7 Ions pairs and hydration numbers

The rdf allows the calculation of the number of ion pairs and hydration (see Figure 4.4).

y+ x-

Figure 4.4: Ion pairs formed by an ion x+ and the other y−

If we consider an instant configuration of our system of particles and select one of them ran-

domly, for example an ion x+, the number of anions y− included among r and r + dr around

x+ is given by

N(r) = ρy 4 π r2 gx+-y−(r) dr. (4.15)

If we integrate the above equation between 0 and rmin (the position of the first minimum in

gx+-y−(r))

n
(
x+-y−

)
=

∫ rmin

0

N(r)dr = ρy · 4π

∫ rmin

0

r2 gx+-y−(r) dr, (4.16)

we get n (x+-y−), the number of ion pairs. ρy is the number density of the ion y−

ρy =

(
Ny

V

)
(4.17)

The hydration numbers, i.e., the number of water molecules surrounding a given ion can be

readily obtained in the same way from the ion-oxygen and/or ion-hydrogen rdf’s.

4.4 Errors

A fundamental part of a scientific work is the calculation of the uncertainties or, more precisely,

their estimation. GROMACS includes an error analysis package using block averages. The

simulation is divided in blocks and, for each block, the average value for a given property is

calculated. The error of the total average is calculated from the variance between the averages

of the m blocks Bi in the following way:

ε2B =

∑
i (Bi − 〈B〉)2

m · (m− 1)
(4.18)

These errors are dependent on the block size. An analytical curve of the block’s uncertainties

may be obtained by fitting them to a sum of two exponentials

ε2(tbl) =
2σ2

t

(
ατ1

(
1 +

τ1
tbl

(
e
− tbl
τ1 − 1

))
+ (1− α) · τ2

(
1 +

τ2
tbl

(
e
− tbl
τ2 − 1

)))
, (4.19)
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4.4. Errors

where t is the total time of the simulation, σ is the standard deviation of the data set. α(usually

is close to 1), τ1 and τ2 are obtained by a least squares fit. Observing the Figure 4.5 we can divide

it into two areas. A first one correspond to short blocks where there is a significant correlation

between them. The second region correspond to large blocks (and thus there are few points)

with almost no correlation between them. Since the number of blocks is reduced, there is a

substantial noise in this region. However we may see that the analytical fit is asymptotic and

the plateau provides a representative estimation of the uncertainty.

lim
tbl→∞

ε2(tbl) = σ

√
2 (ατ1 + (1− α) τ2)

T
(4.20)
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Figure 4.5: Density errors estimation for a 5 m NaCl system at 1 bar and 298 K. The ’block size’

time is on the abscissa axis. In the ordinates there is the estimated error according to the size

of the block. Finally, the curve represents an adjustment of the block errors and corresponds to

the equation (4.19).
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Chapter 5

Results

In this chapter we present the results of the simulations performed for the simplified seawater

compositions discussed in 4.1. The simplest one contains water and the ions Na+, Cl – , Mg 2+

and SO 2 –
4 while the more complex seawater sample used in this work is made of the above

mentioned components plus the ions Ca 2+ and K+. We have investigated different properties

as a function of the temperature and salinity. In particular we have evaluated the equation

of state, dynamical properties (viscosity and self-diffusion coefficients), and the structure of

the solution (ion-water and ion-ion distribution functions). Since the most abundant ions of

seawater are Na+ and Cl – we have also carried out an study of the behaviour of NaCl solutions

using the same interaction potentials as for seawater.

5.1 Density

As already mentioned, one of the aims of this work was to investigate how much we can

simplify the composition of seawater including more or less abundant ions. Figure 5.1 shows

the variation of the density of seawater with temperature at the Reference-Composition salinity

(S=35.16 g/kg) using the JC and OPLS interaction potentials. Here, we have represented the

results for two simplified compositions: the first one contains the ions Na+, Cl – , Mg 2+ and

SO 2 –
4 (see column labelled sISsw in Table 4.1) while the other one also includes Ca 2+ and

K+ (labelled as ISsw). Notice that the effect of replacing Ca 2+ and K+ by Mg 2+ and Cl – ,

respectively, is almost negligible. In fact, only a few points were calculated for the ISsw system

since their results were essentially coincident with those for the simplified composition at the

same conditions. The numerical results, presented in Table 5.1 indicate that the differences are

close to the uncertainty of the calculations (around 0.15 kg/m3).
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Figure 5.1: Density at as a function of temperature compared to the experimental data (full

line) at the Reference-Composition salinity (35.16 g/kg). The squares and circles represent the

simulation values for the composition containing only Na+, Cl−, Mg2+ and SO2−
4 ions (see column

labelled sISsw in Table 4.1); the triangles represent the results when the simulated seawater also

contains Ca2+ and K+ (ISsw).

Table 5.1: Comparison of the numerical results for the densities of our simplified ’In silico’ seawater compo-

sitions at 1 bar and S = 35.16 g/kg.

OPLS JC

t(◦C) sISsw ISsw sISsw ISsw

-10 1025.84 - 1032.20 -

-5 1026.11 - 1032.32 -

0 1026.07 1026.03 1032.17 1032.02

5 1025.50 1025.65 1031.59 1031.58

10 1024.29 - - -

15 1023.41 1023.45 1029.63 1029.70

20 1022.01 - - -

25 1020.85 1021.29 1026.91 1026.93

40 1015.10 - 1021.09 -

60 1005.19 - 1011.06 -

80 992.91 993.14 998.90 998.99

100 978.94 - 984.62 -
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5. Results

As expected, for both potentials, the density of the solution decreases as the temperature

increases. The JC forcefield tends to overestimate the density while the OPLS to underestimate

it. The OPLS model reflects better the experimental data at low temperatures compared to the

JC, while the JC forcefield produces a better agreement with the experimental measurements

at high temperatures.

Figure 5.2 shows the density as a function of salinity for our simplified ’In silico’ seawater

composition, sISsw, (see Table 4.1) at ambient pressure and the temperatures 298.15 K and

373.15 K. At low salinities the simulation results essentially match the experimental data. This

could be expected taking into account the excellent performance of the TIP4P/2005 water

model[9, 39, 40]. As the salinity increases, so does the departures between simulation and ex-

periment albeit the differences are never important. As in our previous figure, the JC forcefield

overestimates the density while the OPLS underestimate it, so the simulation results bracket

the experimental data. The JC predictions are slightly better at 373.15 K while the OPLS

results deteriorate a little bit at increasing temperatures. Overall, the JC forcefield provides a

quite acceptable description of the density of seawater and its dependence with salinity along

two isotherms. The performance of the OPLS forcefield is slightly worse.
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Figure 5.2: Density as a function of salinity for two isotherms (as obtained using the JC and

OPLS potentials) compared to the experimental values for seawater

We have demonstrated that the effect of replacing Ca 2+ and K+ by Mg 2+ and Cl – , respec-

tively, is almost negligible. We could try to take further this replacement scheme and propose

an extremely simple NaCl solution representative of seawater at a given salinity. However,
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5.1. Density

the replacement of the divalent ions magnesium and sulfate by simple monovalent ions is not

trivial (among other problems we must face the question of preserving the electroneutrality of

the solution because the abundance of the sulfate anion is different from that of the magnesium

cation). In fact, we have tried to map the experimental seawater properties into the experi-

mental NaCl behaviour and we have found that there is not such simple mapping. Despite this

failure, it seems interesting to assess the importance of correctly describing the interactions of

Na+ and Cl – . To this end, we may examine the simulated properties of a NaCl solution (more

or less close to seawater of a given salinity) and check it against the experimental properties

of the NaCl solution. It remains the question of how to define the NaCl concentration with

properties more or less close to those of seawater at a given salinity. We have observed that

the experimental data for a NaCl solution are noticeably different from those of seawater at

the same ionic strength. We have found that the more simple approach which produces similar

results for both solutions consist in replacing every divalent ion by two monovalent ions. Notice

that this approach preserves the electroneutrality condition. In summary, our interest is to

check the simulation results against experimental data for NaCl solutions in a concentration

range producing similar properties to those of seawater.

As for seawater, the density of the NaCl solutions has been calculated with the JC and

OPLS forcefields. In Figure 5.3, we have depicted the simulation results for a 0.628 molal NaCl

solution as a function of the temperature at constant pressure (1 bar) and compare them

with the experimental data for NaCl. The similarity of this figure to Fig. 5.1 is evident which

indicates that the NaCl 0.628 m solution may be considered as a simple proxy for the Reference-

Composition standard seawater. Again, the simulation results for both models bracket the

experimental ones. Also in concordance with previous results for seawater, the experimental

data at low temperature for NaCl solutions are better represented by the potential OPLS while

JC performs better at high temperatures. The similarities between Figs. 5.3 and 5.1 indicate

that, as expected, most of the departures observed between simulation and experimental data in

seawater were due to inaccuracies in the Na+ and Cl – potential interactions. This statement is

corroborated by the results presented in Fig. 5.4 showing a remarkable parallelism with Fig. 5.2.
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Figure 5.3: Density values as a function of temperature for a 0.628 molal NaCl solution using

the JC and OPLS forcefields compared to experimental data.
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Figure 5.4: Density as a function of concentration for NaCl aqueous solutions for the 298.15 K

and 373.15 K isotherms at 1 bar.
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5.2. Dynamical properties

5.2 Dynamical properties

5.2.1 Viscosity

In this section we present the calculations for the shear viscosity obtained with the Green-

Kubo formula[43] for the OPLS and JC forcefields. Figure 5.5 shows the shear viscosity of

seawater as a function of temperature at the Reference-Composition salinity (S=35.16 g/kg)

using the JC and OPLS interaction potentials. As in Fig. 5.1 we have represented the results

for two simplified compositions: the first one contains the ions Na+, Cl – , Mg 2+ and SO 2 –
4 (see

column labelled sISsw in Table 4.1) while the other one also includes Ca 2+ and K+ (labelled

as ISsw). The differences between the results for the ISsw and sISsw compositions are again

quite small. The influence of Ca 2+ and K+ is visible only at the lowest temperature. In fact,

the calculations for the this solution were carried out only up to of 298.15 K since their effect

at this temperature seems already within the uncertainty of the results (around 5%).
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Figure 5.5: Viscosity of seawater as a function of temperature compared to the experimental data

(full line) at the Reference-Composition salinity (35.16 g/kg). The squares and circles represent

the simulation values for the composition containing only Na+, Cl−, Mg2+ and SO2−
4 ions (see

column labelled sISsw in Table 4.1); the triangles represent the results when the simulated

seawater also contains Ca2+ and K+ (ISsw).

In Figure 5.7 we show the results at 1 bar and two temperatures, 298.15 K and 373.15 K.

Both potential interactions account for the dependence on salinity of the shear viscosity of

seawater. The agreement with experiment is almost quantitative in the low salinity and high

temperature regime. However, especially at ambient temperature, the simulation data exagger-
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5. Results

ate the slope of the viscosity-salinity curves and the deviations become increasingly important

at high salinities.

Despite that, in all cases, the OPLS forcefield seems to perform better than JC, the viscosity

calculations at 298.15 K for the largest salinity (105.5 g/kg) evidenced that this state is beyond

the solubility limit. The simulation for this point evolved in a rather bizarre way so we checked

the trajectory and discovered the formation of solid NaCl. Figure 5.6 shows a snapshot of

one of the final configurations of the system. It is important to note that, since the formation

of solid nucleus is an activated process, the observation of spontaneous crystallization is only

possible when the solubility limit is largely exceeded. This means that the results for the OPLS

at medium to high salinities likely correspond to a metastable system. This fact rises serious

doubts about the validity of the OPLS forcefield.

x

y

z

Figure 5.6: A snapshot of one of the final configurations of a run for the OPLS forcefield at

298.15 K and S=105.5 g/kg showing the formation of NaCl crystallites (the water molecules have

been removed for clarity).
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Figure 5.7: Viscosity of seawater as a function of salinity for the 298.15 K and 373.15 K isotherms

at 1 bar using the OPLS and JC interaction potentials.

Following a similar line of reasoning as in the case of density, we are interested in assessing

the role of the main ionic components of seawater and, thus, we have checked the performance

of the OPLS and JC forcefields in aqueous NaCl solutions. Figure 5.8 represents the viscosities

of a 0.628 molal NaCl solution calculated at several temperatures (at 1 bar) and Figure 5.9

depicts the viscosities as a function of the NaCl concentration for the 298.15 K and 373.15 K

isotherms (the concentration range has been limited up to 2 molal to avoid the the solid NaCl

nucleation). As in the previous case, the trends of the calculated viscosities for the NaCl

solution are essentially the same as those for seawater. Identical conclusions to those obtained

for the density can be drawn from the analysis of Figs. 5.8 and 5.9 (NaCl) which show similar

patterns to Figs. 5.5 and 5.7 (seawater). In summary, the results for a dynamical property, as

the shear viscosity, also leads to the conclusion that having a good model of NaCl interactions

is a requisite for an accurate forcefield for seawater.
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Figure 5.8: Calculated shear viscosities for a 0.628 molal NaCl solution at several temperatures

(using the OPLS and JC forcefields) compared to experimental values.
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Figure 5.9: Calculated shear viscosities of NaCl solutions (using the OPLS and JC forcefields)

at different concentrations for the 298.15 K and 373.15 K isotherms at 1 bar compared to exper-

imental data.

5.2.2 Self diffusion coefficient

To the best of our knowledge no experimental data have been reported for the self-diffusion

coefficients of the seawater components. However these results are easily at our reach in molec-
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5.2. Dynamical properties

ular simulations. This fact shows the potentiality of the simulation in supplying information

not accessible experimentally. The results presented in the precedent sections give us some con-

fidence in the predictions of the OPLS and JC forcefields so we may get relevant information

about the diffusivity of the seawater components.

Figure 5.10 shows the Mean Square Displacement as a function of time for seawater (the

sample contains 15210 molecules) and Mg2+ (18 ions). The number of particles affects the

uncertainty of the calculations: while the MSD of water exhibits an almost perfect linear

dependence up to 2000 ns, the MSD of Mg2+ shows a considerable drift from ≈ 800 ps.
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Figure 5.10: MSD in function of t at 1 bar y 298 K. The MSD function is the black one and red

one is the adjustment to a straight line. (a) Magnesium’s MSD. (b) Water’s MSD.

Table 5.2 presents the self diffusion coefficients of water for the simplified ISsw and sISsw

(see Table 4.1) seawater compositions evaluated with the OPLS and JC forcefields. All the coef-

ficients were obtained at ambient conditions. The time used for the linear regression (Eq. 4.12)

was 2000 ps. Although the self-diffusion coefficient of water changes depending on the involved

potential interactions its value for a given forcefield is noticeably independent of the seawater

composition: the results obtained when considering a more or less detailed seawater compo-

sition agree within the statistical uncertainty (around 3%). This means that, at this level of

accuracy, the effect of replacing Ca2+ by Mg2+ and K+ by Na+ can not be detected.

The self-diffusion coefficients of the ionic components of the simplified model for the Reference-

Composition (sISsw) seawater at ambient conditions are given in Table 5.3. Since the number

of ions is much smaller than that of the water molecules the uncertainty is now much larger

(although, probably, the distinct values obtained for the Na+ ion with the OPLS and JC force-

fields are a reflect of their differences in the Na+-water interactions). The diffusivity of the

cations is sensibly smaller than that of water and bear no relation with the atomic masses.
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Table 5.2: Self diffusion coefficient of water for the simplified ISsw and sISsw seawater samples (see Table 4.1)

at 1 bar and 298.15 K .

Dw/(10−5 cm2/s)

OPLS JC

t(◦C) sISsw ISsw sISsw ISsw

0 0.527 - 0.578 -

25 1.002 0.990 1.054 1.040

60 1.915 1.960 2.043 2.066

This suggest that the effective ionic mass includes the hydration shell In fact, it anticipates a

strong hydration shell in the case of Mg2+. DCl− seems to be less affected by the surround-

ing water molecules (its atomic mass is almost twice that of water so it must have a reduced

mobility). Finally, the high molecular mass of SO2−
4 explains in part a low diffusion coefficient

though its polyatomic nature may also contribute its small diffusivity.

Table 5.3: Self-diffusion coefficients of ions in the simplified model for the Reference-Composition seawater

(15210 water, 136 Na+, 156 Cl−, 8 SO2−
4 , 18 Mg2+) at 298.15 K, 1 bar.

Dion/(10−5 cm2/s)

JC OPLS

Na+ 0.73 0.88

Cl− 1.14 1.11

Mg2+ 0.56 0.53

SO2−
4 0.31 0.32

Table 5.4 presents the values of the self-diffusion coefficients of the Na+ and Cl− ions in a

0.628 molal NaCl solution. The results are coincident (within the statistical uncertainty) with

those obtained for the Reference-Composition seawater. This indicates that the presence of

Mg2+ and SO2−
4 ions does not affect the self-diffusion coefficient of Na+ and Cl− in seawater.

50



5.2. Dynamical properties

Table 5.4: Self-diffusion coefficients of ions in a 0.628 molal NaCl solution (15210 water, 172 Na+, 172 Cl−)

at 298.15 K, 1 bar.

Dion/(10−5 cm2/s)

JC OPLS

Na+ 0.77 0.87

Cl− 1.17 1.07
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5.3 Structure

5.3.1 Ion-Water Structure

The anion-water radial distribution functions (rdf) have been represented in Figures 5.11 and

5.12. The hydration numbers are also displayed in the figures and their numerical values are

given in All the rdf’s and the respective hydration numbers have been evaluated —using the JC

and OPLS interaction potentials— for the simplified Reference-composition seawater (column

sISsw in Table 4.1) and for a 0.628 m NaCl aqueous solution. Because of the similarities

between the results for both models we only show the calculations for the JC potential. Also,

as observed in the figures, the general aspect of the Na+-water rdf’s in seawater is coincident

with that of the NaCl solution. In summary, the general features of the hydration of the anions

are independent on the details of the forcefield or the composition. These characteristics are

then essentially dependent on the nature of the ion, mostly the sign and the nominal value of

the ionic charge.
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Figure 5.11: (left) Cl−-water radial distribution functions and the corresponding hydration num-

bers, calculated with the JC potential for our simplified Reference-Composition seawater, sISsw

(15210 water, 136 Na+, 156 Cl – , 8 SO 2 –
4 , 18 Mg 2+) at T = 298.15 K, 1 bar. (right) Same as the

left panel but for a 0.628 molal aqueous NaCl solution (15210 water, 172 Na+, 172 Cl – ).
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Figure 5.12: (left) Sulfate-water radial distribution functions and the corresponding hydration

numbers, calculated with the JC potential for our simplified Reference-Composition seawater

(15210 water, 136 Na+, 156 Cl – , 8 SO 2 –
4 , 18 Mg 2+) at T = 298.15 K, 1 bar. (right) Same as the

left panel but for a 0.628 molal aqueous NaCl solution (15210 water, 172 Na+, 172 Cl – ).

In the case of anions, it may be noted that the first peaks for hydrogen and oxygen have

almost identical amplitudes and heights, their only difference being that they appear shifted in

the distance. Also their integrals seem to have similar trends. This means that the probabilities

of finding an oxygen atom at a certain distance r from the center of the anion is essentially

the same as that of finding an hydrogen atom at r + δr. Interestingly δr is just the OH

bond distance. The numerical results of hydration numbers, presented Table 5.5, confirm these

assertions.

The picture emerging from these results is presented in Figure 5.13(left). The water

molecules in the first layer approach the anion with an hydrogen atom closer than the oxy-

gen. The OH bond points towards the center of the anion so that the number of hydrogens in

the first shell is coincident with that of oxygens. In addition the position of the first anion-H

and anion-O peaks should appear (and, indeed, they do it) shifted by the OH length (roughly

0.1 nm). Moreover, since the water HOH angle is far from 180o the position of the second

maximum of the anion-H rdf appears closer to the first anion-O peak than the first anion-H

maximum.
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Table 5.5: Ion-water hydration numbers (HN) at ambient conditions for sISsw seawater (15210 water, 136

Na+, 156 Cl−, 8 SO2−
4 , 18 Mg2+), and for a 0.626 molal NaCl solution (15210 water, 172 Na+, 172 Cl−). The

HN values have been calculated as the average number of each ion at the distance (in nm) of the first minimum

of the Ow-ion and Hw-ion rdf’s.

sISsw seawater

Ow-ion Hw-ion

JC OPLS JC OPLS

Distance HN Distance HN Distance HN Distance HN

Cl− 0.375 6.7 0.385 6.6 0.295 6.5 0.305 5.9

Na+ 0.32 5.9 0.325 5.2 0.38 14.9 0.38 13.9

Mg2+ 0.27-0.30 5.94 0.27-0.30 5.94 0.30 11.9 0.32 11.9

S 0.44 12.8 0.44 12.9 0.34 11.7 0.34 12.3

NaCl 0.628 molal

Ow-ion Hw-ion

JC OPLS JC OPLS

Distance HN Distance HN Distance HN Distance HN

Cl− 0.375 6.7 0.385 6.6 0.295 6.6 0.305 5.9

Na+ 0.32 5.95 0.325 5.2 0.375 14.7 0.38 13.6

The hydration numbers of the Cl− ion are in all cases around 6. However, this quantity

signals the only remarkable differences between the predictions of the JC and the OPLS force-

fields, the latter providing slightly smaller Cl−-H hydration numbers in seawater and the NaCl

solution. As expected, the sulfate ion is surrounded by many more water molecules (≈ 12) than

the chloride. This is a consequence of its double negative charge as well as its bigger size which

allows to accommodate a larger number of water molecules around it. Unexpectedly, the num-

ber of hydrogens in first layer of the sulfates are now larger for the OPLS potential interaction

(we recall that we have used the same potential function[41] for SO 2 –
4 in both forcefields).
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5.3. Structure

Figure 5.13: (a) Configuration of the water molecule close to an anion. (b) Configuration of the

water molecule close to a cation.

Looking at the Figures for the cations (Figs. 5.15 and 5.13) we may notice that now the

height of the first cation-O peaks are much larger than that of the first cation-H maxima. In

fact, the hydration numbers (5.5) of the hydrogen atoms are roughly twice those of oxygens.

These results results the configuration of the first water layer around the cations displayed in

Fig. 5.13(right). The closer atom of a water molecule approaching a cation is the oxygen one

with both hydrogens placed symmetrically and, thus, at almost the same distance from the ion.

This picture is almost perfect for the magnesium cation where the Mg2+-H hydration numbers

exactly double those of Mg2+-O. Notice also the large planar region of the magnesium rdf’s

corresponding to six strongly bounded water molecules in a very tight arrangement.

On the other hand, the hydration of the sodium cations is less rigid. Although the number

of oxygens in the first layer is again around 6, the hydration numbers of the hydrogen atoms

is more than twice this figure indicating that the hydrogens of some extra water molecules

may enter into the first hydration shell. The HN numerical values for Na+ also reveal a slightly

different hydration properties of the JC and the OPLS forcefield. Finally, it is worth mentioning

that the results for the hydration of Na+ in seawater are completely coincident with those in

a one-component NaCl solution indicating that the presence of other ions (even if they are

divalent) does not disturb essentially the local Na+-water structure.
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Figure 5.14: (left) Na+-water radial distribution functions and the corresponding hydration

numbers, calculated with the JC potential for our simplified Reference-Composition seawater,

sISsw (15210 water, 136 Na+, 156 Cl – , 8 SO 2 –
4 , 18 Mg 2+) at T = 298.15 K, 1 bar. Lower curves

are the corresponding coordination numbers. (right) Same as the left panel but for a 0.628 molal

aqueous NaCl solution (15210 water, 172 Na+, 172 Cl – ).
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Figure 5.15: Mg 2+-water radial distribution functions, calculated with the JC potential, for

sISsw seawater (15210 water, 136 Na+, 156 Cl – , 8 SO 2 –
4 , 18 Mg 2+) at T = 298.15 K, 1 bar.

5.3.2 Ion-Ion Structure

Figures 5.16, 5.17, 5.18, and 5.19 show the rdf’s for the cation-anion pairs in sISsw seawater.

In Fig. 5.16 the Na+-Cl− radial distribution functions of a 0.628 molal NaCl solution are also

displayed. At this point it cannot be a surprise that the rdf in seawater is completely coincident

56



5.3. Structure

with that in a one-component NaCl solution of similar concentration. This confirms, once again,

that the presence of other ions (even if they are divalent) does not disturb essentially the local

structure. Table 5.6, presents the numerical values of the more interesting features (position

and heights of the first maximum, first minimum and second maximum) of selected distribution

functions.
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Figure 5.16: (left) Na+−Cl – radial distribution functions and coordination numbers calculated

with the JC and OPLS potentials for sISsw seawater (15210 water, 136 Na+, 156 Cl – , 8 SO 2 –
4 ,

18 Mg 2+) at T = 298.15 K, 1 bar. (right) Same as the left panel but for a NaCl solution at

similar salinity (15210 water, 172 Na+, 172 Cl – ).

Contrary to the trends exhibited by the ion-water distribution functions, the predictions for

the rdf’s between unlike charged ions are considerably different for the JC and OPLS forcefields.

The Na+−Cl – rdf provides a paradigmatic example. In this case the OPLS system exhibits a

huge first peak (in fact, we have been forced to cut it in the plot). This means that, in the

OPLS system, every ion is surrounded by a significant proportion of ions of opposite charge

at distances smaller than the hydration layer. It is usual to name them as contact ion pairs

(CIP). The JC results lead to a quite different picture: a small first peak followed by second

maximum of considerable height indicates that most of the unlike charged neigbours of an ion

are placed beyond the hydration layer. These anion-cation pairs are usually referred to as

solvent separated ion pairs (SSIP).

It has been suggested that the solubility of models of NaCl solutions at ambient conditions

may be obtained as the concentration at which the number of ionic pairs is close to 0.075[47, 48].

Since the CIP reaches a value over 0.50 in the OPLS 0.628 NaCl solution, assuming the rule

to be valid, it follows that the system would largely be beyond the solubility limit. Given the

similarities between the behaviour of the sISsw seawater and the 0.628 NaCl solution, it seems

clear that the OPLS fails completely in the prediction of the ion structure (more precisely the
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Na+−Cl – rdf). This fact explains the problems detected in the calculation of viscosity where

we observed the formation NaCl crystallites in the high salinity systems.

The differences in the ionic structure produced by the OPLS and JC forcefields are not

limited to the Na+−Cl – pairs. Figure 5.17 shows that the Na+-S distribution functions are

somewhat different for both models. Now it is the JC forcefield that predicts a huge first peak,

much higher than that of the OPLS model. The number of ionic pairs is significant for the JC

system (an average of 0.75 sodium ions surround every sulfate) and considerably smaller for

the OPLS potential (0.24). Notice that despite these relatively large number of ion pairs, the

low concentration of sulfate anions disables the possibility of ionic aggregation.
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Figure 5.17: Na+−S distribution functions and coordination numbers for sISsw seawater (15210

water, 136 Na+, 156 Cl – , 8 SO 2 –
4 , 18 Mg 2+) as obtained with the OPLS and JC forcefields at

T=298.15 K, 1bar.

Although the overall aspect of the Mg2+-Cl distribution functions of OPLS and JC are

quite similar (Figure 5.19), its most significant feature is that the positions of the extrema

appear slightly shifted in both models. The first maximum occurs at quite small distances

(0.25-0.26 nm). Because of this and also due to the low Mg2+ concentration, the height of the

first maximum is not relevant: a peak height of around 10 only leads to a CIP around 0.05.

The second maximum of this function appears considerably shifted, at slightly below 0.5 nm,

and involves a significant number of ion pairs, 0.71 and 0.48 for the JC and OPLS systems,

respectively.
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Figure 5.18: Mg−Cl distribution functions and coordination numbers for sISsw seawater (15210

water, 136 Na+, 156 Cl – , 8 SO 2 –
4 , 18 Mg 2+) as obtained with the OPLS and JC forcefields at

T=298.15 K, 1bar.

The Mg2+-S distribution functions (Figure 5.19) show a quite peculiar behaviour: a large

and wide first maximum centered at r = 0.48 followed by an extented and much less structured

region. Consequently, the coordination numbers grow steadily up to the distance of the first

minimum (at r = 0.60, the average number of sulfates surrounding a magnesium ion is already

0.21 and 0.07 in the OPLS and JC systems, respectively) and increases quite slowly afterwards

(Nc = 0.25 and Nc = 0.10 at r = 0.90, respectively). These numbers also indicate that, even if

the overall picture is the same for both forcefields, there are significant quantitative differences

among them.

The features of the Mg2+-S distribution functions are probably due to a combination of

three factors. Firstly, these ions are divalent and, thus, the electrostatic interactions are very

strong (four times larger than those between monovalent ions). In addition, as commented

above, the magnesium ion is firmly hydrated which makes it act effectively as a large ion. This,

together with size and shape of the sulfate, accounts for the large and wide first peak of the

rdf. Finally, it should be expected that, apart of these strongly binded unlike charged ion pairs,

most of the charge cancellation of a divalent ion would be due to presence of the most abundant

monovalent ions. In other words despite the strong electrostatic interactions the scarce divalent

ions cannot compete with the most abundant monovalent ones at medium to large distances.
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Figure 5.19: Mg−S distribution functions and coordination numbers for sISsw seawater (15210

water, 136 Na+, 156 Cl – , 8 SO 2 –
4 , 18 Mg 2+) as obtained with the OPLS and JC forcefields at

T=298.15 K, 1bar.
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Chapter 6

Conclusions

About 71% of the earth is covered with seawater, a very complex substance from the point of

view of the composition. A lot of work has been done about its composition and its chemical-

physical properties. These considerations give strong support for the development of a compu-

tational model able to simulate the seawater properties.

The first contribution of this work is just to show that the molecular simulation of seawater

is at our reach. We have shown that we may discard very minor components of the complex

seawater composition and substitute it by a simpler one which is amenable for computer sim-

ulation: the Reference Composition of Standard seawater may be quite well represented by a

system consisting of 15210 water molecules and 318 ions (133 Na+, 156 Cl−, 8 SO2−
4 , 15 Mg2+,

3 Ca2+, and 3 K+).

Through molecular dynamics simulations we have investigated the results for this seawater

composition for two different forcefields based on the use of the TIP4P/2005 model to describe

the water-water interactions. The only difference between them are the parameters representing

the interactions between the most abundant ions in seawater, Na+ and Cl−. For these we

have employed the Joung-Cheatham and the OPLS potentials. For the rest of the interionic

potentials we use a common set of parameters (taken from the literature) in both forcefields.

We have shown that the predictions for the JC and OPLS potentials are in good agreement

with the experimental measurements for the density and acceptable for the viscosity.

One of the aims of this study was to investigate the importance of minor constituents in the

seawater properties. To this effect we have carried out simulations for a system in which we

replace the K+ and Ca2+ ions by Na+ and Mg2+, respectively. A significant conclusion of this

work is that the properties of seawater are almost the same (within the statistical uncertainties)

in both systems.

Computer simulation is able to provide information on a number of properties not easily
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accessible to the experiments. We have been able to yield some results for the water and ionic

diffusivity in seawater as well as to give a description of the structure of this imposrtant fluid.

The comparison with experimental results (when possible) show that the predictions of the

JC and OPLS forcefields are quite similar. However some of the simulations at high salinity

using the OPLS potential lead to the formation of solid ionic nuclei indicating that this model

has a solubility limit considerably lower than the experimental one. It is probably even more

important that the structural properties of the OPLS system denoted a strong ionic association

even at low salinities. This fact throws serious doubts about the validity of the OPLS forcefield

despite their acceptable predictions for the density and the viscosity of seawater.

In order to assess the origin of the departures of the simulation results from the experimental

data for seawater we have also performed some simulations for NaCl aqueous solutions. We

have observed that the differences between simulation and experiment are exactly the same

in seawater and NaCl solutions of equivalent salinity. This indicates that a more satisfactory

description of the Na+-water, Cl−-water and Na+-Cl− interations is a requisite for a better

account of the seawater properties. A recently proposed forcefield for NaCl aqueous solutions

could be an advance along these lines. However, since the model is based on partial ionic charges,

it is not compatible with the currently proposed interactions for other ions. A considerable effort

is yet to be done to provide a consistent forcefield for the simulation of seawater.
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